Block rotations, fault domains and crustal deformation in the western US
NASA Technical Reports Server (NTRS)
Nur, Amos
1990-01-01
The aim of the project was to develop a 3D model of crustal deformation by distributed fault sets and to test the model results in the field. In the first part of the project, Nur's 2D model (1986) was generalized to 3D. In Nur's model the frictional strength of rocks and faults of a domain provides a tight constraint on the amount of rotation that a fault set can undergo during block rotation. Domains of fault sets are commonly found in regions where the deformation is distributed across a region. The interaction of each fault set causes the fault bounded blocks to rotate. The work that has been done towards quantifying the rotation of fault sets in a 3D stress field is briefly summarized. In the second part of the project, field studies were carried out in Israel, Nevada and China. These studies combined both paleomagnetic and structural information necessary to test the block rotation model results. In accordance with the model, field studies demonstrate that faults and attending fault bounded blocks slip and rotate away from the direction of maximum compression when deformation is distributed across fault sets. Slip and rotation of fault sets may continue as long as the earth's crustal strength is not exceeded. More optimally oriented faults must form, for subsequent deformation to occur. Eventually the block rotation mechanism may create a complex pattern of intersecting generations of faults.
Latent log-linear models for handwritten digit classification.
Deselaers, Thomas; Gass, Tobias; Heigold, Georg; Ney, Hermann
2012-06-01
We present latent log-linear models, an extension of log-linear models incorporating latent variables, and we propose two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization. For certain variants, convergence to a stationary point is guaranteed and, in practice, even variants without this guarantee converge and find models that perform well. We tune the methods on the USPS data set and evaluate on the MNIST data set, demonstrating the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain competitive results with models proposed in the literature.
Reports on block rotations, fault domains and crustal deformation
NASA Technical Reports Server (NTRS)
Nur, Amos
1990-01-01
Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.
Computational approach to seasonal changes of living leaves.
Tang, Ying; Wu, Dong-Yan; Fan, Jing
2013-01-01
This paper proposes a computational approach to seasonal changes of living leaves by combining the geometric deformations and textural color changes. The geometric model of a leaf is generated by triangulating the scanned image of a leaf using an optimized mesh. The triangular mesh of the leaf is deformed by the improved mass-spring model, while the deformation is controlled by setting different mass values for the vertices on the leaf model. In order to adaptively control the deformation of different regions in the leaf, the mass values of vertices are set to be in proportion to the pixels' intensities of the corresponding user-specified grayscale mask map. The geometric deformations as well as the textural color changes of a leaf are used to simulate the seasonal changing process of leaves based on Markov chain model with different environmental parameters including temperature, humidness, and time. Experimental results show that the method successfully simulates the seasonal changes of leaves.
NASA Astrophysics Data System (ADS)
Santimano, T. N.; Adiban, P.; Pysklywec, R.
2017-12-01
The primary controls of deformation in the lithosphere are related to its rheological properties. In addition, recent work reveals that inherited zones of weakness in the deep lithosphere are prevalent and can also define tectonic activity. To understand how deformation is genetically related to rheology and/or pre-existing structures, we compare a set of physical analogue models with the presence and absence of a fault in the deep lithosphere. The layered lithosphere scaled models of a brittle upper crust, viscous lower crust and viscous mantle lithosphere are deformed in a convergent setting. Deformation of the model is recorded using high spatial and temporal stereoscopic cameras. We use Particle Image Velocimetry (PIV) to acquire a time-series dataset and study the velocity field and subsequently strain in the model. The finished model is also cut into cross-section revealing the finite internal structures that are then compared to the topography of the model. Preliminary results show that deformation in models with an inherited fault in the mantle lithosphere is accommodated by displacement along the fault plane that propagates into the overlying viscous lower crust and brittle upper crust. Here, the majority of the deformation is localized along the fault in a brittle manner. This is in contrast to the model absent of a fault that also displays significant amounts of deformation. In this setting, ductile deformation is accommodated by folding and thickening of the viscous layers and flexural shearing of the brittle upper crust. In these preliminary experiments, the difference in the strength profile between the mantle lithosphere and the lower crust is within the same order of magnitude. Future experiments will include models where the strength difference is an order of magnitude. This systematic study aids in understanding the role of rheology and deep structures particularly in transferring stress over time to the surface and is therefore fundamental in understanding intraplate tectonics and orogenesis.
Correcting for deformation in skin-based marker systems.
Alexander, E J; Andriacchi, T P
2001-03-01
A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.
Computational Approach to Seasonal Changes of Living Leaves
Wu, Dong-Yan
2013-01-01
This paper proposes a computational approach to seasonal changes of living leaves by combining the geometric deformations and textural color changes. The geometric model of a leaf is generated by triangulating the scanned image of a leaf using an optimized mesh. The triangular mesh of the leaf is deformed by the improved mass-spring model, while the deformation is controlled by setting different mass values for the vertices on the leaf model. In order to adaptively control the deformation of different regions in the leaf, the mass values of vertices are set to be in proportion to the pixels' intensities of the corresponding user-specified grayscale mask map. The geometric deformations as well as the textural color changes of a leaf are used to simulate the seasonal changing process of leaves based on Markov chain model with different environmental parameters including temperature, humidness, and time. Experimental results show that the method successfully simulates the seasonal changes of leaves. PMID:23533545
Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling
NASA Astrophysics Data System (ADS)
Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.
This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.
Non-rigid image registration using a statistical spline deformation model.
Loeckx, Dirk; Maes, Frederik; Vandermeulen, Dirk; Suetens, Paul
2003-07-01
We propose a statistical spline deformation model (SSDM) as a method to solve non-rigid image registration. Within this model, the deformation is expressed using a statistically trained B-spline deformation mesh. The model is trained by principal component analysis of a training set. This approach allows to reduce the number of degrees of freedom needed for non-rigid registration by only retaining the most significant modes of variation observed in the training set. User-defined transformation components, like affine modes, are merged with the principal components into a unified framework. Optimization proceeds along the transformation components rather then along the individual spline coefficients. The concept of SSDM's is applied to the temporal registration of thorax CR-images using pattern intensity as the registration measure. Our results show that, using 30 training pairs, a reduction of 33% is possible in the number of degrees of freedom without deterioration of the result. The same accuracy as without SSDM's is still achieved after a reduction up to 66% of the degrees of freedom.
Biomedical image segmentation using geometric deformable models and metaheuristics.
Mesejo, Pablo; Valsecchi, Andrea; Marrakchi-Kacem, Linda; Cagnoni, Stefano; Damas, Sergio
2015-07-01
This paper describes a hybrid level set approach for medical image segmentation. This new geometric deformable model combines region- and edge-based information with the prior shape knowledge introduced using deformable registration. Our proposal consists of two phases: training and test. The former implies the learning of the level set parameters by means of a Genetic Algorithm, while the latter is the proper segmentation, where another metaheuristic, in this case Scatter Search, derives the shape prior. In an experimental comparison, this approach has shown a better performance than a number of state-of-the-art methods when segmenting anatomical structures from different biomedical image modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.
2008-01-01
The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.
On precisely modelling surface deformation due to interacting magma chambers and dykes
NASA Astrophysics Data System (ADS)
Pascal, Karen; Neuberg, Jurgen; Rivalta, Eleonora
2014-01-01
Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide the modelling of deformation sources is not available, due to the lack of tomography studies, for example. Therefore, volcano ground deformation due to magma movement in the subsurface is commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained by a single deformation source, the magmatic system is often represented by a combination of these sources and their displacements fields are simply summed. By doing so, the assumption of homogeneity in the half-space is violated and the resulting interaction between sources is neglected. We have quantified the errors of such a simplification and investigated the limits in which the combination of analytical sources is justified. We have calculated the vertical and horizontal displacements for analytical models with adjacent deformation sources and have tested them against the solutions of corresponding 3-D finite element models, which account for the interaction between sources. We have tested various double-source configurations with either two spherical sources representing magma chambers, or a magma chamber and an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source (magma chamber), we find the discrepancies with the numerical models to be insignificant (<5 per cent) independently of the source separation. However, if a Mogi source is placed side by side to an Okada source (in the strike-perpendicular direction), we find the discrepancies to become significant for a source separation less than four times the radius of the magma chamber. For horizontally or vertically aligned pressurized sources, the discrepancies are up to 20 per cent, which translates into surprisingly large errors when inverting deformation data for source parameters such as depth and volume change. Beyond 8 radii however, we demonstrate that the summation of analytical sources represents adjacent magma chambers correctly.
NASA Astrophysics Data System (ADS)
Lehmann, Rüdiger; Lösler, Michael
2017-12-01
Geodetic deformation analysis can be interpreted as a model selection problem. The null model indicates that no deformation has occurred. It is opposed to a number of alternative models, which stipulate different deformation patterns. A common way to select the right model is the usage of a statistical hypothesis test. However, since we have to test a series of deformation patterns, this must be a multiple test. As an alternative solution for the test problem, we propose the p-value approach. Another approach arises from information theory. Here, the Akaike information criterion (AIC) or some alternative is used to select an appropriate model for a given set of observations. Both approaches are discussed and applied to two test scenarios: A synthetic levelling network and the Delft test data set. It is demonstrated that they work but behave differently, sometimes even producing different results. Hypothesis tests are well-established in geodesy, but may suffer from an unfavourable choice of the decision error rates. The multiple test also suffers from statistical dependencies between the test statistics, which are neglected. Both problems are overcome by applying information criterions like AIC.
Primal/dual linear programming and statistical atlases for cartilage segmentation.
Glocker, Ben; Komodakis, Nikos; Paragios, Nikos; Glaser, Christian; Tziritas, Georgios; Navab, Nassir
2007-01-01
In this paper we propose a novel approach for automatic segmentation of cartilage using a statistical atlas and efficient primal/dual linear programming. To this end, a novel statistical atlas construction is considered from registered training examples. Segmentation is then solved through registration which aims at deforming the atlas such that the conditional posterior of the learned (atlas) density is maximized with respect to the image. Such a task is reformulated using a discrete set of deformations and segmentation becomes equivalent to finding the set of local deformations which optimally match the model to the image. We evaluate our method on 56 MRI data sets (28 used for the model and 28 used for evaluation) and obtain a fully automatic segmentation of patella cartilage volume with an overlap ratio of 0.84 with a sensitivity and specificity of 94.06% and 99.92%, respectively.
Distributed deformation and block rotation in 3D
NASA Technical Reports Server (NTRS)
Scotti, Oona; Nur, Amos; Estevez, Raul
1990-01-01
The authors address how block rotation and complex distributed deformation in the Earth's shallow crust may be explained within a stationary regional stress field. Distributed deformation is characterized by domains of sub-parallel fault-bounded blocks. In response to the contemporaneous activity of neighboring domains some domains rotate, as suggested by both structural and paleomagnetic evidence. Rotations within domains are achieved through the contemporaneous slip and rotation of the faults and of the blocks they bound. Thus, in regions of distributed deformation, faults must remain active in spite of their poor orientation in the stress field. The authors developed a model that tracks the orientation of blocks and their bounding faults during rotation in a 3D stress field. In the model, the effective stress magnitudes of the principal stresses (sigma sub 1, sigma sub 2, and sigma sub 3) are controlled by the orientation of fault sets in each domain. Therefore, adjacent fault sets with differing orientations may be active and may display differing faulting styles, and a given set of faults may change its style of motion as it rotates within a stationary stress regime. The style of faulting predicted by the model depends on a dimensionless parameter phi = (sigma sub 2 - sigma sub 3)/(sigma sub 1 - sigma sub 3). Thus, the authors present a model for complex distributed deformation and complex offset history requiring neither geographical nor temporal changes in the stress regime. They apply the model to the Western Transverse Range domain of southern California. There, it is mechanically feasible for blocks and faults to have experienced up to 75 degrees of clockwise rotation in a phi = 0.1 strike-slip stress regime. The results of the model suggest that this domain may first have accommodated deformation along preexisting NNE-SSW faults, reactivated as normal faults. After rotation, these same faults became strike-slip in nature.
Wang, Shu-Fan; Lai, Shang-Hong
2011-10-01
Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.
Testing deformation hypotheses by constraints on a time series of geodetic observations
NASA Astrophysics Data System (ADS)
Velsink, Hiddo
2018-01-01
In geodetic deformation analysis observations are used to identify form and size changes of a geodetic network, representing objects on the earth's surface. The network points are monitored, often continuously, because of suspected deformations. A deformation may affect many points during many epochs. The problem is that the best description of the deformation is, in general, unknown. To find it, different hypothesised deformation models have to be tested systematically for agreement with the observations. The tests have to be capable of stating with a certain probability the size of detectable deformations, and to be datum invariant. A statistical criterion is needed to find the best deformation model. Existing methods do not fulfil these requirements. Here we propose a method that formulates the different hypotheses as sets of constraints on the parameters of a least-squares adjustment model. The constraints can relate to subsets of epochs and to subsets of points, thus combining time series analysis and congruence model analysis. The constraints are formulated as nonstochastic observations in an adjustment model of observation equations. This gives an easy way to test the constraints and to get a quality description. The proposed method aims at providing a good discriminating method to find the best description of a deformation. The method is expected to improve the quality of geodetic deformation analysis. We demonstrate the method with an elaborate example.
NASA Astrophysics Data System (ADS)
Girard, L.; Weiss, J.; Molines, J. M.; Barnier, B.; Bouillon, S.
2009-08-01
Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit "wild randomness," whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit "mild randomness." (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection.
Ouyang, Wanli; Zeng, Xingyu; Wang, Xiaogang; Qiu, Shi; Luo, Ping; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Li, Hongyang; Loy, Chen Change; Wang, Kun; Yan, Junjie; Tang, Xiaoou
2016-07-07
In this paper, we propose deformable deep convolutional neural networks for generic object detection. This new deep learning object detection framework has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. A new pre-training strategy is proposed to learn feature representations more suitable for the object detection task and with good generalization capability. By changing the net structures, training strategies, adding and removing some key components in the detection pipeline, a set of models with large diversity are obtained, which significantly improves the effectiveness of model averaging. The proposed approach improves the mean averaged precision obtained by RCNN [16], which was the state-of-the-art, from 31% to 50.3% on the ILSVRC2014 detection test set. It also outperforms the winner of ILSVRC2014, GoogLeNet, by 6.1%. Detailed component-wise analysis is also provided through extensive experimental evaluation, which provides a global view for people to understand the deep learning object detection pipeline.
Accurate segmentation framework for the left ventricle wall from cardiac cine MRI
NASA Astrophysics Data System (ADS)
Sliman, H.; Khalifa, F.; Elnakib, A.; Soliman, A.; Beache, G. M.; Gimel'farb, G.; Emam, A.; Elmaghraby, A.; El-Baz, A.
2013-10-01
We propose a novel, fast, robust, bi-directional coupled parametric deformable model to segment the left ventricle (LV) wall borders using first- and second-order visual appearance features. These features are embedded in a new stochastic external force that preserves the topology of LV wall to track the evolution of the parametric deformable models control points. To accurately estimate the marginal density of each deformable model control point, the empirical marginal grey level distributions (first-order appearance) inside and outside the boundary of the deformable model are modeled with adaptive linear combinations of discrete Gaussians (LCDG). The second order visual appearance of the LV wall is accurately modeled with a new rotationally invariant second-order Markov-Gibbs random field (MGRF). We tested the proposed segmentation approach on 15 data sets in 6 infarction patients using the Dice similarity coefficient (DSC) and the average distance (AD) between the ground truth and automated segmentation contours. Our approach achieves a mean DSC value of 0.926±0.022 and AD value of 2.16±0.60 compared to two other level set methods that achieve 0.904±0.033 and 0.885±0.02 for DSC; and 2.86±1.35 and 5.72±4.70 for AD, respectively.
Liu, Fang; Zhou, Zhaoye; Jang, Hyungseok; Samsonov, Alexey; Zhao, Gengyan; Kijowski, Richard
2018-04-01
To describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. A fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. The proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. The study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med 79:2379-2391, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Parametric Modeling as a Technology of Rapid Prototyping in Light Industry
NASA Astrophysics Data System (ADS)
Tomilov, I. N.; Grudinin, S. N.; Frolovsky, V. D.; Alexandrov, A. A.
2016-04-01
The paper deals with the parametric modeling method of virtual mannequins for the purposes of design automation in clothing industry. The described approach includes the steps of generation of the basic model on the ground of the initial one (obtained in 3D-scanning process), its parameterization and deformation. The complex surfaces are presented by the wireframe model. The modeling results are evaluated with the set of similarity factors. Deformed models are compared with their virtual prototypes. The results of modeling are estimated by the standard deviation factor.
NASA Astrophysics Data System (ADS)
Wu, Chenglin
Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (< 6% error) and crack spacing (< 6% error). The validated bond model is applied to derive various interrelations among concrete crushing, concrete splitting, interfacial behavior, and the rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-01-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945
Shojaei, Iman; Arjmand, Navid; Meakin, Judith R; Bazrgari, Babak
2018-03-21
The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental kinematics of lumbar spine was estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations. Minimum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 0° to 0.7° and 0 mm to 0.04 mm, respectively. Maximum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 2.4° to 7.6° and 0.11 mm to 0.39 mm, respectively. The differences in kinematics of lumbar segments between each combination of two sets of TMFs in 97% of cases for angular deformation and 55% of cases for translational deformation were within the reported accuracy of current imaging techniques. Therefore, it might be possible to use image-based kinematics of lumbar segments along with computational modeling for personalized assessment of TMFs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, Joshua R.; Giorgis, Scott
2014-11-01
We describe a three-part approach for modeling shape preferred orientation (SPO) data of spheroidal clasts. The first part consists of criteria to determine whether a given SPO and clast shape are compatible. The second part is an algorithm for randomly generating spheroid populations that match a prescribed SPO and clast shape. In the third part, numerical optimization software is used to infer deformation from spheroid populations, by finding the deformation that returns a set of post-deformation spheroids to a minimally anisotropic initial configuration. Two numerical experiments explore the strengths and weaknesses of this approach, while giving information about the sensitivity of the model to noise in data. In monoclinic transpression of oblate rigid spheroids, the model is found to constrain the shortening component but not the simple shear component. This modeling approach is applied to previously published SPO data from the western Idaho shear zone, a monoclinic transpressional zone that deformed a feldspar megacrystic gneiss. Results suggest at most 5 km of shortening, as well as pre-deformation SPO fabric. The shortening estimate is corroborated by a second model that assumes no pre-deformation fabric.
A Deformable Atlas of the Laboratory Mouse
Wang, Hongkai; Stout, David B.; Chatziioannou, Arion F.
2015-01-01
Purpose This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. Procedures A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. Results The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. Conclusions With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis. PMID:25049072
Analogue Models Of Volcanic Spreading At Mt. Vesuvius
NASA Astrophysics Data System (ADS)
De Matteo, Ada; Castaldo, Raffaele; D'Auria, Luca; James, Michael; Lane, Steve; Massa, Bruno; Pepe, Susi; Tizzani, Pietro
2015-04-01
Somma-Vesuvius is a quiescent strato-volcano of the Neapolitan district, southern Italy, for which various geophysical and geological evidences (e.g. geodetic measurements, geological and structural data, seismic profiles interpretations and surface deformation analysis with Differential Interferometric Synthetic Aperture Radar (DInSAR)) indicate ongoing spreading deformation. In this research we investigate the spreading deformation and associated surface deformation pattern by performing analogue experiments and comparing the results with actual ground deformation as measured using DInSAR data recorded between 1992 and 2010. Somma-Vesuvius consists of a volcanic cone (Gran Cono) lying within an asymmetric caldera (Somma). The Somma caldera is the result of at least 7 Plinian eruptions, the last of which was the 79 CE. Pompeii eruption. The current cone of Mt. Vesuvius grew within the caldera in the following centuries as the effect of continued explosive and effusive activity of the volcano. The volcano lies on a substratum consisting of a Mesozoic carbonatic basement, overlapped by Holocene clastic sediments and volcanic rocks. Our analogue models were built to simulate the shape of the Somma-Vesuvius top a scale of about 1:100000, emplaced on a sand layer (brittle behaviour) laid on a silicone layer (ductile behaviour). Models are based on the Fluid-dynamics Dimensionless Analysis (FDA), according to the Buckingham-Π theorem. In this context, we considered few dimensionless parameters that allowed the setting of a reliable scaled model. To represent the complex Somma-Vesuvius geometry, an asymmetric model was built by setting a truncated cone (mimicking the topography of Somma edifice) topped by another small cone (mimicking the Gran Cono) shifted off the axis of the main cone. Different experiments were carried out in which the thickness of the basal sand layer and of the silicone one were varied. To quantify the vertical and horizontal displacements the models were monitored with three synchronised digital cameras, enabling sequential 3-D models to be derived using a photogrammetric technique. Finally, our models were compared with the 1992 - 2010 SBAS DInSAR measurements of ground deformations obtained using ERS-ENVISAT satellite images. The results show that analogue models are able to reproduce different styles of volcanic spreading and to reproduce the observed surface and deformation pattern. At the end our models show a deformation rather similar to the actual deformation pattern of the Somma-Vesuvius, both in the direction and in the intensity. Further studies will be devoted at find the best combination of parameters (silicone layer thickness and viscosity) to fit observations and to introduce a tridimensional rigid based topography. These studies will be implemented also with new structural and surface deformation (DinSAR) data and will be integrated with a numerical modelling.
3D Printed Models of Cleft Palate Pathology for Surgical Education.
Lioufas, Peter A; Quayle, Michelle R; Leong, James C; McMenamin, Paul G
2016-09-01
To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training.
Real-time simulation of the nonlinear visco-elastic deformations of soft tissues.
Basafa, Ehsan; Farahmand, Farzam
2011-05-01
Mass-spring-damper (MSD) models are often used for real-time surgery simulation due to their fast response and fairly realistic deformation replication. An improved real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was developed and tested. The mechanical realization of conventional MSD models was improved using nonlinear springs and nodal dampers, while their high computational efficiency was maintained using an adapted implicit integration algorithm. New practical algorithms for model parameter tuning, collision detection, and simulation were incorporated. The model was able to replicate complex biological soft tissue mechanical properties under large deformations, i.e., the nonlinear and viscoelastic behaviors. The simulated response of the model after tuning of its parameters to the experimental data of a deer liver sample, closely tracked the reference data with high correlation and maximum relative differences of less than 5 and 10%, for the tuning and testing data sets respectively. Finally, implementation of the proposed model and algorithms in a graphical environment resulted in a real-time simulation with update rates of 150 Hz for interactive deformation and haptic manipulation, and 30 Hz for visual rendering. The proposed real time simulation model of soft tissue deformation due to a laparoscopic surgical indenter was efficient, realistic, and accurate in ex vivo testing. This model is a suitable candidate for testing in vivo during laparoscopic surgery.
A Deformable Generic 3D Model of Haptoral Anchor of Monogenean
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903
A deformable generic 3D model of haptoral anchor of Monogenean.
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
Martin, Sébastien; Troccaz, Jocelyne; Daanenc, Vincent
2010-04-01
The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented structures of the training set in order to get a probabilistic map on the atlas. The segmentation is then realized through a two stage procedure. In the first stage, the processed image is registered to the probabilistic atlas. Subsequently, a probabilistic segmentation is obtained by mapping the probabilistic map of the atlas to the patient's anatomy. In the second stage, a deformable surface evolves toward the prostate boundaries by merging information coming from the probabilistic segmentation, an image feature model and a statistical shape model. During the evolution of the surface, the probabilistic segmentation allows the introduction of a spatial constraint that prevents the deformable surface from leaking in an unlikely configuration. The proposed method is evaluated on 36 exams that were manually segmented by a single expert. A median Dice similarity coefficient of 0.86 and an average surface error of 2.41 mm are achieved. By merging prior knowledge, the presented method achieves a robust and completely automatic segmentation of the prostate in MR images. Results show that the use of a spatial constraint is useful to increase the robustness of the deformable model comparatively to a deformable surface that is only driven by an image appearance model.
Towards a Millennial Time-scale Vertical Deformation Field in Taiwan
NASA Astrophysics Data System (ADS)
Bordovaos, P. A.; Johnson, K. M.
2015-12-01
Pete Bordovalos and Kaj M. Johnson To better understand the feedbacks between erosion and deformation in Taiwan, we need constraints on the millennial time-scale vertical field. Dense GPS and leveling data sets in Taiwan provide measurements of the present-day vertical deformation field over the entire Taiwan island. However, it is unclear how much of this vertical field is transient (varies over earthquake cycle) or steady (over millennial time scale). A deformation model is required to decouple transient from steady deformation. This study takes a look at how the 82 mm/yr of convergence motion between the Eurasian plate and the Philippine Sea plate is distributed across the faults on Taiwan. We build a plate flexure model that consists of all known active faults and subduction zones cutting through an elastic plate supported by buoyancy. We use horizontal and vertical GPS data, leveling data, and geologic surface uplift rates with a Monte Carlo probabilistic inversion method to infer fault slip rates and locking depths on all faults. Using our model we examine how different fault geometries influence the estimates of distribution of slip along faults and deformation patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang
To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circularmore » pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.« less
Indentation tectonics in northern Taiwan: insights from field observations and analog models
NASA Astrophysics Data System (ADS)
Lu, Chia-Yu; Lee, Jian-Cheng; Malavieille, Jacques
2017-04-01
In northern Taiwan, contraction, extension, transcurrent shearing, and block rotation are four major tectonic deformation mechanisms involved in the progressive deformation of this arcuate mountain belt. The recent evolution of the orogen is controlled not only by the oblique convergence between the Eurasian plate and the Philippine Sea plate but also by the corner shape of the plate boundary. Based on field observations, analyses, geophysical data (mostly GPS) and results of experimental models, we interpret the curved shape of northern Taiwan as a result of contractional deformation (involving imbricate thrusting and folding, backthrusting and backfolding). The subsequent horizontal and vertical extrusion, combined with increasing transcurrent & rotational deformation (bookshelf-type strike-slip faulting and block rotation) induced transcurrent/ rotational extrusion and extrusion related extensional deformation. A special type of extrusional folds characterizes that complex deformation regime. The tectonics in northern Taiwan reflects a single, regional pattern of deformation. The crescent-shaped mountain belt develops in response to oblique indentation by an asymmetric wedge indenter, retreat of Ryukyu trench and opening of the Okinawa trough. Three sets of analog sandbox models are presented to illustrate the development of tectonic structures and their kinematic evolution
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-12-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time-consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2D models and computing single organ deformations. In this study, 3D comprehensive patient-specific nonlinear biomechanical models implemented using meshless Total Lagrangian explicit dynamics algorithms are applied to predict a 3D deformation field for whole-body image registration. Unlike a conventional approach that requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the fuzzy c-means algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2000-01-01
There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.
The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surfce deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus, northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structural fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength, and inferred amplitude of mapped structures are small, (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implication of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a ``deformation-from-below'' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
NASA Astrophysics Data System (ADS)
Yhokha, A.; Chang, C.; Yen, J.; Goswami, P. K.; Ching, K.
2013-12-01
Persistent Scatterer Interferometry (PSI) is a useful tool in gathering the first basic information about the surface deformation, despite of different natural terrains, forested or mountainous region. This technique has been applied successfully by various worker in different field in extracting surface information in variety of terranes. The advantage of this techniques is that it has the ability of taking into account of only those return radar signal which are the brightest or the strongest in the surrounding background signal. Moreover, PS algorithms operate on a time series of interferograms all formed with respect to a single master SAR image that the noise terms of displacement for each PS pixel are much reduced. Keeping all these points in mind, we applied this technique in the Himalayan mountain, covering the south eastern part of the Uttarakhand state of India. So far lots of different work has been carried out in the Himalayan region, but less work has been done in regards to its surface deformation. The Himalayan mountain are well know for its segmented nature, different region undergoing different tectonic activity. In the similar manner, our PSI result in our study area also reveal two different set of deformation, with its eastern part revealing subsidence and the western part undergoing uplift, these two set of deformation is separated by a right later strike slip fault called, the Garampani-Kathgodam fault (G-KF). Apart from this obvious deformation, the western part also reveal differential deformation. Based on our result we have also tried to create a deformation model, to understand and to get better knowledge of the tectonic deformation setting.
Using NASTRAN to solve symmetric structures with nonsymmetric loads
NASA Technical Reports Server (NTRS)
Butler, T. G.
1982-01-01
A method for computation of reflective dihedral symmetry in symmetrical structures under nonsymmetric loads is described. The method makes it possible to confine the analysis to a half, a quarter, or an octagonal segment. The symmetry of elastic deformation is discussed, and antisymmetrical deformation is distinguished from nonsymmetrical deformation. Modes of deformation considered are axial, bending, membrane, and torsional deformation. Examples of one and two dimensional elements are presented and extended to three dimensional elements. The method of setting up a problem within NASTRAN is discussed. The technique is applied to a thick structure having quarter symmetry which was modeled with polyhedra and subjected to five distinct loads having varying degrees of symmetry.
3D Printed Models of Cleft Palate Pathology for Surgical Education
Lioufas, Peter A.; Quayle, Michelle R.; Leong, James C.
2016-01-01
Objective: To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. Background: The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Methods: Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Results: Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Conclusion: Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training. PMID:27757345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada Rodas, Ernesto A.; Neu, Richard W.
A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less
Estrada Rodas, Ernesto A.; Neu, Richard W.
2017-09-11
A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less
Nonlinear integral equations for the sausage model
NASA Astrophysics Data System (ADS)
Ahn, Changrim; Balog, Janos; Ravanini, Francesco
2017-08-01
The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.
Weickenmeier, J; Jabareen, M
2014-11-01
The characteristic highly nonlinear, time-dependent, and often inelastic material response of soft biological tissues can be expressed in a set of elastic-viscoplastic constitutive equations. The specific elastic-viscoplastic model for soft tissues proposed by Rubin and Bodner (2002) is generalized with respect to the constitutive equations for the scalar quantity of the rate of inelasticity and the hardening parameter in order to represent a general framework for elastic-viscoplastic models. A strongly objective integration scheme and a new mixed finite element formulation were developed based on the introduction of the relative deformation gradient-the deformation mapping between the last converged and current configurations. The numerical implementation of both the generalized framework and the specific Rubin and Bodner model is presented. As an example of a challenging application of the new model equations, the mechanical response of facial skin tissue is characterized through an experimental campaign based on the suction method. The measurement data are used for the identification of a suitable set of model parameters that well represents the experimentally observed tissue behavior. Two different measurement protocols were defined to address specific tissue properties with respect to the instantaneous tissue response, inelasticity, and tissue recovery. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Casini, Leonardo; Funedda, Antonio
2014-09-01
The mylonites of the Baccu Locci Shear Zone (BLSZ), Sardinia (Italy), were deformed during thrusting along a bottom-to-top strain gradient in lower greenschist facies. The microstructure of metavolcanic protoliths shows evidence for composite deformation accommodated by dislocation creep within strong quartz porphyroclasts, and pressure solution in the finer grained matrix. The evolution of mylonite is simulated in two sets of numerical experiments, assuming either a constant width of the deforming zone (model 1) or a narrowing shear zone (model 2). A 2-5 mm y-1 constant-external-velocity boundary condition is applied on the basis of geologic constraints. Inputs to the models are provided by inverting paleostress values obtained from quartz recrystallized grain-size paleopiezometry. Both models predict a significant stress drop across the shear zone. However, model 1 involves a dramatic decrease in strain rate towards the zone of apparent strain localization. In contrast, model 2 predicts an increase in strain rate with time (from 10-14 to 10-12 s-1), which is consistent with stabilization of the shear zone profile and localization of deformation near the hanging wall. Extrapolating these results to the general context of crust strength suggests that pressure-solution creep may be a critical process for strain softening and for the stabilization of deformation within shear zones.
LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces
NASA Astrophysics Data System (ADS)
Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina
2016-11-01
The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.
NASA Astrophysics Data System (ADS)
Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun
2017-12-01
Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; Tizzani, Pietro
2016-04-01
Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally, the performed multi-parametric finite element models allow us to verify the effect of the crustal structures on the ground deformation and evaluate the stress-drop associated to the studied earthquakes on the surrounding structures.
Poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event
NASA Astrophysics Data System (ADS)
McCormack, K. A.; Hesse, M. A.
2017-12-01
Following an earthquake, surface deformation is influenced by a myriad of post-seismic processes including after-slip, poroelastic and viscoelastic relaxation. Geodetic measurements record the combined result of all these processes, which makes studying the effects of any single process difficult. To constrain the poroelastic component of post-seismic deformation, we model the subsurface hydrologic response to the Mw 7.6 subduction zone earthquake beneath the Nicoya peninsula on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. Following the earthquake, continuous surface deformation was observed with high-rate GPS monitoring directly above the rupture zone. By modeling the time-dependent deformation associated with poroelastic relaxation, we can begin to remove the contribution of groundwater flow from the observed geodetic signal. For this study we used both 2D and 3D numerical models. In 2D we investigate more general trends in the poroelastic response of a subduction zone earthquake. In 3D we model the poroelastic response to the 2012 Nicoya event using a fixed set of best fit parameters and the real earthquake slip data. The slip distribution of 2012 event is obtained by inverting the co-seismic surface GPS displacements for fault slip. The 2D model shows that thrust earthquakes with a rupture width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. In the 3D model, the small width to depth ratio of the Nicoya rupture leads to a multi-lobed initial pore pressure distribution. This creates complex groundwater flow patterns, non-monotonic variations in well head and surface deformation, and poroelastic relaxation over multiple, distinct time scales. Different timescales arise because the earthquake causes pressure perturbations with different wavelengths. In the shallow, permeable region of the upper crust, two relaxation timescales of approximately 21 days and 18 months arise for the 2012 event. In the 18 months following the earthquake, the magnitude of the poroelastic surface deformation can be up to 3 cm for the vertical component and 2 cm for the trench-perpendicular component.
A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars
NASA Astrophysics Data System (ADS)
Kato, Shoji
2012-12-01
A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.
Analysis of deformation bands in the Aztec Sandstone, Valley of Fire State Park, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, R.E.
1993-04-01
This research concerns two types of deformation structures, deformation bands and low-angle slip surfaces, that occur in the Aztec Sandstone in the Valley of Fire State Park, Nevada. Deformation bands were analyzed by mapping and describing over 500 of the structures on a bedding surface of about 560 square meters. Deformation bands are narrow zones of reduced porosity which form resistant ribs in the sandstone. Three sets of deformation bands are present at the study site (type 1,2, and 3). Type 1 and 2 bands are interpreted as coeval and form a conjugate set with a dihedral angle of 90more » degrees. These sets are usually composed of multiple bands. A third set is interpreted to be subsidiary to the older set, and intersections angles with the earlier formed sets are approximately 45 degrees. In contrast with the older sets, the third set is nearly always a single band which is sinuous or jagged along its length. All three sets of deformation bands are crosscut and sometimes offset by low-angle slip surfaces. These faults have reverse dip slip displacement and locally have mullions developed. Displacements indicate eastward movement of the hanging wall which is consistent with the inferred movements of major Mesozoic thrust faults in the vicinity. The change of deformation style from deformation bands to low-angle slip surfaces may document a change in the stress regime. Paleostress interpretation of the deformation band geometry indicates the intermediate stress axis is vertical. The low-angle slip surfaces indicate the least compressive stress axis is vertical. This possible change in stress axes may be the result of increasing pore pressure associated with tectonic loading from emplacement of the Muddy Mountain thrust.« less
Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan
2017-01-01
Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure–property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure–property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure–property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure–property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost. PMID:28696307
Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue
NASA Astrophysics Data System (ADS)
Yagupsky, Daniel L.; Brooks, Benjamin A.; Whipple, Kelin X.; Duncan, Christopher C.; Bevis, Michael
2014-09-01
Numerical 2-D models based on the principle of minimum work were used to examine the space-time distribution of active faulting during the evolution of orogenic wedges. A series of models focused on thin-skinned thrusting illustrates the effects of arid conditions (no erosion), unsteady state conditions (accretionary influx greater than erosional efflux) and steady state conditions (accretionary influx balances erosional efflux), on the distribution of fault activity. For arid settings, a general forward accretion sequence prevails, although a significant amount of internal deformation is registered: the resulting fault pattern is a rather uniform spread along the profile. Under fixed erosional efficiency settings, the frontal advance of the wedge-front is inhibited, reaching a steady state after a given forward propagation. Then, the applied shortening is consumed by surface ruptures over a narrow frontal zone. Under a temporal increase in erosional efficiency (i.e., transient non-steady state mass balance conditions), a narrowing of the synthetic wedge results; a rather diffuse fault activity distribution is observed during the deformation front retreat. Once steady balanced conditions are reached, a single long-lived deformation front prevails. Fault activity distribution produced during the deformation front retreat of the latter scenario, compares well with the structural evolution and hinterlandward deformation migration identified in southern Bolivian Subandes (SSA) from late Miocene to present. This analogy supports the notion that the SSA is not in steady state, but is rather responding to an erosional efficiency increase since late Miocene. The results shed light on the impact of different mass balance conditions on the vastly different kinematics found in mountain ranges, suggesting that those affected by growing erosion under a transient unbalanced mass flux condition tend to distribute deformation along both frontal and internal faults, while others under balanced conditions would display focused deformation on a limited number of steady structures.
Paleohydrologic controls on soft-sediment deformation in the Navajo Sandstone
NASA Astrophysics Data System (ADS)
Bryant, Gerald; Cushman, Robert; Nick, Kevin; Miall, Andrew
2016-10-01
Many workers have noted the presence of contorted cross-strata in the Navajo Sandstone and other ancient eolianites, and have recognized their significance as indicators of sediment saturation during the accumulation history. Horowitz (1982) proposed a general model for the production of such features in ancient ergs by episodic, seismically induced liquefaction of accumulated sand. A key feature of that popular model is the prevalence of a flat water table, characteristic of a hyper-arid climatic regime, during deformation. Under arid climatic conditions, the water table is established by regional flow and liquefaction is limited to the saturated regions below the level of interdune troughs. However, various paleohydrological indicators from Navajo Sandstone outcrops point toward a broader range of water table configurations during the deformation history of that eolianite. Some outcrops reveal extensive deformation complexes that do not appear to have extended to the contemporary depositional surface. These km-scale zones of deformation, affecting multiple sets of cross-strata, and grading upward into undeformed crossbeds may represent deep water table conditions, coupled with high intensity triggers, which produced exclusively intrastratal deformation. Such occurrences contrast with smaller-scale complexes formed within the zone of interaction between the products of soft-sediment deformation and surface processes of deposition and erosion. The Horowitz model targets the smaller-scale deformation morphologies produced in this near-surface environment. This study examines the implications of a wet climatic regime for the Horowitz deformation model. It demonstrates how a contoured water table, characteristic of humid climates, may have facilitated deformation within active bedforms, as well as in the accumulation. Intra-dune deformation would enable deflation of deformation features during the normal course of dune migration, more parsimoniously accounting for: the frequent occurrence of erosionally truncated deformation structures in the Navajo Sandstone; the production of such erosional truncations during bedform climb and aggradation of the accumulation; and the dramatic fluctuations in the water table required to deposit dry eolian sand, deform those deposits under saturated conditions, and then dry the deformed sand to enable deflation.
On the impact of reducing global geophysical fluid model deformations in SLR data processing
NASA Astrophysics Data System (ADS)
Weigelt, Matthias; Thaller, Daniela
2016-04-01
Mass redistributions in the atmosphere, oceans and the continental hydrology cause elastic loading deformations of the Earth's crust and thus systematically influence Earth-bound observation systems such as VLBI, GNSS or SLR. Causing non-linear station variations, these loading deformations have a direct impact on the estimated station coordinates and an indirect impact on other parameters of global space-geodetic solutions, e.g. Earth orientation parameters, geocenter coordinates, satellite orbits or troposphere parameters. Generally, the impact can be mitigated by co-parameterisation or by reducing deformations derived from global geophysical fluid models. Here, we focus on the latter approach. A number of data sets modelling the (non-tidal) loading deformations are generated by various groups. They show regionally and locally significant differences and consequently the impact on the space-geodetic solutions heavily depends on the available network geometry. We present and discuss the differences between these models and choose SLR as the speace-geodetic technique of interest in order to discuss the impact of atmospheric, oceanic and hydrological loading on the parameters of space-geodetic solutions when correcting for the global geophysical fluid models at the observation level. Special emphasis is given to a consistent usage of models for geometric and gravimetric corrections during the data processing. We quantify the impact of the different deformation models on the station coordinates and discuss the improvement in the Earth orientation parameters and the geocenter motion. We also show that a significant reduction in the RMS of the station coordinates can be achieved depending on the model of choice.
On the feedback between forearc morphotectonics and megathrust earthquakes in subduction zones
NASA Astrophysics Data System (ADS)
Rosenau, M.; Oncken, O.
2008-12-01
An increasing number of observations suggest an intrinsic relationship between short- and long-term deformation processes in subduction zones. These include the global correlation between megathrust earthquake slip patterns with morphotectonic forearc features, the historical predominance of giant earthquakes (M > 9) along accretionary margins and the occurrence of (slow and shallow) tsunami earthquakes along erosive margins. To gain insight into the interplay between seismogenesis and tectonics in subduction settings we have developed a new modeling technique which joins analog and elastic dislocation approaches. Using elastoplastic wedges overlying a rate- and state-dependent interface, we demonstrate how analog earthquakes drive permanent wedge deformation consistent with the dynamic Coulomb wedge theory and how wedge deformation in turn controls basal "seismicity". During an experimental run, elastoplastic wedges evolve from those comparable to accretionary margins, characterized by plastic wedge shortening, to those mimicking erosive margins, characterized by minor plastic deformation. Permanent shortening localizes at the periphery of the "seismogenic" zone leading to a "morphotectonic" segmentation of the upper plate. Along with the evolving segmentation of the wedge, the magnitude- frequency relationship and recurrence distribution of analog earthquakes develop towards more periodic events of similar size (i.e. characteristic earthquakes). From the experiments we infer a positive feedback between short- and long-term deformation processes which tends to stabilize the spatiotemporal patterns of elastoplastic deformation in subduction settings. We suggest (1) that forearc anatomy reflects the distribution of seismic and aseismic slip at depth, (2) that morphotectonic segmentation assists the occurrence of more characteristic earthquakes, (3) that postseismic near-trench shortening relaxes coseismic compression by megathrust earthquakes and thus reduces tsunami earthquake risk in accretionary settings and (4) that permanent coastal shortening allows adjacent segments to fail more synchronized thus triggering much greater earthquakes in accretionary settings.
NASA Astrophysics Data System (ADS)
He, Wengang; Zhou, Jianxun; Yuan, Kang
2018-04-01
The Eastern Sichuan-Xuefeng fold-thrust belt (CXFTB) located in South China has received wide attention due to its distinctive deformation styles and close relationships with natural gas preservation, but its deformation evolution still remains controversial. In order to study further this issue, we designed three sets of analogue models. Based on the results of the models, we suggest that: 1) the deformation in the CXFTB may simultaneously initiate along two zones nearby the Dayong and Qiyueshan faults at ∼190 Ma, and then progressively propagate into the interiors of the Western Hunan-Hubei and Eastern Sichuan domains at ∼140-150 Ma, and finally reach the front of the Huayingshan fault at ∼120 Ma; 2) the difference in décollement depth is the main factor determining the patterns of folds in different domains of the CXFTB; and 3) the Eastern Sichuan domain may have a basement significantly different from those of the Western Sichuan and Western Hunan-Hubei domains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliopoulos, AS; Sun, X; Pitsianis, N
Purpose: To address and lift the limited degree of freedom (DoF) of globally bilinear motion components such as those based on principal components analysis (PCA), for encoding and modeling volumetric deformation motion. Methods: We provide a systematic approach to obtaining a multi-linear decomposition (MLD) and associated motion model from deformation vector field (DVF) data. We had previously introduced MLD for capturing multi-way relationships between DVF variables, without being restricted by the bilinear component format of PCA-based models. PCA-based modeling is commonly used for encoding patient-specific deformation as per planning 4D-CT images, and aiding on-board motion estimation during radiotherapy. However, themore » bilinear space-time decomposition inherently limits the DoF of such models by the small number of respiratory phases. While this limit is not reached in model studies using analytical or digital phantoms with low-rank motion, it compromises modeling power in the presence of relative motion, asymmetries and hysteresis, etc, which are often observed in patient data. Specifically, a low-DoF model will spuriously couple incoherent motion components, compromising its adaptability to on-board deformation changes. By the multi-linear format of extracted motion components, MLD-based models can encode higher-DoF deformation structure. Results: We conduct mathematical and experimental comparisons between PCA- and MLD-based models. A set of temporally-sampled analytical trajectories provides a synthetic, high-rank DVF; trajectories correspond to respiratory and cardiac motion factors, including different relative frequencies and spatial variations. Additionally, a digital XCAT phantom is used to simulate a lung lesion deforming incoherently with respect to the body, which adheres to a simple respiratory trend. In both cases, coupling of incoherent motion components due to a low model DoF is clearly demonstrated. Conclusion: Multi-linear decomposition can enable decoupling of distinct motion factors in high-rank DVF measurements. This may improve motion model expressiveness and adaptability to on-board deformation, aiding model-based image reconstruction for target verification. NIH Grant No. R01-184173.« less
Vasco, D. W.; Rutqvist, Jonny; Ferretti, Alessandro; ...
2013-06-07
In this study, we resolve deformation at The Geysers Geothermal Field using two distinct sets of interferometric synthetic aperture radar (InSAR) data. The first set of observations utilize archived European Space Agency C-band synthetic aperture radar data from 1992 through 1999 to image the long-term and large-scale subsidence at The Geysers. The peak range velocity of approximately 50 mm/year agrees with previous estimates from leveling and global positioning system observations. Data from a second set of measurements, acquired by TerraSAR-X satellites, extend from May 2011 until April 2012 and overlap the C-band data spatially but not temporally. These X-band data,more » analyzed using a combined permanent and distributed scatterer algorithm, provide a higher density of scatterers (1122 per square kilometer) than do the C-band data (12 per square kilometer). The TerraSAR-X observations resolve 1 to 2 cm of deformation due to water injection into a Northwest Geysers enhanced geothermal system well, initiated on October 2011. Lastly, the temporal variation of the deformation is compatible with estimates from coupled numerical modeling.« less
Anatomically accurate individual face modeling.
Zhang, Yu; Prakash, Edmond C; Sung, Eric
2003-01-01
This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction.
NASA Astrophysics Data System (ADS)
Sapozhnikov, S. B.; Ignatova, A. V.
2013-01-01
The subcutaneous fat is considered as a structural material undergoing large inelastic deformations and failure under uniform compression. In calculation, the fat is replaced with a set of cells operating in parallel and suffering failure independently of one another. An elementary cell is considered as a closed thin-wall cylindrical shell filled with an incompressible liquid. All cells in the model are of the same size, and their material is hyperelastic, whose stiffness grows in tension. By comparing experimental data with the mathematical shell model, three parameters are determined to describe the hyperelastic behavior of the cells in transverse compression. A mathematical model with seven constants is presented for describing the deformation of subcutaneous fat under compression. The results obtained are used in a model of human thorax subjected to a local pulse action corresponding to the loading of human body under the impact of a bullet on an armor vest.
Seismic anisotropy in deforming salt bodies
NASA Astrophysics Data System (ADS)
Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.
2017-12-01
Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.
Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design
NASA Technical Reports Server (NTRS)
Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian
2012-01-01
We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.
NASA Astrophysics Data System (ADS)
Bland, M. T.; McKinnon, W. B.
2010-12-01
Ganymede’s iconic topography offers clues to both the satellite’s thermal evolution, and the mechanics of tectonic deformation on icy satellites. Much of Ganymede’s surface consists of bright, young terrain, with a characteristic morphology dubbed “groove terrain”. As reviewed in Pappalardo et al. (2004), in Jupiter - The Planet, Satellites, and Magnetosphere (CUP), grooved terrain consists of sets of quasi-parallel, periodically-spaced, ridges and troughs. Peak-to-trough groove amplitudes are ~500 m, with low topographic slopes (~5°). Groove spacing is strongly periodic within a single groove set, ranging from 3-17 km; shorter wavelength deformation is also apparent in high-resolution images. Grooved terrain likely formed via unstable extension of Ganymede’s ice lithosphere, which was deformed into periodically-spaced pinches and swells, and accommodated by tilt-block normal faulting. Analytical models of unstable extension support this formation mechanism [Dombard and McKinnon 2001, Icarus 154], but initial numerical models of extending ice lithospheres struggled to produce large-amplitude, groove-like deformation [Bland and Showman 2007, Icarus 189]. Here we present simulations that reproduce many of the characteristics of Ganymede’s grooves [Bland et al. 2010, Icarus in press]. By more realistically simulating the decrease in material strength after initial fault development, our model allows strain to become readily localized into discrete zones. Such strain localization leads to the formation of periodic structures with amplitudes of 200-500 m, and wavelengths of 3-20 km. The morphology of the deformation depends on both the lithospheric thermal gradient, and the rate at which material strength decreases with increasing plastic strain. Large-amplitude, graben-like structures form when material weakening occurs rapidly with increasing strain, while lower-amplitude, periodic structures form when the ice retains its strength. Thus, extension can result in complex surface deformation, consistent with the variety of surface morphologies observed within the grooved terrain. Our modeling indicates that moderate thermal gradients (10 K km-1) may be sufficient to explain many of Ganymede’s groove morphologies. The implied heat flow (~50 mW m-2), however, is a factor of two greater than the expected radiogenic heat flux, suggesting additional energy input (e.g., tidal dissipation) may be required. Our modeling of groove formation suggests that understanding tectonic deformation on icy satellites requires a detailed understanding of the mechanical behavior of ice and ice lithospheres, and demonstrates the need for new tectonic models that include localization, realistic plasticity, and energy dissipation.
NASA Astrophysics Data System (ADS)
Chanard, K.; Fleitout, L.; Calais, E.; Barbot, S.; Avouac, J. P.
2016-12-01
Elastic deformation of the Earth induced by seasonal variations in hydrology is now well established. We compute the vertical and horizontal deformation induced by large variations of continental water storage at a set of 195 globally distributed continuous Global Positioning System (cGPS) stations. Seasonal loading is derived from the Gravity and Recovery Climate experiment (GRACE) equivalent water height data, where we first account for non observable degree-1 components using previous results (Swenson et al., 2010). While the vertical displacements are well predicted by the model, the horizontal components are systematically underpredicted and out-of- phase with the observations. This global result confirms previous difficulties to predict horizontal seasonal site positions at a regional scale. We discuss possible contributions to this misfit (thermal expansion, draconitic effects, etc.) and show a dramatic improvement when we derive degree-one deformation plus reference frame differences between model and observations. The fit in phase and amplitude of the seasonal deformation model to the horizontal GPS measurements is improved and the fit to the vertical component is not affected. However, the amplitude of global seasonal horizontal displacement remains slightly underpredicted. We explore several hypothesis including the validity of a purely elastic model derived from seismic estimates at an annual time scale. We show that mantle volume variations due to mineral phase transitions may play a role in the seasonal deformation and, as a by-product, use this seasonal deformation to provide a lower bound of the transient astenospheric viscosity. Our study aims at providing an accurate model for horizontal and vertical seasonal deformation of the Earth induced by variations in surface hydrology derived from GRACE.
NASA Astrophysics Data System (ADS)
Johanson, I. A.; Miklius, A.; Poland, M. P.
2016-12-01
A sequence of magmatic events in April-May 2015 at Kīlauea Volcano produced a complex deformation pattern that can be described by multiple deforming sources, active simultaneously. The 2015 intrusive sequence began with inflation in the volcano's summit caldera near Halema`uma`u (HMM) Crater, which continued over a few weeks, followed by rapid deflation of the HMM source and inflation of a source in the south caldera region during the next few days. In Kīlauea Volcano's summit area, multiple deformation centers are active at varying times, and all contribute to the overall pattern observed with GPS, tiltmeters, and InSAR. Isolating the contribution of different signals related to each source is a challenge and complicates the determination of optimal source geometry for the underlying magma bodies. We used principle component analysis of continuous GPS time series from the 2015 intrusion sequence to determine three basis vectors which together account for 83% of the variance in the data set. The three basis vectors are non-orthogonal and not strictly the principle components of the data set. In addition to separating deformation sources in the continuous GPS data, the basis vectors provide a means to scale the contribution of each source in a given interferogram. This provides an additional constraint in a joint model of GPS and InSAR data (COSMO-SkyMed and Sentinel-1A) to determine source geometry. The first basis vector corresponds with inflation in the south caldera region, an area long recognized as the location of a long-term storage reservoir. The second vector represents deformation of the HMM source, which is in the same location as a previously modeled shallow reservoir, however InSAR data suggest a more complicated source. Preliminary modeling of the deformation attributed to the third basis vector shows that it is consistent with inflation of a steeply dipping ellipsoid centered below Keanakāko`i crater, southeast of HMM. Keanakāko`i crater is the locus of a known, intermittently active deformation source, which was not previously recognized to have been active during the 2015 event.
NASA Astrophysics Data System (ADS)
Ford, Heather A.; Long, Maureen D.
2015-08-01
The study of flow patterns and seismic anisotropy in the lowermost mantle is fraught with uncertainties, given the limitations in our understanding of the physical properties of the lowermost mantle and the relationships between deformation and anisotropy. Here we use a set of SKS, SKKS, and ScS splitting measurements that sample the eastern edge of the African Large Low Shear Velocity Province to test predictions of seismic anisotropy derived from previously published 3D global mantle flow models and anisotropy modeling (Walker et al., 2011). The observations can be fit by a model that invokes flow directed to the southwest with a component of downwelling in our study region, and slip that occurs along the (0 1 0) plane of post-perovskite. Most importantly, we demonstrate the ability of a regional shear wave splitting data set to test the robustness of models for flow and deformation in the lowermost mantle.
Dynamics of Deformable Active Particles under External Flow Field
NASA Astrophysics Data System (ADS)
Tarama, Mitsusuke
2017-10-01
In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.
Deformed supersymmetric quantum mechanics with spin variables
NASA Astrophysics Data System (ADS)
Fedoruk, Sergey; Ivanov, Evgeny; Sidorov, Stepan
2018-01-01
We quantize the one-particle model of the SU(2|1) supersymmetric multiparticle mechanics with the additional semi-dynamical spin degrees of freedom. We find the relevant energy spectrum and the full set of physical states as functions of the mass-dimension deformation parameter m and SU(2) spin q\\in (Z_{>0,}1/2+Z_{≥0}) . It is found that the states at the fixed energy level form irreducible multiplets of the supergroup SU(2|1). Also, the hidden superconformal symmetry OSp(4|2) of the model is revealed in the classical and quantum cases. We calculate the OSp(4|2) Casimir operators and demonstrate that the full set of the physical states belonging to different energy levels at fixed q are unified into an irreducible OSp(4|2) multiplet.
The influence of melting on the kinematic development of the Himalayan crystalline core
NASA Astrophysics Data System (ADS)
Webb, Alexander
2016-04-01
Current hypotheses for the development and emplacement of the Himalayan crystalline core are 1) models with intense upper plate out-of-sequence activity (i.e., tunneling of channel flow, and some modes of critical taper wedge behavior) and 2) models in which the upper plate mainly records basal accretion of horses (i.e., duplexing). The two concepts can be considered end-members. A signal difference between these two models is the role of melting. The intense upper plate deformation envisioned in the first set of models has been hypothesized to be largely a product of partial melting, particularly in channel flow models. Specifically, the persistent presence of melt in the middle crust of the upper plate may dramatically lower the viscosity of these rocks, allowing distributed deformation. The second set of models - duplexing - predicts in-sequence thrusting with only minor out-of-sequence deformation. Stacking of a duplex acts like a deli cheese-slicing machine: slice after slice is cut from the intact block to a stack of slices, but neither the block (~down-going plate) nor the stack (~upper plate) features much internal deformation. In this model, partial melting produces no significant kinematic impact. The dominant preserved structural elements across the Himalayan crystalline core rocks are flattening and L-S fabrics. Structurally high portions of the crystalline core locally display complex outcrop-scale deformation associated with migmatitic rocks, and contain km-scale leucogranite bodies; both features developed in the early to middle Miocene. The flattening and L-S fabrics have been interpreted to record either (A) southwards channel tunneling across the upper plate, or (B) fabric development during metamorphism of the down-going plate, prior to accretion to the upper plate. The deformation of migmatitic rock and emplacement of leucogranite have been interpreted in support of widespread distributed deformation. Alternatively, these features may have accumulated from increments of melting and crystallization which did not produce sufficient melt during any one period to significantly alter viscosity at >100 m scales. Recent work integrating monazite and zircon geochronology with structural records shows that the Himalayan middle crust has been assembled along a series of mainly southwards-younging thrust faults throughout the early to middle Miocene. The thrust faults separate 1-5 km thick panels that experienced similar metamorphic cycles during different time periods. At this scale, out-of-sequence deformation is rare, with its apparent significance enhanced because of the high throw-to-heave ratio of out-of-sequence thrusting. These findings support the duplexing model and indicate that melting did not have a significant impact on the kinematic development of the Himalayan crystalline core.
