Calculating beta decay in the deformed self-consistent quasiparticle random phase approximation
Engel, Jonathan; Mustonen, M. T.
2016-06-21
We discuss a recent global calculation of beta-decay rates in the self-consistent Skyrme quasiparticle random phase approximation (QRPA), with axially symmetric nuclear deformation treated explicitly. The calculation makes makes use of the finite-amplitude method, first proposed by Nakatsukasa and collaborators, to reduce computation time. The results are comparable in quality to those of several other global QRPA calculations. The QRPA may have reached the limit of its accuracy.
Losa, C.; Doessing, T.; Pastore, A.; Vigezzi, E.; Broglia, R. A.
2010-06-15
We present a calculation of the properties of vibrational states in deformed, axially-symmetric even-even nuclei, within the framework of a fully self-consistent quasiparticle random phase approximation (QRPA). The same Skyrme energy density and density-dependent pairing functionals are used to calculate the mean field and the residual interaction in the particle-hole and particle-particle channels. We have tested our software in the case of spherical nuclei against fully self-consistent calculations published in the literature, finding excellent agreement. We investigate the consequences of neglecting the spin-orbit and Coulomb residual interactions in QRPA. Furthermore we discuss the improvement obtained in the QRPA result associated with the removal of spurious modes. Isoscalar and isovector responses in the deformed {sup 24-26}Mg, {sup 34}Mg isotopes are presented and compared to experimental findings.
Alvarez-Rodriguez, R.; Sarriguren, P.; Moya de Guerra, E.; Pacearescu, L.; Faessler, Amand; Simkovic, F.
2004-12-01
We use a deformed quasiparticle random phase approximation formalism to describe simultaneously the energy distributions of the single {beta} Gamow-Teller strength and the two-neutrino double {beta} decay matrix elements. Calculations are performed in a series of double {beta} decay partners with A=48, 76, 82, 96, 100, 116, 128, 130, 136, and 150, using deformed Woods-Saxon potentials and deformed Skyrme Hartree-Fock mean fields. The formalism includes a quasiparticle deformed basis and residual spin-isospin forces in the particle-hole and particle-particle channels. We discuss the sensitivity of the parent and daughter Gamow-Teller strength distributions in single {beta} decay, as well as the sensitivity of the double {beta} decay matrix elements to the deformed mean field and to the residual interactions. Nuclear deformation is found to be a mechanism of suppression of the two-neutrino double {beta} decay. The double {beta} decay matrix elements are found to have maximum values for about equal deformations of parent and daughter nuclei. They decrease rapidly when differences in deformations increase. We remark on the importance of a proper simultaneous description of both double {beta} decay and single Gamow-Teller strength distributions. Finally, we conclude that for further progress in the field, it would be useful to improve and complete the experimental information on the studied Gamow-Teller strengths and nuclear deformations.
Peru, S.; Goutte, H.
2008-04-15
Fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed {sup 26-28}Si and {sup 22-24}Mg nuclei as well as in the spherical {sup 30}Si and {sup 28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.
Fang Dongliang; Faessler, Amand; Rodin, Vadim; Simkovic, Fedor
2011-03-15
In this paper a microscopic approach to calculation of the nuclear matrix element M{sup 0{nu}} for neutrinoless double-{beta} decay with an account for nuclear deformation is presented in length and applied for {sup 76}Ge, {sup 150}Nd, and {sup 160}Gd. The proton-neutron quasiparticle random-phase approximation with a realistic residual interaction (the Brueckner G matrix derived from the charge-depending Bonn nucleon-nucleon potential) is used as the underlying nuclear structure model. The effects of the short-range correlations and the quenching of the axial vector coupling constant g{sub A} are analyzed. The results suggest that neutrinoless double-{beta} decay of {sup 150}Nd, to be measured soon by the SNO+ Collaboration, may provide one of the best probes of the Majorana neutrino mass. This confirms our preliminary conclusion in Fang et al. [Phys. Rev. C 82, 051301(R) (2010)].
NASA Astrophysics Data System (ADS)
Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.
2016-07-01
Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.
NASA Astrophysics Data System (ADS)
Fang, Dong-Liang
2016-03-01
In this work, I take into consideration the Pauli exclusion principle (PEP) in the quasiparticle random-phase approximation (QRPA) calculations for the deformed systems by replacing the traditional quasiboson approximation (QBA) with the renormalized one. With this new formalism, the parametrization of QRPA calculations has been changed and the collapse of QRPA solutions could be avoid for realistic gp p values. I further find that the necessity of the renormalization parameter of particle-particle residual interaction gp p in QRPA calculations is due to the exclusion of PEP. So with the inclusion of PEP, I could easily extend the deformed QRPA calculations to the less-explored region where lack of experimental data prevent effective parametrization of gp p for QRPA methods. With this theoretical improvement, I give predictions of weak decay rates for even-even isotopes in the rare-earth region and compare the results with existing calculations.
