NASA Technical Reports Server (NTRS)
Hyer, M. W.; Paraska, P. J.
1990-01-01
The study focuses on the axisymmetric deformation response of unsymmetrically laminate cylinders loaded in axial compression by known loads. A geometrically nonlinear analysis is used. Though buckling is not studied, the deformations can be considered to be the prebuckling response. Attention is directed at three 16 layer laminates: a (90 sub 8/0 sub 8) sub T; a (0 sub 8/90 sub 8) sub T and a (0/90) sub 4s. The symmetric laminate is used as a basis for comparison, while the two unsymmetric laminates were chosen because they have equal but opposite bending-stretching effects. Particular attention is given to the influence of the thermally-induced preloading deformations that accompany the cool-down of any unsymmetric laminate from the consolidation temperature. Simple support and clamped boundary conditions are considered. It is concluded that: (1) The radial deformations of an unsymmetric laminate are significantly larger than the radial deformations of a symmetric laminate, although for both symmetric and unsymmetric laminates the large deformations are confined to a boundary layer near the ends of the cylinder; (2) For this nonlinear problem the length of the boundary layer is a function of the applied load; (3) The sign of the radial deformations near the supported end of the cylinder depends strongly on the sense (sign) of the laminate asymmetry; (4) For unsymmetric laminates, ignoring the thermally-induced preloading deformations that accompany cool-down results in load-induced deformations that are under predicted; and (5) The support conditions strongly influence the response but the influence of the sense of asymmetry and the influence of the thermally-induced preloading deformations are independent of the support conditions.
Deformation twinning: Influence of strain rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, G.T. III
Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shockmore » wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.« less
Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.
NASA Astrophysics Data System (ADS)
Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang
2018-06-01
The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure conform to the variation law of the exponential function.
Experimental and numerical investigation on laser-assisted bending of pre-loaded metal plate
NASA Astrophysics Data System (ADS)
Nowak, Zdzisław; Nowak, Marcin; Widłaszewski, Jacek; Kurp, Piotr
2018-01-01
The laser forming technique has an important disadvantage, which is the limitation of plastic deformation generated by a single laser beam pass. To increase the plastic deformation it is possible to apply external forces in the laser forming process. In this paper, we investigate the influence of external pre-loads on the laser bending of steel plate. The pre-loads investigated generate bending towards the laser beam. The thermal, elastic-plastic analysis is performed using the commercial nonlinear finite element analysis package ABAQUS. The focus of the paper is to identify how this pattern of the pre-load influence the final bend angle of the plate.
Influences of rolling method on deformation force in cold roll-beating forming process
NASA Astrophysics Data System (ADS)
Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan
2018-03-01
In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.
Twinning behaviors of a rolled AZ31 magnesium alloy under multidirectional loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dewen
The microstructure and texture evolution of an AZ31 magnesium rolled sheet during quasi-static compression at strain rates of 10{sup −3} s{sup −1} has been investigated by in situ electron backscattered diffraction. The influence of the initial and pre-deformed texture on the predominant deformation mechanisms during compression has been examined. It has been found that extensive grain reorientation due to (10 − 12) tensile twinning appeared when compressed along transverse direction. Tensile twin variants were observed under this loading condition, and different variants will cause an effect to the following deformation. Several twinning modes occurred with continuative loading along rolling direction.more » - Highlights: •Twinning behaviors were investigated through in situ multidirectional compressive tests. •Deformation behavior was affected by the twin variants. •Four types of twinning behaviors were observed during deformation process.« less
Investigation into the Fatigue Crack Initiation Process in Metals.
1985-12-01
fatigue crack initiation in metals under spectrum loading is described. The work focuses on the microplastic deformation properties of a surface...behavior is then controlled by the external load spectra, but is greatly influenced by the reaction stresses within a microplastic grain generated when its...49 4.7 Example values of strain just outside microplastic grains indicating an elastic matrix and deformation depths around 10 n - the typical
Brozović, Juraj; Demoli, Nazif; Farkaš, Nina; Sušić, Mato; Alar, Zeljko; Gabrić Pandurić, Dragana
2014-03-01
The aim of this study was to (i) obtain the force-related interferometric patterns of loaded dental implant-abutment assemblies differing in diameter and brand using digital holographic interferometry (DHI) and (ii) determine the influence of implant diameter on the extent of load-induced implant deformation by quantifying and comparing the obtained interferometric data. Experiments included five implant brands (Ankylos, Astra Tech, blueSKY, MIS and Straumann), each represented by a narrow and a wide diameter implant connected to a corresponding abutment. A quasi-Fourier setup with a 25mW helium-neon laser was used for interferometric measurements in the cervical 5mm of the implants. Holograms were recorded in two conditions per measurement: a 10N preloaded and a measuring-force loaded assembly, resulting with an interferogram. This procedure was repeated throughout the whole process of incremental axial loading, from 20N to 120N. Each measurement series was repeated three times for each assembly, with complete dismantling of the implant-loading device in between. Additional software analyses calculated deformation data. Deformations were presented as mean values±standard deviations. Statistical analysis was performed using linear mixed effects modeling in R's lme4 package. Implants exhibited linear deformation patterns. The wide diameter group had lower mean deformation values than the narrow diameter group. The diameter significantly affected the deformation throughout loading sessions. This study gained in vitro implant performance data, compared the deformations in implant bodies and numerically stated the biomechanical benefits of wider diameter implants. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Deformation of compound shells under action of internal shock wave loading
NASA Astrophysics Data System (ADS)
Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin
2015-09-01
The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.
NASA Astrophysics Data System (ADS)
Slavnov, E. V.; Petrov, I. A.
2015-07-01
The influence of the volume deformation rate on the intensity of piston pressing-out of oil has been investigated. The results of pressing by a piston moving with different speeds are presented. Mathematical simulation is carried out for the stage of pressing-out after the termination of sample loading, when oil release occurs due to the accumulated deformations of the skeleton. It has been assumed that in mechanical pressing there remains the least residual content of oil. A dimensionless complex representing the ratio of the characteristic times of loading to the material response (the process of pressing) has been obtained. The dependence of the rate of oil pressing-out at the stage of pressure relaxation on the dimensionless complex has been determined.
The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading
Koohbor, Behrad; Mallon, Silas; Kidane, Addis; ...
2015-04-07
The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Starnes, James H., Jr.; Prasad, Chunchu B.
1993-01-01
An analytical procedure is presented for determining the transient response of simply supported, rectangular laminated composite plates subjected to impact loads from airgun-propelled or dropped-weight impactors. A first-order shear-deformation theory is included in the analysis to represent properly any local short-wave-length transient bending response. The impact force is modeled as a locally distributed load with a cosine-cosine distribution. A double Fourier series expansion and the Timoshenko small-increment method are used to determine the contact force, out-of-plane deflections, and in-plane strains and stresses at any plate location due to an impact force at any plate location. The results of experimental and analytical studies are compared for quasi-isotropic laminates. The results indicate that using the appropriate local force distribution for the locally loaded area and including transverse-shear-deformation effects in the laminated plate response analysis are important. The applicability of the present analytical procedure based on small deformation theory is investigated by comparing analytical and experimental results for combinations of quasi-isotropic laminate thicknesses and impact energy levels. The results of this study indicate that large-deformation effects influence the response of both 24- and 32-ply laminated plates, and that a geometrically nonlinear analysis is required for predicting the response accurately.
NASA Astrophysics Data System (ADS)
Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.
2018-03-01
The loading and unloading units and grinding mills of raw devices have internal cone type or pipe screw perceive load of incoming and outgoing material. The main part of the support assembly is a pin. Mounting seats for the pipe screws cone have traces of deformation and work hardening, while they themselves have wear of pins and deformation of the inner and outer cylindrical working surface. In the mill body, there are constantly acting dynamic forces causing vibration, which are transmitted to the stud and inner accelerating elements. Under the influence of stress and vibration, the housing spigot is in the stress-compressed state and stretched vertically and horizontally. As a result, the insertion element is deformed and weakened in the fixture. A moving element appears in the gap leading to the fact that it drops lfeedstock and under the influence of variable loads it is destroyed, as well as the seating surfaces of the insert pin member.
Integral finite element analysis of turntable bearing with flexible rings
NASA Astrophysics Data System (ADS)
Deng, Biao; Liu, Yunfei; Guo, Yuan; Tang, Shengjin; Su, Wenbin; Lei, Zhufeng; Wang, Pengcheng
2018-03-01
This paper suggests a method to calculate the internal load distribution and contact stress of the thrust angular contact ball turntable bearing by FEA. The influence of the stiffness of the bearing structure and the plastic deformation of contact area on the internal load distribution and contact stress of the bearing is considered. In this method, the load-deformation relationship of the rolling elements is determined by the finite element contact analysis of a single rolling element and the raceway. Based on this, the nonlinear contact between the rolling elements and the inner and outer ring raceways is same as a nonlinear compression spring and bearing integral finite element analysis model including support structure was established. The effects of structural deformation and plastic deformation on the built-in stress distribution of slewing bearing are investigated on basis of comparing the consequences of load distribution, inner and outer ring stress, contact stress and other finite element analysis results with the traditional bearing theory, which has guiding function for improving the design of slewing bearing.
Analysis of influence of different pressure and different depth of pvd on soft foundation treatment
NASA Astrophysics Data System (ADS)
Li, Bin; Wang, XueKui
2018-02-01
According to the depth of plastic vertical drainage (pvd), the arrangement mode and the loading mode to analyze the influence of Vacuum preloading near the existing road. An arrangement mode of vacuum preloading to reduce the impact was put forward. The combination of different depth of pvd and loading modes are used to analyze the effect of vacuum preloading treatment and its influence range. The calculations show that the deformation and the influence distance are smaller by using the 40kPa vacuum loading and 41kPa surcharge load preloading. Reducing the depth of the pvd and vacuum combined surcharge preloading can weaken the influence to the existing highway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.; ...
2017-11-30
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Fatigue Behavior and Deformation Mechanisms in Inconel 718 Superalloy Investigated
NASA Technical Reports Server (NTRS)
2005-01-01
The nickel-base superalloy Inconel 718 (IN 718) is used as a structural material for a variety of components in the space shuttle main engine (SSME) and accounts for more than half of the total weight of this engine. IN 718 is the bill-of-material for the pressure vessels of nickel-hydrogen batteries for the space station. In the case of the space shuttle main engine, structural components are typically subjected to startup and shutdown load transients and occasional overloads in addition to high-frequency vibratory loads from routine operation. The nickel-hydrogen battery cells are prooftested before service and are subjected to fluctuating pressure loads during operation. In both of these applications, the structural material is subjected to a monotonic load initially, which is subsequently followed by fatigue. To assess the life of these structural components, it is necessary to determine the influence of a prior monotonic load on the subsequent fatigue life of the superalloy. An insight into the underlying deformation and damage mechanisms is also required to properly account for the interaction between the prior monotonic load and the subsequent fatigue loading. An experimental investigation was conducted to establish the effect of prior monotonic straining on the subsequent fatigue behavior of wrought, double-aged, IN 718 at room temperature. First, monotonic strain tests and fully-reversed, strain-controlled fatigue tests were conducted on uniform-gage-section IN 718 specimens. Next, fully reversed fatigue tests were conducted under strain control on specimens that were monotonically strained in tension. Results from this investigation indicated that prior monotonic straining reduced the fatigue resistance of the superalloy particularly at the lowest strain range. Some of the tested specimens were sectioned and examined by transmission electron microscopy to reveal typical microstructures as well as the active deformation and damage mechanisms under each of the loading conditions. In monotonically strained specimens, deformation during the subsequent fatigue loading was mainly confined to the deformation bands initiated during the prior monotonic straining. This can cause dislocations to move more readily along the previously activated deformation bands and to pile up near grain boundaries, eventually making the grain boundaries susceptible to fatigue crack initiation. The mechanisms inferred from the microstructural investigation were extremely valuable in interpreting the influence of prior monotonic straining on the subsequent fatigue life of Inconel 718 superalloy.
Influence of gravity on deformation of blocks in Earth's crust
NASA Astrophysics Data System (ADS)
Tataurova, A. A.; Stefanov, Yu. P.; Bakeev, R. A.
2017-12-01
The article presents the results of numerical calculations of deformation using an Earth's crust model fragment under the influence of gravitational force. It is shown that plastic deformation in low-strength blocks changes the stress-strain state in the medium and produces a surface deflection which is hundred meters deep. The deflection is defined by the properties of the medium, its extent, and conditions at the lateral boundaries. The order of load application beyond the elastic limit affects the development of deformation, which should be taken into account when formulating problems and performing numerical simulations. The problem has been solved using a two-dimensional elastoplastic approach.
Influence of abutment screw preload on stress distribution in marginal bone.
Khraisat, Ameen
2012-01-01
Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.
Post, Andrew; Oeur, Anna; Walsh, Evan; Hoshizaki, Blaine; Gilchrist, Michael D
2014-01-01
American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.
Wu, Wei; An, Ke; Liaw, Peter K.
2014-12-23
In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less
Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; An, Ke
The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less
Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy
Wu, Wei; An, Ke
2015-10-03
The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less
The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium
NASA Astrophysics Data System (ADS)
Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.
2011-10-01
In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.
NASA Astrophysics Data System (ADS)
Aleksandrov, A. S.; Dolgih, G. V.; Kalinin, A. L.
2017-11-01
It is established that under the influence of repeated loads the process of plastic deformation in soils and discrete materials is hereditary. To perform the mathematical modeling of plastic deformation, the authors applied the integral equation by solution of which they manage to obtain the power and logarithmic dependencies connecting plastic deformation with the number of repeated loads, the parameters of the material and components of the stress tensor in the principal axes. It is shown that these dependences generalize a number of models proposed earlier in Russia and abroad. Based on the analysis of the experimental data obtained during material testing in the dynamic devices of triaxial compression at different values of the stress deviator, the coefficients in the proposed models of deformation are determined. The authors determined the application domain for logarithmic and degree dependences.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2017-09-01
Large deformation regime of micro-scale slender beam-like structures subjected to axially pointed loads is of high interest to nanotechnologists and applied mechanics community. Herein, size-dependent nonlinear governing equations are derived by employing modified couple stress theory. Under various boundary conditions, analytical relations between axially applied loads and deformations are presented. Additionally, a novel Galerkin-based assumed mode method (AMM) is established to solve the highly nonlinear equations. In some particular cases, the predicted results by the analytical approach are also checked with those of AMM and a reasonably good agreement is reported. Subsequently, the key role of the material length scale on the load-deformation of microbeams is discussed and the deficiencies of the classical elasticity theory in predicting such a crucial mechanical behavior are explained in some detail. The influences of slenderness ratio and thickness of the microbeam on the obtained results are also examined. The present work could be considered as a pivotal step in better realizing the postbuckling behavior of nano-/micro- electro-mechanical systems consist of microbeams.
Hydrogen-Induced Plastic Deformation in ZnO
NASA Astrophysics Data System (ADS)
Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.
In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.
Analyzing the extrusion mould for aluminum profile
NASA Astrophysics Data System (ADS)
Yun, Wang; Xu, Zhenying; Dai, Yachun; Dong, Peilong; Yuan, Guoding; Lan, Cai
2007-12-01
The die or mould used for extruding aluminum wallboard profile is in serious work conditions, so it is easy to appear drawbacks in the mould such as non-uniform stress and strain distributions, crack initiation and propagation, elastic warp, and even plastic distortion. As we know, the extrusion die or mould is subject to complex loads including the extrusion pressure, friction and thermal load, which make the mould complicated and hard to be designed and analyzed by using conventional analytical method. In this paper, we applied Deform-3D, FEA (Finite Element Analysis) software used frequently in all engineering fields, to simulate three-dimensional extruding process of aluminum profile. The simulation results show that the deformation increases gradually from inside to outside. Exterior deformation contour distribution is relative uniform since the influence of inner holes on deformation is small, and the contour form is regular and similar with the shape of the mould. However, the interior deformation contour is irregular as the influence of holes with basically symmetric equivalent curves. At the middle of the mould, the deformation reaches the largest, it reaches 0.633mm. The deformation of the mould can be reduced by increasing the distance between two holes or increasing thickness of the mould. Experiment result accords with simulation. The simulation process and results ensure the feasibility of finite element method, providing the support for mould design and structural optimization.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir; Skripnyak, Evgeniya; Meyer, Lothar W.; Herzig, Norman; Skripnyak, Nataliya
2012-02-01
Researches of the last years have allowed to establish that the laws of deformation and fracture of bulk ultrafine-grained and coarse-grained materials are various both in static and in dynamic loading conditions. Development of adequate constitutive equations for the description of mechanical behavior of bulk ultrafine-grained materials at intensive dynamic influences is complicated in consequence of insufficient knowledge about general rules of inelastic deformation and nucleation and growth of cracks. Multi-scale computational model was used for the investigation of deformation and fracture of bulk structured aluminum and magnesium alloys under stress pulse loadings on mesoscale level. The increment of plastic deformation is defined by the sum of the increments caused by a nucleation and gliding of dislocations, the twinning, meso-blocks movement, and grain boundary sliding. The model takes into account the influence on mechanical properties of alloys an average grains size, grain sizes distribution of and concentration of precipitates. It was obtained the nucleation and gliding of dislocations caused the high attenuation rate of the elastic precursor of ultrafine-grained alloys than in coarse grained counterparts.
Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone.
Craig, Timothy J; Chanard, Kristel; Calais, Eric
2017-12-15
The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or 'stable' plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load.
NASA Astrophysics Data System (ADS)
Põldsaar, Kairi
2015-04-01
Soft-sediment deformation structures (SSDS) are documented in several horizons within silt- and sandstones of the Cambrian Series 2 (Dominopolian Stage) Tiskre Formation, and some in the below-deposited argillaceous deposits of the Lükati Formation (northern part of the Baltoscandian Palaeobasin, NW Estonia). The aim of this study was to map, describe, and analyze these deformation features, discuss their deformation mechanism and possible triggers. Load structures (simple load casts, pillows, flame structures, convoluted lamination) with varying shapes and sizes occur in the Tiskre Fm in sedimentary interfaces within medium-bedded peritidal rhythmites (siltstone-argillaceous material) as well as within up to 3 m thick slightly seaward inclined stacked sandstone sequences. Homogenized beds, dish-and-pillar structures, and severely deformed bedding are also found within these stacked units and within a large tidal runoff channel infill. Autoclastic breccias and water-escape channels are rare and occur only in small-scale -- always related to thin, horizontal tidal laminae. Profound sedimentary dykes, sand volcanoes, and thrust faults, which are often related to earthquake triggered soft sediment deformation, were not observed within the studied intervals. Deformation horizon or horizons with large flat-topped pillows often with elongated morphologies occur at or near the boundary between the Tiskre and Lükati formations. Deformation mechanisms identified in this study for the various deformation types are gravitationally unstable reversed density gradient (especially in case of load features that are related to profound sedimentary interfaces) and lateral shear stress due to sediment current drag (in case of deformation structures that not related to loading at any apparent sedimentary interface). Synsedimentary liquefaction was identified as the primary driving force in most of the observed deformation horizons. Clay thixotropy may have contributed in the formation of large sandstone pillows within the Tiskre-Lükati boundary interval at some localities. It is discussed here that the formation of the observed SSDS is genetically related to the restless dynamics of the storm-influenced open marine tidal depositional environment. The most obvious causes of deformation were rapid-deposition, shear and slumping caused by tidal surges, and storm-wave loading.
Deformation and failure mechanisms of graphite/epoxy composites under static loading
NASA Technical Reports Server (NTRS)
Clements, L. L.
1981-01-01
The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-29
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.
Jeong, Yoseok; Lee, Jaeha; Kim, WooSeok
2015-01-01
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant. PMID:28787948
NASA Technical Reports Server (NTRS)
Maile, K.
1982-01-01
The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.
A novel ex vivo model of compressive immature rib fractures at pathophysiological rates of loading.
Beadle, Nicola; Burnett, Timothy L; Hoyland, Judith A; Sherratt, Michael J; Freemont, Anthony J
2015-11-01
Compressive rib fractures are considered to be indicative of non-accidental injury (NAI) in infants, which is a significant and growing issue worldwide. The diagnosis of NAI is often disputed in a legal setting, and as a consequence there is a need to model such injuries ex vivo in order to characterise the forces required to produce non-accidental rib fractures. However, current models are limited by type of sample, loading method and rate of loading. Here, we aimed to: i) develop a loading system for inducing compressive fractures in whole immature ribs that is more representative of the physiological conditions and mechanism of injury employed in NAI and ii) assess the influence of loading rate and rib geometry on the mechanical performance of the tissue. Porcine ribs (5-6 weeks of age) from 12 animals (n=8 ribs/animal) were subjected to axial compressive load directed through the anterior-posterior rib axis at loading rates of 1, 30, 60 or 90 mm/s. Key mechanical parameters (including peak load, load and percentage deformation to failure and effective stiffness) were quantified from the load-displacement curves. Measurements of the rib length, thickness at midpoint, distance between anterior and posterior extremities, rib curvature and fracture location were determined from radiographs. This loading method typically produced incomplete fractures around the midpoint of the ribs, with 87% failing in this manner; higher loads and less deformation were required for ribs to completely fracture through both cortices. Loading rate, within the range of 1-90 mm/s, did not significantly affect any key mechanical parameters of the ribs. Load-displacement curves displaying characteristic and quantifiable features were produced for 90% of the ribs tested, and multiple regression analyses indicate that, in addition to the geometrical variables, there are other factors such as the micro- and nano-structure that influence the measured mechanical data. A reproducible method of inducing fractures in a consistent location in immature porcine ribs has been successfully developed. Fracture appearance may be indicative of the amount of load and deformation that produced the fracture, which is an important finding for NAI, where knowledge of the aetiology of fractures is vital. Characteristic rib behaviour independent of loading rate and, to an extent, rib geometry has been demonstrated, allowing further investigation into how the complex micro- and nano-structure of immature ribs influences the mechanical performance under compressive load. This research will ultimately enable improved characterisation of the loading pattern involved in non-accidental rib fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Makuch, Anna M; Skalski, Konstanty R; Pawlikowski, Marek
2017-01-01
The goal of the study was to determine the influence of DSI test conditions, i.e., loading/unloading rates, hold time, and the value of the maximum loading force on selected mechanical properties of trabecular bone tissue. The test samples were resected from a femoral head of a patient qualified for a hip replacement surgery. During the DSI tests hardness (HV, HM, HIT) and elastic modulus (EIT) of trabecular bone tissue were measured using the Micro Hardness Tester (MHT, CSEM). The analysis of the results of measurements and the calculations of total energy, i.e., elastic and inelastic (Wtotal, Welastic, Winelastic) and those of hardness and elasticity made it possible to assess the impact of the process parameters (loading velocity, force and hold time) on mechanical properties of bone structures at a microscopic level. The coefficient k dependent on the EIT/HIT ratio and on the stored energy (ΔW = Wtotal - Welastic) is a measure of the material reaction to the loading and the deformation of tissue.
Mechanisms of High-Temperature Fatigue Failure in Alloy 800H
NASA Technical Reports Server (NTRS)
BhanuSankaraRao, K.; Schuster, H.; Halford, G. R.
1996-01-01
The damage mechanisms influencing the axial strain-controlled Low-Cycle Fatigue (LCF) behavior of alloy 800H at 850 C have been evaluated under conditions of equal tension/compression ramp rates (Fast-Fast (F-F): 4 X 10(sup -3)/s and Slow-Slow (S-S): 4 X 10(sup -5)/s) and asymmetrical ramp rates (Fast-Slow (F-S): 4 x 10(sup -3)/s / 4 X 10(sup -5/s and Slow-Fast (S-F): 4 X 10(sup -5) / 4 X 10(sup -3)/s) in tension and compression. The fatigue life, cyclic stress response, and fracture modes were significantly influenced by the waveform shape. The fatigue lives displayed by different loading conditions were in the following order: F-F greater than S-S greater than F-S greater than S-F. The fracture mode was dictated by the ramp rate adopted in the tensile direction. The fast ramp rate in the tensile direction led to the occurrence of transgranular crack initiation and propagation, whereas the slow ramp rate caused intergranular initiation and propagation. The time-dependent processes and their synergistic interactions, which were at the basis of observed changes in cyclic stress response and fatigue life, were identified. Oxidation, creep damage, dynamic strain aging, massive carbide precipitation, time-dependent creep deformation, and deformation ratcheting were among the several factors influencing cyclic life. Irrespective of the loading condition, the largest effect on life was exerted by oxidation processes. Deformation ratcheting had its greatest influence on life under asymmetrical loading conditions. Creep damage accumulated the greatest amount during the slow tensile ramp under S-F conditions.
NASA Astrophysics Data System (ADS)
Konkol, Jakub; Bałachowski, Lech
2017-03-01
In this paper, the whole process of pile construction and performance during loading is modelled via large deformation finite element methods such as Coupled Eulerian Lagrangian (CEL) and Updated Lagrangian (UL). Numerical study consists of installation process, consolidation phase and following pile static load test (SLT). The Poznań site is chosen as the reference location for the numerical analysis, where series of pile SLTs have been performed in highly overconsolidated clay (OCR ≈ 12). The results of numerical analysis are compared with corresponding field tests and with so-called "wish-in-place" numerical model of pile, where no installation effects are taken into account. The advantages of using large deformation numerical analysis are presented and its application to the pile designing is shown.
On the impact of reducing global geophysical fluid model deformations in SLR data processing
NASA Astrophysics Data System (ADS)
Weigelt, Matthias; Thaller, Daniela
2016-04-01
Mass redistributions in the atmosphere, oceans and the continental hydrology cause elastic loading deformations of the Earth's crust and thus systematically influence Earth-bound observation systems such as VLBI, GNSS or SLR. Causing non-linear station variations, these loading deformations have a direct impact on the estimated station coordinates and an indirect impact on other parameters of global space-geodetic solutions, e.g. Earth orientation parameters, geocenter coordinates, satellite orbits or troposphere parameters. Generally, the impact can be mitigated by co-parameterisation or by reducing deformations derived from global geophysical fluid models. Here, we focus on the latter approach. A number of data sets modelling the (non-tidal) loading deformations are generated by various groups. They show regionally and locally significant differences and consequently the impact on the space-geodetic solutions heavily depends on the available network geometry. We present and discuss the differences between these models and choose SLR as the speace-geodetic technique of interest in order to discuss the impact of atmospheric, oceanic and hydrological loading on the parameters of space-geodetic solutions when correcting for the global geophysical fluid models at the observation level. Special emphasis is given to a consistent usage of models for geometric and gravimetric corrections during the data processing. We quantify the impact of the different deformation models on the station coordinates and discuss the improvement in the Earth orientation parameters and the geocenter motion. We also show that a significant reduction in the RMS of the station coordinates can be achieved depending on the model of choice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.
The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplasticmore » yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.« less
Transonic Axial Splittered Rotor Tandem Stator Stage
2016-12-01
CODE 13. ABSTRACT (maximum 200 words) Development of a procedure to model the hot shape of a rotor blade and a comparison analysis of the transonic...fluid-structure interaction. Rotational forces as well as gas loading forces were observed as an influence on blade deformation. Utilizing the...Turbomachinery, splittered rotor, tandem stator, transonic compressor, blade deformation, fluid-structure interaction 15. NUMBER OF PAGES 87 16. PRICE
NASA Astrophysics Data System (ADS)
Zhang, Jian; Liu, Wei; Gao, Weicheng
2018-02-01
This work is carried out to study the influence of double cutouts and stiffener reinforcements on the performance of I-section Carbon Fibre/Epoxy composites beam, including buckling, post-buckling behavior and the ultimate failure. The cantilever I-section beam with two diamond-shaped cutouts in the web and three longitudinal L-shaped stiffeners bonded to one side is subjected to a shear load at free end. Both numerical modelling and Experiment of I-section CFRP beam are performed. In numerical analysis, Tsai-Wu failure criterion is utilized to detect the first-ply-failure load in nonlinear analysis by predicting the load-deflection response. Good agreements are obtained from comparison between the numerical simulations and test results. For the double-hole beam web, the two cutouts show close surface deformation amplitude, which indicates that the stiffeners make the force transformation more effective. Comparing to the numerical result of corresponding beam with single cutout and stiffener reinforcement, the longitudinal stiffeners can not only play a significant role in improving the structural stability (increase about 30%), but also take effects to improve the deformation compatibility of structure. Local buckling happened within the sub-webs partioned by the stiffener and the buckling load is different but close. With post-buckling regime, the two areas show similar deformation characteristic, while the sub-web close to fixed end bears more shear load than the sub-web close to loading end with the increase of normal deformation of structure. The catastrophic failure load is approximate 75.6% higher comparing to buckling load. Results illustrate that the tensile fracture of the fiber is the immediate cause of the ultimate failure of the structure.
NASA Astrophysics Data System (ADS)
Meraj, Md.; Nayak, Shradha; Krishanjeet, Kumar; Pal, Snehanshu
2018-03-01
In this paper, we present a lucid understanding about the deformation behaviour of nanocrystalline (NC) Ni with and without defects subjected to tensile followed by compressive loading using molecular dynamic (MD) simulations. The embedded atom method (EAM) potential have been incorporated in the simulation for three kinds of samples-i.e. for NC Ni (without any defect), porous NC Ni and NC Ni containing a centrally located void. All the three samples, which have been prepared by implementing the Voronoi method and using Atom Eye software, consist of 16 uniform grains. The total number of atoms present in NC Ni, porous NC Ni and NC Ni containing a void are 107021, 105968 and 107012 respectively. The stress-strain response of NC Ni under tensile followed by compressive loading are simulated at a high strain rate of 107 s-1 and at a constant temperature of 300K. The stress-strain curves for the NC Ni with and without defects have been plotted for three different types of loading: (a) tensile loading (b) compressive loading (c) forward tensile loading followed by reverse compressive loading. Prominent change in yield strength of the NC Ni is observed due to the introduction of defects. For tensile followed by compressive loading (during forward loading), the yield point for NC Ni with void is lesser than the yield point of NC Ni and porous NC Ni. The saw tooth shape or serration portion of the stress-strain curve is mainly due to three characteristic phenomena, dislocation generation and its movement, dislocation pile-up at the junctions, and dislocation annihilation. Both twins and stacking faults are observed due to plastic deformation as the deformation mechanism progresses. The dislocation density, number of clusters and number of vacancy of the NC sample with and without defects are plotted against the strain developed in the sample. It is seen that introduction of defects brings about change in mechanical properties of the NC Ni. The crystalline nature of NC Ni is found to decrease with introduction of defects. The findings of this work can thus be extended in bringing a whole new insight related to the deformation behaviour and properties of Nano- materials during cyclic deformation at various temperatures.
Low Shrinkage Cement Concrete Intended for Airfield Pavements
NASA Astrophysics Data System (ADS)
Małgorzata, Linek
2017-10-01
The work concerns the issue of hardened concrete parameters improvement intended for airfield pavements. Factors which have direct or indirect influence on rheological deformation size were of particular interest. The aim of lab testing was to select concrete mixture ratio which would make hardened concrete less susceptible to influence of basic operating factors. Analyses included two research groups. External and internal factors were selected. They influence parameters of hardened cement concrete by increasing rheological deformations. Research referred to innovative cement concrete intended for airfield pavements. Due to construction operation, the research considered the influence of weather conditions and forced thermal loads intensifying concrete stress. Fresh concrete mixture parameters were tested and basic parameters of hardened concrete were defined (density, absorbability, compression strength, tensile strength). Influence of the following factors on rheological deformation value was also analysed. Based on obtained test results, it has been discovered that innovative concrete, made on the basis of modifier, which changes internal structure of concrete composite, has definitely lower values of rheological deformation. Observed changes of microstructure, in connection with reduced deformation values allowed to reach the conclusion regarding advantageous characteristic features of the newly designed cement concrete. Applying such concrete for airfield construction may contribute to extension of its operation without malfunction and the increase of its general service life.
Evaluation of a Concrete Continuous Beam Bridge Using Load Test
NASA Astrophysics Data System (ADS)
Zhang, Xiedong; Li, Hong; Li, Xiaofan; Xiang, Musheng; Shen, Chengwu
2007-03-01
Load test is an efficient way to evaluate highway bridges. This paper presents static and dynamic load tests on a prestressed concrete continuous beam bridge. We obtained the influence line and the vibration property of the bridge from FEM analysis. The stress, deformation and the vibration characteristics of the bridge were measured. We found that the measured data are consistent with those from the theoretical calculation, indicating good condition of the bridge.
Response and representation of ductile damage under varying shock loading conditions in tantalum
Bronkhorst, C. A.; Gray, III, G. T.; Addessio, F. L.; ...
2016-02-25
The response of polycrystalline metals, which possess adequate mechanisms for plastic deformation under extreme loading conditions, is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In the current study, the influence of loading path on the damage evolution in high-purity tantalum ismore » presented. Tantalum samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical “pull-back” signals as measured via rear-surface velocimetry. While the “pull-back” signals observed were found to be similar in magnitude, the sample loaded to the highest peak stress nucleated a connected field of ductile fracture which resulted in complete separation, while the two lower peak stresses resulted in incipient damage. The damage evolution in the “soft” recovered tantalum samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. These experiments are examined numerically through the use of a model for shock-induced porosity evolution during damage. The model is shown to describe the response of the tantalum reasonably well under strongly loaded conditions but less well in the nucleation dominated regime. As a result, numerical results are also presented as a function of computational mesh density and discussed in the context of improved representation of the influence of material structure upon macro-scale models of ductile damage.« less
Behaviour of Frictional Joints in Steel Arch Yielding Supports
NASA Astrophysics Data System (ADS)
Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel
2014-10-01
The loading capacity and ability of steel arch supports to accept deformations from the surrounding rock mass is influenced significantly by the function of the connections and in particular, the tightening of the bolts. This contribution deals with computer modelling of the yielding bolt connections for different torques to determine the load-bearing capacity of the connections. Another parameter that affects the loading capacity significantly is the value of the friction coefficient of the contacts between the elements of the joints. The authors investigated both the behaviour and conditions of the individual parts for three values of tightening moment and the relation between the value of screw tightening and load-bearing capacity of the connections for different friction coefficients. ANSYS software and the finite element method were used for the computer modelling. The solution is nonlinear because of the bi-linear material properties of steel and the large deformations. The geometry of the computer model was created from designs of all four parts of the structure. The calculation also defines the weakest part of the joint's structure based on stress analysis. The load was divided into two loading steps: the pre-tensioning of connecting bolts and the deformation loading corresponding to 50-mm slip of one support. The full Newton-Raphson method was chosen for the solution. The calculations were carried out on a computer at the Supercomputing Centre VSB-Technical University of Ostrava.
Goebel, Paul; Kluess, Daniel; Wieding, Jan; Souffrant, Robert; Heyer, Horst; Sander, Manuela; Bader, Rainer
2013-03-01
To increase the range of motion of total hip endoprostheses, prosthetic heads need to be enlarged, which implies that the cup and/or liner thickness must decrease. This may have negative effects on the wear rate, because the acetabular cups and liners could deform during press-fit implantation and hip joint loading. We compared the metal cup and polyethylene liner deformations that occurred when different wall thicknesses were used in order to evaluate the resulting changes in the clearance of the articulating region. A parametric finite element model utilized three cup and liner wall thicknesses to analyze cup and liner deformations after press-fit implantation into the pelvic bone. The resultant hip joint force during heel strike was applied while the femur was fixed, accounting for physiological muscle forces. The deformation behavior of the liner under joint loading was therefore assessed as a function of the head diameter and the resulting clearance. Press-fit implantation showed diametral cup deformations of 0.096, 0.034, and 0.014 mm for cup wall thicknesses of 3, 5, and 7 mm, respectively. The largest deformations (average 0.084 ± 0.003 mm) of liners with thicknesses of 4, 6, and 8 mm occurred with the smallest cup wall thickness (3 mm). The smallest liner deformation (0.011 mm) was obtained with largest cup and liner wall thicknesses. Under joint loading, liner deformations in thin-walled acetabular cups (3 mm) reduced the initial clearance by about 50 %. Acetabular press-fit cups with wall thicknesses of ≤5 mm should only be used in combination with polyethylene liners >6 mm thick in order to minimize the reduction in clearance.
Features of the rupture of free hanging liquid film under the action of a thermal load
NASA Astrophysics Data System (ADS)
Ovcharova, Alla S.
2011-10-01
We consider a deformation and a rupture of a thin liquid film which is hanging between two solid flat walls under the action of concentrated thermal load action. A two-dimensional model is applied to describe the motion of thin layers of viscous non-isothermal liquid under micro-gravity conditions. For flow simulation, two-dimensional Navier-Stokes equations are used. A computational analysis of the influence of thermal loads on the deformation and the rupture behavior of the thin freely hanging film is carried out. It is shown that the rupture of the thin film with generation of a droplet can occur under the thermal beam of specific width acting on the free surface of the film. The results of the model problem solutions are presented.
Staging of the Acoustic Response at Laboratory Modelling of Tidal Influence upon Seismicity
NASA Astrophysics Data System (ADS)
Saltykov, Vadim; Patonin, Andrey; Kugaenko, Yulia
2010-05-01
INTRODUCTION The seismic radiation is varied through the wide range of seismic energy from seismic emission (high-frequency seismic noise, HFSN) to earthquakes. Some features of external influence response on the different scales allow to consider the medium as a single whole seismoactive object. Earth tide is a bright example of external excited field. Tidal topic has long history in seismology. Results obtained by different scientists are contradictory and ambiguous often. We denoted instability of tidal effect manifestation as possible reason of this situation. In view of the aforesaid it is significant, that tidal effects in weak seismicity and HFSN prove more strongly in the stage of large earthquake preparation [Rykunov et al., 1998, Saltykov et al., 2004, 2007]. It is presumed that the metastable medium has more high tidal sensitivity. For example, sources of prepared earthquakes and extensive near-surface zones of micro-fissuring and dilatancy, which appear during source formation and stretch far enough. [Alekseev et all., 2001, Goldin, 2004, 2005]. Common features of observed effects allow to suggest existence of tidal modulation mechanism, which is similar (may be single) for different seismic scales. Modelling of these processes can improve our understanding of tidal effect nature. LABORATORY EXPERIMENT Results of rock sample destruction experiments under controlling are presented. Acoustic emission (AE) pulses act as analogue of seismic events. Tides are simulated by weak long-period variations added to quasi-stationary subcritical loading. The results of tidal modeling confirmed AE intensity synchronization with external periodic influence with large (5-10%) variations of loading are known [Lockner, Beeler, 1999, Ponomarev et al., 2007]. But real (in nature) tidal strain&stress variations are much less and equal to splits of percent. Therefore, investigation of weak modulation influence upon deformed rock is one of main proposed purposes. Used software-programmable electro-hydraulic system INOVA [Patonin, 2006], can provide various procedures of experiment, among them programmable modulatory action. Axial deformation with stable strain rate and additional action of meander with specified period and amplitude was chosen as mode of operation. The relation between background and periodic strains reaches three orders, which corresponds to real relation between maximal tectonic and tidal strains. RESULTS For detection of periodic loading modulation of AE we used procedure based on Rayleigh criteria of uniformity and considered uniformity of AE impulses distribution on time interval, multiple to period of loading. Moreover, the predominant phase of periodical loading, corresponding to maximal AE activity, was calculated in sliding time window. In all experiments we observed instability of modulation effects. So the following stages were distinguished: - synchronization of AE and periodic loading at the initial part of test; - absence of synchronization at the elastic stage; - resumption of synchronization during plastic deformation. Stability of phase corresponding to maximal AE activity was discovered within the initial part and plastic deformation stage. Absolute values of phase for initial loading and during plastic deformation are different. CONCLUSION Now we regard revealed staging of AE response to weak periodical loading as our main result of these experiments. Different stages of AE response are connected with different state of rock samples during loading and destruction. Observed effects of synchronization can be considered as analogue of tidal modulation of HFSN and appearance of "tidal" seismicity in source zone of prepared large earthquake. This investigation was supported by RFBR, grant 08-05-00692.
Deformation history and load sequence effects on cumulative fatigue damage and life predictions
NASA Astrophysics Data System (ADS)
Colin, Julie
Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in strain control and ratcheting in load control and their influence on fatigue life are discussed. Some unusual mean strain test results are presented for stainless steel 304L, where in spite of mean stress relaxation fatigue lives were significantly longer than fully-reversed tests. Prestraining indicated no effect on either deformation or fatigue behavior of aluminum, while it induced considerable hardening in stainless steel 304L and led to different results on fatigue life, depending on the test control mode. In step tests for stainless steel 304L, strong hardening induced by the first step of a high-low sequence significantly affects the fatigue behavior, depending on the test control mode used. For periodic overload tests of stainless steel 340L, hardening due to the overloads was progressive throughout life and more significant than in high-low step tests. For aluminum, no effect on deformation behavior was observed due to periodic overloads. However, the direction of the overloads was found to affect fatigue life, as tensile overloads led to longer lives, while compressive overloads led to shorter lives. Deformation and fatigue behaviors under random loading conditions are also presented and discussed for the two materials. The applicability of a common cumulative damage rule, the linear damage rule, is assessed for the two types of material, and for various loading conditions. While the linear damage rule associated with a strain-life or stress-life curve is shown to be fairly accurate for life predictions for aluminum, it is shown to poorly represent the behavior of stainless steel, especially in prestrained and high-low step tests, in load control. In order to account for prior deformation effects and achieve accurate fatigue life predictions for stainless steel, parameters including both stress and strain terms are required. The Smith-Watson-Topper and Fatemi-Socie approaches, as such parameters, are shown to correlate most test data fairly accurately. For damage accumulation under variable amplitude loading, the linear damage rule associated with strain-life or stress-life curves can lead to inaccurate fatigue life predictions, especially for materials presenting strong deformation memory effect, such as stainless steel 304L. The inadequacy of this method is typically attributed to the linear damage rule itself. On the contrary, this study demonstrates that damage accumulation using the linear damage rule can be accurate, provided that the linear damage rule is used in conjunction with parameters including both stress and strain terms. By including both loading history and response of the material in damage quantification, shortcomings of the commonly used linear damage rule approach can be circumvented in an effective manner. In addition, cracking behavior was also analyzed under various loading conditions. Results on microcrack initiation and propagation are presented in relation to deformation and fatigue behaviors of the materials. Microcracks were observed to form during the first few percent of life, indicating that most of the fatigue life of smooth specimens is spent in microcrack formation and growth. Analyses of fractured specimens showed that microcrack formation and growth is dependent on the loading history, and less important in aluminum than stainless steel 304L, due to the higher toughness of this latter material.
Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter
2017-01-01
This study addresses the quantitative influence of 12 different materials (active pharmaceutical ingredients and excipients as surrogate active pharmaceutical ingredients) on the critical quality attributes of twin screw granulated products and subsequently produced tablets. Prestudies demonstrated the significant influence of the chosen model materials (in combination with crospovidone) on the disintegration behavior of the resulting tablets, despite comparable tablet porosities. This study elucidates possible reasons for the varying disintegration behavior by investigating raw material, granule, and tablet properties. An answer could be found in the mechanical properties of the raw materials and the produced granules. Through compressibility studies, the materials could be classified into materials with high compressibility, which deform rather plastically under compression stress, and low compressibility, which display breakages under compression stress. In general, and apart from (pseudo)-polymorphic transformations, brittle materials featured excellent disintegration performance, even at low resulting tablet porosities <8%, whereas plastically deformable materials mostly did not reveal any disintegration. These findings must be considered in the development of simplified formulations with high drug loads, in which the active pharmaceutical ingredient predominantly defines the deformation behavior of the granule. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaeffner, Maximilian; Platz, Roland
2018-06-01
For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.
On the dynamic stability of shear deformable beams under a tensile load
NASA Astrophysics Data System (ADS)
Caddemi, S.; Caliò, I.; Cannizzaro, F.
2016-07-01
Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.
Vision-based stress estimation model for steel frame structures with rigid links
NASA Astrophysics Data System (ADS)
Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan
2017-07-01
This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.
NASA Astrophysics Data System (ADS)
Wang, Liping; Jiang, Yao; Li, Tiemin
2014-09-01
Parallel kinematic machines have drawn considerable attention and have been widely used in some special fields. However, high precision is still one of the challenges when they are used for advanced machine tools. One of the main reasons is that the kinematic chains of parallel kinematic machines are composed of elongated links that can easily suffer deformations, especially at high speeds and under heavy loads. A 3-RRR parallel kinematic machine is taken as a study object for investigating its accuracy with the consideration of the deformations of its links during the motion process. Based on the dynamic model constructed by the Newton-Euler method, all the inertia loads and constraint forces of the links are computed and their deformations are derived. Then the kinematic errors of the machine are derived with the consideration of the deformations of the links. Through further derivation, the accuracy of the machine is given in a simple explicit expression, which will be helpful to increase the calculating speed. The accuracy of this machine when following a selected circle path is simulated. The influences of magnitude of the maximum acceleration and external loads on the running accuracy of the machine are investigated. The results show that the external loads will deteriorate the accuracy of the machine tremendously when their direction coincides with the direction of the worst stiffness of the machine. The proposed method provides a solution for predicting the running accuracy of the parallel kinematic machines and can also be used in their design optimization as well as selection of suitable running parameters.
Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer
NASA Astrophysics Data System (ADS)
Liu, Ruoxuan; Li, Yunxin; Liu, Zishun
2018-01-01
The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.
Creep crack growth by grain boundary cavitation under monotonic and cyclic loading
NASA Astrophysics Data System (ADS)
Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan
2017-11-01
Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.
NASA Astrophysics Data System (ADS)
Teja, Akkineni Surya; Rajkumar, R.; Gokula Krishnan, B.; Aravindh, R.
2018-02-01
Buried pipes are used mainly for water supply and drainage besides many other applications such as oil, liquefied natural gas, coal slurries and mine tailings. The pipes used may be rigid (reinforced concrete, vitrified clay and ductile iron) or flexible (Steel, UPVC, aluminium, Fiber glass and High-density polyethylene) although the distinction between them is blurring. Flexible pipe design is governed by deflection or buckling. UPVC pipes are preferred due to light weight, long term chemical stability and cost efficiency. This project aims to study the load deformation behaviour of the buried pipe and stress variation across the cross section of the pipe under static loading along with the influence of depth of embedment, density of backfill on the deformation and stresses in pipe and the deformation behaviour of buried pipe when soil is reinforced with geogrid reinforcement and evaluate the structural performance of the pipe.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1987-01-01
Buckling loads of thick-walled, orthotropic, simply-supported right circular cylinders are predicted using a new higher-order transverse shear deformation theory. The higher-order theory shows that, by more accurately accounting for transverse shear deformation effects, the predicted buckling load may be reduced by as much as 80 percent compared to predictions based on conventional transverse shear deformation theory. A parametric study of the effect of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 0 deg plies are the most sensitive to transverse shear deformation effects. Interaction curves for buckling of cylinders with axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are much less sensitive to transverse shear deformation effects than those due to axial compressive loadings.
NASA Astrophysics Data System (ADS)
Majta, J.; Zurek, A. K.; Trujillo, C. P.; Bator, A.
2003-09-01
This work presents validation of the integrated computer model to predict the impact of the microstructure evolution on the mechanical behavior of niobium-microalloyed steels under dynamic loading conditions. The microstructurally based constitutive equations describing the mechanical behavior of the mixed α and γ phases are proposed. It is shown that for a given finishing temperature and strain, the Nb steel exhibits strong influence of strain rate on the flow stress and final structure. This tendency is also observed in calculated results obtained using proposed modeling procedures. High strain rates influence the deformation mechanism and reduce the extent of recovery occurring during and after deformation and, in turn, increase the driving force for transformation. On the other hand, the ratio of nucleation rate to growth rate increases for lower strain rates (due to the higher number of nuclei that can be produced during an extended loading time) leading to the refined ferrite structure. However, as it was expected such behavior produces higher inhomogeneity in the final product. Multistage quasistatic compression tests and test using the Hopkinson Pressure Bar under different temperature, strain, and strain rate conditions, are used for verification of the proposed models.
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang
2017-12-01
A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.