A texture-component Avrami model for predicting recrystallization textures, kinetics and grain size
NASA Astrophysics Data System (ADS)
Raabe, Dierk
2007-03-01
The study presents an analytical model for predicting crystallographic textures and the final grain size during primary static recrystallization of metals using texture components. The kinetics is formulated as a matrix variant of the Johnson-Mehl-Avrami-Kolmogorov equation. The matrix form is required since the kinetic and crystallographic evolution of the microstructure is described in terms of a limited set of growing (recrystallizing) and swept (deformed) texture components. The number of components required (5-10) defines the order of the matrix since the kinetic coupling occurs between all recrystallizing and all deformed components. Each such couple is characterized by corresponding values for the nucleation energy and grain boundary mobility. The values of these parameters can be obtained by analytical or numerical coarse graining according to a renormalization scheme which replaces many individual grains which grow via recrystallization in a deformed texture component by a single equivalent recrystallization texture component or by fitting to experimental data. Each deformed component is further characterized by an average stored deformation energy. Each element of the kinetic matrix, reflecting one of the possible couplings between a deformed and a recrystallizing texture component, is then derived in each time step by a set of two differential equations. The first equation describes the thermally activated nucleation and growth processes for the expanded (free) volume for a particular couple of a deformed and a recrystallizing texture component and the second equation is used for calculating the constrained (real) volume for that couple which corrects the free volume for those portions of the deformation component which were already swept. The new method is particularly developed for the fast and physically based process simulation of recrystallization textures with respect to processing. The present paper introduces the method and applies it to the primary recrystallization of low carbon steels.
Quantification of localized vertebral deformities using a sparse wavelet-based shape model.
Zewail, R; Elsafi, A; Durdle, N
2008-01-01
Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.
NASA Astrophysics Data System (ADS)
Farge, G.; Delbridge, B. G.; Materna, K.; Johnson, C. W.; Chaussard, E.; Jones, C. E.; Burgmann, R.
2016-12-01
Understanding the role of the Hayward/Calaveras fault junction in major earthquake ruptures in the East San Francisco Bay Area is a major challenge in trying to assess the regional seismic hazard. We use updated GPS velocities, and surface geodetic measurements from both traditional space-based InSAR and the NASA JPL's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) system to quantify the deep long-term interseismic deformation and shallow temporally variable fault creep. Here, we present a large data set of interseismic deformation over the Hayward/Calaveras fault system, combining far-field deformation from 1992-2011 ERS and Envisat InSAR data, near-field deformation from 2009-2016 UAVSAR data and 1997-2016 regional GPS measurements from the Bay Area Velocity Unification model (BAVU4) in both near-field and far field. We perform a joint inversion of the data to obtain the long-term slip on deep through-going dislocations and the distribution of shallow creep on a 3D model of the Hayward and Calaveras faults. Spatially adaptative weights are given to each data set in order to account for its importance in constraining slip at different depths. The coherence and resolution of the UAVSAR data allow us to accurately resolve the near-field fault deformation, thus providing stronger constraints on the location of active strands of the southern Hayward and Calaveras faults and their shallow interseismic creep distribution.
Tectonic models for Yucca Mountain, Nevada
O'Leary, Dennis W.
2006-01-01
Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.
NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion
NASA Astrophysics Data System (ADS)
Söhn, M.; Sobotta, B.; Alber, M.
2012-06-01
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective ‘virtual’ evaluation of the possible benefits of new radiotherapy schemes.
Dosimetric treatment course simulation based on a statistical model of deformable organ motion.
Söhn, M; Sobotta, B; Alber, M
2012-06-21
We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.
NASA Astrophysics Data System (ADS)
Erdt, Marius; Sakas, Georgios
2010-03-01
This work presents a novel approach for model based segmentation of the kidney in images acquired by Computed Tomography (CT). The developed computer aided segmentation system is expected to support computer aided diagnosis and operation planning. We have developed a deformable model based approach based on local shape constraints that prevents the model from deforming into neighboring structures while allowing the global shape to adapt freely to the data. Those local constraints are derived from the anatomical structure of the kidney and the presence and appearance of neighboring organs. The adaptation process is guided by a rule-based deformation logic in order to improve the robustness of the segmentation in areas of diffuse organ boundaries. Our work flow consists of two steps: 1.) a user guided positioning and 2.) an automatic model adaptation using affine and free form deformation in order to robustly extract the kidney. In cases which show pronounced pathologies, the system also offers real time mesh editing tools for a quick refinement of the segmentation result. Evaluation results based on 30 clinical cases using CT data sets show an average dice correlation coefficient of 93% compared to the ground truth. The results are therefore in most cases comparable to manual delineation. Computation times of the automatic adaptation step are lower than 6 seconds which makes the proposed system suitable for an application in clinical practice.
Effects of Deformation on Drag and Lift Forces Acting on a Droplet in a Shear Flow
NASA Astrophysics Data System (ADS)
Suh, Youngho; Lee, Changhoon
2010-11-01
The droplet behavior in a linear shear flow is studied numerically to investigate the effect of deformation on the drag and lift acting on droplet. The droplet shape is calculated by a level set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid- gas interface. By adopting the feedback forces which can maintain the droplet at a fixed position, we determine the acting force on a droplet in shear flow field with efficient handling of deformation. Based on the numerical results, drag and lift forces acting on a droplet are observed to depend strongly on the deformation. Droplet shapes are observed to be spherical, deformed, and oscillating depending on the Reynolds number. Also, the present method is proven to be applicable to a three- dimensional deformation of droplet in the shear flow, which cannot be properly analyzed by the previous studies. Comparisons of the calculated results by the current method with those obtained from body-fitted methods [Dandy and Leal, J. Fluid Mech. 208, 161 (1989)] and empirical models [Feng and Beard, J. Atmos. Sci. 48, 1856 (1991)] show good agreement.
NASA Astrophysics Data System (ADS)
Werner, C. L.; Wegmüller, U.; Strozzi, T.
2012-12-01
The Lost-Hills oil field located in Kern County,California ranks sixth in total remaining reserves in California. Hundreds of densely packed wells characterize the field with one well every 5000 to 20000 square meters. Subsidence due to oil extraction can be grater than 10 cm/year and is highly variable both in space and time. The RADARSAT-1 SAR satellite collected data over this area with a 24-day repeat during a 2 year period spanning 2002-2004. Relatively high interferometric correlation makes this an excellent region for development and test of deformation time-series inversion algorithms. Errors in deformation time series derived from a stack of differential interferograms are primarily due to errors in the digital terrain model, interferometric baselines, variability in tropospheric delay, thermal noise and phase unwrapping errors. Particularly challenging is separation of non-linear deformation from variations in troposphere delay and phase unwrapping errors. In our algorithm a subset of interferometric pairs is selected from a set of N radar acquisitions based on criteria of connectivity, time interval, and perpendicular baseline. When possible, the subset consists of temporally connected interferograms, otherwise the different groups of interferograms are selected to overlap in time. The maximum time interval is constrained to be less than a threshold value to minimize phase gradients due to deformation as well as minimize temporal decorrelation. Large baselines are also avoided to minimize the consequence of DEM errors on the interferometric phase. Based on an extension of the SVD based inversion described by Lee et al. ( USGS Professional Paper 1769), Schmidt and Burgmann (JGR, 2003), and the earlier work of Berardino (TGRS, 2002), our algorithm combines estimation of the DEM height error with a set of finite difference smoothing constraints. A set of linear equations are formulated for each spatial point that are functions of the deformation velocities during the time intervals spanned by the interferogram and a DEM height correction. The sensitivity of the phase to the height correction depends on the length of the perpendicular baseline of each interferogram. This design matrix is augmented with a set of additional weighted constraints on the acceleration that penalize rapid velocity variations. The weighting factor γ can be varied from 0 (no smoothing) to a large values (> 10) that yield an essentially linear time-series solution. The factor can be tuned to take into account a priori knowledge of the deformation non-linearity. The difference between the time-series solution and the unconstrained time-series can be interpreted as due to a combination of tropospheric path delay and baseline error. Spatial smoothing of the residual phase leads to an improved atmospheric model that can be fed back into the model and iterated. Our analysis shows non-linear deformation related to changes in the oil extraction as well as local height corrections improving on the low resolution 3 arc-sec SRTM DEM.
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Nunez Ochoa, M. A.; Wiart, J.; Peyman, A.; Bloch, I.
2016-02-01
Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties.
Semantic modeling of plastic deformation of polycrystalline rock
NASA Astrophysics Data System (ADS)
Babaie, Hassan A.; Davarpanah, Armita
2018-02-01
We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.
Modeling plasticity by non-continuous deformation
NASA Astrophysics Data System (ADS)
Ben-Shmuel, Yaron; Altus, Eli
2017-10-01
Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.
Comparison of Angle of Attack Measurements for Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Jones, Thomas, W.; Hoppe, John C.
2001-01-01
Two optical systems capable of measuring model attitude and deformation were compared to inertial devices employed to acquire wind tunnel model angle of attack measurements during the sting mounted full span 30% geometric scale flexible configuration of the Northrop Grumman Unmanned Combat Air Vehicle (UCAV) installed in the NASA Langley Transonic Dynamics Tunnel (TDT). The overall purpose of the test at TDT was to evaluate smart materials and structures adaptive wing technology. The optical techniques that were compared to inertial devices employed to measure angle of attack for this test were: (1) an Optotrak (registered) system, an optical system consisting of two sensors, each containing a pair of orthogonally oriented linear arrays to compute spatial positions of a set of active markers; and (2) Video Model Deformation (VMD) system, providing a single view of passive targets using a constrained photogrammetric solution whose primary function was to measure wing and control surface deformations. The Optotrak system was installed for this test for the first time at TDT in order to assess the usefulness of the system for future static and dynamic deformation measurements.
Modal identities for multibody elastic spacecraft: An aid to selecting modes for simulation
NASA Technical Reports Server (NTRS)
Hablani, Hari B.
1989-01-01
The question: Which set of modes furnishes a higher fidelity math model of dynamics of a multibody, deformable spacecraft (hinges-free or hinges-locked vehicle modes) is answered. Two sets of general, discretized, linear equations of motion of a spacecraft with an arbitrary number of deformable appendages, each articulated directly to the core body, are obtained using the above two families of modes. By a comparison of these equations, ten sets of modal identities are constructed which involve modal momenta coefficients and frequencies associated with both classes of modes. The sums of infinite series that appear in the identities are obtained in terms of mass, and first and second moments of inertia of the appendages, core body, and vehicle by using certain basic identities concerning appendage modes. Applying the above identities to a four-body spacecraft, the hinges-locked vehicle modes are found to yield a higher fidelity model than hinges-free modes, because the latter modes have nonconverging modal coefficients; a characteristic proved and illustrated.
NASA Astrophysics Data System (ADS)
Riller, U.; Clark, M. D.; Daxberger, H.; Doman, D.; Lenauer, I.; Plath, S.; Santimano, T.
2017-08-01
Heterogeneous deformation is intrinsic in natural deformation, but often underestimated in the analysis and interpretation of mesoscopic brittle shear faults. Based on the analysis of 11,222 faults from two distinct tectonic settings, the Central Andes in Argentina and the Sudbury area in Canada, interpolation of principal strain directions and scaled analogue modelling, we revisit controversial issues of fault-slip inversions, collectively adhering to heterogeneous deformation. These issues include the significance of inversion solutions in terms of (1) strain or paleo-stress; (2) displacement, notably plate convergence; (3) local versus far-field deformation; (4) strain perturbations and (5) spacing between stations of fault-slip data acquisition. Furthermore, we highlight the value of inversions for identifying the kinematics of master fault zones in the absence of displaced geological markers. A key result of our assessment is that fault-slip inversions relate to local strain, not paleo-stress, and thus can aid in inferring, the kinematics of master faults. Moreover, strain perturbations caused by mechanical anomalies of the deforming upper crust significantly influence local principal strain directions. Thus, differently oriented principal strain axes inferred from fault-slip inversions in a given region may not point to regional deformation caused by successive and distinct deformation regimes. This outcome calls into question the common practice of separating heterogeneous fault-slip data sets into apparently homogeneous subsets. Finally, the fact that displacement vectors and principal strains are rarely co-linear defies the use of brittle fault data as proxy for estimating directions of plate-scale motions.
Predicting translational deformity following opening-wedge osteotomy for lower limb realignment.
Barksfield, Richard C; Monsell, Fergal P
2015-11-01
An opening-wedge osteotomy is well recognised for the management of limb deformity and requires an understanding of the principles of geometry. Translation at the osteotomy is needed when the osteotomy is performed away from the centre of rotation of angulation (CORA), but the amount of translation varies with the distance from the CORA. This translation enables proximal and distal axes on either side of the proposed osteotomy to realign. We have developed two experimental models to establish whether the amount of translation required (based on the translation deformity created) can be predicted based upon simple trigonometry. A predictive algorithm was derived where translational deformity was predicted as 2(tan α × d), where α represents 50 % of the desired angular correction, and d is the distance of the desired osteotomy site from the CORA. A simulated model was developed using TraumaCad online digital software suite (Brainlab AG, Germany). Osteotomies were simulated in the distal femur, proximal tibia and distal tibia for nine sets of lower limb scanograms at incremental distances from the CORA and the resulting translational deformity recorded. There was strong correlation between the distance of the osteotomy from the CORA and simulated translation deformity for distal femoral deformities (correlation coefficient 0.99, p < 0.0001), proximal tibial deformities (correlation coefficient 0.93-0.99, p < 0.0001) and distal tibial deformities (correlation coefficient 0.99, p < 0.0001). There was excellent agreement between the predictive algorithm and simulated translational deformity for all nine simulations (correlation coefficient 0.93-0.99, p < 0.0001). Translational deformity following corrective osteotomy for lower limb deformity can be anticipated and predicted based upon the angular correction and the distance between the planned osteotomy site and the CORA.
Facial animation on an anatomy-based hierarchical face model
NASA Astrophysics Data System (ADS)
Zhang, Yu; Prakash, Edmond C.; Sung, Eric
2003-04-01
In this paper we propose a new hierarchical 3D facial model based on anatomical knowledge that provides high fidelity for realistic facial expression animation. Like real human face, the facial model has a hierarchical biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators and underlying skull structure. The deformable skin model has multi-layer structure to approximate different types of soft tissue. It takes into account the nonlinear stress-strain relationship of the skin and the fact that soft tissue is almost incompressible. Different types of muscle models have been developed to simulate distribution of the muscle force on the skin due to muscle contraction. By the presence of the skull model, our facial model takes advantage of both more accurate facial deformation and the consideration of facial anatomy during the interactive definition of facial muscles. Under the muscular force, the deformation of the facial skin is evaluated using numerical integration of the governing dynamic equations. The dynamic facial animation algorithm runs at interactive rate with flexible and realistic facial expressions to be generated.
Mao, Keya; Xiao, Songhua; Liu, Zhengsheng; Zhang, Yonggang; Zhang, Xuesong; Wang, Zheng; Lu, Ning; Shourong, Zhu; Xifeng, Zhang; Geng, Cui; Baowei, Liu
2010-01-01
Surgical treatment of complex severe spinal deformity, involving a scoliosis Cobb angle of more than 90° and kyphosis or vertebral and rib deformity, is challenging. Preoperative two-dimensional images resulting from plain film radiography, computed tomography (CT) and magnetic resonance imaging provide limited morphometric information. Although the three-dimensional (3D) reconstruction CT with special software can view the stereo and rotate the spinal image on the screen, it cannot show the full-scale spine and cannot directly be used on the operation table. This study was conducted to investigate the application of computer-designed polystyrene models in the treatment of complex severe spinal deformity. The study involved 16 cases of complex severe spinal deformity treated in our hospital between 1 May 2004 and 31 December 2007; the mean ± SD preoperative scoliosis Cobb angle was 118° ± 27°. The CT scanning digital imaging and communication in medicine (DICOM) data sets of the affected spinal segments were collected for 3D digital reconstruction and rapid prototyping to prepare computer-designed polystyrene models, which were applied in the treatment of these cases. The computer-designed polystyrene models allowed 3D observation and measurement of the deformities directly, which helped the surgeon to perform morphological assessment and communicate with the patient and colleagues. Furthermore, the models also guided the choice and placement of pedicle screws. Moreover, the models were used to aid in virtual surgery and guide the actual surgical procedure. The mean ± SD postoperative scoliosis Cobb angle was 42° ± 32°, and no serious complications such as spinal cord or major vascular injury occurred. The use of computer-designed polystyrene models could provide more accurate morphometric information and facilitate surgical correction of complex severe spinal deformity. PMID:20213294
Nuclear ground-state masses and deformations: FRDM(2012)
Moller, P.; Sierk, A. J.; Ichikawa, T.; ...
2016-03-25
Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensivemore » and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.« less
Modeling respiratory motion for reducing motion artifacts in 4D CT images.
Zhang, Yongbin; Yang, Jinzhong; Zhang, Lifei; Court, Laurence E; Balter, Peter A; Dong, Lei
2013-04-01
Four-dimensional computed tomography (4D CT) images have been recently adopted in radiation treatment planning for thoracic and abdominal cancers to explicitly define respiratory motion and anatomy deformation. However, significant image distortions (artifacts) exist in 4D CT images that may affect accurate tumor delineation and the shape representation of normal anatomy. In this study, the authors present a patient-specific respiratory motion model, based on principal component analysis (PCA) of motion vectors obtained from deformable image registration, with the main goal of reducing image artifacts caused by irregular motion during 4D CT acquisition. For a 4D CT image set of a specific patient, the authors calculated displacement vector fields relative to a reference phase, using an in-house deformable image registration method. The authors then used PCA to decompose each of the displacement vector fields into linear combinations of principal motion bases. The authors have demonstrated that the regular respiratory motion of a patient can be accurately represented by a subspace spanned by three principal motion bases and their projections. These projections were parameterized using a spline model to allow the reconstruction of the displacement vector fields at any given phase in a respiratory cycle. Finally, the displacement vector fields were used to deform the reference CT image to synthesize CT images at the selected phase with much reduced image artifacts. The authors evaluated the performance of the in-house deformable image registration method using benchmark datasets consisting of ten 4D CT sets annotated with 300 landmark pairs that were approved by physicians. The initial large discrepancies across the landmark pairs were significantly reduced after deformable registration, and the accuracy was similar to or better than that reported by state-of-the-art methods. The proposed motion model was quantitatively validated on 4D CT images of a phantom and a lung cancer patient by comparing the synthesized images and the original images at different phases. The synthesized images matched well with the original images. The motion model was used to reduce irregular motion artifacts in the 4D CT images of three lung cancer patients. Visual assessment indicated that the proposed approach could reduce severe image artifacts. The shape distortions around the diaphragm and tumor regions were mitigated in the synthesized 4D CT images. The authors have derived a mathematical model to represent the regular respiratory motion from a patient-specific 4D CT set and have demonstrated its application in reducing irregular motion artifacts in 4D CT images. The authors' approach can mitigate shape distortions of anatomy caused by irregular breathing motion during 4D CT acquisition.
3D deformable organ model based liver motion tracking in ultrasound videos
NASA Astrophysics Data System (ADS)
Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong
2013-03-01
This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.
Viscous anisotropy of textured olivine aggregates: 2. Micromechanical model
NASA Astrophysics Data System (ADS)
Hansen, Lars N.; Conrad, Clinton P.; Boneh, Yuval; Skemer, Philip; Warren, Jessica M.; Kohlstedt, David L.
2016-10-01
The significant viscous anisotropy that results from crystallographic alignment (texture) of olivine grains in deformed upper mantle rocks strongly influences a large variety of geodynamic processes. Our ability to explore the effects of anisotropic viscosity in simulations of these processes requires a mechanical model that can predict the magnitude of anisotropy and its evolution. Unfortunately, existing models of olivine textural evolution and viscous anisotropy are calibrated for relatively small deformations and simple strain paths, making them less general than desired for many large-scale geodynamic scenarios. Here we develop a new set of micromechanical models to describe the mechanical behavior and textural evolution of olivine through a large range of strains and complex strain histories. For the mechanical behavior, we explore two extreme scenarios, one in which each grain experiences the same stress tensor (Sachs model) and one in which each grain undergoes a strain rate as close as possible to the macroscopic strain rate (pseudo-Taylor model). For the textural evolution, we develop a new model in which the director method is used to control the rate of grain rotation and the available slip systems in olivine are used to control the axis of rotation. Only recently has enough laboratory data on the deformation of olivine become available to calibrate these models. We use these new data to conduct inversions for the best parameters to characterize both the mechanical and textural evolution models. These inversions demonstrate that the calibrated pseudo-Taylor model best reproduces the mechanical observations. Additionally, the pseudo-Taylor textural evolution model can reasonably reproduce the observed texture strength, shape, and orientation after large and complex deformations. A quantitative comparison between our calibrated models and previously published models reveals that our new models excel in predicting the magnitude of viscous anisotropy and the details of the textural evolution. In addition, we demonstrate that the mechanical and textural evolution models can be coupled and used to reproduce mechanical evolution during large-strain torsion tests. This set of models therefore provides a new geodynamic tool for incorporating viscous anisotropy into large-scale numerical simulations.
Stress stiffening and approximate equations in flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Padilla, Carlos E.; Vonflotow, Andreas H.
1993-01-01
A useful model for open chains of flexible bodies undergoing large rigid body motions, but small elastic deformations, is one in which the equations of motion are linearized in the small elastic deformations and deformation rates. For slow rigid body motions, the correctly linearized, or consistent, set of equations can be compared to prematurely linearized, or inconsistent, equations and to 'oversimplified,' or ruthless, equations through the use of open loop dynamic simulations. It has been shown that the inconsistent model should never be used, while the ruthless model should be used whenever possible. The consistent and inconsistent models differ by stress stiffening terms. These are due to zeroth-order stresses effecting virtual work via nonlinear strain-displacement terms. In this paper we examine in detail the nature of these stress stiffening terms and conclude that they are significant only when the associated zeroth-order stresses approach 'buckling' stresses. Finally it is emphasized that when the stress stiffening terms are negligible the ruthlessly linearized equations should be used.
Lundgren, Paul; Lu, Zhong
2006-01-01
We analyzed RADARSAT-1 synthetic aperture radar (SAR) data to compute interferometric SAR (InSAR) images of surface deformation at Uzon caldera, Kamchatka, Russia. From 2000 to 2003 approximately 0.15 m of inflation occurred at Uzon caldera, extending beneath adjacent Kikhpinych volcano. This contrasts with InSAR data showing no significant deformation during either the 1999 to 2000, or 2003 to 2004, time periods. We performed three sets of numerical source inversions to fit InSAR data from three different swaths spanning 2000 to 2003. The preferred source model is an irregularly shaped, pressurized crack, dipping ∼20° to the NW, 4 km below the surface. The geometry of this solution is similar to the upper boundary of the geologically inferred magma chamber. Extension of the surface deformation and source to adjacent Kikhpinych volcano, without an eruption, suggests that the deformation is more likely of hydrothermal origin, possibly driven by recharge of the magma chamber.
Modeling the Afferent Dynamics of the Baroreflex Control System
Mahdi, Adam; Sturdy, Jacob; Ottesen, Johnny T.; Olufsen, Mette S.
2013-01-01
In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We test models within this framework both quantitatively and qualitatively using data from rats. The models describe three components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods. PMID:24348231
Spherical Viscoelastic Finite Element Model for Cascadia Interseismic Deformation
NASA Astrophysics Data System (ADS)
He, J.; Wang, K.; Dragert, H.; Miller, M. M.
2003-12-01
We have developed a 3-D spherical viscoelastic finite element model for the Cascadia subduction zone to study temporal and spatial variations of interseismic deformation. Previous 3-D viscoelastic finite element models of subduction zone earthquake cycles all use the Cartesian system, with the surface of the earth map-projected on to a horizontal plane. For earthquakes that rupture very long plate-boundary segments, such as the 1700 Cascadia, 1960 Chile, and 1964 Alaska great earthquakes, the Cartesian approach is inconvenient and less accurate. 3-D analytical solutions take into account the spherical geometry of the earth but have difficulty dealing with realistic plate boundary structure. For the new spherical finite element model, we use 27-node tri-quadratic isoparametric element. The resultant large sparse matrix system is solved by the stabilized bi-conjugate gradient method with ILUT preconditioning of fill-in level 6. Our experience suggests that lower order elements in the spherical system would result in unacceptable numerical errors unless one set of mesh lines is strictly radial. For the great Cascadia earthquake, we employ a smooth coseismic rupture model inferred from thermal data and results of tsunami models of the 1700 event, but we test different slip distances. For interseismic deformation, we use the conventional backslip approach. The contemporary deformation of the Cascadia margin consists of interseismic strain accumulation and a geological secular motion that can be described by a rotation of the forearc relative to North America. To isolate the interseismic deformation, we remove the secular motion from both the model formulation and geodetic data. The model predicts decreasing margin-normal shortening rates throughout the interseismic period as a result of stress relaxation in the viscoelastic mantle. The rate of decrease depends on the assumed mantle viscosity. With a viscosity of 1019 Pa s, model surface deformation at 300 years after the great earthquake agrees with geodetically observed contemporary deformation very well. The model also confirms the previous finding based on a Cartesian model that an inland region continues to move seaward several decades after the great earthquake.
Adapting Active Shape Models for 3D segmentation of tubular structures in medical images.
de Bruijne, Marleen; van Ginneken, Bram; Viergever, Max A; Niessen, Wiro J
2003-07-01
Active Shape Models (ASM) have proven to be an effective approach for image segmentation. In some applications, however, the linear model of gray level appearance around a contour that is used in ASM is not sufficient for accurate boundary localization. Furthermore, the statistical shape model may be too restricted if the training set is limited. This paper describes modifications to both the shape and the appearance model of the original ASM formulation. Shape model flexibility is increased, for tubular objects, by modeling the axis deformation independent of the cross-sectional deformation, and by adding supplementary cylindrical deformation modes. Furthermore, a novel appearance modeling scheme that effectively deals with a highly varying background is developed. In contrast with the conventional ASM approach, the new appearance model is trained on both boundary and non-boundary points, and the probability that a given point belongs to the boundary is estimated non-parametrically. The methods are evaluated on the complex task of segmenting thrombus in abdominal aortic aneurysms (AAA). Shape approximation errors were successfully reduced using the two shape model extensions. Segmentation using the new appearance model significantly outperformed the original ASM scheme; average volume errors are 5.1% and 45% respectively.
Plastic strain is a mixture of avalanches and quasireversible deformations: Study of various sizes
NASA Astrophysics Data System (ADS)
Szabó, Péter; Ispánovity, Péter Dusán; Groma, István
2015-02-01
The size dependence of plastic flow is studied by discrete dislocation dynamical simulations of systems with various amounts of interacting dislocations while the stress is slowly increased. The regions between avalanches in the individual stress curves as functions of the plastic strain were found to be nearly linear and reversible where the plastic deformation obeys an effective equation of motion with a nearly linear force. For small plastic deformation, the mean values of the stress-strain curves obey a power law over two decades. Here and for somewhat larger plastic deformations, the mean stress-strain curves converge for larger sizes, while their variances shrink, both indicating the existence of a thermodynamical limit. The converging averages decrease with increasing size, in accordance with size effects from experiments. For large plastic deformations, where steady flow sets in, the thermodynamical limit was not realized in this model system.
Tides and tidal stress: Applications to Europa
NASA Astrophysics Data System (ADS)
Hurford, Terry Anthony, Jr.
A review of analytical techniques and documentation of previously inaccessible mathematical formulations is applied to study of Jupiter's satellite Europa. Compared with numerical codes that are commonly used to model global tidal effects, analytical models of tidal deformation give deeper insight into the mechanics of tides, and can better reveal the nature of the dependence of observable effects on key parameters. I develop analytical models for tidal deformation of multi-layered bodies. Previous studies of Europa, based on numerical computation, only to show isolated examples from parameter space. My results show a systematic dependence of tidal response on the thicknesses and material parameters of Europa's core, rocky mantle, liquid water ocean, and outer layer of ice. As in the earlier work, I restrict these studies to incompressible materials. Any set of Love numbers h 2 and k 2 which describe a planet's tidal deformation, could be fit by a range of ice thickness values, by adjusting other parameters such as mantle rigidity or core size, an important result for mission planning. Inclusion of compression into multilayer models has been addressed analytically, uncovering several issues that are not explicit in the literature. Full evaluation with compression is here restricted to a uniform sphere. A set of singularities in the classical solution, which correspond to instabilities due to self-gravity has been identified and mapped in parameter space. The analytical models of tidal response yield the stresses anywhere within the body, including on its surface. Crack patterns (such as cycloids) on Europa are probably controlled by these stresses. However, in contrast to previous studies which used a thin shell approximation of the tidal stress, I consider how other tidal models compare with the observed tectonic features. In this way the relationship between Europa's surface tectonics and the global tidal distortion can be constrained. While large-scale tidal deformations probe internal structure deep within a body, small-scale deformations can probe internal structure at shallower depths. I have used photoclinometry to obtain topographic profiles across terrain adjacent to Europan ridges to detect the effects of loading on the lithosphere. Lithospheric thicknesses have been determined and correlated with types and ages of terrain.
Effects of tectonic plate deformation on the geodetic reference frame of Mexico
NASA Astrophysics Data System (ADS)
Gonzalez Franco, G. A.; Avalos, D.; Esquivel, R.
2013-05-01
Positioning for geodetic applications is commonly determined at one observation epoch, but tectonic drift and tectonic deformation cause the coordinates to be different for any other epoch. Finding the right coordinates at a different epoch from that of the observation time is necessary in Mexico in order to comply the official reference frame, which requires all coordinates to be referred to the standard epoch 2010.0. Available models of horizontal movement in rigid tectonic plates are used to calculate the displacement of coordinates; however for a portion of Mexico these models fail because of miss-modeled regional deformation, decreasing the quality of users' data transformed to the standard epoch. In this work we present the progress achieved in measuring actual horizontal motion towards an improved modeling of horizontal displacements for some regions. Miss-modeled velocities found are as big as 23mm/a, affecting significantly applications like cadastral and geodetic control. Data from a large set of GNSS permanent stations in Mexico is being analyzed to produce the preliminary model of horizontal crustal movement that will be used to minimize distortions of the reference frame.
Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements
NASA Astrophysics Data System (ADS)
Wang, Wei; Qiao, Xuejun; Yang, Shaomin; Wang, Dijin
2017-02-01
In this study, we present a new synthesis of GPS velocities for tectonic deformation within the Tibetan Plateau and its surrounding areas, a combined data set of ˜1854 GPS-derived horizontal velocity vectors. Assuming that crustal deformation is localized along major faults, a block modelling approach is employed to interpret the GPS velocity field. We construct a 30-element block model to describe present-day deformation in western China, with half of them located within the Tibetan Plateau, and the remainder located in its surrounding areas. We model the GPS velocities simultaneously for the effects of block rotations and elastic strain induced by the bounding faults. Our model yields a good fit to the GPS data with a mean residual of 1.08 mm a-1 compared to the mean uncertainty of 1.36 mm a-1 for each velocity component, indicating a good agreement between the predicted and observed velocities. The major strike-slip faults such as the Altyn Tagh, Xianshuihe, Kunlun and Haiyuan faults have relatively uniform slip rates in a range of 5-12 mm a-1 along most of their segments, and the estimated fault slip rates agree well with previous geologic and geodetic results. Blocks having significant residuals are located at the southern and southeastern Tibetan Plateau, suggesting complex tectonic settings and further refinement of accurate definition of block geometry in these regions.
Nonlinear image registration with bidirectional metric and reciprocal regularization
Ying, Shihui; Li, Dan; Xiao, Bin; Peng, Yaxin; Du, Shaoyi; Xu, Meifeng
2017-01-01
Nonlinear registration is an important technique to align two different images and widely applied in medical image analysis. In this paper, we develop a novel nonlinear registration framework based on the diffeomorphic demons, where a reciprocal regularizer is introduced to assume that the deformation between two images is an exact diffeomorphism. In detail, first, we adopt a bidirectional metric to improve the symmetry of the energy functional, whose variables are two reciprocal deformations. Secondly, we slack these two deformations into two independent variables and introduce a reciprocal regularizer to assure the deformations being the exact diffeomorphism. Then, we utilize an alternating iterative strategy to decouple the model into two minimizing subproblems, where a new closed form for the approximate velocity of deformation is calculated. Finally, we compare our proposed algorithm on two data sets of real brain MR images with two relative and conventional methods. The results validate that our proposed method improves accuracy and robustness of registration, as well as the gained bidirectional deformations are actually reciprocal. PMID:28231342
Deformable image registration for tissues with large displacements
Huang, Xishi; Ren, Jing; Green, Mark
2017-01-01
Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of 1.87±0.87 mm and an average centerline distance error of 1.28±0.78 mm. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion. PMID:28149924
An alpha particle model for Carbon-12
NASA Astrophysics Data System (ADS)
Rawlinson, J. I.
2018-07-01
We introduce a new model for the Carbon-12 nucleus and compute its lowest energy levels. Our model is inspired by previous work on the rigid body approximation in the B = 12 sector of the Skyrme model. We go beyond this approximation and treat the nucleus as a deformable body, finding several new states. A restricted set of deformations is considered, leading to a configuration space C which has a graph-like structure. We use ideas from quantum graph theory in order to make sense of quantum mechanics on C even though it is not a manifold. This is a new approach to Skyrmion quantisation and the method presented in this paper could be applied to a variety of other problems.
Zhang, Xudong
2002-10-01
This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.
Digital Charge Coupled Device (CCD) Camera System Architecture
NASA Astrophysics Data System (ADS)
Babey, S. K.; Anger, C. D.; Green, B. D.
1987-03-01
We propose a modeling system for generic objects in order to recognize different objects from the same category with only one generic model. The representation consists of a prototype, represented by parts and their configuration. Parts are modeled by superquadric volumetric primitives which are combined via Boolean operations to form objects. Variations between objects within a category are described by allowable changes in structure and shape deformations of prototypical parts. Each prototypical part and relation has a set of associated features that can be recognized in the images. These features are used for selecting models from the model data base. The selected hypothetical models are then verified on the geometric level by deforming the prototype in allowable ways to match the data. We base our design of the modeling system upon the current psychological theories of categorization and of human visual perception.
Long-term Postseismic Deformation Following the 1964 Alaska Earthquake
NASA Astrophysics Data System (ADS)
Freymueller, J. T.; Cohen, S. C.; Hreinsdöttir, S.; Suito, H.
2003-12-01
Geodetic data provide a rich data set describing the postseismic deformation that followed the 1964 Alaska earthquake (Mw 9.2). This is particularly true for vertical deformation, since tide gauges and leveling surveys provide extensive spatial coverage. Leveling was carried out over all of the major roads of Alaska in 1964-65, and over the last several years we have resurveyed an extensive data set using GPS. Along Turnagain Arm of Cook Inlet, south of Anchorage, a trench-normal profile was surveyed repeatedly over the first decade after the earthquake, and many of these sites have been surveyed with GPS. After using a geoid model to correct for the difference between geometric and orthometric heights, the leveling+GPS surveys reveal up to 1.25 meters of uplift since 1964. The largest uplifts are concentrated in the northern part of the Kenai Peninsula, SW of Turnagain Arm. In some places, steep gradients in the cumulative uplift measurements point to a very shallow source for the deformation. The average 1964-late 1990s uplift rates were substantially higher than the present-day uplift rates, which rarely exceed 10 mm/yr. Both leveling and tide gauge data document a decay in uplift rate over time as the postseismic signal decreases. However, even today the postseismic deformation represents a substantial portion of the total observe deformation signal, illustrating that very long-lived postseismic deformation is an important element of the subduction zone earthquake cycle for the very largest earthquakes. This is in contrast to much smaller events, such as M~8 earthquakes, for which postseismic deformation in many cases decays within a few years. This suggests that the very largest earthquakes may excite different processes than smaller events.
Learning Compositional Shape Models of Multiple Distance Metrics by Information Projection.
Luo, Ping; Lin, Liang; Liu, Xiaobai
2016-07-01
This paper presents a novel compositional contour-based shape model by incorporating multiple distance metrics to account for varying shape distortions or deformations. Our approach contains two key steps: 1) contour feature generation and 2) generative model pursuit. For each category, we first densely sample an ensemble of local prototype contour segments from a few positive shape examples and describe each segment using three different types of distance metrics. These metrics are diverse and complementary with each other to capture various shape deformations. We regard the parameterized contour segment plus an additive residual ϵ as a basic subspace, namely, ϵ -ball, in the sense that it represents local shape variance under the certain distance metric. Using these ϵ -balls as features, we then propose a generative learning algorithm to pursue the compositional shape model, which greedily selects the most representative features under the information projection principle. In experiments, we evaluate our model on several public challenging data sets, and demonstrate that the integration of multiple shape distance metrics is capable of dealing various shape deformations, articulations, and background clutter, hence boosting system performance.
NASA Astrophysics Data System (ADS)
Cai, Song
Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for pressure tubes. Also it is helpful in guiding the development of new materials for the next generation of nuclear reactors. Furthermore, the large data set obtained from this study can be used in evaluation and improving current and future polycrystalline deformation models.
Hydrodynamic resistance and mobility of deformable objects in microfluidic channels
Sajeesh, P.; Doble, M.; Sen, A. K.
2014-01-01
This work reports experimental and theoretical studies of hydrodynamic behaviour of deformable objects such as droplets and cells in a microchannel. Effects of mechanical properties including size and viscosity of these objects on their deformability, mobility, and induced hydrodynamic resistance are investigated. The experimental results revealed that the deformability of droplets, which is quantified in terms of deformability index (D.I.), depends on the droplet-to-channel size ratio ρ and droplet-to-medium viscosity ratio λ. Using a large set of experimental data, for the first time, we provide a mathematical formula that correlates induced hydrodynamic resistance of a single droplet ΔRd with the droplet size ρ and viscosity λ. A simple theoretical model is developed to obtain closed form expressions for droplet mobility ϕ and ΔRd. The predictions of the theoretical model successfully confront the experimental results in terms of the droplet mobility ϕ and induced hydrodynamic resistance ΔRd. Numerical simulations are carried out using volume-of-fluid model to predict droplet generation and deformation of droplets of different size ratio ρ and viscosity ratio λ, which compare well with that obtained from the experiments. In a novel effort, we performed experiments to measure the bulk induced hydrodynamic resistance ΔR of different biological cells (yeast, L6, and HEK 293). The results reveal that the bulk induced hydrodynamic resistance ΔR is related to the cell concentration and apparent viscosity of the cells. PMID:25538806
Interactive collision detection for deformable models using streaming AABBs.
Zhang, Xinyu; Kim, Young J
2007-01-01
We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise, overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At runtime, as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions, and the timings were obtained as 30 approximately 100 FPS depending on the complexity of models and their relative configurations. Finally, we made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and observed about two times improvement.
An Elaborate Data Set Characterizing the Mechanical Response of the Foot
Erdemir, Ahmet; Sirimamilla, Pavana A.; Halloran, Jason P.; van den Bogert, Antonie J.
2010-01-01
Background Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as overall response, to illustrate their combined operation, does not exist. Furthermore, combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Method of Approach Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g. compression, and combined loading, e.g. compression and shear. Small and large indenters were used for heel and metatarsal head loading; an elevated platform was utilized to isolate the rear foot and forefoot; and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a-priori. Results Three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading response portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. Conclusion A large data set was successfully obtained to characterize the overall as well as regional mechanical response of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical response, and for further development of foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics. PMID:19725699
Bioinspired legged-robot based on large deformation of flexible skeleton.
Mayyas, Mohammad
2014-11-11
In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot's leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot.
Examination of global correlations in ground deformation for terrestrial reference frame estimation
NASA Astrophysics Data System (ADS)
Chin, T. M.; Abbondanza, C.; Argus, D. F.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Wu, X.
2016-12-01
The KALman filter for REFerence frames (KALREF, Wu et al. 2015) has been developed to produce terrestrial reference frame (TRF) solutions. TRFs consist of precise position coordinates and velocity vectors of terrestrial reference sites (with the geocenter as the origin) along with the Earth orientation parameters, and they are produced by combining decades worth of space geodetic data using site tie data. To perform the combination, KALREF relies on stochastic models of the geophysical processes that are causing the Earth's surface to deform and reference sites to be displaced. We are investigating application of the GRACE data to improve the KALREF stochastic models by determining spatial statistics of the deformation of the Earth's surface caused by mass loading. A potential target of improvement is the non-uniform distribution of the geodetic observation sites, which can introduce bias in TRF estimates of the geocenter. The global and relatively uniform coverage of the GRACE measurements is expected to be free of such bias and allow us to improve physical realism of the stochastic model. For such a goal, we examine the spatial correlations in ground deformation derived from several GRACE data sets.[Wu et al. 2015: Journal of Geophysical Research (Solid Earth) 120:3775-3802
Effect of acoustic softening on the thermal-mechanical process of ultrasonic welding.
Chen, Kunkun; Zhang, Yansong; Wang, Hongze
2017-03-01
Application of ultrasonic energy can reduce the static stress necessary for plastic deformation of metallic materials to reduce forming load and energy, namely acoustic softening effect (ASE). Ultrasonic welding (USW) is a rapid joining process utilizing ultrasonic energy to form a solid state joint between two or more pieces of metals. Quantitative characterization of ASE and its influence on specimen deformation and heat generation is essential to clarify the thermal-mechanical process of ultrasonic welding. In the present work, experiments were set up to found out mechanical behavior of copper and aluminum under combined effect of compression force and ultrasonic energy. Constitutive model was proposed and numerical implemented in finite element model of ultrasonic welding. Thermal-mechanical analysis was put forward to explore the effect of ultrasonic energy on the welding process quantitatively. Conclusions can be drawn that ASE increases structural deformation significantly, which is beneficial for joint formation. Meanwhile, heat generation from both frictional work and plastic deformation is slightly influenced by ASE. Based on the proposed model, relationship between ultrasonic energy and thermal-mechanical behavior of structure during ultrasonic welding was constructed. Copyright © 2016 Elsevier B.V. All rights reserved.
Fundamental studies in geodynamics
NASA Technical Reports Server (NTRS)
Anderson, D. L.
1980-01-01
Progress in modeling instantaneous plate kinematics is reviewed, with emphasis on recently developed models of present day plate motions derived by the systematic inversion of globally distributed data sets. Rivera plate motions, the Caribbean South American boundary, Indian plate deformation, Pacific-North America, seismicity and subduction processes, and the study of slow earthquakes and free oscillations are discussed.
Automatic liver segmentation in computed tomography using general-purpose shape modeling methods.
Spinczyk, Dominik; Krasoń, Agata
2018-05-29
Liver segmentation in computed tomography is required in many clinical applications. The segmentation methods used can be classified according to a number of criteria. One important criterion for method selection is the shape representation of the segmented organ. The aim of the work is automatic liver segmentation using general purpose shape modeling methods. As part of the research, methods based on shape information at various levels of advancement were used. The single atlas based segmentation method was used as the simplest shape-based method. This method is derived from a single atlas using the deformable free-form deformation of the control point curves. Subsequently, the classic and modified Active Shape Model (ASM) was used, using medium body shape models. As the most advanced and main method generalized statistical shape models, Gaussian Process Morphable Models was used, which are based on multi-dimensional Gaussian distributions of the shape deformation field. Mutual information and sum os square distance were used as similarity measures. The poorest results were obtained for the single atlas method. For the ASM method in 10 analyzed cases for seven test images, the Dice coefficient was above 55[Formula: see text], of which for three of them the coefficient was over 70[Formula: see text], which placed the method in second place. The best results were obtained for the method of generalized statistical distribution of the deformation field. The DICE coefficient for this method was 88.5[Formula: see text] CONCLUSIONS: This value of 88.5 [Formula: see text] Dice coefficient can be explained by the use of general-purpose shape modeling methods with a large variance of the shape of the modeled object-the liver and limitations on the size of our training data set, which was limited to 10 cases. The obtained results in presented fully automatic method are comparable with dedicated methods for liver segmentation. In addition, the deforamtion features of the model can be modeled mathematically by using various kernel functions, which allows to segment the liver on a comparable level using a smaller learning set.
De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.
2012-01-01
Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use. PMID:22629108
Tang, Min; Curtis, Sean; Yoon, Sung-Eui; Manocha, Dinesh
2009-01-01
We present an interactive algorithm for continuous collision detection between deformable models. We introduce multiple techniques to improve the culling efficiency and the overall performance of continuous collision detection. First, we present a novel formulation for continuous normal cones and use these normal cones to efficiently cull large regions of the mesh as part of self-collision tests. Second, we introduce the concept of "procedural representative triangles" to remove all redundant elementary tests between nonadjacent triangles. Finally, we exploit the mesh connectivity and introduce the concept of "orphan sets" to eliminate redundant elementary tests between adjacent triangle primitives. In practice, we can reduce the number of elementary tests by two orders of magnitude. These culling techniques have been combined with bounding volume hierarchies and can result in one order of magnitude performance improvement as compared to prior collision detection algorithms for deformable models. We highlight the performance of our algorithm on several benchmarks, including cloth simulations, N-body simulations, and breaking objects.
NASA Astrophysics Data System (ADS)
Grujicic, Mica; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.
2016-05-01
Material constitutive models for creep deformation and creep rupture of the SiC/SiC ceramic-matrix composites (CMCs) under general three-dimensional stress states have been developed and parameterized using one set of available experimental data for the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture. To validate the models developed, another set of available experimental data was utilized for each model. The models were subsequently implemented in a user-material subroutine and coupled with a commercial finite element package in order to enable computational analysis of the performance and durability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines. In the last portion of the work, the problem of creep-controlled contact of a gas-turbine engine blade with the shroud is investigated computationally. It is assumed that the blade is made of the SiC/SiC CMC, and that the creep behavior of this material can be accounted for using the material constitutive models developed in the present work. The results clearly show that the blade-tip/shroud clearance decreases and ultimately becomes zero (the condition which must be avoided) as a function of time. In addition, the analysis revealed that if the blade is trimmed at its tip to enable additional creep deformation before blade-tip/shroud contact, creep-rupture conditions can develop in the region of the blade adjacent to its attachment to the high-rotational-speed hub.
Dynamics of Solid-Liquid Composite Beams
NASA Astrophysics Data System (ADS)
Matia, Yoav; Gat, Amir
2017-11-01
Solid-liquid composite structures received considerable attention in recent years in various fields such as smart materials, sensors, actuators and soft-robotics. We examine a beam-like appendage embedded with a set of a fluid-filled bladders, interconnected via elastic slender channels; a common arrangement in the abovementioned fields. Viscous flow within such structures is coupled with the elastic deformation of the solid. Beam deformation both creates, and is induced by, a fluidic pressure gradient and viscous flow which deforms the bladders and thus the surrounding solid. Applying concepts from poroelastic analysis, we obtain a set of three interdependent equations relating the fluidic pressure within the channel to the transverse and longitudinal displacements of the beam. Exact and approximate solutions are presented for various configurations. The results are validated and supplemented by a transient three-dimensional numerical study of the fluid-structure-interaction. The two-way coupled fluid-structure-interaction model allows the analysis and design of soft smart-metamaterials with unique mechanical properties, to applications such as touch-sensing surfaces, energy harvesting and protective gear.
Commande en boucle fermee sur un profil d'aile deformable dans la soufflerie Price-Paidoussis
NASA Astrophysics Data System (ADS)
Brossard, Jeremy
The purpose of the ATR-42 project is to apply the concept of morphing wings by fabricating a morphing composite wing model of the Regional Transport Aircraft-42 to reduce drag and improve the aerodynamic performance. A control-command system coupled to an actuator mechanism will morph the wing skin. However, for best results, the control of the deformation must be studied carefully to insure the precision. Thus, a dual digitalexperimental approach is required. The solution proposed in this paper focuses on the controlled deformation of the upper wing of the ATR-42. A composite wing model with morphing capabilities was built and tested in the wind tunnel to evaluate its aerodynamic performance and serve as reference. A deformation mechanism, consisting of two engines and two camshafts, was subsequently designed and integrated within this model to obtain the optimum wing shapes according to the different flight condition. A control loop position was modeled in Matlab / Simulink and implemented experimentally to control the mechanism. Two types of results have been obtained. The first set concerned regulation and the second concerned aerodynamics. The control loop has achieved the desired skin displacement with an accuracy of 5%. Deformations of the upper skin were performed by a actuation system driven by motors, limitations supply were assured by the regulation architecture. For several flight conditions, the pressure measurements, validated with simulation results, have confirmed a reduction of the induced drag, compared to the original ATR-42 airfoil drag reduction.
Model-based segmentation of abdominal aortic aneurysms in CTA images
NASA Astrophysics Data System (ADS)
de Bruijne, Marleen; van Ginneken, Bram; Niessen, Wiro J.; Loog, Marco; Viergever, Max A.
2003-05-01
Segmentation of thrombus in abdominal aortic aneurysms is complicated by regions of low boundary contrast and by the presence of many neighboring structures in close proximity to the aneurysm wall. We present an automated method that is similar to the well known Active Shape Models (ASM), combining a three-dimensional shape model with a one-dimensional boundary appearance model. Our contribution is twofold: we developed a non-parametric appearance modeling scheme that effectively deals with a highly varying background, and we propose a way of generalizing models of curvilinear structures from small training sets. In contrast with the conventional ASM approach, the new appearance model trains on both true and false examples of boundary profiles. The probability that a given image profile belongs to the boundary is obtained using k nearest neighbor (kNN) probability density estimation. The performance of this scheme is compared to that of original ASMs, which minimize the Mahalanobis distance to the average true profile in the training set. The generalizability of the shape model is improved by modeling the objects axis deformation independent of its cross-sectional deformation. A leave-one-out experiment was performed on 23 datasets. Segmentation using the kNN appearance model significantly outperformed the original ASM scheme; average volume errors were 5.9% and 46% respectively.
Bread dough rheology: Computing with a damage function model
NASA Astrophysics Data System (ADS)
Tanner, Roger I.; Qi, Fuzhong; Dai, Shaocong
2015-01-01
We describe an improved damage function model for bread dough rheology. The model has relatively few parameters, all of which can easily be found from simple experiments. Small deformations in the linear region are described by a gel-like power-law memory function. A set of large non-reversing deformations - stress relaxation after a step of shear, steady shearing and elongation beginning from rest, and biaxial stretching, is used to test the model. With the introduction of a revised strain measure which includes a Mooney-Rivlin term, all of these motions can be well described by the damage function described in previous papers. For reversing step strains, larger amplitude oscillatory shearing and recoil reasonable predictions have been found. The numerical methods used are discussed and we give some examples.
NASA Astrophysics Data System (ADS)
Almeida, Pedro; Tomas, Ricardo; Rosas, Filipe; Duarte, Joao; Terrinha, Pedro
2015-04-01
Different modes of strain accommodation affecting a deformable hanging-wall in a flat-ramp-flat thrust system were previously addressed through several (sandbox) analog modeling studies, focusing on the influence of different variables, such as: a) thrust ramp dip angle and friction (Bonini et al, 2000); b) prescribed thickness of the hanging-wall (Koy and Maillot, 2007); and c) sin-thrust erosion (compensating for topographic thrust edification, e.g. Persson and Sokoutis, 2002). In the present work we reproduce the same experimental procedure to investigate the influence of two different parameters on hanging-wall deformation: 1) the geometry of the thrusting surface; and 2) the absence of a velocity discontinuity (VD) that is always present in previous similar analogue modeling studies. Considering the first variable we use two end member ramp geometries, flat-ramp-flat and convex-concave, to understand the control exerted by the abrupt ramp edges in the hanging-wall stress-strain distribution, comparing the obtain results with the situation in which such edge singularities are absent (convex-concave thrust ramp). Considering the second investigated parameter, our motivation was the recognition that the VD found in the different analogue modeling settings simply does not exist in nature, despite the fact that it has a major influence on strain accommodation in the deformable hanging-wall. We thus eliminate such apparatus artifact from our models and compare the obtained results with the previous ones. Our preliminary results suggest that both investigated variables play a non-negligible role on the structural style characterizing the hanging-wall deformation of convergent tectonic settings were such thrust-ramp systems were recognized. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013. Pedro Almeida wants to thank to FCT for the Ph.D. grant (SFRH/BD/52556/2014) under the Doctoral Program EarthSystems in IDL/UL. References Bonini, M., Sokoutis, D., Mulugeta, G., Katrivanos, E. (2000) - Modelling hanging wall accommodation above rigid thrust ramps. Journal of Structural Geology, 22, pp. 1165-1179. Persson, K. & Sokoutis, D (2002) - Analogue models of orogenic wedges controlled by erosion. Tectonophysics, 356, pp. 323- 336. Koy, H. & Bertrand, M. (2007) - Tectonic thickening of hanging-wall units over a ramp.Journal of Structural Geology, 29, pp. 924-932.
Numerical Models of Alaskan Tectonics: A Review and Looking Ahead to a New Era of Research
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; Freymueller, J. T.
2015-12-01
The Pacific-North American plate boundary in Alaska is in the current scientific spotlight, as a highlighted tectonic region for integrated scientific investigation. It is timely, therefore, to step back and examine the previous numerical modeling studies of Alaska. Reviewing the numerical models is valuable, as geodynamic modeling can be a predictive tool that can guide and target field studies, both geologic and geophysical. This review presents a comparison of the previous numerical modeling studies of the Alaska-Aleutian subduction zone, including the mainland and extending into northwestern Canada. By distinguishing between the model set-up, governing equations, and underlying assumptions, non-modelers can more easily understand under what context the modeling predictions can be interpreted. Several key features in the Alaska tectonic setting appear in all the models to have a first order effect on the resulting deformation, such as the plate margin geometry and Denali fault. In addition, there are aspects of the tectonic setting that lead to very different results depending how they are implemented into the models. For example, models which fix the slab velocity to surface plate motions predict lower mantle flow rates than models that allow the slab to steepen. Despite the previous modeling studies, many unanswered questions remain, including the formation of the Wrangell volcanics, the driver for motion in western and interior Alaska, and the timing and nature of slab deformation. A synthesis of this kind will be of value to geologists, geodeticists, seismologists, volcanologists, sedimentologists, geochemists, as well as geodynamicists.
Salt tectonics in an experimental turbiditic tank
NASA Astrophysics Data System (ADS)
Sellier, Nicolas; Vendeville, Bruno
2010-05-01
We modelled the effect of the deposition of clastic sediments wedges along passive margin by combining two different experimental approaches. The first approach, which uses flume experiments in order to model turbiditic transport and deposition, had focused, so far mainly on the stratigraphic architecture and flow properties. But most experiments have not accounted for the impact of syndepositional deformation. The second approach is the classic tectonic modelling (sand-box experiments) is aimed essentially at understanding deformation, for example the deformation of a sediment wedge deposited onto a mobile salt layer. However, with this approach, the sediment transport processes are crudely modelled by adding each sediment layer uniformly, regardless of the potential influence of the sea-floor bathymetry on the depositional pattern. We designed a new tectono-stratigraphic modelling tank, which combines modelling of the turbiditic transport and deposition, and salt-related deformation driven by sediment loading. The set-up comprises a channel connected to a main water tank. A deformation box is placed at the mouth of the channel, on the base of the tank. The base of the box can be filled with various kinds of substrates either rigid (sand) or viscous (silicone polymer, simulating mobile salt layer having varying length and thickness). A mixture of fine-grained powder and water is maintained in suspension in a container, and then released and channelled toward the basin, generating an analogue of basin-floor fans or lobes. We investigated the effect of depositing several consecutive turbiditic lobes on the deformation of the salt body and its overburden. The dynamics of experimental turbidity currents lead to deposits whose thickness varied gradually laterally: the lobe is thick in the proximal region and thins progressively distally, thus creating a very gentle regional surface slope. As the fan grows by episodic deposition of successive turbiditic lobes, the model deforms spontaneously by vertical collapse and lateral spreading of the entire overburden. We conducted a series of systematic experiments varying the length and thickness of the salt body, as well as the sediment input and nature.
Fletcher, E; Carmichael, O; Decarli, C
2012-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.
Fletcher, E.; Carmichael, O.; DeCarli, C.
2013-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843
NASA Technical Reports Server (NTRS)
Ward, Steven N.
1988-01-01
Data obtained by Mark III VLBI measurements of radio signals from permanent and mobile VLBI sites for 5.5 years of observations, starting in October 1982, were used to derive a picture of the earth crust deformation near the North America-Pacific plate boundary. The data, which included the vector positions of the VLBI sites and their rate of change, were used for comparison with a number of lithospheric deformation models based upon the concept that the motions of points near the North America-Pacific plate boundary are a linear combination of North America and Pacific velocities. The best of these models were found to fit 95 percent of the variance in 139 VLBI length and transverse velocity observations. Instantaneous shear deformation associated with plate tectonics is apparently developing in a zone 450 km wide paralleling the San Andreas Fault; some of this deformation will be recovered through elastic rebound, while the rest will be permanently set through plastic processes. Because the VLBI data have not been collected for a significant fraction of the earthquake cycle, they cannot discriminate between elastic and plastic behaviors.
Dislocation models of interseismic deformation in the western United States
Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.
2008-01-01
The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.