NASA Astrophysics Data System (ADS)
Ha, Eunja; Cheoun, Myung-Ki
2016-11-01
We investigate effects of neutron-proton (n p ) pairing correlations on the Gamow-Teller (GT) transition of Mg,2624 by explicitly taking into account deformation effects. Our calculation is performed by a deformed quasiparticle random phase approximation (DQRPA) which includes the deformation at the Bardeen-Cooper-Schrieffer and RPA stage. In this paper, we include the n p pairing as well as neutron-neutron (n n ) and proton-proton (p p ) paring correlations to the DQRPA. Our new formalism is applied to the GT transition of well-known deformed Mg isotopes. The n p pairing effect is found to affect more or less the GT distribution of 24Mg and 26Mg. But the deformation effect turns out to be much larger than the n p paring effect because the Fermi surfaces smear more widely by the deformation rather than the n p pairing correlations. Correlations between the deformation and the n p pairing effects and their ambiguities are also discussed with the comparison to experimental GT strength data by triton and 3He beams.
Relativistic continuum quasiparticle random-phase approximation in spherical nuclei
Daoutidis, I.; Ring, P.
2011-04-15
We have calculated the strength distributions of the dipole response in spherical nuclei, ranging all over the periodic table. The calculations were performed within two microscopic models: the discretized quasiparticle random-phase approximation and the continuum quasiparticle random-phase approximation, which takes into account the coupling of the single-particle continuum in an exact way. Pairing correlations are treated with the BCS model. In the calculations, two density functionals were used, namely, the PC-F1 and the DD-PC1. Both are based on relativistic point-coupling Lagrangians. It is explicitly shown that this model is capable of reproducing the giant- as well as the pygmy-dipole resonance for open-shell nuclei in a high level of quantitative agreement with the available experimental observations.
Finite amplitude method for the quasiparticle random-phase approximation
Avogadro, Paolo; Nakatsukasa, Takashi
2011-07-15
We present the finite amplitude method (FAM), originally proposed in Ref. [17], for superfluid systems. A Hartree-Fock-Bogoliubov code may be transformed into a code of the quasiparticle-random-phase approximation (QRPA) with simple modifications. This technique has advantages over the conventional QRPA calculations, such as coding feasibility and computational cost. We perform the fully self-consistent linear-response calculation for the spherical neutron-rich nucleus {sup 174}Sn, modifying the hfbrad code, to demonstrate the accuracy, feasibility, and usefulness of the FAM.
Peru, S.; Gosselin, G.; Martini, M.; Dupuis, M.; Hilaire, S.
2011-01-15
Fully consistent axially-symmetric deformed quasiparticle random-phase approximation (QRPA) calculations have been performed, using the same Gogny D1S effective force for both the Hartree-Fock-Bogolyubov mean field and QRPA matrix. New implementation of this approach leads to the applicability of QRPA to heavy deformed nuclei. Giant resonances and low-energy collective states for monopole, dipole, quadrupole, and octupole modes are predicted for the heavy deformed nucleus {sup 238}U and compared with experimental data.
Extended proton-neutron quasiparticle random-phase approximation in a boson expansion method
NASA Astrophysics Data System (ADS)
Civitarese, O.; Montani, F.; Reboiro, M.
1999-08-01
The proton-neutron quasiparticle random phase approximation (pn-QRPA) is extended to include next to leading order terms of the QRPA harmonic expansion. The procedure is tested for the case of a separable Hamiltonian in the SO(5) symmetry representation. The pn-QRPA equation of motion is solved by using a boson expansion technique adapted to the treatment of proton-neutron correlations. The resulting wave functions are used to calculate the matrix elements of double-Fermi transitions.
Self-consistent quasiparticle random-phase approximation for a multilevel pairing model
Hung, N. Quang; Dang, N. Dinh
2007-11-15
Particle-number projection within the Lipkin-Nogami (LN) method is applied to the self-consistent quasiparticle random-phase approximation (SCQRPA), which is tested in an exactly solvable multilevel pairing model. The SCQRPA equations are numerically solved to find the energies of the ground and excited states at various numbers {omega} of doubly degenerate equidistant levels. The use of the LN method allows one to avoid the collapse of the BCS (QRPA) to obtain the energies of the ground and excited states as smooth functions of the interaction parameter G. The comparison between results given by different approximations such as the SCRPA, QRPA, LNQRPA, SCQRPA, and LNSCQRPA is carried out. Although the use of the LN method significantly improves the agreement with the exact results in the intermediate coupling region, we found that in the strong coupling region the SCQRPA results are closest to the exact ones.