NASA Astrophysics Data System (ADS)
Zhang, Hongwen
In this thesis, a detailed investigation of thermal stability and mechanical deformation behavior of Zr/Hf-based Bulk Metallic Glasses is conducted. First, systematic studies had been implemented to understand the influence of relative compositions of Zr and Hf on thermal stability and mechanical property evolution. Second, shear band evolution under indentations were investigated experimentally and theoretically. It was found in the present work that gradually replacing Zr by Hf remarkably increases the density and improves the mechanical properties. However, a slight decrease in glass forming ability with increasing Hf content has also been identified through thermodynamic analysis although all the materials in the current study were still found to be amorphous. Many indentation studies have revealed only a few shear bands surrounding the indent on the top surface of the specimen. This small number of shear bands cannot account for the large plastic deformation beneath the indentations. Therefore, a bonded interface technique has been used to observe the slip-steps due to shear band evolution. Vickers indentations were performed along the interface of the bonded split specimen at increasing loads. At small indentation loads, the plastic deformation was primarily accommodated by semi-circular primary shear bands surrounding the indentation. At higher loads, secondary and tertiary shear bands were formed inside this plastic zone. A modified expanding cavity model was then used to predict the plastic zone size characterized by the shear bands and to identify the stress components responsible for the evolution of the various types of shear bands. The applicability of various hardness - yield-strength (H-sigma y) relationships currently available in the literature for bulk metallic glasses (BMGs) is also investigated. Experimental data generated on ZrHf-based BMGs in the current study and those available elsewhere on other BMG compositions were used to validate the models. A modified expanding-cavity model, employed in earlier work, was extended to propose a new H-sigmay relationship. Unlike previous models, the proposed model takes into account not only the indenter geometry and the material properties, but also the pressure sensitivity index of the BMGs. The influence of various model parameters is systematically analyzed. It is shown that there is a good correlation between the model predictions and the experimental data for a wide range of BMG compositions. Under dynamic Vickers indentation, a decrease in indentation hardness at high loading rate was observed compared to static indentation hardness. It was observed that at equivalent loads, dynamic indentations produced more severe deformation features on the loading surface than static indentations. Different from static indentation, two sets of widely spaced semi-circular shear bands with two different curvatures were observed. The observed shear band pattern and the strain rate softening in indentation hardness were rationalized based on the variations in the normal stress on the slip plane, the strain rate of shear and the temperature rise associated with the indentation deformation. Finally, a coupled thermo-mechanical model is proposed that utilizes a momentum diffusion mechanism for the growth and evolution of the final spacing of shear bands. The influence of strain rate, confinement pressure and critical shear displacement on the shear band spacing, temperature rise within the shear band, and the associated variation in flow stress have been captured and analyzed. Consistent with the known pressure sensitive behavior of BMGs, the current model clearly captures the influence of the normal stress in the formation of shear bands. The normal stress not only reduces the time to reach critical shear displacement but also causes a significant temperature rise during the shear band formation. Based on this observation, the variation of shear band spacing in a typical dynamic indentation test has been rationalized. The temperature rise within a shear band can be in excess of 2000K at high strain rate and high confinement pressure conditions. The associated drop in viscosity and flow stress may explain the observed decrease in fracture strength and indentation hardness. The above investigations provide valuable insight into the deformation behavior of BMGs under static and dynamic loading conditions. The shear band patterns observed in the above indentation studies can be helpful to understand and model the deformation features under complex loading scenarios such as the interaction of a penetrator with armor. Future work encompasses (1) extending and modifying the coupled thermo-mechanical model to account for the temperature rise in quasistatic deformation; and (2) expanding this model to account for the microstructural variation-crystallization and free volume migration associated with the deformation. (Abstract shortened by UMI.)
State of stress, faulting, and eruption characteristics of large volcanoes on Mars
NASA Technical Reports Server (NTRS)
Mcgovern, Patrick J.; Solomon, Sean C.
1993-01-01
The formation of a large volcano loads the underlying lithospheric plate and can lead to lithospheric flexure and faulting. In turn, lithospheric stresses affect the stress field beneath and within the volcanic edifice and can influence magma transport. Modeling the interaction of these processes is crucial to an understanding of the history of eruption characteristics and tectonic deformation of large volcanoes. We develop models of time-dependent stress and deformation of the Tharsis volcanoes on Mars. A finite element code is used that simulates viscoelastic flow in the mantle and elastic plate flexural behavior. We calculate stresses and displacements due to a volcano-shaped load emplaced on an elastic plate. Models variously incorporate growth of the volcanic load with time and a detachment between volcano and lithosphere. The models illustrate the manner in which time-dependent stresses induced by lithospheric plate flexure beneath the volcanic load may affect eruption histories, and the derived stress fields can be related to tectonic features on and surrounding martian volcanoes.
Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect
NASA Astrophysics Data System (ADS)
Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.
2013-12-01
Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
Influence of Material Distribution on Impact Resistance of Hybrid Composites
NASA Technical Reports Server (NTRS)
Abatan, Ayu; Hu, Hurang
1998-01-01
Impact events occur in a wide variety of circumstances. A typical example is a bullet impacting a target made of composite material. These impact events produce time-varying loads on a structure that can result in damage. As a first step to understanding the damage resistance issue in composite laminates, an accurate prediction of the transient response during an impact event is necessary. The analysis of dynamic loadings on laminated composite plates has undergone considerable development recently. Rayleigh-Ritz energy method was used to determine the impact response of laminated plates. The impact response of composite plates using shear deformation plate theory was analyzed. In recent work a closed-form solution was obtained for a rectangular plate with four edges simply supported subjected to a center impact load using classical plate theory. The problem was further investigated and the analysis results compared of both classical plate theory and shear deformation theory, and found that classical plate theory predicts very accurate results for the range of small deformations considered. In this study, the influence of cross sectional material distribution on the comparative impact responses of hybrid metal laminates subjected to low and medium velocity impacts is investigated. A simple linear model to evaluate the magnitude of the impact load is proposed first, and it establishes a relation between the impact velocity and the impact force. Then a closed-form solution for impact problem is presented. The results were compared with the finite element analysis results. For an 11 layer-hybrid laminate, the impact response as a function of material distribution in cross-section is presented. With equal areal weight, the effect of the number of laminate layers on the impact resistance is also investigated. Finally, the significance of the presented results is discussed.
3-Dimensional Analysis of Deformation of Disk Wheels and Transverse Force of Wheel Bolts
NASA Astrophysics Data System (ADS)
Kagiwada, Tadao; Harada, Hiroyuki
Loosening of the wheel nuts, which fix the disk wheels of automobiles to the wheel hub, may be the cause of accidents where the wheel falls off while the automobile is running. When the transverse force of wheel bolts exceeds a certain proportion of the bolt shaft force, the wheel nut begins to loosen. Further, the force on the bolt shaft may also be influenced by the loads acting to the wheel through the moment caused by the offset of the wheel. This study determined the 3-dimensional deformation of the disk wheels and the transverse forces on the wheel bolt by 3-dimensional numerical analysis. The results established that the transverse force was influenced by the bolt shaft force caused by the bolt fastening and was superposed on that due to the load, and that it fluctuated greatly during the revolution of the wheel. This phenomenon may be a large factor in the loosening of wheel nuts.
Law of damage accumulation and fracture criteria in highly filled polymer materials
NASA Astrophysics Data System (ADS)
Bykov, D. L.; Kazakov, A. V.; Konovalov, D. N.; Mel'nikov, V. P.; Milyokhin, Yu. M.; Peleshko, V. A.; Sadovnichii, D. N.
2014-09-01
We present the results of a large series of experiments aimed at the study of laws of damage accumulation and fracture in highly filled polymer materials under loading conditions of various types: monotone, repeated, low- and high-cycle, with varying type of stress state, dynamic (in general, more than 50 programs implemented on specimens from one lot of material). The data obtained in these test allow one to make conclusions about the constitutive role of the attained maximum of strain intensity when estimating the accumulated damage in the process of uniaxial tension by various programs (in particular, an additional cyclic deformation below the preliminary attained strain maximum does not affect the limit values of strain and stress in the subsequent active extension), about the strong influence of the stress state on the deformation and fracture, about the specific features of the nonlinear behavior of the material under the shock loading conditions and its influence on the repeated deformation. All tests are described (with an accuracy acceptable in practical calculations, both with respect to stresses and strains in the process of loading and at the moment of fracture) in the framework of the same model of nonlinear viscoelasticity with the same set of constants. The constants of the proposed model are calculated according to a relatively simple algorithm by using the results of standard uniaxial tension tests with constant values of the strain rate and hydrostatic pressure (each test for 2-3 levels of these parameters chosen from the ranges proposed in applications, each loading lasts until the fracture occurs, and one of the tests contains an intermediate interval of total loading and repeated loading) and one axial shock compression test if there are dynamic problems in the applications. The model is based on the use of the criterion fracture parameter which, in the class of proportional loading processes, is the sum of partial increments of the strain intensity on active segments of the process (where the strain intensity is at its historical maximum) with the form of the stress state and the intensity of strain rates taken into account.
Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell
NASA Technical Reports Server (NTRS)
Rastogi, Naveen; Johnson, Eric R.
1994-01-01
Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.
NASA Astrophysics Data System (ADS)
Sivagurunathan, Rubentheran; Lau Tze Way, Saijod; Sivagurunathan, Linkesvaran; Yaakob, Mohd. Yuhazri
2018-01-01
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.
NASA Astrophysics Data System (ADS)
Radwan, Ahmed F.; Sobhy, Mohammed
2018-06-01
This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.
Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.
Coppedê, Abílio Ricciardi; Bersani, Edmilson; de Mattos, Maria da Gloria Chiarello; Rodrigues, Renata Cristina Silveira; Sartori, Ivete Aparecida de Mattias; Ribeiro, Ricardo Faria
2009-01-01
The objective of this study was to verify if differences in the design of internal hex (IH) and internal conical (IC) connection implant systems influence fracture resistance under oblique compressive forces. Twenty implant-abutment assemblies were utilized: 10 with IH connections and 10 with IC connections. Maximum deformation force for IC implants (90.58 +/- 6.72 kgf) was statistically higher than that for IH implants (83.73 +/- 4.94 kgf) (P = .0182). Fracture force for the IH implants was 79.86 +/- 4.77 kgf. None of the IC implants fractured. The friction-locking mechanics and the solid design of the IC abutments provided greater resistance to deformation and fracture under oblique compressive loading when compared to the IH abutments.
Dynamic stability of unidirectional fiber-reinforced viscoelastic composite plates
NASA Technical Reports Server (NTRS)
Chandiramani, N. K.; Librescu, L.
1989-01-01
This paper deals with a dynamic stability analysis of unidirectional fiber-reinforced composite viscoelastic plates subjected to compressive edge loads. The integrodifferential equations governing the stability problem are obtained by using, in conjunction with a Boltzmann hereditary constitutive law for a three-dimensional viscoelastic medium, a higher-order shear deformation theory of orthotropic plates. Such a theory incorporates transverse shear deformation, transverse normal stress, and rotatory inertia effects. The solution of the stability problem as considered within this paper concerns the determination of the critical in-plane edge loads yielding the asymptotic instability. Numerical applications, based on material properties derived within the framework of Aboudi's micromechanical model, are presented and pertinent conclusions concerning the nature of the loss of stability and the influence of various parameters are outlined.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam.
Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin
2018-05-04
The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg₂Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.
Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam
Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin
2018-01-01
The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process. PMID:29734700
Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshibli, Khalid A.; Jarrar, Maha F.; Druckrey, Andrew M.
The constitutive behavior of sheared sand is highly influenced by particle morphology, gradation, mineralogy, specimen density, loading condition, stress path, and boundary conditions. The current literature lacks a three-dimensional (3D) systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand. In this paper, surface texture, roundness, and sphericity of three uniform sands and glass beads with similar grain size were quantified by using 3D images of particles. In situ nondestructive 3D synchrotron microcomputed tomography (SMT) was used to monitor the deformation of medium-dense and very dense dry sandmore » specimens that were tested under axisymmetric triaxial loading condition at 15 and 400 kPa confining pressures. The particles were identified and tracked in 3D as shearing progressed within the specimens, and maps of incremental particle translation and rotation were developed and used to uncover the relationship between particle morphology, specimen density, and confining pressure on the deformation and failure mode of sheared sand. This paper discusses the relationship between the failure mode and particle morphology, specimen density, and confining pressure.« less
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
DOE Office of Scientific and Technical Information (OSTI.GOV)
E, J. C.; Huang, J. Y.; Bie, B. X.
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Deformation and fracture of explosion-welded Ti/Al plates: A synchrotron-based study
E, J. C.; Huang, J. Y.; Bie, B. X.; ...
2016-08-02
Here, explosion-welded Ti/Al plates are characterized with energy dispersive spectroscopy and x-ray computed tomography, and exhibit smooth, well-jointed, interface. We perform dynamic and quasi-static uniaxial tension experiments on Ti/Al with the loading direction either perpendicular or parallel to the Ti/Al interface, using a mini split Hopkinson tension bar and a material testing system in conjunction with time-resolved synchrotron x-ray imaging. X-ray imaging and strain-field mapping reveal different deformation mechanisms responsible for anisotropic bulk-scale responses, including yield strength, ductility and rate sensitivity. Deformation and fracture are achieved predominantly in Al layer for perpendicular loading, but both Ti and Al layers asmore » well as the interface play a role for parallel loading. The rate sensitivity of Ti/Al follows those of the constituent metals. For perpendicular loading, single deformation band develops in Al layer under quasi-static loading, while multiple deformation bands nucleate simultaneously under dynamic loading, leading to a higher dynamic fracture strain. For parallel loading, the interface impedes the growth of deformation and results in increased ductility of Ti/Al under quasi-static loading, while interface fracture occurs under dynamic loading due to the disparity in Poisson's contraction.« less
Biaxial deformation of collagen and elastin fibers in coronary adventitia
Chen, Huan; Slipchenko, Mikhail N.; Liu, Yi; Zhao, Xuefeng; Cheng, Ji-Xin; Lanir, Yoram
2013-01-01
The microstructural deformation-mechanical loading relation of the blood vessel wall is essential for understanding the overall mechanical behavior of vascular tissue in health and disease. We employed simultaneous mechanical loading-imaging to quantify in situ deformation of individual collagen and elastin fibers on unstained fresh porcine coronary adventitia under a combination of vessel inflation and axial extension loading. Specifically, the specimens were imaged under biaxial loads to study microscopic deformation-loading behavior of fibers in conjunction with morphometric measurements at the zero-stress state. Collagen fibers largely orientate in the longitudinal direction, while elastin fibers have major orientation parallel to collagen, but with additional orientation angles in each sublayer of the adventitia. With an increase of biaxial load, collagen fibers were uniformly stretched to the loading direction, while elastin fibers gradually formed a network in sublayers, which strongly depended on the initial arrangement. The waviness of collagen decreased more rapidly at a circumferential stretch ratio of λθ = 1.0 than at λθ = 1.5, while most collagen became straightened at λθ = 1.8. These microscopic deformations imply that the longitudinally stiffer adventitia is a direct result of initial fiber alignment, and the overall mechanical behavior of the tissue is highly dependent on the corresponding microscopic deformation of fibers. The microstructural deformation-loading relation will serve as a foundation for micromechanical models of the vessel wall. PMID:24092692
NASA Astrophysics Data System (ADS)
Gotsev, D. V.; Perunov, N. S.; Sviridova, E. N.
2018-03-01
The mathematical model describing the stress-strain state of a cylindrical body under the uniform radial compression effect is constructed. The model of the material is the porous medium model. The compressed skeleton of the porous medium possesses hardening elastic-plastic properties. Deforming of the porous medium under the specified compressive loads is divided into two stages: elastic deforming of the porous medium and further elastic-plastic deforming of the material with completely compressed matrix. The analytical relations that define the fields of stress and displacement at each stage of the deforming are obtained. The influence of the porosity and other physical, mechanical and geometric parameters of the construction on the size of the plastic zone is evaluated. The question of the ground state equilibrium instability is investigated within the framework of the three-dimensional linearized relationships of the stability theory of deformed bodies.
NASA Astrophysics Data System (ADS)
Urban, Rudolf; Braun, Jaroslav; Štroner, Martin
2015-05-01
The prestressed thin-walled concrete elements enable the bridge a relatively large span. These structures are advantageous in economic and environmental way due to their thickness and lower consumption of materials. The bending moments can be effectively influenced by using the pre-stress. The experiment was done to monitor deformation of the under load. During the experiment the discrete points were monitored. To determine a large number of points, the intersection photogrammetry combined with precise micro-network were chosen. Keywords:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, Z. H.; Lin Peng, R.; Johansson, S.
2008-01-01
In situ time-of-flight neutron diffraction and high-energy x-ray diffraction techniques were used to reveal the preferred reselection of martensite variants through a detwinning process in polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloys under uniaxial compressive stress. The variant reorientation via detwinning during loading can be explained by considering the influence of external stress on the grain/variant orientation-dependent distortion energy. These direct observations of detwinning provide a good understanding of the deformation mechanisms in shape memory alloys.
NASA Astrophysics Data System (ADS)
Zhou, Zilong; Chen, Lu; Zhao, Yuan; Zhao, Tongbin; Cai, Xin; Du, Xueming
2017-04-01
To reveal the mechanical response of a multi-pillar supporting system under external loads, compressive tests were carried out on single-pillar and double-pillar specimens. The digital speckle correlation method and acoustic emission technique were applied to record and analyse information of the deformation and failure processes. Numerical simulations with the software programme PFC2D were also conducted. In the compressive process of the double-pillar system, if both individual pillars have the same mechanical properties, each pillar deforms similarly and reaches the critical stable state almost simultaneously by sharing equal loads. If the two individual pillars have different mechanical properties, the pillar with higher elastic modulus or lower strength would be damaged and lose its bearing capacity firstly. The load would then be transferred to the other pillar under a load redistribution process. When the pillar with higher strength is strong enough, the load carried by the pillar system would increase again. However, the maximum bearing load of the double-pillar system is smaller than the sum of peak load of individual pillars. The study also indicates that the strength, elastic modulus, and load state of pillars all influence the supporting capacity of the pillar system. In underground space engineering, the appropriate choice of pillar dimensions and layout may play a great role in preventing the occurrence of cascading pillar failure.
Portevin-Le Chatelier effect under cyclic loading: experimental and numerical investigations
NASA Astrophysics Data System (ADS)
Mazière, M.; Pujol d'Andrebo, Q.
2015-10-01
The Portevin-Le Chatelier (PLC) effect is generally evidenced by the apparition of serrated yielding under monotonic tensile loading conditions. It appears at room temperature in some aluminium alloys, around ? in some steels and in many other metallic materials. This effect is associated with the propagation of bands of plastic deformation in tensile specimens and can in some cases lead to unexpected failures. The PLC effect has been widely simulated under monotonic conditions using finite elements and an appropriate mechanical model able to reproduce serrations and strain localization. The occurrence of serrations can be predicted using an analytical stability analysis. Recently, this serrated yielding has also been observed in specimens made of Cobalt-based superalloy under cyclic loading, after a large number of cycles. The mechanical model has been identified in this case to accurately reproduce this critical number of cycle where serrations appear. The associated apparition of localized bands of deformation in specimens and their influence on its failure has also been investigated using finite element simulations.
Parametric analysis and temperature effect of deployable hinged shells using shape memory polymers
NASA Astrophysics Data System (ADS)
Tao, Ran; Yang, Qing-Sheng; He, Xiao-Qiao; Liew, Kim-Meow
2016-11-01
Shape memory polymers (SMPs) are a class of intelligent materials, which are defined by their capacity to store a temporary shape and recover an original shape. In this work, the shape memory effect of SMP deployable hinged shell is simulated by using compiled user defined material subroutine (UMAT) subroutine of ABAQUS. Variations of bending moment and strain energy of the hinged shells with different temperatures and structural parameters in the loading process are given. The effects of the parameters and temperature on the nonlinear deformation process are emphasized. The entire thermodynamic cycle of SMP deployable hinged shell includes loading at high temperature, load carrying with cooling, unloading at low temperature and recovering the original shape with heating. The results show that the complicated thermo-mechanical deformation and shape memory effect of SMP deployable hinge are influenced by the structural parameters and temperature. The design ability of SMP smart hinged structures in practical application is prospected.
NASA Astrophysics Data System (ADS)
Meraj, Md.; Dutta, Krishna; Bhardwaj, Ravindra; Yedla, Natraj; Karthik, V.; Pal, Snehanshu
2017-11-01
Molecular dynamics (MD) simulation-based studies of tensile test and structural evolution of Cu-5 at.% Zr alloy under asymmetric cyclic loading (i.e., ratcheting behavior) considering various stress ratios such as - 0.2, - 0.4 and - 0.6 for different temperatures, viz.≈ 100, 300 and 500 K have been performed using embedded atom model Finnis-Sinclair potential. According to obtained stress-strain response from MD calculation, Cu-5 at.% Zr alloy specimen is pristine in nature as sudden drop in stress just after yield stress and subsequent elastic type deformation are observed for this alloy. Predicted ratcheting strain by MD simulation for Cu-5 at.% Zr alloy varies from 4.5 to 5%. Significant increase in ratcheting strain has been observed with the increase in temperature. Slight reduction in crystallinity is identified at the middle of the each loading cycle from the performed radial distribution function analysis and cluster analysis.
Design of foundations with sliding joint at areas affected with underground mining
NASA Astrophysics Data System (ADS)
Matečková, P.; Šmiřáková, M.; Maňásek, P.
2018-04-01
Underground mining always influences also landscape on surface. If there are buildings on the surface they are affected with terrain deformation which comprises terrain inclination, curvature, shift and horizontal deformation. Ostrava – Karvina region is specific with underground mining very close to densely inhabited area. About 25 years ago there were mines even in the city of Ostrava. Recommendations and rules for design of building structures at areas affected with underground mining have been therefore analysed in long term. This paper is focused on deformation action caused by terrain horizontal deformation - expansion or compression. Through the friction between foundation structure and subsoil in footing bottom the foundation structure has to resist significant normal forces. The idea of sliding joint which eliminates the friction and decreases internal forces comes from the last century. Sliding joint made of asphalt belt has been analysed at Faculty of Civil Engineering, VSB – Technical University of Ostrava in long term. The influence of vertical and horizontal load and the effect of temperature in temperature controlled room have been examined. Testing, design and utilization of sliding joint is presented.
Modelling of mechanical and filtration processes near the well with regard to anisotropy
NASA Astrophysics Data System (ADS)
Karev, V. I.; Klimov, D. M.; Kovalenko, Yu F.; Ustinov, K. B.
2018-04-01
A geomechanical approach to modeling deformation and seepage is presented. Three stages of modeling are described: choice of an appropriate mechanical model and its adaptation to the case in question, experimental determination of parameters of the model, simulation of processes of seepage for particular configurations of the well. The applied model allows describing the main specific characteristics of mechanical behavior of the collector: the influence of the pore pressure on deformation; the influence of not only shear but also comprehensive stresses and pore pressure on the transition to inelastic behavior; the appearance of inelastic volumetric deformation and its nontrivial dependence on the stress state; the anisotropy of elastic, strength and seepage properties; non-obvious dependence of permeability on the stress strain state. The model unites essential characteristics of Hill’s plastic flow theory for anisotropic materials and the Drucker–Prager theory for inelastic deformation of soils. The results of experimental determination of the involved parameters obtained using true triaxial loading system for the collector of Vladimir Filanovsky field in the Caspian Sea are presented.
NASA Astrophysics Data System (ADS)
Jiang, Huifeng; Chen, Xuedong; Fan, Zhichao; Dong, Jie; Jiang, Heng; Lu, Shouxiang
2009-08-01
Stress controlled fatigue-creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550 °C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at -100 to 385 MPa, at higher temperatures (560, 575 °C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540 °C), mean strain only jumps once at the end of deformation.
Atomistic study of nanoprecipitates influence on plasticity and fracture of crystalline metals
NASA Astrophysics Data System (ADS)
Stegailov, Vladimir; Kuksin, Alexey; Norman, Genri; Yanilkin, Alexey
2007-06-01
The recent experimental results [G.I.Kanel et al., 2006] show the essential influence of the nanoprecipitates on spall strength of copper single crystals. In this work we address this issue by the molecular dynamics study. The models under consideration are the EAM systems of Al nanoclusters in the Cu matrix and Cu clusters in the Al matrix. We consider these two cases as the representative examples of nanocluster-matrix difference in shear strength. Three ways of the high strain rate deformation modeling are studied: hydrostatic and uniaxial strain and shock wave loading in the impactor-target model. The preexisting edge dislocation interaction with the precipitate under shear deformation is addressed. The effect of the precipitate size is considered.
Controls on Permeability Evolution in Fractured-Sorbing Media
NASA Astrophysics Data System (ADS)
Elsworth, D.
2017-12-01
A critical component in the desire to recover energy and fuels from the subsurface, or to sequester energy-related and other wastes, is the ability to control properties that influence the transport and storage of mass, fluids and energy. In fractured media, permeabilities are strongly dependent on effective stresses. In turn, effective stresses (M) are mediated by changes in fluid pressures (H), compositions of the permeating fluids and permeated rocks (C) and changes in temperature (T) - and sometimes influenced by biological (B) processes. First we explore the role of specific complex THMC(B) interactions in mediating changes in permeability in response to a change in spherical stress. These include the roles of differential strains, induced within shales by changes in pressure (H), gas concentration (C) or temperature (T), in driving changes in permeability, in particular where the effects of sorption are pronounced. We show that the influence of such pressure-, sorption- and thermally-induced changes in damage and porosity are countered, by the first order resetting effects of creep that influence the crack distribution within the fractured aggregate. Second, we explore linkages where friction and instability control the response to changes in differential stress. Changes in permeability are controlled by styles of deformation - brittle versus ductile - with modes of deformation in turn mediated by mineralogy of both native and altered mineral constituents, the evolving scale of deformation and in the progress of deformation through the dynamic loading cycle.
14 CFR 23.305 - Strength and deformation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Strength and deformation. 23.305 Section 23.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT..., permanent deformation. At any load up to limit loads, the deformation may not interfere with safe operation...
14 CFR 23.305 - Strength and deformation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Strength and deformation. 23.305 Section 23.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT..., permanent deformation. At any load up to limit loads, the deformation may not interfere with safe operation...
14 CFR 27.305 - Strength and deformation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Strength and deformation. 27.305 Section 27.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... deformation. At any load up to limit loads, the deformation may not interfere with safe operation. (b) The...
14 CFR 27.305 - Strength and deformation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Strength and deformation. 27.305 Section 27.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... deformation. At any load up to limit loads, the deformation may not interfere with safe operation. (b) The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica
Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less
NASA Astrophysics Data System (ADS)
Kannan, Manigandan
The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.
A simplified computer solution for the flexibility matrix of contacting teeth for spiral bevel gears
NASA Technical Reports Server (NTRS)
Hsu, C. Y.; Cheng, H. S.
1987-01-01
A computer code, FLEXM, was developed to calculate the flexibility matrices of contacting teeth for spiral bevel gears using a simplified analysis based on the elementary beam theory for the deformation of gear and shaft. The simplified theory requires a computer time at least one order of magnitude less than that needed for the complete finite element method analysis reported earlier by H. Chao, and it is much easier to apply for different gear and shaft geometries. Results were obtained for a set of spiral bevel gears. The teeth deflections due to torsion, bending moment, shearing strain and axial force were found to be in the order 10(-5), 10(-6), 10(-7), and 10(-8) respectively. Thus, the torsional deformation was the most predominant factor. In the analysis of dynamic load, response frequencies were found to be larger when the mass or moment of inertia was smaller or the stiffness was larger. The change in damping coefficient had little influence on the resonance frequency, but has a marked influence on the dynamic load at the resonant frequencies.
Ren, Li; Yang, Pengfei; Wang, Zhe; Zhang, Jian; Ding, Chong; Shang, Peng
2015-10-01
Bones with complicated hierarchical configuration and microstructures constitute the load-bearing system. Mechanical loading plays an essential role in maintaining bone health and regulating bone mechanical adaptation (modeling and remodeling). The whole-bone or sub-region (macroscopic) mechanical signals, including locomotion-induced loading and external actuator-generated vibration, ultrasound, oscillatory skeletal muscle stimulation, etc., give rise to sophisticated and distinct biomechanical and biophysical environments at the pericellular (microscopic) and collagen/mineral molecular (nanoscopic) levels, which are the direct stimulations that positively influence bone adaptation. While under microgravity, the stimulations decrease or even disappear, which exerts a negative influence on bone adaptation. A full understanding of the biomechanical and biophysical environment at different levels is necessary for exploring bone biomechanical properties and mechanical adaptation. In this review, the mechanical transferring theories from the macroscopic to the microscopic and nanoscopic levels are elucidated. First, detailed information of the hierarchical structures and biochemical composition of bone, which are the foundations for mechanical signal propagation, are presented. Second, the deformation feature of load-bearing bone during locomotion is clarified as a combination of bending and torsion rather than simplex bending. The bone matrix strains at microscopic and nanoscopic levels directly induced by bone deformation are critically discussed, and the strain concentration mechanism due to the complicated microstructures is highlighted. Third, the biomechanical and biophysical environments at microscopic and nanoscopic levels positively generated during bone matrix deformation or by dynamic mechanical loadings induced by external actuators, as well as those negatively affected under microgravity, are systematically discussed, including the interstitial fluid flow (IFF) within the lacunar-canalicular system and at the endosteum, the piezoelectricity at the deformed bone surface, and the streaming potential accompanying the IFF. Their generation mechanisms and the regulation effect on bone adaptation are presented. The IFF-induced chemotransport effect, shear stress, and fluid drag on the pericellular matrix are meaningful and noteworthy. Furthermore, we firmly believe that bone adaptation is regulated by the combination of bone biomechanical and biophysical environment, not only the commonly considered matrix strain, fluid shear stress, and hydrostatic pressure, but also the piezoelectricity and streaming potential. Especially, it is necessary to incorporate bone matrix piezoelectricity and streaming potential to explain how osteoblasts (bone formation cells) and osteoclasts (bone resorption cells) can differentiate among different types of loads. Specifically, the regulation effects and the related mechanisms of the biomechanical and biophysical environments on bone need further exploration, and the incorporation of experimental research with theoretical simulations is essential. Copyright © 2015. Published by Elsevier Ltd.
Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation
Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb
2015-01-01
It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445
Bidez, Martha W; Cochran, John E; King, Dottie; Burke, Donald S
2007-11-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3-33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap-shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (F ( z ), M ( y )) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted ("dived into") the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2-13% of peak neck loads in all three tests. "Diving-type" neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests.
Cochran, John E.; King, Dottie; Burke, Donald S.
2007-01-01
Motor vehicle crashes are the leading cause of death in the United States for people ages 3–33, and rollover crashes have a higher fatality rate than any other crash mode. At the request and under the sponsorship of Ford Motor Company, Autoliv conducted a series of dynamic rollover tests on Ford Explorer sport utility vehicles (SUV) during 1998 and 1999. Data from those tests were made available to the public and were analyzed in this study to investigate the magnitude of and the temporal relationship between roof deformation, lap–shoulder seat belt loads, and restrained anthropometric test dummy (ATD) neck loads. During each of the three FMVSS 208 dolly rollover tests of Ford Explorer SUVs, the far-side, passenger ATDs exhibited peak neck compression and flexion loads, which indicated a probable spinal column injury in all three tests. In those same tests, the near-side, driver ATD neck loads never predicted a potential injury. In all three tests, objective roof/pillar deformation occurred prior to the occurrence of peak neck loads (Fz, My) for far-side, passenger ATDs, and peak neck loads were predictive of probable spinal column injury. The production lap and shoulder seat belts in the SUVs, which restrained both driver and passenger ATDs, consistently allowed ATD head contact with the roof while the roof was contacting the ground during this 1000 ms test series. Local peak neck forces and moments were noted each time the far-side, passenger ATD head contacted (“dived into”) the roof while the roof was in contact with the ground; however, the magnitude of these local peaks was only 2–13% of peak neck loads in all three tests. “Diving-type” neck loads were not predictive of injury for either driver or passenger ATD in any of the three tests. PMID:17641975
The Dynamic Flow and Failure Behavior of Magnesium and Magnesium Alloys
NASA Astrophysics Data System (ADS)
Eswar Prasad, K.; Li, B.; Dixit, N.; Shaffer, M.; Mathaudhu, S. N.; Ramesh, K. T.
2014-01-01
We review the dynamic behavior of magnesium alloys through a survey of the literature and a comparison with our own high-strain-rate experiments. We describe high-strain-rate experiments (at typical strain rates of 103 s-1) on polycrystalline pure magnesium as well as two magnesium alloys, AZ31B and ZK60. Both deformation and failure are considered. The observed behaviors are discussed in terms of the fundamental deformation and failure mechanisms in magnesium, considering the effects of grain size, strain rate, and crystallographic texture. A comparison of current results with the literature studies on these and other Mg alloys reveals that the crystallographic texture, grain size, and alloying elements continue to have a profound influence on the high-strain-rate deformation behavior. The available data set suggests that those materials loaded so as to initiate extension twinning have relatively rate-insensitive strengths up to strain rates of several thousand per second. In contrast, some rate dependence of the flow stress is observed for loading orientations in which the plastic flow is dominated by dislocation mechanisms.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo
2015-10-01
Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1981-01-01
The effect of load eccentricity and substructure deformation on the ultimate strength and stress displacement properties of the shuttle orbiter thermal protection system (TPS) was determined. The LI-900 Reusable Surface Insulation (RSI) tiles mounted on the .41 cm thick Strain Isolator Pad (SIP) were investigated. Substructure deformations reduce the ultimate strength of the SIP/tile TPS and increase the scatter in the ultimate strength data. Substructure deformations that occur unsymmetric to the tile can cause the tile to rotate when subjected to a uniform applied load. Load eccentricity reduces SIP/tile TPS ultimate strength and causes tile rotation.
Designing for time-dependent material response in spacecraft structures
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Oleksuk, Lynda L. S.; Bowles, D. E.
1992-01-01
To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations.
Grinding and its influence to ground surface durability
NASA Astrophysics Data System (ADS)
Holesovsky, F.; Novak, M.
2011-01-01
A number of parameters of running process effect on the formed surface at grinding. Above all, the following influences can be mentioned: grinding wheel speed, workpiece speed, tool properties, rigidity of machine tool, etc. The plastic deformation and thermal load of surface layer are evoked at the action of cutting conditions. A new surface keeps the definite properties, which are given by its roughness, surface profile, geometry accuracy, intensity and residual stress distribution, respectively microhardness course in surface layer and changes of microstructure in this layer. The surface properties predict the surface behaviour in the real machinery at the dynamical, respectively static loading. At the load, the changes of surface properties proceed, e.g. roughness, residual stress. Simultaneously, changes of surface properties influence the durability of machine part and can also lead to surface damage and machine part breakdown. The slackness can also evoke the cracks, which leads to the fracture. The behaviour of part differs in the operating environment without and with oil or in the corrosion environment.
Effect of Pre-Strain on the Fatigue Behavior of Extruded AZ31 Alloys
NASA Astrophysics Data System (ADS)
Wu, Yanjun
2017-09-01
An attempt is made to rationalize the effect of pre-strain history on fatigue behaviors of AZ31 magnesium alloy. Axial fatigue tests were conducted in the extruded and pre-compressioned AZ31 alloy under low cycle total strain control fatigue conditions. The pre-strain process influences the plastic deformation mechanism activated during fatigue deformation, especially during tensile loading, by enhancing the activity of detwinning mechanism. The low-cycle fatigue lifetime of extruded AZ31 alloy can be enhanced by the pre-compression process. And the hysteresis energy was successfully used to predict the low-cycle fatigue lifetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, S. V.; Plotnikov, V. A., E-mail: plotnikov@phys.asu.ru; Lysikov, M. V.
2015-10-27
The following study investigates the deformation behavior and acoustic emission in aluminum-magnesium alloy under conditions of non-isothermal thermo-mechanical loading. The accumulation of deformation in the alloy, in conditions of change from room temperature to 500°C, occurs in two temperature intervals (I, II), characterized by different rates of deformation. The rate of deformation accumulation is correlated with acoustic emission. With load increasing in cycles from 40 to 200 MPa, the value of the boundary temperature (T{sub b}) between intervals I and II changes non-monotonically. In cycles with load up to 90 MPa, the T{sub b} value increases, while an increase up to 200 MPamore » makes T{sub b} shift toward lower temperatures. This suggests that the shift of boundaries in the region of low temperatures and the appearance of high-amplitude pulses of acoustic emission characterize the decrease of the magnitude of thermal fluctuations with increasing mechanical load, leading to the rupture of interatomic bonds in an elementary deformation act.« less
Chávarri-Prado, David; Jiménez-Garrudo, Antonio; Solaberrieta-Méndez, Eneko; Diéguez-Pereira, Markel; Fernández-González, Felipe J.; Dehesa-Ibarra, Borja; Monticelli, Francesca
2016-01-01
The objective of the present study is to evaluate how the elastic properties of the fabrication material of dental implants influence peri-implant bone load transfer in terms of the magnitude and distribution of stress and deformation. A three-dimensional (3D) finite element analysis was performed; the model used was a section of mandibular bone with a single implant containing a cemented ceramic-metal crown on a titanium abutment. The following three alloys were compared: rigid (Y-TZP), conventional (Ti-6Al-4V), and hyperelastic (Ti-Nb-Zr). A 150-N static load was tested on the central fossa at 6° relative to the axial axis of the implant. The results showed no differences in the distribution of stress and deformation of the bone for any of the three types of alloys studied, mainly being concentrated at the peri-implant cortical layer. However, there were differences found in the magnitude of the stress transferred to the supporting bone, with the most rigid alloy (Y-TZP) transferring the least stress and deformation to cortical bone. We conclude that there is an effect of the fabrication material of dental implants on the magnitude of the stress and deformation transferred to peri-implant bone. PMID:27995137
Hössl, Bernhard; Böhm, Helmut J; Schaber, Clemens F; Rammerstorfer, Franz G; Barth, Friedrich G
2009-09-01
Arachnid slit sensilla respond to minute strains in the exoskeleton. After having applied finite element (FE) analysis to simplified arrays of five straight slits (Hössl et al. J Comp Physiol A 193:445-459, 2007) we now present a computational study of the effects of more subtle natural variations in geometry, number and arrangement of slits on the slit face deformations. Our simulations show that even minor variations in these parameters can substantially influence a slit's directional response. Using white-light interferometric measurements of the surface deformations of a lyriform organ, it is shown that planar FE models are capable of predicting the principal characteristics of the mechanical responses. The magnitudes of the measured and calculated slit face deformations are in good agreement. At threshold, they measure between 1.7 and 43 nm. In a lyriform organ and a closely positioned loose group of slits, the detectable range of loads increases to approximately 3.5 times the range of the lyriform organ alone. Stress concentration factors (up to ca. 29) found in the vicinity of the slits were evaluated from the models. They are mitigated due to local thickening of the exocuticle and the arrangement of the chitinous microfibers that prevents the formation of cracks under physiological loading conditions.
Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; ...
2016-01-13
In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less
Subfailure injury of the rabbit anterior cruciate ligament.
Panjabi, M M; Yoldas, E; Oxland, T R; Crisco, J J
1996-03-01
Ligamentous injuries range in severity from a simple sprain to a complete rupture. Although sprains occur more frequently than complete failures, only a few studies have investigated the phenomena of these subfailure injuries. The purpose of our study was to document the changes in the load-deformation curve until the failure point, after the ligament has been subjected to an 80% subfailure stretch. Thirteen paired fresh rabbit bone-anterior cruciate ligament-bone preparations were used. One of the pairs (control) was stretched until failure; the other (experimental) was first stretched to 80% of the failure deformation of the control and then stretched to failure. Comparisons were made between the load-deformation curves of the experimental and control specimens. The nonlinear load-deformation curves were characterized by eight parameters: failure load (Ffail), failure deformation (Dfail), energy until failure (Efail), deformations measured at 5, 10, 25, and 50% of the failure load (D5, D10, D25, and D50, respectively), and stiffness measured at 50% of the failure force (K50). There were no significant differences in the values for Ffail, Dfail, and Efail between the experimental and control ligaments (p > 0.33). In contrast, the deformation values were all larger for the experimental than the control ligaments (p > 0.01). The deformations D5, D10, D25, and D50 (mean +/- SD) for the control were 0.36 +/- 0.13, 0.49 +/- 0.23, 0.81 +/- 0.35, and 1.23 +/- 0.41 mm. The corresponding deformations for the experimental ligaments were, respectively, 209, 186, 153, and 130% of the control values. K50 was also greater for the experimental ligament (125.0 +/- 41.7 N/mm compared with 108.7 +/- 31.4 N/mm, p < 0.03). These findings indicate that even though the strength of the ligament did not change due to a subfailure injury, the shape of the load-displacement curve, especially at low loads, was significantly altered. Under the dynamic in vivo loading conditions of daily living, this may result in increased joint laxity, additional loads being applied to other joint structures, and, with time, to joint problems.
Structural Benchmark Tests of Composite Combustion Chamber Support Completed
NASA Technical Reports Server (NTRS)
Krause, David L.; Thesken, John C.; Shin, E. Eugene; Sutter, James K.
2005-01-01
A series of mechanical load tests was completed on several novel design concepts for extremely lightweight combustion chamber support structures at the NASA Glenn Research Center (http://www.nasa.gov/glenn/). The tests included compliance evaluation, preliminary proof loadings, high-strain cyclic testing, and finally residual strength testing of each design (see the photograph on the left). Loads were applied with single rollers (see the photograph on the right) or pressure plates (not shown) located midspan on each side to minimize the influence of contact stresses on corner deformation measurements. Where rollers alone were used, a more severe structural loading was produced than the corresponding equal-force pressure loading: the maximum transverse shear force existed over the entire length of each side, and the corner bending moments were greater than for a distributed (pressure) loading. Failure modes initiating at the corner only provided a qualitative indication of the performance limitations since the stress state was not identical to internal pressure. Configurations were tested at both room and elevated temperatures. Experimental results were used to evaluate analytical prediction tools and finite-element methodologies for future work, and they were essential to provide insight into the deformation at the corners. The tests also were used to assess fabrication and bonding details for the complicated structures. They will be used to further optimize the design of the support structures for weight performance and the efficacy of corner reinforcement.
Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.
Chen, Kunkun; Zhang, Yansong; Wang, Hongze
2017-03-01
Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.
Developments in echocardiographic techniques for the evaluation of ventricular function in children.
Dragulescu, Andreea; Mertens, Luc L
2010-01-01
Echocardiography is a very important tool for the diagnosis and follow-up of children with congenital and acquired heart disease. One of the challenges that remains in paediatric heart disease is the assessment of systolic and diastolic function in children, as this is influenced by growth, morphology and loading conditions. New echocardiographic techniques, such as tissue Doppler, deformation imaging and three-dimensional echocardiography, have great potential application in this field. They may provide new insights into the influence of growth, morphology and loading on cardiac mechanics, and could become useful clinical tools. In this review, we discuss the potential use and limitations of these new echocardiographic techniques in paediatric and congenital heart disease. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet
NASA Astrophysics Data System (ADS)
Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi
Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Reza Barati, Mohammad
2017-02-01
This article investigates the thermo-mechanical vibration frequencies of magneto-electro-thermo-elastic functionally graded (METE-FG) nanoplates in the framework of refined four-unknown shear deformation plate theory. The present nanoplate is subjected to various kinds of thermal loads with uniform, linear and nonlinear distributions. The nonlinear distribution is considered as heat conduction and sinusoidal temperature rise. The present refined theory captures the influences of shear deformations without the need for shear correction factors. Thermo-magneto-electro-elastic coefficients of the FG nanoplate vary gradually along the thickness according to the power-law form. The scale coefficient is taken into consideration implementing the nonlocal elasticity of Eringen. The governing equations are derived through Hamilton's principle and are solved analytically. The frequency response is compared with those of previously published data. The obtained results are presented for the thermo-mechanical vibrations of the FG nanobeams to investigate the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.
NASA Astrophysics Data System (ADS)
Wang, Yongguang; Chen, Yao; Zhao, Dong; Lu, Xiaolong; Liu, Weiwei; Qi, Fei; Chen, Yang
2018-07-01
CrN coatings are widely used to protect metals from wear in industrial engineering. However, fundamental deformation mechanism of these coatings under heavy loading conditions remains elusive. In this paper, multilayered hard coatings with a CrN matrix and a supporting layer were developed by means of the hybrid deposition process combined with PVD and ionicnitriding. The tribological behavior of coatings with and without ionicnitriding were investigated by a pin-on-disk arrangement under heavy loading conditions. In addition, the deformation mechanism of the multilayered hard coatings was studied by nano-scratch experiment with ramp load model, which has not been discussed previously. It was found that the deformation process of coatings could be divided into three regimes based on the evolution of frictional coefficient. The insertion of nitriding films leads to the further increase in frictional resistance owing to the elastic-plastic deformation. The results and analysis reveal some insights into the coating design for multilayered hard coatings with the consideration of deformation mechanisms.
Experimental Study of Deformation and of Effective Width in Axially Loaded Sheet-stringer Panels
NASA Technical Reports Server (NTRS)
Ramberg, Walter; MCPHERSON ALBERT E; Levy, Sam
1939-01-01
The deformation of two sheet-stringer panels subjected to end compression under carefully controlled end conditions was measured at a number of points and at a number of loads, most of which were above the load at which the sheet had begun to buckle. The two panels were identical except for the sheet, which was 0.70-inch 24st alclad for specimen 1 and 0.025-inch 24st aluminum alloy for specimen 6. A technique was developed for attaching Tuckerman optical strain gauges to the sheet without disturbing the strain distribution in the sheet by the method of attachment. This technique was used to explore the strain distribution in the sheet at various loads. The twisting and the bending of the stringers was measured by means of pointers attached to the stringers. The shape of the buckles in the sheet of specimen 6 was recorded at two loads by means of plaster casts. The sheet and the stringer loads at failure are compared with the corresponding loads for five similar panels tested at the Navy Model Basin. A detailed comparison is made between the measured deformation of the buckled sheet and the deformation calculated from approximate theories for the deformation in a rectangular sheet with freely supported edges buckling under end compression advanced by Timoshenko, Frankland, and Marguerre. The measured effective width for the specimens is compared with the effective width given by nine different relations for effective width as a function of the edge stress divided by the buckling stress of the sheet. The analysis of the measured stringer deformation is confined to an application of Southwell's method of plotting deformation against deformation over load. It was concluded that the stringer failure in both specimens were due to an instability in which the stringer was simultaneously twisted and bent as a column.
NASA Astrophysics Data System (ADS)
Comǎneci, Radu Ioachim; Nedelcu, Dumitru; Bujoreanu, Leandru Gheorghe
2017-10-01
Equal channel angular pressing (ECAP) is a well-established method for grain refinement in metallic materials by large shear plastic deformation, being the most promising and effective severe plastic deformation (SPD) technique. ECAP is a discontinuous process, so the billet removal implies a new development of the procedure: the new sample pushes out the previous sample. In resuming the process the head and the tail ends of the work piece which becomes strongly distorted and receiving different amount of strain have to be removed. Due to the path difference in material flow between upper and lower region of the outlet channel, a non-uniform strain and stress distribution across the width of the workpiece leaving the plastic deformation zone (PDZ) is achieved. A successful ECAP requires surpassing two obstacles: the necessary load level which directly affects tools and a favorable stress distribution so the material withstanding the accumulated strain of repeated deformation. Under back pressure (BP), materials have shown to be able to withstand more passes. As soon as the billet passes the PDZ along the bisector plane of the two channels, the compressive mean stress changes to tensile (leading to crack initiation), while in the presence of BP, a negative (compressive) stress is applied during the process. In this paper a comparative tridimensional finite element analysis (FEA) is performed to evaluate the behavior of a difficult-to-work Al-Mg alloy depending on tools geometry and process parameters. The results in terms of load level and strain distribution show the influence of the punch geometry and BP on the material behavior.
Using NASTRAN to solve symmetric structures with nonsymmetric loads
NASA Technical Reports Server (NTRS)
Butler, T. G.
1982-01-01
A method for computation of reflective dihedral symmetry in symmetrical structures under nonsymmetric loads is described. The method makes it possible to confine the analysis to a half, a quarter, or an octagonal segment. The symmetry of elastic deformation is discussed, and antisymmetrical deformation is distinguished from nonsymmetrical deformation. Modes of deformation considered are axial, bending, membrane, and torsional deformation. Examples of one and two dimensional elements are presented and extended to three dimensional elements. The method of setting up a problem within NASTRAN is discussed. The technique is applied to a thick structure having quarter symmetry which was modeled with polyhedra and subjected to five distinct loads having varying degrees of symmetry.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng
2018-01-01
Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.
Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich
2018-01-01
The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107
Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Waske, Anja; Krüger, Lutz; Martin, Ulrich
2018-04-24
The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α ′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α ′ -martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading.
Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths
Cheng, G.; Choi, K. S.; Hu, X.; ...
2017-04-05
Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less
Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, G.; Choi, K. S.; Hu, X.
The deformation limits of various DP980 steels are examined in this study with deformation instability theory. Under uniaxial tension, overall stress-strain curves of the material are estimated based on simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, actual microstructure-based finite element (FE) method is used to explicitly resolve the deformation incompatibilities between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for the various DP980 considered. Undermore » complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less
Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, G.; Choi, K. S.; Hu, X.
Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less
NASA Astrophysics Data System (ADS)
LI, G.; Lin, H.
2014-12-01
From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.
Neu, C P; Hull, M L
2003-04-01
Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach a steady-state response in normal bovine articular cartilage was 49 for a total cycle duration of 5 seconds, but decreased to 33 and 27 for increasing total cycle durations of 10 and 15 seconds, respectively. Once the steady-state response was achieved, 95% of all displacements were within +/- 7.42 microns of the mean displacement, indicating that the displacement response to the cyclic loads was highly repeatable. With this performance, the MRI-loading apparatus system meets the requirements to create images of articular cartilage from which 3D deformation can be determined.
Structural design of a large deformable primary mirror for a space telescope
NASA Astrophysics Data System (ADS)
Hansen, J. G. R.
A 4 meter aperture deformable primary mirror is designed with the mirror and its supports integrated into a single structure. The integrated active mirror's minimal weight makes it desirable for a space telescope as well as a terrestrial application. Utilizing displacement actuators, the active controls at the mirror's surface include position control and slope control in both the radial and tangential directions at each of the 40 control points. Influence functions for each of the controls are nearly independent, reducing the complexity of the control system. Experiments with breadboard models verify the structural concept and the techniques used in the finite element method of computer structural analysis. The majority of this paper is a description of finite element analysis results. Localization of influence functions is exhaustively treated. For gravity loads, a thermal gradient through the mirror thickness, and a uniform thermal soak, diffraction limited performance of the 4m design is evaluated. Loads are applied to defocus the mirror and to cause fourth-order astigmatism. Mirror scallop, instigated by a focus shift, has been virtually eliminated with the 40-actuator design. The structural concept is so effective that it should be considered for uncontrolled primary mirrors as well as active mirrors.
Chen, Feng; Zhang, Jinwen
2010-11-01
In this study, soy protein concentrate (SPC) was used as a plastic component to blend with poly(butylene adipate-co-terephthalate) (PBAT). Effects of SPC plasticization and blend composition on its deformation during mixing were studied in detail. Influence of using water as the major plasticizer and glycerol as the co-plasticizer on the deformation of the SPC phase during mixing was explored. The effect of shear stress, as affected by SPC loading level, on the phase structure of SPC in the blends was also investigated. Quantitative analysis of the aspect ratio of SPC particles was conducted by using ImageJ software, and an empirical model predicting the formation of percolated structure was applied. The experimental results and the model prediction showed a fairly good agreement. The experimental results and statistic analysis suggest that both SPC loading level and its water content prior to compounding had significant influences on development of the SPC phase structure and were correlated in determining the morphological structures of the resulting blends. Consequently, physical and mechanical properties of the blends greatly depended on the phase morphology and PBAT/SPC ratio of the blends.
Influence of meniscus shape in the cross sectional plane on the knee contact mechanics.
Łuczkiewicz, Piotr; Daszkiewicz, Karol; Witkowski, Wojciech; Chróścielewski, Jacek; Zarzycki, Witold
2015-06-01
We present a three dimensional finite element analysis of stress distribution and menisci deformation in the human knee joint. The study is based on the Open Knee model with the geometry of the lateral meniscus which shows some degenerative disorders. The nonlinear analysis of the knee joint under compressive axial load is performed. We present results for intact knee, knee with complete radial posterior meniscus root tear and knee with total meniscectomy of medial or lateral meniscus. We investigate how the meniscus shape in the cross sectional plane influences knee-joint mechanics by comparing the results for flat (degenerated) lateral and normal medial meniscus. Specifically, the deformation of the menisci in the coronal plane and the corresponding stress values in cartilages are studied. By analysing contact resultant force acting on the menisci in axial plane we have shown that restricted extrusion of the torn lateral meniscus can be attributed to small slope of its cross section in the coronal plane. Additionally, the change of the contact area and the resultant force acting on the menisci as the function of compressive load are investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elasticity of excised dog lung parenchyma
NASA Technical Reports Server (NTRS)
Vawter, D. L.; Fung, Y. C.; West, J. B.
1978-01-01
An optical-electromechanical system is used to measure the force-deformation behavior of biaxially loaded rectangular slabs of excised dog lung parenchyma. In the course of the study, the effects of time, the consistency of reference lengths and areas, the presence of hysteresis, the necessity of preconditioning, the repeatability of results, the effects of lateral load, the effect of strain rate, the effect of pH, the influence of temperature, and the variations among specimens are considered. A new finding is that there is a change in elastic behavior when the tissue undergoes a compressive strain. When the tissue is in tension, increasing the lateral load decreases the compliance, whereas the opposite is true when compressive strain is present.
Effects of Loading Frequency and Film Thickness on the Mechanical Behavior of Nanoscale TiN Film
NASA Astrophysics Data System (ADS)
Liu, Jin-na; Xu, Bin-shi; Wang, Hai-dou; Cui, Xiu-fang; Jin, Guo; Xing, Zhi-guo
2017-09-01
The mechanical properties of a nanoscale-thickness film material determine its reliability and service life. To achieve quantitative detection of film material mechanical performance based on nanoscale mechanical testing methods and to explore the influence of loading frequency of the cycle load on the fatigue test, a TiN film was prepared on monocrystalline silicon by magnetron sputtering. The microstructure of the nanoscale-thickness film material was characterized by using scanning electron microscopy and high-resolution transmission electron microscopy. The residual stress distribution of the thin film was obtained by using an electronic film stress tester. The hardness values and the fatigue behavior were measured by using a nanomechanical tester. Combined with finite element simulation, the paper analyzed the influence of the film thickness and loading frequency on the deformation, as well as the equivalent stress and strain. The results showed that the TiN film was a typical face-centered cubic structure with a large amount of amorphous. The residual compressive stress decreased gradually with increasing thin film thickness, and the influence of the substrate on the elastic modulus and hardness was also reduced. A greater load frequency would accelerate the dynamic fatigue damage that occurs in TiN films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, S. C.; Hartig, C.; Brissier, T. D.
2005-01-01
In situ deformation studies by diffraction allow studying of deformation mechanisms and provide valuable data to validate and improve deformation models. In particular, deformation studies using time-of-flight neutrons provide averages over large numbers of grains and allow to probing the response of lattice planes parallel and perpendicular to the applied load simultaneously. In this paper we describe the load-frame CRATES, designed for the HIPPO neutron time-of-flight diffractometer at LANSCE. The HIPPO/CRATES combination allows probing up to 20 diffraction vectors simultaneously and provides rotation of the sample in the beam while under load. With this, deformation texture, i.e. the change ofmore » grain orientation due to plastic deformation, or strain pole figures may be measured. We report initial results of a validation experiment, comparing deformation of a Zircaloy specimen measured using the NPD neutron diffractometer with results obtained for the same material using HIPPO/CRATES.« less
Full-Field Indentation Damage Measurement Using Digital Image Correlation
López-Alba, Elías; Díaz-Garrido, Francisco A.
2017-01-01
A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC) technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques. PMID:28773137
Taylor, Adam C; Lautenschlager, Stephan; Qi, Zhao; Rayfield, Emily J
2017-01-01
The masseter muscle complex is a unique feature of extant mammals and their advanced cynodont precursors, originating from the zygomatic arch and inserting onto the lateral surface of the dentary. This muscle complex is absent in sauropsids, with the exception of the neomorphic m. pseudomasseter complex that is unique to psittaciform birds (parrots and cockatiels). The anterior position and anterodorsally inclined line of action of both muscle groups increases leverage of the jaw and is thought to contribute to increased bite force, particularly in psittaciforms. A corollary is that in mammals at least, the masseter places increased load on the zygomatic arch, which may be withstood by soft tissue temporal fascia. Recently the existence of a m. pseudomasster (mPSM) and m. adductor mandibulae externus ventralis (mAMEV) has been proposed in the ornithischian dinosaur Psittacosaurus. Here we use computed tomography, digital restoration of skull anatomy and adductor musculature and computational biomechanics to test how the presence of anterodorsally inclined muscle loads influences stress, strain, deformation and estimated bite forces in the skull of Psittacosaurus. We find that the m. pseudomasseter and m. amev increases bite force with an associated increase in cranial stress and deformation. There is, however, limited osteological evidence for the existence of these two additional muscles in the psittacosaur skull and geometric morphometric informed sensitivity analysis of our finite element models shows that bite position has a greater effect on loading-induced deformation than muscle loading or material property variation. Anat Rec, 300:49-61, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Jutte, Christine V.; Ko, William L.; Stephens, Craig A.; Bakalyar, John A.; Richards, W. Lance
2011-01-01
A ground loads test of a full-scale wing (175-ft span) was conducted using a fiber optic strain-sensing system to obtain distributed surface strain data. These data were input into previously developed deformed shape equations to calculate the wing s bending and twist deformation. A photogrammetry system measured actual shape deformation. The wing deflections reached 100 percent of the positive design limit load (equivalent to 3 g) and 97 percent of the negative design limit load (equivalent to -1 g). The calculated wing bending results were in excellent agreement with the actual bending; tip deflections were within +/- 2.7 in. (out of 155-in. max deflection) for 91 percent of the load steps. Experimental testing revealed valuable opportunities for improving the deformed shape equations robustness to real world (not perfect) strain data, which previous analytical testing did not detect. These improvements, which include filtering methods developed in this work, minimize errors due to numerical anomalies discovered in the remaining 9 percent of the load steps. As a result, all load steps attained +/- 2.7 in. accuracy. Wing twist results were very sensitive to errors in bending and require further development. A sensitivity analysis and recommendations for fiber implementation practices, along with, effective filtering methods are included
[Test of thermal deformation for electronic devices of high thermal reliability].
Li, Hai-yuan; Li, Bao-ming
2002-06-01
Thermal deformation can be caused by high partial heat flux and greatly reduce thermal reliability of electronic devices. In this paper, an attempt is made to measure the thermal deformation of high power electronic devices under working condition using laser holographic interferometry with double exposure. Laser holographic interferometry is an untouched measurement with measurement precision up to micron dimension. The electronic device chosen for measurement is a type of solid state relay which is used for ignition of rockets. The output circuit of the solid state relay is made up of a MOSFET chip and the power density of the chip can reach high value. In particular situations thermal deformation and stress may significantly influence working performance of the solid state relay. The bulk deformation of the chip and its mount is estimated by number of interferential stripes on chip surface. While thermal stress and deformation can be estimated by curvature of interferential stripes on chip surface. Experimental results indicate that there are more interferential stripes on chip surface and greater flexural degree of stripes under high power. Therefore, these results reflect large out-of-plain displacement and deformed size of the chip with the increase of load current.
Study on seismic performance of BFRP geogrid reinforced Tibetan rubble wall
NASA Astrophysics Data System (ADS)
Yang, Dan; Jia, Bin; Huang, Hui; Deng, Chuangli
2018-03-01
For the study of BFRP geogrid influence on Tibetan rubble wall seismic performance, in this paper, on the premise of not change the way of traditional masonry, laying and not join geogrid respectively on the the rubble wall, and carries on the cyclic loading experiment on them. The damage characteristics, crack width and seismic performance of the rubble walls with BFRP geogrid are studied. The experimental results show that the deformation of the rubble wall is mainly the shear deformation under the action of horizontal force, and the bearing capacity and energy dissipation capacity of the wall can be improved significantly after joining the geogrid.
Deformation mechanics of deep surface flaw cracks
NASA Technical Reports Server (NTRS)
Francis, P. H.; Nagy, A.; Beissner, R. E.
1972-01-01
A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas.
Digital Image Correlation: Metrological Characterization in Mechanical Analysis
NASA Astrophysics Data System (ADS)
Petrella, Orsola; Signore, Davide; Caramuta, Pietro; Toscano, Cinzia; Ferraiuolo, Michele
2017-04-01
The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a Metrological Characterization of the Digital Image Correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation In the dynamic test the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future the influence of these parameters will be studied and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.
Implant-supported mandibular splinting affects temporomandibular joint biomechanics.
Zaugg, Balthasar; Hämmerle, Christoph H F; Palla, Sandro; Gallo, Luigi M
2012-08-01
Mandibular functional movements lead to complex deformations of bony structures. The aim of this study was to test whether mandibular splinting influences condylar kinematics and temporomandibular joint (TMJ) loading patterns. Six subjects were analyzed by means of dynamic stereometry during jaw opening-closing with mandibles unconstrained as well as splinted transversally by a cast metal bar fixed bilaterally to two implant pairs in the (pre)molar region. Statistical analysis was performed by means of ANOVAs for repeated measurements (significance level α=0.05). Transversal splinting reduced mandibular deformation during jaw opening-closing as measured between two implants in the (pre)molar region on each side of the mandible significantly by 54%. Furthermore, splinting significantly reduced the distance between lateral condylar poles (average displacement vector magnitude of each pole: 0.84±0.36 mm; average mediolateral displacement component: 45±28% of the magnitude) and led to a medial displacement of their trajectories as well as a mediolateral displacement of stress-field paths. During jaw opening-closing, splinting of the mandible leads to a significant reduction of mandibular deformation and intercondylar distance and to altered stress-field paths, resulting in changed loading patterns of the TMJ structures. © 2011 John Wiley & Sons A/S.
ERIC Educational Resources Information Center
Donovan, Phillip Raymond
2009-01-01
This study focuses on the analysis of the behavior of unbound aggregates to offset wheel loads. Test data from full-scale aircraft gear loading conducted at the National Airport Pavement Test Facility (NAPTF) by the Federal Aviation Administration (FAA) are used to investigate the effects of wander (offset loads) on the deformation behavior of…
Deformations of temporary wooden supports used to reduce building deflections in mining areas
NASA Astrophysics Data System (ADS)
Gromysz, Krzysztof
2018-04-01
Temporary supports, consisting of a stack of wooden elements and a hydraulic jack, are used in the process of removing deflections in buildings with one to three aboveground floors in mining areas. During uneven raising, the supports are loaded monotonically, unloaded and loaded cyclically. Laboratory tests were designed for the supports. For the investigated range of loads of 0 to 400 kN, under a growing load, a linear relationship exists between a load and the change in the stack length, which signifies that the deformations of wooden elements and displacements related to their mutual interactions increase proportionally. A seemingly higher stack stiffness is seen at the beginning of the unloading process and for cyclical loads, meaning that in this phase of loading, the material deformation of the wooden elements and the jack is responsible for changing the jack length in this load phase, with a negligible presence of mutual displacements of wooden elements. The support, after being unloaded, returns to the initial position and its permanent deformations are not observed. The stiffness of a temporary support decreases as the height of the stack of wooden elements increases.
Investigation of the Behavior of Hardening Masonry Exposed to Variable Stresses
Šlivinskas, Tomas; Jonaitis, Bronius; Marčiukaitis, Jonas Gediminas
2018-01-01
This paper analyzes the behavior of masonry under variable loads during execution (construction stage). It specifies the creep coefficient for calcium silicate brick masonry, presenting the research data of masonry deformation under variable and constant long-term loads. The interaction of separate layers of composite material in masonry is introduced and the formulae for determining long-term deformations are offered. The research results of masonry’s compressive strength and deformation properties under variable and constant long-term loads are presented. These are then compared to calculated ones. According to the presented comparison, the calculated long-term deformations coincide quite well with those determined experimentally. PMID:29710802
Investigation of the Behavior of Hardening Masonry Exposed to Variable Stresses.
Šlivinskas, Tomas; Jonaitis, Bronius; Marčiukaitis, Jonas Gediminas; Zavalis, Robertas
2018-04-28
This paper analyzes the behavior of masonry under variable loads during execution (construction stage). It specifies the creep coefficient for calcium silicate brick masonry, presenting the research data of masonry deformation under variable and constant long-term loads. The interaction of separate layers of composite material in masonry is introduced and the formulae for determining long-term deformations are offered. The research results of masonry’s compressive strength and deformation properties under variable and constant long-term loads are presented. These are then compared to calculated ones. According to the presented comparison, the calculated long-term deformations coincide quite well with those determined experimentally.
Features of structural response of mechanically loaded crystallites to irradiation
NASA Astrophysics Data System (ADS)
Korchuganov, Aleksandr V.
2015-10-01
A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.
[Treatment of metaphyseal fractures of shin bones by the method of blocking osteosynthesis].
Neverov, V A; Khromov, A A; Cherniaev, S N; Egorov, K S; Shebarshov, A L
2008-01-01
The proposed method of reposition and polyaxial stabilization of fragments for intramedullary meallosynthesis of fractures of long tubular bones allows blocking osteosynthesis to be successfully used in treatment of complex metaphyseal fractures of shin bones. It results in strong fixation of the fragments, makes it possible to successfully eliminate residual deformities after introduction of the nail and to avoid the development of them in future under the influence of loading. The method provides early functioning of the interfacing joints, early axial loading, shorter period of disability, the absence of external immobilization.
Description of plastic deformation of structural materials in triaxial loading
NASA Astrophysics Data System (ADS)
Lagzdins, A.; Zilaucs, A.
2008-03-01
A model of nonassociated plasticity is put forward for initially isotropic materials deforming with residual changes in volume under the action of triaxial normal stresses. The model is based on novel plastic loading and plastic potential functions, which define closed, convex, every where smooth surfaces in the 6D space of symmetric second-rank stress tensors. By way of example, the plastic deformation of a cylindrical concrete specimen wrapped with a CFRP tape and loaded in axial compression is described.
NASA Astrophysics Data System (ADS)
Klemz, Francis B.
Forging provides an elegant solution to the problem of producing complicated shapes from heated metal. This study attempts to relate some of the important parameters involved when considering, simple upsetting, closed die forging and extrusion forging.A literature survey showed some of the empirical graphical and statistical methods of load prediction together with analytical methods of estimating load and energy. Investigations of the effects of high strain rate and temperature on the stress-strain properties of materials are also evident.In the present study special equipment including an experimental drop hammer and various die-sets have been designed and manufactured. Instrumentation to measure load/time and displacement/time behaviour, of the deformed metal, has been incorporated and calibrated. A high speed camera was used to record the behaviour mode of test pieces used in the simple upsetting tests.Dynamic and quasi-static material properties for the test materials, lead and aluminium alloy, were measured using the drop-hammer and a compression-test machine.Analytically two separate mathematical solutions have been developed: A numerical technique using a lumped-massmodel for the analysis of simple upsetting and closed-die forging and, for extrusion forging, an analysis which equates the shear and compression energy requirements tothe work done by the forging load.Cylindrical test pieces were used for all the experiments and both dry and lubricated test conditions were investigated. The static and dynamic tests provide data on Load, Energy and the Profile of the deformed billet. In addition for the Extrusion Forging, both single ended and double ended tests were conducted. Material dependency was also examined by a further series of tests on aluminium and copper.Comparison of the experimental and theoretical results was made which shows clearly the effects of friction and high strain rate on load and energy requirements and the deformation mode of the billet. For the axisymmetric shapes considered, it was found that the load, energy requirement and profile could be predicted with reasonable accuracy.
Load-sharing through elastic micro-motion accelerates bone formation and interbody fusion.
Ledet, Eric H; Sanders, Glenn P; DiRisio, Darryl J; Glennon, Joseph C
2018-02-13
Achieving a successful spinal fusion requires the proper biological and biomechanical environment. Optimizing load-sharing in the interbody space can enhance bone formation. For anterior cervical discectomy and fusion (ACDF), loading and motion are largely dictated by the stiffness of the plate, which can facilitate a balance between stability and load-sharing. The advantages of load-sharing may be substantial for patients with comorbidities and in multilevel procedures where pseudarthrosis rates are significant. We aimed to evaluate the efficacy of a novel elastically deformable, continuously load-sharing anterior cervical spinal plate for promotion of bone formation and interbody fusion relative to a translationally dynamic plate. An in vivo animal model was used to evaluate the effects of an elastically deformable spinal plate on bone formation and spine fusion. Fourteen goats underwent an ACDF and received either a translationally dynamic or elastically deformable plate. Animals were followed up until 18 weeks and were evaluated by plain x-ray, computed tomography scan, and undecalcified histology to evaluate the rate and quality of bone formation and interbody fusion. Animals treated with the elastically deformable plate demonstrated statistically significantly superior early bone formation relative to the translationally dynamic plate. Trends in the data from 8 to 18 weeks postoperatively suggest that the elastically deformable implant enhanced bony bridging and fusion, but these enhancements were not statistically significant. Load-sharing through elastic micro-motion accelerates bone formation in the challenging goat ACDF model. The elastically deformable implant used in this study may promote early bony bridging and increased rates of fusion, but future studies will be necessary to comprehensively characterize the advantages of load-sharing through micro-motion. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Contribution of Twinning to Low Strain Deformation in a Mg Alloy
NASA Astrophysics Data System (ADS)
Barnett, Matthew R.; Ghaderi, Alireza; Robson, Joseph D.
2014-07-01
Deformation twinning plays an important role in the yielding of extruded magnesium alloys, especially when loaded in compression along the extrusion axis. The magnitude of this contribution is not accurately known. The present study employs electron backscatter diffraction to reveal the influence of grain orientation on twin-volume fraction for alloy AZ31 tested in compression to strains between 0.008 and 0.015. For these strains, it is seen that approximately 45 pct of the deformation can be attributed to "tensile" twinning. The variation of twin-volume fraction over different orientation classes correlates closely with the maximum Schmid factors for both tensile twinning and basal slip. These effects are readily explained quantitatively using a mean field crystal plasticity model without recourse to stochastic effects. Encouraged by this, we introduce an analytical approximation based on the uniformity of (axial) work.
Sun, Yazhen; Fang, Chenze; Wang, Jinchang; Yuan, Xuezhong; Fan, Dong
2018-05-03
Laboratory predictions for the fatigue life of an asphalt mixture under cyclic loading based on the plateau value (PV) of the permanent deformation ratio (PDR) were carried out by three-point bending fatigue tests. The influence of test conditions on the recovery ratio of elastic deformation (RRED), the permanent deformation (PD) and PDR, and the trends of RRED, PD, and PDR were studied. The damage variable was defined by using PDR, and the relation of the fatigue life to PDR was determined by analyzing the damage evolution process. The fatigue equation was established based on the PV of PDR and the fatigue life was predicted by analyzing the relation of the fatigue life to the PV. The results show that the RRED decreases with the increase of the number of loading cycles, and the elastic recovery ability of the asphalt mixture gradually decreases. The two mathematical models proposed are based on the change laws of the RRED, and the PD can well describe the change laws. The RRED or the PD cannot well predict the fatigue life because they do not change monotonously with the fatigue life, and one part of the deformation causes the damage and the other part causes the viscoelastic deformation. The fatigue life decreases with the increase of the PDR. The average PDR in the second stage is taken as the PV, and the fatigue life decreases in a power law with the increase of the PV. The average relative error of the fatigue life predicted by the fatigue equation to the test fatigue life is 5.77%. The fatigue equation based on PV can well predict the fatigue life.
Karimi, Mohammad Taghi; Mohammadi, Ali; Ebrahimi, Mohammad Hossein; McGarry, Anthony
2017-02-01
The femoral head in subjects with leg calve perthes disease (LCPD) is generally considerably deformed. It is debatable whether this deformation is due to an increase in applied loads, a decrease in bone mineral density or a change in containment of articular surfaces. The aim of this study was to determine the influence of these factors on deformation of the femoral head. Two subjects with LCPD participated in this study. Subject motion and the forces applied on the affected leg were recorded using a motion analysis system (Qualsis TM ) and a Kistler force plate. OpenSim software was used to determine joint contact force of the hip joint whilst walking with and without a Scottish Rite orthosis. 3D Models of hip joints of both subjects were produced by Mimics software. The deformation of femoral bone was determined by Abaqus. Mean values of the force applied on the leg increased while walking with the orthosis. There was no difference between bone mineral density (BMD) of the femoral bone of normal and LCPD sides (p-value>0.05) and no difference between hip joint contact force of normal and LCPD sides. Hip joint containment appeared to decrease follow the use of the orthosis. It can be concluded that the deformation of femoral head in LCPD may not be due to change in BMD or applied load. Although the Scottish Rite orthosis is used mostly to increase hip joint containment, it appears to reduce hip joint contact area. It is recommended that a similar study is conducted using a higher number of subjects. Copyright © 2016 IPEM. All rights reserved.
Plastic Deformation of Magnesium Alloy Subjected to Compression-First Cyclic Loading
NASA Astrophysics Data System (ADS)
Lee, Soo Yeol; Gharghouri, Michael A.; Root, John H.
In-situ neutron diffraction has been employed to study the deformation mechanisms in a precipitation-hardened and extruded Mg-8.5wt.% Al alloy subjected to compression followed by reverse tension. The starting texture is such that the basal poles of most grains are oriented normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis. Diffraction peak intensities for several grain orientations monitored in-situ during deformation show that deformation twinning plays an important role in the elastic-plastic transition and subsequent plastic deformation behavior. Significant non-linear behavior is observed during unloading after compression and appears to be due to detwinning. This effect is much stronger after compressive loading than after tensile loading.
NASA Astrophysics Data System (ADS)
Medghalchi, Setareh; Jamebozorgi, Vahid; Bala Krishnan, Arjun; Vincent, Smobin; Salomon, Steffen; Basir Parsa, Alireza; Pfetzing, Janine; Kostka, Aleksander; Li, Yujiao; Eggeler, Gunther; Li, Tong
2018-05-01
The dependence of the microstructure on the degree of deformation in near-surface regions of a 16MnCr5 gear wheel after 2.1 × 106 loading cycles has been investigated by x-ray diffraction analysis, transmission electron microscopy, and atom probe tomography. Retained austenite and large martensite plates, along with elongated lamella-like cementite, were present in a less deformed region. Comparatively, the heavily deformed region consisted of a nanocrystalline structure with carbon segregation up to 2 at.% at grain boundaries. Spheroid-shaped cementite, formed at the grain boundaries and triple junctions of the nanosized grains, was enriched with Cr and Mn but depleted with Si. Such partitioning of Cr, Mn, and Si was not observed in the elongated cementite formed in the less deformed zone. This implies that rolling contact loading induced severe plastic deformation as well as a pronounced annealing effect in the active contact region of the toothed gear during cyclic loading.
Ouweltjes, W; Gussekloo, S W S; Spoor, C W; van Leeuwen, J L
2016-02-01
Claw and locomotion problems are widespread in ungulates. Although it is presumed that mechanical overload is an important contributor to claw tissue damage and impaired locomotion, deformation and claw injury as a result of mechanical loading has been poorly quantified and, as a result, practical solutions to reduce such lesions have been established mostly through trial and error. In this study, an experimental technique was developed that allowed the measurement under controlled loading regimes of minute deformations in the lower limbs of dissected specimens from large ungulates. Roentgen stereophotogrammetric analysis (RSA) was applied to obtain 3D marker coordinates with an accuracy of up to 0.1 mm with optimal contrast and to determine changes in the spatial conformation. A force plate was used to record the applied forces in three dimensions. The results obtained for a test sample (cattle hind leg) under three loading conditions showed that small load-induced deformations and translations as well as small changes in centres of force application could be measured. Accuracy of the order of 0.2-0.3 mm was feasible under practical circumstances with suboptimal contrast. These quantifications of claw deformation during loading improve understanding of the spatial strain distribution as a result of external loading and the risks of tissue overload. The method promises to be useful in determining load-deformation relationships for a wide variety of specimens and circumstances. Copyright © 2015 Elsevier Ltd. All rights reserved.
Investigation of Deformation Dynamics in a Wrought Magnesium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Qiao, Hua; An, Ke
2014-11-01
In the present research, the deformation dynamics and the effect of the deformation history on plastic deformation in a wrought magnesium alloy have been studied using real-time in-situ neutron diffraction measurements under a continuous loading condition and elastic-viscoplastic self-consistent (EVPSC) polycrystal modeling. The experimental results reveal that the pre-deformation delayed the activation of the tensile twinning during subsequent compression, mainly resulting from the residual strain. No apparent detwinning occurred during unloading and even in the elastic region during reverse loading. It is believed that the grain rotation played an important role in the elastic region during reverse loading. The EVPSCmore » model, which has been recently updated by implementing the twinning and detwinning model, was employed to characterize the deformation mechanism during the strain-path changes. The simulation result predicts well the experimental observation from the real-time in-situ neutron diffraction measurements. The present study provides a deep insight of the nature of deformation mechanisms in a hexagonal close-packed structured polycrystalline wrought magnesium alloy, which might lead to a new era of deformation-mechanism research.« less
The parameters effect on the structural performance of damaged steel box beam using Taguchi method
NASA Astrophysics Data System (ADS)
El-taly, Boshra A.; Abd El Hameed, Mohamed F.
2018-03-01
In the current study, the influence of notch or opening parameters and the positions of the applied load on the structural performance of steel box beams up to failure was investigated using Finite Element analysis program, ANSYS. The Taguchi-based design of experiments technique was used to plan the current study. The plan included 12 box steel beams; three intact beams, and nine damaged beams (with opening) in the beams web. The numerical studies were conducted under varying the spacing between the two concentrated point loads (location of applied loads), the notch (opening) position, and the ratio between depth and width of the notch with a constant notch area. According to Taguchi analysis, factor X (location of the applied loads) was found the highest contributing parameters for the variation of the ultimate load, vertical deformation, shear stresses, and the compressive normal stresses.
Effects of varying material properties on the load deformation characteristics of heel cushions.
Sun, Pi-Chang; Wei, Hung-Wen; Chen, Chien-Hua; Wu, Chun-Hao; Kao, Hung-Chan; Cheng, Cheng-Kung
2008-07-01
Various insole materials were used in attenuation of heel-strike impact. This study presented a compression test to investigate the deformation characteristics of common heel cushions. There were two materials (thermoplastic elastomer "TPE" and silicone) with three hardness and six thickness being analyzed. They underwent consecutive loading-unloading cycles with a load control mode. The displacement of material thickness was recorded during cyclic compression being applied and released from 0 to 1050 N. The energy input, return and dissipation were evaluated based on the load deformation curves when new and after repeated compression. The TPE recovered more deformed energy and thickness than the silicone after the first loading cycle. The silicone would preserve more strain energy with increasing its hardness for the elastic recovery in the unloading process. The deformed energy was decreased as the original thickness did not completely recover under cyclic tests. The reduction in hysteresis area was gradually converged within 20 cycles. The silicone attenuated more impact energy in the initial cycles, but its energy dissipation was reduced after repeated loading. To increase hardness or thickness should be considered to improve resilience or accommodate persistent compression without flattening. The careful selection of cushion materials is imperative to meet individual functional demands.
The impact of shape memory test on degradation profile of a bioresorbable polymer.
Musioł, Marta; Jurczyk, Sebastian; Kwiecień, Michał; Smola-Dmochowska, Anna; Domański, Marian; Janeczek, Henryk; Włodarczyk, Jakub; Klim, Magdalena; Rydz, Joanna; Kawalec, Michał; Sobota, Michał
2018-05-01
The semicrystalline poly(L-lactide) (PLLA) belongs to the materials with shape memory effect (SME) and as a bioresorbable and biocompatible polymer it have found many applications in medical and pharmaceutical field. Assessment of the SME impact on the polymer degradation profile plays crucial role in applications such as drug release systems or in regenerative medicine. Herein, the results of in vitro degradation studies of PLLA samples after SME full test cycle are presented. The samples were loaded and deformed in two manners: progressive and non-progressive. The performed experiments illustrate also influence of the material mechanical damages, caused e.g. during incorrect implantation of PLLA product, on hydrolytic degradation profile. Apparently, degradation profiles are significantly different for the material which was not subjected to the deformation and the deformed ones. The materials after deformation of 50% (in SME cycle) was characterized by non-reversible morphology changes. The effect was observed in deformed samples during the SME test which were carried out ten times. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Syrunin, M. A.; Fedorenko, A. G.
2006-08-01
We have shown experimentally that, for cylindrical shells made of oriented fiberglass platic and basalt plastic there exists a critical level of deformations, at which a structure sustains a given number of explosions from the inside. The magnitude of critical deformation for cylindrical fiberglass shells depends linearly on the logarithm of the number of loads that cause failure. For a given type of fiberglass, there is a limiting level of explosive action, at which the number of loads that do not lead to failure can be sufficiently large (more than ˜ 102). This level is attained under loads, which are an order of magnitude lower than the limiting loads under a single explosive action. Basalt plastic shells can be repeatedly used even at the loads, which cause deformation by ˜ 30-50% lower than the safe value ˜ 3.3.5% at single loading.
Design of an Orthodontic Torque Simulator for Measurement of Bracket Deformation
NASA Astrophysics Data System (ADS)
Melenka, G. W.; Nobes, D. S.; Major, P. W.; Carey, J. P.
2013-12-01
The design and testing of an orthodontic torque simulator that reproduces the effect of archwire rotation on orthodontic brackets is described. This unique device is capable of simultaneously measuring the deformation and loads applied to an orthodontic bracket due to archwire rotation. Archwire rotation is used by orthodontists to correct the inclination of teeth within the mouth. This orthodontic torque simulator will provide knowledge of the deformation and loads applied to orthodontic bracket that will aide clinicians by describing the effect of archwire rotation on brackets. This will also impact that design on new archwirebracket systems by providing an assessment of performance. Deformation of the orthodontic bracket tie wings is measured using a digital image correlation process to measure elastic and plastic deformation. The magnitude of force and moments applied to the bracket though the archwire is also measured using a six-axis load cell. Initial tests have been performed on two orthodontic brackets of varying geometry to demonstrate the measurement capability of the orthodontic torque simulator. The demonstration experiment shows that a Damon Q bracket had a final plastic deformation after a single loading of 0.022 mm while the Speed bracket deformed 0.071 mm. This indicates that the Speed bracket plastically deforms 3.2 times more than the Damon Q bracket for similar magnitude of applied moment. The demonstration experiment demonstrates that bracket geometry affect the deformation of orthodontic brackets and this difference can be detected using the orthodontic torque simulator.
Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.
2016-12-01
We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.
Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.
Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; ...
2015-12-17
Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam
Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less
Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam; ...
2017-11-20
Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less
NASA Astrophysics Data System (ADS)
Wang, Jinxiang; Yang, Rui; Jiang, Li; Wang, Xiaoxu; Zhou, Nan
2013-11-01
Nanocrystalline (NC) copper was fabricated by severe plastic deformation of coarse-grained copper at a high strain rate under explosive loading. The feasibility of grain refinement under different explosive loading and the influence of overall temperature rise on grain refinement under impact compression were studied in this paper. The calculation model for the macroscopic temperature rise was established according to the adiabatic shock compression theory. The calculation model for coarse-grained copper was established by the Voronoi method and the microscopic temperature rise resulted from severe plastic deformation of grains was calculated by ANSYS/ls-dyna finite element software. The results show that it is feasible to fabricate NC copper by explosively dynamic deformation of coarse-grained copper and the average grain size of the NC copper can be controlled between 200˜400 nm. The whole temperature rise would increase with the increasing explosive thickness. Ammonium nitrate fuel oil explosive was adopted and five different thicknesses of the explosive, which are 20 mm, 25 mm, 30 mm, 35 mm, 45 mm, respectively, with the same diameter using 20 mm to the fly plate were adopted. The maximum macro and micro temperature rise is up to 532.4 K, 143.4 K, respectively, which has no great effect on grain refinement due to the whole temperature rise that is lower than grain growth temperature according to the high pressure melting theory.
Ported jacket for use in deformation measurement apparatus
Wagner, L.A.; Senseny, P.E.; Mellegard, K.D.; Olsberg, S.B.
1990-03-06
A device for allowing deformation measurement of a jacketed specimen when the specimen is loaded includes an elastomeric specimen container or jacket surrounding a specimen while the specimen is being loaded by a test apparatus. The specimen jacket wall is compressible, and the wall follows and allows deformation of the specimen. The jacket wall of compressible material is provided with at least one opening and a thin layer or shim of substantially non-compressible (metal) material which covers and seals this opening. An extensometer is then positioned with its specimen engaging contact members engaging the substantially non-compressible material to measure the deformation of the specimen when the specimen is loaded, without compressibility effects of the jacket. 9 figs.
Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation
NASA Astrophysics Data System (ADS)
Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev
2016-04-01
In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.
NASA Astrophysics Data System (ADS)
Sung, Po-Hsien; Wu, Cheng-Da; Fang, Te-Hua
2012-05-01
Single-crystal aluminium nanowires under torsion are studied using molecular dynamics simulations based on the many-body tight-binding potential. The effects of temperature, loading rate and nanowire length are evaluated in terms of atomic trajectories, potential energy, von Mises stress, a centrosymmetry parameter, torque, shear modulus and radial distribution function. Simulation results clearly show that torsional deformation begins at the surface, extends close to the two ends and finally diffuses to the middle part. The critical torsional angle which represents the beginning of plastic deformation varies with different conditions. Before the critical torsional angle is reached, the potential energy and the torque required for the deformation of a nanowire significantly increase with the torsional angle. The critical torsional angle increases with increasing nanowire length and loading rate and decreasing temperature. The torque required for the deformation decreases and the shear modulus increases with increasing nanowire length. For higher temperatures and higher loading rates, torsional buckling more easily occurs at the two ends of a nanowire, whereas it occurs towards the middle part at or below room temperature with lower loading rates. Geometry instability occurs before material instability (buckling) for a long nanowire.
NASA Astrophysics Data System (ADS)
Chang, Mengzhou; Wang, Zhenqing; Tong, Liyong; Liang, Wenyan
2017-03-01
Dielectric polymers show complex mechanical behaviors with different boundary conditions, geometry size and pre-stress. A viscoelastic model suitable for inhomogeneous deformation is presented integrating the Kelvin-Voigt model in a new form in this work. For different types of uniaxial tensile test loading along the length direction of sample, single-step-relaxation tests, loading-unloading tests and tensile-creep-relaxation tests the improved model provides a quite favorable comparison with the experiment results. Moreover, The mechanical properties of test sample with several length-width ratios under different boundary conditions are also invested. The influences of the different boundary conditions are calculated with a stress applied on the boundary point and the result show that the fixed boundary will increase the stress compare with homogeneous deformation. In modeling the effect of pre-stress in the shear test, three pre-stressed mode are discussed. The model validation on the general mechanical behavior shows excellent predictive capability.
Deformability of shredded tires
DOT National Transportation Integrated Search
1999-01-01
This report describes three separate studies that examine the deformability of shredded tire fill material. The first study determined the response of shredded tires to cyclic loading. These tests were conducted in a load frame on both constrained an...
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
Strength resistance of reinforced concrete elements of high-rise buildings under dynamic loads
NASA Astrophysics Data System (ADS)
Berlinov, Mikhail
2018-03-01
A new method for calculating reinforced concrete constructions of high-rise buildings under dynamic loads from wind, seismic, transport and equipment based on the initial assumptions of the modern phenomenological theory of a nonlinearly deformable elastic-creeping body is proposed. In the article examined the influence of reinforcement on the work of concrete in the conditions of triaxial stress-strain state, based on the compatibility of the deformation of concrete and reinforcement. Mathematical phenomenological equations have been obtained that make it possible to calculate the reinforced concrete elements working without and with cracks. A method for linearizing of these equations based on integral estimates is proposed, which provides the fixation of the vibro-creep processes in the considered period of time. Application of such a technique using the finite-difference method, step method and successive approximations will allow to find a numerical solution of the problem. Such an approach in the design of reinforced concrete constructions will allow not only more fully to take into account the real conditions of their work, revealing additional reserves of load capacity, but also to open additional opportunities for analysis and forecasting their functioning at various stages of operation.
Micro-macro correlations and anisotropy in granular assemblies under uniaxial loading and unloading.
Imole, Olukayode I; Wojtkowski, Mateusz; Magnanimo, Vanessa; Luding, Stefan
2014-04-01
The influence of contact friction on the behavior of dense, polydisperse granular assemblies under uniaxial (oedometric) loading and unloading deformation is studied using discrete element simulations. Even though the uniaxial deformation protocol is one of the "simplest" element tests possible, the evolution of the structural anisotropy necessitates its careful analysis and understanding, since it is the source of interesting and unexpected observations. On the macroscopic, homogenized, continuum scale, the deviatoric stress ratio and the deviatoric fabric, i.e., the microstructure behave in a different fashion during uniaxial loading and unloading. The maximal stress ratio and strain increase with increasing contact friction. In contrast, the deviatoric fabric reaches its maximum at a unique strain level independent of friction, with the maximal value decreasing with friction. For unloading, both stress and fabric respond to unloading strain with a friction-dependent delay but at different strains. On the micro-level, a friction-dependent non-symmetry of the proportion of weak (strong) and sliding (sticking) contacts with respect to the total contacts during loading and unloading is observed. Coupled to this, from the directional probability distribution, the "memory" and history-dependent behavior of granular systems is confirmed. Surprisingly, while a rank-2 tensor is sufficient to describe the evolution of the normal force directions, a sixth order harmonic approximation is necessary to describe the probability distribution of contacts, tangential force, and mobilized friction. We conclude that the simple uniaxial deformation activates microscopic phenomena not only in the active Cartesian directions, but also at intermediate orientations, with the tilt angle being dependent on friction, so that this microstructural features cause the interesting, nontrivial macroscopic behavior.
Effects of Sediment Loading in Northern Europe During the Last Glacial
NASA Astrophysics Data System (ADS)
van der Wal, W.; IJpelaar, M.
2014-12-01
Over the years the framework of GIA modelling has been subject to continuous improvements, e.g. the addition of time dependent coastal margins and rotational feedback. The latest addition to this framework is the incorporation of sediment as a time-varying surface load while accounting for sea-level variations associated with the sediment transport (Dalca et al., GJI 2013). The effects of sediment loading during a glacial cycle have not been extensively investigated even though it is known that large sediment transport took place, for example in the Barents Sea region and Fennoscandia. This study investigates the effect of sediment transport on relative sea level change and present-day rates of gravity and vertical deformation in those regions. While the ice sheet history during the last glacial period has been modelled extensively there are no full-scale models of paleo-erosion and -deposition rates for regions such as Fennoscandia. Here we create end-member paleo-sedimentary models by combining geological observations of continuous erosion and deposition and large scale failure events. These models, in combination with the ICE-5G ice sheet history, serve as an input for a GIA model for a spherically symmetric incompressible Earth with the full sea-level equation. The results from this model, i.e. (rates of) relative sea level change and crustal deformation, are obtained for different viscosity models fitting best with the local rheology of Fennoscandia. By comparing GPS measurements, GRACE observations and relative sea level records with these modelled predictions the effects of sedimentary isostasy in the Fennoscandian region are studied. The sediment load does not significantly affect the modelled relative sea level curves, nor vertical deformation rates at the location of GPS measurements. However, gravity rates over the Barents Sea region are influenced significantly
Tribological Behavior of Mg97Zn1Y2 Alloy at Elevated Temperatures of 50-200 °C
NASA Astrophysics Data System (ADS)
An, J.; Feng, J. H.; Yan, X. H.; Li, R. G.
2017-10-01
The tribological behavior of Mg97Zn1Y2 alloy was investigated using a pin-on-disk wear machine at wear temperatures of 50-200 °C. Morphologies and chemical compositions of worn surfaces were analyzed using scanning electron microscope and energy-dispersive x-ray spectrometer. The microstructural evolution and hardness change in subsurfaces were examined by optical microscopy and hardness tester. The results showed that the wear temperature had significant influence on the coefficient of friction and wear rate. At wear temperatures of 50-200 °C, with increasing applied load, the coefficient of friction went down rapidly then turned to decrease slowly in the mild wear regime, and continuously decreased modestly until the largest applied load in the severe wear regime. Increasing wear temperature from 50 to 200 °C decreased the mild to severe wear transition load linearly from 120 to 60 N. In the mild wear regime, the main wear mechanisms were identified as abrasion + oxidation and delamination + surface oxidation at 50-150 °C, and delamination at 200 °C, while in the severe wear regime, the main wear mechanisms were identified as severe plastic deformation + spallation of oxide layer and surface melting at 50-150 °C, and severe plastic deformation and surface melting at 200 °C. The microstructural transformation from the deformed to the dynamically recrystallized (DRX), and hardness change from the strain hardening to softening were found in the subsurfaces before and after mild to severe transition. The DRX softening mechanism was determined for mild to severe wear transition at 50-200 °C. A wear transition map was constructed for Mg97Zn1Y2 alloy on applied load versus wear temperature.
NASA Astrophysics Data System (ADS)
Biermann, Horst; Glage, Alexander; Droste, Matthias
2016-01-01
Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.
Buckling of Carbon Nanotubes: A State of the Art Review
Shima, Hiroyuki
2011-01-01
The nonlinear mechanical response of carbon nanotubes, referred to as their “buckling" behavior, is a major topic in the nanotube research community. Buckling means a deformation process in which a large strain beyond a threshold causes an abrupt change in the strain energy vs. deformation profile. Thus far, much effort has been devoted to analysis of the buckling of nanotubes under various loading conditions: compression, bending, torsion, and their certain combinations. Such extensive studies have been motivated by (i) the structural resilience of nanotubes against buckling and (ii) the substantial influence of buckling on their physical properties. In this contribution, I review the dramatic progress in nanotube buckling research during the past few years. PMID:28817032
Schulze, Christoph; Lindner, Tobias; Woitge, Sandra; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer
2013-01-01
The wearing of personal equipment can cause specific changes in muscle activity and posture. In the present study, we investigated the influence of differences in equipment related weight loading and load distribution on plantar pressure. In addition, we studied functional effects of wearing different equipment with a particular focus on relevant changes in foot shape. Static and dynamic pedobarography were performed on 31 male soldiers carrying increasing weights consisting of different items of equipment. The pressure acting on the plantar surface of the foot increased with higher loading, both under static and dynamic conditions (p < 0.05). We observed an increase in the contact area (p < 0.05) and an influence of load distribution through different ways to carry the rifle. The wearing of heavier weights leads to an increase in plantar pressure and contact area. This may be caused by flattening of the transverse and longitudinal arches. The effects are more evident in subjects with flat feet deformities which seem to flatten at an earlier load condition with a greater amount compared to subjects with normal arches. Improving load distribution should be a main goal in the development of military equipment in order to prevent injuries or functional disorders of the lower extremity.
Measurement of early age shrinkage of Virginia concrete mixtures.
DOT National Transportation Integrated Search
2008-01-01
Concrete volume changes throughout its service life. The total in-service volume change is the resultant of applied loads and shrinkage. When loaded, concrete undergoes an instantaneous elastic deformation and a slow inelastic deformation called cree...
NASA Astrophysics Data System (ADS)
Dekiff, Markus; Kemper, Björn; Kröger, Elke; Denz, Cornelia; Dirksen, Dieter
2017-03-01
The mechanical loading of dental restorations and hard tissue is often investigated numerically. For validation and optimization of such simulations, comparisons with measured deformations are essential. We combine digital holographic interferometry and digital speckle photography for the determination of microscopic deformations with a photogrammetric method that is based on digital image correlation of a projected laser speckle pattern. This multimodal workstation allows the simultaneous acquisition of the specimen's macroscopic 3D shape and thus a quantitative comparison of measured deformations with simulation data. In order to demonstrate the feasibility of our system, two applications are presented: the quantitative determination of (1) the deformation of a mandible model due to mechanical loading of an inserted dental implant and of (2) the deformation of a (dental) bridge model under mechanical loading. The results were compared with data from finite element analyses of the investigated applications. The experimental results showed close agreement with those of the simulations.
NASA Astrophysics Data System (ADS)
Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.
2016-10-01
This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.