NASA Astrophysics Data System (ADS)
Jiménez-Bonilla, Alejandro; Crespo, Ana; Balanyá, Juan Carlos; Expósito, Inmaculada; Díaz-Azpiroz, Manuel
2017-04-01
The western Mediterranean orogenic belt is characterized by two arcs marked by their extremely tight trend-line pattern. Both arcs, Gibraltar and Calabria arcs, show a similar kinematic pattern of extension in their internal zones associated with the development of a back-arc basin approximately counterweighted by outward radial thrusting in their external zones. At the same time, opposite vertical-axis rotations at the arc limbs have been reported. Our case study is the Gibraltar Arc System (GAS), a highly protruded arc in which differential vertical-axis rotations of hundreds of kilometer-scale blocks have been identified. During the last 10 Ma, these differential rotations reach 70° in the westernmost part of the arc [1]. Consequently, the GAS external zone was deformed into a curved fold-and-thrust belt. To look into the geometry, kinematics and progressive deformation of the GAS fold-and-thrust belt -which is detached within an evaporitic-rich layer-, analogue models were performed employing a deformable plastic strip that is able to increase its protrusion grade during the experiment. Three types of set-ups were made using: (1) a 66cm x 51cm initial parallelepiped built only with a sand layer; (2) a 66cm x 51cm initial parallelepiped floored by ductile layer of silicone of variable thickness overlaid by sand; (3) a 100cm x 65cm initial parallelepiped floored by silicone overlaid by sand. In all the experiments, the parallelepiped was deformed into a curved fold-and-thrust belt with outward radial transport direction. The thicker the silicone layer is, the more frequent backthrusting is and the more noticeable the lack of cylindrism is. During the progression of the deformation, the arc-parallel lengthening was achieved by arc-perpendicular normal faults and oblique, conjugate strike-slip faults, which individualized blocks that rotated independently in the second and third set of models. Grid markers rotated clockwise and anticlockwise at the left and right limbs of the apex, respectively, ca. 25° in the first set, between 25° and 40° in the second and more than 70° in the third one. These results differ from previous analogue experiments that used a rigid backstop with different shapes and a straight motion (e.g. [2]), in which it was impossible to generate highly divergent tectonic transport around the indenter. The models we present are the first analogue models of progressive arcs with an indenter that deforms in map view during the experiment progresses. The model results permit us to test the influence of such type of indenter on the shaping of Mediterranean arcs, such as the Gibraltar Arc System external wedge, and in general, of other progressive arcs on Earth, in terms of kinematics, geometry, size of the individualized blocks and rotation of passive markers. [1] Crespo-Blanc A., Comas, M., Balanyá J.C. (2016) Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations. Tectonophysics, 2016, 683, 308-324. [2] Crespo-Blanc A., González-Sánchez, A., 2005. Influence of indenter geometry on arcuate fold-and-thrust wedge: preliminary results of analogue modelling, Geogaceta 37, 11-14. Acknowledgements: RNM-415, CGL-2013-46368-P and EST1/00231.
System and method for measuring residual stress
Prime, Michael B.
2002-01-01
The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.
NASA Astrophysics Data System (ADS)
Robert, Romain; Robion, Philippe; Souloumiac, Pauline; David, Christian; Saillet, Elodie
2018-05-01
Strain localization in a porous calcarenite facies of the Aren formation in the Tremp basin was studied. This Maastrichtian syn-tectonic formation exposed in front of the Boixols thrust, in the Central South Pyrenean Zone, hosts bedding perpendicular deformation bands. These bands are organized in two major band sets, striking East-West and N-020 respectively. Both populations formed during early deformation stages linked to the growth of the fold and thrust. A magnetic fabric study (Anisotropy of Magnetic Susceptibility, AMS) was carried out to constrain the shortening direction responsible for the deformation bands development during the upper Cretaceous-Paleocene N-S contraction in the region, which allowed us to define populations of Pure Compaction Bands (PCB) and Shear Enhanced Compaction Bands (SECB) regarding their orientations compared to the shortening direction. Both sets are formed by cataclastic deformation, but more intense in the case of SECBs, which are also thinner than PCBs. The initial pore space is both mechanically reduced and chemically filled by several cementation phases. We propose a geomechanical model based on the regional context of layer parallel shortening, thrusting and strike-slip tectonics considering the burial history of the formation, in order to explain the development of both types of bands at remarkably shallow depths.
Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
Zheng, Lingxiao; Hedrick, Tyson L; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed.
Time-Varying Wing-Twist Improves Aerodynamic Efficiency of Forward Flight in Butterflies
Zheng, Lingxiao; Hedrick, Tyson L.; Mittal, Rajat
2013-01-01
Insect wings can undergo significant chordwise (camber) as well as spanwise (twist) deformation during flapping flight but the effect of these deformations is not well understood. The shape and size of butterfly wings leads to particularly large wing deformations, making them an ideal test case for investigation of these effects. Here we use computational models derived from experiments on free-flying butterflies to understand the effect of time-varying twist and camber on the aerodynamic performance of these insects. High-speed videogrammetry is used to capture the wing kinematics, including deformation, of a Painted Lady butterfly (Vanessa cardui) in untethered, forward flight. These experimental results are then analyzed computationally using a high-fidelity, three-dimensional, unsteady Navier-Stokes flow solver. For comparison to this case, a set of non-deforming, flat-plate wing (FPW) models of wing motion are synthesized and subjected to the same analysis along with a wing model that matches the time-varying wing-twist observed for the butterfly, but has no deformation in camber. The simulations show that the observed butterfly wing (OBW) outperforms all the flat-plate wings in terms of usable force production as well as the ratio of lift to power by at least 29% and 46%, respectively. This increase in efficiency of lift production is at least three-fold greater than reported for other insects. Interestingly, we also find that the twist-only-wing (TOW) model recovers much of the performance of the OBW, demonstrating that wing-twist, and not camber is key to forward flight in these insects. The implications of this on the design of flapping wing micro-aerial vehicles are discussed. PMID:23341923
Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow
NASA Astrophysics Data System (ADS)
Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick
2015-11-01
In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.
Fluid-Driven Deformation of a Soft Granular Material
NASA Astrophysics Data System (ADS)
MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.
2015-01-01
Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.
Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W
2015-08-01
This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.
2016-07-01
The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation facilitates to constrain the geometrical parameters of analogue models.
NASA Astrophysics Data System (ADS)
Esposito, C.; Bianchi-Fasani, G.; Martino, S.; Scarascia-Mugnozza, G.
2013-10-01
This paper focuses on a study aimed at defining the role of geological-structural setting and Quaternary morpho-structural evolution on the onset and development of a deep-seated gravitational slope deformation which affects the western slope of Mt. Genzana ridge (Central Apennines, Italy). This case history is particularly significant as it comprises several aspects of such gravitational processes both in general terms and with particular reference to the Apennines. In fact: i) the morpho-structural setting is representative of widespread conditions in Central Apennines; ii) the deforming slope partially evolved in a large rockslide-avalanche; iii) the deformational process provides evidence of an ongoing state of activity; iv) the rockslide-avalanche debris formed a stable natural dam, thus implying significant variations in the morphologic, hydraulic and hydrogeological setting; v) the gravitational deformation as well as the rockslide-avalanche reveal a strong structural control. The main study activities were addressed to define a detailed geological model of the gravity-driven process, by means of geological, structural, geomorphological and geomechanical surveys. As a result, a robust hypothesis about the kinematics of the process was possible, with particular reference to the identification of geological-structural constraints. The process, in fact, involves a specific section of the slope exactly where a dextral transtensional structure is present, thus implying local structural conditions that favor sliding processes: the rock mass is intensively jointed by high angle discontinuity sets and the bedding attitude is quite parallel to the slope angle. Within this frame the gravitational process can be classified as a structurally constrained translational slide, locally evolved into a rockslide-avalanche. The activation of such a deformation can be in its turn related to the Quaternary morphological evolution of the area, which was affected by a significant topographic stress increase, testified by stratigraphic and morphologic evidence.
NASA Astrophysics Data System (ADS)
Cruz, L.; Nevitt, J. M.; Seixas, G.; Hilley, G. E.
2017-10-01
Kinematic theories of flat-ramp-flat folds relate fault angles to stratal dips in a way that allows prediction of structural geometries in areas of economic or scientific interest. However, these geometric descriptions imply constitutive properties of rocks that might be discordant with field and laboratory measurements. In this study, we compare deformation resulting from kinematic and mechanical models of flat-ramp-flat folds with identical geometries to determine the conditions over which kinematic models may be reasonably applied to folded rocks. Results show that most mechanical models do not conform to the geometries predicted by the kinematic models, and only low basal friction (μ ≤ 0.1) and shallow ramps (ramp angle ≤10°) produce geometries consistent with kinematic predictions. This implies that the kinematic models might be appropriate for a narrow set of geometric and basal fault friction parameters.
NASA Astrophysics Data System (ADS)
Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2015-03-01
The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial
Wei, Hsiang-Chun; Su, Guo-Dung John
2012-01-01
Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM) provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC) is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young's modulus and Poisson's ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens. PMID:23112648
NASA Astrophysics Data System (ADS)
Schobelock, J.; Stamps, D. S.; Pagani, M.; Garcia, J.; Styron, R. H.
2017-12-01
The Caribbean and Central America region (CCAR) undergoes the entire spectrum of earthquake types due to its complex tectonic setting comprised of transform zones, young oceanic spreading ridges, and subductions along its eastern and western boundaries. CCAR is, therefore, an ideal setting in which to study the impacts of long-term tectonic deformation on the distribution of present-day seismic activity. In this work, we develop a continuous tectonic strain rate model based on inter-seismic geodetic data and compare it with known active faults and earthquake focal mechanism data. We first create a 0.25o x 0.25o finite element mesh that is comprised of block geometries defined in previously studies. Second, we isolate and remove transient signals from the latest open access community velocity solution from UNAVCO, which includes 339 velocities from COCONet and TLALOCNet GNSS data for the Caribbean and Central America, respectively. In a third step we define zones of deformation and rigidity by creating a buffer around the boundary of each block that varies depending on the size of the block and the expected deformation zone based on locations of GNSS data that are consistent with rigid block motion. We then assign each node within the buffer a 0 for the deforming areas and a plate index outside the buffer for the rigid. Finally, we calculate a tectonic strain rate model for CCAR using the Haines and Holt finite element approach to fit bi-cubic Bessel splines to the the GNSS/GPS data assuming block rotation for zones of rigidity. Our model of the CCAR is consistent with compression along subduction zones, extension across the mid-Pacific Rise, and a combination of compression and extension across the North America - Caribbean plate boundary. The majority of CCAR strain rate magnitudes range from -60 to 60 nanostrains/yr. Modeling results are then used to calculate expected faulting behaviors that we compare with mapped geologic faults and seismic activity.
NASA Astrophysics Data System (ADS)
Zuluaga, Luisa F.; Fossen, Haakon; Rotevatn, Atle
2014-11-01
Monoclinal fault propagation folds are a common type of structure in orogenic foreland settings, particularly on the Colorado Plateau. We have studied a portion of the San Rafael monocline, Utah, assumed to have formed through pure thrust- or reverse-slip (blind) fault movement, and mapped a particular sequence of subseismic cataclastic deformation structures (deformation bands) that can be related in terms of geometry, density and orientation to the dip of the forelimb or fold interlimb angle. In simple terms, deformation bands parallel to bedding are the first structures to form, increasing exponentially in number as the forelimb gets steeper. At about 30° rotation of the forelimb, bands forming ladder structures start to cross-cut bedding, consolidating themselves into a well-defined and regularly spaced network of deformation band zones that rotate with the layering during further deformation. In summary, we demonstrate a close relationship between limb dip and deformation band density that can be used to predict the distribution and orientation of such subseismic structures in subsurface reservoirs of similar type. Furthermore, given the fact that these cataclastic deformation bands compartmentalize fluid flow, this relationship can be used to predict or model fluid flow across and along comparable fault-propagation folds.
NASA Astrophysics Data System (ADS)
Zhang, Yunlu; Yan, Lei; Liou, Frank
2018-05-01
The quality initial guess of deformation parameters in digital image correlation (DIC) has a serious impact on convergence, robustness, and efficiency of the following subpixel level searching stage. In this work, an improved feature-based initial guess (FB-IG) scheme is presented to provide initial guess for points of interest (POIs) inside a large region. Oriented FAST and Rotated BRIEF (ORB) features are semi-uniformly extracted from the region of interest (ROI) and matched to provide initial deformation information. False matched pairs are eliminated by the novel feature guided Gaussian mixture model (FG-GMM) point set registration algorithm, and nonuniform deformation parameters of the versatile reproducing kernel Hilbert space (RKHS) function are calculated simultaneously. Validations on simulated images and real-world mini tensile test verify that this scheme can robustly and accurately compute initial guesses with semi-subpixel level accuracy in cases with small or large translation, deformation, or rotation.
Modeling PSInSAR time series without phase unwrapping
Zhang, L.; Ding, X.; Lu, Z.
2011-01-01
In this paper, we propose a least-squares-based method for multitemporal synthetic aperture radar interferometry that allows one to estimate deformations without the need of phase unwrapping. The method utilizes a series of multimaster wrapped differential interferograms with short baselines and focuses on arcs at which there are no phase ambiguities. An outlier detector is used to identify and remove the arcs with phase ambiguities, and a pseudoinverse of the variance-covariance matrix is used as the weight matrix of the correlated observations. The deformation rates at coherent points are estimated with a least squares model constrained by reference points. The proposed approach is verified with a set of simulated data.
Physics-based interactive volume manipulation for sharing surgical process.
Nakao, Megumi; Minato, Kotaro
2010-05-01
This paper presents a new set of techniques by which surgeons can interactively manipulate patient-specific volumetric models for sharing surgical process. To handle physical interaction between the surgical tools and organs, we propose a simple surface-constraint-based manipulation algorithm to consistently simulate common surgical manipulations such as grasping, holding and retraction. Our computation model is capable of simulating soft-tissue deformation and incision in real time. We also present visualization techniques in order to rapidly visualize time-varying, volumetric information on the deformed image. This paper demonstrates the success of the proposed methods in enabling the simulation of surgical processes, and the ways in which this simulation facilitates preoperative planning and rehearsal.
The mechanics of solids in the plastically-deformable state
NASA Technical Reports Server (NTRS)
Mises, R. V.
1986-01-01
The mechanics of continua, which is based on the general stress model of Cauchy, up to the present has almost exclusively been applied to liquid and solid elastic bodies. Saint-Venant has developed a theory for the plastic or remaining form changes of solids, but it does not give the required number of equations for determining motion. A complete set of equations of motion for plastic deformable bodies is derived. This is done within the framework of Cauch mechanics. And it is supported by certain experimental facts which characterize the range of applications.
Deformable torso phantoms of Chinese adults for personalized anatomy modelling.
Wang, Hongkai; Sun, Xiaobang; Wu, Tongning; Li, Congsheng; Chen, Zhonghua; Liao, Meiying; Li, Mengci; Yan, Wen; Huang, Hui; Yang, Jia; Tan, Ziyu; Hui, Libo; Liu, Yue; Pan, Hang; Qu, Yue; Chen, Zhaofeng; Tan, Liwen; Yu, Lijuan; Shi, Hongcheng; Huo, Li; Zhang, Yanjun; Tang, Xin; Zhang, Shaoxiang; Liu, Changjian
2018-04-16
In recent years, there has been increasing demand for personalized anatomy modelling for medical and industrial applications, such as ergonomics device development, clinical radiological exposure simulation, biomechanics analysis, and 3D animation character design. In this study, we constructed deformable torso phantoms that can be deformed to match the personal anatomy of Chinese male and female adults. The phantoms were created based on a training set of 79 trunk computed tomography (CT) images (41 males and 38 females) from normal Chinese subjects. Major torso organs were segmented from the CT images, and the statistical shape model (SSM) approach was used to learn the inter-subject anatomical variations. To match the personal anatomy, the phantoms were registered to individual body surface scans or medical images using the active shape model method. The constructed SSM demonstrated anatomical variations in body height, fat quantity, respiratory status, organ geometry, male muscle size, and female breast size. The masses of the deformed phantom organs were consistent with Chinese population organ mass ranges. To validate the performance of personal anatomy modelling, the phantoms were registered to the body surface scan and CT images. The registration accuracy measured from 22 test CT images showed a median Dice coefficient over 0.85, a median volume recovery coefficient (RC vlm ) between 0.85 and 1.1, and a median averaged surface distance (ASD) < 1.5 mm. We hope these phantoms can serve as computational tools for personalized anatomy modelling for the research community. © 2018 Anatomical Society.
Constitutive Modelling and Deformation Band Angle Predictions for High Porosity Sandstones
NASA Astrophysics Data System (ADS)
Richards, M. C.; Issen, K. A.; Ingraham, M. D.
2017-12-01
The development of a field-scale deformation model requires a constitutive framework that is capable of representing known material behavior and able to be calibrated using available mechanical response data. This work employs the principle of hyperplasticity (e.g., Houlsby and Puzrin, 2006) to develop such a constitutive framework for high porosity sandstone. Adapting the works of Zimmerman et al. (1986) and Collins and Houlsby (1997), the mechanical data set of Ingraham et al. (2013 a, b) was used to develop a specific constitutive framework for Castlegate sandstone, a high porosity fluvial-deposited reservoir analog rock. Using the mechanical data set of Ingraham et al. (2013 a, b), explicit expressions and material parameters of the elastic moduli and strain tensors were obtained. With these expressions, analytical and numerical techniques were then employed to partition the total mechanical strain into elastic, coupled, and plastic strain components. With the partitioned strain data, yield surfaces in true-stress space, coefficients of internal friction, dilatancy factors, along with the theorectical predictions of the deformation band angles were obtained. These results were also evaluated against band angle values obtained from a) measurements on specimen jackets (Ingraham et al., 2013a), b) plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b), and c) X-ray micro-computed tomography (micro-CT) calculations.
Murdock, Kyle; Martin, Caitlin; Sun, Wei
2018-01-01
Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linking numerical models of lithospheric deformation and magnetotelluric images
NASA Astrophysics Data System (ADS)
Sobolev, S. V.
2012-12-01
Efficient modeling of geodynamic processes requires constraints from different fields of geosciences. Frequently used are data on crustal structure and composition and their evolution constrained by seismic, gravity and petrological/geochemical studies. However, links between geodynamic modeling and rapidly developing field of magnetotelluric (MT) studies are still insufficient. I'll consider two recent examples of MT observations and geodynamic modeling demonstrating that joint analyses of thermomechanical models of lithospheric deformation and MT images may be useful to understand geodynamic processes. One set of observations is MT data for San Andreas Fault (SAF) in the region close to the SAFOD Site (Becken et al., 2011) that shows high conductivity anomalies in the mantle, that are interpreted as fluid flow feeding creeping part of SAF south of the SAFOD Site. Interestingly, zones of high conductivity do not coincide with the expected zones of the recent active deformation (SAF), but are located to the west of it. Based on thermomechanical model of the evolution of the SAFS in Central and Northern California during the last 20 Mln. years (Popov et al., 2012), I'll demonstrate that high conductivity anomalies precisely coincide with the expected zones of the highest accumulated shear strain. Possible interpretation of this coincidence is that strong preferred orientation of olivine crystals in the highly deformed mantle shear zone causes high permeability of fluids. Another set of observations is MT data showing high conductivity anomalies in the crust of Tibet (Unsworh et al., 2005, Bai et al., 2010) and Pamirs (Sass et al., 2011) that are often interpreted as an evidence for the widely spread partially molten crust. Using 2D thermomechanical models of the collision between India and Eurasia, I'll demonstrate that such structures in the crust cannot appear without delamination of the mantle lithosphere during tectonic shortening. Internal heating of the thickened felsic crust due to radiogenic heat production and shear heating is not sufficient to produce such structures. The key triggering factor for the delamination is gabbro-eclogite transformation in the lower crust. Delamination of the lower crust and mantle lithosphere is followed by the partial melting and internal convection in the thickened upper-middle crust.
NASA Astrophysics Data System (ADS)
Welch, Mark D.; Schmidt, David A.
2017-09-01
Over the past two decades, GPS and leveling surveys have recorded cycles of inflation and deflation associated with dome building eruptions at Mount St. Helens. Due to spatial and temporal limitations of the data, it remains unknown whether any deformation occurred prior to the most recent eruption of 2004, information which could help anticipate future eruptions. Interferometric Synthetic Aperture Radar (InSAR), which boasts fine spatial resolution over large areas, has the potential to resolve pre-eruptive deformation that may have occurred, but eluded detection by campaign GPS surveys because it was localized to the edifice or crater. Traditional InSAR methods are challenging to apply in the Cascades volcanic arc because of a combination of environmental factors, and past attempts to observe deformation at Mount St. Helens were unable to make reliable observations in the crater or on much of the edifice. In this study, Persistent Scatterer InSAR, known to mitigate issues of decorrelation caused by environmental factors, is applied to four SAR data sets in an attempt to resolve localized sources of deformation on the volcano between 1995 and 2010. Many interferograms are strongly influenced by phase delay from atmospheric water vapor and require correction, evidenced by a correlation between phase and topography. To assess the bias imposed by the atmosphere, we perform sensitivity tests on a suite of atmospheric correction techniques, including several that rely on the correlation of phase delay to elevation, and explore approaches that directly estimate phase delay using the ERA-Interim and NARR climate reanalysis data sets. We find that different correction methods produce velocities on the edifice of Mount St. Helens that differ by up to 1 cm/yr due to variability in how atmospheric artifacts are treated in individual interferograms. Additionally, simple phase-based techniques run the risk of minimizing any surface deformation signals that may themselves be correlated with elevation. The atmospherically corrected PS InSAR results for data sets overlapping in time are inconsistent with one another, and do not provide conclusive evidence for any pre-eruptive deformation at a broad scale or localized to the crater or edifice leading up to the 2004 eruption. However, we cannot rule out the possibility of deformation less than 1 cm/yr, or discern whether deformation rates increased in the months preceding the eruption. The results do significantly improve the spatial density of observations and our ability to resolve or rule out models for a potential deformation source for the pre-eruptive period.
Multiple organ definition in CT using a Bayesian approach for 3D model fitting
NASA Astrophysics Data System (ADS)
Boes, Jennifer L.; Weymouth, Terry E.; Meyer, Charles R.
1995-08-01
Organ definition in computed tomography (CT) is of interest for treatment planning and response monitoring. We present a method for organ definition using a priori information about shape encoded in a set of biometric organ models--specifically for the liver and kidney-- that accurately represents patient population shape information. Each model is generated by averaging surfaces from a learning set of organ shapes previously registered into a standard space defined by a small set of landmarks. The model is placed in a specific patient's data set by identifying these landmarks and using them as the basis for model deformation; this preliminary representation is then iteratively fit to the patient's data based on a Bayesian formulation of the model's priors and CT edge information, yielding a complete organ surface. We demonstrate this technique using a set of fifteen abdominal CT data sets for liver surface definition both before and after the addition of a kidney model to the fitting; we demonstrate the effectiveness of this tool for organ surface definition in this low-contrast domain.
Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan
2016-01-01
Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method.
Wang, Zhongqi; Yang, Bo; Kang, Yonggang; Yang, Yuan
2016-01-01
Fixture plays an important part in constraining excessive sheet metal part deformation at machining, assembly, and measuring stages during the whole manufacturing process. However, it is still a difficult and nontrivial task to design and optimize sheet metal fixture locating layout at present because there is always no direct and explicit expression describing sheet metal fixture locating layout and responding deformation. To that end, an RBF neural network prediction model is proposed in this paper to assist design and optimization of sheet metal fixture locating layout. The RBF neural network model is constructed by training data set selected by uniform sampling and finite element simulation analysis. Finally, a case study is conducted to verify the proposed method. PMID:27127499
Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion
Hamsici, Onur C.; Gotardo, Paulo F.U.; Martinez, Aleix M.
2013-01-01
Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function. PMID:23946937
Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion.
Hamsici, Onur C; Gotardo, Paulo F U; Martinez, Aleix M
2012-01-01
Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function.
Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation
NASA Astrophysics Data System (ADS)
Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel
2016-05-01
In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.
Improved Solver Settings for 3D Exploding Wire Simulations in ALEGRA
2016-08-01
expanding plasma and shock wave resulting from the wire burst can extend to tens of cen- timeters. The elliptic nature of the magnetic diffusion...such simulations were prohibitively slow due in part to unoptimized (matrix) solver settings. In this report, we address that by varying 6 parameters...distribution is unlimited. simulation code developed by SNL for modeling high-deformation solid dynam- ics, shock -hydrodynamics, magnetohydrodynamics
On the minimization properties of Tisserand systems
NASA Astrophysics Data System (ADS)
Escapa, A.; Baenas, T.; Ferrándiz, J.; Getino, J.
2015-08-01
Tisserand systems are a useful concept to model the rotation of deformable sets of particles. They can be characterized by means of three alternative conditions related with the angular momentum and kinetic energy of the set. In this note, we revisit the issue providing a new proof of the equivalence between some of these defining conditions. In addition, we determine the time evolution of Tisserand systems in a clear way.
NASA Astrophysics Data System (ADS)
Goren, L.; Castelltort, S.; Klinger, Y.
2014-12-01
The Dead Sea Fault System changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh Fault (YF), is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates and strain partitioning in Lebanon still prevail. Here, we use morphometric analysis together with analytical and numerical models to constrain rates and modes of distributed and localized deformation along the Lebanese restraining bend.The rivers that drain the western flank of Mount Lebanon show a consistent counterclockwise rotation with respect to an expected orogen perpendicular orientation. Moreover, a pattern of divide disequilibrium in between these rivers emerges from an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. These geometrical patterns are compatible with simulation results using a landscape evolution model, which imposes a distributed velocity field along a domain that represents the western flank of Mount Lebanon. We further develop an analytical model that relates the river orientation to a set of kinematic parameters that represents a combined pure and simple shear strain field, and we find the parameters that best explain the present orientation of the western Lebanon rivers. Our results indicate that distributed deformation to the west of the YF takes as much as 30% of the relative Arabia-Sinai plate velocity since the late Miocene, and that the average slip rate along the YF during the same time interval has been 3.8-4.4 mm/yr. The theoretical model can further explain the inferred rotation from Paleomagnetic measurements.
What can the dihedral angle of conjugate-faults tell us?
NASA Astrophysics Data System (ADS)
Ismat, Zeshan
2015-04-01
Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter. The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds. Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.
FaceTOON: a unified platform for feature-based cartoon expression generation
NASA Astrophysics Data System (ADS)
Zaharia, Titus; Marre, Olivier; Prêteux, Françoise; Monjaux, Perrine
2008-02-01
This paper presents the FaceTOON system, a semi-automatic platform dedicated to the creation of verbal and emotional facial expressions, within the applicative framework of 2D cartoon production. The proposed FaceTOON platform makes it possible to rapidly create 3D facial animations with a minimum amount of user interaction. In contrast with existing commercial 3D modeling softwares, which usually require from the users advanced 3D graphics skills and competences, the FaceTOON system is based exclusively on 2D interaction mechanisms, the 3D modeling stage being completely transparent for the user. The system takes as input a neutral 3D face model, free of any facial feature, and a set of 2D drawings, representing the desired facial features. A 2D/3D virtual mapping procedure makes it possible to obtain a ready-for-animation model which can be directly manipulated and deformed for generating expressions. The platform includes a complete set of dedicated tools for 2D/3D interactive deformation, pose management, key-frame interpolation and MPEG-4 compliant animation and rendering. The proposed FaceTOON system is currently considered for industrial evaluation and commercialization by the Quadraxis company.
A nonaffine network model for elastomers undergoing finite deformations
NASA Astrophysics Data System (ADS)
Davidson, Jacob D.; Goulbourne, N. C.
2013-08-01
In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.
Nonlinear quasi-static analysis of ultra-deep-water top-tension riser
NASA Astrophysics Data System (ADS)
Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun
2017-09-01
In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.
Effect of Gaussian curvature modulus on the shape of deformed hollow spherical objects.
Quilliet, C; Farutin, A; Marmottant, P
2016-06-01
A popular description of soft membranes uses the surface curvature energy introduced by Helfrich, which includes a spontaneous curvature parameter. In this paper we show how the Helfrich formula can also be of interest for a wider class of spherical elastic surfaces, namely with shear elasticity, and likely to model other deformable hollow objects. The key point is that when a stress-free state with spherical symmetry exists before subsequent deformation, its straightforwardly determined curvature ("geometrical spontaneous curvature") differs most of the time from the Helfrich spontaneous curvature parameter that should be considered in order to have the model being correctly used. Using the geometrical curvature in a set of independent parameters unveils the role of the Gaussian curvature modulus, which appears to play on the shape of an elastic surface even though this latter is closed, contrary to what happens for surfaces without spontaneous curvature. In appendices, clues are given to apply this alternative and convenient formulation of the elastic surface model to the particular case of thin spherical shells of isotropic material (TSSIMs).
Nonlinear deformations of microcapsules in elongation flow
NASA Astrophysics Data System (ADS)
Deschamps, Julien; de Loubens, Clément; Boedec, Gwenn; Georgelin, Marc; Leonetti, Marc; Soft Matter; Biophysics Group Team
2014-11-01
Soft microcapsules are drops bounded by a thin elastic shell made of cross-linked proteins. They have numerous applications for drug delivery in bioengineering, pharmaceutics and medicine, where their mechanical stability and their dynamics under flow are crucial. They can also be used as red blood cells models. Here, we investigate the mechanical behaviour of microcapsules made of albumine in strong elongational flow, up to a stretching of 180% just before breaking. The set-up allows us to visualize the deformed shape in the two perpendicular main fields of view, to manage high capillary number and to manipulate soft microcapsules. The steady-state shape of a capsule in the planar elongational flow is non-axisymmetric. In each cross section, the shape is an ellipse but with different small axis which vary in opposite sense with the stretching. Whatever the degree of cross-linking and the size of the capsules, the deformations followed the same master-curve. Comparisons between numerical predictions and experimental results permit to conclude unambiguously that the more properly strain-energy model of membrane is the generalized Hooke model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne
2016-10-15
Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and syntheticmore » CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in a treatment course, or based on population models.« less
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2003-01-01
Splines can be used to approximate noisy data with a few control points. This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of...
The generalized Hill model: A kinematic approach towards active muscle contraction
NASA Astrophysics Data System (ADS)
Göktepe, Serdar; Menzel, Andreas; Kuhl, Ellen
2014-12-01
Excitation-contraction coupling is the physiological process of converting an electrical stimulus into a mechanical response. In muscle, the electrical stimulus is an action potential and the mechanical response is active contraction. The classical Hill model characterizes muscle contraction though one contractile element, activated by electrical excitation, and two non-linear springs, one in series and one in parallel. This rheology translates into an additive decomposition of the total stress into a passive and an active part. Here we supplement this additive decomposition of the stress by a multiplicative decomposition of the deformation gradient into a passive and an active part. We generalize the one-dimensional Hill model to the three-dimensional setting and constitutively define the passive stress as a function of the total deformation gradient and the active stress as a function of both the total deformation gradient and its active part. We show that this novel approach combines the features of both the classical stress-based Hill model and the recent active-strain models. While the notion of active stress is rather phenomenological in nature, active strain is micro-structurally motivated, physically measurable, and straightforward to calibrate. We demonstrate that our model is capable of simulating excitation-contraction coupling in cardiac muscle with its characteristic features of wall thickening, apical lift, and ventricular torsion.
NASA Technical Reports Server (NTRS)
Benafan, Othmane
2012-01-01
The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.
Semi-regular remeshing based trust region spherical geometry image for 3D deformed mesh used MLWNN
NASA Astrophysics Data System (ADS)
Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Ben Amar, Chokri
2017-03-01
Triangular surface are now widely used for modeling three-dimensional object, since these models are very high resolution and the geometry of the mesh is often very dense, it is then necessary to remesh this object to reduce their complexity, the mesh quality (connectivity regularity) must be ameliorated. In this paper, we review the main methods of semi-regular remeshing of the state of the art, given the semi-regular remeshing is mainly relevant for wavelet-based compression, then we present our method for re-meshing based trust region spherical geometry image to have good scheme of 3d mesh compression used to deform 3D meh based on Multi library Wavelet Neural Network structure (MLWNN). Experimental results show that the progressive re-meshing algorithm capable of obtaining more compact representations and semi-regular objects and yield an efficient compression capabilities with minimal set of features used to have good 3D deformation scheme.
Study on the fixed point in crustal deformation before strong earthquake
NASA Astrophysics Data System (ADS)
Niu, A.; Li, Y.; Yan, W. Mr
2017-12-01
Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the earthquake rupture precursor. 1) The observations for crust deformation in natural conditions are different with dry and static experiments, and the former had the meaning of stress wave.2)The earthquake rupture has a special triggering mechanism that is different from the experiment with limited scale rock fracture.
NASA Astrophysics Data System (ADS)
Buijze, Loes; Guo, Yanhuang; Niemeijer, André R.; Ma, Shengli; Spiers, Christopher J.
2017-04-01
Faults in the upper crust cross-cut many different lithologies, which cause the composition of the fault rocks to vary. Each different fault rock segment may have specific mechanical properties, e.g. there may be stronger and weaker segments, and segments prone to unstable slip or creeping. This leads to heterogeneous deformation and stresses along such faults, and a heterogeneous distribution of seismic events. We address the influence of fault variability on stress, deformation, and seismicity using a combination of scaled laboratory fault and numerical modeling. A vertical fault was created along the diagonal of a 30 x 20 x 5 cm block of PMMA, along which a 2 mm thick gouge layer was deposited. Gouge materials of different characteristics were used to create various segments along the fault; quartz (average strength, stable sliding), kaolinite (weak, stable sliding), and gypsum (average strength, unstable sliding). The sample assembly was placed in a horizontal biaxial deformation apparatus, and shear displacement was enforced along the vertical fault. Multiple observations were made: 1) Acoustic emissions were continuously recorded at 3 MHz to observe the occurrence of stick-slips (micro-seismicity), 2) Photo-elastic effects (indicative of the differential stress) were recorded in the transparent set of PMMA wall-rocks using a high-speed camera, and 3) particle tracking was conducted on a speckle painted set of PMMA wall-rocks to study the deformation in the wall-rocks flanking the fault. All three observation methods show how the heterogeneous fault gouge exerts a strong control on the fault behavior. For example, a strong, unstable segment of gypsum flanked by two weaker kaolinite segments show strong stress concentrations develop near the edges of the strong segment, with at the same time most of acoustic emissions being located at the edge of this strong segment. The measurements of differential stress, strain and acoustic emissions provide a strong means to compare the scaled experiment to modeling results. In a finite-element model we reproduce the laboratory experiments, and compare the modeled stresses and strains to the observations and we compare the nucleation of seismic instability to the location of acoustic emissions. The model aids in understanding how the stresses and strains may vary as a result of fault heterogeneity, but also as a result of the boundary conditions inherent to a laboratory setup. The scaled experimental setup and modeling results also provide a means explain and compare with observations made at a larger scale, for example geodetic and seismological measurements along crustal scale faults.
SVAS3: Strain Vector Aided Sensorization of Soft Structures.
Culha, Utku; Nurzaman, Surya G; Clemens, Frank; Iida, Fumiya
2014-07-17
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.
NASA Astrophysics Data System (ADS)
Sobolev, Stephan; Muldashev, Iskander
2016-04-01
According to conventional view, postseismic relaxation process after a great megathrust earthquake is dominated by fault-controlled afterslip during first few months to year, and later by visco-elastic relaxation in mantle wedge. We test this idea by cross-scale thermomechanical models of seismic cycle that employs elasticity, mineral-physics constrained non-linear transient viscous rheology and rate-and-state friction plasticity. As initial conditions for the models we use thermomechanical models of subduction zones at geological time-scale including a narrow subduction channel with low static friction for two settings, similar to the Southern Chile in the region of the great Chile Earthquake of 1960 and Japan in the region of Tohoku Earthquake of 2011. We next introduce in the same models classic rate-and state friction law in subduction channels, leading to stick-slip instability. The models start to generate spontaneous earthquake sequences and model parameters are set to closely replicate co-seismic deformations of Chile and Japan earthquakes. In order to follow in details deformation process during the entire seismic cycle and multiple seismic cycles we use adaptive time-step algorithm changing integration step from 40 sec during the earthquake to minute-5 year during postseismic and interseismic processes. We show that for the case of the Chile earthquake visco-elastic relaxation in the mantle wedge becomes dominant relaxation process already since 1 hour after the earthquake, while for the smaller Tohoku earthquake this happens some days after the earthquake. We also show that our model for Tohoku earthquake is consistent with the geodetic observations for the day-to-4year time range. We will demonstrate and discuss modeled deformation patterns during seismic cycles and identify the regions where the effects of afterslip and visco-elastic relaxation can be best distinguished.
Zhang, Miaomiao; Wells, William M; Golland, Polina
2016-10-01
Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious "curse of dimensionality" coupled with a small sample size. In this paper, we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of the deformation descriptors, we develop a probabilistic model of principal geodesic analysis in a bandlimited low-dimensional space that still captures the underlying variability of image data. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than models based on the high-dimensional state-of-the-art approaches such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA).
NASA Astrophysics Data System (ADS)
Ali, S. T.; Davatzes, N. C.; Mellors, R. J.; Foxall, W.; Drakos, P. S.; Zemach, E.; Kreemer, C.; Wang, H. F.; Feigl, K. L.
2013-12-01
We study deformation due to changes in fluid pressure caused by pumping during production, injection, and stimulation at the Brady Hot Springs geothermal field in the Basin and Range province in Nevada. To measure the deformation, we analyze Interferometric Synthetic Aperture Radar (InSAR) data acquired by the ERS-1, ERS-2, Envisat, and TerraSAR-X satellites between 1995 and 2013. The InSAR results indicate subsidence at the order of several centimeters per year over an elliptically shaped area roughly ~5 km long by ~2 km wide. Its long axis follows the NNE strike of the predominant normal fault system. The subsiding area is centered near a prominent bend in the fault system where the successful production wells are located. Within this broad bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. To explain the deformation signal, we use poroelastic models constrained by borehole measurements of pressure, temperature and mass flux, as well as geologic observations. We solve the coupled deformation-diffusion problem using the finite element method. To estimate parameters in the model, e.g., permeability, we use the General Inversion for Phase Technique -- GIPhT [Feigl and Thurber, 2009; Ali and Feigl, 2012] that utilizes the gradient of range change and avoids the need for unwrapping the observed wrapped phase. We then solve the non-linear inverse problem using a gradient-based inversion scheme. Our results suggest that a complex network of high permeability conduits associated with intersections between fault segments and bends in fault segments explains the smaller length-scale features observed in the interferograms. Such structurally controlled, high permeability conduits are consistent with relatively recent fault slip evidenced by scarps in late Pleistocene Lake Lahontan sediments and spatially associated surface hydrothermal features that predate production at Brady. In contrast, Desert Peak, a "blind" geothermal field, located less than 7 km away from Brady, shows little or no deformation in the InSAR data set, although the two fields are otherwise similar in spatial extent, structural setting, and geothermal production. Desert Peak exhibits neither hydrothermal features nor any evidence of surficial fault slip, however, suggesting that the "plumbing" associated with the fault system there is deeper at than at Brady.
A New Global Geodetic Strain Rate Model
NASA Astrophysics Data System (ADS)
Kreemer, C. W.; Klein, E. C.; Blewitt, G.; Shen, Z.; Wang, M.; Chamot-Rooke, N. R.; Rabaute, A.
2012-12-01
As part of the Global Earthquake Model (GEM) effort to improve global seismic hazard models, we present a new global geodetic strain rate model. This model (GSRM v. 2) is a vast improvement on the previous model from 2004 (v. 1.2). The model is still based on a finite-element type approach and has deforming cells in between the assumed rigid plates. While v.1.2 contained ~25,000 deforming cells of 0.6° by 0.5° dimension, the new models contains >136,000 cells of 0.25° by 0.2° dimension. We redefined the geometries of the deforming zones based on the definitions of Bird (2003) and Chamot-Rooke and Rabaute (2006). We made some adjustments to the grid geometry at places where seismicity and/or GPS velocities suggested the presence of deforming areas where those previous studies did not. As a result, some plates/blocks identified by Bird (2003) we assumed to deform, and the total number of plates and blocks in GSRM v.2 is 38 (including the Bering block, which Bird (2003) did not consider). GSRM v.1.2 was based on ~5,200 GPS velocities, taken from 86 studies. The new model is based on ~17,000 GPS velocities, taken from 170 studies. The GPS velocity field consists of a 1) ~4900 velocities derived by us for CPS stations publicly available RINEX data and >3.5 years of data, 2) ~1200 velocities for China from a new analysis of all CMONOC data, and 3) velocities published in the literature or made otherwise available to us. All studies were combined into the same reference frame by a 6-parameter transformation using velocities at collocated stations. Because the goal of the project is to model the interseismic strain rate field, we model co-seismic jumps while estimating velocities, ignore periods of post-seismic deformation, and exclude time-series that reflect magmatic and anthropogenic activity. GPS velocities were used to estimate angular velocities for most of the 38 rigid plates and blocks (the rest being taken from the literature), and these were used as boundary conditions for the strain rate calculations. For the strain rate calculations we used the method of Haines and Holt. In order to equally fit the data in slowly and rapidly deforming areas, we first calculated a very smooth model by setting the a priori variances of the strain rate components very low. We then used this model as a proxy for the a priori standard deviations of the final model. To add some more constraints to the model (to make it more stable), we manipulated the a priori covariance matrix to reflect the expected style of deformation derived from (an interpolation of) shallow earthquake focal mechanisms. We will show examples of the strain rate and velocity field results. We will also highlight how and where the results can be viewed and accessed through a dedicated webportal.
NASA Astrophysics Data System (ADS)
Deng, Zhipeng; Lei, Lin; Zhou, Shilin
2015-10-01
Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.
NASA Astrophysics Data System (ADS)
Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio
2016-04-01
Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.
NASA Astrophysics Data System (ADS)
Gable, C. W.; Fialko, Y.; Hager, B. H.; Plesch, A.; Williams, C. A.
2006-12-01
More realistic models of crustal deformation are possible due to advances in measurements and modeling capabilities. This study integrates various data to constrain a finite element model of stress and strain in the vicinity of the 1992 Landers earthquake and the 1999 Hector Mine earthquake. The geometry of the model is designed to incorporate the Southern California Earthquake Center (SCEC), Community Fault Model (CFM) to define fault geometry. The Hector Mine fault is represented by a single surface that follows the trace of the Hector Mine fault, is vertical and has variable depth. The fault associated with the Landers earthquake is a set of seven surfaces that capture the geometry of the splays and echelon offsets of the fault. A three dimensional finite element mesh of tetrahedral elements is built that closely maintains the geometry of these fault surfaces. The spatially variable coseismic slip on faults is prescribed based on an inversion of geodetic (Synthetic Aperture Radar and Global Positioning System) data. Time integration of stress and strain is modeled with the finite element code Pylith. As a first step the methodology of incorporating all these data is described. Results of the time history of the stress and strain transfer between 1992 and 1999 are analyzed as well as the time history of deformation from 1999 to the present.
Two dimensional hydrological simulation in elastic swelling/shrinking peat soils
NASA Astrophysics Data System (ADS)
Camporese, M.; Ferraris, S.; Paniconi, C.; Putti, M.; Salandin, P.; Teatini, P.
2005-12-01
Peatlands respond to natural hydrologic cycles of precipitation and evapotranspiration with reversible deformations due to variations of water content in both the unsaturated and saturated zone. This phenomenon results in short-term vertical displacements of the soil surface that superimpose to the irreversible long-term subsidence naturally occurring in drained cropped peatlands because of bio-oxidation of the organic matter. The yearly sinking rates due to the irreversible process are usually comparable with the short-term deformation (swelling/shrinkage) and the latter must be evaluated to achieve a thorough understanding of the whole phenomenon. A mathematical model describing swelling/shrinkage dynamics in peat soils under unsaturated conditions has been derived from simple physical considerations, and validated by comparison with laboratory shrinkage data. The two-parameter model relates together the void and moisture ratios of the soil. This approach is implemented in a subsurface flow model describing variably saturated porous media flow (Richards' equation), by means of an appropriate modification of the general storage term. The contribution of the saturated zone to total deformation is considered by using information from the elastic storage coefficient. Simulations have been carried out for a drained cropped peatland south of the Venice Lagoon (Italy), for which a large data set of hydrological and deformation measurements has been collected since the end of 2001. The considered domain is representative of a field section bounded by ditches, subject to rainfall and evapotranspiration. The comparison between simulated and measured quantities demonstrates the capability of the model to accurately reproduce both the hydrological and deformation dynamics of peat, with values of the relevant parameters that are in good agreement with the literature.
NASA Astrophysics Data System (ADS)
Davis, Jeffery Jon
1998-09-01
The subject of this dissertation is the deformation process of a single metal - polymer system (titanium - polytetrafluoroethylene) and how this process leads to initiation of chemical reaction. Several different kinds of experiments were performed to characterize the behavior of this material to shock and impact. These mechanical conditions induce a rapid plastic deformation of the sample. All of the samples tested had an initial porosity which increased the plastic flow condition. It is currently believed that during the deformation process two important conditions occur: removal of the oxide layer from the metal and decomposition of the polymer. These conditions allow for rapid chemical reaction. The research from this dissertation has provided insight into the complex behavior of plastic deformation and chemical reactions in titanium - polytetrafluoroethylene (PTFE, Teflon). A hydrodynamic computational code was used to model the plastic flow for correlation with the results from the experiments. The results from this work are being used to develop an ignition and growth model for metal/polymer systems. Three sets of experiments were used to examine deformation of the 80% Ti and 20% Teflon materials: drop- weight, gas gun, and split-Hopkinson pressure bar. Recovery studies included post shot analysis of the samples using x-ray diffraction. Lagrangian hydrocode DYNA2D modeling of the drop-weight tests was performed for comparison with experiments. One of the reactions know to occur is Ti + C → TiC (s) which results in an exothermic release. However, the believed initial reactions occur between Ti and fluorine which produces TixFy gases. The thermochemical code CHEETAH was used to investigate the detonation products and concentrations possible during Ti - Teflon reaction. CHEETAH shows that the Ti - fluorine reactions are thermodynamically favorable. This research represents the most comprehensive to date study of deformation induced chemical reaction in metal/polymers.
NASA Astrophysics Data System (ADS)
Kusche, J.; Rietbroek, R.; Gunter, B.; Mark-Willem, J.
2008-12-01
Global deformation of the Earth can be linked to loading caused by mass changes in the atmosphere, the ocean and the terrestrial hydrosphere. World-wide geodetic observation systems like GPS, e.g., the global IGS network, can be used to study the global deformation of the Earth directly and, when other effects are properly modeled, provide information regarding the surface loading mass (e.g., to derive geo-center motion estimates). Vice versa, other observing systems that monitor mass change, either through gravitational changes (GRACE) or through a combination of in-situ and modeled quantities (e.g., the atmosphere, ocean or hydrosphere), can provide indirect information on global deformation. In the framework of the German 'Mass transport and mass distribution' program, we estimate surface mass anomalies at spherical harmonic resolution up to degree and order 30 by linking three complementary data sets in a least squares approach. Our estimates include geo-center motion and the thickness of a spatially uniform layer on top of the ocean surface (that is otherwise estimated from surface fluxes, evaporation and precipitation, and river run-off) as a time-series. As with all current Earth observing systems, each dataset has its own limitations and do not realize homogeneous coverage over the globe. To assess the impact that these limitations might have on current and future deformation and loading mass solutions, a sensitivity study was conducted. Simulated real-case and idealized solutions were explored in which the spatial distribution and quality of GPS, GRACE and OBP data sets were varied. The results show that significant improvements, e.g., over the current GRACE monthly gravity fields, in particular at the low degrees, can be achieved when these solutions are combined with present day GPS and OBP products. Our idealized scenarios also provide quantitative implications on how much surface mass change estimates may improve in the future when improved observing systems become available.
NASA Astrophysics Data System (ADS)
Khoei, A. R.; Samimi, M.; Azami, A. R.
2007-02-01
In this paper, an application of the reproducing kernel particle method (RKPM) is presented in plasticity behavior of pressure-sensitive material. The RKPM technique is implemented in large deformation analysis of powder compaction process. The RKPM shape function and its derivatives are constructed by imposing the consistency conditions. The essential boundary conditions are enforced by the use of the penalty approach. The support of the RKPM shape function covers the same set of particles during powder compaction, hence no instability is encountered in the large deformation computation. A double-surface plasticity model is developed in numerical simulation of pressure-sensitive material. The plasticity model includes a failure surface and an elliptical cap, which closes the open space between the failure surface and hydrostatic axis. The moving cap expands in the stress space according to a specified hardening rule. The cap model is presented within the framework of large deformation RKPM analysis in order to predict the non-uniform relative density distribution during powder die pressing. Numerical computations are performed to demonstrate the applicability of the algorithm in modeling of powder forming processes and the results are compared to those obtained from finite element simulation to demonstrate the accuracy of the proposed model.
Modeling and Representation of Human Hearts for Volumetric Measurement
Guan, Qiu; Wang, Wanliang; Wu, Guang
2012-01-01
This paper investigates automatic construction of a three-dimensional heart model from a set of medical images, represents it in a deformable shape, and uses it to perform volumetric measurements. This not only significantly improves its reliability and accuracy but also makes it possible to derive valuable novel information, like various assessment and dynamic volumetric measurements. The method is based on a flexible model trained from hundreds of patient image sets by a genetic algorithm, which takes advantage of complete segmentation of the heart shape to form a geometrical heart model. For an image set of a new patient, an interpretation scheme is used to obtain its shape and evaluate some important parameters. Apart from automatic evaluation of traditional heart functions, some new information of cardiovascular diseases may be recognized from the volumetric analysis. PMID:22162723
NASA Astrophysics Data System (ADS)
Hotta, Kohei; Iguchi, Masato
2017-12-01
We analyzed campaign Global Positioning System observation data in Kuchinoerabu-jima during 2006-2014. Most benchmarks located around Shin-dake crater showed crater-centered radial horizontal displacements. Horizontal displacements at western rim of the Shin-dake crater were tended to be larger compared to those at eastern rim. In addition, benchmark KUC14 which locates near the cliff at Furu-dake showed westward horizontal displacement rather than crater-centered radial (southward) one. Meanwhile, small displacements were detected at the benchmarks located at the foot of Kuchinoerabu-jima. We modeled the observed displacements applying a finite element method. We set entire FE domain as 100 × 100 × 50 km3. We set top of the domain as a free surface, and sides and bottom to be fixed boundaries. Topography was introduced in the area within Kuchinoerabu-jima using digital elevation model data provided by Kagoshima prefecture and elevation information from Google earth, and elevation of the outside area was assumed to be sea level. We assumed a stratified structure based on a one-dimensional P-wave velocity structure. We applied a vertical spheroid source model and searched optimal values of horizontal location, depth, equatorial and polar radiuses, and internal pressure change of the source using the forward modeling method. A spherical source with a radius of 50 m was obtained beneath the Shin-dake crater at a depth of 400 m above sea level. The internal pressure increase of 361 MPa yields its volume increase of 31,700 m3. Taking effects of topography and heterogeneity of ground into account allowed reproduction of overall deformation in Kuchinoerabu-jima. The location of deformation source coincides with hypocenters of shallow volcano-tectonic (VT) earthquakes and the aquifer estimated from a two-dimensional resistivity model by audio-frequency magnetotellurics method. The obtained deformation source may be corresponding to the pressurized aquifer, and shallow VT earthquakes and demagnetization may be caused by pressure and strain accumulation in the rocks around the aquifer. Applying the obtained spherical source to the tilt change before August 3, 2014 eruption, we found that 520 m3 of volcanic materials were supplied toward shallower in 1.5 h before the eruption. The depth and volume change of deformation source before May 2015 eruption detected by precise leveling surveys is deeper and two orders of magnitude greater compared to that before August 2014 eruption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J; Min, Y; Qi, S
2014-06-15
Purpose: Deformable image registration (DIR) plays a pivotal role in head and neck adaptive radiotherapy but a systematic validation of DIR algorithms has been limited by a lack of quantitative high-resolution groundtruth. We address this limitation by developing a GPU-based framework that provides a systematic DIR validation by generating (a) model-guided synthetic CTs representing posture and physiological changes, and (b) model-guided landmark-based validation. Method: The GPU-based framework was developed to generate massive mass-spring biomechanical models from patient simulation CTs and contoured structures. The biomechanical model represented soft tissue deformations for known rigid skeletal motion. Posture changes were simulated by articulatingmore » skeletal anatomy, which subsequently applied elastic corrective forces upon the soft tissue. Physiological changes such as tumor regression and weight loss were simulated in a biomechanically precise manner. Synthetic CT data was then generated from the deformed anatomy. The initial and final positions for one hundred randomly-chosen mass elements inside each of the internal contoured structures were recorded as ground truth data. The process was automated to create 45 synthetic CT datasets for a given patient CT. For instance, the head rotation was varied between +/− 4 degrees along each axis, and tumor volumes were systematically reduced up to 30%. Finally, the original CT and deformed synthetic CT were registered using an optical flow based DIR. Results: Each synthetic data creation took approximately 28 seconds of computation time. The number of landmarks per data set varied between two and three thousand. The validation method is able to perform sub-voxel analysis of the DIR, and report the results by structure, giving a much more in depth investigation of the error. Conclusions: We presented a GPU based high-resolution biomechanical head and neck model to validate DIR algorithms by generating CT equivalent 3D volumes with simulated posture changes and physiological regression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetvertkov, M; Henry Ford Health System, Detroit, MI; Siddiqui, F
2016-06-15
Purpose: To use daily cone beam CTs (CBCTs) to develop regularized principal component analysis (PCA) models of anatomical changes in head and neck (H&N) patients, to guide replanning decisions in adaptive radiation therapy (ART). Methods: Known deformations were applied to planning CT (pCT) images of 10 H&N patients to model several different systematic anatomical changes. A Pinnacle plugin was used to interpolate systematic changes over 35 fractions, generating a set of 35 synthetic CTs for each patient. Deformation vector fields (DVFs) were acquired between the pCT and synthetic CTs and random fraction-to-fraction changes were superimposed on the DVFs. Standard non-regularizedmore » and regularized patient-specific PCA models were built using the DVFs. The ability of PCA to extract the known deformations was quantified. PCA models were also generated from clinical CBCTs, for which the deformations and DVFs were not known. It was hypothesized that resulting eigenvectors/eigenfunctions with largest eigenvalues represent the major anatomical deformations during the course of treatment. Results: As demonstrated with quantitative results in the supporting document regularized PCA is more successful than standard PCA at capturing systematic changes early in the treatment. Regularized PCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes. To be successful at guiding ART, regularized PCA should be coupled with models of when anatomical changes occur: early, late or throughout the treatment course. Conclusion: The leading eigenvector/eigenfunction from the both PCA approaches can tentatively be identified as a major systematic change during radiotherapy course when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the regularized PCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in the treatment course. This work is supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less
NASA Astrophysics Data System (ADS)
Ruzicka, Alex; Hugo, Richard; Hutson, Melinda
2015-08-01
We show that olivine microstructures in seven metamorphosed ordinary chondrites of different groups studied with optical and transmission electron microscopy can be used to evaluate the post-deformation cooling setting of the meteorites, and to discriminate between collisions affecting cold and warm parent bodies. The L6 chondrites Park (shock stage S1), Bruderheim (S4), Leedey (S4), and Morrow County (S5) were affected by variable shock deformation followed by relatively rapid cooling, and probably cooled as fragments liberated by impact in near-surface settings. In contrast, Kernouvé (H6 S1), Portales Valley (H6/7 S1), and MIL 99301 (LL6 S1) appear to have cooled slowly after shock, probably by deep burial in warm materials. In these chondrites, post-deformation annealing lowered apparent optical strain levels in olivine. Additionally, Kernouvé, Morrow County, Park, MIL 99301, and possibly Portales Valley, show evidence for having been deformed at an elevated temperature (⩾800-1000 °C). The high temperatures for Morrow County can be explained by dynamic heating during intense shock, but Kernouvé, Park, and MIL 99301 were probably shocked while the H, L and LL parent bodies were warm, during early, endogenically-driven thermal metamorphism. Thus, whereas the S4 and S5 chondrites experienced purely shock-induced heating and cooling, all the S1 chondrites examined show evidence for static heating consistent with either syn-metamorphic shock (Kernouvé, MIL 99301, Park), post-deformation burial in warm materials (Kernouvé, MIL 99301, Portales Valley), or both. The results show the pitfalls in relying on optical shock classification alone to infer an absence of shock and to construct cooling stratigraphy models for parent bodies. Moreover, they provide support for the idea that "secondary" metamorphic and "tertiary" shock processes overlapped in time shortly after the accretion of chondritic planetesimals, and that impacts into warm asteroidal bodies were common.
A physical model for strain accumulation in the San Francisco Bay Region
Pollitz, F.F.; Nyst, M.
2005-01-01
Strain accumulation in tectonically active regions is generally a superposition of the effects of background tectonic loading, steady-state dislocation processes, such as creep, and transient deformation. In the San Francisco Bay region (SFBR), the most uncertain of these processes is transient deformation, which arises primarily in association with large earthquakes. As such, it depends upon the history of faulting and the rheology of the crust and mantle, which together determine the pattern of longer term (decade-scale) post-seismic response to earthquakes. We utilize a set of 102 GPS velocity vectors in the SFBR in order to characterize the strain rate field and construct a physical model of its present deformation. We first perform an inversion for the continuous velocity gradient field from the discrete GPS velocity field, from which both tensor strain rate and rotation rate may be extracted. The present strain rate pattern is well described as a nearly uniform shear strain rate oriented approximately N34??W (140 nanostrain yr-1) plus a N56??E uniaxial compression rate averaging 20 nanostrain yr-1 across the shear zone. We fit the velocity and strain rate fields to a model of time-dependent deformation within a 135-kin-wide, arcuate shear zone bounded by strong Pacific Plate and Sierra Nevada block lithosphere to the SW and NE, respectively. Driving forces are purely lateral, consisting of shear zone deformation imposed by the relative motions between the thick Pacific Plate and Sierra Nevada block lithospheres. Assuming a depth-dependent viscoelastic structure within the shear zone, we account for the effects of steady creep on faults and viscoelastic relaxation following the 1906 San Francisco and 1989 Loma Prieta earthquakes, subject to constant velocity boundary conditions on the edges of the shear zone. Fault creep is realized by evaluating dislocations on the creeping portions of faults in the fluid limit of the viscoelastic model. A priori plate-boundary(PB)-parallel motion is set to 38 mm yr -1. A grid search based on fitting the observed strain rate pattern yields a mantle viscosity of 1.2 ?? 1019 Pa s and a PB-perpendicular convergence rate of ???3 mm yr-1. Most of this convergence appears to be uniformly distributed in the Pacific-Sierra Nevada plate boundary zone. ?? 2005 RAS.
Variable-intercept panel model for deformation zoning of a super-high arch dam.