NASA Astrophysics Data System (ADS)
De Donno, V.; Co', G.; Anguiano, M.; Lallena, A. M.
2017-05-01
We investigate the effects of the pairing in spherical nuclei. We use the same finite-range interaction of Gogny type in the three steps of our approach, Hartree-Fock, Bardeen, Cooper, and Schrieffer, and quasiparticle random-phase-approximation calculations. We study electric- and magnetic-dipole and quadrupole and octupole excitations in oxygen and calcium isotopes and also in isotones with 20 neutrons. We investigate the pairing effects on single-particle energies and occupation probabilities, on the excitation energies, B values, and collectivity of low-lying states including the isoscalar electric-dipole and magnetic-dipole excitations, and also the giant resonances. The inclusion of the pairing increases the values of the excitation energies in all the cases that we have studied. In general, the effects of the pairing are too small to noticeably improve the agreement with the available experimental data.
Relativistic quasiparticle random-phase approximation calculation of total muon capture rates
Marketin, T.; Paar, N.; Niksic, T.; Vretenar, D.
2009-05-15
The relativistic proton-neutron quasiparticle random phase approximation (pn-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from {sup 12}C to {sup 244}Pu, for which experimental values are available. The microscopic theoretical framework is based on the relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the pn-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the pn-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value g{sub A}=1.262 by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.
Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group
Hergert, H.; Papakonstantinou, P.; Roth, R.
2011-06-15
We have developed a fully consistent framework for calculations in the quasiparticle random-phase approximation (QRPA) with NN interactions from the Similarity Renormalization Group (SRG) and other unitary transformations of realistic interactions. The consistency of our calculations, which use the same Hamiltonian to determine the Hartree-Fock-Bogoliubov ground states and the residual interaction for QRPA, guarantees an excellent decoupling of spurious strength, without the need for empirical corrections. While work is under way to include SRG-evolved 3N interactions, we presently account for some 3N effects by means of a linearly density-dependent interaction, whose strength is adjusted to reproduce the charge radii of closed-shell nuclei across the whole nuclear chart. As a first application, we perform a survey of the monopole, dipole, and quadrupole response of the calcium isotopic chain and of the underlying single-particle spectra, focusing on how their properties depend on the SRG parameter {lambda}. Unrealistic spin-orbit splittings suggest that spin-orbit terms from the 3N interaction are called for. Nevertheless, our general findings are comparable to results from phenomenological QRPA calculations using Skyrme or Gogny energy density functionals. Potentially interesting phenomena related to low-lying strength warrant more systematic investigations in the future.
NASA Astrophysics Data System (ADS)
Yüksel, E.; Colò, G.; Khan, E.; Niu, Y. F.; Bozkurt, K.
2017-08-01
The effect of temperature on the evolution of the isovector dipole and isoscalar quadrupole excitations in 68Ni and 120Sn nuclei is studied within the fully self-consistent finite temperature quasiparticle random phase approximation framework, based on the Skyrme-type SLy5 energy density functional. The new low-energy excitations emerge due to the transitions from thermally occupied states to the discretized continuum at finite temperatures, whereas the isovector giant dipole resonance is not strongly impacted by the increase of temperature. The radiative dipole strength at low energies is also investigated for the 122Sn nucleus, becoming compatible with the available experimental data when the temperature is included. In addition, both the isoscalar giant quadrupole resonance and low-energy quadrupole states are sensitive to the temperature effect: while the centroid energies decrease in the case of the isoscalar giant quadrupole resonance, the collectivity of the first 2+ state is quenched and the opening of new excitation channels fragments the low-energy strength at finite temperatures.
Faessler, Amand; Rodin, V.; Fogli, G. L.; Rotunno, A. M.; Lisi, E.; Simkovic, F.
2009-03-01
The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta decay (0{nu}{beta}{beta}) are estimated within the quasiparticle random phase approximation. It is shown that correlated nuclear matrix elements uncertainties play an important role in the comparison of 0{nu}{beta}{beta} decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.
NASA Astrophysics Data System (ADS)
Niu, Z. M.; Niu, Y. F.; Liang, H. Z.; Long, W. H.; Meng, J.
2017-04-01
The self-consistent quasiparticle random-phase approximation (QRPA) approach is formulated in the canonical single-nucleon basis of the relativistic Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the isobaric analog states (IASs) and Gamow-Teller resonances (GTRs) by taking Sn isotopes as examples. It is found that self-consistent treatment of the particle-particle residual interaction is essential to concentrate the IAS in a single peak for open-shell nuclei and the Coulomb exchange term is very important to predict the IAS energies. For the GTR, the isovector pairing can increase the calculated GTR energy, while the isoscalar pairing has an important influence on the low-lying tail of the Gamow-Teller transition.