NASA Astrophysics Data System (ADS)
Komori, Masaharu; Kubo, Aizoh; Suzuki, Yoshitomo
The alignment condition of automotive gears changes considerably during operation due to the deformation of shafts, bearings, and gear box by transmission of load. Under such conditions, the gears are required to satisfy not only reliability in strength and durability under maximum loading conditions, but also low vibrational characteristics under light loading conditions during the cruising of a car. In this report, the characteristics of the optimum tooth flank form of gears in terms of both vibration and load carrying capacity are clarified. The local optimum tooth flank form appears in each excitation valley, where the vibrational excitation is low and the actual contact ratio takes a specific value. The influence of the choice of different local optimum solutions on the vibrational performance of the optimized gears is investigated. The practical design algorithm for the optimum tooth flank form of a gear set in terms of both vibration and load carrying capacity is then proposed and its result is evaluated by field experience.
In situ investigation of deformation mechanisms in magnesium-based metal matrix composites
NASA Astrophysics Data System (ADS)
Farkas, Gergely; Choe, Heeman; Máthis, Kristián; Száraz, Zoltán; Noh, Yoonsook; Trojanová, Zuzanka; Minárik, Peter
2015-07-01
We studied the effect of short fibers on the mechanical properties of a magnesium alloy. In particular, deformation mechanisms in a Mg-Al-Sr alloy reinforced with short alumina fibers were studied in situ using neutron diffraction and acoustic emission methods. The fibers' plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. Furthermore, the twinning activity was much more significant in samples with parallel fiber plane orientation, which was confirmed by both acoustic emission and electron backscattering diffraction results. Neutron diffraction was also used to assist in analyzing the acoustic emission and electron backscattering diffraction results. The simultaneous application of the two in situ methods, neutron diffraction and acoustic emission, was found to be beneficial for obtaining complementary datasets about the twinning and dislocation slip in the magnesium alloys and composites used in this study.
Drop test analysis of fuselage section of R80 commuter aircraft by using finite element method
NASA Astrophysics Data System (ADS)
Anggono, Agus Dwi; Ardianto, Adik Nofa Rochma Wahyu
2017-04-01
In commercial aerospace development, feasibility accidents design or crashworthiness is a major concern in aviation safety. Fuselage structure plays an important role in absorbing energy during an accident. The research aims are to determine drop test phenomenon on the fuselage, to investigate deformation occurred in the structure of the fuselage, and to know the influence of the airframe falls position to the stress strain which occurred in the structure of the fuselage. This research was conducted by varying the fall angle of the fuselage in a vertical position or 0° and 15°. Fuselage design was modeled by using SolidWorks. Then the model is imported to the Abaqus for drop test simulation. From the simulation results, it can be obtained the phenomenon of deformation on the structure of the fuselage when it comes in contact with the rigid ground. The high deformation occurs shows the structure capabilities in order to absorb the impact. It could be happened because the deformation is influenced by internal energy and strain energy. The various positions shows the structure capability in order to withstand impact loads during periods of 4-8 seconds and the maximum deformation was reached in 12 seconds. The experiment on the vertical position and the position falls of 15° angle was delivered the highest stress strain. The stress was 483 MPa in struts section, 400.78 MPa in skin section, 358.28 MPa in the floor and 483 MPa in the cargo frame section.
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-01
This report describes engineering studies that were conducted to examine the deformation behavior of flat, welded steel sandwich panels under two quasi-static loading conditions: (1) uniaxial compression; and (2) bending with an indenter. Testing and...
Analysis of kidney-shaped indentation cracks in 4Y-PSZ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pajares, A.; Guiberteau, F.; Cumbrera, F.L.
1996-11-01
Vickers indentation cracks in zirconia containing ceramics very often exhibit two non-connected mirror symmetric branches with kidney-shaped morphology. Kidney cracks, generated with different indentation loads (98--490 N) in 4 mol.% yttria-partially-stabilized-zirconia (4Y-PSZ), are described and analyzed by proposing a model which combines the observed geometrical features with residual stress considerations. The crack shape is affected by a radial decreasing hydrostatic stress field originating in the plastic deformation zone underneath the impression and with its center at a certain depth from the surface. The hydrostatic stresses modify the generally assumed point force residual stress field. The model provides a self-similar descriptionmore » of the residual stress intensity factor for kidney cracks from different indentation loads. Furthermore, the experimental observation that one single half-penny crack rather than the two kidney cracks forms at higher indentation loads is explained by the model. For 4Y-PSZ a reasonably good agreement between the theoretically calculated and the experimentally observed critical transition load from kidney to half-penny geometry, P*, is obtained. The transition load varies with toughness, K{sub R} and hardness, H, according to P* {approximately} K{sub R}{sup 4}/H{sup 3}, indicating the relative influence of deformation and fracture characteristics on crack morphology. It must be concluded that the kidney-shaped contour is the dominant geometry of elastic/plastic contact cracks in tough zirconia-containing ceramics.« less
Impact and damage of an armor composite
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Parry, S.; Bourne, N. K.; Townsend, D.; James, B. J.
2015-06-01
The use of carbon fiber composites under shock and impact loading in aerospace, defense and automotive applications is increasingly important. Therefore prediction of the composite behavior and damage in these conditions is critical. Influence of anisotropy, fiber orientation and the rate of loading during the impact is considered in the present study and validated by comparison with experiments. The experiments deal with the plane, ballistic and Taylor impacts accompanied by high-speed photography observations and tomography of recovered samples. The CTH hydrocode is employed as the modeling platform with an advanced rate sensitive material model used for description of the deformation and damage of the transversely isotropic composite material.
NASA Astrophysics Data System (ADS)
Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong
2018-02-01
In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.
Mathematical model of rolling an elastic wheel over deformable support base
NASA Astrophysics Data System (ADS)
Volskaia, V. N.; Zhileykin, M. M.; Zakharov, A. Y.
2018-02-01
One of the main direction of economic growth in Russia remains to be a speedy development of north and northeast regions that are the constituents of the 60 percent of the country territory. The further development of these territories requires new methods and technologies for solving transport and technological problems when off-road transportation of cargoes and people is conducting. One of the fundamental methods of patency prediction is imitation modeling of wheeled vehicles movement in different operating conditions. Both deformable properties of tires and physical and mechanical properties of the ground: normal tire deflection and gauge depth; variation of contact patch area depending on the load and pressure of air in the tire; existence of hysteresis losses in the tire material which are influencing on the rolling resistance due to friction processes between tire and ground in the contact patch; existence of the tangential reaction from the ground by entire contact area influence on the tractive patency. Nowadays there are two main trends in theoretical research of interaction wheeled propulsion device with ground: analytical method involving mathematical description of explored process and finite element method based on computational modeling. Mathematical models of interaction tire with the ground are used both in processes of interaction individual wheeled propulsion device with ground and researches of mobile vehicle dynamical models operated in specific road and climate conditions. One of the most significant imperfection of these models is the description of interaction wheel with flat deformable support base whereas profile of real support base surface has essential height of unevenness which is commensurate with radius of the wheel. The description of processes taking place in the ground under influence of the wheeled propulsion device using the finite element method is relatively new but most applicable lately. The application of this method allows to provide the most accurate description of the interaction process of a wheeled propulsion devices and the ground, also this method allows to define tension in the ground, deformation of the ground and the tire and ground’s compression. However, the high laboriousness of computations is essential shortcoming of that method therefore it’s hard to use these models as part of the general motion model of multi-axis wheeled vehicles. The purpose of this research is the elaboration of mathematical model of elastic wheel rolling over deformable rough support base taking into account the contact patch deformation. The mathematical model of rectilinear rolling an elastic wheel over rough deformable support base, taking into account variation of contact patch area and variation in the direction of the radial and tangential reactions also load bearing capacity of the ground, is developed. The efficiency of developed mathematical model of rectilinear rolling an elastic wheel over rough deformable support base is proved by the simulation methods.
NASA Astrophysics Data System (ADS)
Liu, Jing; Shao, Yimin
2017-06-01
Rotor bearing systems (RBSs) play a very valuable role for wind turbine gearboxes, aero-engines, high speed spindles, and other rotational machinery. An in-depth understanding of vibrations of the RBSs is very useful for condition monitoring and diagnosis applications of these machines. A new twelve-degree-of-freedom dynamic model for rigid RBSs with a localized defect (LOD) is proposed. This model can formulate the housing support stiffness, interfacial frictional moments including load dependent and load independent components, time-varying displacement excitation caused by a LOD, additional deformations at the sharp edges of the LOD, and lubricating oil film. The time-varying displacement model is determined by a half-sine function. A new method for calculating the additional deformations at the sharp edges of the LOD is analytical derived based on an elastic quarter-space method presented in the literature. The proposed dynamic model is utilized to analyze the influences of the housing support stiffness and LOD sizes on the vibration characteristics of the rigid RBS, which cannot be predicted by the previous dynamic models in the literature. The results show that the presented method can give a new dynamic modeling method for vibration formulation for a rigid RBS with and without the LOD on the races.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economy, David Ross; Mara, Nathan A.; Schoeppner, R.
In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less
Skin, Stringer, and Fastener Loads in Buckled Fuselage Panels
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
The results of a numerical study to assess the effect of skin buckling on the internal load distribution in a stiffened fuselage panel, with and without longitudinal cracks, are presented. In addition, the impact of changes in the internal loads on the fatigue life and residual strength of a fuselage panel is assessed. A generic narrow-body fuselage panel is considered. The entire panel is modeled using shell elements and considerable detail is included to represent the geometric-nonlinear response of the buckled skin, cross section deformation of the stiffening components, and details of the skin-string attachment with discrete fasteners. Results are presented for a fixed internal pressure and various combinations of axial tension or compression loads. Results illustrating the effect of skin buckling on the stress distribution in the skin and stringer, and fastener loads are presented. Results are presented for the pristine structure, and for cases where damage is introduced in the form of a longitudinal crack adjacent to the stringer, or failed fastener elements. The results indicate that axial compression loads and skin buckling can have a significant effect on the circumferential stress in the skin, and fastener loads, which will influence damage initiation, and a comparable effect on stress intensity factors for cases with cracks. The effects on stress intensity factors will influence damage propagation rates and the residual strength of the panel.
Kurutz, M; Oroszváry, L
2010-02-10
3D finite element models of human lumbar functional spinal units (FSU) were used for numerical analysis of weightbath hydrotraction therapy (WHT) applied for treating degenerative diseases of the lumbar spine. Five grades of age-related degeneration were modeled by material properties. Tensile material parameters of discs were obtained by parameter identification based on in vivo measured elongations of lumbar segments during regular WHT, compressive material constants were obtained from the literature. It has been proved numerically that young adults of 40-45 years have the most deformable and vulnerable discs, while the stability of segments increases with further aging. The reasons were found by analyzing the separated contrasting effects of decreasing incompressibility and increasing hardening of nucleus, yielding non-monotonous functions of stresses and deformations in terms of aging and degeneration. WHT consists of indirect and direct traction phases. Discs show a bilinear material behaviour with higher resistance in indirect and smaller in direct traction phase. Consequently, although the direct traction load is only 6% of the indirect one, direct traction deformations are 15-90% of the indirect ones, depending on the grade of degeneration. Moreover, the ratio of direct stress relaxation remains equally about 6-8% only. Consequently, direct traction controlled by extra lead weights influences mostly the deformations being responsible for the nerve release; while the stress relaxation is influenced mainly by the indirect traction load coming from the removal of the compressive body weight and muscle forces in the water. A mildly degenerated disc in WHT shows 0.15mm direct, 0.45mm indirect and 0.6mm total extension; 0.2mm direct, 0.6mm indirect and 0.8mm total posterior contraction. A severely degenerated disc exhibits 0.05mm direct, 0.05mm indirect and 0.1mm total extension; 0.05mm direct, 0.25mm indirect and 0.3mm total posterior contraction. These deformations are related to the instant elastic phase of WHT that are doubled during the creep period of the treatment. The beneficial clinical impacts of WHT are still evident even 3 months later. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Manalo, Russel; Tessler, Alexander
2016-01-01
A study was undertaken to investigate the measurement of wing deformation and internal loads using measured strain data. Future aerospace vehicle research depends on the ability to accurately measure the deformation and internal loads during ground testing and in flight. The approach uses the inverse Finite Element Method (iFEM). The iFEM is a robust, computationally efficient method that is well suited for real-time measurement of real-time structural deformation and loads. The method has been validated in previous work, but has yet to be applied to a large-scale test article. This work is in preparation for an upcoming loads test of a half-span test wing in the Flight Loads Laboratory at the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California). The method has been implemented into an efficient MATLAB® (The MathWorks, Inc., Natick, Massachusetts) code for testing different sensor configurations. This report discusses formulation and implementation along with the preliminary results from a representative aerospace structure. The end goal is to investigate the modeling and sensor placement approach so that the best practices can be applied to future aerospace projects.
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
Deformation behavior of welded steel sandwich panels under quasi-static loading
DOT National Transportation Integrated Search
2011-03-16
This paper summarizes basic research (i.e., testing and analysis) : conducted to examine the deformation behavior of flat-welded : steel sandwich panels under two types of quasi-static loading: : (1) uniaxial compression; and (2) bending through an i...
Kagan, Daniel; Benchimol, Michael J.; Claussen, Jonathan C.; Chuluun-Erdene, Erdembileg
2012-01-01
Acoustic droplet vaporization of perfluorocarbon-loaded microbullets triggered by an ultrasound pulse provides the necessary force to penetrate, cleave, and deform cellular tissue for potential targeted drug delivery and precision nanosurgery. PMID:22692791
NASA Astrophysics Data System (ADS)
Kuo, S. T.; Kitamura, M.; Kitajima, H.
2016-12-01
Mechanical properties and microstructural characteristics of accretionary prism sediments can provide detailed deformation history and processes in subduction zones. The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 has extended the deep riser hole down to 3058.5 meters below sea floor (mbsf) to the inner accretionary wedge at Site C0002 located 35 km landward from the trench. Here, we conducted deformation experiments on the core samples recovered from 2185 msbf at Site C0002 to understand mechanical behaviors and deformation of inner prism sediments. We deformed the siltstone samples with a porosity of 20% at 25°C or 60°C under isotropic loading path (S1=S2=S3) and triaxial compression (S1>S2=S3). In the isotropic loading test, we step-wisely increased confining pressure (Pc) from 11.5 to 194 MPa and kept pore pressure (Pp) at 10 MPa. In a series of triaxial compression loading tests, we first increased Pc to the targeting 42-78 MPa and Pp to 20 MPa, and then applied the differential load at a constant displacement rate of 0.005 μm/s while keeping Pc and Pp constant. We will analyze the microstructures of the experimentally deformed samples to understand deformation mechanism. We define yield points based on slope changes in relationships between volumetric strain and effective mean stress (p') for isotropic loading and those between differential stress (q) and axial strain for triaxial loading. The sample yields at p' of 100 MPa (q = 0 MPa) in isotropic loading test. In triaxial loading, the samples at effective pressure (Pe) of 22, 28, and 58 MPa yield at q = 30 MPa (p' = 32 MPa), q = 30 MPa (p' = 38 MPa) and q = 45 MPa (p' = 73 MPa), respectively. Upon yield, the samples deformed at Pe of 22 MPa and 28 MPa show brittle behavior with a peak q of 50 MPa and 55 MPa followed by strain weakening to reach q of 36 and 46 MPa at steady state. Both samples show single fracture planes with angles of 30° to S1. On the other hand, the sample at Pe of 58 MPa shows strain hardening after the yield and exhibits barreling. In triaxial loading experiments, all samples show an increase in volumetric strain with increasing Pe. Our experiment results at different Pe are consistent with a critical state soil mechanics theory. We will further correlate the microstructural features of the deformed samples with the mechanical data.
Little, J P; Pearcy, M J; Izatt, M T; Boom, K; Labrom, R D; Askin, G N; Adam, C J
2016-02-01
Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+2,+1,-2 relative to the apex, (p<0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method of measuring material properties of rock in the wall of a borehole
Overmier, David K.
1985-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
Method of measuring material properties of rock in the wall of a borehole
Overmier, D.K.
1984-01-01
To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.
NASA Astrophysics Data System (ADS)
Arnold, Luc
1996-03-01
Explicit analytical expressions are derived for the elastic deformation of a thin or thick mirror of uniform thickness and with a central hole. Thin-plate theory is used to derive the general influence function, caused by uniform and/or discrete loads, for a mirror supported by discrete points. No symmetry considerations of the locations of the points constrain the model. An estimate of the effect of the shear forces is added to the previous pure bending model to take into account the effect of the mirror thickness. Two particular cases of general influence are the uniform-load (equivalent to gravity in the case of a thin mirror) influence function for a ring support of k discrete points with k-fold symmetry. The influence of the size of the support pads is studied. A method for optimizing an active mirror cell is presented that couples the minimization of the gravity influence function with the optimization of the combined actuator influence functions to fit low-order aberrations. These low-spatial-frequency aberrations can be of elastic or optical origin. In the latter case they are due, for example, to great residual polishing errors corresponding to the soft polishing specifications relaxed for cost reductions. Results show that the correction range of the active cell can thus be noticeably enlarged, compared with an active cell designed as a passive cell, i.e., by minimizing only the deflection under gravitational loading. In the example treated here of the European Southern Observatory's New Technology Telescope I show that the active correction range can be enlarged by approximately 50% in the case of third-order astigmatic correction.
Sequential and simultaneous thermal and particle exposure of tungsten
NASA Astrophysics Data System (ADS)
Steudel, I.; Huber, A.; Kreter, A.; Linke, J.; Sergienko, G.; Unterberg, B.; Wirtz, M.
2016-02-01
The broad array of expected loading conditions in a fusion reactor such as ITER necessitates high requirements on the plasma facing materials (PFMs). Tungsten, the PFM for the divertor region, the most affected part of the in-vessel components, must thus sustain severe, distinct exposure conditions. Accordingly, comprehensive experiments investigating sequential and simultaneous thermal and particle loads were performed on double forged pure tungsten, not only to investigate whether the thermal and particle loads cause damage but also if the sequence of exposure maintains an influence. The exposed specimens showed various kinds of damage such as roughening, blistering, and cracking at a base temperature where tungsten could be ductile enough to compensate the induced stresses exclusively by plastic deformation (Pintsuk et al 2011 J. Nucl. Mater. 417 481-6). It was found out that hydrogen has an adverse effect on the material performance and the loading sequence on the surface modification.
Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation
NASA Astrophysics Data System (ADS)
Tikhonchev, M. Yu.; Svetukhin, V. V.
2017-05-01
The primary radiation damage of a binary FeCr alloy deformed by applied mechanical loading is studied by an atomistic molecular dynamics simulation. Loading is simulated by specifying an applied pressure of 0.25, 1.0, and 2.5 GPa of both signs. Hydrostatic and uniaxial loading is considered along the [001], [111], [112], and [210] directions. The influence of loading on the energy of point defect formation and the threshold atomic displacement energy in single-component bcc iron is investigated. The 10-keV atomic displacement cascades in a "random" binary Fe-9 at % Cr alloy are simulated at an initial temperature of 300 K. The number of the point defects generated in a cascade is estimated, and the clustering of point defects and the spatial orientation of interstitial configurations are analyzed. Our results agree with the results of other researchers and supplement them.
Environmental effects on long term behavior of composite laminates
NASA Astrophysics Data System (ADS)
Singhal, S. N.; Chamis, C. C.
Model equations are presented for approximate methods simulating the long-term behavior of composite materials and structures in hot/humid service environments. These equations allow laminate property upgradings with time, and can account for the effects of service environments on creep response. These methodologies are illustrated for various individual and coupled temperature/moisture, longitudinal/transverse, and composite material type cases. Creep deformation is noted to rise dramatically for cases of matrix-borne, but not of fiber-borne, loading in hot, humid environments; the coupled influence of temperature and moisture is greater than a mere combination of their individual influences.
Environmental effects on long term behavior of composite laminates
NASA Technical Reports Server (NTRS)
Singhal, S. N.; Chamis, C. C.
1992-01-01
Model equations are presented for approximate methods simulating the long-term behavior of composite materials and structures in hot/humid service environments. These equations allow laminate property upgradings with time, and can account for the effects of service environments on creep response. These methodologies are illustrated for various individual and coupled temperature/moisture, longitudinal/transverse, and composite material type cases. Creep deformation is noted to rise dramatically for cases of matrix-borne, but not of fiber-borne, loading in hot, humid environments; the coupled influence of temperature and moisture is greater than a mere combination of their individual influences.
NASA Astrophysics Data System (ADS)
Martens, H. R.; Simons, M.; Moore, A. W.; Owen, S. E.; Rivera, L. A.
2016-12-01
We explore the contributions of oceanic, atmospheric, and hydrologic mass loading to Global Navigation Satellite System (GNSS)-inferred observations of surface displacements in Japan. Surface mass loading (SML) generates mm- to cm-level deformation of the solid Earth on time scales of hours to years, which exceeds the measurement uncertainties of most GNSS position estimates. By improving the efficiency and accuracy of the prediction and empirical estimation of SML response, we aim to reduce the variance of GNSS time series and therefore enhance the ability to resolve subtle tectonic signals, such as aseismic transients associated with subduction zone processes. Using the GIPSY software in precise point positioning mode, we estimate time series of sub-daily receiver positions for the GNSS Earth Observation Network System (GEONET) in Japan. We also model the Earth's elastic deformation response to a variety of surface mass loads, including loads of atmospheric (e.g., ECMWF) and oceanic (e.g., TPXO8-Atlas, ECCO2) origin. We extract periodic signals, such as the ocean tides and seasonal variations in hydrological loading, using harmonic analysis. Deformation caused by non-periodic loads, such as non-tidal oceanic and atmospheric loads, can be predicted and removed to further reduce the variance. We seek to streamline the workflow for estimating SML-induced surface displacements from a variety of sources in order to account for loading signals in routine GNSS data processing, thereby improving the ability to assess the mechanics of plate boundaries.
Large-Strain Transparent Magnetoactive Polymer Nanocomposites
NASA Technical Reports Server (NTRS)
Meador, Michael A.
2012-01-01
A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.
Problems on the Theory of Heat Resistance of Alloys
1960-07-26
same material under real service conditions is conceded; in this case, the shapes and dimensions of the product, the vibrations, the sharp and...as the load duration factor). The introduction of a newly created material some- times proves unsuccessful due to the fact that, though meeting all...structural nonuniformity of real solids on the mechanism of the development of deformation in them and on their mechanical properties*; (d) the influence of
NASA Astrophysics Data System (ADS)
Worth, Brian D.; Jones, J. Wayne; Allison, John E.
1995-11-01
The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.
Cox, P G; Fagan, M J; Rayfield, E J; Jeffery, N
2011-12-01
Rodents are defined by a uniquely specialized dentition and a highly complex arrangement of jaw-closing muscles. Finite element analysis (FEA) is an ideal technique to investigate the biomechanical implications of these specializations, but it is essential to understand fully the degree of influence of the different input parameters of the FE model to have confidence in the model's predictions. This study evaluates the sensitivity of FE models of rodent crania to elastic properties of the materials, loading direction, and the location and orientation of the models' constraints. Three FE models were constructed of squirrel, guinea pig and rat skulls. Each was loaded to simulate biting on the incisors, and the first and the third molars, with the angle of the incisal bite varied over a range of 45°. The Young's moduli of the bone and teeth components were varied between limits defined by findings from our own and previously published tests of material properties. Geometric morphometrics (GMM) was used to analyse the resulting skull deformations. Bone stiffness was found to have the strongest influence on the results in all three rodents, followed by bite position, and then bite angle and muscle orientation. Tooth material properties were shown to have little effect on the deformation of the skull. The effect of bite position varied between species, with the mesiodistal position of the biting tooth being most important in squirrels and guinea pigs, whereas bilateral vs. unilateral biting had the greatest influence in rats. A GMM analysis of isolated incisor deformations showed that, for all rodents, bite angle is the most important parameter, followed by elastic properties of the tooth. The results here elucidate which input parameters are most important when defining the FE models, but also provide interesting glimpses of the biomechanical differences between the three skulls, which will be fully explored in future publications. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
NASA Astrophysics Data System (ADS)
Demler, Eugen; Rodman, Dmytro; Rodman, Mykhailo; Gerstein, Gregory; Grydin, Olexandr; Briukhanov, Arkadiy A.; Klose, Christian; Nürnberger, Florian; Maier, Hans Jürgen
2018-02-01
The process of cyclic bending was investigated using thin sheets of the magnesium alloy AZ31 and α-titanium. These materials possess an hcp crystal lattice with different c/a ratios. It turned out that the latter have a substantial influence on the sheet deformation behavior. Even for small deformations (up to 2% strain), a large influence on the yield stress was present for both materials. In addition, cyclic bending contributes to the activation of prismatic slip, which is accompanied by twinning and detwinning. The changes in sheet anisotropy following cyclic bending were determined using texture measurements. Specifically, the AZ31 alloy sheets exhibited a considerable change in anisotropy of the mechanical properties with an increasing number of bending cycles. The anisotropy in the yield stress increases from 15% in the initial condition to 40% after three cycles. For the α-titanium sheet, the change in anisotropy was approx. 26% less. In general, the largest changes in properties occurred already in the first bending cycle and a stabilization took place upon further cycling.
Simulation Study of Stress and Deformation Behaviour of Debonded Laminated Structure
NASA Astrophysics Data System (ADS)
Hirwani, C. K.; Mittal, H.; Panda, S. K.; Mahapatra, S. S.; Mandal, S. K.; De, A. K.
2017-02-01
The bending strength and deformation characteristics of the debonded laminated plate under the uniformly distributed loading (UDL) have been investigated in this research article. For the simulation study, an internally damaged laminated plate structure model has been developed in ANSYS based on the first-order shear deformable kinematic theory via ANSYS parametric design language (APDL) code. The internal debonding within the laminated structure is incorporated using two sub-laminate approach. Further, the convergence (different mesh densities), as well as the validity (comparing the responses with published results) of the present simulation model, have been performed by solving the deflection responses under the influence of transversely loaded layered structure. Also, to show the coherence of the simulation analysis the results are compared with the experimental bending results of the homemade Glass/Epoxy composite with artificial delamination. For the experimental analysis, Glass/Epoxy laminated composite seeded with delamination at the central mid-plane of the laminate is fabricated using an open mould hand lay-up composites fabrication technique. For the computational purpose, the necessary material properties of fabricated composite plate evaluated experimentally via uniaxial tensile test (Universal Testing Machine INSTRON-1195). Further, the bending (three-point bend test) test is conducted with the help of Universal Testing Machine INSTRON-5967. Finally, the effect different geometrical and material parameters (thickness ratio, modular ratio, constraint conditions) and magnitude of the loading on the static deflection and stress behaviour of the delaminated composite plate are investigated thoroughly by solving different kinds of numerical illustrations and discussed in detail.
Sibole, Scott C.; Erdemir, Ahmet
2012-01-01
Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro-scale model providing application for other multi-scale continuum mechanics problems. PMID:22649535
NASA Astrophysics Data System (ADS)
Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu
2017-12-01
For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.
Dynamic plasticity and failure of high-purity alumina under shock loading.
Chen, M W; McCauley, J W; Dandekar, D P; Bourne, N K
2006-08-01
Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.
Investigation of structural behavior of candidate Space Station structure
NASA Technical Reports Server (NTRS)
Hedgepeth, John M.; Miller, Richard K.
1989-01-01
Quantitative evaluations of the structural loads, stiffness and deflections of an example Space Station truss due to a variety of influences, including manufacturing tolerances, assembly operations, and operational loading are reported. The example truss is a dual-keel design composed of 5-meter-cube modules. The truss is 21 modules high and 9 modules wide, with a transverse beam 15 modules long. One problem of concern is the amount of mismatch which will be expected when the truss is being erected on orbit. Worst-case thermal loading results in less than 0.5 inch of mismatch. The stiffness of the interface is shown to be less than 100 pounds per inch. Thus, only moderate loads will be required to overcome the mismatch. The problem of manufacturing imperfections is analyzed by the Monte Carlo approach. Deformations and internal loads are obtained for ensembles of 100 example trusses. All analyses are performed on a personal computer. The necessary routines required to supplement commercially available programs are described.
GPS Imaging of Time-Dependent Seasonal Strain in Central California
NASA Astrophysics Data System (ADS)
Kraner, M.; Hammond, W. C.; Kreemer, C.; Borsa, A. A.; Blewitt, G.
2016-12-01
Recently, studies are suggesting that crustal deformation can be time-dependent and nontectonic. Continuous global positioning system (cGPS) measurements are now showing how steady long-term deformation can be influenced by factors such as fluctuations in loading and temperature variations. Here we model the seasonal time-dependent dilatational and shear strain in Central California, specifically surrounding the Parkfield region and try to uncover the sources of these deformation patterns. We use 8 years of cGPS data (2008 - 2016) processed by the Nevada Geodetic Laboratory and carefully select the cGPS stations for our analysis based on the vertical position of cGPS time series during the drought period. In building our strain model, we first detrend the selected station time series using a set of velocities from the robust MIDAS trend estimator. This estimation algorithm is a robust approach that is insensitive to common problems such as step discontinuities, outliers, and seasonality. We use these detrended time series to estimate the median cGPS positions for each month of the 8-year period and filter displacement differences between these monthly median positions using a filtering technique called "GPS Imaging." This technique improves the overall robustness and spatial resolution of the input displacements for the strain model. We then model our dilatational and shear strain field for each month of time series. We also test a variety of a priori constraints, which controls the style of faulting within the strain model. Upon examining our strain maps, we find that a seasonal strain signal exists in Central California. We investigate how this signal compares to thermoelastic, hydrologic, and atmospheric loading models during the 8-year period. We additionally determine whether the drought played a role in influencing the seasonal signal.
Viscoelasticity, postseismic slip, fault interactions, and the recurrence of large earthquakes
Michael, A.J.
2005-01-01
The Brownian Passage Time (BPT) model for earthquake recurrence is modified to include transient deformation due to either viscoelasticity or deep post seismic slip. Both of these processes act to increase the rate of loading on the seismogenic fault for some time after a large event. To approximate these effects, a decaying exponential term is added to the BPT model's uniform loading term. The resulting interevent time distributions remain approximately lognormal, but the balance between the level of noise (e.g., unknown fault interactions) and the coefficient of variability of the interevent time distribution changes depending on the shape of the loading function. For a given level of noise in the loading process, transient deformation has the effect of increasing the coefficient of variability of earthquake interevent times. Conversely, the level of noise needed to achieve a given level of variability is reduced when transient deformation is included. Using less noise would then increase the effect of known fault interactions modeled as stress or strain steps because they would be larger with respect to the noise. If we only seek to estimate the shape of the interevent time distribution from observed earthquake occurrences, then the use of a transient deformation model will not dramatically change the results of a probability study because a similar shaped distribution can be achieved with either uniform or transient loading functions. However, if the goal is to estimate earthquake probabilities based on our increasing understanding of the seismogenic process, including earthquake interactions, then including transient deformation is important to obtain accurate results. For example, a loading curve based on the 1906 earthquake, paleoseismic observations of prior events, and observations of recent deformation in the San Francisco Bay region produces a 40% greater variability in earthquake recurrence than a uniform loading model with the same noise level.
NASA Astrophysics Data System (ADS)
Oparin, Viktor; Tsoy, Pavel; Usoltseva, Olga; Semenov, Vladimir
2014-05-01
The aim of this study was to analyze distribution and development of stress-stress state in structured rock specimens subject to uniaxial loading to failure. Specific attention was paid to possible oscillating motion of structural elements of the rock specimens under constraints (pre-set stresses at the boundaries of the specimens) and the kinetic energy fractals. The detailed studies into the micro-level stress-strain state distribution and propagation over acting faces of rock specimens subject to uniaxial loading until failure, using automated digital speckle photography analyzer ALMEC-tv, have shown that: • under uniaxial stiff loading of prismatic sandstone, marble and sylvinite specimens on the Instron-8802 servohydraulic testing machine at the mobile grip displacement rate 0.02-0.2 mm/min, at a certain level of stressing, low-frequency micro-deformation processes originate in the specimens due to slow (quasi-static) force; • the amplitude of that deformation-wave processes greatly depends on the micro-loading stage: — at the elastic deformation stage, under the specimen stress lower than half ultimate strength of the specimen, there are no oscillations of microstrains; —at the nonlinearly elastic deformation stage, under stress varied from 0.5 to 1 ultimate strength of the specimens, the amplitudes of microstrains grow, including the descending stage 3; the oscillation frequency f=0.5-4 Hz; —at the residual strength stage, the amplitudes of the microstrains drop abruptly (3-5 times) as against stages 2 and 3; • in the elements of the scanned specimen surface in the region with the incipient crack, the microstrain rate amplitudes are a few times higher than in the undamged surface region of the same specimen. Sometimes, deformation rate greatly grows with increase in the load. The authors have used the energy scanning function of the deformation-wave processes in processing experimental speckle-photography data on the surface of the test specimen subject to loading until failure.
Global Earth Response to Loading by Ocean Tide Models
NASA Technical Reports Server (NTRS)
Estes, R. H.; Strayer, J. M.
1979-01-01
Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.
NASA Astrophysics Data System (ADS)
Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste
One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.
Deformation Microstructures Near Vickers Indentations in SNO2/SI Coated Systems
NASA Astrophysics Data System (ADS)
Daria, G.; Evghenii, H.; Olga, S.; Zinaida, D.; Iana, M.; Victor, Z.
The micromechanical properties (hardness and brittleness) of the hard-on-hard SnO2 / Si-coated system (CS) and their modification depending the on load value has been studied. A nonmonotonic changing of microhardness with load growth was detected. The brittle/plastic behavior of the rigid/hard-on-hard SnO2 / Si CS and its response to concentrated load action explains it.A specific evolution of the indentation-deformed zone vs. load value attributed to the change in the internal stress redistribution between film and substrate was detected. It results in a brittleness indentation size effect (BISE) of the SnO2 / Si CS revealed in this experiment.It was shown that the greater portion of internal stresses under indentation is concentrated in the coating layer at small loads. This fact causes a strong elastic-plastic relaxation in the film and its delamination from substrate. The increase of brittle failure in the indentation-deformed zone with a decrease of indentation load was revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Bie, B. X.; Li, Q. H.
2017-06-01
In situ synchrotron x-ray imaging and diffraction are used to investigate deformation of a rolled magnesium alloy under uniaxial compression at room and elevated temperatures along two different directions. The loading axis (LA) is either perpendicular or parallel to the normal direction, and these two cases are referred to as LA⊥ and LAk loading, respectively. Multiscale measurements including stressestrain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously. Due to initial texture, f1012g extension twinning is predominant in the LA⊥ loading, while dislocation motion prevails in the LAk loading. With increasing temperature, fewer f1012g extension twins aremore » activated in the LA⊥ samples, giving rise to reduced strain homogenization, while pyramidal slip becomes readily activated, leading to more homogeneous deformation for the LAk loading. The difference in the strain hardening rates is attributed to that in strain field homogenization for these two loading directions« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Hao, Shijie; Yu, Cun
The deformation behavior and load transfer of a dual-phase composite composed of martensite NiTi embedded in brittle Ti{sub 2}Ni matrices were investigated by using in situ synchrotron x-ray diffraction during compression. The composite exhibits a stage-wise deformation feature and a double-yielding phenomenon, which were caused by the interaction between Ti{sub 2}Ni and NiTi with alternative microscopic deformation mechanism. No load transfer occurs from the soft NiTi dendrites to the hard Ti{sub 2}Ni matrices during the pseudoplastic deformation (detwinning) of NiTi, which is significantly different from that previously reported in bulk metallic glasses matrices composites.
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
NASA Astrophysics Data System (ADS)
Arakcheev, A. S.; Skovorodin, D. I.; Burdakov, A. V.; Shoshin, A. A.; Polosatkin, S. V.; Vasilyev, A. A.; Postupaev, V. V.; Vyacheslavov, L. N.; Kasatov, A. A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya
2015-12-01
A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle-ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating-cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Schondel; Henry S. Chu
Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipatemore » energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.« less
Study on the causes and methods of influencing concrete deflection
NASA Astrophysics Data System (ADS)
Zhou, Ying; Zhou, Xiang; Tang, Jinyu
2017-09-01
Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.
Deformation measurements of composite multi-span beam shear specimens by Moire interferometry
NASA Technical Reports Server (NTRS)
Post, D.; Czarnek, R.; Joh, D.; Wood, J.
1984-01-01
Experimental analyses were performed for determination of in plane deformations and shear strains in unidirectional and quasi-isotropic graphite-epoxy beams. Forty-eight ply beams were subjected to 5 point and 3 point flexure. Whole field measurements were recorded at load levels from about 20% to more than 90% of failure loads. Contour maps of U and W displacement fields were obtained by moire interferometry, using reference gratings of 2400 lines/mm. Clearly defined fringes with fringe orders exceeding 1000 were obtained. Whole field contour maps of shear strains were obtained by a method developed for these tests. Various anomalous effects were detected in the displacement fields. Their analysis indicated excess shear strains in resin rich zones in regions of shear tractions; free edge shear strains in quasi-isotropic specimens in regions of normal stresses; and shear stresses associated with cyclic shear compliances of quasi-isotropic plies in regions of shear tractions. Their contributions could occur independently or in superposition. Qualitative analyses addressed questions of relaxation; influence of contact stress distribution; specimen failure; effect of specimen overhang; nonlinearity; and qualities of 5 and 3 point flexure tests.
Influence of altered gait patterns on the hip joint contact forces.
Carriero, Alessandra; Zavatsky, Amy; Stebbins, Julie; Theologis, Tim; Lenaerts, Gerlinde; Jonkers, Ilse; Shefelbine, Sandra J
2014-01-01
Children who exhibit gait deviations often present a range of bone deformities, particularly at the proximal femur. Altered gait may affect bone growth and lead to deformities by exerting abnormal stresses on the developing bones. The objective of this study was to calculate variations in the hip joint contact forces with different gait patterns. Muscle and hip joint contact forces of four children with different walking characteristics were calculated using an inverse dynamic analysis and a static optimisation algorithm. Kinematic and kinetic analyses were based on a generic musculoskeletal model scaled down to accommodate the dimensions of each child. Results showed that for all the children with altered gaits both the orientation and magnitude of the hip joint contact force deviated from normal. The child with the most severe gait deviations had hip joint contact forces 30% greater than normal, most likely due to the increase in muscle forces required to sustain his crouched stance. Determining how altered gait affects joint loading may help in planning treatment strategies to preserve correct loading on the bone from a young age.
NASA Astrophysics Data System (ADS)
Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana
2016-10-01
A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.
Twinning in magnesium under dynamic loading
NASA Astrophysics Data System (ADS)
Dixit, Neha; Hazeli, Kavan; Ramesh, Kaliat T.
2015-09-01
Twinning is an important mode of deformation in magnesium (Mg) and its alloys at high strain rates. Twinning in this material leads to important effects such as mechanical anisotropy, texture evolution, tension-compression asymmetry, and sometimes non-Schmid effects. Extension twins in Mg can accommodate significant plastic deformation as they grow, and thus twinning affects the overall rate of plastic deformation. We use an experimental approach to study the deformation twinning mechanism under dynamic loading. We perform normal plate impact recovery experiments (with microsecond pulse durations) on pure polycrystalline Mg specimens. Estimates of average TB velocity under the known impact stress are obtained by characterization of twin sizes and aspect ratios developed within the target during the loading pulse. The measured average TB velocities in our experiments are of the order of several m s-1. These velocities are several orders of magnitude higher than those so far measured in Mg under quasi-static loading conditions. Electron back-scattered diffraction (EBSD) is then used to characterize the nature of the twins and the microstructural evolution. Detailed crystallographic analysis of the twins enables us to understand twin nucleation and growth of twin variants under dynamic loading.
Design and biomechanical evaluation of a cementable endosteal blade implant.
Pugh, J; Weiss, C; Weiss, F; Malkin, D
1976-07-01
A cementable endosteal blade implant has been developed and evaluated. Inherent in the design are the following factors: minimization of stress concentrators, ease of implantation, and high resistance to loosening. Other potential advantages of this design as compared with conventional endosteal blade implants include reduced hazards of postoperative infection and reduced likelihood of metallic corrosion. Six conventional endosteal implants and six cementable implants were installed in steer mandibles using standard dental surgical techniques and Simplex-brand methyl methacrylate bone cement. They were loaded in uniaxial compresstion at a loading rate of 0.0122 in./min. the stiffness (S), deformation at 900-lb load (D900), proportional limil (PL), and load at 0.04 in. deformation (L0.04) were calculated for each test. The cementable design showed a twofold increase in stiffness, only 17% of the deformation at 900lb, more than twice the proportional limit, and at least twice the load at 0.04 in. deformation when compared with similar values for the conventional endosteal implants. This study reveals that, in addition to being unstable in bone, conventional endosteal implants are also unstable when used with acrylic bone cement. The new design should eliminate most of the problems associated with endosteal blade implantation.
Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi
Benafan, O.; Padula, S. A.; Noebe, R. D.; ...
2012-11-01
Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50) M and (010) M variants, (201¯) B19' deformationmore » twinning, and dislocation activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less
NASA Astrophysics Data System (ADS)
Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.
2018-06-01
The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.
NASA Astrophysics Data System (ADS)
Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.
2017-10-01
The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.
Small Crack Growth and Its Influence in Near Alpha-Titanium Alloys
1989-06-01
geometries via finite element and boundary-collocation analysis 8 , 9 . Elastic plastic fracture mechanics ( EPFM ) 1 0 , 1 1 and local crack tip field...correlation was found between experimental and predicted data, general application of the model is not possible as both 0 and rp are sensitive to changes in...cracks at low AK the load reduction schemes should be altered to remove the residual deformations, perhaps via machining or the application of large
Harkey, M S; Blackburn, J T; Davis, H; Sierra-Arévalo, L; Nissman, D; Pietrosimone, B
2017-06-01
To determine the magnitude of medial femoral cartilage deformation using ultrasonography (US) following walking and running in healthy individuals. Twenty-five healthy participants with no history of osteoarthritis or knee injury volunteered for this study. Medial femoral cartilage thickness was assessed using US before and after three separate 30-min loading conditions: (1) walking at a self-selected speed, (2) running at a self-selected speed, and (3) sitting on a treatment table (i.e., control). Cartilage deformation was calculated as the percent change score from pre to post loading in each loading condition. The magnitude of cartilage deformation was compared between the three loading conditions. There was no difference in baseline cartilage thickness between the three sessions (F 1,24 = 0.18, P = 0.68). Cartilage deformation was different between the loading conditions (F 1,24 = 47.54, P < 0.001). The walking (%Δ = -6.7, t 24 = 6.90, P < 0.001, d = -1.92) and running (%Δ = -8.9, t 24 = 8.14, P < 0.001, d = -1.85) conditions resulted in greater cartilage deformation when compared to the control condition (%Δ = +3.4). There was no difference in cartilage deformation between the running and walking conditions (t 24 = 1.10, P = 0.28, d = 0.33). US measured medial femoral cartilage thickness demonstrated reliability and precision within a single session (ICC 2,k = 0.966, SEM = 0.07 mm) and between additional sessions separated by seven (ICC 2,k = 0.964, SEM = 0.08 mm) and 16 days (ICC 2,k = 0.919, SEM = 0.11 mm). US demonstrated to be a reliable and sensitive imaging modality at quantifying medial femoral cartilage deformation in healthy individuals. Both walking and running conditions created greater cartilage deformation when compared to the control conditions, but no difference was observed between the walking and running conditions. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander
2015-03-01
In the characteristic γ / γ ‧ microstructure of single crystal superalloys, misfit stresses occur due to a significant lattice mismatch of those two phases. The magnitude of this lattice mismatch depends on the chemical composition of both phases as well as on temperature. Furthermore, the lattice mismatch of γ and γ ‧ phases can be either positive or negative in sign. The internal stresses caused by such lattice mismatch play a decisive role for the micromechanical processes that lead to the observed macroscopic athermal deformation behavior of these high-temperature alloys. Three-dimensional discrete dislocation dynamics (DDD) simulations are applied to investigate dislocation glide in γ matrix channels and shearing of γ ‧ precipitates by superdislocations under externally applied uniaxial stresses, by fully taking into account internal misfit stresses. Misfit stress fields are calculated by the fast Fourier transformation (FFT) method and hybridized with DDD simulations. For external loading along the crystallographic [001] direction of the single crystal, it was found that the different internal stress states for negative and positive lattice mismatch result in non-uniform dislocation movement and different dislocation patterns in horizontal and vertical γ matrix channels. Furthermore, positive lattice mismatch produces a lower deformation rate than negative lattice mismatch under the same tensile loading, but for an increasing magnitude of lattice mismatch, the deformation resistance always diminishes. Hence, the best deformation performance is expected to result from alloys with either small positive, or even better, vanishing lattice mismatch between γ and γ ‧ phase.
Beus, Michael J.; McCoy, William G.
1998-01-01
Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.
Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.
Murtada, Sae-Il; Holzapfel, Gerhard A
2014-10-07
Physiological loading in large elastic arteries is considered to be mainly carried by the passive components of the media but it is not known how much the contraction of the smooth muscle cells is actually involved in the load carrying. Smooth muscle contraction is considered to occur in a relatively slow time domain but the contraction is able to produce significant tension. In the present work the role of smooth muscle contraction in large elastic arteries is investigated by analyzing how changes in the intracellular calcium, and thereby the active tone of smooth muscle cells, influence the deformation and stress behavior; different intracellular calcium functions and medial wall thicknesses with cycling internal pressure are studied. In particular, a recently proposed mechanochemical model (Murtada et al., 2012. J. Theor. Biol. 297, 176-186), which links intracellular calcium with mechanical contraction and an anisotropic model representing the elastin/collagen composite, was implemented into a 3D finite element framework. Details of the implementation procedure are described and a verification of the model implementation is provided by means of the isometric contraction/relaxation analysis of a medial strip at optimal muscle length. In addition, numerically obtained pressure-radius relationships of arterial rings modeled with one and two layers are analyzed with different geometries and at different calcium levels; a comparison with the Laplace equation is provided. Finally, a two-layer arterial ring is loaded with a realistic pressure wave and with various intracellular calcium functions (different amplitudes and mean values) and medial wall thicknesses; residual stresses are considered. The finite element results show that changes in the calcium amplitudes hardly have an influence on the current inner ring radius and the circumferential stress. However, an increase in the mean intracellular calcium value and the medial wall thickness leads to a clear influence on the deformation and the stress behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, X. B.; Han, X. X.; Zhou, T. B.; Liu, E. L.
2017-04-01
Through the comparative analysis of the results of the triaxial compression experiments of sandstone and the numerical simulation results of particle flow code PFC2D under the same conditions, the typical simulation curve and the corresponding simulation process were selected to analyze the evolution characteristics of the surface deformation field, the evolution characteristics of the velocity field and displacement field of the deformation localization bands of sandstone under triaxial compression. Research results show that the changes of the velocities and displacements of deformation localization bands corresponds to the change of stress during compression; In the same deformation localization band, the dislocation velocities are always in the same direction, but in the direction vertical to the localization band, the localization band sometimes squeezes and sometimes stretches; At different positions of the same deformation localization band, the dislocation velocities and extrusion velocities are both different at the same time; In the post-peak stage of loading, along the same deformation localization band, the dislocation displacements close to both loaded ends are generally greater than the ones near to the middle position of the specimen, the stretching displacements close to both loaded ends are generally smaller than the ones near to the middle position of the specimen.
NASA Astrophysics Data System (ADS)
Kraus, E. I.; Shabalin, I. I.; Shabalin, T. I.
2018-04-01
The main points of development of numerical tools for simulation of deformation and failure of complex technical objects under nonstationary conditions of extreme loading are presented. The possibility of extending the dynamic method for construction of difference grids to the 3D case is shown. A 3D realization of discrete-continuum approach to the deformation and failure of complex technical objects is carried out. The efficiency of the existing software package for 3D modelling is shown.
Deformation relief induced by scratch testing on the surface of Hadfield steel
NASA Astrophysics Data System (ADS)
Lychagin, D. V.; Filippov, A. V.; Novitskaya, O. S.; Kolubaev, A. V.; Sizova, O. V.