Shi, Zhongwen; Gu, Chongshi; Qin, Dong
2016-01-01
This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.
2D/3D fetal cardiac dataset segmentation using a deformable model.
Dindoyal, Irving; Lambrou, Tryphon; Deng, Jing; Todd-Pokropek, Andrew
2011-07-01
To segment the fetal heart in order to facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. The authors outline a level set deformable model to automatically delineate the small fetal cardiac chambers. The level set is penalized from growing into an adjacent cardiac compartment using a novel collision detection term. The region based model allows simultaneous segmentation of all four cardiac chambers from a user defined seed point placed in each chamber. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 2 mm which is less than 10% of the length of a typical fetal heart. The ejection fractions were determined from the 3D datasets. We validate the algorithm using a physical phantom and obtain volumes that are comparable to those from physically determined means. The algorithm segments volumes with an error of within 13% as determined using a physical phantom. Our original work in fetal cardiac segmentation compares automatic and manual tracings to a physical phantom and also measures inter observer variation.
NASA Astrophysics Data System (ADS)
Bethmann, F.; Jepping, C.; Luhmann, T.
2013-04-01
This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.
Numerical and experimental analyses of out-of-plane deformation of triaxial woven fabric
NASA Astrophysics Data System (ADS)
Zhou, Hongtao; Xiao, Xueliang; Qian, Kun; Zhang, Kun; Zhang, Diantang
2018-05-01
With three sets of yarns interwoven in plane for angle-interlock structure, triaxial woven fabric (TWF) is a unique and perfect construction material for products subjected to multi-directional loads, as compared to classic fabrics of orthogonal structure. Finite-element analysis (FEA) and experimental methods are applied to study the out-of-plane deformation (OPD) behaviors of TWF and plain woven fabric (PWF). Among this, the yarn cross section, path and woven structure are obtained using optical microscopy, the related parameters are input to finite element model (FEM) for simulating the OPD behavior. This paper presents a detailed analysis on out-of-plane deformation behavior of TWF and PWF by the finite element method and experiment. In consideration of the comparability, TWF and PWF are designed and prepared with the same yarns and areal density (g/m2). The deformation profile, maximum stress and maximum deflection of TWF and PWF are obtained by FEA and experiment. It has been found that the maximum deflection and maximum stress of TWF is smaller than that of PWF under the same uniform negative pressure, both FEA and experiment. Furthermore, the stress distribution of TWF is more evenly than that of PWF, indicating that TWF exhibited superior isotropy in comparison with PWF for one more directional set of yarns in undertaking the OPD.
Proxy-SU(3) symmetry in heavy deformed nuclei
NASA Astrophysics Data System (ADS)
Bonatsos, Dennis; Assimakis, I. E.; Minkov, N.; Martinou, Andriana; Cakirli, R. B.; Casten, R. F.; Blaum, K.
2017-06-01
Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the sizes of the matrices that need to be solved. Various approximation schemes have been invoked, for example by truncating the spaces, imposing seniority limits, or appealing to various symmetry schemes such as pseudo-SU(3). This paper proposes a new symmetry scheme also based on SU(3). This proxy-SU(3) can be applied to well-deformed nuclei, is simple to use, and can yield analytic predictions. Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson model calculation with the original shell model orbits and with the new proxy set. Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the above vetting and yet is also transparent in understanding the approximations involved in the new proxy-SU(3). Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is very close to the original Nilsson diagram. The specific levels of approximation in the new scheme are also shown, for each major shell. Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits in a major shell. Being able to replace a complex shell model calculation with a symmetry-based description now opens up the possibility to predict many properties of nuclei analytically and often in a parameter-free way. The new scheme works best for heavier nuclei, precisely where full microscopic calculations are most challenged. Some cases in which the new scheme can be used, often analytically, to make specific predictions, are shown in a subsequent paper.
Method to determine the optimal constitutive model from spherical indentation tests
NASA Astrophysics Data System (ADS)
Zhang, Tairui; Wang, Shang; Wang, Weiqiang
2018-03-01
The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE) calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang's modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in) into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study.
Ferguson, V L
2009-08-01
The relative contributions of elastic, plastic, and viscous material behavior are poorly described by the separate extraction and analysis of the plane strain modulus, E('), the contact hardness, H(c) (a hybrid parameter encompassing both elastic and plastic behavior), and various viscoelastic material constants. A multiple element mechanical model enables the partitioning of a single indentation response into its fundamental elastic, plastic, and viscous deformation components. The objective of this study was to apply deformation partitioning to explore the role of hydration, tissue type, and degree of mineralization in bone and calcified cartilage. Wet, ethanol-dehydrated, and PMMA-embedded equine cortical bone samples and PMMA-embedded human femoral head tissues were analyzed for contributions of elastic, plastic and viscous deformation to the overall nanoindentation response at each site. While the alteration of hydration state had little effect on any measure of deformation, unembedded tissues demonstrated significantly greater measures of resistance to plastic deformation than PMMA-embedded tissues. The PMMA appeared to mechanically stabilize the tissues and prevent extensive permanent deformation within the bone material. Increasing mineral volume fraction correlated with positive changes in E('), H(c), and resistance to plastic deformation, H; however, the partitioned deformation components were generally unaffected by mineralization. The contribution of viscous deformation was minimal and may only play a significant role in poorly mineralized tissues. Deformation partitioning enables a detailed interpretation of the elastic, plastic, and viscous contributions to the nanomechanical behavior of mineralized tissues that is not possible when examining modulus and contact hardness alone. Varying experimental or biological factors, such as hydration or mineralization level, enables the understanding of potential mechanisms for specific mechanical behavior patterns that would otherwise be hidden within a more complex set of material property parameters.
Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.
2013-01-01
One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material tests and the material models developed in this program will be published in separate reports.
Ischemic Preconditioning Enhances Performance and Erythrocyte Deformability of Responders.
Tomschi, Fabian; Niemann, David; Bloch, Wilhelm; Predel, Hans-Georg; Grau, Marijke
2018-06-08
This pilot study aimed to evaluate the differential effects of a remote ischemic preconditioning (rIPC) manoeuvre on performance and red blood cell (RBC) deformability compared to a sham control and a placebo setting. Ten male subjects performed three test settings in a single-blind, crossover, and randomized control design. All settings started with 20 min of rest and were followed by 4 cycles of occlusion/reperfusion consisting of 5 min each. During rIPC and placebo, the cuff pressure was inflated to 200 mmHg and 120 mmHg, respectively. During the sham control setting, 10 mmHg pressure was applied. All tests were followed by a cycle exercise with lactate diagnostics. Power at 2 and 4 mmol/l lactate thresholds were calculated. RBC deformability was measured before and after the respective manoeuvre. Results showed that no effect resulted from any manoeuvre on performance values or RBC deformability. But 6 subjects showed a higher power at the 2 mmol/l threshold, and 5 subjects exerted higher power at the 4 mmol/l threshold when the rIPC manoeuvre preceded the exercise. In these responsive subjects, RBC deformability also improved. Hence, rIPC effects are much influenced by the subjects' responsiveness, and improved RBC deformability might contribute to enhanced performance in responsive subjects. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Schairer, Edward T.; Kushner, Laura K.; Garbeff, Theodore J.; Heineck, James T.
2015-01-01
The deformations of two sonic-boom models were measured by stereo photogrammetry during tests in the 9- by 7-Ft Supersonic Wind Tunnel at NASA Ames Research Center. The models were geometrically similar but one was 2.75 times as large as the other. Deformation measurements were made by simultaneously imaging the upper surfaces of the models from two directions by calibrated cameras that were mounted behind windows of the test section. Bending and twist were measured at discrete points using conventional circular targets that had been marked along the leading and trailing edges of the wings and tails. In addition, continuous distributions of bending and twist were measured from ink speckles that had been applied to the upper surfaces of the model. Measurements were made at wind-on (M = 1.6) and wind-off conditions over a range of angles of attack between 2.5 deg. and 5.0 deg. At each condition, model deformation was determined by comparing the wind-off and wind-on coordinates of each measurement point after transforming the coordinates to reference coordinates tied to the model. The necessary transformations were determined by measuring the positions of a set of targets on the rigid center-body of the models whose model-axes coordinates were known. Smoothly varying bending and twist measurements were obtained at all conditions. Bending displacements increased in proportion to the square of the distance to the centerline. Maximum deflection of the wingtip of the larger model was about 5 mm (2% of the semispan) and that of the smaller model was 0.9 mm (1% of the semispan). The change in wing twist due to bending increased in direct proportion to distance from the centerline and reached a (absolute) maximum of about -1? at the highest angle of attack for both models. The measurements easily resolved bending displacements as small as 0.05 mm and bending-induced changes in twist as small as 0.05 deg.
Time-dependent source model of the Lusi mud volcano
NASA Astrophysics Data System (ADS)
Shirzaei, M.; Rudolph, M. L.; Manga, M.
2014-12-01
The Lusi mud eruption, near Sidoarjo, East Java, Indonesia, began erupting in May 2006 and continues to erupt today. Previous analyses of surface deformation data suggested an exponential decay of the pressure in the mud source, but did not constrain the geometry and evolution of the source(s) from which the erupting mud and fluids ascend. To understand the spatiotemporal evolution of the mud and fluid sources, we apply a time-dependent inversion scheme to a densely populated InSAR time series of the surface deformation at Lusi. The SAR data set includes 50 images acquired on 3 overlapping tracks of the ALOS L-band satellite between May 2006 and April 2011. Following multitemporal analysis of this data set, the obtained surface deformation time series is inverted in a time-dependent framework to solve for the volume changes of distributed point sources in the subsurface. The volume change distribution resulting from this modeling scheme shows two zones of high volume change underneath Lusi at 0.5-1.5 km and 4-5.5km depth as well as another shallow zone, 7 km to the west of Lusi and underneath the Wunut gas field. The cumulative volume change within the shallow source beneath Lusi is ~2-4 times larger than that of the deep source, whilst the ratio of the Lusi shallow source volume change to that of Wunut gas field is ~1. This observation and model suggest that the Lusi shallow source played a key role in eruption process and mud supply, but that additional fluids do ascend from depths >4 km on eruptive timescales.
Breche, Q; Chagnon, G; Machado, G; Girard, E; Nottelet, B; Garric, X; Favier, D
2016-07-01
PLA-b-PEG-b-PLA is a biodegradable triblock copolymer that presents both the mechanical properties of PLA and the hydrophilicity of PEG. In this paper, physical and mechanical properties of PLA-b-PEG-b-PLA are studied during in vitro degradation. The degradation process leads to a mass loss, a decrease of number average molecular weight and an increase of dispersity index. Mechanical experiments are made in a specific experimental set-up designed to create an environment close to in vivo conditions. The viscoelastic behaviour of the material is studied during the degradation. Finally, the mechanical behaviour is modelled with a linear viscoelastic model. A degradation variable is defined and included in the model to describe the hydrolytic degradation. This variable is linked to physical parameters of the macromolecular polymer network. The model allows us to describe weak deformations but become less accurate for larger deformations. The abilities and limits of the model are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Circular blurred shape model for multiclass symbol recognition.
Escalera, Sergio; Fornés, Alicia; Pujol, Oriol; Lladós, Josep; Radeva, Petia
2011-04-01
In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.
Using postural synergies to animate a low-dimensional hand avatar in haptic simulation.
Mulatto, Sara; Formaglio, Alessandro; Malvezzi, Monica; Prattichizzo, Domenico
2013-01-01
A technique to animate a realistic hand avatar with 20 DoFs based on the biomechanics of the human hand is presented. The animation does not use any sensor glove or advanced tracker with markers. The proposed approach is based on the knowledge of a set of kinematic constraints on the model of the hand, referred to as postural synergies, which allows to represent the hand posture using a number of variables lower than the number of joints of the hand model. This low-dimensional set of parameters is estimated from direct measurement of the motion of thumb and index finger tracked using two haptic devices. A kinematic inversion algorithm has been developed, which takes synergies into account and estimates the kinematic configuration of the whole hand, i.e., also of the fingers whose end tips are not directly tracked by the two haptic devices. The hand skin is deformable and its deformation is computed using a linear vertex blending technique. The proposed synergy-based animation of the hand avatar involves only algebraic computations and is suitable for real-time implementation as required in haptics.
Estimating Hydraulic Parameters When Poroelastic Effects Are Significant
Berg, S.J.; Hsieh, P.A.; Illman, W.A.
2011-01-01
For almost 80 years, deformation-induced head changes caused by poroelastic effects have been observed during pumping tests in multilayered aquifer-aquitard systems. As water in the aquifer is released from compressive storage during pumping, the aquifer is deformed both in the horizontal and vertical directions. This deformation in the pumped aquifer causes deformation in the adjacent layers, resulting in changes in pore pressure that may produce drawdown curves that differ significantly from those predicted by traditional groundwater theory. Although these deformation-induced head changes have been analyzed in several studies by poroelasticity theory, there are at present no practical guidelines for the interpretation of pumping test data influenced by these effects. To investigate the impact that poroelastic effects during pumping tests have on the estimation of hydraulic parameters, we generate synthetic data for three different aquifer-aquitard settings using a poroelasticity model, and then analyze the synthetic data using type curves and parameter estimation techniques, both of which are based on traditional groundwater theory and do not account for poroelastic effects. Results show that even when poroelastic effects result in significant deformation-induced head changes, it is possible to obtain reasonable estimates of hydraulic parameters using methods based on traditional groundwater theory, as long as pumping is sufficiently long so that deformation-induced effects have largely dissipated. ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.
Removal of daytime thermal deformations in the GBT active surface via out-of-focus holography
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Mello, M.; Nikolic, B.; Mason, B.; Schwab, F.; Ghigo, F.; Dicker, S.
2009-01-01
The 100-m diameter Green Bank Telescope (GBT) was built with an active surface of 2209 actuators in order to achieve and maintain an accurate paraboloidal shape. While much of the large-scale gravitational deformation of the surface can be described by a finite element model, a significant uncompensated gravitational deformation exists. In recent years, the elevation-dependence of this residual deformation has been successfully measured during benign nighttime conditions using the out-of-focus (OOF) holography technique (Nikolic et al, 2007, A&A 465, 685). Parametrized by a set of Zernike polynomials, the OOF model correction was implemented into the active surface and has been applied during all high-frequency observations since Fall 2006, yielding a consistent gain curve that is flat with elevation. However, large-scale thermal deformation of the surface has remained a problem for daytime high-frequency observations. OOF holography maps taken throughout a clear winter day indicate that surface deformations become significant whenever the Sun is above 10 degrees elevation, but that they change slowly while tracking a single source. In this paper, we describe a further improvement to the GBT active surface that allows an observer to measure and compensate for the thermal surface deformation using the OOF technique. In order to support high-frequency observers, "AutoOOF" is a new GBT Astrid procedure that acquires a quick set of in-focus and out-of-focus on-the-fly continuum maps on a quasar using the currently active receiver. Upon completion of the maps, the data analysis software is launched automatically which produces and displays the surface map along with a set of Zernike coefficients. These coefficients are then sent to the active surface manager which combines them with the existing gravitational Zernike terms and FEM in order to compute the total active surface correction. The end-to-end functionality has been tested on the sky at Q-Band and Ka-band during several mornings and afternoons. The telescope beam profiles on a bright quasar typically change from slightly asymmetric to Gaussian, the peak antenna temperature increases, and significant sidelobes (when present) are eliminated. This technique has the potential to bring the daytime GBT aperture efficiency at high frequencies closer to its nighttime level. The total time to run the procedure and apply the corrections is about 20 minutes. The time interval over which the solutions remain valid and helpful will likely vary with the weather conditions and program of observations, and can be better evaluated once a larger dataset has been acquired. We are presently researching the OOF technique using MUSTANG, the first 90 GHz instrument on the GBT. MUSTANG is 64-pixel bolometer camera, presently operating as a shared-risk science instrument. The use of multi-pixel MUSTANG maps has the potential to significantly speed the process of measuring and correcting thermal deformations to the surface during 90 GHz observations. Of course, the efficiency of 90 GHz observations with the GBT is also limited by the small-scale surface roughness due to errors in the initial setting of the actuator zero points and the individual panel corners. We are planning to measure these errors in detail with traditional holography in the near future.
Removal of daytime thermal deformations in the GBT active surface via out-of-focus holography
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Mello, M.; Nikolic, B.; Mason, B. S.; Schwab, F. R.; Ghigo, F. D.; Dicker, S. R.
2009-01-01
The 100-m diameter Green Bank Telescope (GBT) was built with an active surface of 2209 actuators in order to achieve and maintain an accurate paraboloidal shape. While much of the large-scale gravitational deformation of the surface can be described by a finite element model, a significant uncompensated gravitational deformation exists. In recent years, the elevation-dependence of this residual deformation has been successfully measured during benign nighttime conditions using the out-of-focus (OOF) holography technique (Nikolic et al, 2007, A&A 465, 685). Parametrized by a set of Zernike polynomials, the OOF model correction was implemented into the active surface and has been applied during all high frequency observations since Fall 2006, yielding a consistent gain curve that is constant with elevation. However, large-scale thermal deformation of the surface has remained a problem for daytime high-frequency observations. OOF holography maps taken throughout a clear winter day indicate that surface deformations become significant whenever the Sun is above 10 degrees elevation, but that they change slowly while tracking a single source. In this paper, we describe a further improvement to the GBT active surface that allows an observer to measure and compensate for the thermal surface deformation using the OOF technique. In order to support high-frequency observers, "AutoOOF" is a new GBT Astrid procedure that acquires a quick set of in-focus and out-of-focus on-the-fly continuum maps on a quasar using the currently active receiver. Upon completion of the maps, the data analysis software is launched automatically which produces and displays the surface map along with a set of Zernike coefficients. These coefficients are then sent to the active surface manager which combines them with the existing gravitational Zernike terms and FEM in order to compute the total active surface correction. The end-to-end functionality has been tested on the sky at Q-Band and Ka-band during several mornings and afternoons. The telescope beam profiles on a bright quasar typically change from slightly asymmetric to Gaussian, the peak antenna temperature increases, and signicant sidelobes (when present) are eliminated. This technique has the potential to bring the daytime GBT aperture efficiency at high frequencies closer to its nighttime level. The total time to run the procedure and apply the corrections is about 20 minutes. The time interval over which the solutions remain valid and helpful will likely vary with the weather conditions and program of observations, and can be better evaluated once a larger dataset has been acquired. We are presently researching the OOF technique using MUSTANG, the first 90 GHz instrument on the GBT. MUSTANG is 64-pixel bolometer camera, presently operating as a shared-risk science instrument. The use of multi-pixel MUSTANG maps has the potential to signicantly speed the process of measuring and correcting thermal deformations to the surface during 90 GHz observations. Of course, th efficiency of 90 GHz observations with the GBT is also limited by the small-scale surface roughness due to errors in the initial setting of the actuator zero points and the individual panel corners. We are planning to measure these errors in detail with traditional holography in the near future.
NASA Technical Reports Server (NTRS)
Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.
2004-01-01
A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.
NASA Astrophysics Data System (ADS)
Sultan, M.; Becker, R.; Gebremichael, E.; Othman, A.; Emil, M.; Ahmed, M.; Elkadiri, R.; Pankratz, H. G.; Chouinard, K.
2015-12-01
Radar interferometric techniques including Persistent Scatterer (PS), Small BAseline Subset (SBAS), and two and three pass (differential interferometry) methods were applied to Synthetic Aperture Radar (SAR) datasets. These include the European Space Agency (ESA) ERS-1, ERS-2, Environmental satellite (Envisat), and Phased Array type L-band Synthetic Aperture Radar (PALSAR) to conduct the following: (1) map the spatial distribution of land deformation associated with a wide range of geologic settings, (2) quantify the rates of the observed land deformation, and (3) identify the factors controlling the observed deformation. The research topics/areas include: (1) subsidence associated with sediment compaction in a Delta setting (Nile Delta, Egypt), (2) deformation in a rifting setting (Red Sea rifting along the Red Sea coastal zone and proximal basement outcrops in Egypt and Saudi Arabia), (3) deformation associated with salt dome intrusion and the dissolution of sabkha deposits (Jazan area in Saudi Arabia), (4) mass transport associated with debris flows (Jazan area in Saudi Arabia), and (5) deformation preceding, contemporaneous with, or following large earthquakes (in Nepal; magnitude: 7.8; date: April, 25, 2015) and medium earthquakes (in Harrat Lunayyir volcanic field, central Saudi Arabia; magnitude: 5.7; date: May 19, 2009). The identification of the factor(s) controlling the observed deformation was attained through spatial correlation of extracted radar velocities with relevant temporal and static ground based and remotely sensed geological and cultural data sets (e.g., lithology, structure, precipitation, land use, and earthquake location, magnitude, and focal mechanism) in a Geographical Information System (GIS) environment.
Deformed shell model study of event rates for WIMP-73Ge scattering
NASA Astrophysics Data System (ADS)
Sahu, R.; Kota, V. K. B.
2017-12-01
The event detection rates for the Weakly Interacting Massive Particles (WIMP) (a dark matter candidate) are calculated with 73Ge as the detector. The calculations are performed within the deformed shell model (DSM) based on Hartree-Fock states. First, the energy levels and magnetic moment for the ground state and two low-lying positive parity states for this nucleus are calculated and compared with experiment. The agreement is quite satisfactory. Then the nuclear wave functions are used to investigate the elastic and inelastic scattering of WIMP from 73Ge; inelastic scattering, especially for the 9/2+ → 5/2+ transition, is studied for the first time. The nuclear structure factors which are independent of supersymmetric model are also calculated as a function of WIMP mass. The event rates are calculated for a given set of nucleonic current parameters. The calculation shows that 73Ge is a good detector for detecting dark matter.
Model based LV-reconstruction in bi-plane x-ray angiography
NASA Astrophysics Data System (ADS)
Backfrieder, Werner; Carpella, Martin; Swoboda, Roland; Steinwender, Clemens; Gabriel, Christian; Leisch, Franz
2005-04-01
Interventional x-ray angiography is state of the art in diagnosis and therapy of severe diseases of the cardiovascular system. Diagnosis is based on contrast enhanced dynamic projection images of the left ventricle. A new model based algorithm for three dimensional reconstruction of the left ventricle from bi-planar angiograms was developed. Parametric super ellipses are deformed until their projection profiles optimally fit measured ventricular projections. Deformation is controlled by a simplex optimization procedure. A resulting optimized parameter set builds the initial guess for neighboring slices. A three dimensional surface model of the ventricle is built from stacked contours. The accuracy of the algorithm has been tested with mathematical phantom data and clinical data. Results show conformance with provided projection data and high convergence speed makes the algorithm useful for clinical application. Fully three dimensional reconstruction of the left ventricle has a high potential for improvements of clinical findings in interventional cardiology.
Models of determining deformations
NASA Astrophysics Data System (ADS)
Gladilin, V. N.
2016-12-01
In recent years, a lot of functions designed to determine deformation values that occur mostly as a result of settlement of structures and industrial equipment. Some authors suggest such advanced mathematical functions approximating deformations as general methods for the determination of deformations. The article describes models of deformations as physical processes. When comparing static, cinematic and dynamic models, it was found that the dynamic model reflects the deformation of structures and industrial equipment most reliably.
NASA Astrophysics Data System (ADS)
Shirzaei, Manoochehr; Walter, Thomas
2010-05-01
Volcanic unrest and eruptions are one of the major natural hazards next to earthquakes, floods, and storms. It has been shown that many of volcanic and tectonic unrests are triggered by changes in the stress field induced by nearby seismic and magmatic activities. In this study, as part of a mobile volcano fast response system so-called "Exupery" (www.exupery-vfrs.de) we present an arrangement for semi real time assessing the stress field excited by volcanic activity. This system includes; (1) an approach called "WabInSAR" dedicated for advanced processing of the satellite data and providing an accurate time series of the surface deformation [1, 2], (2) a time dependent inverse source modeling method to investigate the source of volcanic unrest using observed surface deformation data [3, 4], (3) the assessment of the changes in stress field induced by magmatic activity at the nearby volcanic and tectonic systems. This system is implemented in a recursive manner that allows handling large 3D data sets in an efficient and robust way which is requirement of an early warning system. We have applied and validated this arrangement on Mauna Loa volcano, Hawaii Island, to assess the influence of the time dependent activities of Mauna Loa on earthquake occurrence at the Kaoiki seismic zone. References [1] M. Shirzaei and T. R. Walter, "Wavelet based InSAR (WabInSAR): a new advanced time series approach for accurate spatiotemporal surface deformation monitoring," IEEE, pp. submitted, 2010. [2] M. Shirzaei and R. T. Walter, "Deformation interplay at Hawaii Island through InSAR time series and modeling," J. Geophys Res., vol. submited, 2009. [3] M. Shirzaei and T. R. Walter, "Randomly Iterated Search and Statistical Competency (RISC) as powerful inversion tools for deformation source modeling: application to volcano InSAR data," J. Geophys. Res., vol. 114, B10401, doi:10.1029/2008JB006071, 2009. [4] M. Shirzaei and T. R. Walter, "Genetic algorithm combined with Kalman filter as powerful tool for nonlinear time dependent inverse modelling: Application to volcanic deformation time series," J. Geophys. Res., pp. submitted, 2010.
NASA Astrophysics Data System (ADS)
Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui
2017-09-01
In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Ma, C.; Sauber, J. M.; Ryan, J. W.; Gordon, D.; Shaffer, D. B.; Carprette, D. S.; Vandenberg, N. R.
1990-01-01
VLBI measurements were conducted immediately after the Loma Prieta earthquake and compared with VLBI gathered at Monterey, San Francisco, and Point Reyes since 1983 to obtain preearthquake deformation rates with respect to a North American reference frame. The estimated displacements at Monterey and San Francisco are consistent with the static displacements predicted on the basis of a coseismic slip model in which slip on the southern segment is shallower than slip on the northern segment of the fault rupture. Cartesian positions are presented at epoch 1990.0 of a set of VLBI fiducial stations and the three mobile sites in the earthquake's vicinity.
A deformable surface model for real-time water drop animation.
Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun
2012-08-01
A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.
Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales
NASA Astrophysics Data System (ADS)
Dongare, Avinash M.
2014-12-01
A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.
Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D
2017-11-01
This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.
Ghadyani, Hamid R.; Bastien, Adam D.; Lutz, Nicholas N.; Hepel, Jaroslaw T.
2015-01-01
Purpose Noninvasive image-guided breast brachytherapy delivers conformal HDR 192Ir brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Material and methods The model assumed the breast was under planar stress with values of 30 kPa for Young's modulus and 0.3 for Poisson's ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target–applicator combinations. Conclusions The model exhibited skin dose trends that matched MC-generated benchmarking results within 2% and clinical observations over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over a range of clinical circumstances. These findings highlight the need for careful target localization and accurate identification of compression thickness and target offset. PMID:25829938
Dong, C; Chadwick, R S; Schechter, A N
1992-01-01
The rheological properties of normal erythrocytes appear to be largely determined by those of the red cell membrane. In sickle cell disease, the intracellular polymerization of sickle hemoglobin upon deoxygenation leads to a marked increase in intracellular viscosity and elastic stiffness as well as having indirect effects on the cell membrane. To estimate the components of abnormal cell rheology due to the polymerization process and that due to the membrane abnormalities, we have developed a simple mathematical model of whole cell deformability in narrow vessels. This model uses hydrodynamic lubrication theory to describe the pulsatile flow in the gap between a cell and the vessel wall. The interior of the cell is modeled as a Voigt viscoelastic solid with parameters for the viscous and elastic moduli, while the membrane is assigned an elastic shear modulus. In response to an oscillatory fluid shear stress, the cell--modeled as a cylinder of constant volume and surface area--undergoes a conical deformation which may be calculated. We use published values of normal and sickle cell membrane elastic modulus and of sickle hemoglobin viscous and elastic moduli as a function of oxygen saturation, to estimate normalized tip displacement, d/ho, and relative hydrodynamic resistance, Rr, as a function of polymer fraction of hemoglobin for sickle erythrocytes. These results show the transition from membrane to internal polymer dominance of deformability as oxygen saturation is lowered. More detailed experimental data, including those at other oscillatory frequencies and for cells with higher concentrations of hemoglobin S, are needed to apply fully this approach to understanding the deformability of sickle erythrocytes in the microcirculation. The model should be useful for reconciling the vast and disparate sets of data available on the abnormal properties of sickle cell hemoglobin and sickle erythrocyte membranes, the two main factors that lead to pathology in patients with this disease. PMID:1420913
SVAS3: Strain Vector Aided Sensorization of Soft Structures
Culha, Utku; Nurzaman, Surya G.; Clemens, Frank; Iida, Fumiya
2014-01-01
Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations. PMID:25036332
Identifying mantle lithosphere inheritance in controlling intraplate orogenesis
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-09-01
Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.
NASA Astrophysics Data System (ADS)
Berrocoso, M.; Fernandez-Ros, A.; Prates, G.; Martin, M.; Hurtado, R.; Pereda, J.; Garcia, M. J.; Garcia-Cañada, L.; Ortiz, R.; Garcia, A.
2012-04-01
The surface deformation has been an essential parameter for the onset and evolution of the eruptive process of the island of El Hierro (October 2011) as well as for forecasting changes in seismic and volcanic activity during the crisis period. From GNSS-GPS observations the reactivation is early detected by analizing the change in the deformation of the El Hierro Island regional geodynamics. It is found that the surface deformation changes are detected before the occurrence of seismic activity using the station FRON (GRAFCAN). The evolution of the process has been studied by the analysis of time series of topocentric coordinates and the variation of the distance between stations on the island of El Hierro (GRAFCAN station;IGN network; and UCA-CSIC points) and LPAL-IGS station on the island of La Palma. In this work the main methodologies and their results are shown: •The location (and its changes) of the litospheric pressure source obtained by applying the Mogi model. •Kalman filtering technique for high frequency time series, used to make the forecasts issued for volcanic emergency management. •Correlations between deformation of the different GPS stations and their relationship with seismovolcanic settings.
An arena for model building in the Cohen-Glashow very special relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh-Jabbari, M. M., E-mail: jabbari@theory.ipm.ac.i; Tureanu, A., E-mail: anca.tureanu@helsinki.f
2010-02-15
The Cohen-Glashow Very Special Relativity (VSR) algebra is defined as the part of the Lorentz algebra which upon addition of CP or T invariance enhances to the full Lorentz group, plus the space-time translations. We show that noncommutative space-time, in particular noncommutative Moyal plane, with light- like noncommutativity provides a robust mathematical setting for quantum field theories which are VSR invariant and hence set the stage for building VSR invariant particle physics models. In our setting the VSR invariant theories are specified with a single deformation parameter, the noncommutativity scale {Lambda}{sub NC}. Preliminary analysis with the available data leads tomore » {Lambda}{sub NC} {>=} 1-10 TeV.« less
Rabattu, Pierre-Yves; Massé, Benoit; Ulliana, Federico; Rousset, Marie-Christine; Rohmer, Damien; Léon, Jean-Claude; Palombi, Olivier
2015-01-01
Embryology is a complex morphologic discipline involving a set of entangled mechanisms, sometime difficult to understand and to visualize. Recent computer based techniques ranging from geometrical to physically based modeling are used to assist the visualization and the simulation of virtual humans for numerous domains such as surgical simulation and learning. On the other side, the ontology-based approach applied to knowledge representation is more and more successfully adopted in the life-science domains to formalize biological entities and phenomena, thanks to a declarative approach for expressing and reasoning over symbolic information. 3D models and ontologies are two complementary ways to describe biological entities that remain largely separated. Indeed, while many ontologies providing a unified formalization of anatomy and embryology exist, they remain only descriptive and make the access to anatomical content of complex 3D embryology models and simulations difficult. In this work, we present a novel ontology describing the development of the human embryology deforming 3D models. Beyond describing how organs and structures are composed, our ontology integrates a procedural description of their 3D representations, temporal deformation and relations with respect to their developments. We also created inferences rules to express complex connections between entities. It results in a unified description of both the knowledge of the organs deformation and their 3D representations enabling to visualize dynamically the embryo deformation during the Carnegie stages. Through a simplified ontology, containing representative entities which are linked to spatial position and temporal process information, we illustrate the added-value of such a declarative approach for interactive simulation and visualization of 3D embryos. Combining ontologies and 3D models enables a declarative description of different embryological models that capture the complexity of human developmental anatomy. Visualizing embryos with 3D geometric models and their animated deformations perhaps paves the way towards some kind of hypothesis-driven application. These can also be used to assist the learning process of this complex knowledge. http://www.mycorporisfabrica.org/.
Deformation and Forming of Joined Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carsley, John; Hovanski, Yuri; Clarke, Kester D.
2014-09-23
Introductory article to a set of invited papers from the TMS committee on shaping and forming. This paper introduces a set of papers that were prepared to discussing the deformation and forming of joined materials, and to announce an upcoming symposium at the 2015 MS&T meeting in Columbus Ohio.
NASA Astrophysics Data System (ADS)
Maggi, Matteo; Cianfarra, Paola; Salvini, Francesco
2013-04-01
Faults have a (brittle) deformation zone that can be described as the presence of two distintive zones: an internal Fault core (FC) and an external Fault Damage Zone (FDZ). The FC is characterized by grinding processes that comminute the rock grains to a final grain-size distribution characterized by the prevalence of smaller grains over larger, represented by high fractal dimensions (up to 3.4). On the other hand, the FDZ is characterized by a network of fracture sets with characteristic attitudes (i.e. Riedel cleavages). This deformation pattern has important consequences on rock permeability. FC often represents hydraulic barriers, while FDZ, with its fracture connection, represents zones of higher permability. The observation of faults revealed that dimension and characteristics of FC and FDZ varies both in intensity and dimensions along them. One of the controlling factor in FC and FDZ development is the fault plane geometry. By changing its attitude, fault plane geometry locally alter the stress component produced by the fault kinematics and its combination with the bulk boundary conditions (regional stress field, fluid pressure, rocks rheology) is responsible for the development of zones of higher and lower fracture intensity with variable extension along the fault planes. Furthermore, the displacement along faults provides a cumulative deformation pattern that varies through time. The modeling of the fault evolution through time (4D modeling) is therefore required to fully describe the fracturing and therefore permeability. In this presentation we show a methodology developed to predict distribution of fracture intensity integrating seismic data and numerical modeling. Fault geometry is carefully reconstructed by interpolating stick lines from interpreted seismic sections converted to depth. The modeling is based on a mixed numerical/analytical method. Fault surface is discretized into cells with their geometric and rheological characteristics. For each cell, the acting stress and strength are computed by analytical laws (Coulomb failure). Total brittle deformation for each cell is then computed by cumulating the brittle failure values along the path of each cell belonging to one side onto the facing one. The brittle failure value is provided by the DF function, that is the difference between the computed shear and the strength of the cell at each step along its path by using the Frap in-house developed software. The width of the FC and the FDZ are computed as a function of the DF distribution and displacement around the fault. This methodology has been successfully applied to model the brittle deformation pattern of the Vignanotica normal fault (Gargano, Southern Italy) where fracture intensity is expressed by the dimensionless H/S ratio representing the ratio between the dimension and the spacing of homologous fracture sets (i.e., group of parallel fractures that can be ascribed to the same event/stage/stress field).
Computer-Aided Discovery Tools for Volcano Deformation Studies with InSAR and GPS
NASA Astrophysics Data System (ADS)
Pankratius, V.; Pilewskie, J.; Rude, C. M.; Li, J. D.; Gowanlock, M.; Bechor, N.; Herring, T.; Wauthier, C.
2016-12-01
We present a Computer-Aided Discovery approach that facilitates the cloud-scalable fusion of different data sources, such as GPS time series and Interferometric Synthetic Aperture Radar (InSAR), for the purpose of identifying the expansion centers and deformation styles of volcanoes. The tools currently developed at MIT allow the definition of alternatives for data processing pipelines that use various analysis algorithms. The Computer-Aided Discovery system automatically generates algorithmic and parameter variants to help researchers explore multidimensional data processing search spaces efficiently. We present first application examples of this technique using GPS data on volcanoes on the Aleutian Islands and work in progress on combined GPS and InSAR data in Hawaii. In the model search context, we also illustrate work in progress combining time series Principal Component Analysis with InSAR augmentation to constrain the space of possible model explanations on current empirical data sets and achieve a better identification of deformation patterns. This work is supported by NASA AIST-NNX15AG84G and NSF ACI-1442997 (PI: V. Pankratius).
NASA Astrophysics Data System (ADS)
Vile, Douglas J.
In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model's ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author's knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup subtrial, the PCA PTV significantly (p<0.05) reduced D30, D20, and D5 to bladder and D50 to rectum, while increasing rectal D20 and D5. For the centroid-aligned setup, the PCA PTV significantly reduced all bladder DVH metrics and trended to lower rectal toxicity metrics. All PTVs covered the prostate with the prescription dose.
Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom
NASA Astrophysics Data System (ADS)
Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Spadinger, Ingrid
2016-01-01
The problem of accurate dose accumulation in fractionated radiotherapy treatment for highly deformable organs, such as bladder, has garnered increasing interest over the past few years. However, more research is required in order to find a robust and efficient solution and to increase the accuracy over the current methods. The purpose of this study was to evaluate the feasibility and accuracy of utilizing non-rigid (affine or deformable) point-set registration in accumulating dose in bladder of different sizes and shapes. A pelvic phantom was built to house an ex vivo porcine bladder with fiducial landmarks adhered onto its surface. Four different volume fillings of the bladder were used (90, 180, 360 and 480 cc). The performance of MATLAB implementations of five different methods were compared, in aligning the bladder contour point-sets. The approaches evaluated were coherent point drift (CPD), gaussian mixture model, shape context, thin-plate spline robust point matching (TPS-RPM) and finite iterative closest point (ICP-finite). The evaluation metrics included registration runtime, target registration error (TRE), root-mean-square error (RMS) and Hausdorff distance (HD). The reference (source) dataset was alternated through all four points-sets, in order to study the effect of reference volume on the registration outcomes. While all deformable algorithms provided reasonable registration results, CPD provided the best TRE values (6.4 mm), and TPS-RPM yielded the best mean RMS and HD values (1.4 and 6.8 mm, respectively). ICP-finite was the fastest technique and TPS-RPM, the slowest.
Flow characteristics around a deformable stenosis under pulsatile flow condition
NASA Astrophysics Data System (ADS)
Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon
2018-01-01
A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.
Quantitative Analysis of Geometry and Lateral Symmetry of Proximal Middle Cerebral Artery.
Peter, Roman; Emmer, Bart J; van Es, Adriaan C G M; van Walsum, Theo
2017-10-01
The purpose of our work is to quantitatively assess clinically relevant geometric properties of proximal middle cerebral arteries (pMCA), to investigate the degree of their lateral symmetry, and to evaluate whether the pMCA can be modeled by using state-of-the-art deformable image registration of the ipsi- and contralateral hemispheres. Individual pMCA segments were identified, quantified, and statistically evaluated on a set of 55 publicly available magnetic resonance angiography time-of-flight images. Rigid and deformable image registrations were used for geometric alignment of the ipsi- and contralateral hemispheres. Lateral symmetry of relevant geometric properties was evaluated before and after the image registration. No significant lateral differences regarding tortuosity and diameters of contralateral M1 segments of pMCA were identified. Regarding the length of M1 segment, 44% of all subjects could be considered laterally symmetrical. Dominant M2 segment was identified in 30% of men and 9% of women in both brain hemispheres. Deformable image registration performed significantly better (P < .01) than rigid registration with regard to distances between the ipsi- and the contralateral centerlines of M1 segments (1.5 ± 1.1 mm versus 2.8 ± 1.2 mm respectively) and between the M1 and the anterior cerebral artery (ACA) branching points (1.6 ± 1.4 mm after deformable registration). Although natural lateral variation of the length of M1 may not allow for sufficient modeling of the complete pMCA, deformable image registration of the contralateral brain hemisphere to the ipsilateral hemisphere is feasible for localization of ACA-M1 branching point and for modeling 71 ± 23% of M1 segment. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
SU-E-J-101: Improved CT to CBCT Deformable Registration Accuracy by Incorporating Multiple CBCTs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godley, A; Stephans, K; Olsen, L Sheplan
2015-06-15
Purpose: Combining prior day CBCT contours with STAPLE was previously shown to improve automated prostate contouring. These accurate STAPLE contours are now used to guide the planning CT to pre-treatment CBCT deformable registration. Methods: Six IGRT prostate patients with daily kilovoltage CBCT had their original planning CT and 9 CBCTs contoured by the same physician. These physician contours for the planning CT and each prior CBCT are deformed to match the current CBCT anatomy, producing multiple contour sets. These sets are then combined using STAPLE into one optimal set (e.g. for day 3 CBCT, combine contours produced using the planmore » plus day 1 and 2 CBCTs). STAPLE computes a probabilistic estimate of the true contour from this collection of contours by maximizing sensitivity and specificity. The deformation field from planning CT to CBCT registration is then refined by matching its deformed contours to the STAPLE contours. ADMIRE (Elekta Inc.) was used for this. The refinement does not force perfect agreement of the contours, typically Dice’s Coefficient (DC) of > 0.9 is obtained, and the image difference metric remains in the optimization of the deformable registration. Results: The average DC between physician delineated CBCT contours and deformed planning CT contours for the bladder, rectum and prostate was 0.80, 0.79 and 0.75, respectively. The accuracy significantly improved to 0.89, 0.84 and 0.84 (P<0.001 for all) when using the refined deformation field. The average time to run STAPLE with five scans and refine the planning CT deformation was 66 seconds on a Telsa K20c GPU. Conclusion: Accurate contours generated from multiple CBCTs provided guidance for CT to CBCT deformable registration, significantly improving registration accuracy as measured by contour DC. A more accurate deformation field is now available for transferring dose or electron density to the CBCT for adaptive planning. Research grant from Elekta.« less
Study of yrast bands and electromagnetic properties in neutron-rich 114-128Cd isotopes
NASA Astrophysics Data System (ADS)
Chaudhary, Ritu; Pandit, Rakesh K.; Devi, Rani; Khosa, S. K.
2018-02-01
The projected shell model framework has been employed to carry out a systematic study on the deformation systematics of E (21+) and E (41+) / E (21+) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena and electromagnetic quantities in 114-128Cd isotopes. Present calculations reproduce the observed systematics of the E (21+), R42 and B (E 2 ;2+ →0+) values for 114-128Cd isotopic mass chain and give the evidence that deformation increases as one moves from 114Cd to 118Cd, thereafter it decreases up to 126Cd. This in turn confirms 118Cd to be the most deformed nucleus in this set of isotopic mass chain. The emergence of backbending, decrease in B (E 2) values and change in g-factors in all these isotopes are intimately related to the crossing of g-band by 2-qp bands.
On the characteristics of landslide tsunamis
Løvholt, F.; Pedersen, G.; Harbitz, C. B.; Glimsdal, S.; Kim, J.
2015-01-01
This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. PMID:26392615
On the characteristics of landslide tsunamis.
Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J
2015-10-28
This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.
NASA Astrophysics Data System (ADS)
Xia, Shengxu; El-Azab, Anter
2015-07-01
We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.
NASA Astrophysics Data System (ADS)
Feng, Xinzeng; Hormuth, David A.; Yankeelov, Thomas E.
2018-06-01
We present an efficient numerical method to quantify the spatial variation of glioma growth based on subject-specific medical images using a mechanically-coupled tumor model. The method is illustrated in a murine model of glioma in which we consider the tumor as a growing elastic mass that continuously deforms the surrounding healthy-appearing brain tissue. As an inverse parameter identification problem, we quantify the volumetric growth of glioma and the growth component of deformation by fitting the model predicted cell density to the cell density estimated using the diffusion-weighted magnetic resonance imaging data. Numerically, we developed an adjoint-based approach to solve the optimization problem. Results on a set of experimentally measured, in vivo rat glioma data indicate good agreement between the fitted and measured tumor area and suggest a wide variation of in-plane glioma growth with the growth-induced Jacobian ranging from 1.0 to 6.0.
Generalization of multifractal theory within quantum calculus
NASA Astrophysics Data System (ADS)
Olemskoi, A.; Shuda, I.; Borisyuk, V.
2010-03-01
On the basis of the deformed series in quantum calculus, we generalize the partition function and the mass exponent of a multifractal, as well as the average of a random variable distributed over a self-similar set. For the partition function, such expansion is shown to be determined by binomial-type combinations of the Tsallis entropies related to manifold deformations, while the mass exponent expansion generalizes the known relation τq=Dq(q-1). We find the equation for the set of averages related to ordinary, escort, and generalized probabilities in terms of the deformed expansion as well. Multifractals related to the Cantor binomial set, exchange currency series, and porous-surface condensates are considered as examples.
Fission barriers at the end of the chart of the nuclides
NASA Astrophysics Data System (ADS)
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew
2015-02-01
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤A ≤330 . The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop model with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than 5 000 000 different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ɛ ) and the spherical-harmonic (β ) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ɛ ,γ ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about 1 MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β -delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. These studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.
Kitamura, Aya; Kawai, Yasuhiko
2015-01-01
Laminated alginate impression for edentulous is simple and time efficient compared to border molding technique. The purpose of this study was to examine clinical applicability of the laminated alginate impression, by measuring the effects of different Water/Powder (W/P) and mixing methods, and different bonding methods in the secondary impression of alginate impression. Three W/P: manufacturer-designated mixing water amount (standard), 1.5-fold (1.5×) and 1.75-fold (1.75×) water amount were mixed by manual and automatic mixing methods. Initial and complete setting time, permanent and elastic deformation, and consistency of the secondary impression were investigated (n=10). Additionally, tensile bond strength between the primary and secondary impression were measured in the following surface treatment; air blow only (A), surface baking (B), and alginate impression material bonding agent (ALGI-BOND: AB) (n=12). Initial setting times significantly shortened with automatic mixing for all W/P (p<0.05). The permanent deformation decreased and elastic deformation increased as high W/P, regardless of the mixing method. Elastic deformation significantly reduced in 1.5× and 1.75× with automatic mixing (p<0.05). All of these properties resulted within JIS standards. For all W/P, AB showed a significantly high bonding strength as compared to A and B (p<0.01). The increase of mixing water, 1.5× and 1.75×, resulted within JIS standards in setting time, suggesting its applicability in clinical setting. The use of automatic mixing device decreased elastic strain and shortening of the curing time. For the secondary impression application of adhesives on the primary impression gives secure adhesion. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Park, S B; Kim, H; Yao, M; Ellis, R; Machtay, M; Sohn, J W
2012-06-01
To quantify the systematic error of a Deformable Image Registration (DIR) system and establish Quality Assurance (QA) procedure. To address the shortfall of landmark approach which it is only available at the significant visible feature points, we adapted a Deformation Vector Map (DVM) comparison approach. We used two CT image sets (R and T image sets) taken for the same patient at different time and generated a DVM, which includes the DIR systematic error. The DVM was calculated using fine-tuned B-Spline DIR and L-BFGS optimizer. By utilizing this DVM we generated R' image set to eliminate the systematic error in DVM,. Thus, we have truth data set, R' and T image sets, and the truth DVM. To test a DIR system, we use R' and T image sets to a DIR system. We compare the test DVM to the truth DVM. If there is no systematic error, they should be identical. We built Deformation Error Histogram (DEH) for quantitative analysis. The test registration was performed with an in-house B-Spline DIR system using a stochastic gradient descent optimizer. Our example data set was generated with a head and neck patient case. We also tested CT to CBCT deformable registration. We found skin regions which interface with the air has relatively larger errors. Also mobile joints such as shoulders had larger errors. Average error for ROIs were as follows; CTV: 0.4mm, Brain stem: 1.4mm, Shoulders: 1.6mm, and Normal tissues: 0.7mm. We succeeded to build DEH approach to quantify the DVM uncertainty. Our data sets are available for testing other systems in our web page. Utilizing DEH, users can decide how much systematic error they would accept. DEH and our data can be a tool for an AAPM task group to compose a DIR system QA guideline. This project is partially supported by the Agency for Healthcare Research and Quality (AHRQ) grant 1R18HS017424-01A2. © 2012 American Association of Physicists in Medicine.
Chocolate tablet aspects of cytherean Meshkenet Tessera
NASA Technical Reports Server (NTRS)
Raitala, J.
1993-01-01
Meshkenet Tessera structures were mapped from Magellan data and several resemblances to chocolate tablet boudinage were found. The complex fault sets display polyphase tectonic sequences of a few main deformation phases. Shear and tension have contributed to the areal deformation. Main faults cut the 1600-km long Meshkenet Tessera highland into bar-like blocks which have ridge and groove pattern oriented along or at high angles to the faults. The first approach to the surface block deformation is an assumption of initial parallel shear faulting followed by a chocolate tablet boudinage. Major faults which cut Meshkenet Tessera into rectangular blocks have been active repetitively while two progressive or superposed boudinage set formations have taken place at high angles during the relaxational or flattening type deformation of the area. Chocolate tablet boudinage is caused by a layer-parallel two-dimensional extension resulting in fracturing of the competent layer. Such structures, defined by two sets of boudin neck lines at right angles to each other, have been described by a number of authors. They develop in a flattening type of bulk deformation or during superposed deformation where the rock is elongated in two dimensions parallel to the surface. This is an attempt to describe and understand the formation and development of structures of Meshkenet Tessera which has complicated fault structures.
NASA Astrophysics Data System (ADS)
Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf
2016-12-01
In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.
Quantum spectral curve for the η-deformed AdS5 × S5 superstring
NASA Astrophysics Data System (ADS)
Klabbers, Rob; van Tongeren, Stijn J.
2017-12-01
The spectral problem for the AdS5 ×S5 superstring and its dual planar maximally supersymmetric Yang-Mills theory can be efficiently solved through a set of functional equations known as the quantum spectral curve. We discuss how the same concepts apply to the η-deformed AdS5 ×S5 superstring, an integrable deformation of the AdS5 ×S5 superstring with quantum group symmetry. This model can be viewed as a trigonometric version of the AdS5 ×S5 superstring, like the relation between the XXZ and XXX spin chains, or the sausage and the S2 sigma models for instance. We derive the quantum spectral curve for the η-deformed string by reformulating the corresponding ground-state thermodynamic Bethe ansatz equations as an analytic Y system, and map this to an analytic T system which upon suitable gauge fixing leads to a Pμ system - the quantum spectral curve. We then discuss constraints on the asymptotics of this system to single out particular excited states. At the spectral level the η-deformed string and its quantum spectral curve interpolate between the AdS5 ×S5 superstring and a superstring on "mirror" AdS5 ×S5, reflecting a more general relationship between the spectral and thermodynamic data of the η-deformed string. In particular, the spectral problem of the mirror AdS5 ×S5 string, and the thermodynamics of the undeformed AdS5 ×S5 string, are described by a second rational limit of our trigonometric quantum spectral curve, distinct from the regular undeformed limit.
Gravitational decoupled anisotropies in compact stars
NASA Astrophysics Data System (ADS)
Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos
2018-05-01
Simple generic extensions of isotropic Durgapal-Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied. Hence the anisotropic field equations are isolated resulting a more treatable set. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, observational effects of such anisotropies when measuring the surface redshift are discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations is shown. In this manner, different anisotropic sectors can be isolated of each other and modeled in a simple and systematic way.
NASA Astrophysics Data System (ADS)
Dadras, Sedigheh; Davoudiniya, Masoumeh
2018-05-01
This paper sets out to investigate and compare the effects of Ag nanoparticles and carbon nanotubes (CNTs) doping on the mechanical properties of Y1Ba2Cu3O7-δ (YBCO) high temperature superconductor. For this purpose, the pure and doped YBCO samples were synthesized by sol-gel method. The microstructural analysis of the samples is performed using X-ray diffraction (XRD). The crystalline size, lattice strain and stress of the pure and doped YBCO samples were estimated by modified forms of Williamson-Hall analysis (W-H), namely, uniform deformation model (UDM), uniform deformation stress model (UDSM) and the size-strain plot method (SSP). These results show that the crystalline size, lattice strain and stress of the YBCO samples declined by Ag nanoparticles and CNTs doping.
Kurihara, Eru; Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2011-01-01
Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009
Deformation-resembling microstructure created by fluid-mediated dissolution-precipitation reactions.
Spruzeniece, Liene; Piazolo, Sandra; Maynard-Casely, Helen E
2017-01-27
Deformation microstructures are widely used for reconstructing tectono-metamorphic events recorded in rocks. In crustal settings deformation is often accompanied and/or succeeded by fluid infiltration and dissolution-precipitation reactions. However, the microstructural consequences of dissolution-precipitation in minerals have not been investigated experimentally. Here we conducted experiments where KBr crystals were reacted with a saturated KCl-H 2 O fluid. The results show that reaction products, formed in the absence of deformation, inherit the general crystallographic orientation from their parents, but also display a development of new microstructures that are typical in deformed minerals, such as apparent bending of crystal lattices and new subgrain domains, separated by low-angle and, in some cases, high-angle boundaries. Our work suggests that fluid-mediated dissolution-precipitation reactions can lead to a development of potentially misleading microstructures. We propose a set of criteria that may help in distinguishing such microstructures from the ones that are created by crystal-plastic deformation.
NASA Astrophysics Data System (ADS)
Nicholson, C.; Plesch, A.; Sorlien, C. C.; Shaw, J. H.; Hauksson, E.
2014-12-01
Southern California represents an ideal natural laboratory to investigate oblique deformation in 3D owing to its comprehensive datasets, complex tectonic history, evolving components of oblique slip, and continued crustal rotations about horizontal and vertical axes. As the SCEC Community Fault Model (CFM) aims to accurately reflect this 3D deformation, we present the results of an extensive update to the model by using primarily detailed fault trace, seismic reflection, relocated hypocenter and focal mechanism nodal plane data to generate improved, more realistic digital 3D fault surfaces. The results document a wide variety of oblique strain accommodation, including various aspects of strain partitioning and fault-related folding, sets of both high-angle and low-angle faults that mutually interact, significant non-planar, multi-stranded faults with variable dip along strike and with depth, and active mid-crustal detachments. In places, closely-spaced fault strands or fault systems can remain surprisingly subparallel to seismogenic depths, while in other areas, major strike-slip to oblique-slip faults can merge, such as the S-dipping Arroyo Parida-Mission Ridge and Santa Ynez faults with the N-dipping North Channel-Pitas Point-Red Mountain fault system, or diverge with depth. Examples of the latter include the steep-to-west-dipping Laguna Salada-Indiviso faults with the steep-to-east-dipping Sierra Cucapah faults, and the steep southern San Andreas fault with the adjacent NE-dipping Mecca Hills-Hidden Springs fault system. In addition, overprinting by steep predominantly strike-slip faulting can segment which parts of intersecting inherited low-angle faults are reactivated, or result in mutual cross-cutting relationships. The updated CFM 3D fault surfaces thus help characterize a more complex pattern of fault interactions at depth between various fault sets and linked fault systems, and a more complex fault geometry than typically inferred or expected from projecting near-surface data down-dip, or modeled from surface strain and potential field data alone.
NASA Astrophysics Data System (ADS)
Arab, M.; Khodam-Mohammadi, A.
2018-03-01
As a deformed matter bounce scenario with a dark energy component, we propose a deformed one with running vacuum model (RVM) in which the dark energy density ρ _{Λ } is written as a power series of H^2 and \\dot{H} with a constant equation of state parameter, same as the cosmological constant, w=-1. Our results in analytical and numerical point of views show that in some cases same as Λ CDM bounce scenario, although the spectral index may achieve a good consistency with observations, a positive value of running of spectral index (α _s) is obtained which is not compatible with inflationary paradigm where it predicts a small negative value for α _s. However, by extending the power series up to H^4, ρ _{Λ }=n_0+n_2 H^2+n_4 H^4, and estimating a set of consistent parameters, we obtain the spectral index n_s, a small negative value of running α _s and tensor to scalar ratio r, which these reveal a degeneracy between deformed matter bounce scenario with RVM-DE and inflationary cosmology.
Analysis of deformable image registration accuracy using computational modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.
2010-03-15
Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results showmore » that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter selection for optimal accuracy is closely related to the intensity gradients of the underlying images. Also, the result that the DIR algorithms produce much lower errors in heterogeneous lung regions relative to homogeneous (low intensity gradient) regions, suggests that feature-based evaluation of deformable image registration accuracy must be viewed cautiously.« less
Contribution of Deformation to Sea Ice Mass Balance: A Case Study From an N-ICE2015 Storm
NASA Astrophysics Data System (ADS)
Itkin, Polona; Spreen, Gunnar; Hvidegaard, Sine Munk; Skourup, Henriette; Wilkinson, Jeremy; Gerland, Sebastian; Granskog, Mats A.
2018-01-01
The fastest and most efficient process of gaining sea ice volume is through the mechanical redistribution of mass as a consequence of deformation events. During the ice growth season divergent motion produces leads where new ice grows thermodynamically, while convergent motion fractures the ice and either piles the resultant ice blocks into ridges or rafts one floe under the other. Here we present an exceptionally detailed airborne data set from a 9 km2 area of first year and second year ice in the Transpolar Drift north of Svalbard that allowed us to estimate the redistribution of mass from an observed deformation event. To achieve this level of detail we analyzed changes in sea ice freeboard acquired from two airborne laser scanner surveys just before and right after a deformation event brought on by a passing low-pressure system. A linear regression model based on divergence during this storm can explain 64% of freeboard variability. Over the survey region we estimated that about 1.3% of level sea ice volume was pressed together into deformed ice and the new ice formed in leads in a week after the deformation event would increase the sea ice volume by 0.5%. As the region is impacted by about 15 storms each winter, a simple linear extrapolation would result in about 7% volume increase and 20% deformed ice fraction at the end of the season.