NASA Astrophysics Data System (ADS)
Matsuo, Masayuki
2015-03-01
I formulate a many-body theory to calculate the cross section of direct radiative neutron capture reaction by means of the Hartree-Fock-Bogoliubov mean-field model and the continuum quasiparticle random-phase approximation (QRPA). A focus is put on very-neutron-rich nuclei and low-energy neutron kinetic energy in the range from 1 keV to several MeV, which is relevant to the rapid neutron capture process of nucleosynthesis. I begin with the photoabsorption cross section and the E 1 strength function. Next, in order to apply the reciprocity theorem, I decompose the cross section into partial cross sections corresponding to different channels of one- and two-neutron emission decays of photo-excited states. A numerical example is shown for the photo-absorption of 142Sn and the neutron capture of 141Sn .
NASA Astrophysics Data System (ADS)
Goriely, S.; Hilaire, S.; Péru, S.; Martini, M.; Deloncle, I.; Lechaftois, F.
2016-10-01
Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we extend our large-scale calculations of the E 1 γ -ray strength function, obtained in the framework of the axially- symmetric-deformed quasiparticle random phase approximation (QRPA) based on the finite-range D1M Gogny force, to the calculation of the M 1 strength function. We compare our QRPA prediction of the M 1 strength with available experimental data and show that a relatively good agreement is obtained provided the strength is shifted globally by about 2 MeV and increased by an empirical factor of 2. Predictions of the M 1 strength function for spherical and deformed nuclei within the valley of β stability as well as in the neutron-rich region are discussed. Its impact on the radiative neutron capture cross section is also analyzed.
NASA Astrophysics Data System (ADS)
Hilaire, Stéphane; Goriely, Stéphane; Péru, Sophie; Lechaftois, François; Deloncle, Isabelle; Martini, Marco
2017-09-01
Dipole excitations of nuclei are crucial since they play an important role in nuclear reaction modeling in connection with the photoabsorption and the radiative capture processes. We present here results for the gamma-ray strength function obtained in large-scale axially-symmetric deformed quasiparticle (qp) random phase approximations approach using the finite-range Gogny force, with a particular emphasis on the E1 mode. The convergence with respect to the number of harmonic oscillator shells adopted and the cut-off introduced in the 2-quasiparticle excitation energy space is analyzed. The microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA (HFB+QRPA) calculation has unfortunately to be broken, some phenomenological corrections being needed to take into account effects beyond the standard 2-qp QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. The corresponding phenomenological parameters are adjusted on experimental photoabsorption data. In such a procedure, a rather satisfactory description of experimental data is obtained. To study the sensitivity of these phenomenological corrections on the extrapolation, both at low energies and towards exotic neutron-rich nuclei, three different prescriptions are considered. They are shown to lead to rather similar predictions of the E1 strength at low energies as well as for exotic neutron-rich nuclei. The Gogny-HFB+QRPA strength is finally applied to the calculation of radiative neutron capture cross sections and the predictions compared with those obtained with more traditional Lorentzian-type approaches.
Spin-isospin transitions in chromium isotopes within the quasiparticle random phase approximation
NASA Astrophysics Data System (ADS)
Cakmak, Sadiye; Nabi, Jameel-Un; Babacan, Tahsin; Maras, Ismail
2015-01-01
Beta decay and electron capture on isotopes of chromium are advocated to play a key role in the stellar evolution process. In this paper we endeavor to study charge-changing transitions for 24 isotopes of chromium (42-65Cr). These include neutron-rich and neutron-deficient isotopes of chromium. Three different models from the QRPA genre, namely the pn-QRPA, the Pyatov method (PM) and the Schematic model (SM), were selected to calculate and study the Gamow-Teller (GT) transitions in chromium isotopes. The SM was employed separately in the particle-particle (pp) and pp + particle-hole (ph) channels. To study the effect of deformation, the SM was first used assuming the nuclei to be spherical and later to be deformed. The PM was used both in pp and pp + ph channels but only for the case of spherical nuclei. The pn-QRPA calculation was done by considering both pp and ph forces and taking deformation of nucleus into consideration. A recent study proved this version of pn-QRPA to be the best for calculation of GT strength distributions amongst the QRPA models. The pn-QRPA model calculated GT distributions had low-lying centroids and small widths as compared to other QRPA models. Our calculation results were also compared with other theoretical models and measurements wherever available. Our results are in decent agreement with previous measurements and shell model calculations.
NASA Astrophysics Data System (ADS)
Scuseria, Gustavo E.; Henderson, Thomas M.; Bulik, Ireneusz W.
2013-09-01
We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a "correct bosonization" in the sense that the wavefunction and Hilbert space are exactly fermionic, yet the amplitude equations can be interpreted as adding different quasibosonic RPA channels together. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA and qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective.