2017-12-01
The paper is devoted to deformation relief formed on the surface of Hadfield steel while scratching under a linearly increasing load. The deformation relief is analyzed to detect regions with microfracture of the surface layer of Hadfield steel. Crack generation regions coincide with regions of the most intense acoustic emission (AE) signal. Single and multiple slip bands are observed in various grains of the material. As the load increases, slip bands thicken and grains with multiple slip are more frequent.
Large Deformation Behavior of Long Shallow Cylindrical Composite Panels
NASA Technical Reports Server (NTRS)
Carper, Douglas M.; Hyer, Michael W.; Johnson, Eric R.
1991-01-01
An exact solution is presented for the large deformation response of a simply supported orthotropic cylindrical panel subjected to a uniform line load along a cylinder generator. The cross section of the cylinder is circular and deformations up to the fully snapped through position are investigated. The orthotropic axes are parallel to the generator and circumferential directions. The governing equations are derived using laminated plate theory, nonlinear strain-displacement relations, and applying variational principles. The response is investigated for the case of a panel loaded exactly at midspan and for a panel with the load offset from midspan. The mathematical formulation is one dimensional in the circumferential coordinate. Solutions are obtained in closed-form. An experimental apparatus was designed to load the panels. Experimental results of displacement controlled tests performed on graphite-epoxy curved panels are compared with analytical predictions.
SUEDAM, Valdey; MORETTI, Rafael Tobias; SOUSA, Edson Antonio Capello; RUBO, José Henrique
2016-01-01
ABSTRACT Because many mechanical variables are present in the oral cavity, the proper load transfer between the prosthesis and the bone is important for treatment planning and for the longevity of the implant-supported fixed partial denture. Objectives To verify the stress generated on the peri-implant area of cantilevered implant-supported fixed partial dentures and the potential effects of such variable. Material and Methods A U-shaped polyurethane model simulating the mandibular bone containing two implants (Ø 3.75 mm) was used. Six groups were formed according to the alloy’s framework (CoCr or PdAg) and the point of load application (5 mm, 10 mm and 15 mm of cantilever arm). A 300 N load was applied in pre-determined reference points. The tension generated on the mesial, lingual, distal and buccal sides of the peri-implant regions was assessed using strain gauges. Results Two-way ANOVA and Tukey statistical tests were applied showing significant differences (p<0.05) between the groups. Pearson correlation test (p<0.05) was applied showing positive correlations between the increase of the cantilever arm and the deformation of the peri-implant area. Conclusions This report demonstrated the CoCr alloy shows larger compression values compared to the PdAg alloy for the same distances of cantilever. The point of load application influences the deformation on the peri-implant area, increasing in accordance with the increase of the lever arm. PMID:27119758
Aspects of modelling the tectonics of large volcanoes on the terrestrial planets
NASA Technical Reports Server (NTRS)
Mcgovern, Patrick J.; Solomon, Sean C.
1993-01-01
Analytic solutions for the responses of planetary lithospheres to volcanic loads have been used to model faulting and infer elastic plate thicknesses. Predictions of the distribution of faulting around volcanic loads, based on the application of Anderson's criteria for faulting to the results of the models, do not agree well with observations. Such models do not give the stress state in the load itself, but only suggest a state of horizontal compressive stress there. Further, these models have considered only the effect of an instantaneously emplaced load. They do not address the time evolution of stresses, nor do they consider the effect of a load which grows. A finite element approach allows us to assign elements to the load itself, and thus permits calculation of the stress state and stress history within the edifice. The effects of episodic load growth can also be treated. When these effects are included, models give much better agreement with observations. We use the finite element code TECTON to construct axisymmetric models of volcanoes resting on an elastic lithospheric plate overlying a viscoelastic asthenosphere. We have implemented time-dependent material properties in order to simulate incremental volcano growth. The viscoelastic layer was taken to extend to a sufficient depth so that a rigid lower boundary has no significant influence on the results. The code first calculates elastic deformations and stresses and then determines the time-dependent viscous deformations and stresses. Time in the model scales as the Maxwell time tau(m) in the asthenosphere. We consider a volcano 25 km in height and 200 km in radius on an elastic lithosphere 40 km thick (parameters approximately appropriate to Ascraeus Mons). The volcano consists of three load increments applied at intervals of 1000 tau(m). Contours of maximum deviatoric stress in the fully-grown edifice at the conclusion of flexure (t = 3000 tau(m)) are shown.
Hydrological deformation signals in karst systems: new evidence from the European Alps
NASA Astrophysics Data System (ADS)
Serpelloni, E.; Pintori, F.; Gualandi, A.; Scoccimarro, E.; Cavaliere, A.; Anderlini, L.; Belardinelli, M. E.; Todesco, M.
2017-12-01
The influence of rainfall on crustal deformation has been described at local scales, using tilt and strain meters, in several tectonic settings. However, the literature on the spatial extent of rainfall-induced deformation is still scarce. We analyzed 10 years of displacement time-series from 150 continuous GPS stations operating across the broad zone of deformation accommodating the N-S Adria-Eurasia convergence and the E-ward escape of the Eastern Alps toward the Pannonian basin. We applied a blind-source-separation algorithm based on a variational Bayesian Independent Component Analysis method to the de-trended time-series, being able to characterize the temporal and spatial features of several deformation signals. The most important ones are a common mode annual signal, with spatially uniform response in the vertical and horizontal components and a time-variable, non-cyclic, signal characterized by a spatially variable response in the horizontal components, with stations moving (up to 8 mm) in the opposite directions, reversing the sense of movement in time. This implies a succession of extensional/compressional strains, with variable amplitudes through time, oriented normal to rock fractures in karst areas. While seasonal displacements in the vertical component (with an average amplitude of 4 mm over the study area) are satisfactorily reproduced by surface hydrological loading, estimated from global assimilation models, the non seasonal signal is associated with groundwater flow in karst systems, and is mainly influencing the horizontal component. The temporal evolution of this deformation signal is correlated with cumulated precipitation values over periods of 200-300 days. This horizontal deformation can be explained by pressure changes associated with variable water levels within vertical fractures in the vadose zones of karst systems, and the water level changes required to open or close these fractures are consistent with the fluctuations of precipitation and with the dynamics of karst systems.
NASA Astrophysics Data System (ADS)
Yang, Sheng-Qi; Tian, Wen-Ling; Ranjith, P. G.
2017-11-01
The deformation failure characteristics of marble subjected to triaxial cyclic loading are significant when evaluating the stability and safety of deep excavation damage zones. To date, however, there have been notably few triaxial experimental studies on marble under triaxial cyclic loading. Therefore, in this research, a series of triaxial cyclic tests was conducted to analyze the mechanical damage characteristics of a marble. The post-peak deformation of the marble changed gradually from strain softening to strain hardening as the confining pressure increased from 0 to 10 MPa. Under uniaxial compression, marble specimens showed brittle failure characteristics with a number axial splitting tensile cracks; in the range of σ 3 = 2.5-7.5 MPa, the marble specimens assumed single shear fracture characteristics with larger fracture angles of about 65°. However, at σ 3 = 10 MPa, the marble specimens showed no obvious shear fracture surfaces. The triaxial cyclic experimental results indicate that in the range of the tested confining pressures, the triaxial strengths of the marble specimens under cyclic loading were approximately equal to those under monotonic loading. With the increase in cycle number, the elastic strains of the marble specimens all increased at first and later decreased, achieving maximum values, but the plastic strains of the marble specimens increased nonlinearly. To evaluate quantitatively the damage extent of the marble under triaxial cyclic loading, a damage variable is defined according to the irreversible deformation for each cycle. The evolutions of the elastic modulus for the marble were characterized by four stages: material strengthening, material degradation, material failure and structure slippage. Based on the experimental results of the marble specimens under complex cyclic loading, the cohesion of the marble decreased linearly, but the internal friction angles did not depend on the damage extent. To describe the peak strength characteristics of the marble specimens under complex cyclic loadings with various deformation positions, a revised strength criterion for damaged rocks is offered.
Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading
NASA Astrophysics Data System (ADS)
Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.
2018-04-01
The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.
Large Deformation Dynamic Bending of Composite Beams
NASA Technical Reports Server (NTRS)
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams were loaded dynamically with a gravity driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 30 deg or 15 deg off-axis plies occured in several events. All laminates exhibited bimodular elastic properties. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
Phase transformations induced by spherical indentation in ion-implanted amorphous silicon
NASA Astrophysics Data System (ADS)
Haberl, B.; Bradby, J. E.; Ruffell, S.; Williams, J. S.; Munroe, P.
2006-07-01
The deformation behavior of ion-implanted (unrelaxed) and annealed ion-implanted (relaxed) amorphous silicon (a-Si) under spherical indentation at room temperature has been investigated. It has been found that the mode of deformation depends critically on both the preparation of the amorphous film and the scale of the mechanical deformation. Ex situ measurements, such as Raman microspectroscopy and cross-sectional transmission electron microscopy, as well as in situ electrical measurements reveal the occurrence of phase transformations in all relaxed a-Si films. The preferred deformation mode of unrelaxed a-Si is plastic flow, only under certain high load conditions can this state of a-Si be forced to transform. In situ electrical measurements have revealed more detail of the transformation process during both loading and unloading. We have used ELASTICA simulations to obtain estimates of the depth of the metallic phase as a function of load, and good agreement is found with the experiment. On unloading, a clear change in electrical conductivity is observed to correlate with a "pop-out" event on load versus penetration curves.
Numerical simulation of CO2 scroll compressor in transcritical compression cycle
NASA Astrophysics Data System (ADS)
Wang, Hongli; Tian, JingRui; Du, Yuanhang; Hou, Xiujuan
2018-05-01
Based on the theory of thermodynamics and kinetics, the mathematical model of an orbiting scroll was established and the stress deformations were employed by ANSYS software. Under the action of pressure load, the results show that the serious displacement part is located in the center of the gear head and the maximum deformation is about 7.33 μm. The maximum radial displacement is about 4.42 μm. The maximum radial stress point occurs in the center of the gear head and the maximum stress is about 40.9 MPa. The maximum axial displacement is about 2.31 μm. The maximum axial stress point occurs in the gear head and the maximum stress is about 44.7 MPa. Under the action of temperature load, the results show that the serious deformation part is located in the center of the gear head and the maximum deformation is about 6.3 μm. The maximum thermal stress occurs in the center of the gear head and the maximum thermal stress is about 86.36 MPa. Under the combined action of temperature load and pressure load, the results show that the serious deformation part and the maximum stress are located in the center of the gear head, and the value are about 7.79 μm and 74.19 MPa, respectively.
Mechanical and hydraulic properties of Nankai accretionary prism sediments: Effect of stress path
NASA Astrophysics Data System (ADS)
Kitajima, Hiroko; Chester, Frederick M.; Biscontin, Giovanna
2012-10-01
We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones.
Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters
NASA Astrophysics Data System (ADS)
Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.
2016-02-01
The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of the investigated Al 7075 alloy.
Polymer deformation and filling modes during microembossing
NASA Astrophysics Data System (ADS)
Rowland, Harry D.; King, William P.
2004-12-01
This work investigates the initial stages of polymer deformation during hot embossing micro-manufacturing at processing temperatures near the glass transition temperature (Tg) of polymer films having sufficient thickness such that polymer flow is not supply limited. Several stages of polymer flow can be observed by employing stamp geometries of various widths and varying imprint conditions of time and temperature to modulate polymer viscosity. Experiments investigate conditions affecting cavity filling phenomena, including apparent polymer viscosity. Stamps with periodic ridges of height and width 4 µm and periodicity 30, 50 and 100 µm emboss trenches into polymethyl methacrylate films at Tg - 10 °C < Temboss < Tg + 20 °C. Imprint parameters of time, temperature and load are correlated with replicated polymer shape, height and imprinted area. Polymer replicates are measured by atomic force microscopy and inspected by scanning electron microscopy. Cavity size and the temperature dependence of polymer viscosity significantly influence the nature of polymer deformation in hot embossing micro-manufacturing and must be accounted for in rational process design.
NASA Astrophysics Data System (ADS)
Lee, Ho-Young; Lee, Se-Hee
2017-08-01
Mechanical deformation, bending deformation, and distributive magnetic loads were evaluated numerically and experimentally for conducting materials excited with high current. Until now, many research works have extensively studied the area of magnetic force and mechanical deformation by using coupled approaches such as multiphysics solvers. In coupled analysis for magnetoelastic problems, some articles and commercial software have presented the resultant mechanical deformation and stress on the body. To evaluate the mechanical deformation, the Lorentz force density method (LZ) and the Maxwell stress tensor method (MX) have been widely used for conducting materials. However, it is difficult to find any experimental verification regarding mechanical deformation or bending deformation due to magnetic force density. Therefore, we compared our numerical results to those from experiments with two parallel conducting bars to verify our numerical setup for bending deformation. Before showing this, the basic and interesting coupled simulation was conducted to test the mechanical deformations by the LZ (body force density) and the MX (surface force density) methods. This resulted in MX gave the same total force as LZ, but the local force distribution in MX introduced an incorrect mechanical deformation in the simulation of a solid conductor.
el Ghazali, S; Glantz, P O; Strandman, E; Randow, K
1989-04-01
This paper aimed to study the influence of denture base design and the shape of the denture-supporting area on the functional deformation of maxillary complete dentures. Six strain-gauged duplicate maxillary dentures were made for the study of two test subjects with different shapes of the palatal vault. Each subject was supplied with two polymethyl methacrylate dentures, one with a 1-mm-thick palatal base and the other 2 mm thick. A third denture was constructed with a cobalt-chromium base. The functional loading tests included maximum biting and the chewing of the food test samples. An analysis based on chewing time and total number of chewing cycles per test piece was also made. The results showed that surface straining is highly complex at the anterior part of the maxillary dentures constructed from polymethyl methacrylate and that increasing the denture thickness per se might not be accompanied by a reduction of strain. The results also suggest that high thrust to the supporting tissue is produced with high palatal vault dentures made in polymethyl methacrylate. The study proposes that cobalt-chromium bases may be used in maxillary dentures to reduce functional deformation and thrust to the supporting tissues at the anterior part of the maxilla.
NASA Astrophysics Data System (ADS)
Klecka, Michael A.
Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response. The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.
Developing a passive load reduction blade for the DTU 10 MW reference turbine
NASA Astrophysics Data System (ADS)
de Vaal, J. B.; Nygaard, T. A.; Stenbro, R.
2016-09-01
This paper presents the development of a passive load reduction blade for the DTU 10 MW reference wind turbine, using the aero-hydro-servo-elastic analysis tool 3DFloat. Passive load reduction is achieved by introducing sweep to the path of the blade elastic axis, so that out-of-plane bending deflections result in load alleviating torsional deformations of the blade. Swept blades are designed to yield similar annual energy production as a rotor with a reference straight blade. This is achieved by modifying the aerodynamic twist distribution for swept blades based on non-linear blade deflection under steady state loads. The passive load reduction capability of a blade design is evaluated by running a selection of fatigue- and extreme load cases with the analysis tool 3DFloat and determining equivalent fatigue loads, fatigue damage and extreme loads at the blade root and tower base. The influence of sweep on the flutter speed of a blade design is also investigated. A large number of blade designs are evaluated by varying the parameters defining the sweep path of a blade's elastic axis. Results show that a moderate amount of sweep can effectively reduce equivalent fatigue damage and extreme loads, without significantly reducing the flutter speed, or compromising annual energy production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantinova, S.A.; Spirkov, V.L.; Sokolov, V.Yu.
1987-07-01
The results of solving the problems of the stress-strain state of peripheral rock in the vicinity of the meeting point of two workings of intersection and branching type are presented. Values of the load coefficients are obtained, as well as values of the dimensions of the zone of influence of the meeting point and the conventional zone of inelastic deformations. Intersection and branching of workings at various angles are considered.
NASA Astrophysics Data System (ADS)
Pan, Y.; Shen, W.; Hwang, C.
2015-12-01
As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).
NASA Astrophysics Data System (ADS)
Liu, S.; Li, X.; Guo, H.; Yang, S.; Wang, X.; Shang, C.; Misra, R. D. K.
2018-04-01
We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0}<1 1 1> and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.
Effect of propellant deformation on ignition and combustion processes in solid propellant cracks
NASA Technical Reports Server (NTRS)
Kumar, M.; Kuo, K. K.
1980-01-01
A comprehensive theoretical model was formulated to study the development of convective burning in a solid propellant crack which continually deforms due to burning and pressure loading. In the theoretical model, the effect of interrelated structural deformation and combustion processes was taken into account by considering (1) transient, one dimensional mass, momentum, and energy conservation equations in the gas phase; (2) a transient, one dimensional heat conduction equation in the solid phase; and (3) quasi-static deformation of the two dimensional, linear viscoelastic propellant crack caused by pressure loading. Partial closures may generate substantial local pressure peaks along the crack, implying a strong coupling between chamber pressurization, crack combustion, and propellant deformation, especially when the cracks are narrow and the chamber pressurization rates high. The maximum pressure in the crack cavity is generally higher than that in the chamber. The initial flame-spreading process is not affected by propellant deformation.
Rizvi, Mohd Suhail; Pal, Anupam
2014-09-01
The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kido, Masamitsu; Ikoma, Kazuya; Hara, Yusuke; Imai, Kan; Maki, Masahiro; Ikeda, Takumi; Fujiwara, Hiroyoshi; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu
2014-12-01
Insoles are frequently used in orthotic therapy as the standard conservative treatment for symptomatic flatfoot deformity to rebuild the arch and stabilize the foot. However, the effectiveness of therapeutic insoles remains unclear. In this study, we assessed the effectiveness of therapeutic insoles for flatfoot deformity using subject-based three-dimensional (3D) computed tomography (CT) models by evaluating the load responses of the bones in the medial longitudinal arch in vivo in 3D. We studied eight individuals (16 feet) with mild flatfoot deformity. CT scans were performed on both feet under non-loaded and full-body-loaded conditions, first with accessory insoles and then with therapeutic insoles under the same conditions. Three-dimensional CT models were constructed for the tibia and the tarsal and metatarsal bones of the medial longitudinal arch (i.e., first metatarsal bone, cuneiforms, navicular, talus, and calcaneus). The rotational angles between the tarsal bones were calculated under loading with accessory insoles or therapeutic insoles and compared. Compared with the accessory insoles, the therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. This is the first study to precisely verify the usefulness of therapeutic insoles (arch support and inner wedges) in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Investigation of deformation twinning under complex stress states in a rolled magnesium alloy
Wu, Wei; Chuang, Chih-Pin; Qiao, Dongxiao; ...
2016-05-15
We employed a specially designed semi-circular notch specimen in the current study to generate the various strain conditions, including uniaxial, biaxial, shear, and plane strains, which was utilized to explore the evolution of different deformation twinning systems under complex loading conditions. We found that when using in situ synchrotron X-ray diffraction mapping method, that the extensive double twins were activated during loading, while nearly no extension twinning activity was detected. After the formation of {10.1} and {10.3} compression twins, they transformed into {10.1}-{10.2} and {10.3}-{10.2} double twins instantaneously at the early stage of deformation. The lattice strain evolutions in differentmore » hkls were mapped at selected load levels during the loading-unloading sequence. Finally, the relationship between the macroscopic straining and microscopic response was established.« less
Analysis for Material Behavior of Sabot/Rods During Launch by Finite Element Method
NASA Astrophysics Data System (ADS)
Kim, Jin Bong; Kim, Man Geun
This study has been investigated to predict the deformation and states of stress and strain by axial and lateral acceleration during launch. Because a gun tube is not perfectly straight at its initial state while under gravity loading, the projectile deforms due to the change of contacts points with the flexible gun tube. Numerical simulations were used for gravity loading and the other type is initial shape and gravity loading. The ANSYS engineering analysis code was used to generate a parametric model of the projectile and conduct finite element analyses. Four types of nonlinear material and contact elements were incorporated into the model to account for the plastic deformation and contact between the penetrator, sabot, and tube.
Galetz, Mathias Christian; Glatzel, Uwe
2010-05-01
The deformation behavior of ultrahigh molecular polyethylene (UHMWPE) is studied in the temperature range of 23-80 degrees C. Samples are examined in quasi-static compression, tensile and creep tests to determine the accelerated deformation of UHMWPE at elevated temperatures. The deformation mechanisms under compression load can be described by one strain rate and temperature dependent Eyring process. The activation energy and volume of that process do not change between 23 degrees C and 50 degrees C. This suggests that the deformation mechanism under compression remains stable within this temperature range. Tribological tests are conducted to transfer this activated energy approach to the deformation behavior under loading typical for artificial knee joints. While this approach does not cover the wear mechanisms close to the surface, testing at higher temperatures is shown to have a significant potential to reduce the testing time for lifetime predictions in terms of the macroscopic creep and deformation behavior of artificial joints. Copyright 2010. Published by Elsevier Ltd.
The structural response of unsymmetrically laminated composite cylinders
NASA Technical Reports Server (NTRS)
Butler, T. A.; Hyer, M. W.
1989-01-01
The responses of an unsymmetrically laminated fiber-reinforced composite cylinder to an axial compressive load, a torsional load, and the temperature change associated with cooling from the processing temperature to the service temperature are investigated. These problems are considered axisymmetric and the response is studied in the context of linear elastic material behavior and geometrically linear kinematics. Four different laminates are studied: a general unsymmetric laminate; two unsymmetric but more conventional laminates; and a conventional quasi-isotropic symmetric laminate. The responses based on closed-form solutions for different boundary conditions are computed and studied in detail. Particular emphasis is directed at understanding the influence of elastic couplings in the laminates. The influence of coupling decreased from a large effect in the general unsymmetric laminate, to practically no effect in the quasi-isotropic laminate. For example, the torsional loading of the general unsymmetric laminate resulted in a radial displacement. The temperature change also caused a significant radial displacement to occur near the ends of the cylinder. On the other hand, the more conventional unsymmetric laminate and the quasi-isotropic cylinder did not deform radially when subjected to a torsional load. From the results obtained, it is clear the degree of elastic coupling can be controlled and indeed designed into a cylinder, the degree and character of the coupling being dictated by the application.
Plastic deformation behaviors of Ni- and Zr-based bulk metallic glasses subjected to nanoindentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weizhong, Liang, E-mail: wzliang1966@126.com; Zhiliang, Ning; Zhenqian, Dang
2013-12-15
Plastic deformation behaviors of Ni{sub 42}Ti{sub 20}Zr{sub 21.5}Al{sub 8}Cu{sub 5}Si{sub 3.5} and Zr{sub 51}Ti{sub 5}Ni{sub 10}Cu{sub 25}Al{sub 9} bulk metallic glasses at room temperature were studied by nanoindentation testing and atomic force microscopy under equivalent indentation experimental conditions. The different chemical composition of these two bulk metallic glasses produced variant tendencies for displacement serrated flow to occur during the loading process. The nanoindentation strain rate was calculated as a function of indentation displacement in order to verify the occurrence of displacement serrated flow at different loading rates. Atomic force microscopy revealed decreasing numbers of discrete shear bands around the indentationmore » sites as loading rates increased from 0.025 to 2.5 mNs{sup −1}. Variations in plastic deformation behaviors between Ni and Zr-based glasses materials can be explained by the different metastable microstructures and thermal stabilities of the two materials. The mechanism governing plastic deformation of these metallic glasses was analyzed in terms of an established model of the shear transformation zone. - Highlights: • Plastic deformation of Ni- and Zr-based BMG is studied under identical conditions • Zr-based BMG undergoes a greater extent of plastic deformation than Ni-based BMG • Nanoindentation strain rate is studied to clarify variation in plastic deformation • Metastable microstructure, thermal stability affect BMG plastic deformation.« less
NASA Astrophysics Data System (ADS)
Mahalov, M. S.; Blumenstein, V. Yu
2017-10-01
The mechanical condition and residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The mechanical state and RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.
Elevated temperature crack growth
NASA Technical Reports Server (NTRS)
Kim, K. S.; Vanstone, R. H.
1992-01-01
The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.
NASA Astrophysics Data System (ADS)
Goncharov, K. A.; Denisov, I. A.
2017-10-01
The article considers the influence of the air gap size between the linear motor elements on the stability of the traction drive of the movement mechanism of the trolley of the bridge type crane. The main factors affecting the air gap size and the causes of their occurrence are described. The technique of calculating the magnitude of air gap variation is described in relation to the general deformation of the crane metal structure. Recommendations on the need for installation of additional equipment for load trolleys of various designs are given. The optimal values of the length of the trolley base are proposed. Observance of these values ensures normal operation of the traction drive.
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David
2015-02-01
Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.
NASA Astrophysics Data System (ADS)
Rayan, A.; Fernandes, R. M. S.; Khalil, H. A.; Mahmoud, S.; Miranda, J. M.; Tealab, A.
2010-04-01
The proper evaluation of crustal deformations in the Aswan (Egypt) region is crucial due to the existence of one major artificial structure: the Aswan High Dam. This construction induced the creation of one of the major artificial lakes: Lake Nasser, which has a surface area of about 5200 km 2 with a maximum capacity of 165 km 3. The lake is nearly 550 km long (more than 350 km within Egypt and the remainder in Sudan) and 35 km across at its widest point. Great attention has focused on this area after the November 14, 1981 earthquake ( ML = 5.7), with its epicenter southwest of the High Dam. In order to evaluate the present-day kinematics of the region, its relationship with increasing seismicity, and the possible influence of the Aswan High Dam operation, a network of 11 GPS sites was deployed in the area. This network has been reobserved every year since 2000 in campaign style. We present here the results of the analysis of the GPS campaign time-series. These time-series are already long enough to derive robust solutions for the motions of these stations. The computed trends are analyzed within the framework of the geophysical and geological settings of this region. We show that the observed displacements are significant, pointing to a coherent intraplate extensional deformation pattern, where some of the major faults (e.g., dextral strike-slip Kalabsha fault and normal Dabud fault) correspond to gradients of the surface deformation field. We also discuss the possible influence of the water load on the long-term deformation pattern.
Weld residual stresses and plastic deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybicki, E.; Shiratori, M.
1989-01-01
Residual stresses due to welding can play a primary role in the performance of piping systems and pressure vessels. The stresses are high, in the range of the yield stress of the material, and can influence the fatigue and fracture behavior as well as component service life. Thus, it is important to have an understanding of weld residual stresses. The papers in this section address the important topic of residual stresses and failure analysis. The paper by Boyles reviews computer simulation in the prediction and analysis of fatigue, fracture, and creep of welded structures. The growing use of expert systemsmore » for these purposes is also covered. Karisson, et al, determine the deformations and stresses during the butt-welding of a pipe. The determination of residual deformations and stresses is also presented. Oddy, Goldak, and McDill propose a method to incorporate transformation plasticity in a finite element program. A three-dimensional analysis of a short longitudinal pipe weld in a typical pressure vessel steel is presented. Chaaban, Morin, Ma, and Bazergui study the influence of ligament thickness, strain hardening, expansion sequence, and level of applied expansion pressure on the interference fit in a model of a tube-to-tubesheet joint in a heat exchanger. This section contains papers dealing with models for plastic deformation. Imatani, Teraura, and Inoue formulate a viscoplastic constitutive model based on an anisotropic yield criterion. Comparisons with experimental results obtained using thin walled tubular specimens made from SUS 304 stainless steel show that the present yield criterion adequately accounts for prior deformation history. Niitsu, Horiguchi, and Ikegami investigate the plastic behavior of S25C mild steel tubular specimens subjected to combined axial and torsional loading at both constant and variable temperatures.« less
Straightening of a wavy strip: An elastic-plastic contact problem including snap-through
NASA Technical Reports Server (NTRS)
Fischer, D. F.; Rammerstorfer, F. G.
1980-01-01
The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix.
Lattice strains and load partitioning in bovine trabecular bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhtar, R.; Daymond, M. R.; Almer, J. D.
2012-02-01
Microdamage and failure mechanisms have been well characterized in bovine trabecular bone. However, little is known about how elastic strains develop in the apatite crystals of the trabecular struts and their relationship with different deformation mechanisms. In this study, wide-angle high-energy synchrotron X-ray diffraction has been used to determine bulk elastic strains under in situ compression. Dehydrated bone is compared to hydrated bone in terms of their response to load. During compression, load is initially borne by trabeculae aligned parallel to loading direction with non-parallel trabeculae deforming by bending. Ineffective load partitioning is noted in dehydrated bone whereas hydrated bonemore » behaves like a plastically yielding foam« less
A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading
NASA Technical Reports Server (NTRS)
Rui, Yuting; Sun, C. T.
1990-01-01
Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.
NASA Astrophysics Data System (ADS)
Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele
2015-04-01
Soft-sediment deformations, such as convolute laminations, load structures and water escapes are very rapid deformations that occur in unconsolidated sediments near the depositional surface during or shortly after deposition and before significant diagenesis. These types of deformations develop when primary stratifications are deformed by a system of driving forces, while the sediment is temporarily in a weakened state due to the action of a deformation mechanism know as liquidization. This deformation occurs if the applied stress exceeds the sediment strength, either through an increase in the applied stress or through a temporary reduction in sediment strength. Liquidization mechanisms can be triggered by several agents, such as seismic shaking, rapid sedimentation with high-fallout rates or cyclic-pressure variations associated with storm waves or breaking waves. Consequently, soft-sediment deformations can be produced by different processes and form ubiquitous sedimentary structures characterizing many sedimentary environments. However, even though these types of structures are relatively well-known in terms of geometry and sedimentary characteristics, many doubts arise when the understanding of deformation and trigger mechanisms is attempted. As stressed also by the recent literature, the main problem lies in the fact that the existing approaches for the identification of triggering agents rely on criteria that are not diagnostic or not applicable to outcrop-based studies, because they are not always based on detailed facies analysis related to a paleoenvironmental-context approach. For this reason, this work discusses the significance of particular types of soft-sediment deformations that are very common in turbidite deposits, namely convolute laminations and load structures, especially on the basis of a deep knowledge of the stratigraphic framework and geological setting in which these structures are inserted. More precisely, detailed facies analyses of the turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.
Calha, Nuno; Messias, Ana; Guerra, Fernando; Martinho, Beatriz; Neto, Maria Augusta; Nicolau, Pedro
2017-04-01
To evaluate the effect of geometry on the displacement and the strain distribution of anterior implant-supported zirconia frameworks under static load using the 3D digital image correlation method. Two groups (n=5) of 4-unit zirconia frameworks were produced by CAD/CAM for the implant-abutment assembly. Group 1 comprised five straight configuration frameworks and group 2 consisted of five curved configuration frameworks. Specimens were cemented and submitted to static load up to 200N. Displacements were captured with two high-speed photographic cameras and analyzed with video correlation system in three spacial axes U, V, W. Statistical analysis was made using the nonparametric Mann-Whitney test. Up to 150N loads, the vertical displacements (V axis) were statistically higher for curved frameworks (-267.83±23.76μm), when compared to the straight frameworks (-120.73±36.17μm) (p=0.008), as well as anterior displacements in the W transformed axis (589.55±64.51μm vs 224.29±50.38μm for the curved and straight frameworks), respectively (p=0.008). The mean von Mises strains over the surface frameworks were statistically higher for the curved frameworks under any load. Within the limitations of this in vitro study, it is possible to conclude that the geometric configuration influences the deformation of 4-unit anterior frameworks under static load. The higher strain distribution and micro-movements of the curved frameworks reflect less rigidity and increased risk of fractures associated to FPDs. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Dynamic shear deformation in high purity Fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerreta, Ellen K; Bingert, John F; Trujillo, Carl P
2009-01-01
The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen ismore » highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.« less
Guzman-Novoa, Ernesto; Md. Hamiduzzaman, Mollah; Espinosa-Montaño, Laura G.; Correa-Benítez, Adriana
2016-01-01
The prevalence and loads of deformed wing virus (DWV) between honey bee (Apis mellifera L.) colonies from a tropical and a temperate environment were compared. The interaction between these environments and the mite Varroa destructor in relation to DWV prevalence, levels, and overt infections, was also analyzed. V. destructor rates were determined, and samples of mites, adult bees, brood parasitized with varroa mites and brood not infested by mites were analyzed. DWV was detected in 100% of the mites and its prevalence and loads in honey bees were significantly higher in colonies from the temperate climate than in colonies from the tropical climate. Significant interactions were found between climate and type of sample, with the highest levels of DWV found in varroa-parasitized brood from temperate climate colonies. Additionally, overt infections were observed only in the temperate climate. Varroa parasitism and DWV loads in bees from colonies with overt infections were significantly higher than in bees from colonies with covert infections. These results suggest that interactions between climate, V. destructor, and possibly other factors, may play a significant role in the prevalence and levels of DWV in honey bee colonies, as well as in the development of overt infections. Several hypotheses are discussed to explain these results. PMID:27252482
Static aeroelastic deformation of flexible skin for continuous variable trailing-edge camber wing
NASA Astrophysics Data System (ADS)
Liu, Libo; Yin, Weilong; Dai, Fuhong; Liu, Yanju; Leng, Jinsong
2011-03-01
The method for analyzing the static aeroelastic deformation of flexible skin under the air loads was developed. The effect of static aeroelastic deformation of flexible skin on the aerodynamic characteristics of aerofoil and the design parameters of skin was discussed. Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deformation. The static aeroelastic deformation of flexible skin significantly affects the aerodynamic characteristics of aerofoil. At small angle of attack, the drag coefficient increases and the lift coefficient decreases. With the increasing angle of attack, the effect of flexible skin on the aerodynamic characteristics of aerofoil is smaller and smaller. The deformation of flexible skin becomes larger and larger with the free-stream velocity increasing. When the free-stream velocity is greater than a value, both of the deformation of flexible skin and the drag coefficient of aerofoil increase rapidly. The maximum tensile strain of flexible skin is increased with consideration of the static aeroelastic deformation.
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-09-01
An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Siwei; Niu, Guodong; Dong, Neil X.; Wang, Xiaodu; Liu, Zhongjun; Song, Chunli; Leng, Huijie
2017-04-01
Estrogen withdrawal in postmenopausal women increases bone loss and bone fragility in the vertebra. Bone loss with osteoporosis not only reduces bone mineral density (BMD), but actually alters bone quality, which can be comprehensively represented by bone post-yield behaviors. This study aimed to provide some information as to how osteoporosis induced by estrogen depletion could influence the evolution of post-yield microdamage accumulation and plastic deformation in vertebral bodies. This study also tried to reveal the part of the mechanisms of how estrogen deficiency-induced osteoporosis would increase the bone fracture risk. A rat bilateral ovariectomy (OVX) model was used to induce osteoporosis. Progressive cyclic compression loading was developed for vertebra testing to elucidate the post-yield behaviors. BMD, bone volume fraction, stiffness degradation, and plastic deformation evolution were compared among rats raised for 5 weeks (ovx5w and sham5w groups) and 35 weeks (ovx35w and sham35w groups) after sham surgery and OVX. The results showed that a higher bone loss in vertebral bodies corresponded to lower stiffness and higher plastic deformation. Thus, osteoporosis could increase the vertebral fracture risk probably through microdamage accumulation and plastic deforming degradation.
Micropillar Compression Technique Applied to Micron-Scale Mudstone Elasto-Plastic Deformation
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Boyce, B.; Buchheit, T.; Heath, J. E.; Chidsey, T.; Michael, J.
2010-12-01
Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J.
2017-01-01
This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone’s internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms. PMID:28652932
Mustansar, Zartasha; McDonald, Samuel A; Sellers, William Irvin; Manning, Phillip Lars; Lowe, Tristan; Withers, Philip J; Margetts, Lee
2017-01-01
This paper uses X-ray computed tomography to track the mechanical response of a vertebrate (Barnacle goose) long bone subjected to an axial compressive load, which is increased gradually until failure. A loading rig was mounted in an X-ray computed tomography system so that a time-lapse sequence of three-dimensional (3D) images of the bone's internal (cancellous or trabecular) structure could be recorded during loading. Five distinct types of deformation mechanism were observed in the cancellous part of the bone. These were (i) cracking, (ii) thinning (iii) tearing of cell walls and struts, (iv) notch formation, (v) necking and (vi) buckling. The results highlight that bone experiences brittle (notch formation and cracking), ductile (thinning, tearing and necking) and elastic (buckling) modes of deformation. Progressive deformation, leading to cracking was studied in detail using digital image correlation. The resulting strain maps were consistent with mechanisms occurring at a finer-length scale. This paper is the first to capture time-lapse 3D images of a whole long bone subject to loading until failure. The results serve as a unique reference for researchers interested in how bone responds to loading. For those using computer modelling, the study not only provides qualitative information for verification and validation of their simulations but also highlights that constitutive models for bone need to take into account a number of different deformation mechanisms.
Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter
2013-01-01
X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298
Monitoring of a concrete arch bridge during construction
NASA Astrophysics Data System (ADS)
Inaudi, Daniele; Ruefenacht, A.; von Arx, B.; Noher, H. P.; Vurpillot, Samuel; Glisic, Branko
2002-06-01
The Siggenthal Bridge is a concrete arch bridge with an arch span of 117 m, being built over the Limmat River in Baden, Switzerland. This bridge has been instrumented with 58 long- gage SOFO fiber optic deformation sensors, 2 inclinometers and 8 temperature sensors to monitor its deformations, curvatures and displacements during construction and int eh long-term. The sensor have been built installed successfully and the arch was monitored during the removal of the formwork and supports. It was therefore possible to observe the deformations of the arch wen being loaded by its dead load and by the daily temperature fluctuations. The measurements have shown that the temperature changes produce deformations of the same order of magnitude as the dead loads. The out-of-plain displacements obtained by double- integration of the measured curvatures are in good agreement with the direct triangulation measurements. Monitoring was also carried out during the construction of the superstructure, with the associated change of the load distribution in the arch. This paper briefly introduces the functional principle of the long-gage sensors used in this application, illustrates their installation and discusses the measurement results obtained during the bridge construction.
NASA Astrophysics Data System (ADS)
Kowarsch, Robert; Zhang, Jiajun; Sguazzo, Carmen; Hartmann, Stefan; Rembe, Christian
2017-06-01
The analysis of materials and geometries in tensile tests and the extraction of mechanic parameters is an important field in solid mechanics. Especially the measurement of thickness changes is important to obtain accurate strain information of specimens under tensile loads. Current optical measurement methods comprising 3D digital image correlation enable thickness-change measurement only with nm-resolution. We present a phase-shifting electronic speckle-pattern interferometer in combination with speckle-correlation technique to measure the 3D deformation. The phase-shift for the interferometer is introduced by fast wavelength tuning of a visible diode laser by injection current. In a post-processing step, both measurements can be combined to reconstruct the 3D deformation. In this contribution, results of a 3Ddeformation measurement for a polymer membrane are presented. These measurements show sufficient resolution for the detection of 3D deformations of thin specimen in tensile test. In future work we address the thickness changes of thin specimen under tensile loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiche, H. M.; New Mexico State University, Las Cruces, New Mexico 88003; Vogel, S. C.
2012-05-15
A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 deg. C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80 deg. around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). Wemore » present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 deg. C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.« less
NASA Astrophysics Data System (ADS)
Van Vliet-Lanoë, B.; Bonnet, S.; Hallegouët, B.; Laurent, M.
1997-09-01
In Brittany and SW England, evidence for low magnitude Quaternary seismicity can be found in sand pit exposures and beach sections. Deformation is especially well seen in alluvial and estuarine complexes resting on Late Pliocene sands or thick saprolite. The deformations are shallow, dominantly hydroplastic (high water-table) and led to overconsolidated sands, silts or clays. They reveal normal loading at micro (millimetric) and macro (decametric) scales as controlled by the local rheological properties of the sediments, by strikeslip faults associated with positive flower structures, folding, and intraformational water expulsion or hill slope sliding with reverse microfaulting. All the sites where these features occur, are in the vicinity of presumed active faults or steep slopes in highly fractured Proterozoic basement rocks indicating a possible shear zone. In most cases, these features are not associated with synsedimentary deformation, as strong superficial red soils are generally reworked by them. All these features are reworked by microfaulting after overconsolidation. Additional periglacial phenomena are superimposed on them and are often confused with them. Deformation occurred after the development of Holstenian peats (isotopic stage 11,400 ka BP) at Crozon (Brittany), after 317 ka BP (beginning of isotopic stage 9) in the Vilaine estuary, and in most other sites before the last rubified pedogenesis in the Middle Pleistocene (presumed isotopic stage 9). These dates correspond to the same episode that gave rise to the last main reactivation of the fossil cliff around 300 ka BP and to local uplift. One or several seismic clusters have taken place, probably due to delayed crustal rebound after a major glacial event (stage 10) and to rapid loading resulting from younger ice sheet growth (stage 8). Similar events occurred in late stage 7 and late stage 5. These events might have locally amplified the crustal deformation of the old Brittany and Cornubian Hercynian massifs resulting from a regional stress field especially from 400 ka to 200 ka BP. Stratigraphical, geodynamical and paleoclimatological implications are discussed.
Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E.
2014-03-28
As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not onlymore » the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.« less
NASA Technical Reports Server (NTRS)
Wiener, Bernard; Harris, Agnes E
1950-01-01
Time histories are presented of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber during abrupt pitching maneuvers at a pressure altitude of approximately 20,000 feet. The normal and pitching accelerations measured varied from -0.90b to 3.41g and from -0.73 to 0.80 radian per second per second (sic), respectively, with a Mach number variation of from 0.40 to o.75. The maximum horizontal-tail load measured was 17,250 pounds down. The maximum elevator load was 1900 pounds up. The stabilizer twisted a maximum of 0.76 degrees leading edge down at the tip. The greatest fuselage deflection at the tail was about 1.7 inches down.
Inelastic models of lithospheric stress - I. Theory and application to outer-rise plate deformation
Mueller, S.; Choy, G.L.; Spence, W.
1996-01-01
Outer-rise stress distributions determined in the manner that mechanical engineers evaluate inelastic stress distributions within conventional materials are contrasted with those predicted using simple elastic-plate models that are frequently encountered in studies of outer-rise seismicity. This comparison indicates that the latter are inherently inappropriate for studies of intraplate earthquakes, which are a direct manifestation of lithospheric inelasticity. We demonstrate that the common practice of truncating elastically superimposed stress profiles so that they are not permitted to exceed laboratory-based estimates of lithospheric yield strength will result in an accurate characterization of lithospheric stress only under relatively restrictive circumstances. In contrast to elastic-plate models, which predict that lithospheric stress distributions depend exclusively upon the current load, inelastic plate models predict that stress distributions are also significantly influenced by the plate-loading history, and, in many cases, this influence is the dominant factor in determining the style of potential seismicity (e.g. thrust versus normal faulting). Numerous 'intuitive' interpretations of outer-rise earthquakes have been founded upon the implicit assumption that a unique relationship exists between a specified combination of plate curvature and in-plane force, and the resulting lithospheric stress distribution. We demonstrate that the profound influence of deformation history often invalidates such interpretations. Finally, we examine the reliability of 'yield envelope' representations of lithospheric strength that are constructed on the basis of empirically determined frictional sliding relationships and silicate plastic-flow laws. Although representations of this nature underestimate the strength of some major interplate faults, such as the San Andreas, they appear to represent a reliable characterization of the strength of intraplate oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Pakkratoke, M.; Sanponpute, T.
2017-09-01
The penetrated depth of the Rockwell hardness testing machine is normally not more than 0.260 mm. Using commercial load cell cannot achieve the proposed force calibration according to ISO 6508-2[1]. For these reason, the high stiffness load cell (HSL) was fabricated. Its obvious advantage is deformation less than 0.020 mm at 150 kgf maximum load applied. The HSL prototype was designed in concept of direct compression and then confirmed with finite element analysis, FEA. The results showed that the maximum deformation was lower than 0.012 mm at capacity.
Su, Kuo-Chih; Chang, Chih-Han; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee
2013-06-01
This study uses a fluid-structure interaction (FSI) simulation to evaluate the fluid flow in a dental intrapulpal chamber induced by the deformation of the tooth structure during loading in various directions. The FSI is used for the biomechanics simulation of dental intrapulpal responses with the force loading gradually increasing from 0 to 100N at 0°, 30°, 45°, 60°, and 90° on the tooth surface in 1s, respectively. The effect of stress or deformation on tooth and fluid flow changes in the pulp chamber are evaluated. A horizontal loading force on a tooth may induce tooth structure deformation, which increases fluid flow velocity in the coronal pulp. Thus, horizontal loading on a tooth may easily induce tooth pain. This study suggests that experiments to investigate the relationship between loading in various directions and dental pain should avoid measuring the bulk pulpal fluid flow from radicular pulp, but rather should measure the dentinal fluid flow in the dentinal tubules or coronal pulp. The FSI analysis used here could provide a powerful tool for investigating problems with coupled solid and fluid structures in dental biomechanics. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, C. W.; Burgmann, R.; Fu, Y.; Dutilleul, P.
2015-12-01
In California the accumulated winter snow pack in the Sierra Nevada, reservoirs and groundwater water storage in the Central Valley follow an annual periodic cycle and each contribute to the resulting surface deformation, which can be observed using GPS time series. The ongoing drought conditions in the western U.S. amplify the observed uplift signal as the Earth's crust responds to the mass changes associated with the water loss. The near surface hydrological mass loss can result in annual stress changes of ~1kPa at seismogenic depths. Similarly, small static stress perturbations have previously been associated with changes in earthquake activity. Periodicity analysis of earthquake catalog time series suggest that periods of 4-, 6-, 12-, and 14.24-months are statistically significant in regions of California, and provide documentation for the modulation of earthquake populations at periods of natural loading cycles. Knowledge of what governs the timing of earthquakes is essential to understanding the nature of the earthquake cycle. If small static stress changes influence the timing of earthquakes, then one could expect that events will occur more rapidly during periods of greater external load increases. To test this hypothesis we develop a loading model using GPS derived surface water storage for California and calculate the stress change at seismogenic depths for different faulting geometries. We then evaluate the degree of correlation between the stress models and the seismicity taking into consideration the variable amplitude of stress cycles, the orientation of transient load stress with respect to the background stress field, and the geometry of active faults revealed by focal mechanisms.
Mechanical basis of bone strength: influence of bone material, bone structure and muscle action.
Hart, N H; Nimphius, S; Rantalainen, T; Ireland, A; Siafarikas, A; Newton, R U
2017-09-01
This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.
Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading
NASA Astrophysics Data System (ADS)
Abrosimov, N. A.; Novoseltseva, N. A.
2015-09-01
A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.
Fabrication of wrist-like SMA-based actuator by double smart soft composite casting
NASA Astrophysics Data System (ADS)
Rodrigue, Hugo; Wei, Wang; Bhandari, Binayak; Ahn, Sung-Hoon
2015-12-01
A new manufacturing method for smart soft composite (SSC) actuators that consists of double casting a SSC actuator to produce an actuator with non-linear shape memory alloy (SMA) wire positioning is proposed. This method is used to manufacture a tube-shaped SSC actuator in which the SMA wires follow the curvature of the tube and is capable of pure-twisting deformations while sustaining a cantilever load. The concept is tested by measuring the maximum twisting angle and a simple control method is proposed to control the twisting angle of the actuator. Then, a soft robotic wrist with a length of 18 cm is built, its load-carrying capability is tested by measuring the cantilever force required for deforming the actuator, and its load-carrying capability during actuation is tested by loading one end with different objects and actuating the actuator. This wrist actuator shows good repeatability, is capable of twisting deformations up to 25° while holding objects weighing 100 g, and can sustain loads above 2 N without undergoing buckling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, X. C.; Jian, W. R.; Huang, J. Y.
We investigate deformation and damage of a Zr-based bulk metallic glass (BMG) and its Ta particle-reinforced composite (MGMC) under impact loading, as well as quasi-static tension for comparison. Yield strength, spall strength, and damage accumulation rate are obtained from free-surface velocity histories, and MGMC appears to be more damage-resistant. Scanning electron microscopy, electron back scattering diffraction and x-ray computed tomography, are utilized for characterizing microstructures, which show features consistent with macroscopic measurements. Different damage and fracture modes are observed for BMG and MGMC. Multiple well-defined spall planes are observed in BMG, while isolated and scattered cracking around reinforced particles dominatesmore » fracture of MGMC. Particle–matrix interface serves as the source and barrier to crack nucleation and propagation under both quasi-static and impact loading. Finally, deformation twinning and grain refinement play a key role in plastic deformation during shock loading but not in quasi-static loading. In addition, 3D cup-cone structures are resolved in BMG, but not in MGMC due to its heterogeneous stress field.« less
Tang, X. C.; Jian, W. R.; Huang, J. Y.; ...