NASA Astrophysics Data System (ADS)
Nijholt, Nicolai; Govers, Rob; Wortel, Rinus
2018-04-01
The geodynamics of the Mediterranean comprises a transitional setting in which slab rollback and plate convergence compete to shape the region. In the central Mediterranean, where the balance of driving and resisting forces changes continuously and rapidly since the Miocene, both kinematic and seismo-tectonic observations display a strong variation in deformation style and, therefore possibly, lithospheric forces. We aim to understand the current kinematics in southern Italy and Sicily in terms of lithospheric forces that cause them. The strong regional variation of geodetic velocities appears to prohibit such simple explanation. We use mechanical models to quantify the deformation resulting from large-scale Africa-Eurasia convergence, ESE retreat of the Calabrian subduction zone, pull by the Aegean slab, and regional variations in gravitational potential energy (topography). A key model element is the resistance to slip on major regional fault zones. We show that geodetic velocities, seismicity and sense of slip on regional faults can be understood to result from lithospheric forces. Our most important new finding is that regional variations in resistive tractions are required to fit the observations, with notably very low tractions on the Calabrian subduction contact, and a buildup towards a significant earthquake in the Calabrian fore-arc. We also find that the Calabrian net slab pull force is strongly reduced (compared to the value possible in view of the slab's dimensions) and that trench suction tractions are negligible. Such very small contributions to the present-day force balance in the south-central Mediterranean suggest that the Calabrian arc is now further transitioning towards a setting dominated by Africa-Eurasia plate convergence, whereas during the past 30 Myrs slab retreat continually was the dominant factor.
Numerical Investigations on Aerodynamic Forces of Deformable Foils in Hovering Motions
NASA Astrophysics Data System (ADS)
Zhao, Yong; Yin, Zhen; Su, Xiaohui; Zhang, Jiantao; Cao, Yuanwei
2017-09-01
The aerodynamic effects of wing deformation for hover flight are numerically investigated by a two-dimensional finite-volume (FV) Arbitrary Langrangian Eulerian (ALE) Navier-Stokes solver. Two deformation models are employed to study these effects in this paper, which are a full deformation model and a partial deformation one. Attentions are paid to the generation and development of leading edge vortex (LEV) and trailing edge vortex (TEV) which may illustrate the differences of lift force generation mechanisms from those of rigid wings. Moreover, lift coefficient Cl, drag coefficient Cd, and figure of merit, as well as energy consumption in hovering motion for different deformation foil models, are also studied. The results show that the deformed amplitude, 0.1*chord, among the cases simulated is an optimized camber amplitude for full deformation. The results obtained from the partial deformation foil model show that both Cl and Cd decrease with the increase of camber amplitude. It is found that the effect of deformation in the partial deformation model does not enhance lift force due to unfavorable camber. But TEV is significantly changed by the local AOA due to the deformation of the foil. Introduction.
NASA Technical Reports Server (NTRS)
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1994-01-01
Using a spherically symmetric, self-gravitating, linear viscoelastic Earth model, we predict present-day three-dimensional surface deformation rates and baseline evolutions arising as a consequence of the late Pleistocene glacial cycles. In general, we use realistic models for the space-time geometry of the final late Pleistocene deglaciation event and incorporate a gravitationally self-consistent ocean meltwater redistribution. The predictions of horizontal velocity presented differ significantly, in both their amplitude and their spatial variation, from those presented in earlier analysis of others which adopted simplified models of both the late Pleistocene ice history and the Earth rheology. An important characteristic of our predicted velocity fields is that the melting of the Laurentide ice sheet over Canada is capable of contributing appreciably to the adjustment in Europe. The sensitivity of the predictions to variations in mantle rheology is investigated by considering a number of different Earth models, and by computing appropriate Frechet kernels. These calculations suggest that the sensitivity of the deformations to the Earth's rheology is significant and strongly dependent on the location of the site relative to the ancient ice sheet. The effects on the predictions of three-dimensional deformation rates of altering the ice history or adopting approximate models for the ocean meltwater redistribution have also been considered and found to be important (the former especially so). Finally, for a suite of Earth models we provide predictions of the velocity of a number of baselines in North America and Europe. We find that, in general, both radial and tangential motions contribute significantly to baseline length changes, and that these contributions are a strong function of the Earth model. We have, furthermore, found a set of Earth models which, together with the ICE-3G deglaciation chronology, produce predictions of baseline length changes that are consistent with very long baseline interferometry measurements of baselines within Europe.
NASA Astrophysics Data System (ADS)
Robert, Romain; Robion, Philippe; David, Christian; Souloumiac, Pauline; Saillet, Elodie
2017-04-01
In high porosity sandstone lithologies, deformation bands (DBs) are characterized by changes in micro-structural characteristics inducing a localized change in the petrophysical properties of the rock. These DBs, which are generally tabular structures from millimeters to few centimeters thick, can be used at the field scale to decipher extensional or compactional tectonic regime. However, numerous parameters in addition to the tectonic regime may affect development of DBs, and particularly the evolution of porosity during burial history. The aim of this work is to understand the relationship between the DBs occurrence in tectonic shortening regime and the timing of grain cementation that occurs during burial for an analogue to siliciclastic reservoir. For that purpose, we have focused our analysis on the Aren syn-tectonic sandstone formation, maastrichtian in age, localized on the front of the Boixols thrust, on the southern side of the Sant Corneli anticline, in the south central Pyrenees (Spain). The outcrops are localized in the Tremp-Graus basin, all along a 30 km East-West trend where 10 different sites, in which deformation bands are observable, have been investigated and sampled. The structural geometry of the basin is constrained with 3 serial N-S oriented cross sections showing an increase of the shortening from West to East. Our field work strategy was to, 1) measure the orientation of the DBs in each site, 2) take cores both within the DBs and the host rock to conduct systematic thin section investigations, and 3) take oriented cores in order to study the magnetic fabric giving informations on the internal deformation linked to a set of deformation band and regional N-S shortening. Field data show a minimum of two sets of DBs on each site with variation of orientations and densities. These DBs are perpendicular to the strata which prove their early occurrence, recording the initial stages of local deformation and evolution of the Boixols fold and thrust. At the microstructures scale, DBs are characterized by grain crushing with hertzian fractures associated with pore collapse. All these evidences allow us to define these structures as compaction bands. Further microscopical investigation, grain size distribution and initial porosity are determined by image analysis. These data are confronted to geomechanical models in order to investigate the relationship between the occurrences of DBs in the burial history and the diagenesis of the rock during the compressive event.
Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R
2017-01-01
Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)-based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed.
Nonrigid 3D medical image registration and fusion based on deformable models.
Liu, Peng; Eberhardt, Benjamin; Wybranski, Christian; Ricke, Jens; Lüdemann, Lutz
2013-01-01
For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ (kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold standard for evaluating registration results for the elastic liver. Our registration method was compared with affine registration using mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of 4.32 mm. In contrast, affine registration of extracted livers yields a significantly (P = 0.000001) smaller dislocation of 3.26 mm. In conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has limitations in cases where internal displacement must also be taken into account.
A fast, model-independent method for cerebral cortical thickness estimation using MRI.
Scott, M L J; Bromiley, P A; Thacker, N A; Hutchinson, C E; Jackson, A
2009-04-01
Several algorithms for measuring the cortical thickness in the human brain from MR image volumes have been described in the literature, the majority of which rely on fitting deformable models to the inner and outer cortical surfaces. However, the constraints applied during the model fitting process in order to enforce spherical topology and to fit the outer cortical surface in narrow sulci, where the cerebrospinal fluid (CSF) channel may be obscured by partial voluming, may introduce bias in some circumstances, and greatly increase the processor time required. In this paper we describe an alternative, voxel based technique that measures the cortical thickness using inversion recovery anatomical MR images. Grey matter, white matter and CSF are identified through segmentation, and edge detection is used to identify the boundaries between these tissues. The cortical thickness is then measured along the local 3D surface normal at every voxel on the inner cortical surface. The method was applied to 119 normal volunteers, and validated through extensive comparisons with published measurements of both cortical thickness and rate of thickness change with age. We conclude that the proposed technique is generally faster than deformable model-based alternatives, and free from the possibility of model bias, but suffers no reduction in accuracy. In particular, it will be applicable in data sets showing severe cortical atrophy, where thinning of the gyri leads to points of high curvature, and so the fitting of deformable models is problematic.
Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.
Huang, Yanhua; Zong, Wenjun
2014-01-01
In this work, molecular dynamics simulations are performed to investigate the influence of material properties on the nanometric cutting of single crystal copper and aluminum with a diamond cutting tool. The atomic interactions in the two metallic materials are modeled by two sets of embedded atom method (EAM) potential parameters. Simulation results show that although the plastic deformation of the two materials is achieved by dislocation activities, the deformation behavior and related physical phenomena, such as the machining forces, machined surface quality, and chip morphology, are significantly different for different materials. Furthermore, the influence of material properties on the nanometric cutting has a strong dependence on the operating temperature.
Spline curve matching with sparse knot sets
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2004-01-01
This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of thin-plate-spline mapping between sparse knot points and normalized local...
Estimation of the left ventricular shape and motion with a limited number of slices
NASA Astrophysics Data System (ADS)
Robert, Anne; Schmitt, Francis J. M.; Mousseaux, Elie
1996-04-01
In this paper, we describe a method for the reconstruction of the surface of the left ventricle from a set of lacunary data (that is an incomplete, unevenly sampled and unstructured data set). Global models, because they compress the properties of a surface into a small set of parameters, have a strong regularizing power and are therefore very well suited to lacunary data. Globally deformable superquadrics are particularly attractive, because of their simplicity. This model can be fitted to the data using the Levenberg-Marquardt algorithm for non-linear optimization. However, the difficulties we experienced to get temporally consistent solutions as well as the intrinsic 4D character of the data led us to generalize the classical 3D superquadric model to 4D. We present results on a 4D sequence from the Dynamic Spatial Reconstructor of the Mayo Clinic, and on a 4D IRM sequence.
NASA Astrophysics Data System (ADS)
Yeh, Meng-Wan
2007-05-01
The NE-SW trending gneiss domes around Baltimore, Maryland, USA, have been cited as classic examples of mantled gneiss domes formed by diapiric rise of migmatitic gneisses [Eskola, P., 1949. The problem of mantled gneiss domes. Quarterly Journal of Geological Society of London 104/416, 461-476]. However, 3-D analysis of porphyroblast-matrix foliation relations and porphyroblast inclusion trail geometries suggests that they are the result of interference between multiple refolding of an early-formed nappe. A succession of six FIA (Foliation Intersection Axes) sets, based upon relative timing of inclusion texture in garnet and staurolite porphyroblasts, revealed 6 superposed deformation phases. The successions of inclusion trail asymmetries, formed around these FIAs, document the geometry of deformation associated with folding and fabric development during discrete episodes of bulk shortening. Exclusive top to NW shear asymmetries of curvature were recorded by inclusion trails associated with the vertical collapsing event within the oldest FIA set (NE-SW trend). This strongly indicates a large NE-SW-striking, NW-verging nappe had formed early during this deformation sequence. This nappe was later folded into NE-SW-trending up-right folds by coaxial shortening indicated by an almost equal proportion of both inclusion trail asymmetries documented by the second N-S-trending FIA set. These folds were then amplified by later deformation, as the following FIA sets showed an almost equal proportion of both inclusion trail asymmetries.
Foreland uplift during flat subduction: Insights from the Peruvian Andes and Fitzcarrald Arch
NASA Astrophysics Data System (ADS)
Bishop, Brandon T.; Beck, Susan L.; Zandt, George; Wagner, Lara S.; Long, Maureen D.; Tavera, Hernando
2018-04-01
Foreland deformation has long been associated with flat-slab subduction, but the precise mechanism linking these two processes remains unclear. One example of foreland deformation corresponding in space and time to flat subduction is the Fitzcarrald Arch, a broad NE-SW trending topographically high feature covering an area of >4 × 105 km2 in the Peruvian Andean foreland. Recent imaging of the southern segment of Peruvian flat slab shows that the shallowest part of the slab, which corresponds to the subducted Nazca Ridge northeast of the present intersection of the ridge and the Peruvian trench, extends up to and partly under the southwestern edge of the arch. Here, we evaluate models for the formation of this foreland arch and find that a basal-shear model is most consistent with observations. We calculate that 5 km of lower crustal thickening would be sufficient to generate the arch's uplift since the late Miocene. This magnitude is consistent with prior observations of unusually thickened crust in the Andes immediately south of the subducted ridge that may also have been induced by flat subduction. This suggests that the Fitzcarrald Arch's formation by the Nazca Ridge may be one of the clearest examples of upper plate deformation induced through basal shear observed in a flat-slab subduction setting. We then explore the more general implications of our results for understanding deformation above flat slabs in the geologic past.
Deformations of the Almheiri-Polchinski model
NASA Astrophysics Data System (ADS)
Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh
2017-03-01
We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS2 metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.
Gandedkar, Narayan H.; Chng, Chai Kiat; Yeow, Vincent Kok Leng
2016-01-01
Thorough planning and execution is the key for successful treatment of dentofacial deformity involving surgical orthodontics. Presurgical planning (paper surgery and model surgery) are the most essential prerequisites of orthognathic surgery, and orthodontist is the one who carries out this procedure by evaluating diagnostic aids such as crucial clinical findings and radiographic assessments. However, literature pertaining to step-by-step orthognathic surgical guidelines is limited. Hence, this article makes an attempt to provide an insight and nuances involved in the planning and execution. The diagnostic information revealed from clinical findings and radiographic assessments is integrated in the “paper surgery” to establish “surgical-plan.” Furthermore, the “paper surgery” is emulated in “model surgery” such that surgical bite-wafers are created, which aid surgeon to preview the final outcome and make surgical movements that are deemed essential for the desired skeletal and dental outcomes. Skeletal complexities are corrected by performing “paper surgery” and an occlusion is set up during “model surgery” for the fabrication of surgical bite-wafers. Further, orthodontics is carried out for the proper settling and finishing of occlusion. Article describes the nuances involved in the treatment of Class III skeletal deformity individuals treated with orthognathic surgical approach and illustrates orthodontic-orthognathic step-by-step procedures from “treatment planning” to “execution” for successful management of aforementioned dentofacial deformity. PMID:27630506
Martínez, Fabio; Romero, Eduardo; Dréan, Gaël; Simon, Antoine; Haigron, Pascal; De Crevoisier, Renaud; Acosta, Oscar
2014-01-01
Accurate segmentation of the prostate and organs at risk in computed tomography (CT) images is a crucial step for radiotherapy (RT) planning. Manual segmentation, as performed nowadays, is a time consuming process and prone to errors due to the a high intra- and inter-expert variability. This paper introduces a new automatic method for prostate, rectum and bladder segmentation in planning CT using a geometrical shape model under a Bayesian framework. A set of prior organ shapes are first built by applying Principal Component Analysis (PCA) to a population of manually delineated CT images. Then, for a given individual, the most similar shape is obtained by mapping a set of multi-scale edge observations to the space of organs with a customized likelihood function. Finally, the selected shape is locally deformed to adjust the edges of each organ. Experiments were performed with real data from a population of 116 patients treated for prostate cancer. The data set was split in training and test groups, with 30 and 86 patients, respectively. Results show that the method produces competitive segmentations w.r.t standard methods (Averaged Dice = 0.91 for prostate, 0.94 for bladder, 0.89 for Rectum) and outperforms the majority-vote multi-atlas approaches (using rigid registration, free-form deformation (FFD) and the demons algorithm) PMID:24594798
NASA Technical Reports Server (NTRS)
Solomon, Sean C.
1989-01-01
A particularly detailed set of observations in the vicinity of an intraplate, thrust earthquake (M 7.4) in Argentina, indicate a cyclic pattern of deformation very similar to that reported previously for interplate earthquakes. This deformation cycle, which may be characteristic of many seismically active areas, consists of: (1) steady strain accumulation, possibly punctuated by strain reversals; (2) coseismic strain release; (3) a period of continued strain release due to afterslip (persisting for perhaps a year or so); and (4) rapid postseismic strain accumulation which decreases exponentially and grades into steady strain accumulation. Deformation associated with three earthquakes in the U.S. (1940, M7.1 Imperial Valley California; 1964, M8.4 Alaska; 1959, M7.5 Hebgen Lake, Montana) are interpreted in light of this general earthquake cycle and are used to investigate the mechanics of strain release for these events. These examples indicate that large postseismic movements can occur for strike-slip, thrust, and normal fault events, and both viscoelastic relaxation and postseismic after-slip must be incorporated in models of earthquake related deformation. The mechanics of the strain release process revealed by these examples has implications for estimating earthquake repeat times from geodetic observations near active faults.
NASA Astrophysics Data System (ADS)
Nevitt, Johanna M.; Pollard, David D.; Warren, Jessica M.
2014-03-01
Rock deformation often is investigated using kinematic and/or mechanical models. Here we provide a direct comparison of these modeling techniques in the context of a deformed dike within a meter-scale contractional fault step. The kinematic models consider two possible shear plane orientations and various modes of deformation (simple shear, transtension, transpression), while the mechanical model uses the finite element method and assumes elastoplastic constitutive behavior. The results for the kinematic and mechanical models are directly compared using the modeled maximum and minimum principal stretches. The kinematic analysis indicates that the contractional step may be classified as either transtensional or transpressional depending on the modeled shear plane orientation, suggesting that these terms may be inappropriate descriptors of step-related deformation. While the kinematic models do an acceptable job of depicting the change in dike shape and orientation, they are restricted to a prescribed homogeneous deformation. In contrast, the mechanical model allows for heterogeneous deformation within the step to accurately represent the deformation. The ability to characterize heterogeneous deformation and include fault slip - not as a prescription, but as a solution to the governing equations of motion - represents a significant advantage of the mechanical model over the kinematic models.
A Phase Field Model of Deformation Twinning: Nonlinear Theory and Numerical Simulations
2011-03-01
the system. Concepts for mod- eling multiphase systems were advanced by Steinbach et al. [3] and Steinbach and Apel [4]. Fried and Gurtin [5] and...a3b3 in a three- dimensional vector space. The outer product is (a ⊗ b) AB = aAbB. Juxtaposition implies summation over one set of adjacent indices...e.g., ( AB ) AB = AACBCB. The colon denotes summation over two sets of indices; e.g., A : B = AABBAB and (C : E) AB = CABCDECD. The transpose of amatrix is
NASA Astrophysics Data System (ADS)
Doubre, Cécile; Déprez, Aline; Masson, Frédéric; Socquet, Anne; Lewi, Elias; Grandin, Raphaël; Nercessian, Alexandre; Ulrich, Patrice; De Chabalier, Jean-Bernard; Saad, Ibrahim; Abayazid, Ahmadine; Peltzer, Gilles; Delorme, Arthur; Calais, Eric; Wright, Tim
2017-02-01
Kinematics of divergent boundaries and Rift-Rift-Rift junctions are classically studied using long-term geodetic observations. Since significant magma-related displacements are expected, short-term deformation provides important constraints on the crustal mechanisms involved both in active rifting and in transfer of extensional deformation between spreading axes. Using InSAR and GPS data, we analyse the surface deformation in the whole Central Afar region in detail, focusing on both the extensional deformation across the Quaternary magmato-tectonic rift segments, and on the zones of deformation transfer between active segments and spreading axes. The largest deformation occurs across the two recently activated Asal-Ghoubbet (AG) and Manda Hararo-Dabbahu (MH-D) magmato-tectonic segments with very high strain rates, whereas the other Quaternary active segments do not concentrate any large strain, suggesting that these rifts are either sealed during interdyking periods or not mature enough to remain a plate boundary. Outside of these segments, the GPS horizontal velocity field shows a regular gradient following a clockwise rotation of the displacements from the Southeast to the East of Afar, with respect to Nubia. Very few shallow creeping structures can be identified as well in the InSAR data. However, using these data together with the strain rate tensor and the rotations rates deduced from GPS baselines, the present-day strain field over Central Afar is consistent with the main tectonic structures, and therefore with the long-term deformation. We investigate the current kinematics of the triple junction included in our GPS data set by building simple block models. The deformation in Central Afar can be described by adding a central microblock evolving separately from the three surrounding plates. In this model, the northern block boundary corresponds to a deep EW-trending trans-tensional dislocation, locked from the surface to 10-13 km and joining at depth the active spreading axes of the Red Sea and the Aden Ridge, from AG to MH-D rift segments. Over the long-term, this plate configuration could explain the presence of the en-échelon magmatic basins and subrifts. However, the transient behaviour of the spreading axes implies that the deformation in Central Afar evolves depending on the availability of magma supply within the well-established segments.
NASA Astrophysics Data System (ADS)
Marreiros, Filipe M. M.; Wang, Chunliang; Rossitti, Sandro; Smedby, Örjan
2016-03-01
In this study we present a non-rigid point set registration for 3D curves (composed by 3D set of points). The method was evaluated in the task of registration of 3D superficial vessels of the brain where it was used to match vessel centerline points. It consists of a combination of the Coherent Point Drift (CPD) and the Thin-Plate Spline (TPS) semilandmarks. The CPD is used to perform the initial matching of centerline 3D points, while the semilandmark method iteratively relaxes/slides the points. For the evaluation, a Magnetic Resonance Angiography (MRA) dataset was used. Deformations were applied to the extracted vessels centerlines to simulate brain bulging and sinking, using a TPS deformation where a few control points were manipulated to obtain the desired transformation (T1). Once the correspondences are known, the corresponding points are used to define a new TPS deformation(T2). The errors are measured in the deformed space, by transforming the original points using T1 and T2 and measuring the distance between them. To simulate cases where the deformed vessel data is incomplete, parts of the reference vessels were cut and then deformed. Furthermore, anisotropic normally distributed noise was added. The results show that the error estimates (root mean square error and mean error) are below 1 mm, even in the presence of noise and incomplete data.
NASA Astrophysics Data System (ADS)
Pavese, Alessandro; Diella, Valeria
2010-09-01
The present work aims in discussing a principle that distinguishes between elastic parameters sets, \\{ Upphi \\} equiv \\{ K0 , K^', V0 ,ldots\\} , on the basis of an energetic criterion: once a reference set, \\{ UpphiR \\} , is given, another one can be fixed, left\\{ {Upphi_{ min } } right\\} , so that they are as close as possible to each other, but yield non-equivalent deformation energy curves Updelta G(\\{ Upphi \\} )_{text{deform}} , i.e. they give Updelta G(\\{ UpphiR \\} )_{text{deform}} and Updelta G(\\{ Upphi_{ min } \\} )_{text{deform}} such that left| {Updelta G(\\{ Upphi_{ min } \\} )_{text{deform}} - Updelta G(\\{ UpphiR \\} )_{text{deform}} } right| ge 1× σ [Updelta G_{text{deform}} ]. Δ G deform, calculated using the equation of state (EoS), and its uncertainty σ[Δ G deform], obtained by a propagation of the errors affecting \\{ Upphi \\} are crucial to fix which mineral assemblage forms at P- T conditions and allow one to assess the reliability of such a prediction. We explore some properties related to the principle introduced, using the average values of the elastic parameters found in literature and related uncertainties for di-octahedral mica, olivine, garnet and clinopyroxene. Two elementary applications are briefly discussed: the effect of refining V 0 in fitting EoSs to P-V experimental data, in the case of garnet and omphacite, and the phengite 3 T-2 M 1 relative stability, controlled by pressure.
Patterns of Alloy Deformation by Pulsed Pressure
NASA Astrophysics Data System (ADS)
Chebotnyagin, L. M.; Potapov, V. V.; Lopatin, V. V.
2015-06-01
Patterns of alloy deformation for optimization of a welding regime are studied by the method of modeling and deformation profiles providing high deformation quality are determined. A model of stepwise kinetics of the alloy deformation by pulsed pressure from the expanding plasma channel inside of a deformable cylinder is suggested. The model is based on the analogy between the acoustic and electromagnetic wave processes in long lines. The shock wave pattern of alloy deformation in the presence of multiple reflections of pulsed pressure waves in the gap plasma channel - cylinder wall and the influence of unloading waves from free surfaces are confirmed.
Soft tissue modelling with conical springs.
Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan
2015-01-01
This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, R. D.
2013-09-06
We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from Terbium (Z = 65) to Rhenium (Z = 75). Of particular interest are the cross sections on Tm, Lu, and Ta including reactions on isomeric targets.
NASA Astrophysics Data System (ADS)
Lee, Min Jin; Hong, Helen; Shim, Kyu Won; Kim, Yong Oock
2017-03-01
This paper proposes morphological descriptors representing the degree of skull deformity for craniosynostosis in head CT images and a hierarchical classifier model distinguishing among normal and different types of craniosynostosis. First, to compare deformity surface model with mean normal surface model, mean normal surface models are generated for each age range and the mean normal surface model is deformed to the deformity surface model via multi-level threestage registration. Second, four shape features including local distance and area ratio indices are extracted in each five cranial bone. Finally, hierarchical SVM classifier is proposed to distinguish between the normal and deformity. As a result, the proposed method showed improved classification results compared to traditional cranial index. Our method can be used for the early diagnosis, surgical planning and postsurgical assessment of craniosynostosis as well as quantitative analysis of skull deformity.
Basement-driven strike-slip deformation involving a salt-stock canopy system
NASA Astrophysics Data System (ADS)
Dooley, Tim; Jackson, Martin; Hudec, Mike
2016-04-01
NW-striking basement-involved strike-slip zones have been reported or inferred from the northern Gulf of Mexico (GoM). This interpretation is uncertain, because the effects of strike-slip deformation are commonly difficult to recognize in cross sections. Recognition is doubly difficult if the strike-slip zone passes through a diapir field that complicates deformation, and an associated salt canopy that partially decouples shallow deformation from deep deformation. We use physical models to explore the effects of strike-slip deformation above and below a salt-stock canopy system. Canopies of varying maturity grew from a series of 14 feeders/diapirs located on and off the axis of a dextral basement fault. Strike-slip deformation styles in the overburden vary significantly depending on: (1) the location of the diapirs with respect to the basement fault trace, and; (2) the continuity of the canopy system. On-axis diapirs (where the diapirs lie directly above the basement fault) are typically strongly deformed and pinched shut at depth to form sharp S-shapes, whereas their shallow deformation style is that of a open-S-shaped pop-up structure in a restraining bend. The narrow diapir stem acts as a shear zone at depth. Pull-apart structures form between diapirs that are arranged in a right-stepping array tangental to the basement fault trace. These grade along strike into narrow negative flower structures. Off-axis diapirs (diapirs laterally offset from the basement fault but close enough to participate in the deformation) form zones of distributed deformation in the form of arrays of oblique faults (R shears) that converge along strike onto the narrower deformation zones associated with on-axis diapirs. Above an immature, or patchy, canopy system the strike-slip structures closely match sub canopy structures, with the exception of wrench fold formation where the supracanopy roof is thin. In contrast, the surface structures above a mature canopy system consist of a broad zone of PDZ-parallel faults and high-angle wrench folds, strongly decoupled from the subcanopy structure. The exception to this is where there are gaps (windows) in the canopy, allowing coupling to the deeper deformation field. In this mature canopy open-S planforms are muted as deformation is spread over a broader area of coalesced salt sheets, except at the canopy edge and where the supracanopy roof is thin. Supracanopy structures are also influenced by the sutures between the individual salt sheets. Results from this set of analog models are potentially useful as predictive tools to understand the origin and geometry of structures in areas where subsurface data is scarce or data quality is poor.
Time-Dependent Flexural Deformation Beneath the Emperor Seamounts
NASA Astrophysics Data System (ADS)
Wessel, P.; Watts, A. B.; Kim, S. S.
2014-12-01
The Hawaii-Emperor seamount chain stretches over 6000 km from the Big Island of Hawaii to the subduction cusp off Kamchatka and represents a near-continuous record of hotspot volcanism since the Late Cretaceous. The load of these seamounts and islands has caused the underlying lithosphere to deform, developing a flexural flanking moat that is now largely filled with volcanoclastic sediments. Because the age differences between the seafloor and the seamounts vary by an order of magnitude or more along the chain, the Hawaii-Emperor chain and surrounding area is considered a natural laboratory for lithospheric flexure and has been studied extensively in order to infer the rheology of the oceanic lithosphere. While most investigations have focused on the Hawaiian Islands and proximal seamounts (where data sets are more complete, including seismic reflection and refraction, swath bathymetry and even mapping and dating of drowned reef terraces), far fewer studies have examined the flexural deformation beneath the remote Emperor chain. Preliminary analysis of satellite altimetry data shows the flexural moats to be associated with very large negative gravity anomalies relative to the magnitudes of the positive anomalies over the loads, suggesting considerable viscous or viscoelastic relaxation since the loads were emplaced 50-80 Myr ago. In our study, we will attempt to model the Emperor seamount chain load as a superposition of individual elliptical Gaussian seamounts with separate loading histories. We use Optimal Robust Separation (ORS) techniques to extract the seamount load from the regional background bathymetry and partition the residual load into a set of individual volcanoes. The crustal age grid and available seamount dates are used to construct a temporal loading model and evaluate the flexural response of the lithosphere beneath the Emperor seamounts. We explore a variety of rheological models and loading scenarios that are compatible with the inferred load sizes and observed gravity anomalies, with emphasis on the temporal-spatial variation in vertical deformation along the hotspot chain, and examine their implications for the tilting history of the loads and the stratigraphic "architecture" of their flanking flexural moats.
Hybrid Stars in the Light of GW170817
NASA Astrophysics Data System (ADS)
Nandi, Rana; Char, Prasanta
2018-04-01
We have studied the effect of the tidal deformability constraint given by the binary neutron star merger event GW170817 on the equations of state (EOS) of hybrid stars. The EOS are constructed by matching the hadronic EOS described by the relativistic mean-field model and parameter sets NL3, TM1, and NL3ωρ with the quark matter EOS described by the modified MIT bag model, via a Gibbs construction. It is found that the tidal deformability constraints along with the lower bound on the maximum mass (M max = 2.01 ± 0.04 M ⊙) significantly limits the bag model parameter space ({B}eff}1/4, a 4). We also obtain upper limits on the radius of 1.4 M ⊙ and 1.6 M ⊙ stars as R 1.4 ≤ 13.2–13.5 km and R 1.6 ≤ 13.2–13.4 km, respectively, for the different hadronic EOS considered here.
NASA Astrophysics Data System (ADS)
Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.
2018-02-01
We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28} Al as projectiles with ^{12} C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23} Al and ^{24} Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23} Al could not be ruled out the formation of proton halo.
NASA Astrophysics Data System (ADS)
Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.
2018-06-01
We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28}Al as projectiles with ^{12}C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23}Al and ^{24}Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23}Al could not be ruled out the formation of proton halo.
Parsimonious evaluation of concentric-tube continuum robot equilibrium conformation.
Rucker, Daniel Caleb; Webster Iii, Robert J
2009-09-01
Dexterous at small diameters, continuum robots consisting of precurved concentric tubes are well-suited for minimally invasive surgery. These active cannulas are actuated by relative translations and rotations applied at the tube bases, which create bending via elastic tube interaction. An accurate kinematic model of cannula shape is required for applications in surgical and other settings. Previous models are limited to circular tube precurvatures, and neglect torsional deformation in curved sections. Recent generalizations account for arbitrary tube preshaping and bending and torsion throughout the cannula, providing differential equations that define cannula shape. In this paper, we show how to simplify these equations using Frenet-Serret frames. An advantage of this approach is the interpretation of torsional components of the preset tube shapes as "forcing functions" on the cannula's differential equations. We also elucidate a process for numerically solving the differential equations, and use it to produce simulations illustrating the implications of torsional deformation and helical tube shapes.
Extension of non-linear beam models with deformable cross sections
NASA Astrophysics Data System (ADS)
Sokolov, I.; Krylov, S.; Harari, I.
2015-12-01
Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.
Three-dimensional fractional-spin gravity
NASA Astrophysics Data System (ADS)
Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio
2014-02-01
Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.
NASA Astrophysics Data System (ADS)
Lundgren, P.; Lanari, R.; Manzo, M.; Sansosti, E.; Tizzani, P.; Hutnak, M.; Hurwitz, S.
2008-12-01
Campi Flegrei caldera, Italy, located along the Bay of Naples, has a long history of significant vertical deformation, with the most recent large uplift (>1.5m) occurring in 1983-1984. Each episode of uplift has been followed by a period of subsidence that decreases in rate with time and may be punctuated by brief episodes of lesser uplift. The large amplitude of the major uplifts that occur without volcanic activity, and the subsequent subsidence has been argued as evidence for hydrothermal amplification of any magmatic source. The later subsidence and its temporal decay have been argued as due to diffusion of the pressurized caldera fill material into the less porous surrounding country rock. We present satellite synthetic aperture radar (SAR) interferometry (InSAR) time series analysis of ERS and Envisat data from the European Space Agency, based on exploiting the Small Baseline Subset (SBAS) approach [Berardino et al., 2002]; this allows us to generate maps of relative surface deformation though time, beginning in 1992 through 2007, that are relevant to both ascending and descending satellite orbits. The general temporal behavior is one of subsidence punctuated by several lesser uplift episodes. The spatial pattern of deformation can be modeled through simple inflation/deflation sources in an elastic halfspace. Given the evidence to suggest that fluids may play a significant role in the temporal deformation of Campi Flegrei, rather than a purely magmatic or magma chamber-based interpretation, we model the temporal and spatial evolution of surface deformation as a hydrothermal fluid flow process. We use the TOUGH2-BIOT2 set of numerical codes [Preuss et al., 1999; Hsieh, 1996], which couple multi-phase (liquid-gas) and multi-component (H2O-CO2) fluid flow in a porous or fractured media with plane strain deformation and fluid flow in a linearly elastic porous medium. We explore parameters related to the depth and temporal history of fluid injection, fluid composition, circulation geometries, and the physical properties of the media, to explain the InSAR time series. References: Berardino, P., R. Lanari, E. Sansosti (2002), A new Algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40, 11, 2375-2383. Pruess, L., C. Oldenburg, and G. Moridis (1999), TOUGH2 user's guide, version 2.0, Paper LBNL-43134, Lawrence Berkeley Natl. Lab., Berkeley, Calif. Hsieh, P. A. (1996), Deformation-induced changes in hydraulic head during ground-water withdrawal, Ground Water, 34, 1082-1089.
NASA Astrophysics Data System (ADS)
Dutta, Rishabh; Wang, Teng; Feng, Guangcai; Harrington, Jonathan; Vasyura-Bathke, Hannes; Jónsson, Sigurjón
2017-04-01
Strain localizations in compliant fault zones (with elastic moduli lower than the surrounding rocks) induced by nearby earthquakes have been detected using geodetic observations in a few cases in the past. Here we observe small-scale changes in interferometric Synthetic Aperture Radar (InSAR) measurements along multiple conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake. After removing the main coseismic deformation signal in the interferograms and correcting them for topography-related phase, we observe 2-3 cm signal along several conjugate faults that are 15-30 km from the mainshock fault rupture. These conjugate compliant faults have strikes of N30°E and N45°W. The sense of motion indicates left-lateral deformation across the N30°E faults and right-lateral deformation across the N45°W faults, which suggests the conjugate faults were subjected to extensional coseismic stresses along the WSW-ENE direction. The spacing between the different sets of faults is around 5 to 8 km. We explain the observed strain localizations as an elastic response of the compliant conjugate faults induced by the Baluchistan earthquake. Using 3D Finite Element models (FEM), we impose coseismic static displacements due to the earthquake along the boundaries of the FEM domain to reproduce the coseismic stress changes acting across the compliant faults. The InSAR measurements are used to constrain the geometry and rigidity variations of the compliant faults with respect to the surrounding rocks. The best fitting models show the compliant fault zones to have a width of 0.5 km to 2 km and a reduction of the shear modulus by a factor of 3 to 4. Our study yields similar values as were found for compliant fault zones near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localization is occurring on more complex conjugate sets of faults.
NASA Astrophysics Data System (ADS)
Christensen, Gary E.; Williamson, Jeffrey F.; Chao, K. S. C.; Miller, Michael I.; So, F. B.; Vannier, Michael W.
1997-10-01
This paper describes a new method to register serial, volumetric x-ray computed tomography (CT) data sets for tracking soft-tissue deformation caused by insertion of intracavity brachytherapy applicators to treat cervical cancer. 3D CT scans collected from the same patient with and without a brachytherapy applicator are registered to aid in computation of the radiation dose to tumor and normal tissue. The 3D CT image volume of pelvic anatomy with the applicator. Initial registration is accomplished by rigid alignment of the pelvic bones and non-rigid alignment of gray scale CT data and hand segmentations of the vagina, cervix, bladder, and rectum. A viscous fluid transformation model is used for non-rigid registration to allow for local, non-linear registration of the vagina, cervix, bladder, and rectum without disturbing the rigid registration of the bony pelvis and adjacent structures. Results are presented in which two 3D CT data sets of the same patient - imaged with and without a brachytherapy applicator - are registered.
Ateshian, Gerard A.; Albro, Michael B.; Maas, Steve; Weiss, Jeffrey A.
2011-01-01
Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechanochemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechanochemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http://mrl.sci.utah.edu/software). PMID:21950898
NASA Astrophysics Data System (ADS)
Pearson, Chris; Manandhar, Niraj; Denys, Paul
2017-09-01
Along with the damage to buildings and infrastructure, the April 25, 2015 Mw7.8 Gorkha earthquake caused significant deformation over a large area of eastern Nepal with displacements of over 2 m recorded in the vicinity of Kathmandu. Nepal currently uses a classical datum developed in 1984 by the Royal (UK) Engineers in collaboration with the Nepal Survey Department. It has served Nepal well; however, the recent earthquakes have provided an impetus for developing a semi-dynamic datum that will be based on ITRF2014 and have the capacity to correct for tectonic deformation. In the scenario we present here, the datum would be based on ITRF2014 with a reference epoch set some time after the end of the current sequence of earthquakes. The deformation model contains a grid of the secular velocity field combined with models of the Gorkha Earthquake and the May 12 Mw7.3 aftershock. We have developed a preliminary velocity field by collating GPS derived crustal velocities from four previous studies for Nepal and adjacent parts of China and India and aligning them to the ITRF. Patches for the co-seismic part of the deformation for the Gorkha earthquake and the May 12, 2015 Mw 7.2 aftershock are based on published dislocation models. High order control would be a CORS network based around the existing Nepal GPS Array. Coordinates for existing lower order control would be determined by readjusting existing survey measurements and these would be combined with a series of new control stations spread throughout Nepal.
An affine model of the dynamics of astrophysical discs
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.
2018-06-01
Thin astrophysical discs are very often modelled using the equations of 2D hydrodynamics. We derive an extension of this model that describes more accurately the behaviour of a thin disc in the absence of self-gravity, magnetic fields, and complex internal motions. The ideal fluid theory is derived directly from Hamilton's Principle for a 3D fluid after making a specific approximation to the deformation gradient tensor. We express the equations in Eulerian form after projection on to a reference plane. The disc is thought of as a set of fluid columns, each of which is capable of a time-dependent affine transformation, consisting of a translation together with a linear transformation in three dimensions. Therefore, in addition to the usual 2D hydrodynamics in the reference plane, the theory allows for a deformation of the mid-plane (as occurs in warped discs) and for the internal shearing motions that accompany such deformations. It also allows for the vertical expansions driven in non-circular discs by a variation of the vertical gravitational field around the horizontal streamlines, or by a divergence of the horizontal velocity. The equations of the affine model embody conservation laws for energy and potential vorticity, even for non-planar discs. We verify that they reproduce exactly the linear theories of 3D warped and eccentric discs in a secular approximation. However, the affine model does not rely on any secular or small-amplitude assumptions and should be useful in more general circumstances.
NASA Technical Reports Server (NTRS)
Wang, P. K. C.; Hadaegh, F. Y.
1996-01-01
In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.
Development of a Unified Rock Bolt Model in Discontinuous Deformation Analysis
NASA Astrophysics Data System (ADS)
He, L.; An, X. M.; Zhao, X. B.; Zhao, Z. Y.; Zhao, J.
2018-03-01
In this paper, a unified rock bolt model is proposed and incorporated into the two-dimensional discontinuous deformation analysis. In the model, the bolt shank is discretized into a finite number of (modified) Euler-Bernoulli beam elements with the degrees of freedom represented at the end nodes, while the face plate is treated as solid blocks. The rock mass and the bolt shank deform independently, but interact with each other through a few anchored points. The interactions between the rock mass and the face plate are handled via general contact algorithm. Different types of rock bolts (e.g., Expansion Shell, fully grouted rebar, Split Set, cone bolt, Roofex, Garford and D-bolt) can be realized by specifying the corresponding constitutive model for the tangential behavior of the anchored points. Four failure modes, namely tensile failure and shear failure of the bolt shank, debonding along the bolt/rock interface and loss of the face plate, are available in the analysis procedure. The performance of a typical conventional rock bolt (fully grouted rebar) and a typical energy-absorbing rock bolt (D-bolt) under the scenarios of suspending loosened blocks and rock dilation is investigated using the proposed model. The reliability of the proposed model is verified by comparing the simulation results with theoretical predictions and experimental observations. The proposed model could be used to reveal the mechanism of each type of rock bolt in realistic scenarios and to provide a numerical way for presenting the detailed profile about the behavior of bolts, in particular at intermediate loading stages.
Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
Vasconcelos, M J M; Rua Ventura, S M; Freitas, D R S; Tavares, J M R S
2010-10-01
The mechanisms involved in speech production are complex and have thus been subject to growing attention by the scientific community. It has been demonstrated that magnetic resonance imaging (MRI) is a powerful means in the understanding of the morphology of the vocal tract. Over the last few years, statistical deformable models have been successfully used to identify and characterize bones and organs in medical images and point distribution models (PDMs) have gained particular relevance. In this work, the suitability of these models has been studied to characterize and further reconstruct the shape of the vocal tract in the articulation of Portuguese European (EP) speech sounds, one of the most spoken languages worldwide, with the aid of MR images. Therefore, a PDM has been built from a set of MR images acquired during the artificially sustained articulation of 25 EP speech sounds. Following this, the capacity of this statistical model to characterize the shape deformation of the vocal tract during the production of sounds was analysed. Next, the model was used to reconstruct five EP oral vowels and the EP fricative consonants. As far as a study on speech production is concerned, this study is considered to be the first approach to characterize and reconstruct the vocal tract shape from MR images by using PDMs. In addition, the findings achieved permit one to conclude that this modelling technique compels an enhanced understanding of the dynamic speech events involved in sustained articulations based on MRI, which are of particular interest for speech rehabilitation and simulation.
NASA Astrophysics Data System (ADS)
Xing, X.; Yuan, Z.; Chen, L. F.; Yu, X. Y.; Xiao, L.
2018-04-01
The stability control is one of the major technical difficulties in the field of highway subgrade construction engineering. Building deformation model is a crucial step for InSAR time series deformation monitoring. Most of the InSAR deformation models for deformation monitoring are pure empirical mathematical models, without considering the physical mechanism of the monitored object. In this study, we take rheology into consideration, inducing rheological parameters into traditional InSAR deformation models. To assess the feasibility and accuracy for our new model, both simulation and real deformation data over Lungui highway (a typical highway built on soft clay subgrade in Guangdong province, China) are investigated with TerraSAR-X satellite imagery. In order to solve the unknows of the non-linear rheological model, three algorithms: Gauss-Newton (GN), Levenberg-Marquarat (LM), and Genetic Algorithm (GA), are utilized and compared to estimate the unknown parameters. Considering both the calculation efficiency and accuracy, GA is chosen as the final choice for the new model in our case study. Preliminary real data experiment is conducted with use of 17 TerraSAR-X Stripmap images (with a 3-m resolution). With the new deformation model and GA aforementioned, the unknown rheological parameters over all the high coherence points are obtained and the LOS deformation (the low-pass component) sequences are generated.
Bock, Y.; Wdowinski, S.; Fang, P.; Zhang, Jiahua; Williams, S.; Johnson, H.; Behr, J.; Genrich, J.; Dean, J.; Van Domselaar, M.; Agnew, D.; Wyatt, F.; Stark, K.; Oral, B.; Hudnut, K.; King, R.; Herring, T.; Dinardo, S.; Young, W.; Jackson, D.; Gurtner, W.
1997-01-01
The southern California Permanent GPS Geodetic Array (PGGA) was established in 1990 across the Pacific-North America plate boundary to continuously monitor crustal deformation. We describe the development of the array and the time series of daily positions estimated for its first 10 sites in the 19-month period between the June 28, 1992 (Mw=7.3), Landers and January 17, 1994 (Mw=6.7), Northridge earthquakes. We compare displacement rates at four site locations with those reported by Feigl et al. [1993], which were derived from an independent set of Global Positioning System (GPS) and very long baseline interferometry (VLBI) measurements collected over nearly a decade prior to the Landers earthquake. The velocity differences for three sites 65-100 km from the earthquake's epicenter are of order of 3-5 mm/yr and are systematically coupled with the corresponding directions of coseismic displacement. The fourth site, 300 km from the epicenter, shows no significant velocity difference. These observations suggest large-scale postseismic deformation with a relaxation time of at least 800 days. The statistical significance of our observations is complicated by our incomplete knowledge of the noise properties of the two data sets; two possible noise models fit the PGGA data equally well as described in the companion paper by Zhang et al. [this issue]; the pre-Landers data are too sparse and heterogeneous to derive a reliable noise model. Under a fractal white noise model for the PGGA data we find that the velocity differences for all three sites are statistically different at the 99% significance level. A white noise plus flicker noise model results in significance levels of only 94%, 43%, and 88%. Additional investigations of the pre-Landers data, and analysis of longer spans of PGGA data, could have an important effect on the significance of these results and will be addressed in future work. Copyright 1997 by the American Geophysical Union.
Estimating Dense Cardiac 3D Motion Using Sparse 2D Tagged MRI Cross-sections*
Ardekani, Siamak; Gunter, Geoffrey; Jain, Saurabh; Weiss, Robert G.; Miller, Michael I.; Younes, Laurent
2015-01-01
In this work, we describe a new method, an extension of the Large Deformation Diffeomorphic Metric Mapping to estimate three-dimensional deformation of tagged Magnetic Resonance Imaging Data. Our approach relies on performing non-rigid registration of tag planes that were constructed from set of initial reference short axis tag grids to a set of deformed tag curves. We validated our algorithm using in-vivo tagged images of normal mice. The mapping allows us to compute root mean square distance error between simulated tag curves in a set of long axis image planes and the acquired tag curves in the same plane. Average RMS error was 0.31±0.36(SD) mm, which is approximately 2.5 voxels, indicating good matching accuracy. PMID:25571140
Research Enabled through Eighteen Years of Geodesy Data Sharing by the UNAVCO Data Center
NASA Astrophysics Data System (ADS)
Boler, F. M.; Meertens, C. M.; Kreemer, C. W.; Blewitt, G.
2009-12-01
UNAVCO, the NSF and NASA-funded facility that supports and promotes Earth science by advancing high-precision techniques for the measurement of crustal deformation, has operated a Global Navigation Satellite System (GNSS) data archive since 1992. UNAVCO’s Data Policy includes immediate open access to data from continuous GNSS stations and open access after a 2-year embargo period for campaign data. Presently, the GNSS archive holds 3,500,000 files of data, taken principally at a large and growing globally-distributed set of permanent high precision GNSS stations. Each day on average 2,000 new files are archived and 33,000 files are distributed. The spatial and temporal resolution now available for GNSS data enables quantification of motions of the Earth’s crust at all scales with unprecedented detail and precision, leading to fundamental discoveries in plate boundary processes, continental deformation, earthquake processes, magmatic systems, and global and regional hydrological mass movements. The Plate Boundary Observatory (PBO) is the UNAVCO-operated 1100-station geodesy component of EarthScope that studies the three-dimensional strain field resulting from active plate boundary deformation across the western US. Processing of the entire set of data by the PBO Analysis Centers (MIT, New Mexico Tech and Central Washington U.) has added position time series to the open GNSS data products available from the UNAVCO Data Center. This data set forms the basis for an overarching analysis of various non-tectonic processes, such as the effect of soil moisture on multi-path. With the ultimate goal of understanding tectonic and magmatic motions, the ability to model these signals and remove them to further elucidate the tectonic signal alone is crucial. GNSS data are also leading to global strain-rate maps with unprecedented resolution, which allow an integrated description of the surface kinematics accounting for rigid plates and plate boundary zone deformation [Kreemer et al., 2003]. An important contribution to these analyses for the Great Basin is MAGNET, a 307-station array operated by the University of Nevada with 30-50 active stations per day since 2004 [Blewitt et al., 2004]. The simultaneous increase in GNSS data and analysis expertise now allows for routine global analysis of many thousands of GNSS stations. Such analysis ensures that all phase ambiguities are fixed and that common-mode errors are significantly reduced and thereby allow for increased spatial and temporal resolution for strain-rate models and other solid-earth investigations. These examples highlight two research areas where exciting advances are built upon the GNSS data available from the UNAVCO Data Center. The continued open availability of GNSS data will provide an invaluable resource for refinement of current understanding of geodesy and completely new discoveries into the future. Blewitt, G., C. Kreemer, and W.C. Hammond (2009). Geodetic observation of contemporary deformation in the northern Walker Lane: 1. Semipermanent GPS strategy, p. 1-15, doi: 10.1130/2009.2447(03). Kreemer, C., W.E. Holt, and A.J. Haines, An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J. Int., 154, 8-34, 2003.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Stouffer, Donald C.
1998-01-01
Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.
NASA Astrophysics Data System (ADS)
Law, Richard; Ashley, Kyle; Thigpen, Ryan
2014-05-01
Despite the detailed Caledonian structural/tectonic framework developed for the Moine Supergroup of northern Scotland, debate continues over the tectonic processes that drove metamorphism. Rapid temporal evolution of the metamorphic sequence has led some geologists to suggest that crustal thickening alone cannot provide sufficient heat flow to reach the metamorphic grades observed. Rather, they postulate that large-scale contact metamorphism or initial heating in an extensional, back-arc setting is required. We present coupled petrographic analyses and forward phase stability modeling for quantifying prograde metamorphic evolution in pelite horizons dispersed across the Caledonian thrust sheets. Results suggest garnet growth was syn-kinematic during prograde decompression. Rutile and ilmenite inclusions in garnet cores and rims, respectively, support this claim, while chemical profiles and crystal morphology argue against a detrital origin for these garnet grains. The observed clockwise P-T path for these garnets is incompatible with extensional or contact metamorphic models (would require counter-clockwise paths). Rather, the P-T data suggests advection of isotherms during thrusting as the dominant mechanism for metamorphism (Thigpen et al., 2013). Recent studies in other orogens (e.g., Spear et al., 2012) suggest that heating over long time scales under mid-crustal conditions may not be needed to reach the metamorphic grades observed. Therefore the structurally higher, more hinterland Caledonian thrust sheets may have reached peak metamorphism in a much shorter time period than previously expected. The paucity of pelitic horizons across the foreland-positioned Moine thrust sheet has previously limited insight into the prograde evolution of these rocks. However, the dominance of quartz-rich units has allowed the thermal structure of the thrust sheet to be evaluated using quartz c-axis fabric opening angle-based deformation thermometry. Microstructures in the pelites sampled indicate that garnet (rim) growth is syn-kinematic with respect to the Scandian (mid-Silurian) deformation fabrics. Deformation temperatures indicated by quartz fabric opening angles are very similar to temperatures of metamorphism constrained using pseudosection and petrographic data from adjacent pelite horizons. This suggests that the deformation- and petrology-based data sets are providing information on the same thermal event. These results support the use of quartz deformation thermometry in obtaining thermal profiles across tectonic units where rock types (usually pelites), with metamorphic mineral assemblages suitable for petrology-based thermometry, are not present. Thigpen, J.R., Law, R.D., Loehn, C.L., Strachan, R.A., Tracy, R.J., Lloyd, G.E., Roth, B.L., and Brown, S.J., 2013, Thermal structure and tectonic evolution of the Scandian orogenic wedge, Scottish Caledonides: integrating geothermometry, deformation temperatures and conceptual kinematic-thermal models, J. Metamorphic Geol., 31, 813-842. Spear, F.S., Ashley, K.T., Webb, L.E., and Thomas, J.B., 2012, Ti diffusion in quartz inclusions: implications for metamorphic time scales, Contrib. Mineral Petrol., 164, 977-986.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
NASA Astrophysics Data System (ADS)
Delduc, F.; Hoare, B.; Kameyama, T.; Magro, M.
2017-10-01
A multi-parameter integrable deformation of the principal chiral model is presented. The Yang-Baxter and bi-Yang-Baxter σ-models, the principal chiral model plus a Wess-Zumino term and the TsT transformation of the principal chiral model are all recovered when the appropriate deformation parameters vanish. When the Lie group is SU(2), we show that this four-parameter integrable deformation of the SU(2) principal chiral model corresponds to the Lukyanov model.
Sea-level and solid-Earth deformation feedbacks in ice sheet modelling
NASA Astrophysics Data System (ADS)
Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk
2014-05-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
Model Attitude and Deformation Measurements at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Woike, Mark R.
2008-01-01
The NASA Glenn Research Center is currently participating in an American Institute of Aeronautics and Astronautics (AIAA) sponsored Model Attitude and Deformation Working Group. This working group is chartered to develop a best practices document dealing with the measurement of two primary areas of wind tunnel measurements, 1) model attitude including alpha, beta and roll angle, and 2) model deformation. Model attitude is a principle variable in making aerodynamic and force measurements in a wind tunnel. Model deformation affects measured forces, moments and other measured aerodynamic parameters. The working group comprises of membership from industry, academia, and the Department of Defense (DoD). Each member of the working group gave a presentation on the methods and techniques that they are using to make model attitude and deformation measurements. This presentation covers the NASA Glenn Research Center s approach in making model attitude and deformation measurements.
NASA Astrophysics Data System (ADS)
Maesano, F. E.; Tiberti, M. M.; Basili, R.
2017-12-01
In recent years an increasing number of studies have been focused in understanding the lateral terminations of subduction zones. In the Mediterranean region, this topic is of particular interest for the presence of a "land-locked" system of subduction zones interrupted by continental collision and back-arc opening. We present a 3D reconstruction of the area surrounding the Tindari-Alfeo Fault System (TAFS) based on a dense set of deep seismic reflection profiles. This fault system represents a major NNW-SSE trending subduction-transform edge propagator (STEP) that controls the deformation zone bounding the Calabrian subduction zone (central Mediterranean Sea) to the southwest. This 3D model allowed us to characterize the mechanical and kinematic evolution of the TAFS during the Plio-Quaternary. Our study highlights the presence of a mechanical decoupling between the deformation observed in the lower plate, constituted by the Ionian oceanic crust entering the subduction zone, and the upper plate, where a thick accretionary wedge has formed. The lower plate hosts the master faults of the TAFS, whereas the upper plate is affected by secondary deformation (bending-moment faulting, localized subsidence, stepovers, and restraining/releasing bends). The analysis of the syn-tectonic sedimentary basins related to the activity of the TAFS at depth allow us to constrain the propagation rate of the deformation and of the vertical component of the slip-rate. Our findings provide a comprehensive framework of the structural setting that can be expected along a STEP boundary where contractional and transtensional features coexist at close distance from one another.
NASA Astrophysics Data System (ADS)
Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Kai; Zhang, Jin-Jiang; Liu, Xiao-Chi
2018-04-01
Reconstructing the evolution of Gneiss domes within orogenic belts poses challenges because domes can form in a variety of geodynamic settings and by multiple doming mechanisms. For the North Himalayan gneiss domes (NHGD), it is debated whether they formed during shortening, extension or collapse of the plateau, and what is the spatial and temporal relationship of magmatism, metamorphism and deformation. This study investigates the Yardoi dome in southern Tibet using field mapping, petrography, phase equilibria modelling and new monazite ages. The resulting P-T-time-deformation-magmatism path for the first time reveals the spatial and temporal relationship of metamorphism, deformation and magmatism in the Yardoi dome: a) the dome mantle recorded prograde loading to kyanite-grade Barrovian metamorphic conditions of 650 ± 30 °C and 9 ± 1 kbar (M2) in the Early Miocene (18-17 Ma); b) the main top-to-the-north deformation fabric (D2) formed syn- to post-peak-metamorphism; c) the emplacement of leucorgranites related to doming is syn-metamorphism at 19-17 Ma. The link between the detachment shear zone in the Yardoi dome and the South Tibetan detachment system (STDS) is confirmed. By comparing with orogen-scale tectonic processes in the Himalaya, we suggest that north-south extension in a convergent geodynamic setting during Early Miocene accounts for formation of the Yardoi dome. In a wider tectonic context, the Early Miocene rapid exhumation of deep crustal rocks was contemporaneous with the rapid uplift of southern Tibet and the Himalayan orogen.
Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.
2014-01-01
Purpose Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of “ground-truth” registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Materials/Methods Three pairs of CT/CBCT datasets were chosen for this IRB-approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and 3 implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Results Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant contours. Seminal vesicle contours were found to have the lowest correlation amongst physicians (DICE=0.5). After DIR, the organ surfaces between CBCT and planning CT were in good alignment with mean DICE indices of 0.9 for prostate, rectum, and bladder, and 0.8 for seminal vesicles. The Jacobian magnitudes |JAC| in the prostate, rectum, and seminal vesicles were in the range of 0.4–1.5, indicating mild compression/expansion. The bladder volume differences were larger between CBCT and CT images with mean |JAC| values of 2.2, 0.7, and 1.0 for three respective patients. Bone deformation was negligible (|JAC|=~1.0). The difference between corresponding landmark points between CBCT and CT was less than 1.0 mm after DIR. Conclusions We have presented a novel method of establishing benchmark deformable image registration accuracy between CT and CBCT images in the pelvic region. The method incorporates manually delineated organ surfaces and landmark points as well as pixel similarity in the optimization, while ensuring bone rigidity and avoiding excessive deformation in soft tissue organs. Redundant contouring is necessary to reduce the overall registration uncertainty. PMID:24171908
Physics-based deformable organisms for medical image analysis
NASA Astrophysics Data System (ADS)
Hamarneh, Ghassan; McIntosh, Chris
2005-04-01
Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.