Scuseria, Gustavo E; Henderson, Thomas M; Bulik, Ireneusz W
2013-09-14
We establish a formal connection between the particle-particle (pp) random phase approximation (RPA) and the ladder channel of the coupled cluster doubles (CCD) equations. The relationship between RPA and CCD is best understood within a Bogoliubov quasiparticle (qp) RPA formalism. This work is a follow-up to our previous formal proof on the connection between particle-hole (ph) RPA and ring-CCD. Whereas RPA is a quasibosonic approximation, CC theory is a "correct bosonization" in the sense that the wavefunction and Hilbert space are exactly fermionic, yet the amplitude equations can be interpreted as adding different quasibosonic RPA channels together. Coupled cluster theory achieves this goal by interacting the ph (ring) and pp (ladder) diagrams via a third channel that we here call "crossed-ring" whose presence allows for full fermionic antisymmetry. Additionally, coupled cluster incorporates what we call "mosaic" terms which can be absorbed into defining a new effective one-body Hamiltonian. The inclusion of these mosaic terms seems to be quite important. The pp-RPA and qp-RPA equations are textbook material in nuclear structure physics but are largely unknown in quantum chemistry, where particle number fluctuations and Bogoliubov determinants are rarely used. We believe that the ideas and connections discussed in this paper may help design improved ways of incorporating RPA correlation into density functionals based on a CC perspective.
Martini, M.; Peru, S.; Dupuis, M.
2011-03-15
Low-energy dipole excitations in neon isotopes and N=16 isotones are calculated with a fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) approach based on Hartree-Fock-Bogolyubov (HFB) states. The same Gogny D1S effective force has been used both in HFB and QRPA calculations. The microscopical structure of these low-lying resonances, as well as the behavior of proton and neutron transition densities, are investigated in order to determine the isoscalar or isovector nature of the excitations. It is found that the N=16 isotones {sup 24}O, {sup 26}Ne, {sup 28}Mg, and {sup 30}Si are characterized by a similar behavior. The occupation of the 2s{sub 1/2} neutron orbit turns out to be crucial, leading to nontrivial transition densities and to small but finite collectivity. Some low-lying dipole excitations of {sup 28}Ne and {sup 30}Ne, characterized by transitions involving the {nu}1d{sub 3/2} state, present a more collective behavior and isoscalar transition densities. A collective proton low-lying excitation is identified in the {sup 18}Ne nucleus.
NASA Astrophysics Data System (ADS)
Deppisch, Frank F.; Suhonen, Jouni
2016-11-01
We perform a Markov chain Monte Carlo (MCMC) statistical analysis of a number of measured ground-state-to-ground-state single β+/electron-capture and β- decays in the nuclear mass range of A =62 -142 . The corresponding experimental comparative half-lives (logf t values) are compared with the theoretical ones obtained by the use of the proton-neutron quasiparticle random-phase approximation (p n QRPA ) with G -matrix-based effective interactions. The MCMC analysis is performed separately for 47 isobaric triplets and 28 more extended isobaric chains of nuclei to extract values and uncertainties for the effective axial-vector coupling constant gA in nuclear-structure calculations performed in the p n QRPA framework. As far as available, measured half-lives for two-neutrino β β- decays occurring in the studied isobaric chains are analyzed as well.
Ansari, A.; Ring, P.
2006-11-15
The excitation energies and electric multipole decay rates of the lowest lying 2{sup +} and 3{sup -} vibrational states in Pb, Sn, and Ni nuclei are calculated following relativistic quasiparticle random-phase approximation formalism based on the relativistic Hartree-Bogoliubov mean field. Two sets of Lagrangian parameters, NL1 and NL3, are used to investigate the effect of the nuclear force. Overall there is good agreement with the available experimental data for a wide range of mass numbers considered here, and the NL3 set seems to be a better choice. However, strictly speaking, these studies point toward the need of a new set of force parameters that could produce more realistic single-particle levels, at least in vicinity of the Fermi surface, of a wide range of nuclear masses.
NASA Astrophysics Data System (ADS)
Raduta, C. M.; Raduta, A. A.
2010-12-01
A many-body Hamiltonian involving the mean field for a projected spherical single-particle basis, the pairing interactions for alike nucleons, and the dipole-dipole proton-neutron interactions in the particle-hole (ph) channel and the ph dipole pairing potential is treated by the projected gauge fully renormalized proton-neutron quasiparticle random phase approximation approach. The resulting wave functions and energies for the mother and daughter nuclei are used to calculate the 2νββ decay rate and the process half-life. For illustration, the formalism is applied for the decay 100Mo→100Ru. The calculated half-life is in agreement with the corresponding experimental data. The Ikeda sum rule is obeyed.