2017-11-11
We investigate deformation and damage of a Zr-based bulk metallic glass (BMG) and its Ta particle-reinforced composite (MGMC) under impact loading, as well as quasi-static tension for comparison. Yield strength, spall strength, and damage accumulation rate are obtained from free-surface velocity histories, and MGMC appears to be more damage-resistant. Scanning electron microscopy, electron back scattering diffraction and x-ray computed tomography, are utilized for characterizing microstructures, which show features consistent with macroscopic measurements. Different damage and fracture modes are observed for BMG and MGMC. Multiple well-defined spall planes are observed in BMG, while isolated and scattered cracking around reinforced particles dominatesmore » fracture of MGMC. Particle–matrix interface serves as the source and barrier to crack nucleation and propagation under both quasi-static and impact loading. Finally, deformation twinning and grain refinement play a key role in plastic deformation during shock loading but not in quasi-static loading. In addition, 3D cup-cone structures are resolved in BMG, but not in MGMC due to its heterogeneous stress field.« less
Deformation-Induced Microstructural Banding in TRIP Steels
NASA Astrophysics Data System (ADS)
Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.
2018-05-01
Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.
Deformation-Induced Microstructural Banding in TRIP Steels
NASA Astrophysics Data System (ADS)
Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.
2018-07-01
Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.
NASA Astrophysics Data System (ADS)
Klein, M.; Eifler, D.
2010-07-01
To analyse interactions between single steps of process chains, variations in material properties, especially the microstructure and the resulting mechanical properties, specimens with tension screw geometry were manufactured with five process chains. The different process chains as well as their parameters influence the near surface condition and consequently the fatigue behaviour in a characteristic manner. The cyclic deformation behaviour of these specimens can be benchmarked equivalently with conventional strain measurements as well as with high-precision temperature and electrical resistance measurements. The development of temperature-values provides substantial information on cyclic load dependent changes in the microstructure.
The physical volcanology of Mars
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.; Wilson, Lionel; Zuber, Maria T.
1992-01-01
The physical volcanology of Mars is reviewed, with particular attention given to the diversity of volcanic landforms, the implied styles of eruption associated with the construction of these landforms, the inferred internal structure of the volcanoes, and the influence that the eruptions have had on the Martian environment (both local and global in scale). Volcanism in the central highlands appears to have been explosive in character, while most of the constructional activity in the northern plains was effusive. Highlands volcanism appears to be relatively old compared to that in the northern hemisphere. There is evidence for the existence of large magma chambers and very high effusion rate eruptions on Mars. Tectonic deformation associated with volcanic constructs is primarily a consequence of loading and magma transport, while deformation in the volcanic plains reflects stresses associated with Tharsis and major impact basins.
Earth's surface loading study using InSAR
NASA Astrophysics Data System (ADS)
Amelung, F.; Zhao, W.; Doin, M. P.
2014-12-01
Earth's surface loading/unloading such as glacier retreat, lake water level change, ocean tide, cause measurable (centimeter to millimeter) surface deformation from Synthetic Aperture Radar Interferometry (InSAR). Such seasonal or decadal deformation signals are useful for the estimation of the amount of load and the parameterization of crust and upper mantle - typically under an elastic or a visco-elastic mechanism. Since 2010, we established a study of surface loading using small baseline InSAR time-series analysis. Four sites are included in this study, which are Vatnajokull ice cap, Lake Yamzho Yumco, Petermann glacier, and Barnes ice cap using different satellites such as ERS1/2, Envisat, Radarsat-2, TerraSAR-X. We present results that mainly answer three questions: 1) Is InSAR time-series capable for the detection of millimeter level deformation due to surface loading; 2) When the Earth's rheology is known, how much load change occured; 3) When the surface loading is known, what are the Earth's parameters such as Young's modulus, viscosity. For glacier retreat problem, we introduce a new model for the ice mass loss estimation considering the spatial distribution of ice loss. For lake unloading problem, modeled elastic parameters are useful for the comparison to other 1-D models, e.g. the model based on seismic data.
NASA Astrophysics Data System (ADS)
Mémin, Anthony; Viswanathan, Vishnu; Fienga, Agnes; Santamarìa-Gómez, Alvaro; Boy, Jean-Paul; Cavalié, Olivier; Deleflie, Florent; Exertier, Pierre; Bernard, Jean-Daniel; Hinderer, Jacques
2017-04-01
Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the observations. We investigate the discrepancy observed in the seasonal variations of the position at the CERGA station, South of France. We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR, LLR and InSAR. We investigate the consistency between the station motions deduced from these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models. Using the surface-mass models, we estimate that the seasonal signal due to loading deformation at the CERGA station is about 8-9, 1-2 and 1-2 mm peak-to-peak in Up, North and East component, respectively. There is a very good correlation between GPS observations and non-tidal loading predicted deformation due to atmosphere, ocean and hydrology which is the main driver of seasonal signal at CERGA. Despite large error bars, LLR observations agree reasonably well with GPS and non-tidal loading predictions in Up component. Local deformation as observed by InSAR is very well correlated with GPS observations corrected for non-tidal loading. Finally, we estimate local mass changes using the absolute gravity measurement campaigns available at the station and the global models of surface-mass change. We compute the induced station motion that we compare with the local deformation observed by InSAR and GPS.
Modelling cavitation erosion using fluid–material interaction simulations
Chahine, Georges L.; Hsiao, Chao-Tsung
2015-01-01
Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140
NASA Technical Reports Server (NTRS)
Fleming, Gary A.; Soto, Hector L.; South, Bruce W.
2002-01-01
Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.
NASA Astrophysics Data System (ADS)
Zhang, S. F.; Yin, J.; Liu, Y.; Sha, Z. H.; Ma, F. J.
2016-11-01
There always exists severe non-uniform wear of brake pad in large-megawatt wind turbine brake during the braking process, which has the brake pad worn out in advance and even threats the safety production of wind turbine. The root cause of this phenomenon is the non-uniform deformation caused by thermal-structural coupling effect between brake pad and disc while braking under the conditions of both high speed and heavy load. For this problem, mathematical model of thermal-structural coupling analysis is built. Based on the topology optimization method of Solid Isotropic Microstructures with Penalization, SIMP, structure topology optimization of brake pad is developed considering the deformation caused by thermal-structural coupling effect. The objective function is the minimum flexibility, and the structure topology optimization model of brake pad is established after indirect thermal- structural coupling analysis. Compared with the optimization result considering non-thermal- structural coupling, the conspicuous influence of thermal effect on brake pad wear and deformation is proven as well as the rationality of taking thermal-structural coupling effect as optimization condition. Reconstructed model is built according to the result, meanwhile analysis for verification is carried out with the same working condition. This study provides theoretical foundation for the design of high-speed and heavy-load brake pad. The new structure may provide design reference for improving the stress condition between brake pad and disc, enhancing the use ratio of friction material and increasing the working performance of large-megawatt wind turbine brake.
New Deformation-Induced Nanostructure in Silicon.
Wang, Bo; Zhang, Zhenyu; Chang, Keke; Cui, Junfeng; Rosenkranz, Andreas; Yu, Jinhong; Lin, Cheng-Te; Chen, Guoxin; Zang, Ketao; Luo, Jun; Jiang, Nan; Guo, Dongming
2018-06-18
Nanostructures in silicon (Si) induced by phase transformations have been investigated during the past 50 years. Performances of nanostructures are improved compared to that of bulk counterparts. Nevertheless, the confinement and loading conditions are insufficient to machine and fabricate high-performance devices. As a consequence, nanostructures fabricated by nanoscale deformation at loading speeds of m/s have not been demonstrated yet. In this study, grinding or scratching at a speed of 40.2 m/s was performed on a custom-made setup by an especially designed diamond tip (calculated stress under the diamond tip in the order of 5.11 GPa). This leads to a novel approach for the fabrication of nanostructures by nanoscale deformation at loading speeds of m/s. A new deformation-induced nanostructure was observed by transmission electron microscopy (TEM), consisting of an amorphous phase, a new tetragonal phase, slip bands, twinning superlattices, and a single crystal. The formation mechanism of the new phase was elucidated by ab initio simulations at shear stress of about 2.16 GPa. This approach opens a new route for the fabrication of nanostructures by nanoscale deformation at speeds of m/s. Our findings provide new insights for potential applications in transistors, integrated circuits, diodes, solar cells, and energy storage systems.
Buckling analysis of planar compression micro-springs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jing; Sui, Li; Shi, Gengchen
2015-04-15
Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software undermore » two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.« less
The effects of exercise on human articular cartilage
Eckstein, F; Hudelmaier, M; Putz, R
2006-01-01
The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass. PMID:16637874
The effects of exercise on human articular cartilage.
Eckstein, F; Hudelmaier, M; Putz, R
2006-04-01
The effects of exercise on articular hyaline articular cartilage have traditionally been examined in animal models, but until recently little information has been available on human cartilage. Magnetic resonance imaging now permits cartilage morphology and composition to be analysed quantitatively in vivo. This review briefly describes the methodological background of quantitative cartilage imaging and summarizes work on short-term (deformational behaviour) and long-term (functional adaptation) effects of exercise on human articular cartilage. Current findings suggest that human cartilage deforms very little in vivo during physiological activities and recovers from deformation within 90 min after loading. Whereas cartilage deformation appears to become less with increasing age, sex and physical training status do not seem to affect in vivo deformational behaviour. There is now good evidence that cartilage undergoes some type of atrophy (thinning) under reduced loading conditions, such as with postoperative immobilization and paraplegia. However, increased loading (as encountered by elite athletes) does not appear to be associated with increased average cartilage thickness. Findings in twins, however, suggest a strong genetic contribution to cartilage morphology. Potential reasons for the inability of cartilage to adapt to mechanical stimuli include a lack of evolutionary pressure and a decoupling of mechanical competence and tissue mass.
Tao, Lei; Shahsavari, Rouzbeh
2017-07-19
Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.
The influence of climatically-driven surface loading variations on continental strain and seismicity
NASA Astrophysics Data System (ADS)
Craig, Tim; Calais, Eric; Fleitout, Luce; Bollinger, Laurent; Scotti, Oona
2016-04-01
In slowly deforming regions of plate interiors, secondary sources of stress and strain can result in transient deformation rates comparable to, or greater than, the background tectonic rates. Highly variable in space and time, these transients have the potential to influence the spatio-temporal distribution of seismicity, interfering with any background tectonic effects to either promote or inhibit the failure of pre-existing faults, and potentially leading to a clustered, or 'pulse-like', seismic history. Here, we investigate the ways in which the large-scale deformation field resulting from climatically-controlled changes in surface ice mass over the Pleistocene and Holocene may have influenced not only the seismicity of glaciated regions, but also the wider seismicity around the ice periphery. We first use a set of geodynamic models to demonstrate that a major pulse of seismic activity occurring in Fennoscandia, coincident with the time of end-glaciation, occurred in a setting where the contemporaneous horizontal strain-rate resulting from the changing ice mass, was extensional - opposite to the reverse sense of coseismic displacement accommodated on these faults. Therefore, faulting did not release extensional elastic strain that was building up at the time of failure, but compressional elastic strain that had accumulated in the lithosphere on timescales longer than the glacial cycle, illustrating the potential for a non-tectonic trigger to tap in to the background tectonic stress-state. We then move on to investigate the more distal influence that changing ice (and ocean) volumes may have had on the evolving strain field across intraplate Europe, how this is reflected in the seismicity across intraplate Europe, and what impact this might have on the paleoseismic record.
The New IERS Special Bureau for Loading (SBL)
NASA Technical Reports Server (NTRS)
vanDam, Tonie; Plag, Hans-Peter; Blewitt, Geoffrey; Boy, Jean-Paul; Francis, Olivier; Gegout, Pascal; Kierulf, Halfdan Pascal; Sato, Tadahiro; Scherneck, Hans-Georg; Wahr, John
2002-01-01
Currently, the establishment of the International Earth Rotation Service (IERS) Special Bureau for Loading (SBL) is in progress as part of the IERS Global Geophysical Fluids Center (GGFC). The main purpose of the SBL is to provide reliable, consistent model predictions of loading signals that have been thoroughly tested and validated. The products will describe at least the surface deformation, gravity signal and geo-center variations due to the various surface loading processes in reference frames relevant for direct comparison with existing geodetic observing techniques. To achieve these goals, major scientific advances are required with respect to the Earth model, the theory and algorithms used to model deformations of the Earth as well as improvements in the observational data related to surface loading.
Surface Accuracy and Pointing Error Prediction of a 32 m Diameter Class Radio Astronomy Telescope
NASA Astrophysics Data System (ADS)
Azankpo, Severin
2017-03-01
The African Very-long-baseline interferometry Network (AVN) is a joint project between South Africa and eight partner African countries aimed at establishing a VLBI (Very-Long-Baseline Interferometry) capable network of radio telescopes across the African continent. An existing structure that is earmarked for this project, is a 32 m diameter antenna located in Ghana that has become obsolete due to advances in telecommunication. The first phase of the conversion of this Ghana antenna into a radio astronomy telescope is to upgrade the antenna to observe at 5 GHz to 6.7 GHz frequency and then later to 18 GHz within a required performing tolerance. The surface and pointing accuracies for a radio telescope are much more stringent than that of a telecommunication antenna. The mechanical pointing accuracy of such telescopes is influenced by factors such as mechanical alignment, structural deformation, and servo drive train errors. The current research investigates the numerical simulation of the surface and pointing accuracies of the Ghana 32 m diameter radio astronomy telescope due to its structural deformation mainly influenced by gravity, wind and thermal loads.
FEM analysis of escape capsule suffered to gas explosion
NASA Astrophysics Data System (ADS)
Li, Chang-lu; Mei, Rui-bin; Li, Chang-sheng; Cai, Ban; Liu, Xiang-hua
2013-05-01
Escape capsules are new devices for underground coal mines that provide air, water, food and supplies in the event of an emergency in where miners are unable to escape. It is difficult to carry out the experiments of explosion and safety because the danger and nonrepeatability of explosion. The structure deformation and distribution of equivalent stress has been investigated under different impact pressure conditions including unimodal and bimodal loads based on the FEM and software LS-DYNA. The results show that the distribution of deformation and equivalent stress has the same trend on the same surface with the increment of explosion pressure. The deformation and stress are larger with side impact pressure compared with that of the same front impact pressure. Furthermore, the maximum equivalent stress is 246MPa and 260MPa on the front and sides of capsule with five times for national standard impact pressure 1.5MPa. Under these conditions, the deformation is less than about 9.97mm and 10.47mm, respectively. When the front impact pressure is 2.0MPa, the deformation of capsule still belongs to elasticity but the less plastic deformation occurs on the Ushape stiffening channels with the same side impact pressure. However, it is safe for capsule structure because the equivalent stress 283MPa is much less than the tensile strength. It is noted that bimodal load accelerates the capsule deformation so that it is more dangerous compared with unimodal load.
NASA Astrophysics Data System (ADS)
Collettini, C.; de Paola, N.; Faulkner, D.
2007-12-01
We have taken an experimental approach to understand and quantify the deformation processes and fluid flow within anhydrite-bearing fault damage zones during the seismic cycle. Triaxial loading tests have been performed on borehole samples of anhydrites at room temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The tests were conducted on samples with different grain sizes (10 microns to 1 mm) that were cored in different directions relative to the macroscopic foliation. Static permeability measurements have been carried out to determine the permeability anisotropy and sensitivity of the permeability on the effective pressure (Pc - Pf). Our results show that the brittle-ductile transition occurs for effective pressures (Pe) between 20 to 40 MPa and is almost independent of fabric orientation and grain size. Brittle failure is localized along discrete fractures and is always associated with a sudden stress drop. Conversely, ductile failure occurs by distributed deformation along cataclastic bands. In this case no stress drop is observed. Static permeability measurements show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests, the evolution of the permeability is controlled by the failure mode: permeability begins to increase significantly at 40% and 80% of the max load for samples displaying brittle and ductile behaviour, respectively. The permeability values, immediately prior to failure, are about three orders of magnitude higher than the initial values. Multiple cycling tests, within the ductile field, show that permeability starts increasing at only 40% and 30% of the max load during the second and third loading cycle, respectively. Our results show that the history of deformation and the mode of deformation can control the evolution of the permeability, and that they are more significant than other factors such as fabric and grain size. In natural environments, fluid pressure fluctuations, such as might be experienced during the seismic cycle, can promote a switch from localized (brittle behaviour) to more distributed (ductile behaviour) deformation, leading to complex permeability patterns.
Development of an aeroelastic methodology for surface morphing rotors
NASA Astrophysics Data System (ADS)
Cook, James R.
Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for transmission of force and deflection information to achieve an aeroelastic coupling updated at each time step. The method is validated first by comparing the integrated aerodynamic work at CFD and CSD nodes to verify work conservation across the interface. Second, the method is verified by comparing the sectional blade loads and deflections of a rotor in hover and in forward flight with experimental data. Finally, stability analyses for pitch/plunge flutter and camber flutter are performed with comprehensive CSD/low-order-aerodynamics and tightly coupled CFD/CSD simulations and compared to analytical solutions of Peters' thin airfoil theory to verify proper aeroelastic behavior. The effects of simple harmonic camber actuation are examined and compared to the response predicted by Peters' finite-state (F-S) theory. In anticipation of active rotor experiments inside enclosed facilities, computational simulations are performed to evaluate the capability of CFD for accurately simulating flow inside enclosed volumes. A computational methodology for accurately simulating a rotor inside a test chamber is developed to determine the influence of test facility components and turbulence modeling and performance predictions. A number of factors that influence the physical accuracy of the simulation, such as temporal resolution, grid resolution, and aeroelasticity are also evaluated.
Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G
2016-02-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.
Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.
2016-01-01
The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446
NASA Astrophysics Data System (ADS)
Ding, J.; Chester, F. M.; Chester, J. S.; Zhu, C.; Shen, X.; Arson, C. F.
2016-12-01
Synthetic salt-rock is produced through uniaxial consolidation of sieved granular salt (0.3-0.355 mm grain diam.) at 75-107 MPa pressure and 100-200 0 C for 15 min duration, to produce low porosity (3%-6%) aggregates. Based on microstructural observations, consolidation mechanisms are grain rearrangement, intragranular plastic flow, and minor microfracture and recrystallization. Following consolidation, the salt-rock is deformed by cyclic, triaxial loading at room temperature and 4 MPa confining pressure to investigate microfracture development, closure and healing effects on elastic properties and flow strength. Load cycles are performed within the elastic regime, up to yielding, and during steady ductile flow. The mechanical properties are determined using an internal load cell and strain gages bonded to the samples. Elastic properties vary systematically during deformation reflecting cracking and pore and grain shape changes. Between triaxial load cycles, samples are held at isostatic loads for durations up to one day to determine healing rates and strength recovery; a change in mechanical behavior is observed when significant healing is induced. The microstructures of all samples are characterized before and after cyclic loading using optical microscopy. The consolidation and cyclic triaxial tests, and optical microscopy investigations, are conducted in a controlled low-humidity environment to ensure nominally dry conditions. The microstructures of samples from different stages of cyclic triaxial deformation indicate that intracrystalline plasticity, accompanied by minor recovery by recrystallization, is dominant; but, grain-boundary crack opening also becomes significant. Grain-boundary microcracks have preferred orientations that are sub-parallel to the load axis. The stress-strain behavior correlates with microcrack fabrics and densities during cyclic loading. These experiments are used to both inform and test continuum damage mechanics models of salt-rock deformation in the semibrittle domain, as well as to help design and optimize salt-rock storage facilities.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua
2018-06-01
The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.
Biomechanical analysis on fracture risk associated with bone deformity
NASA Astrophysics Data System (ADS)
Kamal, Nur Amalina Nadiah Mustafa; Som, Mohd Hanafi Mat; Basaruddin, Khairul Salleh; Daud, Ruslizam
2017-09-01
Osteogenesis Imperfecta (OI) is a disease related to bone deformity and is also known as `brittle bone' disease. Currently, medical personnel predict the bone fracture solely based on their experience. In this study, the prediction for risk of fracture was carried out by using finite element analysis on the simulated OI bone of femur. The main objective of this research was to analyze the fracture risk of OI-affected bone with respect to various loadings. A total of 12 models of OI bone were developed by applying four load cases and the angle of deformation for each of the models was calculated. The models were differentiated into four groups, namely standard, light, mild and severe. The results show that only a small amount of load is required to increase the fracture risk of the bone when the model is tested with hopping conditions. The analysis also shows that the torsional load gives a small effect to the increase of the fracture risk of the bone.
Sas, Wojciech; Głuchowski, Andrzej; Gabryś, Katarzyna; Soból, Emil; Szymański, Alojzy
2016-01-01
Recycled concrete aggregate (RCA) is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr) as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law. PMID:28773905
NASA Technical Reports Server (NTRS)
Burrows, Leroy T.
1993-01-01
During the 1960's over 30 full-scale aircraft crash tests were conducted by the Flight Safety Foundation under contract to the Aviation Applied Technology Directorate (AATD) of the U.S. Army Aviation Systems Command (AVSCOM). The purpose of these tests were to conduct crash injury investigations that would provide a basis for the formulation of sound crash resistance design criteria for light fixed-wing and rotary wing aircraft. This resulted in the Crash Survival Design Criteria Designer's Guide which was first published in 1967 and has been revised numerous times, the last being in 1989. Full-scale aircraft crash testing is an expensive way to investigate structural deformations of occupied spaces and to determine the decelerative loadings experienced by occupants in a crash. This gave initial impetus to the U.S. Army to develop analytical methods to predict the dynamic response of aircraft structures in a crash. It was believed that such analytical tools could be very useful in the preliminary design stage of a new helicopter system which is required to demonstrate a level of crash resistance and had to be more cost effective than full-scale crash tests or numerous component design support tests. From an economic point of view, it is more efficient to optimize for the incorporation of crash resistance features early in the design stage. However, during preliminary design it is doubtful if sufficient design details, which influence the exact plastic deformation shape of structural elements, will be available. The availability of simple procedures to predict energy absorption and load-deformation characteristics will allow the designer to initiate valuable cost, weight, and geometry tradeoff studies. The development of these procedures will require some testing of typical specimens. This testing should, as a minimum, verify the validity of proposed procedures for providing pertinent nonlinear load-deformation data. It was hoped that through the use of these analytical models, the designer could optimize aircraft design for crash resistance from both a weight and cost increment standpoint, thus enhancing the acceptance of the design criteria for crash resistance.
Low modulus biomimetic microgel particles with high loading of hemoglobin.
Chen, Kai; Merkel, Timothy J; Pandya, Ashish; Napier, Mary E; Luft, J Christopher; Daniel, Will; Sheiko, Sergei; DeSimone, Joseph M
2012-09-10
We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT (particle replication in nonwetting templates) technique. Low cross-linking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained without a significant effect on particle stability and shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen, as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with a Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood.
Global seasonal strain and stress models derived from GRACE loading, and their impact on seismicity
NASA Astrophysics Data System (ADS)
Chanard, K.; Fleitout, L.; Calais, E.; Craig, T. J.; Rebischung, P.; Avouac, J. P.
2017-12-01
Loading by continental water, atmosphere and oceans deforms the Earth at various spatio-temporal scales, inducing crustal and mantelic stress perturbations that may play a role in earthquake triggering.Deformation of the Earth by this surface loading is observed in GNSS position time series. While various models predict well vertical observations, explaining horizontal displacements remains challenging. We model the elastic deformation induced by loading derived from GRACE for coefficients 2 and higher. We estimate the degree-1 deformation field by comparison between predictions of our model and IGS-repro2 solutions at a globally distributed network of 700 GNSS sites, separating the horizontal and vertical components to avoid biases between components. The misfit between model and data is reduced compared to previous studies, particularly on the horizontal component. The associated geocenter motion time series are consistent with results derived from other datasets. We also discuss the impact on our results of systematic errors in GNSS geodetic products, in particular of the draconitic error.We then compute stress tensors time series induced by GRACE loads and discuss the potential link between large scale seasonal mass redistributions and seismicity. Within the crust, we estimate hydrologically induced stresses in the intraplate New Madrid Seismic Zone, where secular stressing rates are unmeasurably low. We show that a significant variation in the rate of micro-earthquakes at annual and multi-annual timescales coincides with stresses induced by hydrological loading in the upper Mississippi embayment, with no significant phase-lag, directly modulating regional seismicity. We also investigate pressure variations in the mantle transition zone and discuss potential correlations between the statistically significant observed seasonality of deep-focus earthquakes, most likely due to mineralogical transformations, and surface hydrological loading.
Low Modulus Biomimetic Microgel Particles with High Loading of Hemoglobin
Chen, Kai; Merkel, Timothy J.; Pandya, Ashish; Napier, Mary E.; Luft, J. Christopher; Daniel, Will; Sheiko, Sergei
2012-01-01
We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT® (Particle Replication In Non-wetting Templates) technique. Low crosslinking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained, without a significant effect on particle stability, shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1,000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood. PMID:22852860
Donaldson, Finn E; Nyman, Edward; Coburn, James C
2015-07-16
Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation. Published by Elsevier Ltd.
Atomistic Origin of Deformation Twinning in Biomineral Aragonite.
Liu, Jialin; Huang, Zaiwang; Pan, Zhiliang; Wei, Qiuming; Li, Xiaodong; Qi, Yue
2017-03-10
Deformation twinning rarely occurs in mineral materials which typically show brittle fracture. Surprisingly, it has recently been observed in the biomineral aragonite phase in nacre under high rate impact loading. In this Letter, the twinning tendency and the competition between fracture and deformation twinning were revealed by first principles calculations. The ratio of the unstable stacking fault energy and the stacking fault energy in orthorhombic aragonite is hitherto the highest in a broad range of metallic and oxide materials. The underlining physics for this high ratio is the multineighbor shared ionic bonds and the unique relaxation process during sliding in the aragonite structure. Overall, the unique deformation twining along with other highly coordinated deformation mechanisms synergistically work in the hierarchical structure of nacre, leading to the remarkable strengthening and toughening of nacre upon dynamic loading, and thus protecting the mother-of-pearl from predatory attacks.
Lu, L.; Huang, J. W.; Fan, D.; ...
2016-08-29
In situ synchrotron x-ray imaging and diffraction are used to investigate anisotropic deformation of an extruded magnesium alloy AZ31 under uniaxial compression along two different directions, with the loading axis (LA) either parallel or perpendicular to the extrusion direction (ED), referred to as LA∥ED and LAED, respectively. Multiscale measurements including stress–strain curves (macroscale), x-ray digital image correlation (mesoscale), and diffraction (microscale) are obtained simultaneously. Electron backscatter diffraction is performed on samples collected at various strains to characterize deformation twins. The rapid increase in strain hardening rate for the LA∥ED loading is attributed to marked {101¯2} extension twinning and subsequent homogenizationmore » of deformation, while dislocation motion leads to inhomogeneous deformation and a decrease in strain hardening rate.« less
Teng, Zhaogang; Wang, Chunyan; Tang, Yuxia; Li, Wei; Bao, Lei; Zhang, Xuehua; Su, Xiaodan; Zhang, Fan; Zhang, Junjie; Wang, Shouju; Zhao, Dongyuan; Lu, Guangming
2018-01-31
Mesoporous solids have been widely used in various biomedical areas such as drug delivery and tumor therapy. Although deformability has been recognized as a prime important characteristic influencing cellular uptake, the synthesis of deformable mesoporous solids is still a great challenge. Herein, deformable thioether-, benzene-, and ethane-bridged hollow periodic mesoporous organosilica (HPMO) nanocapsules have successfully been synthesized for the first time by a preferential etching approach. The prepared HPMO nanocapsules possess uniform diameters (240-310 nm), high surface areas (up to 878 m 2 ·g -1 ), well-defined mesopores (2.6-3.2 nm), and large pore volumes (0.33-0.75 m 3 ·g -1 ). Most importantly, the HPMO nanocapsules simultaneously have large hollow cavities (164-270 nm), thin shell thicknesses (20-38 nm), and abundant organic moiety in the shells, which endow a lower Young's modulus (E Y ) of 3.95 MPa than that of solid PMO nanoparticles (251 MPa). The HPMOs with low E Y are intrinsically flexible and deformable in the solution, which has been well-characterized by liquid cell electron microscopy. More interestingly, it is found that the deformable HPMOs can easily enter into human breast cancer MCF-7 cells via a spherical-to-oval morphology change, resulting in a 26-fold enhancement in cellular uptake (43.1% cells internalized with nanocapsules versus 1.65% cells with solid counterparts). The deformable HPMO nanocapsules were further loaded with anticancer drug doxorubicin (DOX), which shows high killing effects for MCF-7 cells, demonstrating the promise for biomedical applications.
Yang, Peng-Fei; Kriechbaumer, Andreas; Albracht, Kirsten; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Shang, Peng; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn
2015-02-05
The mechanical relationship between bone and muscle has been long recognized. However, it still remains unclear how muscles exactly load on bone. In this study, utilizing an optical segment tracking technique, the in vivo tibia loading regimes in terms of tibia segment deformation in humans were investigated during walking, forefoot and rear foot stair ascent and running and isometric plantar flexion. Results suggested that the proximal tibia primarily bends to the posterior aspect and twists to the external aspect with respect to the distal tibia. During walking, peak posterior bending and peak torsion occurred in the first half (22%) and second half (76%) of the stance phase, respectively. During stair ascent, two noticeable peaks of torsion were found with forefoot strike (38% and 82% of stance phase), but only one peak of torsion was found with rear foot strike (78% of stance phase). The torsional deformation angle during both stair ascent and running was larger with forefoot strike than rear foot strike. During isometric plantar flexion, the tibia deformation regimes were characterized more by torsion (maximum 1.35°) than bending (maximum 0.52°). To conclude, bending and torsion predominated the tibia loading regimes during the investigated activities. Tibia torsional deformation is closely related to calf muscle contractions, which further confirm the notion of the muscle-bone mechanical link and shift the focus from loading magnitude to loading regimes in bone mechanobiology. It thus is speculated that torsion is another, yet under-rated factor, besides the compression and tension, to drive long bone mechano-adaptation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?
NASA Astrophysics Data System (ADS)
Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.
2017-12-01
The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.
Aeroelastic deformation of a perforated strip
NASA Astrophysics Data System (ADS)
Guttag, M.; Karimi, H. H.; Falcón, C.; Reis, P. M.
2018-01-01
We perform a combined experimental and numerical investigation into the static deformation of perforated elastic strips under uniform aerodynamic loading at high-Reynolds-number conditions. The static shape of the porous strips, clamped either horizontally or vertically, is quantified as they are deformed by wind loading, induced by a horizontal flow. The experimental profiles are compared to numerical simulations using a reduced model that takes into account the normal drag force on the deformed surface. For both configurations (vertical and horizontal clamping), we compute the drag coefficient of the strip, by fitting the experimental data to the model, and find that it decreases as a function of porosity. Surprisingly, we find that, for every value of porosity, the drag coefficients for the horizontal configuration are larger than those of the vertical configuration. For all data in both configurations, with the exception of the continuous strip clamped vertically, a linear relation is found between the porosity and drag. Making use of this linearity, we can rescale the drag coefficient in a way that it becomes constant as a function of the Cauchy number, which relates the force due to fluid loading on the elastic strip to its bending rigidity, independently of the material properties and porosity of the strip and the flow speed. Our findings on flexible strips are contrasted to previous work on rigid perforated plates. These results highlight some open questions regarding the usage of reduced models to describe the deformation of flexible structures subjected to aerodynamic loading.
Analysis of prestressed concrete slab-and-beam structures
NASA Astrophysics Data System (ADS)
Sapountzakis, E. J.; Katsikadelis, J. T.
In this paper a solution to the problem of prestressed concrete slab-and-beam structures including creep and shrinkage effect is presented. The adopted model takes into account the resulting inplane forces and deformations of the plate as well as the axial forces and deformations of the beam, due to combined response of the system. The analysis consists in isolating the beams from the plate by sections parallel to the lower outer surface of the plate. The forces at the interface, which produce lateral deflection and inplane deformation to the plate and lateral deflection and axial deformation to the beam, are established using continuity conditions at the interface. The influence of creep and shrinkage effect relative with the time of the casting and the time of the loading of the plate and the beams is taken into account. The estimation of the prestressing axial force of the beams is accomplished iteratively. Both instant (e.g. friction, slip of anchorage) and time dependent losses are encountered. The solution of the arising plate and beam problems, which are nonlinearly coupled, is achieved using the analog equation method (AEM). The adopted model, compared with those ignoring the inplane forces and deformations, describes better the actual response of the plate-beams system and permits the evaluation of the shear forces at the interfaces, the knowledge of which is very important in the design of prefabricated ribbed plates.
NASA Astrophysics Data System (ADS)
Materna, K.; Feng, L.; Lindsey, E. O.; Hill, E.; Burgmann, R.
2017-12-01
The elastic response of the lithosphere to surface mass redistributions produces significant deformation that can be observed in geodetic time series. This deformation is especially pronounced in Southeast Asia, where the annual monsoon produces large-amplitude hydrological loads. The MIBB network of 20 continuous GPS stations in Myanmar, India, Bangladesh, and Bhutan, operational since 2012, provides an opportunity to study the earth's response to these loads. In this study, we use GRACE gravity products as an estimate of surface water distribution, and input these estimates into an elastic loading calculation. We compare the predicted deformation with that observed with GPS. We find that elastic loading from the GRACE gravity field is able to explain the phase and the peak-to-peak amplitude (typically 2-3 cm) of the vertical GPS oscillations in northeast India and central Myanmar. GRACE-based corrections reduce the RMS scatter of the GPS data by 30%-45% in these regions. However, this approach does not capture all of the variation in central Bangladesh and southern Myanmar. Local hydrological effects, non-tidal ocean loads, poroelastic deformation, or differences in elastic properties may explain discrepancies between the GPS and GRACE signals in these places. The results of our calculations have practical implications for campaign GPS measurements in Myanmar, which make up the majority of geodetic measurements at this point. We may be able to reduce errors in campaign measurements and increase the accuracy of velocity estimates by correcting for hydrologic signals with GRACE data. The results also have potential implications for crustal rheology in Southeast Asia.
Effect of roof strength in injury mitigation during pole impact.
Friedman, Keith; Hutchinson, John; Mihora, Dennis; Kumar, Sri; Frieder, Russell; Sances, Anthony
2007-01-01
Motor vehicle accidents involving pole impacts often result in serious head and neck injuries to occupants. Pole impacts are typically associated with rollover and side collisions. During such events, the roof structure is often deformed into the occupant survival space. The existence of a strengthened roof structure would reduce roof deformation and accordingly provide better protection to occupants. The present study examines the effect of reinforced (strengthened) roofs using experimental crash study and computer model simulation. The experimental study includes the production cab structure of a pickup truck. The cab structure was loaded using an actual telephone pole under controlled laboratory conditions. The cab structure was subjected to two separate load conditions at the A-pillar and door frame. The contact force and deformation were measured using a force gauge and potentiometer, respectively. A computer finite element model was created to simulate the experimental studies. The results of finite element model matched well with experimental data during two different load conditions. The validated finite element model was then used to simulate a reinforced roof structure. The reinforced roof significantly reduced the structural deformations compared to those observed in the production roof. The peak deformation was reduced by approximately 75% and peak velocity was reduced by approximately 50%. Such a reduction in the deformation of the roof structure helps to maintain a safe occupant survival space.
In situ three-dimensional reciprocal-space mapping during mechanical deformation.
Cornelius, T W; Davydok, A; Jacques, V L R; Grifone, R; Schülli, T; Richard, M I; Beutier, G; Verdier, M; Metzger, T H; Pietsch, U; Thomas, O
2012-09-01
Mechanical deformation of a SiGe island epitaxically grown on Si(001) was studied by a specially adapted atomic force microscope and nanofocused X-ray diffraction. The deformation was monitored during in situ mechanical loading by recording three-dimensional reciprocal-space maps around a selected Bragg peak. Scanning the energy of the incident beam instead of rocking the sample allowed the safe and reliable measurement of the reciprocal-space maps without removal of the mechanical load. The crystal truncation rods originating from the island side facets rotate to steeper angles with increasing mechanical load. Simulations of the displacement field and the intensity distribution, based on the finite-element method, reveal that the change in orientation of the side facets of about 25° corresponds to an applied pressure of 2-3 GPa on the island top plane.
Analysis on Characteristics of a C-Shaped Constant-Force Spring with a Guide
NASA Astrophysics Data System (ADS)
Ohtsuki, Atsumi; Ohshima, Shigemichi; Itoh, Daisuke
A C-shaped constant-force spring is made of pre-stressed material in various sizes that offer the advantage of a constant tensile load, suitable for a variety of applications (for example, extension spring, motor-brush holder, power feed, retracting and restoring mechanism). Essentially, this spring consists of a coil of flat spring material and when unstressed it takes the form of a tightly wound spiral. This spiral is placed on a drum. When a tensile load is applied, the spiral uncoils. The load is practically independent of the amount of deformation. In this report, the extension mechanism of constant-force spring and the state of deformation are analyzed by using a large deformation theory. Moreover, experiments are carried out to confirm the applicability of the proposed theory. The experimental results agree well with the theoretical estimations.
Time-Dependent Flexural Deformation Beneath the Emperor Seamounts
NASA Astrophysics Data System (ADS)
Wessel, P.; Watts, A. B.; Kim, S. S.
2014-12-01
The Hawaii-Emperor seamount chain stretches over 6000 km from the Big Island of Hawaii to the subduction cusp off Kamchatka and represents a near-continuous record of hotspot volcanism since the Late Cretaceous. The load of these seamounts and islands has caused the underlying lithosphere to deform, developing a flexural flanking moat that is now largely filled with volcanoclastic sediments. Because the age differences between the seafloor and the seamounts vary by an order of magnitude or more along the chain, the Hawaii-Emperor chain and surrounding area is considered a natural laboratory for lithospheric flexure and has been studied extensively in order to infer the rheology of the oceanic lithosphere. While most investigations have focused on the Hawaiian Islands and proximal seamounts (where data sets are more complete, including seismic reflection and refraction, swath bathymetry and even mapping and dating of drowned reef terraces), far fewer studies have examined the flexural deformation beneath the remote Emperor chain. Preliminary analysis of satellite altimetry data shows the flexural moats to be associated with very large negative gravity anomalies relative to the magnitudes of the positive anomalies over the loads, suggesting considerable viscous or viscoelastic relaxation since the loads were emplaced 50-80 Myr ago. In our study, we will attempt to model the Emperor seamount chain load as a superposition of individual elliptical Gaussian seamounts with separate loading histories. We use Optimal Robust Separation (ORS) techniques to extract the seamount load from the regional background bathymetry and partition the residual load into a set of individual volcanoes. The crustal age grid and available seamount dates are used to construct a temporal loading model and evaluate the flexural response of the lithosphere beneath the Emperor seamounts. We explore a variety of rheological models and loading scenarios that are compatible with the inferred load sizes and observed gravity anomalies, with emphasis on the temporal-spatial variation in vertical deformation along the hotspot chain, and examine their implications for the tilting history of the loads and the stratigraphic "architecture" of their flanking flexural moats.
On the influence of monochromator thermal deformations on X-ray focusing
Antimonov, M. A.; Khounsary, A. M.; Sandy, A. R.; ...
2016-03-02
A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator – and the potential loss of beam brightness – is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromatormore » system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. Lastly, an analysis of the defocusing and options to mitigate this effect are explored.« less
NASA Astrophysics Data System (ADS)
Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Khvorov, Aleksandr A.
2018-05-01
Microstructural simulation of mechanical behavior of shape memory alloy samples at cyclic loading in the pseudoelastic state has been carried out. Evolution of the oriented and scattered deformation defects leading to damage accumulation and resulting in the fatigue fracture has been taken into account. Simulations were performed for the regime of loading imitating that for endovascular stents: preliminary straining, unloading, deformation up to some mean level of the strain and subsequent mechanical cycling at specified strain amplitude. Dependence of the fatigue life on the loading parameters (pre-strain, mean and amplitude values of strain) has been obtained. The results show a good agreement with available experimental data.
Ryu, J J; Letchuman, S; Shrotriya, P
2012-10-01
Surface damage of metallic implant surface at taper lock and clamped interfaces may take place through synergistic interactions between repeated contact loading and corrosion. In the present research, we investigated the influence of surface roughness and contact loading on the mechanical and chemical damage phenomena. Cobalt-chromium (CoCrMo) specimens with two different roughness configurations created by milling and grinding process were subjected to normal and inclined contact loading. During repeated contact loading, amplitude of surface roughness reached a steady value after decreasing during the first few cycles. During the second phase, the alternating experiment of rough surface contact and micro-etching was conducted to characterize surface evolution behavior. As a result, surface roughness amplitude continuously evolved-decreasing during contact loading due to plastic deformation of contacting asperities and increasing on exposure to corrosive environment by the preferential corrosion attack on stressed area. Two different instabilities could be identified in the surface roughness evolution during etching of contact loaded surfaces: increase in the amplitude of dominant wavenumber and increase in amplitude of a small group of roughness modes. A damage mechanism that incorporates contact-induced residual stress development and stress-assisted dissolution is proposed to elucidate the measured instabilities in surface roughness evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
In-process, non-destructive multimodal dynamic testing of high-speed composite rotors
NASA Astrophysics Data System (ADS)
Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas
2014-03-01
Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.
Analysis of Factors Affecting the Performance of RLV Thrust Cell Liners
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Technical Monitor); Butler, Daniel T., Jr.; Pinders, Marek-Jerzy
2004-01-01
The reusable launch vehicle (RLV) thrust cell liner, or thrust chamber, is a critical component of the Space Shuttle Main Engine (SSME). It is designed to operate in some of the most severe conditions seen in engineering practice. This requirement, in conjunction with experimentally observed 'dog-house' failure modes characterized by bulging and thinning of the cooling channel wall, provides the motivation to study the factors that influence RLV thrust cell liner performance. Factors or parameters believed to be directly related to the observed characteristic deformation modes leading to failure under in-service loading conditions are identified, and subsequently investigated using the cylindrical version of the higher-order theory for functionally graded materials in conjunction with the Robinson's unified viscoplasticity theory and the power-law creep model for modeling the response of the liner s constituents. Configurations are analyzed in which specific modifications in cooling channel wall thickness or constituent materials are made to determine the influence of these parameters on the deformations resulting in the observed failure modes in the outer walls of the cooling channel. The application of thermal barrier coatings and functional grading are also investigated within this context. Comparison of the higher-order theory results based on the Robinson and power-law creep model predictions has demonstrated that, using the available material parameters, the power-law creep model predicts more precisely the experimentally observed deformation leading to the 'dog-house' failure mode for multiple short cycles, while also providing much improved computational efficiency. However, for a single long cycle, both models predict virtually identical deformations. Increasing the power-law creep model coefficients produces appreciable deformations after just one long cycle that would normally be obtained after multiple cycles, thereby enhancing the efficiency of the analysis. This provides a basis for the development of an accelerated modeling procedure to further characterize dog-house deformation modes in RLV thrust cell liners. Additionally, the results presented herein have demonstrated that the mechanism responsible for deformation leading to 'dog-house' failure modes is driven by pressure, creep/relaxation and geometric effects.
Measuring Viscoelastic Deformation with an Optical Mouse
ERIC Educational Resources Information Center
Ng, T. W.
2004-01-01
The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.
First-order control of syntectonic sedimentation on crustal-scale structure of mountain belts
NASA Astrophysics Data System (ADS)
Erdős, Zoltán.; Huismans, Ritske S.; van der Beek, Peter
2015-07-01
The first-order characteristics of collisional mountain belts and the potential feedback with surface processes are predicted by critical taper theory. While the feedback between erosion and mountain belt structure has been fairly extensively studied, less attention has been given to the potential role of synorogenic deposition. For thin-skinned fold-and-thrust belts, recent studies indicate a strong control of syntectonic deposition on structure, as sedimentation tends to stabilize the thin-skinned wedge. However, the factors controlling basement deformation below fold-and-thrust belts, as evident, for example, in the Zagros Mountains or in the Swiss Alps, remain largely unknown. Previous work has suggested that such variations in orogenic structure may be explained by the thermotectonic "age" of the deforming lithosphere and hence its rheology. Here we demonstrate that sediment loading of the foreland basin area provides an additional control and may explain the variable basement involvement in orogenic belts. When examining the role of sedimentation, we identify two end-members: (1) sediment-starved orogenic systems with thick-skinned basement deformation in an axial orogenic core and thin-skinned deformation in the bordering forelands and (2) sediment-loaded orogens with thick packages of synorogenic deposits, derived from the axial basement zone, deposited on the surrounding foreland fold-and-thrust belts, and characterized by basement deformation below the foreland. Using high-resolution thermomechanical models, we demonstrate a strong feedback between deposition and crustal-scale thick-skinned deformation. Our results show that the loading effects of syntectonic sediments lead to long crustal-scale thrust sheets beneath the orogenic foreland and explain the contrasting characteristics of sediment-starved and sediment-loaded orogens, showing for the first time how both thin- and thick-skinned crustal deformations are linked to sediment deposition in these orogenic systems. We show that the observed model behavior is consistent with observations from a number of natural orogenic systems.
Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp
2013-01-01
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.
DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp
2013-01-01
Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068
Nitroprusside inhibits calcium-induced impairment of red blood cell deformability.
Barodka, Viachaslau; Mohanty, Joy G; Mustafa, Asif K; Santhanam, Lakshmi; Nyhan, Aoibhinn; Bhunia, Anil K; Sikka, Gautam; Nyhan, Daniel; Berkowitz, Dan E; Rifkind, Joseph M
2014-02-01
Red blood cell (RBC) deformation is critical for microvascular perfusion and oxygen delivery to tissues. Abnormalities in RBC deformability have been observed in aging, sickle cell disease, diabetes, and preeclampsia. Although nitric oxide (NO) prevents decreases in RBC deformability, the underlying mechanism is unknown. As an experimental model, we used ionophore A23187-mediated calcium influx in RBCs to reduce their deformability and investigated the role of NO donor sodium nitroprusside (SNP) and KCa3.1 (Gardos) channel blockers on RBC deformability (measured as elongation index [EI] by microfluidic ektacytometry). RBC intracellular Ca(2+) and extracellular K(+) were measured by inductively coupled plasma mass spectrometry and potassium ion selective electrode, respectively. SNP treatment of RBCs blocked the Ca(2+) (approx. 10 μmol/L)-induced decrease in RBC deformability (EI 0.34 ± 0.02 vs. 0.09 ± 0.01, control vs. Ca(2+) loaded, p < 0.001; and EI 0.37 ± 0.02 vs. 0.30 ± 0.01, SNP vs. SNP plus Ca(2+) loaded) as well as Ca(2+) influx and K(+) efflux. The SNP effect was similar to that observed after pharmacologic blockade of the KCa3.1 channel (with charybdotoxin or extracellular medium containing isotonic K(+) concentration). In RBCs from KCa3.1(-/-) mice, 10 μmol/L Ca(2+) loading did not decrease cellular deformability. A preliminary attempt to address the molecular mechanism of SNP protection suggests the involvement of cell surface thiols. Our results suggest that nitroprusside treatment of RBCs may protect them from intracellular calcium increase-mediated stiffness, which may occur during microvascular perfusion in diseased states, as well as during RBC storage. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin
2018-02-01
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.
NASA Astrophysics Data System (ADS)
Schaeffner, Maximilian; Platz, Roland
2016-09-01
For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, the potential of active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports is investigated numerically. Imperfections are given by an initial deformation of the beam-column caused by a constant imperfection force. With the piezo-elastic supports, active bending moments in arbitrary directions orthogonal to the beam-column's longitudinal axis can be applied at both beam- column's ends. The imperfect beam-column is loaded by a gradually increasing axial compressive force resulting in a lateral deformation of the beam-column. First, a finite element model of the imperfect structure for numerical simulation of the active buckling control is presented. Second, an integral linear-quadratic regulator (LQR) that compensates the deformation via the piezo-elastic supports is derived for a reduced modal model of the ideal beam-column. With the proposed active buckling control it is possible to stabilize the imperfect beam-column in arbitrary lateral direction for axial loads above the theoretical critical buckling load and the maximum bearable load of the passive structure.