HSR Model Deformation Measurements from Subsonic to Supersonic Speeds
NASA Technical Reports Server (NTRS)
Burner, A. W.; Erickson, G. E.; Goodman, W. L.; Fleming, G. A.
1999-01-01
This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.
Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.
NASA Astrophysics Data System (ADS)
Ghiselli, Alice; Merazzi, Marzio; Strini, Andrea; Margutti, Roberto; Mercuriali, Michele
2011-06-01
As karst systems are natural windows to the underground, speleology, combined with geological surveys, can be useful tools for helping understand the geological evolution of karst areas. In order to enhance the reconstruction of the structural setting in a gypsum karst area (Vena del Gesso, Romagna Apennines), a detailed analysis has been carried out on hypogeal data. Structural features (faults, fractures, tectonic foliations, bedding) have been mapped in the "Grotta del Re Tiberio" cave, in the nearby gypsum quarry tunnels and open pit benches. Five fracture systems and six fault systems have been identified. The fault systems have been further analyzed through stereographic projections and geometric-kinematic evaluations in order to reconstruct the relative chronology of these structures. This analysis led to the detection of two deformation phases. The results permitted linking of the hypogeal data with the surface data both at a local and regional scale. At the local scale, fracture data collected in the underground have been compared with previous authors' surface data coming from the quarry area. The two data sets show a very good correspondence, as every underground fracture system matches with one of the surface fracture system. Moreover, in the cave, a larger number of fractures belonging to each system could be mapped. At the regional scale, the two deformation phases detected can be integrated in the structural setting of the study area, thereby enhancing the tectonic interpretation of the area ( e.g., structures belonging to a new deformation phase, not reported before, have been identified underground). The structural detailed hypogeal survey has, thus, provided very useful data, both by integrating the existing information and revealing new data not detected at the surface. In particular, some small structures ( e.g., displacement markers and short fractures) are better preserved in the hypogeal environment than on the surface where the outcropping gypsum is more exposed to dissolution and recrystallization. The hypogeal geological survey, therefore, can be considered a powerful tool for integrating the surface and log data in order to enhance the reconstruction of the deformational history and to get a three-dimensional model of the bedrock in karst areas.
What if ? On alternative conceptual models and the problem of their implementation
NASA Astrophysics Data System (ADS)
Neuberg, Jurgen
2015-04-01
Seismic and other monitoring techniques rely on a set of conceptual models on the base of which data sets can be interpreted. In order to do this on an operational level in volcano observatories these models need to be tested and ready for an interpretation in a timely manner. Once established, scientists in charge advising stakeholders and decision makers often stick firmly to these models to avoid confusion by giving alternative versions of interpretations to non-experts. This talk gives an overview of widely accepted conceptual models to interpret seismic and deformation data, and highlights in a few case studies some of the arising problems. Aspects covered include knowledge transfer between research institutions and observatories, data sharing, the problem of up-taking advice, and some hidden problems which turn out to be much more critical in assessing volcanic hazard than the actual data interpretation.
Karuppanan, Udayakumar; Unni, Sujatha Narayanan; Angarai, Ganesan R.
2017-01-01
Abstract. Assessment of mechanical properties of soft matter is a challenging task in a purely noninvasive and noncontact environment. As tissue mechanical properties play a vital role in determining tissue health status, such noninvasive methods offer great potential in framing large-scale medical screening strategies. The digital speckle pattern interferometry (DSPI)–based image capture and analysis system described here is capable of extracting the deformation information from a single acquired fringe pattern. Such a method of analysis would be required in the case of the highly dynamic nature of speckle patterns derived from soft tissues while applying mechanical compression. Soft phantoms mimicking breast tissue optical and mechanical properties were fabricated and tested in the DSPI out of plane configuration set up. Hilbert transform (HT)-based image analysis algorithm was developed to extract the phase and corresponding deformation of the sample from a single acquired fringe pattern. The experimental fringe contours were found to correlate with numerically simulated deformation patterns of the sample using Abaqus finite element analysis software. The extracted deformation from the experimental fringe pattern using the HT-based algorithm is compared with the deformation value obtained using numerical simulation under similar conditions of loading and the results are found to correlate with an average %error of 10. The proposed method is applied on breast phantoms fabricated with included subsurface anomaly mimicking cancerous tissue and the results are analyzed. PMID:28180134
The mantle lithosphere and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2017-04-01
In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.
Modeling of drop breakup in the bag breakup regime
NASA Astrophysics Data System (ADS)
Wang, C.; Chang, S.; Wu, H.; Xu, J.
2014-04-01
Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.
Monitoring Volcano Deformation in the Northernmost Andes with ALOS InSAR Time-Series
NASA Astrophysics Data System (ADS)
Morales Rivera, A. M.; Amelung, F.
2014-12-01
Satellite-based Interferometric Synthetic Aperture Radar (InSAR) is well known to be used as a volcano monitoring tool, providing the opportunity to conduct local and regional surveys to detect and measure volcanic deformation. The signals detected by InSAR on volcanoes can be related to various phenomena, such as volume changes in magmatic reservoirs, compaction of recent deposits, changes in hydrothermal activity, and flank instability. The InSAR time-series method has well documented examples of these phenomena, including precursory inflation of magma reservoirs months prior to volcanic eruptions, proving its potential for early warning systems. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA), which acquired a global L-band data set of nearly 20 acquisitions during 2007-2011, to make an InSAR time-series analysis using the Small Baseline method (SBAS). Our analysis covers all of the volcanoes in Colombia, Ecuador, and Peru that are cataloged by the Global Volcanism Program. We present results showing time-dependent ground deformation on an near the volcanoes, and present kinematic models to constrain the characteristics of the magmatic sources for the cases in which the deformation is likely related to changes in magma reservoir pressurization.
Tensile elastic properties of 18:8 chromium-nickel steel as affected by plastic deformation
NASA Technical Reports Server (NTRS)
Mcadam, D J; Mebs, R W
1939-01-01
The relationship between stress and strain, and between stress and permanent set, for 18:8 alloy as affected by prior plastic deformation is discussed. Hysteresis and creep and their effects on the stress-strain and stress-set curves are also considered, as well as the influence of duration of the rest interval after cold work and the influence of plastic deformation on proof stresses, on the modulus of elasticity at zero stress, and on the curvature of the stress-strain line. A constant (c sub 1) is suggested to represent the variation of the modulus of elasticity with stress.
NASA Astrophysics Data System (ADS)
Dogan, U.; Demir, D. O.; Cakir, Z.; Ergintav, S.; Cetin, S.; Ozdemir, A.; Reilinger, R. E.
2017-12-01
The 23 October 2011, Mw=7.2 Van Earthquake occurred in eastern Turkey on a thrust fault trending NE-SW and dipping to the north. We use GPS time series from the survey and continuous stations to determine coseismic deformation and to identify spatial and temporal changes in the near and far field due to postseismic processes (2011-2017). The coseismic deformation in the near field is derived from GPS data collected at 25 cadastral GPS survey sites. The coseismic horizontal displacements reach nearly 50 cm close to the surface trace of the fault that ruptured at depth during the earthquake. The density and distribution of the GPS sites allow us to better constrain the extent of the coseismic rupture using elastic dislocations on triangular faults embedded in a homogeneous, elastic half space. Modeling studies suggest that the coseismic rupture stopped west of the Erçek Lake before veering to the north. Estimated seismic moment is in good agreement with the seismologically and geodetically estimated seismic moment, estimated from the finite-fault model. Our preferred coseismic model consists of a simple elliptical slip patch centered at around 8 km depth with a maximum slip of about 2.5 m, consistent with the previous estimates based on InSAR measurements. The postseismic deformation field is derived from far field continuous GPS observations (10.2011 - 11.2017) and near field GPS campaigns (10.2011 - 09.2015). The postseismic time-series are fit better with a logarithmic than an exponential function, suggesting that the postseismic deformation is due to afterslip. Then, we modified our published postseismic model, using the coseismic model and data sets, extended until the end of 2017. The results show that during 6 years following the earthquake, after slip of up to 65 cm occurred at relatively shallow (< 10 km) depths, mostly above the deep coseismic slip that reaches depths > 15 km. New interpretations of the shallow afterslip, also, adds further evidence that the surface break observed after the earthquake was caused by coseismic stress changes rather than representing the coseismic fault. (This study is supported by TUBITAK no: 112Y109 project). Keywords: Van earthquake, GPS, coseismic, postseismic, deformation, elastic modeling
Yan, Hong; Ren, Min; Yin, Xing-Zhe; Zhao, Shu-Yan; Zhang, Cheng-Fei
2008-04-01
To evaluate the deformation of ProTaper rotary instruments using in root canals of different curvature in vitro. Extracted first mandibular molars were divided into two experimental groups according to the curvature of mesial buccal canals: group A with moderate curvature and group B with severe curvature. Only the mesial buccal canals of all these teeth were prepared with 6 sets of new ProTaper rotary instruments individually. Additionally, the control group was established with a set of new ProTaper rotary instruments. After finishing each canal preparation, the instruments accompanied by control were examined under the stereomicroscope by an inspector without knowing the group. If distortion, unwinding, abrasion or fracture occurred within one set of instruments, then the whole set was disposed. The sets without problems were in use until 30 times. After 5, 10, 20 times canal preparation, S1, F1 files without deformation under stereomicroscope were examined under scanning electron microscope (SEM). Deformation of ProTaper rotary instruments happened after 12 times in group A and after 7 times in group B. In these two experimental groups, microcracks were found increasing with the times of use under SEM in the instruments without deformation under stereomicroscope. The microcracks on tip of instruments were deep in the early use and became smoother after 10 times. Similar changes happened on knife-edge of instruments, and the microcracks extended over the edge after 20 times use. Root canals with severe curvature tend to damage ProTaper rotary instruments more frequently than moderately curved canals. ProTaper rotary instruments are appropriate to treat less than 7 root canals with severe curvature or 12 root canals with moderate curvature. Stereomicroscope is recommended to detect early damages on Ni-Ti rotary instruments, for preventing instruments fracture in clinic.
Recognising triggers for soft-sediment deformation: Current understanding and future directions
NASA Astrophysics Data System (ADS)
Owen, Geraint; Moretti, Massimo; Alfaro, Pedro
2011-04-01
Most of the 16 papers in this special issue were presented at a session entitled "The recognition of trigger mechanisms for soft-sediment deformation" at the 27th IAS Meeting of Sedimentology in Alghero, Sardinia, Italy, which took place from 20th-23rd September 2009. They describe soft-sediment deformation structures that range widely in morphology, age, depositional environment and tectonic setting. In their interpretations, the authors have been asked to focus on identifying the agent that triggered deformation. Our aims in this introductory overview are to: (1) review the definition and scope of soft-sediment deformation; (2) clarify the significance and role of the trigger; (3) set the contributions in context and summarise their findings; and (4) discuss strategies for reliably identifying triggers and make recommendations for future study of this widespread and significant category of sedimentary structures. We recommend a three-stage approach to trigger recognition, combining the assessment of facies, potential triggers, and available criteria. This focus on the trigger for deformation distinguishes this collection of papers on soft-sediment deformation from other important collections, notably those edited by Jones and Preston (1987), Maltman (1994), Maltman et al. (2000), Shiki et al. (2000), Ettensohn et al. (2002b), Van Rensbergen et al. (2003) and Storti and Vannucchi (2007).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, M.S.; Scriven, L.E.
1997-12-01
In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.
Deformation-Aware Log-Linear Models
NASA Astrophysics Data System (ADS)
Gass, Tobias; Deselaers, Thomas; Ney, Hermann
In this paper, we present a novel deformation-aware discriminative model for handwritten digit recognition. Unlike previous approaches our model directly considers image deformations and allows discriminative training of all parameters, including those accounting for non-linear transformations of the image. This is achieved by extending a log-linear framework to incorporate a latent deformation variable. The resulting model has an order of magnitude less parameters than competing approaches to handling image deformations. We tune and evaluate our approach on the USPS task and show its generalization capabilities by applying the tuned model to the MNIST task. We gain interesting insights and achieve highly competitive results on both tasks.
Initial inclusion of thermodynamic considerations in Kayenta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, Rebecca Moss; Bishop, Joseph E.; Fuller, Timothy J.
A persistent challenge in simulating damage of natural geological materials, as well as rock-like engineered materials, is the development of efficient and accurate constitutive models. The common feature for these brittle and quasi-brittle materials are the presence of flaws such as porosity and network of microcracks. The desired models need to be able to predict the material responses over a wide range of porosities and strain rate. Kayenta (formerly called the Sandia GeoModel) is a unified general-purpose constitutive model that strikes a balance between first-principles micromechanics and phenomenological or semi-empirical modeling strategies. However, despite its sophistication and ability to reducemore » to several classical plasticity theories, Kayenta is incapable of modeling deformation of ductile materials in which deformation is dominated by dislocation generation and movement which can lead to significant heating. This stems from Kayenta's roots as a geological model, where heating due to inelastic deformation is often neglected or presumed to be incorporated implicitly through the elastic moduli. The sophistication of Kayenta and its large set of extensive features, however, make Kayenta an attractive candidate model to which thermal effects can be added. This report outlines the initial work in doing just that, extending the capabilities of Kayenta to include deformation of ductile materials, for which thermal effects cannot be neglected. Thermal effects are included based on an assumption of adiabatic loading by computing the bulk and thermal responses of the material with the Kerley Mie-Grueneisen equation of state and adjusting the yield surface according to the updated thermal state. This new version of Kayenta, referred to as Thermo-Kayenta throughout this report, is capable of reducing to classical Johnson-Cook plasticity in special case single element simulations and has been used to obtain reasonable results in more complicated Taylor impact simulations in LS-Dyna. Despite these successes, however, Thermo-Kayenta requires additional refinement for it to be consistent in the thermodynamic sense and for it to be considered superior to other, more mature thermoplastic models. The initial thermal development, results, and required refinements are all detailed in the following report.« less
QuakeSim: a Web Service Environment for Productive Investigations with Earth Surface Sensor Data
NASA Astrophysics Data System (ADS)
Parker, J. W.; Donnellan, A.; Granat, R. A.; Lyzenga, G. A.; Glasscoe, M. T.; McLeod, D.; Al-Ghanmi, R.; Pierce, M.; Fox, G.; Grant Ludwig, L.; Rundle, J. B.
2011-12-01
The QuakeSim science gateway environment includes a visually rich portal interface, web service access to data and data processing operations, and the QuakeTables ontology-based database of fault models and sensor data. The integrated tools and services are designed to assist investigators by covering the entire earthquake cycle of strain accumulation and release. The Web interface now includes Drupal-based access to diverse and changing content, with new ability to access data and data processing directly from the public page, as well as the traditional project management areas that require password access. The system is designed to make initial browsing of fault models and deformation data particularly engaging for new users. Popular data and data processing include GPS time series with data mining techniques to find anomalies in time and space, experimental forecasting methods based on catalogue seismicity, faulted deformation models (both half-space and finite element), and model-based inversion of sensor data. The fault models include the CGS and UCERF 2.0 faults of California and are easily augmented with self-consistent fault models from other regions. The QuakeTables deformation data include the comprehensive set of UAVSAR interferograms as well as a growing collection of satellite InSAR data.. Fault interaction simulations are also being incorporated in the web environment based on Virtual California. A sample usage scenario is presented which follows an investigation of UAVSAR data from viewing as an overlay in Google Maps, to selection of an area of interest via a polygon tool, to fast extraction of the relevant correlation and phase information from large data files, to a model inversion of fault slip followed by calculation and display of a synthetic model interferogram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.
Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside amore » given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may be caused by the biomechanical deformation process. Accuracy and stability of the model response were validated using ground-truth simulations representing soft tissue behavior under local and global deformations. Numerical accuracy of the HN deformations was analyzed by applying nonrigid skeletal transformations acquired from interfraction kVCT images to the model’s skeletal structures and comparing the subsequent soft tissue deformations of the model with the clinical anatomy. Results: The GPU based framework enabled the model deformation to be performed at 60 frames/s, facilitating simulations of posture changes and physiological regressions at interactive speeds. The soft tissue response was accurate with a R{sup 2} value of >0.98 when compared to ground-truth global and local force deformation analysis. The deformation of the HN anatomy by the model agreed with the clinically observed deformations with an average correlation coefficient of 0.956. For a clinically relevant range of posture and physiological changes, the model deformations stabilized with an uncertainty of less than 0.01 mm. Conclusions: Documenting dose delivery for HN radiotherapy is essential accounting for posture and physiological changes. The biomechanical model discussed in this paper was able to deform in real-time, allowing interactive simulations and visualization of such changes. The model would allow patient specific validations of the DIR method and has the potential to be a significant aid in adaptive radiotherapy techniques.« less
Tonutti, Michele; Gras, Gauthier; Yang, Guang-Zhong
2017-07-01
Accurate reconstruction and visualisation of soft tissue deformation in real time is crucial in image-guided surgery, particularly in augmented reality (AR) applications. Current deformation models are characterised by a trade-off between accuracy and computational speed. We propose an approach to derive a patient-specific deformation model for brain pathologies by combining the results of pre-computed finite element method (FEM) simulations with machine learning algorithms. The models can be computed instantaneously and offer an accuracy comparable to FEM models. A brain tumour is used as the subject of the deformation model. Load-driven FEM simulations are performed on a tetrahedral brain mesh afflicted by a tumour. Forces of varying magnitudes, positions, and inclination angles are applied onto the brain's surface. Two machine learning algorithms-artificial neural networks (ANNs) and support vector regression (SVR)-are employed to derive a model that can predict the resulting deformation for each node in the tumour's mesh. The tumour deformation can be predicted in real time given relevant information about the geometry of the anatomy and the load, all of which can be measured instantly during a surgical operation. The models can predict the position of the nodes with errors below 0.3mm, beyond the general threshold of surgical accuracy and suitable for high fidelity AR systems. The SVR models perform better than the ANN's, with positional errors for SVR models reaching under 0.2mm. The results represent an improvement over existing deformation models for real time applications, providing smaller errors and high patient-specificity. The proposed approach addresses the current needs of image-guided surgical systems and has the potential to be employed to model the deformation of any type of soft tissue. Copyright © 2017 Elsevier B.V. All rights reserved.
3D displacement time series in the Afar rift zone computed from SAR phase and amplitude information
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manconi, Andrea
2013-04-01
Large and rapid deformations, such as those caused by earthquakes, eruptions, and landslides cannot be fully measured by using standard DInSAR applications. Indeed, the phase information often degrades and some areas of the interferograms are affected by high fringe rates, leading to difficulties in the phase unwrapping, and/or to complete loss of coherence due to significant misregistration errors. This limitation can be overcome by exploiting the SAR image amplitude information instead of the phase, and by calculating the Pixel-Offset (PO) field SAR image pairs, for both range and azimuth directions. Moreover, it is possible to combine the PO results by following the same rationale of the SBAS technique, to finally retrieve the offset-based deformation time series. Such technique, named PO-SBAS, permits to retrieve the deformation field in areas affected by very large displacements at an accuracy that, for ENVISAT data, correspond to 30 cm and 15 cm for the range and azimuth, respectively [1]. Moreover, the combination of SBAS and PO-SBAS time series can help to better study and model deformation phenomena characterized by spatial and temporal heterogeneities [2]. The Dabbahu rift segment of the Afar depression has been active since 2005 when a 2.5 km3 dyke intrusion and hundreds of earthquakes marked the onset a rifting episode which continues to date. The ENVISAT satellite has repeatedly imaged the Afar depression since 2003, generating a large SAR archive. In this work, we study the Afar rift region deformations by using both the phase and amplitude information of several sets of SAR images acquired from ascending and descending ENVISAT tracks. We combined sets of small baseline interferograms through the SBAS algorithm, and we generate both ground deformation maps and time series along the satellite Line-Of-Sight (LOS). In areas where the deformation gradient causes loss of coherence, we retrieve the displacement field through the amplitude information. Furthermore, we could also retrieve the full 3D deformation field, by considering the North-South displacement component obtained from the azimuth PO information. The combination of SBAS and PO-SBAS information permits to better retrieve and constrain the full deformation field due to repeated intrusions, fault movements, as well as the magma movements from individual magma chambers. [1] Casu, F., A. Manconi, A. Pepe and R. Lanari, 2011. Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude Pixel-Offset SBAS technique, IEEE Transaction on Geosciences and Remote Sensing. [2] Manconi, A. and F. Casu, 2012. Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters, Geophysical Research Letters, doi:10.1029/2012GL052202.
A soft biomimetic tongue: model reconstruction and motion tracking
NASA Astrophysics Data System (ADS)
Lu, Xuanming; Xu, Weiliang; Li, Xiaoning
2016-04-01
A bioinspired robotic tongue which is actuated by a network of compressed air is proposed for the purpose of mimicking the movements of human tongue. It can be applied in the fields such as medical science and food engineering. The robotic tongue is made of two kinds of silicone rubber Ecoflex 0030 and PDMS with the shape simplified from real human tongue. In order to characterize the robotic tongue, a series of experiments were carried out. Laser scan was applied to reconstruct the static model of robotic tongue when it was under pressurization. After each scan, the robotic tongue was scattered into dense points in the same 3D coordinate system and the coordinates of each point were recorded. Motion tracking system (OptiTrack) was used to track and record the whole process of deformation dynamically during the loading and unloading phase. In the experiments, five types of deformation were achieved including roll-up, roll-down, elongation, groove and twist. Utilizing the discrete points generated by laser scan, the accurate parameterized outline of robotic tongue under different pressure was obtained, which could help demonstrate the static characteristic of robotic tongue. The precise deformation process under one pressure was acquired through the OptiTrack system which contains a series of digital cameras, markers on the robotic tongue and a set of hardware and software for data processing. By means of tracking and recording different process of deformation under different pressure, the dynamic characteristic of robotic tongue could be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) andmore » the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.« less
Quantization of set theory and generalization of the fermion algebra
NASA Astrophysics Data System (ADS)
Arik, M.; Tekin, S. C.
2002-05-01
The quantum states of a d-dimensional fermion algebra are in one to one correspondence with the subsets of a d-element universal set. In this paper we use this set theoretical motivation to construct a one-parameter deformation of the fermion algebra and extend it to a d-dimensional generalization which is invariant under the group U(d). This discrete fermionic oscillator system is extended to the continuous case. We also show that the q-deformation of these systems is related to supercovariant q-oscillators.
NASA Astrophysics Data System (ADS)
Bevillard, Benoit; Richard, Guillaume; Raimbourg, Hugues
2017-04-01
Rocks are complex materials and particularly their rheological behavior under geological stresses remains a long-standing question in geodynamics. To test large scale lithosphere dynamics numerical modeling is the main tool but encounter substantial difficulties to account for this complexity. One major unknown is the origin and development of the localization of deformation. This localization is observed within a large range of scales and is commonly characterized by sharp grain size reduction. These considerations argues for a control of the microscopical scale over the largest ones through one predominant variable: the mean grain-size. However, the presence of second phase and broad grain-size distribution may also have a important impact on this phenomenon. To address this question, we built a model for ductile rocks deformation based on the two-phase damage theory of Bercovici & Ricard 2012. We aim to investigate the role of grain-size reduction but also phase mixing on strain localization. Instead of considering a Zener-pining effect on damage evolution, we propose to take into account the effect of the grain-boundary sliding (GBS)-induced nucleation mechanism which is better supported by experimental or natural observations (Precigout et al 2016). This continuum theory allows to represent a two mineral phases aggregate with explicit log-normal grain-size distribution as a reasonable approximation for polymineralic rocks. Quantifying microscopical variables using a statistical approach may allow for calibration at small (experimental) scale. The general set of evolutions equations remains up-scalable provided some conditions on the homogenization scale. Using the interface density as a measure of mixture quality, we assume unlike Bercovici & Ricard 2012 that it may depend for some part on grain-size . The grain-size independent part of it is being represented by a "contact fraction" variable, whose evolution may be constrained by the dominant deformation mechanism. To derive the related evolution equations and account for the interdependence of thermodynamic state variables, we use Onsager's thermodynamic extremum principle. Eventually, we solve for our set of equations using an Anorthite/Pyroxene gabbroic composition. The results are used to discuss the interaction between grain-size reduction and phase mixing on strain localization on several simple cases. Bercovici D, Ricard Y (2012) Mechanisms for the generation of plate tectonics by two phase grain damage and pinning. Physics of the Earth and Planetary Interiors 202-203:27-55 Precigout J, Stunitz H (2016) Evidence of phase nucleation during olivine diffusion creep: A new perspective for mantle strain localisation. Earth and Planetary Science Letters 405:94-105
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang; Zou, Jianfeng
To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less
Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.
Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan
2018-05-30
Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.
Quasi-integrability in deformed sine-Gordon models and infinite towers of conserved charges
NASA Astrophysics Data System (ADS)
Blas, Harold; Callisaya, Hector Flores
2018-02-01
We have studied the space-reflection symmetries of some soliton solutions of deformed sine-Gordon models in the context of the quasi-integrability concept. Considering a dual pair of anomalous Lax representations of the deformed model we compute analytically and numerically an infinite number of alternating conserved and asymptotically conserved charges through a modification of the usual techniques of integrable field theories. The charges associated to two-solitons with a definite parity under space-reflection symmetry, i.e. kink-kink (odd parity) and kink-antikink (even parity) scatterings with equal and opposite velocities, split into two infinite towers of conserved and asymptotically conserved charges. For two-solitons without definite parity under space-reflection symmetry (kink-kink and kink-antikink scatterings with unequal and opposite velocities) our numerical results show the existence of the asymptotically conserved charges only. However, we show that in the center-of-mass reference frame of the two solitons the parity symmetries and their associated set of exactly conserved charges can be restored. Moreover, the positive parity breather-like (kink-antikink bound state) solution exhibits a tower of exactly conserved charges and a subset of charges which are periodic in time. We back up our results with extensive numerical simulations which also demonstrate the existence of long lived breather-like states in these models. The time evolution has been simulated by the 4th order Runge-Kutta method supplied with non-reflecting boundary conditions.
NASA Astrophysics Data System (ADS)
Kumar, Jagadish; Ananthakrishna, G.
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.
Kumar, Jagadish; Ananthakrishna, G
2018-01-01
Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum spread for the type C bands and decreasing with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also exhibit a power-law distribution and multifractality.
A Method for Assessing Ground-Truth Accuracy of the 5DCT Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Tai H., E-mail: tdou@mednet.ucla.edu; Thomas, David H.; O'Connell, Dylan P.
2015-11-15
Purpose: To develop a technique that assesses the accuracy of the breathing phase-specific volume image generation process by patient-specific breathing motion model using the original free-breathing computed tomographic (CT) scans as ground truths. Methods: Sixteen lung cancer patients underwent a previously published protocol in which 25 free-breathing fast helical CT scans were acquired with a simultaneous breathing surrogate. A patient-specific motion model was constructed based on the tissue displacements determined by a state-of-the-art deformable image registration. The first image was arbitrarily selected as the reference image. The motion model was used, along with the free-breathing phase information of the originalmore » 25 image datasets, to generate a set of deformation vector fields that mapped the reference image to the 24 nonreference images. The high-pitch helically acquired original scans served as ground truths because they captured the instantaneous tissue positions during free breathing. Image similarity between the simulated and the original scans was assessed using deformable registration that evaluated the pointwise discordance throughout the lungs. Results: Qualitative comparisons using image overlays showed excellent agreement between the simulated images and the original images. Even large 2-cm diaphragm displacements were very well modeled, as was sliding motion across the lung–chest wall boundary. The mean error across the patient cohort was 1.15 ± 0.37 mm, and the mean 95th percentile error was 2.47 ± 0.78 mm. Conclusion: The proposed ground truth–based technique provided voxel-by-voxel accuracy analysis that could identify organ-specific or tumor-specific motion modeling errors for treatment planning. Despite a large variety of breathing patterns and lung deformations during the free-breathing scanning session, the 5-dimensionl CT technique was able to accurately reproduce the original helical CT scans, suggesting its applicability to a wide range of patients.« less
NASA Astrophysics Data System (ADS)
Trautwein-Bruns, Ute; Schulze, Katja C.; Becker, Stephan; Kukla, Peter A.; Urai, Janos L.
2010-10-01
In 2004 the 2544 m deep RWTH-1 well was drilled in the city centre of Aachen to supply geothermal heat for the heating and cooling of the new student service centre "SuperC" of RWTH Aachen University. Aachen is located in a complex geologic and tectonic position at the northern margin of the Variscan deformation front at the borders between the Brabant Massif, the Hohes Venn/Eifel areas and the presently active rift zone of the Lower Rhine Embayment, where existing data on in situ stress show complex changes over short distances. The borehole offers a unique opportunity to study varying stress regimes in this area of complex geodynamic evolution. This study of the in situ stresses is based on the observation of compressive borehole breakouts and drilling-induced tensile fractures in electrical and acoustic image logs. The borehole failure analysis shows that the maximum horizontal stress trends SE-NW which is in accordance with the general West European stress trend. Stress magnitudes modelled in accordance to the Mohr-Coulomb Theory of Sliding Friction indicate minimum and maximum horizontal stress gradients of 0.019 MPa/m and 0.038 MPa/m, respectively. The occurrence of drilling-induced tensile failure and the calculated in situ stress magnitudes are consistent with a model of strike-slip deformation. The observed strike-slip faulting regime supports the extension of the Brabant Shear Zone proposed by Ahorner (1975) into the Aachen city area, where it joins the major normal faulting set of the Roer Valley Graben zone. This intersection of the inherited Variscan deformation grain and the Cenozoic deformation resulting in recent strike-slip and normal faulting activity proves the tectonically different deformation responses over a short distance between the long-lived Brabant Massif and the Cenozoic Rhine Rift System.
Coupled modeling and simulation of electro-elastic materials at large strains
NASA Astrophysics Data System (ADS)
Possart, Gunnar; Steinmann, Paul; Vu, Duc-Khoi
2006-03-01
In the recent years various novel materials have been developed that respond to the application of electrical loading by large strains. An example is the class of so-called electro-active polymers (EAP). Certainly these materials are technologically very interesting, e.g. for the design of actuators in mechatronics or in the area of artificial tissues. This work focuses on the phenomenological modeling of such materials within the setting of continuum-electro-dynamics specialized to the case of electro-hyperelastostatics and the corresponding computational setting. Thereby a highly nonlinear coupled problem for the deformation and the electric potential has to be considered. The finite element method is applied to solve the underlying equations numerically and some exemplary applications are presented.
Non-commutative geometry of the h-deformed quantum plane
NASA Astrophysics Data System (ADS)
Cho, S.; Madore, J.; Park, K. S.
1998-03-01
The h-deformed quantum plane is a counterpart of the q-deformed one in the set of quantum planes which are covariant under those quantum deformations of GL(2) which admit a central determinant. We have investigated the non-commutative geometry of the h-deformed quantum plane. There is a two-parameter family of torsion-free linear connections, a one-parameter sub-family of which are compatible with a skew-symmetric non-degenerate bilinear map. The skew-symmetric map resembles a symplectic 2-form and induces a metric. It is also shown that the extended h-deformed quantum plane is a non-commutative version of the Poincaré half-plane, a surface of constant negative Gaussian
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force
NASA Astrophysics Data System (ADS)
Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.
2013-12-01
Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this timescale indicates ';strong' evidential worth. The negative predictive value (NPV = 0.94) linking non-deformation with non-eruption, is even stronger. But, linking individual deformation events to eruptions is unreliable with existing InSAR data that are rarely available in the critical days to weeks before the eruption of a volcano that has been dormant for decades to millenia. For example, while ground deformation was observed before the 2011 eruptions of Cordon Caulle and Cerro Hudson (both in Chile), the observations were too infrequent to see any change in the pattern or rate of deformation before the eruptions. Before 2011, Cordon Caulle and Cerro Hudson both erupted in the 20th century, but the 2008 eruption of Chaiten (also in Chile) was preceded by centuries of dormancy and still had no measured precursory deformation up to two weeks before eruption. New InSAR missions with more frequent observations along with ground observations from tiltmeters and GPS are essential to constrain whether there is a reliable deformation signal before eruption.
Plate motions and deformations from geologic and geodetic data
NASA Technical Reports Server (NTRS)
Jordan, T. H.
1986-01-01
Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also used to provide constraints on deformation in the western U.S. using very long baseline interferometry observations over a two-year period.
Nguyen, N H; Whatmore, P; Miller, A; Knibb, W
2016-02-01
The main aim of this study was to estimate the heritability for four measures of deformity and their genetic associations with growth (body weight and length), carcass (fillet weight and yield) and flesh-quality (fillet fat content) traits in yellowtail kingfish Seriola lalandi. The observed major deformities included lower jaw, nasal erosion, deformed operculum and skinny fish on 480 individuals from 22 families at Clean Seas Tuna Ltd. They were typically recorded as binary traits (presence or absence) and were analysed separately by both threshold generalized models and standard animal mixed models. Consistency of the models was evaluated by calculating simple Pearson correlation of breeding values of full-sib families for jaw deformity. Genetic and phenotypic correlations among traits were estimated using a multitrait linear mixed model in ASReml. Both threshold and linear mixed model analysis showed that there is additive genetic variation in the four measures of deformity, with the estimates of heritability obtained from the former (threshold) models on liability scale ranging from 0.14 to 0.66 (SE 0.32-0.56) and from the latter (linear animal and sire) models on original (observed) scale, 0.01-0.23 (SE 0.03-0.16). When the estimates on the underlying liability were transformed to the observed scale (0, 1), they were generally consistent between threshold and linear mixed models. Phenotypic correlations among deformity traits were weak (close to zero). The genetic correlations among deformity traits were not significantly different from zero. Body weight and fillet carcass showed significant positive genetic correlations with jaw deformity (0.75 and 0.95, respectively). Genetic correlation between body weight and operculum was negative (-0.51, P < 0.05). The genetic correlations' estimates of body and carcass traits with other deformity were not significant due to their relatively high standard errors. Our results showed that there are prospects for genetic selection to improve deformity in yellowtail kingfish and that measures of deformity should be included in the recording scheme, breeding objectives and selection index in practical selective breeding programmes due to the antagonistic genetic correlations of deformed jaws with body and carcass performance. © 2015 John Wiley & Sons Ltd.
Sparsity-promoting inversion for modeling of irregular volcanic deformation source
NASA Astrophysics Data System (ADS)
Zhai, G.; Shirzaei, M.
2016-12-01
Kīlauea volcano, Hawaíi Island, has a complex magmatic system. Nonetheless, kinematic models of the summit reservoir have so far been limited to first-order analytical solutions with pre-determined geometry. To investigate the complex geometry and kinematics of the summit reservoir, we apply a multitrack multitemporal wavelet-based InSAR (Interferometric Synthetic Aperture Radar) algorithm and a geometry-free time-dependent modeling scheme considering a superposition of point centers of dilatation (PCDs). Applying Principal Component Analysis (PCA) to the time-dependent source model, six spatially independent deformation zones (i.e., reservoirs) are identified, whose locations are consistent with previous studies. Time-dependence of the model allows also identifying periods of correlated or anti-correlated behaviors between reservoirs. Hence, we suggest that likely the reservoir are connected and form a complex magmatic reservoir [Zhai and Shirzaei, 2016]. To obtain a physically-meaningful representation of the complex reservoir, we devise a new sparsity-promoting modeling scheme assuming active magma bodies are well-localized melt accumulations (i.e., outliers in background crust). The major steps include inverting surface deformation data using a hybrid L-1 and L-2 norm regularization approach to solve for sparse volume change distribution and then implementing a BEM based method to solve for opening distribution on a triangular mesh representing the complex reservoir. Using this approach, we are able to constrain the internal excess pressure of magma body with irregular geometry, satisfying uniformly pressurized boundary condition on the surface of magma chamber. The inversion method with sparsity constraint is tested using five synthetic source geometries, including torus, prolate ellipsoid, and sphere as well as horizontal and vertical L-shape bodies. The results show that source dimension, depth and shape are well recovered. Afterward, we apply this modeling scheme to deformation observed at Kilauea summit to constrain the magmatic source geometry, and revise the kinematics of Kilauea's shallow plumbing system. Such a model is valuable for understanding the physical processes in a magmatic reservoir and the method can readily be applied to other volcanic settings.
Haptics-based dynamic implicit solid modeling.
Hua, Jing; Qin, Hong
2004-01-01
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.
Centrifuge models simulating magma emplacement during oblique rifting
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Bonini, Marco; Innocenti, Fabrizio; Manetti, Piero; Mulugeta, Genene
2001-07-01
A series of centrifuge analogue experiments have been performed to model the mechanics of continental oblique extension (in the range of 0° to 60°) in the presence of underplated magma at the base of the continental crust. The experiments reproduced the main characteristics of oblique rifting, such as (1) en-echelon arrangement of structures, (2) mean fault trends oblique to the extension vector, (3) strain partitioning between different sets of faults and (4) fault dips higher than in purely normal faults (e.g. Tron, V., Brun, J.-P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics 188, 71-84). The model results show that the pattern of deformation is strongly controlled by the angle of obliquity ( α), which determines the ratio between the shearing and stretching components of movement. For α⩽35°, the deformation is partitioned between oblique-slip and normal faults, whereas for α⩾45° a strain partitioning arises between oblique-slip and strike-slip faults. The experimental results show that for α⩽35°, there is a strong coupling between deformation and the underplated magma: the presence of magma determines a strain localisation and a reduced strain partitioning; deformation, in turn, focuses magma emplacement. Magmatic chambers form in the core of lower crust domes with an oblique trend to the initial magma reservoir and, in some cases, an en-echelon arrangement. Typically, intrusions show an elongated shape with a high length/width ratio. In nature, this pattern is expected to result in magmatic and volcanic belts oblique to the rift axis and arranged en-echelon, in agreement with some selected natural examples of continental rifts (i.e. Main Ethiopian Rift) and oceanic ridges (i.e. Mohns and Reykjanes Ridges).
Rotation, narrowing and preferential reactivation of brittle structures during oblique rifting
NASA Astrophysics Data System (ADS)
Huismans, R. S.; Duclaux, G.; May, D.
2017-12-01
Occurrence of multiple faults populations with contrasting orientations in oblique continental rifts and passive margins has long sparked debate about relative timing of deformation events and tectonic interpretations. Here, we use high-resolution three-dimensional thermo-mechanical numerical modeling to characterize the evolution of the structural style associated with moderately oblique rifting in the continental lithosphere. Automatic analysis of the distribution of active extensional shears at the surface of the model demonstrates a characteristic deformation sequence. We show that upon localization, Phase 1 wide oblique en-échelon grabens develop, limited by extensional shears oriented orthogonal to σ3. Subsequent widening of the grabens is accompanied by a progressive rotation of the Phase 1 extensional shears that become sub-orthogonal the plate motion direction. Phase 2 is marked by narrowing of active deformation resulting from thinning of the continental lithosphere and development of a second-generation of extensional shears. During Phase 2 deformation localizes both on plate motion direction-orthogonal structures that reactivate rotated Phase 1 shears, and on new oblique structures orthogonal to σ3. Finally, Phase 3 consists in the oblique rupture of the continental lithosphere and produces an oceanic domain where oblique ridge segments are linked with highly oblique accommodation zones. We conclude that while new structures form normal to σ3 in an oblique rift, progressive rotation and long-term reactivation of Phase 1 structures promotes orthorhombic fault systems, critical to accommodate upper crustal extension and control oblique passive margin architecture. The distribution, orientation, and evolution of frictional-plastic structures observed in our models is remarkably similar to documented fault populations in the Gulf of Aden conjugate passive margins, which developed in moderately oblique extensional settings.
Deformable segmentation via sparse representation and dictionary learning.
Zhang, Shaoting; Zhan, Yiqiang; Metaxas, Dimitris N
2012-10-01
"Shape" and "appearance", the two pillars of a deformable model, complement each other in object segmentation. In many medical imaging applications, while the low-level appearance information is weak or mis-leading, shape priors play a more important role to guide a correct segmentation, thanks to the strong shape characteristics of biological structures. Recently a novel shape prior modeling method has been proposed based on sparse learning theory. Instead of learning a generative shape model, shape priors are incorporated on-the-fly through the sparse shape composition (SSC). SSC is robust to non-Gaussian errors and still preserves individual shape characteristics even when such characteristics is not statistically significant. Although it seems straightforward to incorporate SSC into a deformable segmentation framework as shape priors, the large-scale sparse optimization of SSC has low runtime efficiency, which cannot satisfy clinical requirements. In this paper, we design two strategies to decrease the computational complexity of SSC, making a robust, accurate and efficient deformable segmentation system. (1) When the shape repository contains a large number of instances, which is often the case in 2D problems, K-SVD is used to learn a more compact but still informative shape dictionary. (2) If the derived shape instance has a large number of vertices, which often appears in 3D problems, an affinity propagation method is used to partition the surface into small sub-regions, on which the sparse shape composition is performed locally. Both strategies dramatically decrease the scale of the sparse optimization problem and hence speed up the algorithm. Our method is applied on a diverse set of biomedical image analysis problems. Compared to the original SSC, these two newly-proposed modules not only significant reduce the computational complexity, but also improve the overall accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weiss, J. R.; Ito, G.; Brooks, B. A.; Olive, J. A. L.; Foster, J. H.; Howell, S. M.
2015-12-01
Some of the most destructive earthquakes on Earth are associated with active orogenic wedges. Despite a sound understanding of the basic mechanics that govern whole wedge structure over geologic time scales and a growing body of studies that have characterized the deformation associated with historic to recent earthquakes, first order questions remain about the linkage of the two sets of processes at the intermediate seismotectonic timescales. Numerical models have the power to test the effects of specific mechanical conditions on the evolution of observables at active orogenic wedges. Here we use a two-dimensional, continuum mechanics-based, finite difference method with a visco-elasto-plastic rheology coupled with surface processes to investigate the spatiotemporal distribution of deformation during wedge growth. The model simulates the contraction of a crustal layer overlying a weak base (décollement) against a rigid backstop and the spontaneous nucleation and evolution of fault zones due to cohesive, Mohr-Coulomb failure with strain weakening. Consistent with critical wedge theory, the average slope across the wedge is controlled by the relative frictional strengths of the wedge and décollement. Initial calculations predict changes in wedge deformation on short geologic timescales (103-105yrs) that involve episodes of widening as new, foreland-verging thrusts nucleate near the surface beyond the wedge toe and propagate down-dip to intersect the décollement. All the while, the wedge thickens via slip on older, internal fault zones. The aim of this study is to identify the parameters controlling the timescales of 1) episodic widening versus thickening and 2) nucleation and life-span of individual fault zones. These are initial steps needed to link earthquake observations to the long-term tectonic states inferred at various orogenic belts around the world.
NASA Astrophysics Data System (ADS)
Cattin, Rodolphe; Doubre, Cécile; de Chabalier, Jean-Bernard; King, Geoffrey; Vigny, Christophe; Avouac, Jean-Philippe; Ruegg, Jean-Claude
2005-11-01
Over the last three decades a host of information on rifting process relating to the geological and thermal structure, long-time scale deformation (Quaternary and Holocene) and rifting cycle displacement across the Asal-Ghoubbet rift has been made available. These data are interpreted with a two-dimensional thermo-mechanical model that incorporates rheological layering of the lithosphere, dyke inflation and faulting. Active fault locations and geometry are mainly controlled by both thermal structure and magma intrusion into the crust. The distributed slip throughout the inner rift is related to the closeness of magma chamber, leading to additional stress into the upper thinned crust. Assuming a constant Arabia-Somalia motion of 11 mm/year, the variation of subsidence rate between the last 100 and 9 ka is associated with a decrease of the average injection rate from 10 to 5 mm/year. These values, about equal to the regional opening rate, suggest that both volcanism and tectonic play an equivalent role in the rifting process. Our modelled sequence of events gives one possible explanation for both vertical and horizontal displacements observed since the 1978 seismovolcanic crisis. Although part of the post-rifting deformation could be due to viscous relaxation, the high opening rate in the first years after the event and the abrupt velocity change in 1984-1986 argue for a large dyke inflation of 12 cm/year ending in 1985. The asymmetric and constant pattern of the GPS velocity since 1991 suggests that present post-rifting deformation is mainly controlled by fault creep and regional stretching. This study demonstrates the internal consistency of the data set, highlights the role of magmatism in the mechanics of crustal stretching and reveals a complex post-rifting process including magma injection, fault creep and regional stretching.
Model-based registration for assessment of spinal deformities in idiopathic scoliosis
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans
2014-01-01
Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.
Quantifying Uncertainty in Inverse Models of Geologic Data from Shear Zones
NASA Astrophysics Data System (ADS)
Davis, J. R.; Titus, S.
2016-12-01
We use Bayesian Markov chain Monte Carlo simulation to quantify uncertainty in inverse models of geologic data. Although this approach can be applied to many tectonic settings, field areas, and mathematical models, we focus on transpressional shear zones. The underlying forward model, either kinematic or dynamic, produces a velocity field, which predicts the dikes, foliation-lineations, crystallographic preferred orientation (CPO), shape preferred orientation (SPO), and other geologic data that should arise in the shear zone. These predictions are compared to data using modern methods of geometric statistics, including the Watson (for lines such as dike poles), isotropic matrix Fisher (for orientations such as foliation-lineations and CPO), and multivariate normal (for log-ellipsoids such as SPO) distributions. The result of the comparison is a likelihood, which is a key ingredient in the Bayesian approach. The other key ingredient is a prior distribution, which reflects the geologist's knowledge of the parameters before seeing the data. For some parameters, such as shear zone strike and dip, we identify realistic informative priors. For other parameters, where the geologist has no prior knowledge, we identify useful uninformative priors.We investigate the performance of this approach through numerical experiments on synthetic data sets. A fundamental issue is that many models of deformation exhibit asymptotic behavior (e.g., flow apophyses, fabric attractors) or periodic behavior (e.g., SPO when the clasts are rigid), which causes the likelihood to be too uniform. Based on our experiments, we offer rules of thumb for how many data, of which types, are needed to constrain deformation.
Battaglia, Maurizio; Hill, D.P.
2009-01-01
Joint measurements of ground deformation and micro-gravity changes are an indispensable component for any volcano monitoring strategy. A number of analytical mathematical models are available in the literature that can be used to fit geodetic data and infer source location, depth and density. Bootstrap statistical methods allow estimations of the range of the inferred parameters. Although analytical models often assume that the crust is elastic, homogenous and isotropic, they can take into account different source geometries, the influence of topography, and gravity background noise. The careful use of analytical models, together with high quality data sets, can produce valuable insights into the nature of the deformation/gravity source. Here we present a review of various modeling methods, and use the historical unrest at Long Valley caldera (California) from 1982 to 1999 to illustrate the practical application of analytical modeling and bootstrap to constrain the source of unrest. A key question is whether the unrest at Long Valley since the late 1970s can be explained without calling upon an intrusion of magma. The answer, apparently, is no. Our modeling indicates that the inflation source is a slightly tilted prolate ellipsoid (dip angle between 91?? and 105??) at a depth of 6.5 to 7.9??km beneath the caldera resurgent dome with an aspect ratio between 0.44 and 0.60, a volume change from 0.161 to 0.173??km3 and a density of 1241 to 2093??kg/m3. The larger uncertainty of the density estimate reflects the higher noise of gravity measurements. These results are consistent with the intrusion of silicic magma with a significant amount of volatiles beneath the caldera resurgent dome. ?? 2008 Elsevier B.V.
A unified approach to fluid-flow, geomechanical, and seismic modelling
NASA Astrophysics Data System (ADS)
Yarushina, Viktoriya; Minakov, Alexander
2016-04-01
The perturbations of pore pressure can generate seismicity. This is supported by observations from human activities that involve fluid injection into rocks at high pressure (hydraulic fracturing, CO2 storage, geothermal energy production) and natural examples such as volcanic earthquakes. Although the seismic signals that emerge during geotechnical operations are small both in amplitude and duration when compared to natural counterparts. A possible explanation for the earthquake source mechanism is based on a number of in situ stress measurements suggesting that the crustal rocks are close to its plastic yield limit. Hence, a rapid increase of the pore pressure decreases the effective normal stress, and, thus, can trigger seismic shear deformation. At the same time, little attention has been paid to the fact that the perturbation of fluid pressure itself represents an acoustic source. Moreover, non-double-couple source mechanisms are frequently reported from the analysis of microseismicity. A consistent formulation of the source mechanism describing microseismic events should include both a shear and isotropic component. Thus, improved understanding of the interaction between fluid flow and seismic deformation is needed. With this study we aim to increase the competence in integrating real-time microseismic monitoring with geomechanical modelling such that there is a feedback loop between monitored deformation and stress field modelling. We propose fully integrated seismic, geomechanical and reservoir modelling. Our mathematical formulation is based on fundamental set of force balance, mass balance, and constitutive poro-elastoplastic equations for two-phase media consisting of deformable solid rock frame and viscous fluid. We consider a simplified 1D modelling setup for consistent acoustic source and wave propagation in poro-elastoplastic media. In this formulation the seismic wave is generated due to local changes of the stress field and pore pressure induced by e.g. fault generation or strain localization. This approach gives unified framework to characterize microseismicity of both class-I (pressure induced) and class-II (stress triggered) type of events. We consider two modelling setups. In the first setup the event is located within the reservoir and associated with pressure/stress drop due to fracture initiation. In the second setup we assume that seismic wave from a distant source hits a reservoir. The unified formulation of poro-elastoplastic deformation allows us to link the macroscopic stresses to local seismic instability.
NASA Astrophysics Data System (ADS)
Sigurdardottir, Dorotea H.; Stearns, Jett; Glisic, Branko
2017-07-01
The deformed shape is a consequence of loading the structure and it is defined by the shape of the centroid line of the beam after deformation. The deformed shape is a universal parameter of beam-like structures. It is correlated with the curvature of the cross-section; therefore, any unusual behavior that affects the curvature is reflected through the deformed shape. Excessive deformations cause user discomfort, damage to adjacent structural members, and may ultimately lead to issues in structural safety. However, direct long-term monitoring of the deformed shape in real-life settings is challenging, and an alternative is indirect determination of the deformed shape based on curvature monitoring. The challenge of the latter is an accurate evaluation of error in the deformed shape determination, which is directly correlated with the number of sensors needed to achieve the desired accuracy. The aim of this paper is to study the deformed shape evaluated by numerical double integration of the monitored curvature distribution along the beam, and create a method to predict the associated errors and suggest the number of sensors needed to achieve the desired accuracy. The error due to the accuracy in the curvature measurement is evaluated within the scope of this work. Additionally, the error due to the numerical integration is evaluated. This error depends on the load case (i.e., the shape of the curvature diagram), the magnitude of curvature, and the density of the sensor network. The method is tested on a laboratory specimen and a real structure. In a laboratory setting, the double integration is in excellent agreement with the beam theory solution which was within the predicted error limits of the numerical integration. Consistent results are also achieved on a real structure—Streicker Bridge on Princeton University campus.
Three-dimensional deformable-model-based localization and recognition of road vehicles.
Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong
2012-01-01
We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.
Displacement-based back-analysis of the model parameters of the Nuozhadu high earth-rockfill dam.
Wu, Yongkang; Yuan, Huina; Zhang, Bingyin; Zhang, Zongliang; Yu, Yuzhen
2014-01-01
The parameters of the constitutive model, the creep model, and the wetting model of materials of the Nuozhadu high earth-rockfill dam were back-analyzed together based on field monitoring displacement data by employing an intelligent back-analysis method. In this method, an artificial neural network is used as a substitute for time-consuming finite element analysis, and an evolutionary algorithm is applied for both network training and parameter optimization. To avoid simultaneous back-analysis of many parameters, the model parameters of the three main dam materials are decoupled and back-analyzed separately in a particular order. Displacement back-analyses were performed at different stages of the construction period, with and without considering the creep and wetting deformations. Good agreement between the numerical results and the monitoring data was obtained for most observation points, which implies that the back-analysis method and decoupling method are effective for solving complex problems with multiple models and parameters. The comparison of calculation results based on different sets of back-analyzed model parameters indicates the necessity of taking the effects of creep and wetting into consideration in the numerical analyses of high earth-rockfill dams. With the resulting model parameters, the stress and deformation distributions at completion are predicted and analyzed.
The Formation of Ganymede's Grooved Terrain: Importance of Strain Weakening
NASA Astrophysics Data System (ADS)
Bland, M. T.; McKinnon, W. B.; Showman, A. P.
2008-12-01
Nearly two-thirds of Ganymede's surface consists of relatively bright, young, tectonically deformed terrain dubbed grooved terrain. The grooved terrain consists of sets of parallel, undulatory ridges and troughs with peak to trough amplitudes of several hundred meters and periodic spacings that range from 3 to 10~km. The low slopes and periodic spacing of the grooves suggest that they formed via unstable extension of the ice lithosphere [e.g. Fink and Fletcher 1981, LPS XII; Pappalardo et al. 1998, Icarus 135]. Application of analytical models of unstable extension to Ganymede suggest that large amplitude grooves with appropriate wavelengths can form if the lithosphere is in pervasive brittle failure and if the lithospheric thermal gradient was relatively high (~45K km-1) [Dombard and McKinnon 2001, Icarus 154]; however, numerical models of unstable extension struggle to produce topographic amplitudes consistent with Ganymede's grooves (maximum amplitudes are a factor of five less than typical large amplitude grooves) [Bland and Showman 2007, Icarus 189]. The difficulties in producing large amplitude deformation may be overcome by the inclusion of strain weakening in models of groove formation. Strain weakening effects account for a material's tendency to strain more easily as viscous and/or plastic deformation accumulates, and as strain localizes in shear zones or along faults. When included in models of terrestrial extension, such effects can increase deformation amplitudes by up to several orders of magnitude [e.g. Fredericksen and Braun 2001, EPSL 188; Behn et al. 2002, EPSL 202]. Here we present the results of simulations of Ganymede's groove formation that include various strain weakening processes. Incorporation of a simple damage rheology, in which the yield strength of the ice lithosphere decreases as plastic strain accumulates, permits a factor of three increase in the amplitude of the simulated grooves, generating topography of 200~m or more. Such groove amplitudes are consistent with the lower-end of the range of observed groove amplitudes. More sophisticated strain weakening rheologies are likely to further increase deformation amplitudes. This work is supported by NASA PG&G.
Prophylactic Z-plasty - correcting helical rim deformity from wedge excision.
Kim, Peter
2010-09-01
Wedge excision is a popular and well documented surgical method for treating a wide range of skin lesions and cancers of the ear in the general practice setting. In the majority of cases, this is a simple and cosmetically pleasing treatment. However, it may create helical rim deformity. This article describes a simple method of preventing such deformity using prophylactic Z-plasty.
Gan, Weijun; Zhang, P.; Shen, Z.-K.; Prescott, W.H.; Svarc, J.L.
2003-01-01
We suggest a 2-stage deformation model for the Eastern California Shear Zone (ECSZ) to explain the geometry of the Garlock fault trace. We assume the Garlock fault was originally straight and then was gradually curved by right-lateral shear deformation across the ECSZ. In our 2-stage deformation model, the first stage involves uniform shear deformation across the eastern part of the shear zone, and the second stage involves uniform shear deformation across the entire shear zone. In addition to the current shape of the Garlock fault, our model incorporates constraints on contemporary deformation rates provided by GPS observations. We find that the best fitting age for initiation of shear in eastern part of the ECSZ is about 5.0 ?? 0.4 Ma, and that deformation of the western part started about 1.6 Myr later.
NASA Astrophysics Data System (ADS)
Stewart, R. A.; Reimold, W. U.; Charlesworth, E. G.; Ortlepp, W. D.
2001-07-01
In August 1998, a major deformation zone was exposed over several metres during mining operations on 87 Level (2463 m below surface) at Western Deep Levels Gold Mine, southwest of Johannesburg, providing a unique opportunity to study the products of a recent rockburst. This zone consists of three shear zones, with dip-slip displacements of up to 15 cm, that are oriented near-parallel to the advancing stope face. Jogs and a highly pulverised, cataclastic 'rock-flour' are developed on the displacement surfaces, and several sets of secondary extensional fractures occur on either side of the shear zones. A set of pinnate (feather) joints intersects the fault surfaces perpendicular to the slip vector. Microscopically, the shear zones consist of two pinnate joint sets that exhibit cataclastic joint fillings; quartz grains display intense intragranular fracturing. Secondary, intergranular extension fractures are associated with the pinnate joints. Extensional deformation is also the cause of the breccia fill of the pinnate joints. The initial deformation experienced by this zone is brittle and tensile, and is related to stresses induced by mining. This deformation has been masked by later changes in the stress field, which resulted in shearing. This deformation zone does not appear to be controlled by pre-existing geological features and, thus, represents a 'burst fracture', which is believed to be related to a seismic event of magnitude ML=2.1 recorded in July 1998, the epicentre of which was located to within 50 m of the study locality.
Meshless Modeling of Deformable Shapes and their Motion
Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.
2010-01-01
We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614
Aerostructural Level Set Topology Optimization for a Common Research Model Wing
NASA Technical Reports Server (NTRS)
Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia
2014-01-01
The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.