Suhonen, J. ); Civitarese, O. )
1994-06-01
The beta decay rate of the 1[sup +] ground state of [sup 100]Tc to the ground and excited states of [sup 100]Mo and [sup 100]Ru has been calculated using a combination of the charge-conserving and charge-nonconserving modes of the quasiparticle random phase approximation theory. These results, as well as the calculated [ital E]2 decay properties of [sup 100]Mo and [sup 100]Ru, are compared with data. In addition, the two-neutrino double beta decay rates of [sup 100]Mo to the ground state and excited states of [sup 100]Ru are evaluated and analyzed using available experimental data. For completeness, the neutrinoless double beta decay rate of [sup 100]Mo is calculated and used to extract the value of the effective neutrino mass and the parameters of a general weak-interaction Hamiltonian.
Raduta, C. M.; Raduta, A. A.
2010-12-15
A many-body Hamiltonian involving the mean field for a projected spherical single-particle basis, the pairing interactions for alike nucleons, and the dipole-dipole proton-neutron interactions in the particle-hole (ph) channel and the ph dipole pairing potential is treated by the projected gauge fully renormalized proton-neutron quasiparticle random phase approximation approach. The resulting wave functions and energies for the mother and daughter nuclei are used to calculate the 2{nu}{beta}{beta} decay rate and the process half-life. For illustration, the formalism is applied for the decay {sup 100}Mo{yields}{sup 100}Ru. The calculated half-life is in agreement with the corresponding experimental data. The Ikeda sum rule is obeyed.
NASA Astrophysics Data System (ADS)
Kostensalo, Joel; Suhonen, Jouni
2017-01-01
Half-lives for 148 potentially measurable 2nd-, 3rd-, 4th-, 5th-, 6th-, and 7th-forbidden unique beta transitions are predicted. To achieve this, the ratio of the nuclear matrix elements (NMEs), calculated by the proton-neutron quasiparticle random-phase approximation (pnQRPA), MpnQRPA, and a two-quasiparticle (two-qp) model, Mqp, is studied and compared with earlier calculations for the allowed Gamow-Teller (GT) 1+ and first-forbidden spin-dipole (SD) 2- transitions. The present calculations are done using realistic single-particle model spaces and G -matrix based microscopic two-body interactions. In terms of the ratio k =MpnQRPA/Mqp the studied decays fall into two groups: for GROUP 1, which consists of transitions involving non-magic nuclei, the ratio turns out to be k =0.29 ±0.15 . For GROUP 2, consisting of transitions involving semimagic nuclei, the ratio is 0.5-0.8 for half of the decays and less than 5 ×10-3 for the other half. The magnitudes of the NMEs for several nuclei of GROUP 2 depend sensitively on the size of the used single-particle space and the energies of few key single-particle orbitals used in the pnQRPA calculation, while no such dependence is found for the transitions involving nuclei of GROUP 1. Comparing the NME ratios k of GROUP 1 with those of the earlier GT and SD calculations, where also experimental data are available, the expected "experimental" half-lives for the decays between the 0+ ground state of the even-even reference nuclei and the Jπ=3+,4-,5+,6-,7+,8- states of the neighboring odd-odd nuclei are derived for possible experimental verification. The present results could also shed light to the magnitudes of the NMEs corresponding to the high-forbidden unique 0+→Jπ=3+,4-,5+,6-,7+,8- virtual transitions taking part in the neutrinoless double beta decays.
QRPA Calculations for Spherical and Deformed Nuclei With the Gogny Force
Peru, S.
2009-08-26
Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed with the D1S Gogny force. Dipole responses have been calculated in Ne isotopes to study the existence of soft dipole modes in exotic nuclei. A comparison between QRPA and generator coordinate method with Gaussian overlap approximation results is done for low lying 2{sup +} states in N = 16 isotones and Ni isotopes.
Igashov, S. Yu.; Urin, M. H.; Rodin, Vadim; Faessler, Amand
2011-04-15
An isospin-self-consistent pn-continuum-QRPA approach is formulated and applied to describe the Gamow-Teller strength distributions for {beta}{beta}-decaying open-shell nuclei. Calculation results obtained for the pairs of nuclei {sup 76}Ge-Se, {sup 100}Mo-Ru, {sup 116}Cd-Sn, and {sup 130}Te-Xe are compared with available experimental data.
A study of Gamow-Teller transitions for N = Z nuclei, 24Mg, 28Si, and 32S, by a deformed QRPA
NASA Astrophysics Data System (ADS)
Ha, Eunja; Cheoun, Myung-Ki
2017-02-01
We investigated Gamow-Teller (GT) transitions and strength distributions of s- d shell N = Z nuclei, 24Mg, 28Si, and 32S, by a deformed quasi-particle random phase approximation (DQRPA). In the DQRPA, we included particle model space up to p- f shell and considered explicitly the deformation as well as the like- and unlike-pairing correlations. Shell evolution by deformation and attractive force by unlike-pairing correlations turned out to play vital roles to reproduce the experimental GT data. Correlations between the deformation and the pairing correlations are also discussed with the comparison to the experimental data shape.