NASA Astrophysics Data System (ADS)
Kolokoltsev, V. N.; Degtiarev, V. F.; Borovitskaya, I. V.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Eriskin, A. A.
2018-01-01
Elastic deformation in transparent mediums is usually studied by the photoelasticity method. For opaque mediums the method of film coating and strain gauge method are used. After the external load was removed, the interference pattern corresponding to elastic deformation of the material disappears. It is found that the elastic deformation state of the thin glass plate under the action of concentrated load can be fixed during the deposition of a thin metal film. Deposition of thin copper films was carried out by passing of plasma through the copper tube installed inside the Plasma Focus installation. After removing of the load, interference pattern on the glass plates was observed in the form of Newton’s rings and isogers in non-monochromatic light on the CCD scanners which uses uorescent lamps with cold cathode. It is supposed that the copper film fixes the relief of the surface of the glass plate at the time of deformation and saves it when the load is removed. In the case of a concentrated load, this relief has the shape of a thin lens of large radius. For this reason, the interference of coherent light rays in a thin air gap between the glass of the scanners atbed and the lens surface has the shape of Newton's rings. In this case, when scanning the back side of the plate, isogyres are observed. The presented method can be used in the analysis of the mechanical stress in a various optical elements.
Discontinuities of Plastic Deformation in Metallic Glasses with Different Glass Forming Ability
NASA Astrophysics Data System (ADS)
Hurakova, Maria; Csach, Kornel; Miskuf, Jozef; Jurikova, Alena; Demcak, Stefan; Ocelik, Vaclav; Hosson, Jeff Th. M. De
The metallic ribbons Fe40Ni40B20, Cu47Ti35Zr11Ni6Si1 and Zr65Cu17.5Ni10Al7.5 with different microhardness and glass forming ability were studied at different loading rates from 0.05 to 100 mN/s. We describe in details the differences in elemental discontinuities on the loading curves for the studied alloys. It was found that the discontinuities began at a certain local deformation independently on the macroscopic mechanical properties of a ribbon. More developed discontinuities at higher deformations are created for the materials with lower microhardness and so lower strength.
Slip measurement in a frictional connection by torsional LDV
NASA Astrophysics Data System (ADS)
Schäfer, Günter; Lohrengel, Armin; Hilgermann, Jan Lukas
2016-06-01
Frictional shaft-hub connections are often used in drive train applications. The classic version is fitted by a temperature difference between the cold shaft und the hot hub, or simply axial press-fitted at room temperature. The critical point in this type of connection is the contact pressure at the edge of the hub regarding the relative deformation between the shaft and the hub under dynamic operating loads. Another innovative version, the internal press-fit, leads to a tolerance insensitive lightweight design using a tube as shaft and a controlled plastic deformation by internal high pressure. The internal press-fit connection is a special research topic at the IMW, TU Clausthal. The use of internal high pressure allows to trigger the contact pressure at the edge of the hub on an optimum value. The product of contact pressure and slipway is the key value to determine the fatigue resistance and load capacity of this kind of connection. /1/ and /2/ defined a critical range of slipway amplitudes between 5 and 25 µm for fretting. The normal use and main function of a shaft-hub connection is the transmission of torque. Regarding the different torsional stiffness of the shaft and the hub, there will be a difference in deformation in the contact zone between the shaft and the hub, which is necessary to measure on a probe under oscillating torque load. The measurement on the test-rig in /3/ was done with a POLYTEC torsional LDV (controller OFV-4000, sensor head OFV-400). In general the continuously oscillating torque load allowed a serial measurement of the torsional movement of the shaft and the hub. The difference of the two maximum values is the expected slipway between the two parts in the critical zone at the edge of the hub. The main benefits of the Torsional LDV in this application are the very small measuring point (next to the contact), no influence on the probe, no special preparation of the probe and a really good resolution. The paper gives an overview to the technical background of the measured value, to the measuring setup, to the other used measuring techniques and to the measuring results.
Anguiano-Baez, Ricardo; Guzman-Novoa, Ernesto; Md Hamiduzzaman, Mollah; Espinosa-Montaño, Laura G; Correa-Benítez, Adriana
2016-01-01
The prevalence and loads of deformed wing virus (DWV) between honey bee (Apis mellifera L.) colonies from a tropical and a temperate environment were compared. The interaction between these environments and the mite Varroa destructor in relation to DWV prevalence, levels, and overt infections, was also analyzed. V. destructor rates were determined, and samples of mites, adult bees, brood parasitized with varroa mites and brood not infested by mites were analyzed. DWV was detected in 100% of the mites and its prevalence and loads in honey bees were significantly higher in colonies from the temperate climate than in colonies from the tropical climate. Significant interactions were found between climate and type of sample, with the highest levels of DWV found in varroa-parasitized brood from temperate climate colonies. Additionally, overt infections were observed only in the temperate climate. Varroa parasitism and DWV loads in bees from colonies with overt infections were significantly higher than in bees from colonies with covert infections. These results suggest that interactions between climate, V. destructor, and possibly other factors, may play a significant role in the prevalence and levels of DWV in honey bee colonies, as well as in the development of overt infections. Several hypotheses are discussed to explain these results. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.
NASA Astrophysics Data System (ADS)
Li, Zhen; Yue, Jianping; Li, Wang; Lu, Dekai; Li, Xiaogen
2017-08-01
The 0.5° × 0.5° gridded hydrological loading from Global Land Surface Discharge Model (LSDM) mass distributions is adopted for 32 GPS sites on the Eurasian plate from January 2010 to January 2014. When the heights of these sites that have been corrected for the effects of non-tidal atmospheric and ocean loading are adjusted by the hydrological loading deformation, more than one third of the root-mean-square (RMS) values of the GPS height variability become larger. After analyzing the results by continuous wavelet transform (CWT) and wavelet transform coherence (WTC), we confirm that hydrological loading primarily contributes to the annual variations in GPS heights. Further, the cross wavelet transform (XWT) is used to investigate the relative phase between the time series of GPS heights and hydrological deformation, and it is indicated that the annual oscillations in the two time series are physically related for some sites; other geophysical effect, GPS systematic errors and hydrological modeling errors could result in the phase asynchrony between GPS and hydrological loading signals for the other sites. Consequently, the phase asynchrony confirms that the annual fluctuations in GPS observations result from a combination of geophysical signals and systematic errors.
Shape memory-based actuators and release mechanisms therefrom
NASA Technical Reports Server (NTRS)
Vaidyanathan, Rajan (Inventor); Snyder, Daniel W. (Inventor); Schoenwald, David K. (Inventor); Lam, Nhin S. (Inventor); Watson, Daniel S. (Inventor); Krishnan, Vinu B. (Inventor); Noebe, Ronald D. (Inventor)
2012-01-01
SM-based actuators (110) and release mechanisms (100) therefrom and systems (500) including one or more release mechanisms (100). The actuators (110) comprise a SM member (118) and a deformable member (140) mechanically coupled to the SM member (118) which deforms upon a shape change of the SM member triggered by a phase transition of the SM member. A retaining element (160) is mechanically coupled to the deformable member (140), wherein the retaining element (160) moves upon the shape change. Release mechanism (100) include an actuator, a rotatable mechanism (120) including at least one restraining feature (178) for restraining rotational movement of the retaining element (160) before the shape change, and at least one spring (315) that provides at least one locked spring-loaded position when the retaining element is in the restraining feature and at least one released position that is reached when the retaining element is in a position beyond the restraining feature (178). The rotatable mechanism (120) includes at least one load-bearing protrusion (310). A hitch (400) is for mechanically coupling to the load, wherein the hitch is supported on the load bearing protrusion (310) when the rotatable mechanism is in the locked spring-loaded position.
Creep of trabecular bone from the human proximal tibia
Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L.; McKittrick, Joanna
2014-01-01
Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for two hours and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37°C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. PMID:24857486
Behavior of Steel-Sheathed Shear Walls Subjected to Seismic and Fire Loads.
Hoehler, Matthew S; Smith, Christopher M; Hutchinson, Tara C; Wang, Xiang; Meacham, Brian J; Kamath, Praveen
2017-07-01
A series of tests was conducted on six 2.7 m × 3.7 m shear wall specimens consisting of cold-formed steel framing sheathed on one side with sheet steel adhered to gypsum board and on the opposite side with plain gypsum board. The specimens were subjected to various sequences of simulated seismic shear deformation and fire exposure to study the influence of multi-hazard interactions on the lateral load resistance of the walls. The test program was designed to complement a parallel effort at the University of California, San Diego to investigate a six-story building subjected to earthquakes and fires. The test results reported here indicate that the fire exposure caused a shift in the failure mode of the walls from local buckling of the sheet steel in cases without fire exposure, to global buckling of the sheet steel with an accompanying 35 % reduction in lateral load capacity after the wall had been exposed to fire. This behavior appears to be predictable, which is encouraging from the standpoint of residual lateral load capacity under these severe multi-hazard actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.
For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less
Eftink, Benjamin P.; Mara, Nathan Allan; Kingstedt, Owen T.; ...
2017-12-02
For this research, Split-Hopkinson pressure bar dynamic compression experiments were conducted to determine the defect/interface interaction dependence on interface type, bilayer thickness and interface orientation with respect to the loading direction in the Ag-Cu eutectic system. Specifically, the deformation microstructure in alloys with either a cube-on-cube orientation relationship with {111} Ag||{111} Cu interface habit planes or a twin orientation relationship with {more » $$\\overline{3}13$$} Ag||{$$\\overline{1}12$$} Cu interface habit planes and with bilayer thicknesses of 500 nm, 1.1 µm and 2.2 µm were probed using TEM. The deformation was carried by dislocation slip and in certain conditions, deformation twinning. The twinning response was dependent on loading orientation with respect to the interface plane, bilayer thickness, and interface type. Twinning was only observed when loading at orientations away from the growth direction and decreased in prevalence with decreasing bilayer thickness. Twinning in Cu was dependent on twinning partial dislocations being transmitted from Ag, which only occurred for cube-on-cube interfaces. Lastly, dislocation slip and deformation twin transfer across the interfaces is discussed in terms of the slip transfer conditions developed for grain boundaries in FCC alloys.« less
NASA Astrophysics Data System (ADS)
Kit Wong, Ching; Wu, Patrick
2017-04-01
Wu (2004) developed a transformation scheme to model viscoelatic deformation due to glacial loading by commercial finite element package - ABAQUS. Benchmark tests confirmed that this method works extremely well on incompressible earth model. Bangtsson & Lund (2008),however, showed that the transformation scheme would lead to incorrect results if compressible material parameters are used. Their study implies that Wu's method of stress transformation is inadequate to model the load induced deformation of a compressible earth under the framework of ABAQUS. In light of this, numerical experiments are carried out to find if there exist other methods that serve this purpose. All the tested methods are not satisfying as the results failed to converge through iterations, except at the elastic limit. Those tested methods will be outlined and the results will be presented. Possible reasons of failure will also be discussed. Bängtsson, E., & Lund, B. (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth. International journal for numerical methods in engineering, 75(4), 479-502. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.
Brain tissue deforms similarly to filled elastomers and follows consolidation theory
NASA Astrophysics Data System (ADS)
Franceschini, G.; Bigoni, D.; Regitnig, P.; Holzapfel, G. A.
2006-12-01
Slow, large deformations of human brain tissue—accompanying cranial vault deformation induced by positional plagiocephaly, occurring during hydrocephalus, and in the convolutional development—has surprisingly received scarce mechanical investigation. Since the effects of these deformations may be important, we performed a systematic series of in vitro experiments on human brain tissue, revealing the following features. (i) Under uniaxial (quasi-static), cyclic loading, brain tissue exhibits a peculiar nonlinear mechanical behaviour, exhibiting hysteresis, Mullins effect and residual strain, qualitatively similar to that observed in filled elastomers. As a consequence, the loading and unloading uniaxial curves have been found to follow the Ogden nonlinear elastic theory of rubber (and its variants to include Mullins effect and permanent strain). (ii) Loaded up to failure, the "shape" of the stress/strain curve qualitatively changes, evidencing softening related to local failure. (iii) Uniaxial (quasi-static) strain experiments under controlled drainage conditions provide the first direct evidence that the tissue obeys consolidation theory involving fluid migration, with properties similar to fine soils, but having much smaller volumetric compressibility. (iv) Our experimental findings also support the existence of a viscous component of the solid phase deformation. Brain tissue should, therefore, be modelled as a porous, fluid-saturated, nonlinear solid with very small volumetric (drained) compressibility.
Inference of postseismic deformation mechanisms of the 1923 Kanto earthquake
Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.
2006-01-01
Coseismic slip associated with the M7.9, 1923 Kanto earthquake is fairly well understood, involving slip of up to 8 m along the Philippine Sea-Honshu interplate boundary under Sagami Bay and its onland extension. Postseismic deformation after the 1923 earthquake, however, is relatively poorly understood. We revisit the available deformation data in order to constrain possible mechanisms of postseismic deformation and to examine the consequences for associated stress changes in the surrounding crust. Data from two leveling lines and one tide gage station over the first 7-8 years postseismic period are of much greater amplitude than the corresponding expected interseismic deformation during the same period, making these data suitable for isolating the signal from postseismic deformation. We consider both viscoelastic models of asthenosphere relaxation and afterslip models. A distributed coseismic slip model presented by Pollitz et al. (2005), combined with prescribed parameters of a viscoelastic Earth model, yields predicted postseismic deformation that agrees with observed deformation on mainland Honshu from Tokyo to the Izu peninsula. Elsewhere (southern Miura peninsula; Boso peninsula), the considered viscoelastic models fail to predict observed deformation, and a model of ???1 in shallow afterslip in the offshore region south of the Boso peninsula, with equivalent moment magnitude Mw = 7.0, adequately accounts for the observed deformation. Using the distributed coseismic slip model, layered viscoelastic structure, and a model of interseismic strain accumulation, we evaluate the post-1923 stress evolution, including both the coseismic and accumulated postseismic stress changes and those stresses contributed by interseismic loading. We find that if account is made for the varying tectonic regime in the region, the occurrence of both immediate (first month) post-1923 crustal aftershocks as well as recent regional crustal seismicity is consistent with the predicted stress pattern. This suggests that the influence of the 1923 earthquake on regional seismicity is fairly predictable and has persisted for at least seven decades following the earthquake.
Paediatric forearm fractures: functional outcome of conservative treatment.
Tarmuzi, Nazari Ahmad; Abdullah, Shalimar; Osman, Zulkiflee; Das, Srijit
2009-01-01
Forearm fractures are common in the paediatric age group. Closed reduction and casting are the primary means of treatment in over 90% of these fractures. Resultant deformities are usually a product of indirect trauma involving angular loading combined with rotational deformity and fragment displacement. Retrospectively, 48 patients aged between 4 to 12 years with forearm fractures, were treated conservatively with closed reduction and a cast during a 2-year period. Functional outcomes were measured in terms of pronation and supination. All fractures united before the final visit. Most forearm bone fractures were complete fractures at the mid shaft. Eighty-six percent of the patients had excellent functional outcomes and none had poor outcomes. There were significantly reduced angles of deformities before and after treatment (p < 0.05). Radiographically, in the frontal plane, 57.1% of radius and 73.9% of ulnar fractures achieved perfect reduction (i.e. a degree of deformity of less than 5 degrees). However, in the lateral plane, there were fewer perfect reductions for the radius and ulna, at 14.6% and 54.3%, respectively. All except for one patient were satisfied with the outcomes. The level of fracture did not influence the outcomes. Conservative treatment is still an acceptable form of treatment especially for stable forearm fractures in children achieving excellent outcomes (Tab. 1, Fig. 7, Ref. 20).
NASA Astrophysics Data System (ADS)
Ershov, N. V.; Fedorov, V. I.; Chernenkov, Yu. P.; Lukshina, V. A.; Shishkin, D. A.
2017-09-01
The changes of quasi-static magnetic hysteresis loops and X-ray diffraction patterns of the Fe73.5Si13.5B9Nb3Cu1 doped to 10 at % chromium instead of iron have been studied to elucidate the influence of the thermomechanical treatment consisting of annealing and cooling of the alloy under the tensile stress (tensile-stress annealing (TSA)) on the magnetic properties and the structure of these alloys. It is shown that the treatment results in the induction of the magnetic anisotropy of the hard axis type at which the magnetization reversal along the direction of applying the external stress during annealing is hampered. The energy of the induced magnetic anisotropy decreases as the chromium content increases. During TSA, the nanocrystal lattices are deformed, and the deformation is retained after cooling. The interplanar spacings increase along the extension direction and decrease in the transverse direction. The deformation anisotropy is observed for crystallographic directions. The anisotropic deformation of the bcc lattice of nanocrystals with high content of the ordered Fe3Si phase characterized by a negative magnetoelastic interaction is the cause of formation of the state with the transverse magnetic anisotropy of the hard axis type.
Dynamic Fracture Behavior of Plastic-Bonded Explosives
NASA Astrophysics Data System (ADS)
Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team
2011-06-01
Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.
Koo, Terry K; Cohen, Jeffrey H; Zheng, Yongping
2011-11-01
Soft tissue exhibits nonlinear stress-strain behavior under compression. Characterizing its nonlinear elasticity may aid detection, diagnosis, and treatment of soft tissue abnormality. The purposes of this study were to develop a rate-controlled Mechano-Acoustic Indentor System and a corresponding finite element optimization method to extract nonlinear elastic parameters of soft tissue and evaluate its test-retest reliability. An indentor system using a linear actuator to drive a force-sensitive probe with a tip-mounted ultrasound transducer was developed. Twenty independent sites at the upper lateral quadrant of the buttock from 11 asymptomatic subjects (7 men and 4 women from a chiropractic college) were indented at 6% per second for 3 sessions, each consisting of 5 trials. Tissue thickness, force at 25% deformation, and area under the load-deformation curve from 0% to 25% deformation were calculated. Optimized hyperelastic parameters of the soft tissue were calculated with a finite element model using a first-order Ogden material model. Load-deformation response on a standardized block was then simulated, and the corresponding area and force parameters were calculated. Between-trials repeatability and test-retest reliability of each parameter were evaluated using coefficients of variation and intraclass correlation coefficients, respectively. Load-deformation responses were highly reproducible under repeated measurements. Coefficients of variation of tissue thickness, area under the load-deformation curve from 0% to 25% deformation, and force at 25% deformation averaged 0.51%, 2.31%, and 2.23%, respectively. Intraclass correlation coefficients ranged between 0.959 and 0.999, indicating excellent test-retest reliability. The automated Mechano-Acoustic Indentor System and its corresponding optimization technique offers a viable technology to make in vivo measurement of the nonlinear elastic properties of soft tissue. This technology showed excellent between-trials repeatability and test-retest reliability with potential to quantify the effects of a wide variety of manual therapy techniques on the soft tissue elastic properties. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Young-Gwan; Son, Il-Heon; Im, Yong-Taek
2010-06-01
Experiments with a square specimen made of commercially pure aluminum alloy (AA1050) were conducted to investigate deformation behaviour during a multi-pass Equal Channel Angular Pressing (ECAP) for routes A, Bc, and C up to four passes. Three-dimensional finite element numerical simulations of the multi-pass ECAP were carried out in order to evaluate the influence of processing routes and number of passes on local flow behaviour by applying a simplified saturation model of flow stress under an isothermal condition. Simulation results were investigated by comparing them with the experimentally measured data in terms of load variations and microhardness distributions. Also, transmission electron microscopy analysis was employed to investigate the microstructural changes. The present work clearly shows that the three-dimensional flow characteristics of the deformed specimen were dependent on the strain path changes due to the processing routes and number of passes that occurred during the multi-pass ECAP.
NASA Astrophysics Data System (ADS)
Ciofu, C.; Stan, G.
2016-11-01
Elephant's trunk robotic arms driven by wires and pulley mechanisms have issues with wires stiffness because of the entailed elastic deformations that is causing errors of positioning. Static and dynamic loads from each joint of the robotic arm affect the stiffness of driving wires and precision positioning. The influence of wires elastic deformation on precision positioning decreases with the increasing of wires stiffness by using different pre-tensioning devices. In this paper, we analyze the variation of driving wires stiffness particularly to each wire driven joint. We obtain optimum wires stiffness variation by using an analytical method that highlights the efficiency of pre-tensioning mechanism. The analysis of driving wires stiffness is necessary for taking appropriate optimization measures of robotic arm dynamic behavior and, thus, for decreasing positioning errors of the elephant's trunk robotic arm with inner actuation through wires/cables.
Behforootan, Sara; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan; Naemi, Roozbeh
2017-04-01
Pathological conditions such as diabetic foot and plantar heel pain are associated with changes in the mechanical properties of plantar soft tissue. However, the causes and implications of these changes are not yet fully understood. This is mainly because accurate assessment of the mechanical properties of plantar soft tissue in the clinic remains extremely challenging. To develop a clinically viable non-invasive method of assessing the mechanical properties of the heel pad. Furthermore the effect of non-linear mechanical behaviour of the heel pad on its ability to uniformly distribute foot-ground contact loads in light of the effect of overloading is also investigated. An automated custom device for ultrasound indentation was developed along with custom algorithms for the automated subject-specific modeling of heel pad. Non-time-dependent and time-dependent material properties were inverse engineered from results from quasi-static indentation and stress relaxation test respectively. The validity of the calculated coefficients was assessed for five healthy participants. The implications of altered mechanical properties on the heel pad's ability to uniformly distribute plantar loading were also investigated in a parametric analysis. The subject-specific heel pad models with coefficients calculated based on quasi-static indentation and stress relaxation were able to accurately simulate dynamic indentation. Average error in the predicted forces for maximum deformation was only 6.6±4.0%. When the inverse engineered coefficients were used to simulate the first instance of heel strike the error in terms of peak plantar pressure was 27%. The parametric analysis indicated that the heel pad's ability to uniformly distribute plantar loads is influenced both by its overall deformability and by its stress-strain behaviour. When overall deformability stays constant, changes in stress/strain behaviour leading to a more "linear" mechanical behaviour appear to improve the heel pad's ability to uniformly distribute plantar loading. The developed technique can accurately assess the visco-hyperelastic behaviour of heel pad. It was observed that specific change in stress-strain behaviour can enhance/weaken the heel pad's ability to uniformly distribute plantar loading that will increase/decrease the risk for overloading and trauma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of Microtexture on Early Plastic Slip Activity in Ti-6Al-4V Polycrystals
NASA Astrophysics Data System (ADS)
Hémery, Samuel; Dang, Van Truong; Signor, Loïc; Villechaise, Patrick
2018-06-01
Microtextured regions are known to influence the fatigue performance of titanium alloys. Previous studies revealed that crack initiation, accounting for most of the fatigue life, is triggered by slip activity. The influence of microtextured regions on the early plastic slip activity was presently investigated by means of an in situ tensile test performed inside a scanning electron microscope on a bimodal Ti-6Al-4V polycrystalline specimen. A slip trace analysis was carried out in several regions with different crystallographic textures to highlight potentially different deformation behaviors. Significant stress heterogeneities were revealed through an early slip activation in microtextured regions with a predominant [0001] orientation. This point was shown to be related to a locally increased resolved shear stress. Consequences on behavior under cyclic loadings are finally discussed.
The fibre orientation influence in cementitious composite against extreme load resistance
NASA Astrophysics Data System (ADS)
Lovichova, R.; Fornusek, J.; Mara, M.; Kocova, M.; Rihova, Z.
2018-02-01
This paper is focused on resistance of steel fibre-reinforced cement composite against impact of the deformable projectile shot from the 7.62 × 39 caliber. Different values of resistance against impact of the projectile are caused by different orientation of the fibres. The influence of formwork position, which is the main cause of the different orientation of the fibres, is investigated. The resistance was examined on thirty slabs made of ultra-high performance fibre-reinforced concrete (UHPFRC). Fifteen specimens with vertical orientation of formwork and fifteen with horizontal orientation of formwork was made. The resistance is classified according to the visual evaluation and local damage measurement on the front side and the rear side of the examined specimens. The experiment shown positive influence of vertically oriented formwork on the slabs according to their resistance against impact of the projectile.
NASA Technical Reports Server (NTRS)
Wesselski, C. J.; Drexel, R. E.
1972-01-01
Load attenuators for the Apollo spacecraft crew couch and its potential applications are described. Energy absorption is achieved through friction and cyclic deformation of material. In one concept, energy absorption is accomplished by rolling a compressed ring of metal between two surfaces. In another concept, energy is absorbed by forcing a plastically deformed washer along a rod. Among the design problems that had to be solved were material selection, fatigue life, ring slippage, lubrication, and friction loading.
Shock enhancement of cellular materials subjected to intensive pulse loading
NASA Astrophysics Data System (ADS)
Zhang, J.; Fan, J.; Wang, Z.; Zhao, L.; Li, Z.
2018-03-01
Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.
Vibrations of beams and rods carrying a moving mass
NASA Astrophysics Data System (ADS)
Zhao, X. W.; van der Heijden, G. H. M.; Hu, Z. D.
2016-05-01
We study the vibration of slender one-dimensional elastic structures (beams, cables, wires, rods) under the effect of a moving mass or load. We first consider the classical small- deflection (Euler-Bernoulli) beam case, where we look at tip vibrations of a cantilever as a model for a barreled launch system. Then we develop a theory for large deformations based on Cosserat rod theory. We illustrate the effect of moving loads on large-deformation structures with a few cable and arch problems. Large deformations are found to have a resonance detuning effect on the cable. For the arch we find different failure modes depending on its depth: a shallow arch fails by in-plane collapse, while a deep arch fails by sideways flopping. In both cases the speed of the traversing load is found to have a stabilising effect on the structure, with failure suppressed entirely at sufficiently high speed.
Impact Deformation of Thin-Walled Circular Tube Filled with Aluminum Foam in Lateral Compression
NASA Astrophysics Data System (ADS)
Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Hori, Masahiro
In this study, the impact deformation of thin-walled circular tubes filled with aluminum foam in lateral compression was investigated using a special load cell for long time measurement and a high-speed video camera to check the displacement of specimens. It was found that the absorbed energy up to the deformation of 60% of the specimen diameter obtained from impact tests is greater than that obtained in static tests, because of strain rate dependency of aluminum foam. The loaddisplacement curve of circular tubes with aluminum foam just inserted was consistent with the sum of the curves individually obtained. In both dynamic and static tests, however, the load of the tube with the foam inserted and glued by adhesive resin became larger than the sum of the individual loads, because of the interaction between circular tubes and aluminum foam cores.
Foutz, T L
1991-03-01
A phenomenological model was developed to describe the nonlinear elastic behavior of the avian gastrocnemius tendon. Quasistatic uniaxial tensile tests were used to apply a deformation and resulting load on the tendon at a deformation rate of 5 mm/min. Plots of deformation versus load indicated a nonlinear loading response. By calculating engineering stress and engineering strain, the experimental data were normalized for tendon shape. The elastic response was determined from stress-strain curves and was found to vary with engineering strain. The response to the applied engineering strain could best be described by a mathematical model that combined a linear function and a nonlinear function. Three parameters in the model were developed to represent the nonlinear elastic behavior of the tendon, thereby allowing analysis of elasticity without prior knowledge of engineering strain. This procedure reduced the amount of data needed for the statistical analysis of nonlinear elasticity.
Phenomenological model for transient deformation based on state variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, M S; Cho, C W; Alexopoulos, P
The state variable theory of Hart, while providing a unified description of plasticity-dominated deformation, exhibits deficiencies when it is applied to transient deformation phenomena at stresses below yield. It appears that the description of stored anelastic strain is oversimplified. Consideration of a simple physical picture based on continuum dislocation pileups suggests that the neglect of weak barriers to dislocation motion is the source of these inadequacies. An appropriately modified description incorporating such barriers then allows the construction of a macroscopic model including transient effects. Although the flow relations for the microplastic element required in the new theory are not known,more » tentative assignments may be made for such functions. The model then exhibits qualitatively correct behavior when tensile, loading-unloading, reverse loading, and load relaxation tests are simulated. Experimental procedures are described for determining the unknown parameters and functions in the new model.« less
NASA Astrophysics Data System (ADS)
Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.
2010-09-01
Features of the plastic deformation and dynamic spall fracture of Hadfield steel under conditions of shock wave loading at a straining rate of ˜106 s-1 have been studied. The shock load (˜30 GPa, ˜0.2 μs) was produced by pulses of a SINUS-7 electron accelerator, which generated relativistic electron bunches with an electron energy of up to 1.35 MeV, a duration of 45 ns, and a peak power on the target of 3.4 × 1010 W/cm2. It is established that the spalling proceeds via mixed viscous-brittle intergranular fracture, unlike the cases of quasi-static tensile and impact loading, where viscous transgranular fracture is typical. It is shown that the intergranular character of the spall fracture is caused by the localization of plastic deformation at grain boundaries containing precipitated carbide inclusions.
Shock imprint and rolling direction influence upon the breaking tenacity for 2P armor steel
NASA Astrophysics Data System (ADS)
Zichil, V.; Coseru, A.; Schnakovszky, C.; Herghelegiu, E.; Radu, C.
2016-08-01
The state of art in present literature shows that the breaking tenacity of a material is influenced by the integrity of the structure. Since armors used in aviation and to protect military vehicles are frequently impact loaded, through the contact between armor sheet and projectiles, or other foreign bodies, the authors have proposed to study the dependence between the breaking tenacity of 2P armor steel depending on the direction of the rolling of the armor plate, of the geometry (spherical imprint, pyramidal and linear imprint) and the depth of the deformation that results after impact. Tests were conducted upon CT (ASTM E- 399) specimen type, using the critical factor of stress intensity during the state of planar strain.
Boocock, M; McNair, P; Cicuttini, F; Stuart, A; Sinclair, T
2009-07-01
To investigate the short-term effects of recreational running on the deformation of knee articular cartilage and to examine the relationship between changes in knee cartilage volume and biomechanical modulators of knee joint load. Twenty healthy volunteers participated in a two phase cross-sectional study. Session 1 involved Magnetic Resonance Imaging (MRI) of femoral and tibial cartilage volumes prior to and following a 30 min period of relaxed sitting, which was directly followed by a recreational run of 5000 steps. Subsequently, all participants undertook a laboratory study of their running gait to compare biomechanical derived measures of knee joint loading with changes in cartilage volume. Estimates of knee joint load were determined using a rigid-link segment, dynamic biomechanical model of the lower limbs and a simplified muscle model. Running resulted in significant deformation of the medial (5.3%, P<0.01) and lateral femoral cartilage (4.0%, P<0.05) and lateral aspect of the tibial cartilage (5.7%, P<0.01), with no significant differences between genders. Maximum compression stress was significantly correlated with percentage changes in lateral femoral cartilage volume (r(2)=0.456, P<0.05). No other biomechanical variables correlated with volume changes. Limited evidence was found linking biomechanical measures of knee joint loading and observed short-term deformation of knee articular cartilage volume following running. Further enhancement of knee muscle modelling and analysis of stress distribution across cartilage are needed if we are to fully understand the contribution of biomechanical factors to knee joint loading and the pathogenesis of knee osteoarthritis (OA).
NASA Astrophysics Data System (ADS)
Chanard, Kristel; Fleitout, Luce; Calais, Eric; Rebischung, Paul; Avouac, Jean-Philippe
2018-04-01
We model surface displacements induced by variations in continental water, atmospheric pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree-1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field from a comparison between our GRACE-derived model, with no a priori degree 1 loads, and the GNSS observations. We show that this approach reconciles GRACE-derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree-1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE-derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first-order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series.
Creep deformation at crack tips in elastic-viscoplastic solids
NASA Astrophysics Data System (ADS)
Riedel, H.
1981-02-01
THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.
Training and shape retention in conducting polymer artificial muscles
NASA Astrophysics Data System (ADS)
Tominaga, Kazuo; Hashimoto, Hikaru; Takashima, Wataru; Kaneto, Keiichi
2011-12-01
Electrochemomechanical deformation (ECMD) of the conducting polymer polyaniline film is studied to investigate the behaviour of actuation under tensile loads. The ECMD was induced by the strains due to the insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain was enhanced by the experience of high tensile loads, indicating a training effect. The training effect was explained by the enhanced electrochemical activity of the film. The creep was recovered by removal of the tensile load and several electrochemical cycles. This fact indicates that the creep results from the one-dimensional anisotropic deformation, and is retained (shape retention) by the ionic crosslink. The recovery of creep results from the elastic relaxation of the polymer conformation.
Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh
2017-10-01
Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.
Re-examination of cumulative fatigue damage analysis - An engineering perspective
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1986-01-01
A method which has evolved in the laboratories for the past 20 yr is re-examined with the intent of improving its accuracy and simplicity of application to engineering problems. Several modifications are introduced both to the analytical formulation of the Damage Curve Approach, and to the procedure for modifying this approach to achieve a Double Linear Damage Rule formulation which immensely simplifies the calculation. Improvements are also introduced in the treatment of mean stress for determining fatigue life of the individual events that enter into a complex loading history. While the procedure is completely consistent with the results of numerous two level tests that have been conducted on many materials, it is still necessary to verify applicability to complex loading histories. Caution is expressed that certain phenomenon can also influence the applicability - for example, unusual deformation and fracture modes inherent in complex loading especially if stresses are multiaxial. Residual stresses at crack tips, and metallurgical factors are also important in creating departures from the cumulative damage theories; examples of departures are provided.
Re-examination of cumulative fatigue damage analysis: An engineering perspective
NASA Technical Reports Server (NTRS)
Manson, S. S.; Halford, G. R.
1986-01-01
A method which has evolved in our laboratories for the past 20 yr is re-examined with the intent of improving its accuracy and simplicity of application to engineering problems. Several modifications are introduced both to the analytical formulation of the Damage Curve Approach, and to the procedure for modifying this approach to achieve a Double Linear Damage Rule formulation which immensely simplifies the calculation. Improvements are also introduced in the treatment of mean stress for determining fatigue life of the individual events that enter into a complex loading history. While the procedure is completely consistent with the results of numerous two level tests that have been conducted on many materials, it is still necessary to verify applicability to complex loading histories. Caution is expressed that certain phenomena can also influence the applicability - for example, unusual deformation and fracture modes inherent in complex loading - especially if stresses are multiaxial. Residual stresses at crack tips, and metallurgical factors are also important in creating departures from the cumulative damage theories; examples of departures are provided.
An Elaborate Data Set Characterizing the Mechanical Response of the Foot
Erdemir, Ahmet; Sirimamilla, Pavana A.; Halloran, Jason P.; van den Bogert, Antonie J.
2010-01-01
Background Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as overall response, to illustrate their combined operation, does not exist. Furthermore, combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Method of Approach Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g. compression, and combined loading, e.g. compression and shear. Small and large indenters were used for heel and metatarsal head loading; an elevated platform was utilized to isolate the rear foot and forefoot; and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a-priori. Results Three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading response portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. Conclusion A large data set was successfully obtained to characterize the overall as well as regional mechanical response of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical response, and for further development of foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics. PMID:19725699
Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel
2014-02-01
UNCLASSIFIED UNCLASSIFIED Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel C...Measurement of Deformation Resistance for Steel Executive Summary The Explosion Bulge Test has been used for over 60 years as a standard test for...the assessment of steel toughness and deformation resistance under blast loading conditions [1-3]. However, details of the test conditions vary
NASA Technical Reports Server (NTRS)
Castelli, Michael G.; Arnold, Steven M.
2000-01-01
Structural materials for the design of advanced aeropropulsion components are usually subject to loading under elevated temperatures, where a material's viscosity (resistance to flow) is greatly reduced in comparison to its viscosity under low-temperature conditions. As a result, the propensity for the material to exhibit time-dependent deformation is significantly enhanced, even when loading is limited to a quasi-linear stress-strain regime as an effort to avoid permanent (irreversible) nonlinear deformation. An understanding and assessment of such time-dependent effects in the context of combined reversible and irreversible deformation is critical to the development of constitutive models that can accurately predict the general hereditary behavior of material deformation. To this end, researchers at the NASA Glenn Research Center at Lewis Field developed a unique experimental technique that identifies the existence of and explicitly determines a threshold stress k, below which the time-dependent material deformation is wholly reversible, and above which irreversible deformation is incurred. This technique is unique in the sense that it allows, for the first time, an objective, explicit, experimental measurement of k. The underlying concept for the experiment is based on the assumption that the material s time-dependent reversible response is invariable, even in the presence of irreversible deformation.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1989-01-01
Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1988-01-01
Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.
State-variable theories for nonelastic deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.Y.
The various concepts of mechanical equation of state for nonelastic deformation in crystalline solids, originally proposed for plastic deformation, have been recently extended to describe additional phenomena such as anelastic and microplastic deformation including the Bauschinger effect. It has been demonstrated that it is possible to predict, based on current state variables in a unified way, the mechanical response of a material under an arbitrary loading. Thus, if the evolution laws of the state variables are known, one can describe the behavior of a material for a thermal-mechanical path of interest, for example, during constant load (or stress) creep withoutmore » relying on specialized theories. Some of the existing theories of mechanical equation of state for nonelastic deformation are reviewed. The establishment of useful forms of mechanical equation of state has to depend on extensive experimentation in the same way as that involved in the development, for example, the ideal gas law. Recent experimental efforts are also reviewed. It has been possible to develop state-variable deformation models based on experimental findings and apply them to creep, cyclic deformation, and other time-dependent deformation. Attempts are being made to correlate the material parameters of the state-variable models with the microstructure of a material. 24 figures.« less
Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data
Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C.K.; Li, Zhao
2014-01-01
Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454
Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.
Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao
2014-10-22
Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.
Tunability of soft phononic crystals through large deformation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bao, Ronghao; Chen, Weiqiu
2017-04-01
Phononic crystals (PCs) have attracted plenty of attention during the past two decades, and a lot of work has been devoted to the numerical, theoretical and experimental analysis of the band gaps of the PCs with 1D, 2D and 3D structures, respectively. The band gaps have been found to be related to the topology of the unit cell, filling ratio, contrast of the material properties between matrix and inclusion, and so on. However, they are fixed when the fabrication of corresponding devices is finished in most cases. Usually, biasing fields (e.g. initial stress, initial deformation, pre-existing electric field, external electric field and magnetic field, etc.) can be utilized to tailor the band gaps in flexible and reconfigurable ways. Recently, the instability-induced deformations triggered by external mechanical loadings have been found to be an effective and reversible way to tune the band gaps and the directionality of PCs made from soft materials, such as silicon and rubber. In this project, a novel design of PCs will be proposed, which consists of perforated plate with some individual beams fixed on the boundary of internal holes. When the external mechanical loading applied on the PCs reaches a threshold value, instability-induced buckling will be triggered and the internal beams might be in contact with each other, which will significantly alter the topology of PCs, and therefore effectively tune the band gaps of PCs. A systematical analysis will be carried out to study the influences on the tunability of PCs with different designs through finite element methods (FEM).
Buckling behavior of origami unit cell facets under compressive loads
NASA Astrophysics Data System (ADS)
Kshad, Mohamed Ali Emhmed; Naguib, Hani E.
2018-03-01
Origami structures as cores for sandwich structures are designed to withstand the compressive loads and to dissipate compressive energy. The deformation of the origami panels and the unit cell facets are the primary factors behind the compressive energy dissipation in origami structures. During the loading stage, the origami structures deform through the folding and unfolding process of the unit cell facets, and also through the plastic deformation of the facets. This work presents a numerical study of the buckling behavior of different origami unit cell elements under compressive loading. The studied origami configurations were Miura and Ron-Resch-like origami structures. Finite element package was used to model the origami structures. The study investigated the buckling behavior of the unit cell facets of two types of origami structures Miura origami and Ron-Resch-Like origami structures. The simulation was conducted using ANSYS finite element software, in which the model of the unit cell represented by shell elements, and the eigenvalues buckling solver was used to predict the theoretical buckling of the unit cell elements.
Fracture analysis of stiffened panels under biaxial loading with widespread cracking
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.
1995-01-01
An elastic-plastic finite-element analysis with a critical crack-tip-opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various number of stiffeners were compared with test data, whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.
Fracture analysis of stiffened panels under biaxial loading with widespread cracking
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1995-01-01
An elastic-plastic finite-element analysis with a critical crack-tip opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various numbers of stiffeners were compared with test data whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.
Mechanical basis of bone strength: influence of bone material, bone structure and muscle action
Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U.
2017-01-01
This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone’s ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone’s complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation. PMID:28860414
Pan, Yuanjin; Shen, Wen-Bin; Hwang, Cheinway; Liao, Chaoming; Zhang, Tengxu; Zhang, Guoqing
2016-01-01
Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS) stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs), in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE) mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA) contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet. PMID:27490550
Large Deformation Dynamic Bending of Composite Beams
NASA Technical Reports Server (NTRS)
Derian, E. J.; Hyer, M. W.
1986-01-01
Studies were conducted on the large deformation response of composite beams subjected to a dynamic axial load. The beams were loaded with a moderate eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied to determine potential differences between the static and dynamic failure. Twelve different laminate types were tested. The beams tested were 23 in. by 2 in. and generally 30 plies thick. The beams were loaded dynamically with a gravity-driven impactor traveling at 19.6 ft/sec and quasi-static tests were conducted on identical beams in a displacement controlled manner. For laminates of practical interest, the failure modes under static and dynamic loadings were identical. Failure in most of the laminate types occurred in a single event involving 40% to 50% of the plies. However, failure in laminates with 300 or 150 off-axis plies occurred in several events. All laminates exhibited bimodular elastic properties. The compressive flexural moduli in some laminates was measured to be 1/2 the tensile flexural modulus. No simple relationship could be found among the measured ultimate failure strains of the different laminate types. Using empirically determined flexural properties, a finite element analysis was reasonably accurate in predicting the static and dynamic deformation response.
NASA Astrophysics Data System (ADS)
Cheng, Jian-Long; Yang, Sheng-Qi; Chen, Kui; Ma, Dan; Li, Feng-Yuan; Wang, Li-Ming
2017-12-01
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0{°}-45{°} specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60{°}-90{°} specimens gradually increased during the loading process. When the anisotropic angle θ increased from 0{°} to 90{°}, the peak strength, peak strain, and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories: tensile fracture across the discontinuities (θ = 0{°}-30{°}), sliding failure along the discontinuities (θ = 45{°}-75{°}), and tensile-split along the discontinuities (θ = 90{°}). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0{°}-45{°} specimens and was almost the same as that of the θ = 60{°}-90{°} specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0{°}-30{°} specimens appeared in the rock matrix approximately parallel to the loading direction, while in the θ = 45{°}-90{°} specimens it appeared at the hard and weak rock layer interface.
Hydrothermal deformation of granular quartz sand
NASA Astrophysics Data System (ADS)
Karner, Stephen L.; Kronenberg, Andreas K.; Chester, Frederick M.; Chester, Judith S.; Hajash, Andrew
2008-05-01
Isotropic and triaxial compression experiments were performed on porous aggregates of St Peter quartz sand to explore the influence of temperature (to 225°C). During isotropic stressing, samples loaded at elevated temperature exhibit the same sigmoidal stress-strain curves and non-linear acoustic emission rates as have previously been observed from room temperature studies on sands, sandstones, and soils. However, results from our hydrothermal experiments show that the critical effective pressure (P*) associated with the onset of significant pore collapse and pervasive cataclastic flow is lower at increased temperature. Samples subjected to triaxial loading at elevated temperature show yield behavior resembling that observed from room temperature studies on granular rocks and soils. When considered in terms of distortional and mean stresses, the yield strength data for a given temperature define an elliptical envelope consistent with critical state and CAP models from soil mechanics. For the conditions we tested, triaxial yield data at low effective pressure are essentially temperature-insensitive whereas yield levels at high effective pressure are lowered as a function of elevated temperature. We interpret our yield data in a manner consistent with Arrhenius behavior expected for thermally assisted subcritical crack growth. Taken together, our results indicate that increased stresses and temperatures associated with subsurface burial will significantly alter the yield strength of deforming granular media in systematic and predictable ways.
Numerical analysis of back pressure equal channel angular pressing of an Al-Mg alloy
NASA Astrophysics Data System (ADS)
Comăneci, R.
2017-08-01
Ultrafine grain size provides enhanced mechanical and/or physical properties such as strength and high ductility, superplasticity at relatively low temperatures and high strain rate and better corrosion resistance. Well-known as one of the most promising and effective structure refining method among other severe plastic deformation (SPD) techniques, equal channel angular pressing (ECAP) has been intensively investigated due to spectacular improvements in structure and therefore properties of bulk ultrafine grained/nanostructured materials. A successful ECAP requires surpassing two obstacles: the necessary load level which directly affects tools and a favourable stress distribution so the material withstanding the accumulated strain of repeated deformation. Materials could withstand more passes if a back pressure (BP) is applied. In traditional ECAP, tensile stress along the contact surface between the work piece and the upper wall of the outlet channel leads to crack initiation, while in the presence of BP, a negative (compressive) stress appears during the process balancing the tensile stress. In this study a comparative tridimensional finite element analysis (FEA) is performed to evaluate the flow of an Al-Mg alloy depending on different BP levels and process parameters. The results in terms of load level and strain distribution show the influence of BP on the material behaviour, opening opportunities for industrial applications.
Modeling propellant-based stimulation of a borehole with peridynamics
Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L.
2017-02-27
A non-local formulation of classical continuum mechanics theory known as peridynamics is used to study fracture initiation and growth from a wellbore penetrating the subsurface within the context of propellant-based stimulation. The principal objectives of this work are to analyze the influence of loading conditions on the resulting fracture pattern, to investigate the effect of in-situ stress anisotropy on fracture propagation, and to assess the suitability of peridynamics for modeling complex fracture formation. In peridynamics, the momentum equation from the classical theory of solid mechanics is replaced by a non-local analogue, which results in an integrodifferential conservation equation. A continuummore » material is discretized with a set of material points that interact with all other points within a specified distance. Interactions between points are governed by bonds that can deform and break depending on loading conditions. The accumulated breakage of bonds gives rise to a picture of complex growth of fractures that is seen as a key advantage in the peridynamic representation of discontinuities. It is shown that the loading rate significantly influences the number and ex- tent of fractures initiated from a borehole. Results show that low loading rates produce fewer but longer fractures, whereas high loading rates produce numerous shorter fractures around the borehole. The numerical method is able to predict fracture growth patterns over a wide range of loading and stress conditions. Our results also show that fracture growth is attenuated with increasing in-situ confining stress, and, in the case of confining stress anisotropy, fracture extensions are largest in the direction perpendicular to the minimum compressive stress. Since the results are in broad qualitative agreement with experimental and numerical studies found in the literature, suggesting that peridynamics can be a powerful tool in the study of complex fracture network formation.« less
Modeling propellant-based stimulation of a borehole with peridynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchadhara, Rohan; Gordon, Peter A.; Parks, Michael L.
A non-local formulation of classical continuum mechanics theory known as peridynamics is used to study fracture initiation and growth from a wellbore penetrating the subsurface within the context of propellant-based stimulation. The principal objectives of this work are to analyze the influence of loading conditions on the resulting fracture pattern, to investigate the effect of in-situ stress anisotropy on fracture propagation, and to assess the suitability of peridynamics for modeling complex fracture formation. In peridynamics, the momentum equation from the classical theory of solid mechanics is replaced by a non-local analogue, which results in an integrodifferential conservation equation. A continuummore » material is discretized with a set of material points that interact with all other points within a specified distance. Interactions between points are governed by bonds that can deform and break depending on loading conditions. The accumulated breakage of bonds gives rise to a picture of complex growth of fractures that is seen as a key advantage in the peridynamic representation of discontinuities. It is shown that the loading rate significantly influences the number and ex- tent of fractures initiated from a borehole. Results show that low loading rates produce fewer but longer fractures, whereas high loading rates produce numerous shorter fractures around the borehole. The numerical method is able to predict fracture growth patterns over a wide range of loading and stress conditions. Our results also show that fracture growth is attenuated with increasing in-situ confining stress, and, in the case of confining stress anisotropy, fracture extensions are largest in the direction perpendicular to the minimum compressive stress. Since the results are in broad qualitative agreement with experimental and numerical studies found in the literature, suggesting that peridynamics can be a powerful tool in the study of complex fracture network formation.« less
Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L
2009-08-01
Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.
NASA Astrophysics Data System (ADS)
Wang, W. C.; Lin, D. G.