NASA Astrophysics Data System (ADS)
Tavani, Stefano; Granado, Pablo; Cantanero, Irene; Balsamo, Fabrizio; Corradetti, Amerigo; Muñoz, Josep
2017-04-01
In this contribution we describe deformation bands developed due to the interplay between shearing and mechanical and chemical compaction in Paleocene quartz-rich calcarenites. The studied structures are located in the footwall of the Cotiella Thrust (Spanish Pyrennes) and form anastomosed, mm-thick tabular bands, composed of high concentration of quartz grains. The bands strike perpendicular to the local transport direction of the regional thrust sheet, thus indicating a tectonic origin, and are organized in three sets. One set is perpendicular to the shallow-dipping bedding surface, while the other two are roughly perpendicular to each other and form an angle of 45°, in opposite directions, with the bedding. No macroscopic evidence of shearing is found along these bands. Optical microscope and SEM investigations on both undeformed and deformed rocks indicate that the high concentration of quartz within the deformation bands was caused by the localized pressure-enhanced dissolution of calcite grains, which determined the enrichment of the less soluble quartz grains. Quartz grains fracturing, fragmentation and crushing was observed along in all deformation bands, whereas cataclasis and shear occurs only along oblique oblique-to-bedding sets. All these features indicate that studied deformation bands are hybrid structures most likely developed during layer-parallel shortening. In detail, bedding perpendicular and bedding oblique structures can be interpreted as pure compaction and shear-enhanced compaction bands, respectively.
NASA Astrophysics Data System (ADS)
Reddy, S. M.; Collins, A. S.; Mruma, A.
2003-11-01
The Palaeoproterozoic Usagaran Orogen of Tanzania contains the Earth's oldest reported examples of subduction-related eclogite facies rocks. Detailed field mapping of gneisses exposed in the high-grade, eclogite-bearing part of the orogen (the Isimani Suite) indicates a complex deformation and thermal history. Deformation in the Isimani Suite can be broadly subdivided into five events. The first of these (D 1), associated with formation of eclogite facies metamorphism, is strongly overprinted by a pervasive deformation (D 2) at amphibolite facies conditions, which resulted in the accumulation of high strains throughout all of the exposed Isimani rocks. The geometry of foliations and lineations developed during D 2 deformation are variable and have different shear directions that enable five D 2 domains to be identified. Analysis of these domains indicates a geometrical and kinematic pattern that is interpreted to have formed by strain and kinematic partitioning during sinistral transpression. U-Pb SHRIMP zircon ages from a post-D 2 granite and previously published geochronological data from the Usagaran eclogites indicate this deformation took place between 2000 ± 1 Ma and 1877 ± 7 Ma (at 1σ error). Subsequent greenschist facies deformation, localised as shear zones on boundaries separating D 2 domains, have both contractional and extensional geometries that indicate post-1877 Ma reactivation of the Isimani Suite. This reactivation may have taken place during Palaeoproterozoic exhumation of the Usagaran Orogen or may be the result of deformation associated with the Neoproterozoic East African Orogen. U-Th-Pb SHRIMP zircon ages from an Isimani gneiss sample and xenocrysts in a "post-tectonic" granite yield ˜2.7 Ga ages and are similar to published Nd model ages from both the Tanzanian Craton and gneiss exposed east of the Usagaran belt in the East African Orogen. These age data indicate that the Isimani Suite of the Usagaran Orogen reflects reworking of Archaean continental crust. The extensive distribution of ˜2.7 Ga crust in both the footwall and hangingwall of the Usagaran Orogen can only be explained by the collision of two continents if the continents fortuitously had the same protolith ages. We propose that a more likely scenario is that the protoliths of the mafic eclogites were erupted in a marginal basin setting as either oceanic crust, or as limited extrusions along the rifted margin of the Tanzanian Craton. The Usagaran Orogen may therefore reflect the mid-Palaeoproterozoic reassembly of a continental ribbon partially or completely rifted off the craton and separated from it by a marginal basin.
Application of FE software Elmer to the modeling of crustal-scale processes
NASA Astrophysics Data System (ADS)
Maierová, Petra; Guy, Alexandra; Lexa, Ondrej; Cadek, Ondrej
2010-05-01
We extended Elmer (the open source finite element software for multiphysical problems, http://www.csc.fi/english/pages/elmer) by user-written procedures for the two-dimensional modeling of crustal-scale processes. The standard version of Elmer is an appropriate tool for modeling of thermomechanical convection with non-linear viscous rheology. In geophysics, it might be suitable for some type of mantle convection modeling. Unlike the mantle, the crust is very heterogeneous. It consists of materials with distinct rheological properties that are subject to highly varied conditions: low pressure and temperature near the surface of the Earth and relatively high pressure and temperature at a depth of several tens of kilometers. Moreover, the deformation in the upper crust is mostly brittle and the strain is concentrated into narrow shear zones and thrusts. In order to simulate the brittle behavior of the crust, we implemented pressure-dependent visco-plastic rheology. The material heterogeneity and chemical convection is implemented in terms of active markers. Another special feature of the crust, the moving free surface, is already included in Elmer by means of a moving computational grid. Erosion can easily be added in this scheme. We tested the properties of our formulation of plastic flow on several numerical experiments simulating the deformation of material under compressional and extensional stresses. In the first step, we examined angles of shear zones that form in a plastically deforming material for different material parameters and grid resolutions. A more complex setting of "sandbox-type" experiments containing heterogeneous material, strain-softening and boundary friction was considered as a next testing case. To illustrate the abilities of the extended Elmer software in crustal deformation studies, we present two models of geological processes: diapirism of the lower crust and a channel flow forced by indentation. Both these processes are assumed to take place during the late stage of the Variscan orogeny in the area of the Bohemian Massif and they are well documented in the geological record. Extensive geological data are thus available and they can be compared with the results of our numerical simulations. Firstly, we model the indentation of a stiff block into a thick and hot crustal root and the consequent flow of the orogenic crust. For the development of the flow, the free surface deformation and erosion are essential. The importance of plastic deformation varies with the thermal structure of the domain. Secondly, we show an influence of thermal, density and viscosity structure of the crust on the time evolution and the final geometry of diapirs. The importance of the strain-rate dependence of viscosity, which is neglected in some numerical models, is discussed.
Lidar-Based Rock-Fall Hazard Characterization of Cliffs
Collins, Brian D.; Greg M.Stock,
2017-01-01
Rock falls from cliffs and other steep slopes present numerous challenges for detailed geological characterization. In steep terrain, rock-fall source areas are both dangerous and difficult to access, severely limiting the ability to make detailed structural and volumetric measurements necessary for hazard assessment. Airborne and terrestrial lidar survey methods can provide high-resolution data needed for volumetric, structural, and deformation analyses of rock falls, potentially making these analyses straightforward and routine. However, specific methods to collect, process, and analyze lidar data of steep cliffs are needed to maximize analytical accuracy and efficiency. This paper presents observations showing how lidar data sets should be collected, filtered, registered, and georeferenced to tailor their use in rock fall characterization. Additional observations concerning surface model construction, volumetric calculations, and deformation analysis are also provided.
The ANACONDA algorithm for deformable image registration in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weistrand, Ola; Svensson, Stina, E-mail: stina.svensson@raysearchlabs.com
2015-01-15
Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularizationmore » term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions: ANACONDA performs well in comparison with other algorithms. By including CT/CBCT data in the validation, the various aspects of the algorithm such as its ability to handle different modalities, large deformations, and air pockets are shown.« less
NASA Astrophysics Data System (ADS)
McGovern, S.; Kollet, S. J.; Buerger, C. M.; Schwede, R. L.; Podlaha, O. G.
2017-12-01
In the context of sedimentary basins, we present a model for the simulation of the movement of ageological formation (layers) during the evolution of the basin through sedimentation and compactionprocesses. Assuming a single phase saturated porous medium for the sedimentary layers, the modelfocuses on the tracking of the layer interfaces, through the use of the level set method, as sedimentationdrives fluid-flow and reduction of pore space by compaction. On the assumption of Terzaghi's effectivestress concept, the coupling of the pore fluid pressure to the motion of interfaces in 1-D is presented inMcGovern, et.al (2017) [1] .The current work extends the spatial domain to 3-D, though we maintain the assumption ofvertical effective stress to drive the compaction. The idealized geological evolution is conceptualized asthe motion of interfaces between rock layers, whose paths are determined by the magnitude of a speedfunction in the direction normal to the evolving layer interface. The speeds normal to the interface aredependent on the change in porosity, determined through an effective stress-based compaction law,such as the exponential Athy's law. Provided with the speeds normal to the interface, the level setmethod uses an advection equation to evolve a potential function, whose zero level set defines theinterface. Thus, the moving layer geometry influences the pore pressure distribution which couplesback to the interface speeds. The flexible construction of the speed function allows extension, in thefuture, to other terms to represent different physical processes, analogous to how the compaction rulerepresents material deformation.The 3-D model is implemented using the generic finite element method framework Deal II,which provides tools, building on p4est and interfacing to PETSc, for the massively parallel distributedsolution to the model equations [2]. Experiments are being run on the Juelich Supercomputing Center'sJureca cluster. [1] McGovern, et.al. (2017). Novel basin modelling concept for simulating deformation from mechanical compaction using level sets. Computational Geosciences, SI:ECMOR XV, 1-14.[2] Bangerth, et. al. (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software (TOMS), 38(2):14.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbanpour, Saeede; Zecevic, Milovan; Kumar, Anil
An elasto-plastic polycrystal plasticity model is developed and applied to an Inconel 718 (IN718) superalloy that was produced by additive manufacturing (AM). The model takes into account the contributions of solid solution, precipitates shearing, and grain size and shape effects into the initial slip resistance. Non-Schmid effects and backstress are also included in the crystal plasticity model for activating slip. The hardening law for the critical resolved shear stress is based on the evolution of dislocation density. In using the same set of material and physical parameters, the model is compared against a suite of compression, tension, and large-strain cyclicmore » mechanical test data applied in different AM build directions. We demonstrate that the model is capable of predicting the particularities of both monotonic and cyclic deformation to large strains of the alloy, including decreasing hardening rate during monotonic loading, the non-linear unloading upon the load reversal, the Bauschinger effect, the hardening rate change during loading in the reverse direction as well as plastic anisotropy and the concomitant microstructure evolution. It is anticipated that the general model developed here can be applied to other multiphase alloys containing precipitates.« less
Ghorbanpour, Saeede; Zecevic, Milovan; Kumar, Anil; ...
2017-09-14
An elasto-plastic polycrystal plasticity model is developed and applied to an Inconel 718 (IN718) superalloy that was produced by additive manufacturing (AM). The model takes into account the contributions of solid solution, precipitates shearing, and grain size and shape effects into the initial slip resistance. Non-Schmid effects and backstress are also included in the crystal plasticity model for activating slip. The hardening law for the critical resolved shear stress is based on the evolution of dislocation density. In using the same set of material and physical parameters, the model is compared against a suite of compression, tension, and large-strain cyclicmore » mechanical test data applied in different AM build directions. We demonstrate that the model is capable of predicting the particularities of both monotonic and cyclic deformation to large strains of the alloy, including decreasing hardening rate during monotonic loading, the non-linear unloading upon the load reversal, the Bauschinger effect, the hardening rate change during loading in the reverse direction as well as plastic anisotropy and the concomitant microstructure evolution. It is anticipated that the general model developed here can be applied to other multiphase alloys containing precipitates.« less
Three-dimensional visualization system as an aid for facial surgical planning
NASA Astrophysics Data System (ADS)
Barre, Sebastien; Fernandez-Maloigne, Christine; Paume, Patricia; Subrenat, Gilles
2001-05-01
We present an aid for facial deformities treatment. We designed a system for surgical planning and prediction of human facial aspect after maxillo-facial surgery. We study the 3D reconstruction process of the tissues involved in the simulation, starting from CT acquisitions. 3D iso-surfaces meshes of soft tissues and bone structures are built. A sparse set of still photographs is used to reconstruct a 360 degree(s) texture of the facial surface and increase its visual realism. Reconstructed objects are inserted into an object-oriented, portable and scriptable visualization software allowing the practitioner to manipulate and visualize them interactively. Several LODs (Level-Of- Details) techniques are used to ensure usability. Bone structures are separated and moved by means of cut planes matching orthognatic surgery procedures. We simulate soft tissue deformations by creating a physically-based springs model between both tissues. The new static state of the facial model is computed by minimizing the energy of the springs system to achieve equilibrium. This process is optimized by transferring informations like participation hints at vertex-level between a warped generic model and the facial mesh.
Kinematics of the Southwestern Caribbean from New Geodetic Observations
NASA Astrophysics Data System (ADS)
Ruiz, G.; La Femina, P. C.; Tapia, A.; Camacho, E.; Chichaco, E.; Mora-Paez, H.; Geirsson, H.
2014-12-01
The interaction of the Caribbean, Cocos, Nazca, and South American plates has resulted in a complex plate boundary zone and the formation of second order tectonic blocks (e.g., the North Andean, Choco and Central America Fore Arc blocks). The Panama Region [PR], which is bounded by these plates and blocks, has been interpreted and modeled as a single tectonic block or deformed plate boundary. Previous research has defined the main boundaries: 1) The Caribbean plate subducts beneath the isthmus along the North Panama Deformed Belt, 2) The Nazca plate converges at very high obliquity with the PR and motion is assumed along a left lateral transform fault and the South Panama Deformed Belt, 3) The collision of PR with NW South America (i.e., the N. Andean and Choco blocks) has resulted in the Eastern Panama Deformed Belt, and 4) collision of the Cocos Ridge in the west is accommodated by crustal shortening, Central American Fore Arc translation and deformation across the Central Costa Rican Deformed Belt. In addition, there are several models that suggest internal deformation of this region by cross-isthmus strike-slip faults. Recent GPS observations for the PR indicates movement to the northeast relative to a stable Caribbean plate at rates of 6.9±4.0 - 7.8±4.8 mm a-1 from southern Costa Rica to eastern Panama, respectively (Kobayashi et al., 2014 and references therein). However, the GPS network did not have enough spatial density to estimate elastic strain accumulation across these faults. Recent installation and expansion of geodetic networks in southwestern Caribbean (i.e., Costa Rica, Panama, and Colombia) combined with geological and geophysical observations provide a new input to investigate crustal deformation processes in this complex tectonic setting, specifically related to the PR. We use new and existing GPS data to calculate a new velocity field for the region and to investigate the kinematics of the PR, including elastic strain accumulation on the major plate boundaries. Expanding our GPS observations within these proposed small blocks could allow us to solve for Euler vectors and calculate their rotation, strain accumulation and slip rates on the major fault systems. Our results combined with the local seismicity could help authorities to reduce uncertainties in seismic risk evaluations.
The thermal and mechanical deformation study of up-stream pumping mechanical seal
NASA Astrophysics Data System (ADS)
Chen, H. L.; Xu, C.; Zuo, M. Z.; Wu, Q. B.
2015-01-01
Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation.
NASA Astrophysics Data System (ADS)
Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong
2018-04-01
According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).
Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.
2008-01-01
Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the importance of this more realistic description in gravity calculations. ?? 2008 Society of Exploration Geophysicists. All rights reserved.
GPS Imaging of Time-Dependent Seasonal Strain in Central California
NASA Astrophysics Data System (ADS)
Kraner, M.; Hammond, W. C.; Kreemer, C.; Borsa, A. A.; Blewitt, G.
2016-12-01
Recently, studies are suggesting that crustal deformation can be time-dependent and nontectonic. Continuous global positioning system (cGPS) measurements are now showing how steady long-term deformation can be influenced by factors such as fluctuations in loading and temperature variations. Here we model the seasonal time-dependent dilatational and shear strain in Central California, specifically surrounding the Parkfield region and try to uncover the sources of these deformation patterns. We use 8 years of cGPS data (2008 - 2016) processed by the Nevada Geodetic Laboratory and carefully select the cGPS stations for our analysis based on the vertical position of cGPS time series during the drought period. In building our strain model, we first detrend the selected station time series using a set of velocities from the robust MIDAS trend estimator. This estimation algorithm is a robust approach that is insensitive to common problems such as step discontinuities, outliers, and seasonality. We use these detrended time series to estimate the median cGPS positions for each month of the 8-year period and filter displacement differences between these monthly median positions using a filtering technique called "GPS Imaging." This technique improves the overall robustness and spatial resolution of the input displacements for the strain model. We then model our dilatational and shear strain field for each month of time series. We also test a variety of a priori constraints, which controls the style of faulting within the strain model. Upon examining our strain maps, we find that a seasonal strain signal exists in Central California. We investigate how this signal compares to thermoelastic, hydrologic, and atmospheric loading models during the 8-year period. We additionally determine whether the drought played a role in influencing the seasonal signal.
MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection
NASA Astrophysics Data System (ADS)
Bierden, Paul; Cornelissen, S.; Ryan, P.
2014-01-01
In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.
Multilevel model of polycrystalline materials: grain boundary sliding description
NASA Astrophysics Data System (ADS)
Sharifullina, E.; Shveykin, A.; Trusov, P.
2017-12-01
Material behavior description in a wide range of thermomechanical effects is one of the topical areas in mathematical modeling. Inclusion of grain boundary sliding as an important mechanism of polycrystalline material deformation at elevated temperatures and predominant deformation mechanism of metals and alloys in structural superplasticity allows to simulate various deformation regimes and their transitions (including superplasticity regime with switch-on and switch-off regimes). The paper is devoted to description of grain boundary sliding in structure of two-level model, based on crystal plasticity, and relations for determination the contribution of this mechanism to inelastic deformation. Some results are presented concerning computational experiments of polycrystalline representative volume deformation using developed model.
Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model
NASA Astrophysics Data System (ADS)
Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi
1998-04-01
The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.
Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.
Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J
2017-09-08
Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.
2015-01-01
A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.
Sandbox rheometry: Co-evolution of stress and strain in Riedel- and Critical Wedge-experiments
NASA Astrophysics Data System (ADS)
Ritter, Malte C.; Santimano, Tasca; Rosenau, Matthias; Leever, Karen; Oncken, Onno
2018-01-01
Analogue sandbox experiments have been used for a long time to understand tectonic processes, because they facilitate detailed measurements of deformation at a spatio-temporal resolution unachievable from natural data. Despite this long history, force measurements to further characterise the mechanical evolution in analogue sandbox experiments have only emerged recently. Combined continuous measurements of forces and deformation in such experiments, an approach here referred to as "sandbox rheometry", are a new tool that may help to better understand work budgets and force balances for tectonic systems and to derive constitutive laws for regional scale deformation. In this article we present an experimental device that facilitates precise measurements of boundary forces and surface deformation at high temporal and spatial resolution. We demonstrate its capabilities in two classical experiments: one of strike-slip deformation (the Riedel set-up) and one of compressional accretionary deformation (the Critical Wedge set-up). In these we are able to directly observe a correlation between strain weakening and strain localisation that had previously only been inferred, namely the coincidence of the maximum localisation rate with the onset of weakening. Additionally, we observe in the compressional experiment a hysteresis of localisation with respect to the mechanical evolution that reflects the internal structural complexity of an accretionary wedge.
NASA Astrophysics Data System (ADS)
Burberry, C. M.
2012-12-01
It is a well-known phenomenon that deformation style varies in space; both along the strike of a deformed belt and along the strike of individual structures within that belt. This variation in deformation style is traditionally visualized with a series of closely spaced 2D cross-sections. However, the use of 2D section lines implies plane strain along those lines, and the true 3D nature of the deformation is not necessarily captured. By using a combination of remotely sensed data, analog modeling of field datasets and this remote data, and numerical and digital visualization of the finished model, a 3D understanding and restoration of the deformation style within the region can be achieved. The workflow used for this study begins by considering the variation in deformation style which can be observed from satellite images and combining this data with traditional field data, in order to understand the deformation in the region under consideration. The conceptual model developed at this stage is then modeled using a sand and silicone modeling system, where the kinematics and dynamics of the deformation processes can be examined. A series of closely-spaced cross-sections, as well as 3D images of the deformation, are created from the analog model, and input into a digital visualization and modeling system for restoration. In this fashion, a valid 3D model is created where the internal structure of the deformed system can be visualized and mined for information. The region used in the study is the Sawtooth Range, Montana. The region forms part of the Montana Disturbed Belt in the Front Ranges of the Rocky Mountains, along strike from the Alberta Syncline in the Canadian Rocky Mountains. Interpretation of satellite data indicates that the deformation front structures include both folds and thrust structures. The thrust structures vary from hinterland-verging triangle zones to foreland-verging imbricate thrusts along strike, and the folds also vary in geometry along strike. The analog models, constrained by data from exploration wells, indicate that this change in geometry is related to a change in mechanical stratigraphy along the strike of the belt. Results from the kinematic and dynamic analysis of the digital model will also be presented. Additional implications of such a workflow and visualization system include the possibility of creating and viewing multiple cross-sections, including sections created at oblique angles to the original model. This allows the analysis of the non-plane strain component of the models and thus a more complete analysis, understanding and visualization of the deformed region. This workflow and visualization system is applicable to any region where traditional field methods must be coupled with remote data, intensely processed depth data, or analog modeling systems in order to generate valid geologic or geophsyical models.
Sohrabi, Salman; Liu, Yaling
2018-03-01
Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the bubble dynamic and cell mechanical damage during the printing process.
NASA Astrophysics Data System (ADS)
Sohrabi, Salman; Liu, Yaling
2018-03-01
Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the bubble dynamic and cell mechanical damage during the printing process.
NASA Astrophysics Data System (ADS)
Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.
2017-01-01
In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.
Atomistic-Dislocation Dynamics Modelling of Fatigue Microstructure and Crack Initiation
2013-01-01
experimental) Brown (Upper Limit’) DD Results Mughrabi & Pschenitzka (Lower Limit) y = 50 nm d, = 1.2 |lm M I 4 Simulations of... Mughrabi . Introduction to the viewpoint set on: Surface effects in cyclic deformation and fatigue. Scr. Metall. Mater., 26(10): 1499-1504, 1992. [3] E...associated with dislocation cores. Acta Materialia, 53:13131321, 2005. [13] H. Mughrabi . The long-range internal stress field in the dislocation wall
NASA Astrophysics Data System (ADS)
Gloaguen, R.; Ratschbacher, L.
2009-04-01
We aim to establish the Late Cenozoic deformation field of the Pamir by localizing and characterizing active and neotectonic deformation structures, and setting up the drainage-basin, river-capture, river- reversal, and regional erosion history. The project thus aims to record the short-term, upper crustal response to active intra-continental subduction, orocline formation, and erosion. Our hypothesis is that the neotectonics is governed by subduction beneath the frontal part of the orocline, E-W extension in the intra-plateau Karakul-lake rift, and transtension (east) and transpression (west) along the lateral margins of the orocline, a result of oroclinal formation, rotation of the Indian indenter, and focused precipitation caused by the Westerlies. The model for the evolution of the drainage system involves: growth of the Pamir by N-ward propagating deformation, establishing E-trending belts of shortening and rivers/drainages; diversion and blocking of these rivers by the development of the lateral boundaries of the orocline that resulted in river capture and reversal. Even the present-day Panj (Amu Darya) is affected by ongoing uplift: tilted river terraces, wind gaps, and abnormal intersection of streams of different order indicate that large parts of the river have changed flow direction. The determination of a number of geomorphic indices with remote sensing techniques help us to identify areas experiencing tectonic deformation.
Transpressive systems - 4D analogue modelling with X-ray computed tomography
NASA Astrophysics Data System (ADS)
Klinkmueller, M.; Schreurs, G.
2009-04-01
A series of 4D transpressional analogue models was analyzed with X-ray computed tomography (CT). A new modular sandbox with two base-plates was used to simulate strike-slip transpressional deformation and oblique basin inversion. The model itself is constructed on top of an assemblage made up of plexiglas- and foam-bars that enable strain distribution. Models consisted of a basal polydimethylsiloxane (PDMS) layer overlain by a quartz sand pack (Schreurs 1994; Schreurs & Colletta, 1998). The PDMS layer distributes the strike-slip shear component of deformation evenly over the entire model. The initial length of the model was 80 cm. The initial width of the model was 25 cm and was extended to maximal 27 cm to form graben structures. During extension a syn-sedimentary sequence of granular materials was added before transpression was started. Different ratios of shear strain rate and shortening strain rate were applied to investigate the influence on fault generation in both set-ups. To avoid side effects, our fault analysis focused on the central part of the model with a safety distance to the strike-slip orthogonal sidewalls of 20 cm. At low-angle transpression, strike-slip faults form predominantly during initial stages of deformation. They merge in part with pre-existing graben structures and form an anastomosing major fault zone that strikes subparallel to the long dimension of the model. At high-angle transpression, thrusts striking parallel to the long dimension of the model dominate. Thrust localisation is strongly controlled by the position of the pre-existing graben. REFERENCES Schreurs, G. (1994). Experiments on strike-slip faulting and block rotation. Geology, 22, 567-570. Schreurs, G. & Colletta, B. (1998). Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R.E., Strachan, R.A. & Dewey, J.F. (eds.). Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 135, 59-79.
Comparative Analysis of Volcanic Inflation—Deflation Cycles
NASA Astrophysics Data System (ADS)
Walwer, D.; Ghil, M.; Calais, E.
2016-12-01
GPS geodetic data together with INSAR images are often used to formulate kinematic models of the sources of volcanic deformations. The increasing amount of data now available allows one to produce time series that are several years long and thus capture continuously the history of volcanic deformations, in particular their nonlinear behavior. This information is highly valuable in helping understand the dynamics of volcanic systems.Nonlinear deformation signals are, however, difficult to extract from the background noise inherent in the GPS time series. It is also arduous to unravel the signal of interest from other nonlinear signals, such as the seasonal oscillations associated with mass variations in the atmosphere, the ocean, and the hydrological reservoirs. Here we use Multichannel Singular Spectrum Analysis (M-SSA) — an advanced, data-adaptive method for time series analysis that exploits simultaneously the temporal and spatial correlations of geophysical fields — to extract such deformation signals.We apply M-SSA to GPS data sets from four volcanoes: Akutan, Alaska; Okmok, Alaska; Westdahl, Alaska; and Piton de la Fournaise, La Reunion. Our analyses show that all four volcanoes share similar features in their deformation history, suggesting similarities in the dynamics that generate the inflation-deflation cycles. In particular, all four volcanic systems exhibit sawtooth-shaped oscillations with slow inflations followed by slower deflations, with time scales that vary from 6 months to 4 years. This relation of dynamical similarity is further highlighted by the phase portrait reconstruction of the four systems in the plane of deformation vs. rate-of-deformation, as obtained from the deformation signals extracted from the GPS time series using M-SSA.The inflating phase of these oscillations is followed by eruptions at Okmok volcano and at Piton de la Fournaise. These analysis results suggest that these volcanic inflation—deflation cycles are associated with the destabilization of a volcanic system and may lead to the identification of premonitory signals for an eruptive regime.
Deformation in the mantle wedge associated with Laramide flat-slab subduction
NASA Astrophysics Data System (ADS)
Behr, Whitney M.; Smith, Douglas
2016-07-01
Laramide crustal deformation in the Rocky Mountains of the west-central United States is often considered to relate to a narrow segment of shallow subduction of the Farallon slab, but there is no consensus as to how deformation along the slab-mantle lithosphere interface was accommodated. Here we investigate deformation in mantle rocks associated with hydration and shear above the flat-slab at its contact with the base of the North American plate. The rocks we focus on are deformed, hydrated, ultramafic inclusions hosted within diatremes of the Navajo Volcanic Field in the central Colorado Plateau that erupted during the waning stages of the Laramide orogeny. We document a range of deformation textures, including granular peridotites, porphyroclastic peridotites, mylonites, and cataclasites, which we interpret to reflect different proximities to a slab-mantle-interface shear zone. Mineral assemblages and chemistries constrain deformation to hydrous conditions in the temperature range ˜550-750°C. Despite the presence of hydrous phyllosilicates in modal percentages of up to 30%, deformation was dominated by dislocation creep in olivine. The mylonites exhibit an uncommon lattice preferred orientation (LPO) in olivine, known as B-type LPO in which the a-axes are aligned perpendicular to the flow direction. The low temperature, hydrated setting in which these fabrics formed is consistent with laboratory experiments that indicate B-type LPOs form under conditions of high stress and high water contents; furthermore, the mantle wedge context of these LPOs is consistent with observations of trench-parallel anisotropy in the mantle wedge above many modern subduction zones. Differential stress magnitudes in the mylonitic rocks estimated using paleopiezometry range from 290 to 444 MPa, and calculated effective viscosities using a wet olivine flow law are on the order of 1019-1023 Pa s. The high stress magnitudes, high effective viscosities, and high strains recorded in these rocks are consistent with models that invoke significant basal shear tractions as contributing to Laramide uplift and contraction in the continental interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, G; Souri, S; Rea, A
Purpose: The objective of this study is to verify and analyze the accuracy of a clinical deformable image registration (DIR) software. Methods: To test clinical DIR software qualitatively and quantitatively, we focused on lung radiotherapy and analyzed a single (Lung) patient CT scan. Artificial anatomical changes were applied to account for daily variations during the course of treatment including the planning target volume (PTV) and organs at risk (OAR). The primary CT (pCT) and the structure set (pST) was deformed with commercial tool (ImSimQA-Oncology Systems Limited) and after artificial deformation (dCT and dST) sent to another commercial tool (VelocityAI-Varian Medicalmore » Systems). In Velocity, the deformed CT and structures (dCT and dST) were inversely deformed back to original primary CT (dbpCT and dbpST). We compared the dbpST and pST structure sets using similarity metrics. Furthermore, a binary deformation field vector (BDF) was created and sent to ImSimQA software for comparison with known “ground truth” deformation vector fields (DVF). Results: An image similarity comparison was made by using “ground truth” DVF and “deformed output” BDF with an output of normalized “cross correlation (CC)” and “mutual information (MI)” in ImSimQA software. Results for the lung case were MI=0.66 and CC=0.99. The artificial structure deformation in both pST and dbpST was analyzed using DICE coefficient, mean distance to conformity (MDC) and deformation field error volume histogram (DFEVH) by comparing them before and after inverse deformation. We have noticed inadequate structure match for CTV, ITV and PTV due to close proximity of heart and overall affected by lung expansion. Conclusion: We have seen similarity between pCT and dbpCT but not so well between pST and dbpST, because of inadequate structure deformation in clinical DIR system. This system based quality assurance test will prepare us for adopting the guidelines of upcoming AAPM task group 132 protocol.« less
NASA Astrophysics Data System (ADS)
Agata, R.; Ichimura, T.; Hori, T.; Hirahara, K.; Hashimoto, C.; Hori, M.
2016-12-01
Estimation of the coseismic/postseismic slip using postseismic deformation observation data is an important topic in the field of geodetic inversion. Estimation methods for this purpose are expected to be improved by introducing numerical simulation tools (e.g. finite element (FE) method) of viscoelastic deformation, in which the computation model is of high fidelity to the available high-resolution crustal data. The authors have proposed a large-scale simulation method using such FE high-fidelity models (HFM), assuming use of a large-scale computation environment such as the K computer in Japan (Ichimura et al. 2016). On the other hand, the values of viscosity in the heterogeneous viscoelastic structure in the high-fidelity model are not trivial. In this study, we developed an adjoint-based optimization method incorporating HFM, in which fault slip and asthenosphere viscosity are simultaneously estimated. We carried out numerical experiments using synthetic crustal deformation data. We constructed an HFM in the domain of 2048x1536x850 km, which includes the Tohoku region in northeast Japan based on Ichimura et al. (2013). We used the model geometry data set of JTOPO30 (2003), Koketsu et al. (2008) and CAMP standard model (Hashimoto et al. 2004). The geometry of crustal structures in HFM is in 1km resolution, resulting in 36 billion degrees-of-freedom. Synthetic crustal deformation data due to prescribed coseismic slip and after slips in the location of GEONET, GPS/A observation points, and S-net are used. The target inverse analysis is formulated as minimization of L2 norm of the difference between the FE simulation results and the observation data with respect to viscosity and fault slip, combining the quasi-Newton algorithm with the adjoint method. Use of this combination decreases the necessary number of forward analyses in the optimization calculation. As a result, we are now able to finish the estimation using 2560 computer nodes of the K computer for less than 17 hours. Thus, the target inverse analysis is completed in a realistic time because of the combination of the fast solver and the adjoint method. In the future, we would like to apply the method to the actual data.
NASA Astrophysics Data System (ADS)
Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.
2013-11-01
Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of ‘ground-truth’ registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Three pairs of CT/CBCT datasets were chosen for this institutional review board approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and three implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant contours. Seminal vesicle contours were found to have the lowest correlation amongst physicians (DICE = 0.5). After DIR, the organ surfaces between CBCT and planning CT were in good alignment with mean DICE indices of 0.9 for prostate, rectum, and bladder, and 0.8 for seminal vesicles. The Jacobian magnitudes |JAC| in the prostate, rectum, and seminal vesicles were in the range of 0.4-1.5, indicating mild compression/expansion. The bladder volume differences were larger between CBCT and CT images with mean |JAC| values of 2.2, 0.7, and 1.0 for three respective patients. Bone deformation was negligible (|JAC| = ˜ 1.0). The difference between corresponding landmark points between CBCT and CT was less than 1.0 mm after DIR. We have presented a novel method of establishing benchmark DIR accuracy between CT and CBCT images in the pelvic region. The method incorporates manually delineated organ surfaces and landmark points as well as pixel similarity in the optimization, while ensuring bone rigidity and avoiding excessive deformation in soft tissue organs. Redundant contouring is necessary to reduce the overall registration uncertainty.
Inference of postseismic deformation mechanisms of the 1923 Kanto earthquake
Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.
2006-01-01
Coseismic slip associated with the M7.9, 1923 Kanto earthquake is fairly well understood, involving slip of up to 8 m along the Philippine Sea-Honshu interplate boundary under Sagami Bay and its onland extension. Postseismic deformation after the 1923 earthquake, however, is relatively poorly understood. We revisit the available deformation data in order to constrain possible mechanisms of postseismic deformation and to examine the consequences for associated stress changes in the surrounding crust. Data from two leveling lines and one tide gage station over the first 7-8 years postseismic period are of much greater amplitude than the corresponding expected interseismic deformation during the same period, making these data suitable for isolating the signal from postseismic deformation. We consider both viscoelastic models of asthenosphere relaxation and afterslip models. A distributed coseismic slip model presented by Pollitz et al. (2005), combined with prescribed parameters of a viscoelastic Earth model, yields predicted postseismic deformation that agrees with observed deformation on mainland Honshu from Tokyo to the Izu peninsula. Elsewhere (southern Miura peninsula; Boso peninsula), the considered viscoelastic models fail to predict observed deformation, and a model of ???1 in shallow afterslip in the offshore region south of the Boso peninsula, with equivalent moment magnitude Mw = 7.0, adequately accounts for the observed deformation. Using the distributed coseismic slip model, layered viscoelastic structure, and a model of interseismic strain accumulation, we evaluate the post-1923 stress evolution, including both the coseismic and accumulated postseismic stress changes and those stresses contributed by interseismic loading. We find that if account is made for the varying tectonic regime in the region, the occurrence of both immediate (first month) post-1923 crustal aftershocks as well as recent regional crustal seismicity is consistent with the predicted stress pattern. This suggests that the influence of the 1923 earthquake on regional seismicity is fairly predictable and has persisted for at least seven decades following the earthquake.
Diesel engine torsional vibration control coupling with speed control system
NASA Astrophysics Data System (ADS)
Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen
2017-09-01
The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.
Eulerian adaptive finite-difference method for high-velocity impact and penetration problems
NASA Astrophysics Data System (ADS)
Barton, P. T.; Deiterding, R.; Meiron, D.; Pullin, D.
2013-05-01
Owing to the complex processes involved, faithful prediction of high-velocity impact events demands a simulation method delivering efficient calculations based on comprehensively formulated constitutive models. Such an approach is presented herein, employing a weighted essentially non-oscillatory (WENO) method within an adaptive mesh refinement (AMR) framework for the numerical solution of hyperbolic partial differential equations. Applied widely in computational fluid dynamics, these methods are well suited to the involved locally non-smooth finite deformations, circumventing any requirement for artificial viscosity functions for shock capturing. Application of the methods is facilitated through using a model of solid dynamics based upon hyper-elastic theory comprising kinematic evolution equations for the elastic distortion tensor. The model for finite inelastic deformations is phenomenologically equivalent to Maxwell's model of tangential stress relaxation. Closure relations tailored to the expected high-pressure states are proposed and calibrated for the materials of interest. Sharp interface resolution is achieved by employing level-set functions to track boundary motion, along with a ghost material method to capture the necessary internal boundary conditions for material interactions and stress-free surfaces. The approach is demonstrated for the simulation of high velocity impacts of steel projectiles on aluminium target plates in two and three dimensions.
UQTools: The Uncertainty Quantification Toolbox - Introduction and Tutorial
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Crespo, Luis G.; Giesy, Daniel P.
2012-01-01
UQTools is the short name for the Uncertainty Quantification Toolbox, a software package designed to efficiently quantify the impact of parametric uncertainty on engineering systems. UQTools is a MATLAB-based software package and was designed to be discipline independent, employing very generic representations of the system models and uncertainty. Specifically, UQTools accepts linear and nonlinear system models and permits arbitrary functional dependencies between the system s measures of interest and the probabilistic or non-probabilistic parametric uncertainty. One of the most significant features incorporated into UQTools is the theoretical development centered on homothetic deformations and their application to set bounding and approximating failure probabilities. Beyond the set bounding technique, UQTools provides a wide range of probabilistic and uncertainty-based tools to solve key problems in science and engineering.
Computation of forces from deformed visco-elastic biological tissues
NASA Astrophysics Data System (ADS)
Muñoz, José J.; Amat, David; Conte, Vito
2018-04-01
We present a least-squares based inverse analysis of visco-elastic biological tissues. The proposed method computes the set of contractile forces (dipoles) at the cell boundaries that induce the observed and quantified deformations. We show that the computation of these forces requires the regularisation of the problem functional for some load configurations that we study here. The functional measures the error of the dynamic problem being discretised in time with a second-order implicit time-stepping and in space with standard finite elements. We analyse the uniqueness of the inverse problem and estimate the regularisation parameter by means of an L-curved criterion. We apply the methodology to a simple toy problem and to an in vivo set of morphogenetic deformations of the Drosophila embryo.
Stress wave riveting. [of aircraft metal skin
NASA Technical Reports Server (NTRS)
Leftheris, B. P.
1972-01-01
The stress wave riveter deforms the rivet material by a high amplitude stress wave. Thus, the entire rivet is set in motion radially. The rivet expands rapidly and impacts the hole surface before the rivet tail begins to form. Unlike the oversqueezed rivets, therefore, it sets up uniform interference without distortion in the skins. Furthermore, the radial velocity is so high (over 200 in./sec) that upon impact with the hole surface it deforms the surface plastically. This is especially effective in aluminum skins. Thus the SWR combines the advantages of plastically deforming the hole and the economic advantage of a relatively nonprecision hole and inexpensive rivets like those used in oversqueezing. The additional advantage SWR offers is that it is a portable tool.
NASA Astrophysics Data System (ADS)
Solov'eva, Yu. V.; Fakhrutdinova, Ya. D.; Starenchenko, V. A.
2015-01-01
The processes of the superlocalization of plastic deformation in L12 alloys have been studied numerically based on a combination of the model of the dislocation kinetics of the deformation-induced and heat-treatment-induced strengthening of an element of a deformable medium with the model of the mechanics of microplastic deformation described in terms of elastoplastic medium. It has been shown that the superlocalization of plastic deformation is determined by the presence of stress concentrators and by the nonmonotonic strengthening of the elements of the deformable medium. The multiple nonmonotonicity of the process of strengthening of the elementary volume of the medium can be responsible for the multiplicity of bands of microplastic localization of deformation.
NASA Astrophysics Data System (ADS)
Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.
2017-01-01
We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.
Surface roughness manifestations of deep-seated landslide processes
NASA Astrophysics Data System (ADS)
Booth, A. M.; Roering, J. J.; Lamb, M. P.
2012-12-01
In many mountainous drainage basins, deep-seated landslides evacuate large volumes of sediment from small surface areas, leaving behind a strong topographic signature that sets landscape roughness over a range of spatial scales. At long spatial wavelengths of hundreds to thousands of meters, landslides tend to inhibit channel incision and limit topographic relief, effectively smoothing the topography at this length scale. However, at short spatial wavelengths on the order of meters, deformation of deep-seated landslides generates surface roughness that allows expert mappers or automated algorithms to distinguish landslides from the surrounding terrain. Here, we directly connect the characteristic spatial wavelengths and amplitudes of this fine scale surface roughness to the underlying landslide deformation processes. We utilize the two-dimensional wavelet transform with high-resolution, airborne LiDAR-derived digital elevation models to systematically document the characteristic length scales and amplitudes of different kinematic units within slow moving earthflows, a common type of deep-seated landslide. In earthflow source areas, discrete slumped blocks generate high surface roughness, reflecting an extensional deformation regime. In earthflow transport zones, where material translates with minimal surface deformation, roughness decreases as other surface processes quickly smooth short wavelength features. In earthflow depositional toes, compression folds and thrust faults again increase short wavelength surface roughness. When an earthflow becomes inactive, roughness in all of these kinematic zones systematically decreases with time, allowing relative dating of earthflow deposits. We also document how each of these roughness expressions depends on earthflow velocity, using sub-pixel change detection software (COSI-Corr) and pairs of orthorectified aerial photographs to determine spatially extensive landslide surface displacements. In source areas, the wavelength of slumped blocks tends to correlate with velocity as predicted by a simple sliding block model, but the amplitude is insensitive to velocity, suggesting that landslide depth rather than velocity sets this characteristic block amplitude. In both transport zones and depositional toes, the amplitude of the surface roughness is higher where the longitudinal gradient in velocity is higher, confirming that differential movement generates and maintains this fine scale roughness.
Fission barriers at the end of the chart of the nuclides
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; ...
2015-02-12
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) andmore » the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.« less
A new method to quantify liner deformation within a prosthetic socket for below knee amputees.
Lenz, Amy L; Johnson, Katie A; Bush, Tamara Reid
2018-06-06
Many amputees who wear a leg prosthesis develop significant skin wounds on their residual limb. The exact cause of these wounds is unclear as little work has studied the interface between the prosthetic device and user. Our research objective was to develop a quantitative method for assessing displacement patterns of the gel liner during walking for patients with transtibial amputation. Using a reflective marker system and a custom clear socket, evaluations were conducted with a clear transparent test socket mounted over a plaster limb model and a deformable limb model. Distances between markers placed on the limb were measured with a digital caliper and then compared with data from the motion capture system. Additionally, the rigid plaster set-up was moved in the capture volume to simulate walking and evaluate if inter-marker distances changed in comparison to static data. Dynamic displacement trials were then collected to measure changes in inter-marker distance due to vertical elongation of the gel liner. Static and dynamic inter-marker distances within day and across days confirmed the ability to accurately capture displacements using this new approach. These results encourage this novel method to be applied to a sample of amputee patients during walking to assess displacements and the distribution of the liner deformation within the socket. The ability to capture changes in deformation of the gel liner will provide new data that will enable clinicians and researchers to improve design and fit of the prosthesis so the incidence of pressure ulcers can be reduced. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chetvertkov, Mikhail A.
Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment. Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create "digital phantom" images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients' actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution. Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA's ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into the higher dose volumes during the radiotherapy course. Modeled DVHs still underestimated the effect of parotid shrinkage due to the large compression factor (CF) used to acquire DVFs. Conclusion: Leading EDVFs from both PCA approaches have the potential to capture systematic anatomical changes during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable than SPCA at capturing systematic changes, enabling dosimetric consequences to be projected to the future treatment fractions based on trends established early in a treatment course, or, potentially, based on population models. This work showed that PCA has a potential in identifying the major mode of anatomical changes during the radiotherapy course and subsequent use of this information in future dose predictions is feasible. Use of smaller CF values for DVFs is preferred, otherwise anatomical motion will be underestimated.
Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.
NASA Astrophysics Data System (ADS)
Heorton, Harry; Feltham, Daniel; Tsamados, Michel
2017-04-01
The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.
Geological process of the slow earthquakes -A hypothesis from an ancient plate boundary fault rock
NASA Astrophysics Data System (ADS)
Kitamura, Y.; Kimura, G.; Kawabata, K.
2012-12-01
We present an integrated model of the deformation along the subduction plate boundary from the trench to the seismogenic zone. Over years of field based research in the Shimanto Belt accretionary complex, southwest Japan, yielded breaking-through discoveries on plate boundary processes, for example, the first finding of pseudotachylyte in the accretionary prism (Ikesawa et al., 2003). Our aim here is to unveil the geological aspects of slow earthquakes and the related plate boundary processes. Studied tectonic mélanges in the Shimanto Belt are regarded as fossils of plate boundary fault zone in subduction zone. We traced material from different depths along subduction channel using samples from on-land outcrops and ocean drilling cores. As a result, a series of progressive deformation down to the down-dip limit of the seismogenic zone was revealed. Detailed geological survey and structural analyses enabled us to separate superimposed deformation events during subduction. Material involved in the plate boundary deformation is mainly an alternation of sand and mud. As they have different competency and are suffered by simple shear stress field, sandstones break apart in flowing mudstones. We distinguished several stages of these deformations in sandstones and recognized progress in the intensity of deformation with increment of underthrusting. It is also known that the studied Mugi mélange bears pseudotachylyte in its upper bounding fault. Our conclusion illustrates that the subduction channel around the depth of the seismogenic zone forms a thick plate boundary fault zone, where there is a clear segregation in deformation style: a fast and episodic slip at the upper boundary fault and a slow and continuous deformation within the zone. The former fast deformation corresponds to the plate boundary earthquakes and the latter to the slow earthquakes. We further examined numerically whether this plate boundary fault rock is capable of releasing seismic moment enough to fit the observed slow earthquakes. The shallow very low frequent earthquakes (VLFs) are chosen to be modeled and our estimation satisfies the natural data. We emphasize that the plate boundary is not a plane but a zone. Geological setting is a clue for differentiating slow and normal earthquakes. We propose to focus on the three-dimensional fault zone comprising numbers of microfaults as the source of slow earthquakes instead of planar plate boundary. Our results also make an impact on the study of seismic energy balance because we show a possibility to give an absolute value of them from geological approach, which could not have been achieved with seismology.
Investigation of the effects of aeroelastic deformations on the radar cross section of aircraft
NASA Astrophysics Data System (ADS)
McKenzie, Samuel D.
1991-12-01
The effects of aeroelastic deformations on the radar cross section (RCS) of a T-38 trainer jet and a C-5A transport aircraft are examined and characterized. Realistic representations of structural wing deformations are obtained from a mechanical/computer aided design software package called NASTRAN. NASTRAN is used to evaluate the structural parameters of the aircraft as well as the restraints and loads associated with realistic flight conditions. Geometries for both the non-deformed and deformed airframes are obtained from the NASTRAN models and translated into RCS models. The RCS is analyzed using a numerical modeling code called the Radar Cross Section - Basic Scattering Code, version 2 which was developed at the Ohio State University and is based on the uniform geometric theory of diffraction. The code is used to analyze the effects of aeroelastic deformations on the RCS of the aircraft by comparing the computed RCS representing the deformed airframe to that of the non-deformed airframe and characterizing the differences between them.
NASA Astrophysics Data System (ADS)
Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.
2013-12-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Barragan Montero, A; Di Perri, D
Purpose: The shift in mean position of a moving tumor also known as “baseline shift”, has been modeled, in order to automatically generate uncertainty scenarios for the assessment and robust optimization of proton therapy treatments in lung cancer. Methods: An average CT scan and a Mid-Position CT scan (MidPCT) of the patient at the planning time are first generated from a 4D-CT data. The mean position of the tumor along the breathing cycle is represented by the GTV contour in the MidPCT. Several studies reported both systematic and random variations of the mean tumor position from fraction to fraction. Ourmore » model can simulate this baseline shift by generating a local deformation field that moves the tumor on all phases of the 4D-CT, without creating any non-physical artifact. The deformation field is comprised of normal and tangential components with respect to the lung wall in order to allow the tumor to slip within the lung instead of deforming the lung surface. The deformation field is eventually smoothed in order to enforce its continuity. Two 4D-CT series acquired at 1 week of interval were used to validate the model. Results: Based on the first 4D-CT set, the model was able to generate a third 4D-CT that reproduced the 5.8 mm baseline-shift measured in the second 4D-CT. Water equivalent thickness (WET) of the voxels have been computed for the 3 average CTs. The root mean square deviation of the WET in the GTV is 0.34 mm between week 1 and week 2, and 0.08 mm between the simulated data and week 2. Conclusion: Our model can be used to automatically generate uncertainty scenarios for robustness analysis of a proton therapy plan. The generated scenarios can also feed a TPS equipped with a robust optimizer. Kevin Souris, Ana Barragan, and Dario Di Perri are financially supported by Televie Grants from F.R.S.-FNRS.« less
Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals.
Cherukara, Mathew J; Sasikumar, Kiran; Cha, Wonsuk; Narayanan, Badri; Leake, Steven J; Dufresne, Eric M; Peterka, Tom; McNulty, Ian; Wen, Haidan; Sankaranarayanan, Subramanian K R S; Harder, Ross J
2017-02-08
Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behavior is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use X-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic "hard" or inhomogeneous and "soft" or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystal structure obtained from the ultrafast X-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.
Quadrupole collectivity in 42Ca from low-energy Coulomb excitation with AGATA
NASA Astrophysics Data System (ADS)
Hadyńska-Klęk, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; Grębosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; Męczyński, W.; Michelagnoli, C.; Million, B.; Myalski, S.; Napoli, D. R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; Ziębliński, M.
2018-02-01
A Coulomb-excitation experiment to study electromagnetic properties of 42Ca was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in 42Ca were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E 2 matrix elements coupling six low-lying states in 42Ca, including the diagonal E 2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E 2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2 + and 21,2 + states, as well as triaxiality for 01,2 + states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in 42Ca.
Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherukara, Mathew J.; Sasikumar, Kiran; Cha, Wonsuk
Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behaviour is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use x-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic ‘hard’ or inhomogeneous and ‘soft’ or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystalmore » structure obtained from the ultrafast x-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Furthermore, understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.« less
Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals
Cherukara, Mathew J.; Sasikumar, Kiran; Cha, Wonsuk; ...
2016-12-27
Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behaviour is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use x-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic ‘hard’ or inhomogeneous and ‘soft’ or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystalmore » structure obtained from the ultrafast x-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Furthermore, understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.« less
NASA Astrophysics Data System (ADS)
Cervelli, P.; Murray, M. H.; Segall, P.; Aoki, Y.; Kato, T.
2001-06-01
We have applied two Monte Carlo optimization techniques, simulated annealing and random cost, to the inversion of deformation data for fault and magma chamber geometry. These techniques involve an element of randomness that permits them to escape local minima and ultimately converge to the global minimum of misfit space. We have tested the Monte Carlo algorithms on two synthetic data sets. We have also compared them to one another in terms of their efficiency and reliability. We have applied the bootstrap method to estimate confidence intervals for the source parameters, including the correlations inherent in the data. Additionally, we present methods that use the information from the bootstrapping procedure to visualize the correlations between the different model parameters. We have applied these techniques to GPS, tilt, and leveling data from the March 1997 earthquake swarm off of the Izu Peninsula, Japan. Using the two Monte Carlo algorithms, we have inferred two sources, a dike and a fault, that fit the deformation data and the patterns of seismicity and that are consistent with the regional stress field.
Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine
Burnley, Pamela C
2015-07-01
Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includesmore » kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.« less
NASA Astrophysics Data System (ADS)
Nicolas, A.; Fortin, J.; Guéguen, Y.
2017-10-01
Deformation and failure of rocks are important for a better understanding of many crustal geological phenomena such as faulting and compaction. In carbonate rocks among others, low-temperature deformation can either occur with dilatancy or compaction, having implications for porosity changes, failure and petrophysical properties. Hence, a thorough understanding of all the micromechanisms responsible for deformation is of great interest. In this study, a constitutive model for the low-temperature deformation of low-porosity (<20 per cent) carbonate rocks is derived from the micromechanisms identified in previous studies. The micromechanical model is based on (1) brittle crack propagation, (2) a plasticity law (interpreted in terms of dislocation glide without possibility to climb) for porous media with hardening and (3) crack nucleation due to dislocation pile-ups. The model predicts stress-strain relations and the evolution of damage during deformation. The model adequately predicts brittle behaviour at low confining pressures, which switches to a semi-brittle behaviour characterized by inelastic compaction followed by dilatancy at higher confining pressures. Model predictions are compared to experimental results from previous studies and are found to be in close agreement with experimental results. This suggests that microphysical phenomena responsible for the deformation are sufficiently well captured by the model although twinning, recovery and cataclasis are not considered. The porosity range of applicability and limits of the model are discussed.
Registration of organs with sliding interfaces and changing topologies
NASA Astrophysics Data System (ADS)
Berendsen, Floris F.; Kotte, Alexis N. T. J.; Viergever, Max A.; Pluim, Josien P. W.
2014-03-01
Smoothness and continuity assumptions on the deformation field in deformable image registration do not hold for applications where the imaged objects have sliding interfaces. Recent extensions to deformable image registration that accommodate for sliding motion of organs are limited to sliding motion along approximately planar surfaces or cannot model sliding that changes the topological configuration in case of multiple organs. We propose a new extension to free-form image registration that is not limited in this way. Our method uses a transformation model that consists of uniform B-spline transformations for each organ region separately, which is based on segmentation of one image. Since this model can create overlapping regions or gaps between regions, we introduce a penalty term that minimizes this undesired effect. The penalty term acts on the surfaces of the organ regions and is optimized simultaneously with the image similarity. To evaluate our method registrations were performed on publicly available inhale-exhale CT scans for which performances of other methods are known. Target registration errors are computed on dense landmark sets that are available with these datasets. On these data our method outperforms the other methods in terms of target registration error and, where applicable, also in terms of overlap and gap volumes. The approximation of the other methods of sliding motion along planar surfaces is reasonably well suited for the motion present in the lung data. The ability of our method to handle sliding along curved boundaries and for changing region topology configurations was demonstrated on synthetic images.
Soft tissue modelling through autowaves for surgery simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Alici, Gursel; Smith, Julian
2006-09-01
Modelling of soft tissue deformation is of great importance to virtual reality based surgery simulation. This paper presents a new methodology for simulation of soft tissue deformation by drawing an analogy between autowaves and soft tissue deformation. The potential energy stored in a soft tissue as a result of a deformation caused by an external force is propagated among mass points of the soft tissue by non-linear autowaves. The novelty of the methodology is that (i) autowave techniques are established to describe the potential energy distribution of a deformation for extrapolating internal forces, and (ii) non-linear materials are modelled with non-linear autowaves other than geometric non-linearity. Integration with a haptic device has been achieved to simulate soft tissue deformation with force feedback. The proposed methodology not only deals with large-range deformations, but also accommodates isotropic, anisotropic and inhomogeneous materials by simply changing diffusion coefficients.
Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method
NASA Astrophysics Data System (ADS)
Lv, Xin; Zou, Qingping; Reeve, Dominic
2011-10-01
This paper presents the applications of a newly developed free surface flow model to the practical, while challenging overflow problems for weirs. Since the model takes advantage of the strengths of both the level set and volume of fluid methods and solves the Navier-Stokes equations on an unstructured mesh, it is capable of resolving the time evolution of very complex vortical motions, air entrainment and pressure variations due to violent deformations following overflow of the weir crest. In the present study, two different types of vertical weir, namely broad-crested and sharp-crested, are considered for validation purposes. The calculated overflow parameters such as pressure head distributions, velocity distributions, and water surface profiles are compared against experimental data as well as numerical results available in literature. A very good quantitative agreement has been obtained. The numerical model, thus, offers a good alternative to traditional experimental methods in the study of weir problems.
A transverse isotropic viscoelastic constitutive model for aortic valve tissue
Bucchi, Andrea; Screen, Hazel R. C.; Evans, Sam L.
2017-01-01
A new anisotropic viscoelastic model is developed for application to the aortic valve (AV). The directional dependency in the mechanical properties of the valve, arising from the predominantly circumferential alignment of collagen fibres, is accounted for in the form of transverse isotropy. The rate dependency of the valve's mechanical behaviour is considered to stem from the viscous (η) dissipative effects of the AV matrix, and is incorporated as an explicit function of the deformation rate (λ˙). Model (material) parameters were determined from uniaxial tensile deformation tests of porcine AV specimens at various deformation rates, by fitting the model to each experimental dataset. It is shown that the model provides an excellent fit to the experimental data across all different rates and satisfies the condition of strict local convexity. Based on the fitting results, a nonlinear relationship between η and λ˙ is established, highlighting a ‘shear-thinning’ behaviour for the AV with increase in the deformation rate. Using the model and these outcomes, the stress–deformation curves of the AV tissue under physiological deformation rates in both the circumferential and radial directions are predicted and presented. To verify the predictive capabilities of the model, the stress–deformation curves of AV specimens at an intermediate deformation rate were estimated and validated against the experimental data at that rate, showing an excellent agreement. While the model is primarily developed for application to the AV, it may be applied without the loss of generality to other collagenous soft tissues possessing a similar structure, with a single preferred direction of embedded collagen fibres. PMID:28280556
Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches
2015-10-01
This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.