Exotic modes of excitation in deformed neutron-rich nuclei
Yoshida, Kenichi
2011-05-06
Low-lying dipole excitation mode in neutron-rich Mg isotopes close to the drip line is investigated in the framework of the Hartree-Fock-Bogoliubov and the quasiparticle random-phase approximation employing the Skyrme and the pairing energy-density functionals. It is found that the low-lying dipole-strength distribution splits into the K{sup {pi}} = 0{sup -} and 1{sup -} components due to the nuclear deformation. The low-lying dipole strength increases as the neutron drip-line is approached.
NASA Astrophysics Data System (ADS)
Nabi, J.-U.; Klapdor-Kleingrothaus, H. V.
1999-03-01
Allowed weak interaction rates for sd-shell nuclei in stellar environment are calculated using a generalized form of proton-neutron quasi-particle RPA model with separable Gamow-Teller forces. The calculated capture and decay rates take into consideration the latest experimental energy levels and ft-value compilations. Weak rates calculated are tabulated at the same points of density and temperature as those of Oda et al. [Atomic Data and Nuclear Data Tables 56, 231 (1994)]. The results are also compared with earlier works. Particle emission processes from excited states, previously ignored, are taken into account and are found to significantly affect some β decay rates.
Monopole Strength Function of Deformed Superfluid Nuclei
Stoitsov, M. V.; Kortelainen, E. M.; Nakatsukasa, T.; Losa, C.; Nazarewicz, Witold
2011-01-01
We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in ^{240}Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.
Probing surface quantum flows in deformed pygmy dipole modes
NASA Astrophysics Data System (ADS)
Wang, Kai; Kortelainen, M.; Pei, J. C.
2017-09-01
To explore the nature of collective modes in weakly bound nuclei, we have investigated deformation effects and surface flow patterns of isovector dipole modes in a shape-coexisting nucleus, 40Mg. The calculations were done in a fully self-consistent continuum finite-amplitude quasiparticle random phase approximation in a large deformed spatial mesh. An unexpected result of pygmy and giant dipole modes having disproportionate deformation splittings in strength functions was obtained. Furthermore, the transition current densities demonstrate that the long-sought core-halo oscillation in pygmy resonances is collective and compressional, corresponding to the lowest excitation energy and the simplest quantum flow topology. Our calculations show that surface flow patterns become more complicated as excitation energies increase.
Neutron-Proton Pairing Effects on the Gamow-Teller Transitions in 24,26Mg by Using the Deformed QRPA
NASA Astrophysics Data System (ADS)
Ha, Eunja; Cheoun, Myung-Ki
We investigated the effects of the neutron-proton (np) pairing correlations on the Gamow-Teller (GT) transition of 24,26Mg by taking into account the deformation. Our calculations is performed within the deformed quasi-particle random phase approximation (DQRPA) which explicitly includes the deformation at the BCS and RPA stage. In this work, we include the np pairing as well as the nn and pp paring correlations to the DQRPA. Our new formalism is applied to the GT transition of the well known deformed Mg isotopes. The np pairing effect is found to affect the GT distribution of 24Mg and 26Mg. Correlations between the deformation and the np pairing are also discussed with the comparison to the experimental GT transition data by triton and 3He beams.
Projected shell model for Gamow-Teller transitions in heavy, deformed nuclei
NASA Astrophysics Data System (ADS)
Wang, Long-Jun; Sun, Yang; Gao, Zao-Chun; Kiran Ghorui, Surja
2016-02-01
Calculations of Gamow-Teller (GT) transition rates for heavy, deformed nuclei, which are useful input for nuclear astrophysics studies, are usually done with the quasiparticle random-phase approximation. We propose a shell-model method by applying the Projected Shell Model (PSM) based on deformed bases. With this method, it is possible to perform a state-by-state calculation for nuclear matrix elements for β-decay and electron-capture in heavy nuclei. Taking β- decay from 168Dy to 168Ho as an example, we show that the known experimental B(GT) from the ground state of the mother nucleus to the low-lying states of the daughter nucleus could be well described. Moreover, strong transitions to high-lying states are predicted to occur, which may considerably enhance the total decay rates once these nuclei are exposed to hot stellar environments.
Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei
Martini, M.; Goriely, S.; Péru, S.
2014-06-15
In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.
Raduta, C. M.; Raduta, A. A.