2015-12-01
This study investigates the bearing capacities and mechanical behaviors of pile foundation installed on the seabed of wind farm near Chang-Hua coast of western Taiwan for the supporting structure of offshore wind turbine. A series of three-dimensional (3-D) numerical modeling of pile foundation subjected to various types of combined loading were carried out using Plaix-3D finite element program to investigate the interactive behaviors between soil and pile. In the numerical modeling, pile diameter, pile length and pile spacing were selected as design parameters to inspect their effects on the bearing capacities and deformation behaviors of the pile foundation. For a specific design parameter combination, one can obtain the corresponding loading-displacement curve, various ultimate bearing capacities, V-H (Vertical-Horizontal combined loading) ultimate bearing capacity envelope, and p-ycurve of pile foundation. Numerical results indicate that: (1) Large displacement and plastic points at ultimate state mostly distribute and concentrate in the topsoil of seabed and around pile head. (2) The soil resistance on the soil-pile interface is ascending with the increases of depth, pile diameter and pile length. (3) The vertical and horizontal bearing capacities of pile group increase significantly with the increase of pile diameter. (4) The vertical and bending moment capacities of pile group increase greatly with the increase of pile length whereas the horizontal capacity is almost insensitive to pile length. (5) The bending moment of pile is highly influenced by the pile spacing. (6) For different design parameters, the shape of ultimate bearing capacity envelopes of pile group on V-H plane is similar while the envelopes will expand as the design parameters increase. For different loading levels of bending moment, the envelopes on V-H plane will contract gradually as the bending moment loading increasing.
NASA Astrophysics Data System (ADS)
Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.
2017-12-01
Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature shale.
Mishra, Srishti; Meraj, Md; Pal, Snehanshu
2018-06-19
A large-scale molecular dynamics (MD) simulation of nano-indentation was carried out to provide insight into the influence of the Al-Al 2 O 3 interface on dislocation evolution and deformation behavior of Al substrate coated with Al 2 O 3 thin film. Adaptive common neighbor analysis (a-CNA), centro-symmetry parameter (CSP) estimation, and dislocation extraction algorithm (DXA) were implemented to represent structural evolution during nano-indentation deformation. The absence of elastic regime was observed in the P-h curve for this simulated nano-indentation test of Al 2 O 3 thin film coated Al specimen. The displacement of oxygen atoms from Al 2 O 3 to Al partly through the interface greatly influences the plastic deformation behavior of the specimen during nano-indentation. Prismatic dislocation loops, which are formed due to pinning of Shockley partials (1/6 < 112>) by Stair-rod (1/6 < 110>) and Hirth dislocation (1/3 < 001>), were observed in all cases studied in this work. Pile-up of atoms was also observed and the extent of the pile-up was found to vary with the test temperature. A distorted stacking fault tetrahedron (SFT) is formed when a nano-indentation test is carried out at 100 K. The presence of a prismatic dislocation loop, SFT and dislocation forest caused strain hardening and, consequently, there is an increase in hardness as indentation depth increases. Graphical abstract Figure illustrates nano-indentation model set up along with load vs. depth curve and distorted stacking fault tetrahedron.
NASA Astrophysics Data System (ADS)
Le Pichon, Xavier; Mazzotti, Stéphane; Henry, Pierre; Hashimoto, Manabu
1998-08-01
The entire area of the Japanese Islands has been covered by the permanent GPS observation network of the Geographical Survey Institute since 1994. In this paper we use a solution for the vectors of motion during 1995 for a selection of 116 stations to discuss the origin of the observed deformation field. We refer the displacement field to Eurasia using the VLBI-determined motion of Kashima and demonstrate that other choices such as the Okhotsk or North American plates for north Japan are not compatible with the data. 1 yr GPS velocities are much higher than geological constraints would allow because these short-term measurements include transient elastic deformation. However, the good qualitative agreement between the observed geodetic deformation tensors and those inferred from active faults and earthquakes suggests that the Quaternary permanent deformation is essentially the result of the transfer of part of the subduction-induced elastic deformation into permanent plastic deformation. We then compute the elastic deformation of the Japanese Islands caused by interseismic loading of the Pacific and Philippine subduction planes. The geometry of the coupled zone and its downward extension are determined from the distribution of earthquakes for the Pacific slab. For the Philippine slab we use the geometry proposed by Hyndman et al. (1995). These elastic models account for most of the observed velocity field if the subduction movement of the Philippine Sea Plate is 100 per cent locked and if that of the Pacific Plate is 75-85 per cent locked. We note that the boundaries of the areas where significant elastic deformation is predicted (more than 10 mm yr-1 of motion with respect to Eurasia) coincide with the main zones of permanent deformation: the Eastern Japan Sea deformation zone for the Pacific subduction elastic deformation field and the Setouchi/MTL deformation zone for the Nankai field. Each zone probably accommodates 10-15 mm yr-1 of motion in the long term (convergence in the Eastern Japan Sea; strike-slip in the Setouchi/MTL zone). To account for this deformation, the effect of elastic loading from the trench must be combined with 5-10 mm yr-1 of motion of the Amur Plate with respect to Eurasia. Because loading during the subduction earthquake cycle causes an increase in stress in the Eastern Japan Sea and Setouchi/MTL deformation zones, the probability of earthquake occurrence in these zones may be higher near the end of the cycle.
Transcutol containing vesicles for topical delivery of minoxidil.
Mura, Simona; Manconi, Maria; Valenti, Donatella; Sinico, Chiara; Vila, Amparo Ofelia; Fadda, Anna Maria
2011-04-01
The aim of this work was to evaluate the ability of Transcutol (Trc) to produce elastic vesicles with soy lecithin (SL) and study the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called penetration enhancer-containing vesicles (PEVs) were prepared using Trc aqueous solutions (5-10-20-30% v/v) as hydrophilic phase. SL liposomes, without Trc, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, deformability, and rheological behavior. The influence of the obtained PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through pig skin. Results showed that all prepared PEVs were able to give good entrapment efficiency (E%≈67) similar to that of conventional liposomes. Trc-containing PEVs showed to be more deformable than liposomes only when minoxidil was loaded in 5 and 10% Trc-containing vesicles. Rheological studies showed that PEVs have higher fluidity than conventional liposomes. All PEVs showed a higher stability than liposomes as shown by studying zeta potential and size distribution during three months. Results of in vitro diffusion experiments showed that Trc-containing PEVs are able to deliver minoxidil to deep skin layers without any transdermal permeation.
2012-08-01
based impulsive loading ......................................... 48 4.4 Computational modeling of USLS ...56 4.5 Underwater Shock Loading Simulator ( USLS ) ...................................................... 59 4.6 Concluding...42 Figure 4.1 Schematic of Underwater Shock Loading Simulator ( USLS ). A high-velocity projectile hits the flyer-plate and creates a stress
Impact of overweight vehicles (with heavy axle loads) on bridge deck deterioration.
DOT National Transportation Integrated Search
2012-03-01
Bridge deck slabs develop compressive stresses from global flexural deformation and locally from high-level : wheel loads when it is subjected to overweight trucks. This study quantified the impact of overweight vehicles : with heavy axle loads on br...
An assessment of ultra fine grained 316L stainless steel for implant applications.
Muley, Sachin Vijay; Vidvans, Amey N; Chaudhari, Gajanan P; Udainiya, Sumit
2016-01-01
Ultra fine-grained metals obtained by severe plastic deformation exhibit higher specific strength that is useful for many applications and show promise for use as body implants. This work studied the microstructural evolution, mechanical and sliding wear behavior and corrosion behavior of 316L stainless steel warm multi axially forged at 600°C. Microstructural evolution studied using electron backscatter diffraction technique and transmission electron microscopy confirmed the formation of ultra fine-grained structure. Average grain size reduced from 30μm to 0.86μm after nine strain steps. A combination of Hall-Petch strengthening and strain hardening increased the hardness. Improved sliding wear resistance is attributed to a transition from micro cutting to wedge-forming mode of abrasive wear. Load-bearing orthopedic implants often fail from pitting initiated corrosion fatigue. Potentiodynamic tests, cyclic polarization, and FeCl3 immersion tests revealed enhanced pitting resistance of forged steel that is confirmed by Mott-Schottky analysis. This is ascribed to an increase in the grain boundary volume, and homogenization of pit inducing impurities and non-metallic phases due to severe deformation, which influenced the passive film properties. These model studies on 316L steel demonstrate that severely deformed ultra fine-grained metals have potential to deliver improved implant performance. This model study on 316L steel demonstrates that severely deformed ultra fine-grained (UFG) metals have potential to deliver improved load-bearing implant performance. It is as interesting as is unclear as to how such severely deformed UFG material behaves electrochemically in the corrosive body fluids. This work is on studying the inter-relationship between structure, and mechanical, wear, and corrosion behavior of warm multiaxially forged (MAFed) UFG 316L stainless steel. Warm MAF is a bulk processing method capable of yielding large volume of UFG material and is an easily readily adaptable technique in industry. It can be a promising alternative to the expensive metallic alloys available for implant applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K
2017-04-07
The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.
Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector
NASA Technical Reports Server (NTRS)
Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)
2001-01-01
Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.
NASA Astrophysics Data System (ADS)
Juel, Anne; Prior, Chris; Moussou, Julien; Chakrabarti, Buddhapriya; Jensen, Oliver
The procedure of curling a ribbon by running it over a sharp blade is commonly used when wrapping presents. Despite its ubiquity, a quantitative explanation of this everyday phenomenon is still lacking. We address this using experiment and theory, examining the dependence of ribbon curvature on blade curvature, the longitudinal load imposed on the ribbon and the speed of pulling. Experiments in which a ribbon is drawn steadily over a blade under a fixed load show that the ribbon curvature is generated over a restricted range of loads, the curvature/load relationship can be non-monotonic, and faster pulling (under a constant imposed load) results in less tightly curled ribbons. We develop a theoretical model that captures these features, building on the concept that the ribbon under the imposed deformation undergoes differential plastic stretching across its thickness, resulting in a permanently curved shape. The model identifies factors that optimize curling and clarifies the physical mechanisms underlying the ribbon's nonlinear response to an apparently simple deformation.
The viscoelastic behavior of notched glassy polymers
NASA Technical Reports Server (NTRS)
Crook, R. A.; Letton, Alan
1993-01-01
In the bulk, glassy polymers exhibit a nonlinear viscoelastic response during deformation. Stress or strain induced damage (i.e. crazing, microshear banding) results in the production of nonrecoverable work and observed nonlinearity. Stress or strain dependent shift factors have been used to mathematically model the mechanical behavior of these polymers. Glassy polymers that have been notched, may exhibit very different load displacement response compared to the same material under bulk deformation. If a sharp notch is introduced into the body then loaded, the load displacement trace may appear to be single-valued in the absence of viscoelasticity and crack growth. This suggests the volume of damaged material is small compared to the overall dimensions of the specimen. The ability to produce a single-valued load-load-line displacement trace through the use of the Correspondence Principle may prove to be useful for fracture of viscoelastic materials.
Evaluation of models for predicting (total) creep of prestressed concrete mixtures.
DOT National Transportation Integrated Search
2001-01-01
Concrete experiences volume changes throughout its service life. When loaded, concrete experiences an instantaneous recoverable elastic deformation and a slow inelastic deformation called creep. Creep of concrete is composed of two components, basic ...
Modelling deformation and fracture in confectionery wafers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon
2015-01-22
The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which wasmore » then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.« less
Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation
NASA Astrophysics Data System (ADS)
Chanard, Kristel; Fleitout, Luce; Calais, Eric; Barbot, Sylvain; Avouac, Jean-Philippe
2018-03-01
We discuss the constraints on short-term asthenospheric viscosity provided by seasonal deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used as an input to predict geodetic displacements. We compute Green's functions for surface displacements for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal loading at long wavelengths (1,300-4,000 km). By comparing predicted and observed seasonal horizontal motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 1017 Pa.s, suggesting that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold for the seasonal deformation global average.
Analysis of role of bone compliance on mechanics of a lumbar motion segment.
Shirazi-Adl, A
1994-11-01
A large deformation elasto-static finite element formulation is developed and used for the determination of the role of bone compliance in mechanics of a lumbar motion segment. This is done by simulating each vertebra as a deformable body with realistic material properties, as a deformable body with stiffer or softer mechanical properties, as a single rigid body, or finally as two rigid bodies attached by deformable beams. The single loadings of axial compression, flexion moment, extension moment, and axial torque are considered. The results indicate the marked effect of alteration in bone material properties on biomechanics of lumbar segments specially under larger loads. The biomechanical studies of the lumbar spine should, therefore, be performed and evaluated in the light of such dependency. A model for bony vertebrae is finally proposed that preserves both the accuracy and the cost-efficiency in nonlinear finite element analyses of spinal multi-motion segment systems.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Lerch, Bradley A.; Saleeb, Atef F.; Kasemer, Matthew P.
2013-01-01
Time-dependent deformation and damage behavior can significantly affect the life of aerospace propulsion components. Consequently, one needs an accurate constitutive model that can represent both reversible and irreversible behavior under multiaxial loading conditions. This paper details the characterization and utilization of a multi-mechanism constitutive model of the GVIPS class (Generalized Viscoplastic with Potential Structure) that has been extended to describe the viscoelastoplastic deformation and damage of the titanium alloy Ti-6Al-4V. Associated material constants were characterized at five elevated temperatures where viscoelastoplastic behavior was observed, and at three elevated temperatures where damage (of both the stiffness reduction and strength reduction type) was incurred. Experimental data from a wide variety of uniaxial load cases were used to correlate and validate the proposed GVIPS model. Presented are the optimized material parameters, and the viscoelastoplastic deformation and damage responses at the various temperatures.
Planar dynamics of large-deformation rods under moving loads
NASA Astrophysics Data System (ADS)
Zhao, X. W.; van der Heijden, G. H. M.
2018-01-01
We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.
The arrangement of the fibers in the yarn and effect on its strength
NASA Astrophysics Data System (ADS)
Bobajonov, H. T.; Yuldashev, J. K.; Gafurov, J. K.; Gofurov, K.
2017-10-01
This article presents the results of research on the deformation changes in the initial moments of loading and unloading of conversional ring and compact yarns samples with a special strain gauge device. It was revealed that compact yarn in the initial load moment is deformed slowly doubled (4 seconds) compared to the conversional ring yarn. At the moment of unloading, on the contrary, the deformation of the compact yarn occurs rapidly (2 seconds), and the compact yarn in which a fiber foredeck regularly deformed quickly (1 second). A comparative study of resistance to stretching of the conversional ring and compact yarn based on Kelvin model was done. As a result, it has been found that the instant and long elastic module of compact yarn are slightly higher than conversional ring yarn with similar module, and the viscosity parameter which characterizes the decrease of the modulus of elasticity is lower compare with it..
Modelling deformation and fracture in confectionery wafers
NASA Astrophysics Data System (ADS)
Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John
2015-01-01
The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.
Seasonal water storage, stress modulation, and California seismicity.
Johnson, Christopher W; Fu, Yuning; Bürgmann, Roland
2017-06-16
Establishing what controls the timing of earthquakes is fundamental to understanding the nature of the earthquake cycle and critical to determining time-dependent earthquake hazard. Seasonal loading provides a natural laboratory to explore the crustal response to a quantifiable transient force. In California, water storage deforms the crust as snow and water accumulates during the wet winter months. We used 9 years of global positioning system (GPS) vertical deformation time series to constrain models of monthly hydrospheric loading and the resulting stress changes on fault planes of small earthquakes. The seasonal loading analysis reveals earthquakes occurring more frequently during stress conditions that favor earthquake rupture. We infer that California seismicity rates are modestly modulated by natural hydrological loading cycles. Copyright © 2017, American Association for the Advancement of Science.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
Prediction of bead area contact load at the tire-wheel interface using NASTRAN
NASA Technical Reports Server (NTRS)
Chen, C. H. S.
1982-01-01
The theoretical prediction of the bead area contact load at the tire wheel interface using NASTRAN is reported. The application of the linear code to a basically nonlinear problem results in excessive deformation of the structure and the tire-wheel contact conditions become impossible to achieve. A psuedo-nonlinear approach was adopted in which the moduli of the cord reinforced composite are increased so that the computed key deformations matched that of the experiment. Numerical results presented are discussed.
Deformation Behavior of Al/a-Si Core-shell Nanostructures
NASA Astrophysics Data System (ADS)
Fleming, Robert
Al/a-Si core-shell nanostructures (CSNs), consisting of a hemispherical Al core surrounded by a hard shell of a-Si, have been shown to display unusual mechanical behavior in response to compression loading. Most notably, these nanostructures exhibit substantial deformation recovery, even when loaded much beyond the elastic limit. Nanoindentation measurements revealed a unique mechanical response characterized by discontinuous signatures in the load-displacement data. In conjunction with the indentation signatures, nearly complete deformation recovery is observed. This behavior is attributed to dislocation nucleation and annihilation events enabled by the 3-dimensional confinement of the Al core. As the core confinement is reduced, either through an increase in confined core volume or a change in the geometrical confinement, the indentation signatures and deformation resistance are significantly reduced. Complimentary molecular dynamics simulations show that a substantial amount of dislocation egression occurs in the core of CSNs during unloading as dislocations annihilate at the core/shell interface. Smaller core diameters correlate with the development of a larger back-stress within the core during unloading, which further correlates with improved dislocation annihilation after unloading. Furthermore, dislocations nucleated in the core of core-shell nanorods are not as effectively removed as compared to CSNs. Nanostructure-textured surfaces (NSTSs) composed of Al/a-Si CSNs have improved tribological properties compared surfaces patterned with Al nanodots and a flat (100) Si surface. NSTSs have a coefficient of friction (COF) as low as 0.015, exhibit low adhesion with adhesion forces on the order of less than 1 microN, and are highly deformation resistant, with no apparent surface deformation after nanoscratch testing, even at contact forces up to 8000 microN. In comparison, (100) Si has substantially higher adhesion and COF ( 10 microN and 0.062, respectively), while the Al nanodots have both higher friction (COF 0.044) and are deformed when subjected to contact loads as low as 250 microN. This integrated experimental and computational study elucidates the mechanisms that contribute to the novel properties of Al/a-Si CSNs and characterizes the tribological properties of surface composed of these nanostructures, which provides a foundation for the rational design of novel technologies based on CSNs.
High-resolution mapping of yield curve shape and evolution for high porosity sandstones
NASA Astrophysics Data System (ADS)
Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.
2017-12-01
The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.
Study on influence of crack on the blade status using FBGs
NASA Astrophysics Data System (ADS)
Xu, Gang; Liang, Lei; Li, Jianzhi; Mei, Huaping; Li, Hongli; Liu, Yijun
2018-03-01
The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the speed of the equipment and blade excited vibration frequency are two main factors or deformation and vibration frequency of the blade. With an increase in the crack depth, the blade deformation is increased while the stimulated natural frequency of the blade is decreased; at a low rotational speed, the deformation is mainly caused by the rotating speed of the blade. On the contrary, the vibration blade itself contributes to the deformation at a high speed. During the process of full speed rotation, the influence of the rotational speed on the blade deformation almost remains the same, and the influence of the natural vibration on blade deformation is increased with an increase in the rotational speed.
Study on influence of crack on the blade status using FBGs
NASA Astrophysics Data System (ADS)
Xu, Gang; Liang, Lei; Li, Jianzhi; Mei, Huaping; Li, Hongli; Liu, Yijun
2017-12-01
The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the speed of the equipment and blade excited vibration frequency are two main factors or deformation and vibration frequency of the blade. With an increase in the crack depth, the blade deformation is increased while the stimulated natural frequency of the blade is decreased; at a low rotational speed, the deformation is mainly caused by the rotating speed of the blade. On the contrary, the vibration blade itself contributes to the deformation at a high speed. During the process of full speed rotation, the influence of the rotational speed on the blade deformation almost remains the same, and the influence of the natural vibration on blade deformation is increased with an increase in the rotational speed.
NASA Astrophysics Data System (ADS)
Chen, Yali
The plastic deformation behavior of PST TiAl crystals was investigated using AFM techniques to reveal the effects of lamellar structure on the deform mechanisms of two-phase TiAl materials. PST crystals with a nominal composition of Ti52Al48 (atomic percent) were grown by the floating zone method and at various orientations deformed in compression at room temperature. Atomic Force Microscopy (AFM) was employed to investigate the deformation structure on the free surfaces. The deformation of the PST crystals is highly anisotropic and the deformation mechanism changes dramatically with sample orientation. When the angle between the loading axis and the lamellar interfaces is below 20°, the gamma lamellae deform by dislocation slip and twinning on planes oblique to the lamellar interfaces, but the Burgers vectors or the resultant shear vectors are parallel to the lamellar interfaces inside each lamella. When the angle is between 20° and 80° the gamma phase deforms by shear on planes parallel to the lamellar interfaces. Some domains deform by a combination of ordinary dislocation slip and twinning. In the domains where twinning cannot be activated, slip occurs by ordinary dislocations or superdislocations. When the loading axis is nearly perpendicular to the lamellar interfaces ordinary dislocation slip and twinning on slip planes inclined with the lamellar interfaces are dominant and the shear is trans-lamellar. The three deformation modes are termed as A, B and N type deformation modes respectively. In the A type mode the alpha2 lamellae concomitantly deform by prismatic slip. In the other two modes, the alpha2 phase does not deform and acts as strong obstacles to the transfer of deformation. Abundant misfit dislocations are emitted from the lamellar interfaces which is beneficial for the plastic deformation. On the other hand, the lamellar interfaces strongly impede trans-lamellar deformation and channel the deformation inside each lamella. The inhomogeneous coherency stresses at the lamellar interfaces also lead to heterogeneous deformation of PST crystals. The deformation behavior of the lamellar grains produces remarkable strain incompatibility in lamellar polycrystals and deteriorates the deformability.
NASA Astrophysics Data System (ADS)
Ispas, N.; Năstăsoiu, M.
2016-08-01
Reducing occupant injuries for cars involves in traffic accidents is a main target of today cars designers. Known as active or passive safety, many technological solutions were developing over the time for an actual better car's occupant safety. In the real world, in traffic accidents are often involved cars from different generations with various safety historical solutions. The main aim of these papers are to quantify the influences over the car driver chest loads in cases of same or different generation of cars involved in side car crashes. Both same and different cars generations were used for the study. Other goal of the paper was the study of in time loads conformity for diver's chests from both cars involved in crash. The paper's experimental results were obtained by support of DSD, Dr. Steffan Datentechnik GmbH - Linz, Austria. The described tests were performed in full test facility of DSD Linz, in “Easter 2015 PC-Crash Seminar”. In all crashes we obtaining results from both dummy placed in impacted and hits car. The novelty of the paper are the comparisons of data set from each of driver (dummy) of two cars involved in each of six experimental crashes. Another novelty of this paper consists in possibilities to analyse the influences of structural historical cars solutions over deformation and loads in cases of traffic accidents involved. Paper's conclusions can be future used for car passive safety improvement.
A physical interpretation of softening of pressure-sensitive and anisotropic materials
NASA Astrophysics Data System (ADS)
Hu, W.; Wang, Z. R.
2010-07-01
Several new dynamic models are proposed to explain the mechanical behaviour of softening of pressure-sensitive and anisotropic materials at a macroscopic level. If a pressure-sensitive material is loaded by a force and a variable pressure or an anisotropic material is subjected to a load with a changeable loading direction relative to the material frame, their stress-strain relationships become more complicated. Mechanical behaviours of these stress-strain relationships have to cover the feature concerning the change of pressure or loading direction, i.e. mechanical properties of pressure-sensitive material corresponding to different pressure state or anisotropic material relating to different loading direction will play an important role in deciding their stress-strain relationships. Such shift of material properties due to the variable pressure or loading history may significantly expand the traditional concept of the stability of material deformation, and the second order of plastic work being negative may be a response of stable plastic deformation, which is commonly called softening.
NASA Astrophysics Data System (ADS)
McKnight, G. P.; Henry, C. P.
2008-03-01
Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).
Deformation micromechanisms of collagen fibrils under uniaxial tension
Tang, Yuye; Ballarini, Roberto; Buehler, Markus J.; Eppell, Steven J.
2010-01-01
Collagen, an essential building block of connective tissues, possesses useful mechanical properties due to its hierarchical structure. However, little is known about the mechanical properties of collagen fibril, an intermediate structure between the collagen molecule and connective tissue. Here, we report the results of systematic molecular dynamics simulations to probe the mechanical response of initially unflawed finite size collagen fibrils subjected to uniaxial tension. The observed deformation mechanisms, associated with rupture and sliding of tropocollagen molecules, are strongly influenced by fibril length, width and cross-linking density. Fibrils containing more than approximately 10 molecules along their length and across their width behave as representative volume elements and exhibit brittle fracture. Shorter fibrils experience a more graceful ductile-like failure. An analytical model is constructed and the results of the molecular modelling are used to find curve-fitted expressions for yield stress, yield strain and fracture strain as functions of fibril structural parameters. Our results for the first time elucidate the size dependence of mechanical failure properties of collagen fibrils. The associated molecular deformation mechanisms allow the full power of traditional material and structural engineering theory to be applied to our understanding of the normal and pathological mechanical behaviours of collagenous tissues under load. PMID:19897533
NASA Astrophysics Data System (ADS)
Soleimani, Ahmad; Naei, Mohammad Hasan; Mashhadi, Mahmoud Mosavi
In this paper, the first order shear deformation theory (FSDT) is used to investigate the postbuckling behavior of orthotropic single-layered graphene sheet (SLGS) under in-plane loadings. Nonlocal elasticity theory and von-Karman nonlinear model in combination with the isogeometric analysis (IGA) have been applied to study the postbuckling characteristics of SLGSs. In contrast to the classical model, the nonlocal continuum model developed in this work considers the size-effects on the postbuckling characteristics of SLGSs. FSDT takes into account effects of shear deformations through-the-thickness of plate. Geometric imperfection which is defined as a very small transverse displacement of the mid-plane is applied on undeformed nanoplate to create initial deviation in graphene sheet from being perfectly flat. Nonlinear governing equations of motion for SLGS are derived from the principle of virtual work and a variational formulation. At the end, the results are presented as the postbuckling equilibrium paths of SLGS. The influence of various parameters such as edge length, nonlocal parameter, compression ratio, boundary conditions and aspect ratio on the postbuckling path is investigated. The results of this work show the high accuracy of nonlocal FSDT-based analysis for postbuckling behavior of graphene sheets.
The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, T.M.; Motta, A.T.; Koss, D.A.
1998-03-01
The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} tomore » 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.« less
Inelastic deformation and phenomenological modeling of aluminum including transient effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, C.W.
A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelasticmore » spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.« less
Windolf, Markus; Muths, Raphael; Braunstein, Volker; Gueorguiev, Boyko; Hänni, Markus; Schwieger, Karsten
2009-01-01
Compaction of cancellous bone is believed to prevent cut-out. This in vitro study quantified the compaction in the femoral head due to insertion of a dynamic hip screw-blade with and without predrilling and investigated the resulting implant anchorage under cyclic loading. Eight pairs of human cadaveric femoral heads were instrumented with a dynamic hip screw-blade made of Polyetheretherketon. Pairwise instrumentation was performed either with or without predrilling the specimens. CT scanning was performed before and after implantation, to measure bone-compaction. Subsequently the implant was removed and a third scan was performed to analyze the relaxation of the bone structure. Commercial implants were reinserted and the specimens were cyclically loaded until onset of cut-out occurred. The bone-implant interface was monitored by means of fluoroscopic imaging throughout the experiment. Paired t-tests were performed to identify differences regarding compaction, relaxation and cycles to failure. Bone density in the surrounding of the implant increased about 30% for the non-predrilled and 20% for the predrilled group when inserting the implant. After implant removal the predrilled specimens fully relaxed; the non-predrilled group showed about 10% plastic deformation. No differences were found regarding cycles to failure (P=0.32). Significant bone-compaction due to blade insertion was verified. Even though compaction was lower when predrilling the specimens, mainly elastic deformation was present, which is believed to primarily enhance the implant anchorage. Cyclic loading tests confirmed this thesis. The importance of the implantation technique with regard to predrilling is therefore decreased.
Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2016-09-06
The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2015-02-01
The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.
Elastic hysteresis phenomena in ULE and Zerodur optical glasses at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, S.C.; Coon, D.N.; Epstein, J.S.
1988-01-01
Elastic hysteresis phenomena were observed in ULE and Zerodur glasses at elevated temperatures up to glass transition. These effects were found under load deformation testing using four-point bending. Permanent creep resulted in Zerodur at 900/degree/C and in ULE at 1000/degree/C. The deformation was monitored at mid-span of the samples with a capacitance-type transducer having 0.01 micrometer resolution. These hysteresis effects may be classified as elastic bimodulus between loading and unloading; that is, two different elastic moduli were observed between loading and unloading. Upon complete unloading, a minimal deformation state promptly returned, indicating little or no viscoelastic creep. The hysteresis effectmore » may be attributed to a change in glass structure as a function of stress state. A description of the test apparatus and procedure, test results for both glasses at several elevated temperatures, and an elementary discussion of continuum theory of constitutive behavior are included. 6 refs., 9 figs.« less
Dynamic fracture of the surface of an aluminum alloy under conditions of high-speed erosion
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Atroshenko, S. A.; Kazarinov, N. A.; Evstifeev, A. D.; Solov'ev, V. Yu.
2017-04-01
The kinetics of fracture and deformation of the standard aluminum alloy AD1 and a similar alloy subjected to severe plastic deformation by high-pressure torsion under conditions of high-speed erosion has been investigated. It has been shown that, with an increase in the loading rate, the fraction of the brittle component on the fracture surface of the standard material, as well as the thickness of the damaged layer, increases more significantly than that for the material after the severe plastic deformation by high-pressure torsion. A relationship of the surface roughness of the material after the erosion with the loading rate and the thickness of the erosion-damaged layer has been established.
Quasi-Static Viscoelasticity Loading Measurements of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Mason, Angela J.; Tanner, John A.; Johnson, Arthur R.
1997-01-01
Stair-step loading, cyclic loading, and long-term relaxation tests were performed on an aircraft tire to observe the quasi-static viscoelastic response of the tire. The data indicate that the tire continues to respond viscoelastically even after it has been softened by deformation. Load relaxation data from the stair-step test at the 15,000-lb loading was fit to a monotonically decreasing Prony series.
A unified dislocation density-dependent physical-based constitutive model for cold metal forming
NASA Astrophysics Data System (ADS)
Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.
2017-10-01
Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.
DYCAST: A finite element program for the crash analysis of structures
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Winter, R.; Ogilvie, P.
1987-01-01
DYCAST is a nonlinear structural dynamic finite element computer code developed for crash simulation. The element library contains stringers, beams, membrane skin triangles, plate bending triangles and spring elements. Changing stiffnesses in the structure are accounted for by plasticity and very large deflections. Material nonlinearities are accommodated by one of three options: elastic-perfectly plastic, elastic-linear hardening plastic, or elastic-nonlinear hardening plastic of the Ramberg-Osgood type. Geometric nonlinearities are handled in an updated Lagrangian formulation by reforming the structure into its deformed shape after small time increments while accumulating deformations, strains, and forces. The nonlinearities due to combined loadings are maintained, and stiffness variation due to structural failures are computed. Numerical time integrators available are fixed-step central difference, modified Adams, Newmark-beta, and Wilson-theta. The last three have a variable time step capability, which is controlled internally by a solution convergence error measure. Other features include: multiple time-load history tables to subject the structure to time dependent loading; gravity loading; initial pitch, roll, yaw, and translation of the structural model with respect to the global system; a bandwidth optimizer as a pre-processor; and deformed plots and graphics as post-processors.
NASA Astrophysics Data System (ADS)
Strzałkowski, Piotr; Ścigała, Roman; Szafulera, Katarzyna
2018-04-01
Some problems have been discussed, connected with performing predictions of post-mining terrain deformations. Especially problems occur with the summation of horizontal strain over long time intervals as well as predictions of linear discontinuous deformations. Of great importance in recent years is the problem of taking into account transient values of deformations associated with the development of extraction field. The exemplary analysis has been presented of planned extraction influences on two characteristic locations of building structure. The proposal has been shown of calculations with using transient deformation model allowing to describe the influence of extraction advance influence on the value of coefficient of extraction rate c (time factor), according to own original empirical formula.
Fine characterization rock thermal damage by acoustic emission technique
NASA Astrophysics Data System (ADS)
Kong, Biao; Li, Zenghua; Wang, Enyuan
2018-02-01
This paper examines the differences in the thermal mechanical properties and acoustic emission (AE) characteristics during the deformation and fracture of rock under the action of continuous heating and after high-temperature treatment. Using AE 3D positioning technology, the development and evolution of the internal thermal cracks and the time domain of AE signals in rock were analyzed. High-temperature treatment causes thermal damage to rock. Under the action of continuous heating, the phase characteristics of AE time series correspond to the five stages of rock thermal deformation and fracture, respectively: the micro-defect development stage, the threshold interval of rock micro-cracks, the crack initiation stage, the crack propagation stage, and the crack multistage propagation evolution. When the initial crack propagates, the crack initiation of the rock causes the AE signal to produce a sudden mutation change. Mechanical fraction characteristics during rock uniaxial compression after temperature treatment indicated that the decrease rate of the rock compressive strength, wave velocity, and elastic modulus are relatively large during uniaxial compression tests after high-temperature treatment. During the deformation and fracture of rock under loading, there is faster growth of AE counts and AE events, indicating an increase in the speed of rock deformation and fracture under loading. AE counts show obvious changes during the latter loading stages, whereas AE events show obvious changes during the loading process. The results obtained are valuable for rock thermal stability detection and evaluation in actual underground engineering.
Deformational injection rate measuring method
NASA Astrophysics Data System (ADS)
Marčič, Milan
2002-09-01
After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.
Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming
2015-01-01
The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.
Cravens, Matthew G; Behn, Anthony W; Dragoo, Jason L
2017-11-01
Fibrin glues are widely used in orthopedic surgery as adhesives and hemostatic agents. We evaluated the compressive properties of selected fibrin glues in order to identify which are appropriate for tissue regeneration applications subject to compression. Uniaxial unconfined compression tests were performed on fibrin gels prepared from commercial and autologous products: (1) Evicel (Ethicon), (2) Tisseel (Baxter), (3) Angel (Arthrex), and (4) ProPlaz (Biorich). Cyclic loads were applied from 0 to 30% strain for 100cycles at 0.5Hz. Following cyclic testing, specimens were subjected to ramp displacement of 1% strain per second to 80% strain. Throughout cyclic loading, Evicel and Tisseel deformed (shortened) less than Angel at all but one time point, and deformed less than ProPlaz at cycles 10 and 20. The dynamic moduli, peak stress, and strain energy were significantly greater in Tisseel than all other groups. Evicel displayed significantly greater dynamic moduli, peak stress, and strain energy than Angel and ProPlaz. Following cyclic testing, Tisseel and Evicel were significantly less deformed than Angel. No specimens exhibited gross failure during ramp loading to 80% strain. Ramp loading trends mirrored those of cyclic loading. The tested commercial glues were significantly more resistant to compression than the autologous products. The compressive properties of Tisseel were approximately twice those of Evicel. All preparations displayed moduli multiple orders of magnitude less than that of native articular cartilage. We conclude that in knee surgeries requiring fibrin glue to undergo compression of daily activity, commercial products are preferable to autologous preparations from platelet-poor plasma, though both will deform significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.
Asymptotic co- and post-seismic displacements in a homogeneous Maxwell sphere
NASA Astrophysics Data System (ADS)
Tang, He; Sun, Wenke
2018-07-01
The deformations of the Earth caused by internal and external forces are usually expressed through Green's functions or the superposition of normal modes, that is, via numerical methods, which are applicable for computing both co- and post-seismic deformations. It is difficult to express these deformations in an analytical form, even for a uniform viscoelastic sphere. In this study, we present a set of asymptotic solutions for computing co- and post-seismic displacements; these solutions can be further applied to solving co- and post-seismic geoid, gravity and strain changes. Expressions are derived for a uniform Maxwell Earth by combining the reciprocity theorem, which links earthquake, tidal, shear and loading deformations, with the asymptotic solutions of these three external forces (tidal, shear and loading) and analytical inverse Laplace transformation formulae. Since the asymptotic solutions are given in a purely analytical form without series summations or extra convergence skills, they can be practically applied in an efficient way, especially when computing post-seismic deformations and glacial isotactic adjustments of the Earth over long timescales.
NASA Astrophysics Data System (ADS)
Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.
2018-02-01
In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.
Asymptotic Co- and Post-seismic displacements in a homogeneous Maxwell sphere
NASA Astrophysics Data System (ADS)
Tang, He; Sun, Wenke
2018-05-01
The deformations of the Earth caused by internal and external forces are usually expressed through Green's functions or the superposition of normal modes, i.e. via numerical methods, which are applicable for computing both co- and post-seismic deformations. It is difficult to express these deformations in an analytical form, even for a uniform viscoelastic sphere. In this study, we present a set of asymptotic solutions for computing co- and post-seismic displacements; these solutions can be further applied to solving co- and post-seismic geoid, gravity, and strain changes. Expressions are derived for a uniform Maxwell Earth by combining the reciprocity theorem, which links earthquake, tidal, shear and loading deformations, with the asymptotic solutions of these three external forces (tidal, shear and loading) and analytical inverse Laplace transformation formulae. Since the asymptotic solutions are given in a purely analytical form without series summations or extra convergence skills, they can be practically applied in an efficient way, especially when computing post-seismic deformations and glacial isotactic adjustments of the Earth over long timescales.
Deformation and spallation of a magnesium alloy under high strain rate loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, M.; Lu, L.; Li, C.
2016-04-01
We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolvemore » three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.« less
Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi
NASA Technical Reports Server (NTRS)
Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.
2011-01-01
A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.
Pneumatic tyres interacting with deformable terrains
NASA Astrophysics Data System (ADS)
Bekakos, C. A.; Papazafeiropoulos, G.; O'Boy, D. J.; Prins, J.
2016-09-01
In this study, a numerical model of a deformable tyre interacting with a deformable road has been developed with the use of the finite element code ABAQUS (v. 6.13). Two tyre models with different widths, not necessarily identical to any real industry tyres, have been created purely for research use. The behaviour of these tyres under various vertical loads and different inflation pressures is studied, initially in contact with a rigid surface and then with a deformable terrain. After ensuring that the tyre model gives realistic results in terms of the interaction with a rigid surface, the rolling process of the tyre on a deformable road was studied. The effects of friction coefficient, inflation pressure, rebar orientation and vertical load on the overall performance are reported. Regarding the modelling procedure, a sequence of models were analysed, using the coupling implicit - explicit method. The numerical results reveal that not only there is significant dependence of the final tyre response on the various initial driving parameters, but also special conditions emerge, where the desired response of the tyre results from specific optimum combination of these parameters.
Anisotropic toughness and strength in graphene and its atomistic origin
NASA Astrophysics Data System (ADS)
Hossain, M. Zubaer; Ahmed, Tousif; Silverman, Benjamin; Khawaja, M. Shehroz; Calderon, Justice; Rutten, Andrew; Tse, Stanley
2018-01-01
This paper presents the implication of crystallographic orientation on toughness and ideal strength in graphene under lattice symmetry-preserving and symmetry-breaking deformations. In symmetry-preserving deformation, both toughness and strength are isotropic, regardless of the chirality of the lattice; whereas, in symmetry-breaking deformation they are strongly anisotropic, even in the presence of vacancy defects. The maximum and minimum of toughness or strength occur for loading along the zigzag direction and the armchair direction, respectively. The anisotropic behavior is governed by a complex interplay among bond-stretching deformation, bond-bending deformation, and the chirality of the lattice. Nevertheless, the condition for crack-nucleation is dictated by the maximum bond-force required for bond rupture, and it is independent of the chiral angle of the lattice or loading direction. At the onset of crack-nucleation a localized nucleation zone is formed, wherein the bonds rupture locally satisfying the maximum bond-force criterion. The nucleation zone acts as the physical origin in triggering the fracture nucleation process, but its presence is undetectable from the macroscopic stress-strain data.
NASA Astrophysics Data System (ADS)
Hu, Hong-J.; Sun, Z.; Ou, Z.-W.
2016-12-01
Extrusion-shear (ES) process for magnesium alloy is a newly developed plastic deformation process, and ES process combines direct extrusion and two steps of ECAE (equal channel angular extrusion). To investigate the effects of the die channel angles on the microstructures and wear behaviors of AZ61 wrought magnesium alloy, the samples used in this study were fabricated by ES process with different die channel angles (120° and 135°). The microstructures of the samples were characterized by optical microscopy (OM), X-ray diffraction (XRD) and (SEM). The cumulative strains in the ES process were predicted by approaches of numerical simulation and theoretical calculation. To characterize the wear resistance of the samples, pin-on-disk tests under dry sliding conditions with various normal loads and reciprocating frequencies were conducted. To define the wear mechanisms of AZ61 magnesium alloy, the worn surfaces after wear tests were analyzed by SEM and energy-dispersive X-ray spectrometer (EDS). Based on the results obtained, die channel angles have significant influences on the grain refinements and wear behaviors of the samples. Decreasing channel angles of the ES die will not only refine the microstructures of magnesium alloys effectively and improve their harnesses, but also improve their wear resistance as decreasing channel angles results in higher friction coefficients and wear rates. With the increase in applied loads and frequencies, wear mechanisms change from mild wear (adhesion, abrasion and oxidation) to severe wear (delamination, plastic deformation and melting). In summary, the wear resistance of ES-processed AZ61 magnesium alloy could be improved by decreasing channel angles of ES dies.
Smith, Danielle N; Bonagura, John D; Culwell, Nicole M; Schober, Karsten E
2012-03-01
The presence of left ventricular (LV) systolic dysfunction may influence prognosis or therapy in dogs with chronic mitral regurgitation (MR). Assessment of LV function in MR by conventional echocardiography is confounded by altered ventricular loading. Myocardial deformation (strain) imaging might offer more sensitive estimates of LV function in this disease. Prospectively measure myocardial strain in dogs with asymptomatic MR compared to a control group. Forty healthy dogs (3.5-11.5 kg): 20 Controls; 20 dogs with MR and LV remodeling (Stage B2), were evaluated in this study. LV size and function were assessed in a short-axis plane. Segmental radial strain and strain rate and global circumferential strain were measured using a 2D echocardiographic speckle-tracking algorithm (GE EchoPAC). Groups were compared using Bonferroni t-tests. Influences of heart rate and body weight were explored with linear regression. The MR group had significantly greater mean values for heart rate, LV size, and LV systolic function. Specifically, LV diastolic diameter, diastole area, shortening fraction, averaged peak systolic and early diastolic radial strain, global circumferential strain, and averaged radial strain rate were significantly greater in the MR group (p < 0.015 to p < 0.001). Strain was unrelated to weight, but weakly correlated with heart rate. Similar to conventional indices, Stage B2 dogs with MR demonstrate hyperdynamic deformation in the short-axis plane. Short-axis strain variables measured by 2D speckle tracking are greater than for controls of similar age and weight. These results imply either preserved LV systolic function or that LV dysfunction is masked by altered ventricular loading. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahal, H. T.; Awad, R.; Abdel-Gaber, A. M.
2018-05-01
(NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite, where 0.0 ≤ x ≤ 0.2 wt%., were prepared using solid state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). Vickers microhardness measurements (HV) were carried out at room temperature under different applied loads varying from 0.49 to 9.8 N, and dwell times (40 and 59 s). It was noted that dwell time and Vickers microhardness were inversely proportional. HV values increase as x increases up to 0.1 wt%, and then they decrease with further increases in x. All samples exhibit indentation size effect (ISE) with normal trend, as Vickers microhardness decreases by increasing the applied loads. Also, Vickers microhardness measurements of the prepared samples were done during both loading forces up to 9.8 N and unloading downwards to 0.49 N. It was noted that unloading values of Vickers microhardness are slightly greater than loading values. The elastic/plastic deformation model (EPD) was used to interpret the loading and unloading Vickers microhardness results. It is clearly noted that values of do, the added elastic component the measured plastic indentation semi-diagonal (d),in the unloading results are much higher than those for loading data. The effect of liquid nitrogen immersion for 16 h on Vickers microhardness values was examined. A significant improvement in the Vickers microhardness of (Bi, Pb)-2223 samples immersed in liquid nitrogen was observed. Such behavior is attributed to the fact that nitrogen immersion increases the volume contraction of the superconductor matrix, causing the shrink of the pores and voids present in the samples. Different models were used to analyze the obtained results such as Meyer's law, Hays-Kendall (HK) approach, elastic/plastic deformation (EPD) model, and modified proportional specimen resistance (MPSR) model. The experimental results of Vickers microhardness of both samples without and with liquid nitrogen immersion are well fitted according to the MPSR model.
NASA Astrophysics Data System (ADS)
Wirtz, M.; Bardin, S.; Huber, A.; Kreter, A.; Linke, J.; Morgan, T. W.; Pintsuk, G.; Reinhart, M.; Sergienko, G.; Steudel, I.; De Temmerman, G.; Unterberg, B.
2015-11-01
Experiments were performed in three different facilities in order to investigate the impact of combined steady state deuterium plasma exposure and ELM-like thermal shock events on the performance of ultra high purity tungsten. The electron beam facility JUDITH 1 was used to simulate pure thermal loads. In addition the linear plasma devices PSI-2 and Pilot-PSI have been used for successive as well as simultaneous exposure where the transient heat loads were applied by a high energy laser and the pulsed plasma operation, respectively. The results show that the damage behaviour strongly depends on the loading conditions and the sequence of the particle and heat flux exposure. This is due to hydrogen embrittlement and/or a higher defect concentration in the tungsten near surface region due to supersaturation of hydrogen. The different results in terms of damage formation from both linear plasma devices indicate that also the plasma parameters such as particle energy, flux and fluence, plasma impurities and the pulse shape have a strong influence on the damage performance. In addition, the different loading methods such as the scanning with the electron beam in contrast to the homogeneous exposure by the laser leads to an faster increase of the surface roughness due to plastic deformation.
Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T
2016-06-14
The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of clinical use of nickel-titanium springs.
Magno, Amanda Fahning; Monini, André da Costa; Capela, Marisa Veiga; Martins, Lídia Parsekian; Martins, Renato Parsekian
2015-07-01
Our objectives were to determine whether there are changes on the load deflection rate (L/DP) and the average force (FP) of the superelastic pseudoplateau, and whether permanent deformation is changed in nickel-titanium closed-coil springs (CCSs) after 6 months of clinical use. Twenty-two nickel-titanium CCSs (Sentalloy 100 g; Dentsply GAC, York, Pa) were subjected to tensile mechanical testing at 37°C on activations varying from 3.2 to 16.0 mm before and after 6 months of clinical use. A regression line was fitted over the most horizontal area of the unloading part of the stress-strain graph of every CCS, and its slope was used as L/DP. The FP was determined by the midpoint of the longest segment of the curve that could be fit within the regression line with a R(2) of at least 0.999, and permanent deformation was determined graphically by obtaining the strain value when the measured stress reached zero. The data were analyzed by 3 analyses of variance at 2 levels, with 5% of significance. Time and activation significantly influenced the variables tested (P < 0.001). Time increased the L/DP and permanent deformation but decreased the FP. Activation decreased L/DP, FP, and permanent deformation. Significant interactions between time and activation were detected for FP (P = 0.013) and deformation (P < 0.001). After 6 months of active clinical use, the analyzed springs had a significant but small increase in their L/DP; FP dropped up to 88%, and the CCSs deformed up to 1.26 mm. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Torsion sensing based on patterned piezoelectric beams
NASA Astrophysics Data System (ADS)
Cha, Youngsu; You, Hangil
2018-03-01
In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali
1996-01-01
Thermal and structural finite-element analyses were performed on the first high pressure fuel turbopump turbine blade of the space shuttle main engine (SSME). A two-dimensional (2-D) finite-element model of the blade and firtree disk attachment was analyzed using the general purpose MARC (finite-element) code. The loading history applied is a typical test stand engine cycle mission, which consists of a startup condition with two thermal spikes, a steady state and a shutdown transient. The blade material is a directionally solidified (DS) Mar-M 246 alloy, the blade rotor is forged with waspalloy material. Thermal responses under steady-state and transient conditions were calculated. The stresses and strains under the influence of mechanical and thermal loadings were also determined. The critical regions that exhibited high stresses and severe localized plastic deformation were the blade-rotor gaps.