Probabilistic seismic hazard study based on active fault and finite element geodynamic models
NASA Astrophysics Data System (ADS)
Kastelic, Vanja; Carafa, Michele M. C.; Visini, Francesco
2016-04-01
We present a probabilistic seismic hazard analysis (PSHA) that is exclusively based on active faults and geodynamic finite element input models whereas seismic catalogues were used only in a posterior comparison. We applied the developed model in the External Dinarides, a slow deforming thrust-and-fold belt at the contact between Adria and Eurasia.. is the Our method consists of establishing s two earthquake rupture forecast models: (i) a geological active fault input (GEO) model and, (ii) a finite element (FEM) model. The GEO model is based on active fault database that provides information on fault location and its geometric and kinematic parameters together with estimations on its slip rate. By default in this model all deformation is set to be released along the active faults. The FEM model is based on a numerical geodynamic model developed for the region of study. In this model the deformation is, besides along the active faults, released also in the volumetric continuum elements. From both models we calculated their corresponding activity rates, its earthquake rates and their final expected peak ground accelerations. We investigated both the source model and the earthquake model uncertainties by varying the main active fault and earthquake rate calculation parameters through constructing corresponding branches of the seismic hazard logic tree. Hazard maps and UHS curves have been produced for horizontal ground motion on bedrock conditions VS 30 ≥ 800 m/s), thereby not considering local site amplification effects. The hazard was computed over a 0.2° spaced grid considering 648 branches of the logic tree and the mean value of 10% probability of exceedance in 50 years hazard level, while the 5th and 95th percentiles were also computed to investigate the model limits. We conducted a sensitivity analysis to control which of the input parameters influence the final hazard results in which measure. The results of such comparison evidence the deformation model and with their internal variability together with the choice of the ground motion prediction equations (GMPEs) are the most influencing parameter. Both of these parameters have significan affect on the hazard results. Thus having good knowledge of the existence of active faults and their geometric and activity characteristics is of key importance. We also show that PSHA models based exclusively on active faults and geodynamic inputs, which are thus not dependent on past earthquake occurrences, provide a valid method for seismic hazard calculation.
Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo
2017-01-01
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925
Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo
2017-10-13
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.
Eastgate Geothermal Borehole Project: Predicting Fracture Geometry at Depth
NASA Astrophysics Data System (ADS)
Beattie, Stewart; Shipton, Zoe K.; Johnson, Gareth; Younger, Paul L.
2013-04-01
In 2004 an exploratory borehole at the Eastgate Geothermal Project encountered part of a vein system within the Weardale granite. At 995m depth brine was at a temperature of around 46°C. The geothermal source is likely related to the Slitt vein system that cuts through c.270m of carboniferous sedimentary strata overlying the Weardale granite pluton. The economic success of the Eastgate geothermal project is dependent on exploiting this vein system in an otherwise low permeability and low geothermal gradient setting. The Slitt vein system has been extensively mined. Mining records show the attitude of the vein through the sedimentary strata, however, the trajectory and magnitude of the vein within the pluton itself is unknown. Using mine records, geological maps and published literature, models of the vein system up to the depth of the pluton were created. To extend this model into the pluton itself requires some knowledge regarding the geometry and evolution of the pluton and subsequently properties of vein systems and other fracture populations at depth. The properties of fracture and vein populations within the granite will depend on forming processes including; cooling and contraction of the pluton, deformation of host rocks during pluton emplacement, and post emplacement deformation. Using published literature and gravity data a 3D model of the geometry of the pluton was constructed. Shape analysis of the pluton allows an estimation of the orientation of fractures within the pluton. Further modelling of the structural evolution of the pluton will enable kinematic or geomechanical strain associated with the structural evolution to be captured and subsequently used as a proxy for modelling both intensity and orientation of fracturing within the pluton. The successful prediction of areas of high fracture intensity and thus increased permeability is critical to the development of potential geothermal resources in low geothermal gradient and low permeability settings. This is also important in EGS settings where stimulation will often re-activate existing fracture networks. The development at the Eastgate Geothermal Borehole project provides an opportunity to model fracture and vein populations within an intrusive body and validate those model predictions with production data from the site.
Optical image hiding based on chaotic vibration of deformable moiré grating
NASA Astrophysics Data System (ADS)
Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas
2018-03-01
Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.
Yassin, Mustafa; Garti, Avraham; Heller, Eyal; Weissbrot, Moshe; Robinson, Dror
2017-04-01
Diabetes mellitus is a 21st century pandemic. Due to life-span prolongation combined with the increased rate of diabetes, a growing population of patients is afflicted with neuropathic foot deformities. Traditional operative repair of these deformities is associated with a high complication rate and relatively common infection incidence. In recent years, in order to prevent these complications, percutaneous deformity correction methods were developed. Description of experience accumulated in treating 20 consecutive patients with diabetic neuropathic foot deformities treated in a percutaneous fashion. A consecutive series of patients treated at our institute for neuropathic foot deformity was assessed according to a standard protocol using the AOFAS forefoot score and the LUMT score performed at baseline as well as at 6 months and 12 months. Treatment related complications were monitored. All procedures were performed in an ambulatory setting using local anesthesia. A total of 12 patients had soft tissue corrections, and 8 had a combined soft tissue and bone correction. Baseline AOFAS score was 48±7 and improved to 73±9 at six months and 75±7 at one year. LUMT score in 11 patients with a chronic wound decreased from 22±4 to 2±1 at one year post-op. One patient required hospitalization due to post-op bleeding. Percutaneous techniques allow deformity correction of diabetic feet, including those with open wounds in an ambulatory setting with a low complication rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Dianlou; Geng, Xue
2013-05-15
In this paper, the relationship between the classical Dicke-Jaynes-Cummings-Gaudin (DJCG) model and the nonlinear Schroedinger (NLS) equation is studied. It is shown that the classical DJCG model is equivalent to a stationary NLS equation. Moreover, the standard NLS equation can be solved by the classical DJCG model and a suitably chosen higher order flow. Further, it is also shown that classical DJCG model can be transformed into the classical Gaudin spin model in an external magnetic field through a deformation of Lax matrix. Finally, the separated variables are constructed on the common level sets of Casimir functions and the generalizedmore » action-angle coordinates are introduced via the Hamilton-Jacobi equation.« less
Coseismic slip distribution of the 1923 Kanto earthquake, Japan
Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.
2005-01-01
The slip distribution associated with the 1923 M = 7.9 Kanto, Japan, earthquake is reexamined in light of new data and modeling. We utilize a combination of first-order triangulation, second-order triangulation, and leveling data in order to constrain the coseismic deformation. The second-order triangulation data, which have not been utilized in previous studies of 1923 coseismic deformation, are associated with only slightly smaller errors than the first-order triangulation data and expand the available triangulation data set by about a factor of 10. Interpretation of these data in terms of uniform-slip models in a companion study by Nyst et al. shows that a model involving uniform coseismic slip on two distinct rupture planes explains the data very well and matches or exceeds the fit obtained by previous studies, even one which involved distributed slip. Using the geometry of the Nyst et al. two-plane slip model, we perform inversions of the same geodetic data set for distributed slip. Our preferred model of distributed slip on the Philippine Sea plate interface has a moment magnitude of 7.86. We find slip maxima of ???8-9 m beneath Odawara and ???7-8 m beneath the Miura peninsula, with a roughly 2:1 ratio of strike-slip to dip-slip motion, in agreement with a previous study. However, the Miura slip maximum is imaged as a more broadly extended feature in our study, with the high-slip region continuing from the Miura peninsula to the southern Boso peninsula region. The second-order triangulation data provide good evidence for ???3 m right-lateral strike slip on a 35-km-long splay structure occupying the volume between the upper surface of the descending Philippine Sea plate and the southern Boso peninsula. Copyright 2005 by the American Geophysical Union.
Earth Science Computational Architecture for Multi-disciplinary Investigations
NASA Astrophysics Data System (ADS)
Parker, J. W.; Blom, R.; Gurrola, E.; Katz, D.; Lyzenga, G.; Norton, C.
2005-12-01
Understanding the processes underlying Earth's deformation and mass transport requires a non-traditional, integrated, interdisciplinary, approach dependent on multiple space and ground based data sets, modeling, and computational tools. Currently, details of geophysical data acquisition, analysis, and modeling largely limit research to discipline domain experts. Interdisciplinary research requires a new computational architecture that is optimized to perform complex data processing of multiple solid Earth science data types in a user-friendly environment. A web-based computational framework is being developed and integrated with applications for automatic interferometric radar processing, and models for high-resolution deformation & gravity, forward models of viscoelastic mass loading over short wavelengths & complex time histories, forward-inverse codes for characterizing surface loading-response over time scales of days to tens of thousands of years, and inversion of combined space magnetic & gravity fields to constrain deep crustal and mantle properties. This framework combines an adaptation of the QuakeSim distributed services methodology with the Pyre framework for multiphysics development. The system uses a three-tier architecture, with a middle tier server that manages user projects, available resources, and security. This ensures scalability to very large networks of collaborators. Users log into a web page and have a personal project area, persistently maintained between connections, for each application. Upon selection of an application and host from a list of available entities, inputs may be uploaded or constructed from web forms and available data archives, including gravity, GPS and imaging radar data. The user is notified of job completion and directed to results posted via URLs. Interdisciplinary work is supported through easy availability of all applications via common browsers, application tutorials and reference guides, and worked examples with visual response. At the platform level, multi-physics application development and workflow are available in the enriched environment of the Pyre framework. Advantages for combining separate expert domains include: multiple application components efficiently interact through Python shared libraries, investigators may nimbly swap models and try new parameter values, and a rich array of common tools are inherent in the Pyre system. The first four specific investigations to use this framework are: Gulf Coast subsidence: understanding of partitioning between compaction, subsidence and growth faulting; Gravity & deformation of a layered spherical earth model due to large earthquakes; Rift setting of Lake Vostok, Antarctica; and global ice mass changes.
Poisson-Lie duals of the η deformed symmetric space sigma model
NASA Astrophysics Data System (ADS)
Hoare, Ben; Seibold, Fiona K.
2017-11-01
Poisson-Lie dualising the η deformation of the G/H symmetric space sigma model with respect to the simple Lie group G is conjectured to give an analytic continuation of the associated λ deformed model. In this paper we investigate when the η deformed model can be dualised with respect to a subgroup G0 of G. Starting from the first-order action on the complexified group and integrating out the degrees of freedom associated to different subalgebras, we find it is possible to dualise when G0 is associated to a sub-Dynkin diagram. Additional U1 factors built from the remaining Cartan generators can also be included. The resulting construction unifies both the Poisson-Lie dual with respect to G and the complete abelian dual of the η deformation in a single framework, with the integrated algebras unimodular in both cases. We speculate that extending these results to the path integral formalism may provide an explanation for why the η deformed AdS5 × S5 superstring is not one-loop Weyl invariant, that is the couplings do not solve the equations of type IIB supergravity, yet its complete abelian dual and the λ deformed model are.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauscher, Emily; Showman, Adam P., E-mail: rauscher@astro.princeton.edu
As a planet ages, it cools and its radius shrinks at a rate set by the efficiency with which heat is transported from the interior out to space. The bottleneck for this transport is at the boundary between the convective interior and the radiative atmosphere; the opacity there sets the global cooling rate. Models of planetary evolution are often one dimensional (1D), such that the radiative-convective boundary (RCB) is defined by a single temperature, pressure, and opacity. In reality the spatially inhomogeneous stellar heating pattern and circulation in the atmosphere could deform the RCB, allowing heat from the interior tomore » escape more efficiently through regions with lower opacity. We present an analysis of the degree to which the RCB could be deformed and the resultant change in the evolutionary cooling rate. In this initial work we calculate the upper limit for this effect by comparing an atmospheric structure in local radiative equilibrium to its 1D equivalent. We find that the cooling through an uneven RCB could be enhanced over cooling through a uniform RCB by as much as 10%-50%. We also show that the deformation of the RCB (and the enhancement of the cooling rate) increases with a greater incident stellar flux or a lower inner entropy. Our results indicate that this mechanism could significantly change a planet's thermal evolution, causing it to cool and shrink more quickly than would otherwise be expected. This may exacerbate the well-known difficulty in explaining the very large radii observed for some hot Jupiters.« less
Nonequilibrium thermodynamics of the shear-transformation-zone model
NASA Astrophysics Data System (ADS)
Luo, Alan M.; Ã-ttinger, Hans Christian
2014-02-01
The shear-transformation-zone (STZ) model has been applied numerous times to describe the plastic deformation of different types of amorphous systems. We formulate this model within the general equation for nonequilibrium reversible-irreversible coupling (GENERIC) framework, thereby clarifying the thermodynamic structure of the constitutive equations and guaranteeing thermodynamic consistency. We propose natural, physically motivated forms for the building blocks of the GENERIC, which combine to produce a closed set of time evolution equations for the state variables, valid for any choice of free energy. We demonstrate an application of the new GENERIC-based model by choosing a simple form of the free energy. In addition, we present some numerical results and contrast those with the original STZ equations.
NASA Astrophysics Data System (ADS)
Blachowski, Jan; Grzempowski, Piotr; Milczarek, Wojciech; Nowacka, Anna
2015-04-01
Monitoring, mapping and modelling of mining induced terrain deformations are important tasks for quantifying and minimising threats that arise from underground extraction of useful minerals and affect surface infrastructure, human safety, the environment and security of the mining operation itself. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and expanding with the progress in geographical information technologies. These include for example: terrestrial geodetic measurements, Global Navigation Satellite Systems, remote sensing, GIS based modelling and spatial statistics, finite element method modelling, geological modelling, empirical modelling using e.g. the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The presentation shows the results of numerical modelling and mapping of mining terrain deformations for two cases of underground mining sites in SW Poland, hard coal one (abandoned) and copper ore (active) using the functionalities of the Deformation Information System (DIS) (Blachowski et al, 2014 @ http://meetingorganizer.copernicus.org/EGU2014/EGU2014-7949.pdf). The functionalities of the spatial data modelling module of DIS have been presented and its applications in modelling, mapping and visualising mining terrain deformations based on processing of measurement data (geodetic and GNSS) for these two cases have been characterised and compared. These include, self-developed and implemented in DIS, automation procedures for calculating mining terrain subsidence with different interpolation techniques, calculation of other mining deformation parameters (i.e. tilt, horizontal displacement, horizontal strain and curvature), as well as mapping mining terrain categories based on classification of the values of these parameters as used in Poland. Acknowledgments. This work has been financed from the National Science Centre Project "Development of a numerical method of mining ground deformation modelling in complex geological and mining conditions" UMO-2012/07/B/ST10/04297 executed at the Faculty of Geoengineering, Mining and Geology of the Wroclaw University of Technology (Poland).
Balanced sections and the propagation of décollement: A Jura perspective
NASA Astrophysics Data System (ADS)
Laubscher, Hans
2003-12-01
The propagation of thrusting is an important problem in tectonics that is usually approached by forward (kinematical) modeling of balanced sections. Although modeling techniques are similar in most foreland fold-thrust belts, it turns out that in the Jura, there are modeling problems that require modifications of widely used techniques. In particular, attention is called to the role of model constraints that complement the set of observational constraints in order to fully define the model. In the eastern Jura, such model constraints may be inferred from the regional geology, which shows a peculiar noncoaxial relation between thrusts and subsequent folds. This relation implies changes in the direction of translation and the mode of deformation in the course of the propagation of décollement. These changes are conjectured to be the result of a change in partial decoupling between the thin-skinned fold-thrust system (nappe) and the obliquely subducted foreland. As a particularly instructive case in point, a cross section through the Weissenstein range is discussed. A two-step forward (kinematical) model is proposed that uses both local observational constraints as well as model constraints inferred from regional data. As a first step, a fault bend fold is generated in the hanging wall of a thrust of 1500 m shortening. As a second step, this structure is transferred by flexural slip into the actual fold observed at the surface. This requires an additional 1600 m of shortening and leads to folding of the original thrust. Thereafter, the footwall is deformed so as to respect the constraint that this deformation must fit into the space defined by the folded thrust as the upper boundary and the décollement surface as the lower boundary, and that, in addition, should be confined to the area immediately below the fold. In modeling the footwall deformation a mix of balancing methods is used: fault propagation folds for the competent intervals of the stratigraphic column and area balancing for the incompetent ones. Further propagation of décollement into the foreland is made possible by the folding process, which is dominated by a sort of kinking and which is the main contribution to structural elevation and hence to producing a sort of critical taper of the moving thin-skinned wedge.
Numerical simulation of bubble deformation in magnetic fluids by finite volume method
NASA Astrophysics Data System (ADS)
Yamasaki, Haruhiko; Yamaguchi, Hiroshi
2017-06-01
Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field.
SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J; Zhang, L; Balter, P
2015-06-15
Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points.more » It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and research applications. This work was partially supported by Cancer Prevention & Research Institute of Texas (CPRIT) RP110562.« less
Large-scale deformation associated with ridge subduction
Geist, E.L.; Fisher, M.A.; Scholl, D. W.
1993-01-01
Continuum models are used to investigate the large-scale deformation associated with the subduction of aseismic ridges. Formulated in the horizontal plane using thin viscous sheet theory, these models measure the horizontal transmission of stress through the arc lithosphere accompanying ridge subduction. Modelling was used to compare the Tonga arc and Louisville ridge collision with the New Hebrides arc and d'Entrecasteaux ridge collision, which have disparate arc-ridge intersection speeds but otherwise similar characteristics. Models of both systems indicate that diffuse deformation (low values of the effective stress-strain exponent n) are required to explain the observed deformation. -from Authors
Videogrammetric Model Deformation Measurement Technique
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tian-Shu
2001-01-01
The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.
[Research progress on real-time deformable models of soft tissues for surgery simulation].
Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie
2010-04-01
Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.
On macromolecular refinement at subatomic resolution with interatomic scatterers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afonine, Pavel V., E-mail: pafonine@lbl.gov; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
2007-11-01
Modelling deformation electron density using interatomic scatters is simpler than multipolar methods, produces comparable results at subatomic resolution and can easily be applied to macromolecules. A study of the accurate electron-density distribution in molecular crystals at subatomic resolution (better than ∼1.0 Å) requires more detailed models than those based on independent spherical atoms. A tool that is conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8–1.0 Å, the number of experimental data is insufficient for full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented bymore » additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark data sets gave results that were comparable in quality with the results of multipolar refinement and superior to those for conventional models. Applications to several data sets of both small molecules and macromolecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.« less
Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results
NASA Astrophysics Data System (ADS)
Boutelier, D.; Oncken, O.
2008-12-01
We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.
Overview of deformable mirror technologies for adaptive optics and astronomy
NASA Astrophysics Data System (ADS)
Madec, P.-Y.
2012-07-01
From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.
NASA Technical Reports Server (NTRS)
Changizi, Koorosh
1989-01-01
A nonlinear Lagrangian formulation for the spatial kinematic and dynamic analysis of open chain deformable links consisting of cylindrical joints that connect pairs of flexible links is developed. The special cases of revolute or prismatic joint can also be obtained from the kinematic equations. The kinematic equations are described using a 4x4 matrix method. The configuration of each deformable link in the open loop kinematic chain is identified using a coupled set of relative joint variables, constant geometric parameters, and elastic coordinates. The elastic coordinates define the link deformation with respect to a selected joint coordinate system that is consistent with the kinematic constraints on the boundary of the deformable link. These coordinates can be introduced using approximation techniques such as Rayleigh-Ritz method, finite element technique or any other desired approach. The large relative motion between two neighboring links are defined by a set of joint coordinates which describes the large relative translational and rotational motion between two neighboring joint coordinate systems. The origin of these coordinate systems are rigidly attached to the neighboring links at the joint definition points along the axis of motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiboth, Frank; Wittwer, Felix; Scholz, Maria
Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with σ¯ = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without priormore » lens characterization but simply based on the derived lens deformation. As a result, the performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.« less
Marker optimization for facial motion acquisition and deformation.
Le, Binh H; Zhu, Mingyang; Deng, Zhigang
2013-11-01
A long-standing problem in marker-based facial motion capture is what are the optimal facial mocap marker layouts. Despite its wide range of potential applications, this problem has not yet been systematically explored to date. This paper describes an approach to compute optimized marker layouts for facial motion acquisition as optimization of characteristic control points from a set of high-resolution, ground-truth facial mesh sequences. Specifically, the thin-shell linear deformation model is imposed onto the example pose reconstruction process via optional hard constraints such as symmetry and multiresolution constraints. Through our experiments and comparisons, we validate the effectiveness, robustness, and accuracy of our approach. Besides guiding minimal yet effective placement of facial mocap markers, we also describe and demonstrate its two selected applications: marker-based facial mesh skinning and multiresolution facial performance capture.
Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.
McIntosh, Chris; Hamarneh, Ghassan
2012-01-01
We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.
A Biomechanical Modeling Guided CBCT Estimation Technique
Zhang, You; Tehrani, Joubin Nasehi; Wang, Jing
2017-01-01
Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks. PMID:27831866
NASA Astrophysics Data System (ADS)
Raterron, P.; Chen, J.; Geenen, T.; Girard, J.
2009-04-01
Recent developments in high-pressure deformation devices coupled with synchrotron radiation allow investigating the rheology of mantle minerals and aggregates at the extreme pressure (P) and temperature (T) of their natural occurrence in the Earth. This is particularly true in the case of olivine, which rheology has been recently investigated in the Deformation-DIA apparatus (D-DIA, see Wang et al., 2003, Rev. Scientific Instr., 74, 3002) at upper-mantle P and T conditions. Olivine deforms by dislocation creep in the shallow upper-mantle, as revealed by the seismic velocity anisotropy observed in this region. The attenuation of seismic anisotropy at depth greater than 200 km is interpreted as a pressure-induced change in olivine main deformation mechanism. It was first attributed to a transition from dislocation creep to diffusion creep (Karato and Wu, 1993, Science, 260, 771). This interpretation has been challenged by deformation data obtained at high pressure (P > 3 GPa) in the dislocation creep regime (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Miner., 92, 1436; Raterron et al., 2009, PEPI, 72, 74), which support a second interpretation: a transition in olivine dominant dislocation slip, from [100] slip at low P to [001] slip at high P (e.g., Mainprice et al., 2005, Nature, 433, 731). Such a P -induced [100]/[001] slip transition is also supported by recent theoretical studies based on first-principle calculations of olivine dislocation slips (Durinck et al., 2005, PCM, 32, 646; Durinck et al., 2007, Eur. J. Mineral., 19, 631). In order to further constrain the effect of pressure on olivine slip system activities, deformation experiments were carried out in poor water condition at P > 5 GPa and T =1400Ë C, on pure forsterite (Fo100) and San Carlos olivine crystals, using the D-DIA at the X17B2 beamline of the NSLS (Upton, NY, USA). Crystals were oriented in order to active either [100] slip alone or [001] slip alone in (010) plane, or both [100](001) and [001](100) systems together. Constant applied stress < 300 MPa and specimen strain rates were monitored in situ using time-resolved X-ray diffraction and radiography, respectively. Run products were investigated by transmission electron microscopy (TEM) in order to verify the actual activation of the tested dislocation slip systems. The obtained data were compared with rheological data previously obtained at comparable T and conditions, but at room P (Darot and Gueguen, 1981, JGR, 86, 6219; Bai et al., 1991, JGR, 96, 2441), resulting in creep power laws which quantify the effect of P on olivine rheology. The new data confirm the occurrence of a P -induced [100]/[001] slip transition, and suggest that [001](010) system dominates olivine deformation in the deep upper mantle. Extrapolation of the obtained rheological laws to natural condition along upper-mantle geotherms, shows that the [100] / [001] slip transition should occur in the Earth at ~ 200 km depth, thus can explain the attenuation of seismic anisotropy in the deep upper mantle. The obtained rheological laws were also integrated into a straightforward olivine aggregate model, then extrapolated to mantle condition using a 2-D geodynamic modeling application (Van den Berg et al., 1993, Geophys. J. International, 115, 62), which is the simplest approach to investigate upper-mantle steady-state deformation. In the application, the velocity of the lower boundary (the transition-zone boundary at 410-km depth) was set to 0, while that at the Earth's surface was set to 2 cm/year. Results from this modeling suggest that the combine activity of [100] and [001] slips in olivine aggregates may significantly decrease mantle viscosity below the oceanic lithosphere, thus, may contribute to the low viscosity zone (LVZ) required in plate tectonics to decouple rigid plates from the more ductile asthenophere underneath.
NASA Astrophysics Data System (ADS)
Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew
2016-04-01
The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident from available datasets that improved rifting-cycle models do need to incorporate realistic lithospheric properties, as well as the dynamic transport of magma, in order to reproduce the variety of observations, and provide means of forecasting large future dyking events and eruptions at active rifting segments.
On integrability of the Yang-Baxter {sigma}-model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimcik, Ctirad
2009-04-15
We prove that the recently introduced Yang-Baxter {sigma}-model can be considered as an integrable deformation of the principal chiral model. We find also an explicit one-to-one map transforming every solution of the principal chiral model into a solution of the deformed model. With the help of this map, the standard procedure of the dressing of the principal chiral solutions can be directly transferred into the deformed Yang-Baxter context.
High-temperature behavior of a deformed Fermi gas obeying interpolating statistics.
Algin, Abdullah; Senay, Mustafa
2012-04-01
An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also, a model to be studied for addressing such an idea could possibly provide us some new consequences about the interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics. Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the third virial coefficient of the model that the deformation parameter q interpolates completely between attractive and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we conclude that such a model could provide much physical insight into some interacting theories of fermions, and could be useful to further study the particle systems with intermediate statistics.
Southern California Earthquake Center Geologic Vertical Motion Database
NASA Astrophysics Data System (ADS)
Niemi, Nathan A.; Oskin, Michael; Rockwell, Thomas K.
2008-07-01
The Southern California Earthquake Center Geologic Vertical Motion Database (VMDB) integrates disparate sources of geologic uplift and subsidence data at 104- to 106-year time scales into a single resource for investigations of crustal deformation in southern California. Over 1800 vertical deformation rate data points in southern California and northern Baja California populate the database. Four mature data sets are now represented: marine terraces, incised river terraces, thermochronologic ages, and stratigraphic surfaces. An innovative architecture and interface of the VMDB exposes distinct data sets and reference frames, permitting user exploration of this complex data set and allowing user control over the assumptions applied to convert geologic and geochronologic information into absolute uplift rates. Online exploration and download tools are available through all common web browsers, allowing the distribution of vertical motion results as HTML tables, tab-delimited GIS-compatible text files, or via a map interface through the Google Maps™ web service. The VMDB represents a mature product for research of fault activity and elastic deformation of southern California.
NASA Astrophysics Data System (ADS)
Yang, Kun Vanna; Lim, Chao Voon Samuel; Zhang, Kai; Sun, Jifeng; Yang, Xiaoguang; Huang, Aijun; Wu, Xinhua; Davies, Christopher H.
2015-12-01
Heat-treated Ti-6Al-4V forged bar with colony microstructure was machined into double-cone-shaped samples for a series of isothermal uniaxial compression test at 1223 K (950 °C) with varying constant crosshead speeds of 12.5, 1.25, and 0.125 mms-1 to a height reduction of 70 pct. Another set of samples deformed under the same conditions were heat treated at 1173 K (900 °C) for an hour followed by water quench. Finite element modeling was used to provide the strains, strain rates, and temperature profiles of the hot compression samples, and the microstructure and texture evolution was examined at four positions on each sample, representative of different strain ranges. Lamellae fragmentation and kinking are the dominant microstructural features at lower strain range up to a maximum of 2.0, whereas globularization dominates at strains above 2.0 for the as-deformed samples. The globularization fraction generally increases with strain, or by post-deformation heat treatment, but fluctuates at lower strain. The grain size of the globular α is almost constant with strain and maximizes for samples with the lowest crosshead speed due to the longer deformation time. The globular α grain also coarsens because of post-deformation heat treatment, with its size increasing with strain level. With respect to texture evolution, a basal transverse ring and another component 30 deg from ND is determined for samples deformed at 12.5 mms-1, which is consistent with the temperature increase to close to β-transus from simulation results. The texture type remains unchanged with its intensity increased and spreads with increasing strain.
Modeling of macrosegregation caused by volumetric deformation in a coherent mushy zone
NASA Astrophysics Data System (ADS)
Nicolli, Lilia C.; Mo, Asbjørn; M'hamdi, Mohammed
2005-02-01
A two-phase volume-averaged continuum model is presented that quantifies macrosegregation formation during solidification of metallic alloys caused by deformation of the dendritic network and associated melt flow in the coherent part of the mushy zone. Also, the macrosegregation formation associated with the solidification shrinkage (inverse segregation) is taken into account. Based on experimental evidence established elsewhere, volumetric viscoplastic deformation (densification/dilatation) of the coherent dendritic network is included in the model. While the thermomechanical model previously outlined (M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081-93) has been used to calculate the temperature and velocity fields associated with the thermally induced deformations and shrinkage driven melt flow, the solute conservation equation including both the liquid and a solid volume-averaged velocity is solved in the present study. In modeling examples, the macrosegregation formation caused by mechanically imposed as well as by thermally induced deformations has been calculated. The modeling results for an Al-4 wt pct Cu alloy indicate that even quite small volumetric strains (≈2 pct), which can be associated with thermally induced deformations, can lead to a macroscopic composition variation in the final casting comparable to that resulting from the solidification shrinkage induced melt flow. These results can be explained by the relatively large volumetric viscoplastic deformation in the coherent mush resulting from the applied constitutive model, as well as the relatively large difference in composition for the studied Al-Cu alloy in the solid and liquid phases at high solid fractions at which the deformation takes place.
Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies.
Du, Gang; Sun, Mao
2012-05-07
We investigated the aerodynamic effects of wing deformation and corrugation of a three-dimensional model hoverfly wing at a hovering condition by solving the Navier-Stokes equations on a dynamically deforming grid. Various corrugated wing models were tested. Insight into whether or not there existed significant aerodynamic coupling between wing deformation (camber and twist) and wing corrugation was obtained by comparing aerodynamic forces of four cases: a smooth-plate wing in flapping motion without deformation (i.e. a rigid flat-plate wing in flapping motion); a smooth-plate wing in flapping motion with deformation; a corrugated wing in flapping motion without deformation (i.e. a rigid corrugated wing in flapping motion); a corrugated wing in flapping motion with deformation. There was little aerodynamic coupling between wing deformation and corrugation: the aerodynamic effect of wing deformation and corrugation acting together was approximately a superposition of those of deformation and corrugation acting separately. When acting alone, the effect of wing deformation was to increase the lift by 9.7% and decrease the torque (or aerodynamic power) by 5.2%, and that of wing corrugation was to decrease the lift by 6.5% and increase the torque by 2.2%. But when acting together, the wing deformation and corrugation only increased the lift by ~3% and decreased the torque by ~3%. That is, the combined aerodynamic effect of deformation and corrugation is rather small. Thus, wing corrugation is mainly for structural, not aerodynamic, purpose, and in computing or measuring the aerodynamic forces, using a rigid flat-plate wing to model the corrugated deforming wing at hovering condition can be a good approximation. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Behr, W. M.; Smith, D.
2016-12-01
Laramide crustal deformation in the Rocky Mountains of the west-central United States is often considered to relate to a narrow segment of shallow subduction of the Farallon slab, but there is no consensus as to how deformation along the slab-mantle lithosphere interface was accommodated. Here we investigate deformation in mantle rocks associated with hydration and shear above the flat-slab at its contact with the base of the North American plate. The rocks we focus on are deformed, hydrated, ultramafic inclusions hosted within diatremes of the Navajo Volcanic Field in the central Colorado Plateau that erupted during the waning stages of the Laramide orogeny. We document a range of deformation textures, including granular peridotites, porphyroclastic peridotites, mylonites, and cataclasites, which we interpret to reflect different proximities to a slab-mantle-interface shear zone. Mineral assemblages and chemistries constrain deformation to hydrous conditions in the temperature range 550-750 C. Despite the presence of hydrous phyllosilicates in modal percentages of up to 30%, deformation was dominated by dislocation creep in olivine. The mylonites exhibit an uncommon lattice preferred orientation (LPO) in olivine, known as B-type LPO in which the a-axes are aligned perpendicular to the flow direction. The low temperature, hydrated setting in which these fabrics formed is consistent with laboratory experiments that indicate B-type LPOs form under conditions of high stress and high water contents; furthermore, the mantle wedge context of these LPOs is consistent with observations of trench-parallel anisotropy in the mantle wedge above many modern subduction zones. Differential stress magnitudes in the mylonitic rocks estimated using paleopiezometry range from 290 to 444 MPa, and calculated effective viscosities using a wet olivine flow law are on the order of 10^19 to 10^23 Pa s. The high stress magnitudes, high effective viscosities, and high strains recorded in these rocks are consistent with models that invoke significant basal shear tractions as contributing to Laramide surface uplift and contraction in the continental interior.
Details of insect wing design and deformation enhance aerodynamic function and flight efficiency.
Young, John; Walker, Simon M; Bomphrey, Richard J; Taylor, Graham K; Thomas, Adrian L R
2009-09-18
Insect wings are complex structures that deform dramatically in flight. We analyzed the aerodynamic consequences of wing deformation in locusts using a three-dimensional computational fluid dynamics simulation based on detailed wing kinematics. We validated the simulation against smoke visualizations and digital particle image velocimetry on real locusts. We then used the validated model to explore the effects of wing topography and deformation, first by removing camber while keeping the same time-varying twist distribution, and second by removing camber and spanwise twist. The full-fidelity model achieved greater power economy than the uncambered model, which performed better than the untwisted model, showing that the details of insect wing topography and deformation are important aerodynamically. Such details are likely to be important in engineering applications of flapping flight.
Effect of suction-dependent soil deformability on landslide susceptibility maps
NASA Astrophysics Data System (ADS)
Lizarraga, Jose J.; Buscarnera, Giuseppe; Frattini, Paolo; Crosta, Giovanni B.
2016-04-01
This contribution presents a physically-based, spatially-distributed model for shallow landslides promoted by rainfall infiltration. The model features a set of Factor of Safety values aimed to capture different failure mechanisms, namely frictional slips with limited mobility and flowslide events associated with the liquefaction of the considered soils. Indices of failure associated with these two modes of instability have been derived from unsaturated soil stability principles. In particular, the propensity to wetting-induced collapse of unsaturated soils is quantified through the introduction of a rigid-plastic model with suction-dependent yielding and strength properties. The model is combined with an analytical approach (TRIGRS) to track the spatio-temporal evolution of soil suction in slopes subjected to transient infiltration. The model has been tested to reply the triggering of shallow landslides in pyroclastic deposits in Sarno (1998, Campania Region, Southern Italy). It is shown that suction-dependent mechanical properties, such as soil deformability, have important effects on the predicted landslide susceptibility scenarios, resulting on computed unstable zones that may encompass a wide range of slope inclinations, saturation levels, and depths. Such preliminary results suggest that the proposed methodology offers an alternative mechanistic interpretation to the variability in behavior of rainfall-induced landslides. Differently to standard methods the explanation to this variability is based on suction-dependent soil behavior characteristics.
Irving, Benjamin J; Goussard, Pierre; Andronikou, Savvas; Gie, Robert; Douglas, Tania S; Todd-Pokropek, Andrew; Taylor, Paul
2014-10-01
Airway deformation and stenosis can be key signs of pathology such as lymphadenopathy. This study presents a local airway point distribution model (LA-PDM) to automatically analyse regions of the airway tree in CT scans and identify abnormal airway deformation. In our method, the airway tree is segmented and the centreline identified from each chest CT scan. Thin-plate splines, along with a local mesh alignment method for tubular meshes, are used to register the airways and develop point distribution models (PDM). Each PDM is then used to analyse and classify local regions of the airway. This LA-PDM method was developed using 89 training cases and evaluated on a 90 CT test set, where each set includes paediatric tuberculosis (TB) cases (with airway involvement) and non-TB cases (without airway involvement). The LA-PDM was able to accurately distinguish cases with airway involvement with an AUC of the ROC classification (and 95% confidence interval) of 0.87 (0.77-0.94) for the Trachea-LMB-RMB region and 0.81 (0.68-0.90) for the RMB-RUL-BI region - outperforming a comparison method based on airway cross-sectional features. This has the potential to assist and improve airway analysis from CT scans by detecting involved airways and visualising affected airway regions. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dembo, N.; Granot, R.; Hamiel, Y.
2017-12-01
The intraplate crustal deformation found in the northern part of the Sinai Microplate, located near the northern Dead Sea Fault plate boundary, is examined. Previous studies have suggested that distributed deformation in Lebanon is accommodated by regional uniform counterclockwise rigid block rotations. However, remanent magnetization directions observed near the Lebanese restraining bend are not entirely homogeneous suggesting that an unexplained and complex internal deformation pattern exists. In order to explain the variations in the amount of vertical-axis rotations we construct a mechanical model of the major active faults in the region that simulates the rotational deformation induced by motion along these faults. The rotational pattern calculated by the mechanical modeling predicts heterogeneous distribution of rotations around the faults. The combined rotation field that considers both the fault induced rotations and the already suggested regional block rotations stands in general agreement with the observed magnetization directions. Overall, the modeling results provide a more detailed and complete picture of the deformation pattern in this region and show that rotations induced by motion along the Dead Sea Fault act in parallel to rigid block rotations. Finally, the new modeling results unravel important insights as to the fashion in which crustal deformation is distributed within the northern part of the Sinai Microplate and propose an improved deformational mechanism that might be appropriate for other plate margins as well.
Integrated modeling for parametric evaluation of smart x-ray optics
NASA Astrophysics Data System (ADS)
Dell'Agostino, S.; Riva, M.; Spiga, D.; Basso, S.; Civitani, Marta
2014-08-01
This work is developed in the framework of AXYOM project, which proposes to study the application of a system of piezoelectric actuators to grazing-incidence X-ray telescope optic prototypes: thin glass or plastic foils, in order to increase their angular resolution. An integrated optomechanical model has been set up to evaluate the performances of X-ray optics under deformation induced by Piezo Actuators. Parametric evaluation has been done looking at different number and position of actuators to optimize the outcome. Different evaluations have also been done over the actuator types, considering Flexible Piezoceramic, Multi Fiber Composites piezo actuators, and PVDF.
Present day vertical deformation of Pico and Faial islands revealed by merged INSAR and GPS data
NASA Astrophysics Data System (ADS)
Catalao, Joao; Nico, Giovanni; Catita, Cristina
2010-05-01
In this paper we investigate the problem of the integration of repeated GPS geodetic measurements and interferometric Synthetic Aperture Radar (SAR) observations for the determination of high resolution vertical deformation maps. The Faial and Pico islands in the Azores archipelago were chosen as study area. These islands are characterized by a intense volcanic and seismic activity. Both islands are covered by huge vegetation and have very unstable atmospheric conditions which negatively influence the interferometric processing. In this work, we apply the advanced interferometric SAR processing based on Persistent Scatterers. However, the small number of man made structures reduces the density of Persistent Scatterers. Furthermore, the different ascending and descending acquisition geometries give different sets of Persistent Scatterers, with complementary spatial coverage, and different line-of-sight velocities. The estimated velocities are relative to the master image (different from ascending and descending) and must be referred to an absolute velocity (in the sense of referred to a geodetic reference frame). The strategy used to overcome the aforementioned problems is based on the combination of sparse GPS 3D-velocities with two sets of Persistent Scatterers determined from ascending and descending passes. The input data are: a set of GPS - 3D velocities relative to ITRF05 (18 Stations) and two sets of Persistent Scatterers corresponding to the descending and ascending orbits. A dataset of 60 interferometric repeat-pass ASAR/ENVISAT images were acquired over the Faial and Pico islands, from 2006 to 2008, along ascending and descending passes. Each interferogram obtained by this dataset was corrected for atmospheric artefacts using a Weather Forecasting model. Initially, the horizontal velocity component (east and north) is assigned to each PS from interpolation of available GPS observations. Then, the vertical component of the velocity is determined from the SAR line-of-sight velocity and the GPS horizontal velocity component. Later, the vertical velocity offsets are numerically determined by comparison between GPS (ITRF velocities) and PS (the two ascending and descending sets) measurements. These values are then used to create the vertical deformation map of Faial and Pico islands with considerably better resolution and accuracy than using a single set of observations. The vertical deformation map has identified a large continuous area of subsidence on the west of Faial island, on the flank of Capelinhos eruption cone, with a maximum subsidence range of 10 mm/yr. It has also revealed the subsidence of the summit crater of Pico island (9 mm/yr) and a large area of subsidence on the west of the island, corresponding mostly to creep movement. Key words: SAR Interferometry, GPS-INSAR integration, Volcano, subsidence
Unexpected angular or rotational deformity after corrective osteotomy
2014-01-01
Background Codman’s paradox reveals a misunderstanding of geometry in orthopedic practice. Physicians often encounter situations that cannot be understood intuitively during orthopedic interventions such as corrective osteotomy. Occasionally, unexpected angular or rotational deformity occurs during surgery. This study aimed to draw the attention of orthopedic surgeons toward the concepts of orientation and rotation and demonstrate the potential for unexpected deformity after orthopedic interventions. This study focused on three situations: shoulder arthrodesis, femoral varization derotational osteotomy, and femoral derotation osteotomy. Methods First, a shoulder model was generated to calculate unexpected rotational deformity to demonstrate Codman’s paradox. Second, femoral varization derotational osteotomy was simulated using a cylinder model. Third, a reconstructed femoral model was used to calculate unexpected angular or rotational deformity during femoral derotation osteotomy. Results Unexpected external rotation was found after forward elevation and abduction of the shoulder joint. In the varization and derotation model, closed-wedge osteotomy and additional derotation resulted in an unexpected extension and valgus deformity, namely, under-correction of coxa valga. After femoral derotational osteotomy, varization and extension of the distal fragment occurred, although the extension was negligible. Conclusions Surgeons should be aware of unexpected angular deformity after surgical procedure involving bony areas. The degree of deformity differs depending on the context of the surgical procedure. However, this study reveals that notable deformities can be expected during orthopedic procedures such as femoral varization derotational osteotomy. PMID:24886469
NASA Astrophysics Data System (ADS)
Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.
2017-10-01
Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.
Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.
Bekesi, Nandor; Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana
2016-01-01
To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0-0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry, suggesting that this is a promising technique to retrieve quantitative corneal biomechanical properties.
NASA Astrophysics Data System (ADS)
Derez, Tine; Van Der Donck, Tom; Plümper, Oliver; Muchez, Philippe; Pennock, Gill; Drury, Martyn R.; Sintubin, Manuel
2017-07-01
Fine extinction bands (FEBs) (also known as deformation lamellae) visible with polarized light microscopy in quartz consist of a range of nanostructures, inferring different formation processes. Previous transmission electron microscopy studies have shown that most FEB nanostructures in naturally deformed quartz are elongated subgrains formed by recovery of dislocation slip bands. Here we show that three types of FEB nanostructure occur in naturally deformed vein quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium). Prismatic oriented FEBs are defined by bands of dislocation walls. Dauphiné twin boundaries present along the FEB boundaries probably formed after FEB formation. In an example of two sub-rhombohedral oriented FEBs, developed as two sets in one grain, the finer FEB set consists of elongated subgrains, similar to FEBs described in previous transmission electron microscopy studies. The second wider FEB set consists of bands with different dislocation density and fluid-inclusion content. The wider FEB set is interpreted as bands with different plastic strain associated with the primary growth banding of the vein quartz grain. The nanometre-scale fluid inclusions are interpreted to have formed from structurally bounded hydroxyl groups that moreover facilitated formation of the elongate subgrains. Larger fluid inclusions aligned along FEBs are explained by fluid-inclusion redistribution along dislocation cores. The prismatic FEB nanostructure and the relation between FEBs and growth bands have not been recognized before, although related structures have been reported in experimentally deformed quartz.
Accidental degeneracies in nonlinear quantum deformed systems
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2011-09-01
We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng
2018-06-01
In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.
Mechanism of Supercooled Water Droplet Breakup near the Leading Edge of an Airfoil
NASA Technical Reports Server (NTRS)
Veras-Alba, Belen; Palacios, Jose; Vargas, Mario; Ruggeri, Charles; Bartkus, Tadas P.
2017-01-01
This work presents the results of an experimental study on supercooled droplet deformation and breakup near the leading edge of an airfoil. The results are compared to prior room temperature droplet deformation results to explore the effects of droplet supercooling. The experiments were conducted in the Adverse Environment Rotor Test Stand (AERTS) at The Pennsylvania State University. An airfoil model placed at the end of the rotor blades mounted onto the hub in the AERTS chamber was moved at speeds ranging between 50 and 80 m/sec. The temperature of the chamber was set at -20°C. A monotonic droplet generator was used to produce droplets that fell from above, perpendicular to the path of the airfoil. The supercooled state of the droplets was determined by measurement of the temperature of the drops at various locations below the droplet generator exit. A temperature prediction code was also used to estimate the temperature of the droplets based on vertical velocity and the distance traveled by droplets from the droplet generator to the airfoil stagnation line. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging provided droplet deformation information as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure the horizontal and vertical displacement of the droplet against time. It was demonstrated that to compare the effects of water supercooling on droplet deformation, the ratio of the slip velocity and the initial droplet velocity must be equal. A case with equal slip velocity to initial velocity ratios was selected for room temperature and supercooled droplet conditions. The airfoil velocity was 60 m/s and the slip velocity for both sets of data was 40 m/s. In these cases, the deformation of the weakly supercooled and warm droplets did not present different trends. The similar behavior for both environmental conditions indicates that water supercooling has no effect on particle deformation for the limited range of the weak supercooling of the droplets tested and the selected impact velocity. The assumption of a constant surface tension value was further supported by the equal trend of the Bond number obtained for supercooled and room temperature droplets.
Brain shift computation using a fully nonlinear biomechanical model.
Wittek, Adam; Kikinis, Ron; Warfield, Simon K; Miller, Karol
2005-01-01
In the present study, fully nonlinear (i.e. accounting for both geometric and material nonlinearities) patient specific finite element brain model was applied to predict deformation field within the brain during the craniotomy-induced brain shift. Deformation of brain surface was used as displacement boundary conditions. Application of the computed deformation field to align (i.e. register) the preoperative images with the intraoperative ones indicated that the model very accurately predicts the displacements of gravity centers of the lateral ventricles and tumor even for very limited information about the brain surface deformation. These results are sufficient to suggest that nonlinear biomechanical models can be regarded as one possible way of complementing medical image processing techniques when conducting nonrigid registration. Important advantage of such models over the linear ones is that they do not require unrealistic assumptions that brain deformations are infinitesimally small and brain tissue stress-strain relationship is linear.
Deformable complex network for refining low-resolution X-ray structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chong; Wang, Qinghua; Ma, Jianpeng, E-mail: jpma@bcm.edu
2015-10-27
A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint withmore » the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.« less
NASA Astrophysics Data System (ADS)
Cassola, Teodoro; Willett, Sean D.; Kopp, Heidrun
2010-05-01
In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between wedge deformation and forearc basin formation. The aim of this work is to gain an insight into the dynamics of the formation of the forearc basin, in particular the mechanism of formation of accommodation space and the preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle and thermally-dependent viscosity. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy of the basin will also be studied, because in underfilled conditions the sediments are more likely to undergo tectonic deformation due to inner wedge deformation. We compare the numerical model with basins along the Sunda-Java Trench. This margin shows a variety of structural-settings and basin types including underfilled and overfilled basins and different wedge geometries. We interpret and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available through the IFM-GEOMAR and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR). One important aspect of these margins that we observe is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stable field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.
Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang
2014-01-01
The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PMID:24257278
Stanley, Nick; Glide‐Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J
2013-01-01
The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B‐spline‐based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast‐Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM‐DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0~3.1mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B‐spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient‐specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient‐dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PACS numbers: 87.10.Kn, 87.55.km, 87.55.Qr, 87.57.nj
NASA Astrophysics Data System (ADS)
Rusinko, Andrew; Varga, Peter
2018-04-01
The paper deals with modelling of the plastic and creep deformation of metals coupled with current. The passage of DC manifests itself in the increase in creep deformation and leads to primary creep time shortening. With plastic deformation, a short electric impulse results in the step-wise decrease of stress (stress-drop) on the stress-strain diagram. To catch these phenomena, we utilize the synthetic theory of recoverable deformation. The constitutive equation of this theory is supplemented by a term taking into account the intensity of DC. Further, we introduce DC intensity into the function governing transient creep. As a result, we predict the parameters of transient creep and calculate the stress-drop as a function of current intensity. The model results show good agreement with experimental data.
Investigation of Deformation Dynamics in a Wrought Magnesium Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Qiao, Hua; An, Ke
2014-11-01
In the present research, the deformation dynamics and the effect of the deformation history on plastic deformation in a wrought magnesium alloy have been studied using real-time in-situ neutron diffraction measurements under a continuous loading condition and elastic-viscoplastic self-consistent (EVPSC) polycrystal modeling. The experimental results reveal that the pre-deformation delayed the activation of the tensile twinning during subsequent compression, mainly resulting from the residual strain. No apparent detwinning occurred during unloading and even in the elastic region during reverse loading. It is believed that the grain rotation played an important role in the elastic region during reverse loading. The EVPSCmore » model, which has been recently updated by implementing the twinning and detwinning model, was employed to characterize the deformation mechanism during the strain-path changes. The simulation result predicts well the experimental observation from the real-time in-situ neutron diffraction measurements. The present study provides a deep insight of the nature of deformation mechanisms in a hexagonal close-packed structured polycrystalline wrought magnesium alloy, which might lead to a new era of deformation-mechanism research.« less
Modeling the impact behavior of high strength ceramics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendran, A.M.
1993-12-01
An advanced constitutive model is used to describe the shock and high strain rate behaviors of silicon carbide (SC), boron carbide B4C, and titanium diboride (TiB2) under impact loading conditions. The model's governing equations utilize a set of microphysically-based constitutive relationships to model the deformation and damage processes in a ceramic. The total strain is decomposed into elastic, plastic, and microcracking components. The plastic strain component was calculated using conventional viscoplastic equations. The strain components due to microcracking utilized relationships derived for a penny-shaped crack containing elastic solids. The main features of the model include degradation of strength and stiffnessmore » under both compressive and tensile loading conditions. When loaded above the Hugoniot elastic limit (HEL), the strength is limited by the strain rate dependent strength equation. However, below the HEL, the strength variation with respect to strain rate and pressure is modeled through microcracking relationships assuming no plastic flow. The ceramic model parameters were determined using a set of VISAR data from the plate impact experiments.« less
Mechanics of deformations in terms of scalar variables
NASA Astrophysics Data System (ADS)
Ryabov, Valeriy A.
2017-05-01
Theory of particle and continuous mechanics is developed which allows a treatment of pure deformation in terms of the set of variables "coordinate-momentum-force" instead of the standard treatment in terms of tensor-valued variables "strain-stress." This approach is quite natural for a microscopic description of atomic system, according to which only pointwise forces caused by the stress act to atoms making a body deform. The new concept starts from affine transformation of spatial to material coordinates in terms of the stretch tensor or its analogs. Thus, three principal stretches and three angles related to their orientation form a set of six scalar variables to describe deformation. Instead of volume-dependent potential used in the standard theory, which requires conditions of equilibrium for surface and body forces acting to a volume element, a potential dependent on scalar variables is introduced. A consistent introduction of generalized force associated with this potential becomes possible if a deformed body is considered to be confined on the surface of torus having six genuine dimensions. Strain, constitutive equations and other fundamental laws of the continuum and particle mechanics may be neatly rewritten in terms of scalar variables. Giving a new presentation for finite deformation new approach provides a full treatment of hyperelasticity including anisotropic case. Derived equations of motion generate a new kind of thermodynamical ensemble in terms of constant tension forces. In this ensemble, six internal deformation forces proportional to the components of Irving-Kirkwood stress are controlled by applied external forces. In thermodynamical limit, instead of the pressure and volume as state variables, this ensemble employs deformation force measured in kelvin unit and stretch ratio.
Reconstruction of early phase deformations by integrated magnetic and mesotectonic data evaluation
NASA Astrophysics Data System (ADS)
Sipos, András A.; Márton, Emő; Fodor, László
2018-02-01
Markers of brittle faulting are widely used for recovering past deformation phases. Rocks often have oriented magnetic fabrics, which can be interpreted as connected to ductile deformation before cementation of the sediment. This paper reports a novel statistical procedure for simultaneous evaluation of AMS (Anisotropy of Magnetic Susceptibility) and fault-slip data. The new method analyzes the AMS data, without linearization techniques, so that weak AMS lineation and rotational AMS can be assessed that are beyond the scope of classical methods. This idea is extended to the evaluation of fault-slip data. While the traditional assumptions of stress inversion are not rejected, the method recovers the stress field via statistical hypothesis testing. In addition it provides statistical information needed for the combined evaluation of the AMS and the mesotectonic (0.1 to 10 m) data. In the combined evaluation a statistical test is carried out that helps to decide if the AMS lineation and the mesotectonic markers (in case of repeated deformation of the oldest set of markers) were formed in the same or different deformation phases. If this condition is met, the combined evaluation can improve the precision of the reconstruction. When the two data sets do not have a common solution for the direction of the extension, the deformational origin of the AMS is questionable. In this case the orientation of the stress field responsible for the AMS lineation might be different from that which caused the brittle deformation. Although most of the examples demonstrate the reconstruction of weak deformations in sediments, the new method is readily applicable to investigate the ductile-brittle transition of any rock formation as long as AMS and fault-slip data are available.
Robust non-rigid registration algorithm based on local affine registration
NASA Astrophysics Data System (ADS)
Wu, Liyang; Xiong, Lei; Du, Shaoyi; Bi, Duyan; Fang, Ting; Liu, Kun; Wu, Dongpeng
2018-04-01
Aiming at the problem that the traditional point set non-rigid registration algorithm has low precision and slow convergence speed for complex local deformation data, this paper proposes a robust non-rigid registration algorithm based on local affine registration. The algorithm uses a hierarchical iterative method to complete the point set non-rigid registration from coarse to fine. In each iteration, the sub data point sets and sub model point sets are divided and the shape control points of each sub point set are updated. Then we use the control point guided affine ICP algorithm to solve the local affine transformation between the corresponding sub point sets. Next, the local affine transformation obtained by the previous step is used to update the sub data point sets and their shape control point sets. When the algorithm reaches the maximum iteration layer K, the loop ends and outputs the updated sub data point sets. Experimental results demonstrate that the accuracy and convergence of our algorithm are greatly improved compared with the traditional point set non-rigid registration algorithms.
Litho-structural analysis of eastern part of Ilesha schist belt, Southwestern Nigeria
NASA Astrophysics Data System (ADS)
Fagbohun, Babatunde Joseph; Adeoti, Blessing; Aladejana, Olabanji Odunayo
2017-09-01
The Ilesha schist belt is an excellent example of high strain shear belt within basement complex of southwestern Nigeria which is part of the larger West African Shield. The Ilesha schist belt is characterised by metasediment-metavolcanic, migmatite-gneiss and older granite rocks and the occurrence of a Shear zone which has been traced to and correlated with the central Hoggar Neoproterozoic shear zone as part of the Trans-Saharan Belt. Although the area is interesting in terms of geologic-tectonic setting, however, detailed geological assessment and structural interpretation of features in this area is lacking due accessibility problem. For these reasons we applied principal component analysis (PCA) and band ratio (BR) techniques on Landsat 8 OLI data for lithological discrimination while for structural interpretation, filtering techniques of edge enhancement and edge detection was applied on digital elevation model (DEM) acquired by shuttle radar topographic mission (SRTM) sensor. The PCA outperform BR for discrimination between quartzite and granite which are the most exposed rock units in the area. For structural interpretation, DEM was used to generate shaded relief model and edge maps which enable detailed structural interpretation. Geologic fieldwork was further conducted to validate structures and units identified from image processing. Based image interpretation, three deformation events were identified. The first event (D1) which is majorly a ductile deformation produced foliations and folds whose axial planes trend in NNE-SSW. The second event (D2) resulted in reactivation and rotation of the D1 structures particularly the folds in the NE-SW. The third event (D3) produced a transgressive deformation starting with the ductile deformation resulting in the development of sigmoidal structures oriented in NE-SW to E-W direction and the brittle deformation occurring at later stages producing fractures oriented in the E-W to NE-SW directions. These results have important implications in terms of regional tectonics and geological mapping as well as in land-use planning and other areas such as hydrogeology or geotechnics.
Elastic registration of prostate MR images based on state estimation of dynamical systems
NASA Astrophysics Data System (ADS)
Marami, Bahram; Ghoul, Suha; Sirouspour, Shahin; Capson, David W.; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron
2014-03-01
Magnetic resonance imaging (MRI) is being increasingly used for image-guided biopsy and focal therapy of prostate cancer. A combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images, with the identified target tumor(s), to the intra-treatment 1.5T MR images. The pre-treatment 3T images are acquired with patients in strictly supine position using an endorectal coil, while 1.5T images are obtained intra-operatively just before insertion of the ablation needle with patients in the lithotomy position. An intensity-based registration routine rigidly aligns two images in which the transformation parameters is initialized using three pairs of manually selected approximate corresponding points. The rigid registration is followed by a deformable registration algorithm employing a generic dynamic linear elastic deformation model discretized by the finite element method (FEM). The model is used in a classical state estimation framework to estimate the deformation of the prostate based on a similarity metric between pre- and intra-treatment images. Registration results using 10 sets of prostate MR images showed that the proposed method can significantly improve registration accuracy in terms of target registration error (TRE) for all prostate substructures. The root mean square (RMS) TRE of 46 manually identified fiducial points was found to be 2.40+/-1.20 mm, 2.51+/-1.20 mm, and 2.28+/-1.22mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively after deformable registration. These values are improved from 3.15+/-1.60 mm, 3.09+/-1.50 mm, and 3.20+/-1.73mm in the WG, CG and PZ, respectively resulted from rigid registration. Registration results are also evaluated based on the Dice similarity coefficient (DSC), mean absolute surface distances (MAD) and maximum absolute surface distances (MAXD) of the WG and CG in the prostate images.
Modeling of spray droplets deformation and breakup
NASA Technical Reports Server (NTRS)
Ibrahim, E. A.; Yang, H. Q.; Przekwas, A. J.
1993-01-01
A droplet deformation and breakup (DDB) model is proposed to study shear-type mechanism of spray droplets in pure extentional flows. A numerical solution of the DDB model equation is obtained using a fourth-order Runge-Kutta initial-value solver. The predictions of the DDB model as well as semianalytical and the Taylor analogy models are compared with the experimental data (Krzeczkowski, 1980) for shear breakup, which depict the dimensionless deformation of the drop vs dimensionless time.