2007-10-15
The Gamow-Teller transition operator is written as a polynomial in the dipole proton-neutron and quadrupole charge-conserving quasiparticle random-phase approximation boson operators, using the prescription of the boson expansion technique. Then, the 2{nu}{beta}{beta} process ending on the first 2{sup +} state in the daughter nucleus is allowed through one-, two-, and three-boson states describing the odd-odd intermediate nucleus. The approach uses a single particle basis that is obtained by projecting out the good angular momentum from an orthogonal set of deformed functions. The basis for mother and daughter nuclei may have different deformations. The GT transition amplitude as well as the half-lives were calculated for 18 transitions. Results are compared with the available data as well as with the predictions obtained with other methods.
Random phase approximation in a deformed Hartree-Fock basis
Gering, M.Z.I.; Heiss, W.D.
1984-03-01
The validity of the random phase approximation in a deformed Hartree-Fock basis is investigated in a soluble model. There is strong evidence that the random phase approximation reproduces well the vibrational excitations of the system. Within the framework of the Green's function technique, the significance of the deformed single particle basis is established.
Onset of deformation in polonium nuclei
Younes, W.; Cizewski, J.A.
1996-12-31
The authors have been able to reproduce the systematics of the positive-parity states in {sup 192-208}Po within the framework of the Particle-Core Model. The wave-functions of the 2{sup +}{sub 1} states have been extracted using the Quasiparticle Random Phase Approximation. The increase in the collective motion of the lighter isotopes comes from the increased proton-neutron interaction when the neutrons and protons both occupy high-j orbitals.
Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi
2009-10-01
We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.
Competition between α and β decays for heavy deformed neutron-deficient Pa, U, Np, and Pu isotopes
NASA Astrophysics Data System (ADS)
Ni, Dongdong; Ren, Zhongzhou
2017-01-01
The competition between α and β decays is investigated for neutron-deficient Pa, U, Np, and Pu isotopes. β+/electron-capture (EC) decay rates are calculated within the deformed quasiparticle random-phase approximation with realistic nucleon-nucleon (N N ) interactions. Contributions from allowed Gamow-Teller and Fermi transitions as well as first-forbidden transitions are considered. α -decay calculations are performed within the generalized density-dependent cluster model. Effects of differences between neutron and proton distributions and nuclear deformation are taken into account. In the calculations, Reid-93 N N interactions are used for β+/EC decays, while Michigan three-range Yukawa effective interactions, based on the G -matrix elements of Reid N N potentials, are used for α decay. The calculated β -decay half-lives show good agreement with the experimental data over a range of magnitude from 102 to 105 s. The resulting total half-lives including α and β contributions are found to be in good agreement with the experimental data, together with the α /β -decay branching ratios.
NASA Astrophysics Data System (ADS)
Yakut, H.; Guliyev, E.; Guner, M.; Tabar, E.; Zenginerler, Z.
2012-08-01
A new microscopic method has been developed in the framework of the Quasiparticle-Phonon Nuclear Model (QPNM) in order to investigate spin polarization effects on the magnetic properties such as magnetic moment, intrinsic magnetic moment and effective gs factor of the ground state of odd-mass 157-167Er isotopes. The calculations were performed using both Tamm-Dancoff Approximation (TDA) and Quasiparticle Random-Phase Approximation (QRPA). Reasonably good agreement has been obtained between the QRPA results and the relevant experimental data. Furthermore the variation of the intrinsic magnetic moment gK values with the mass number A exhibits similar behavior for both theoretical and experimental results. From the compression of the calculated intrinsic magnetic moment values with the experimental data the spin-spin interaction parameter has been found as χ=(30/A) MeV for odd-mass 157-167Er isotopes. Our results clarify the possibility of using this new method to describe the magnetic properties of odd-mass deformed nuclei.
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
NASA Astrophysics Data System (ADS)
Damanhuri, Nor Alisa; Ayob, Syafikah
2017-09-01
A general numerical approximation of the stress equilibrium equations and constructing axisymmetric ideal plastic plane deformation of a granular material is considered. The stress components are assumed to satisfy the Coulomb yield criterion and the self-weight of the material is neglected. The standard method of numerical approximation leads to the construction of the small segments of the stress characteristic field. Using the Matlab program, the method is applied to a problem of granular indentation by a smooth flat surface.
Aygor, H. Ali; Maras, Ismail; Cakmak, Necla; Selam, Cevad
2008-11-11
Within quasiparticle random phase approximation (QRPA), Pyatov-Salamov method for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state are investigated by including the pairing correlations between nucleons for {sup 72-80}Kr isotopes. Our results are compared with the spherical case and with other theoretical results.
Limitations of the number self-consistent random phase approximation
NASA Astrophysics Data System (ADS)
Mariano, Alejandro; Hirsch, Jorge G.
2000-05-01
The quasiparticle random phase approximation (QRPA) equations are solved taking into account the Pauli principle at the expectation value level, and allowing changes in the mean field occupation numbers to minimize the energy while having the correct number of particles in the correlated vacuum. The study of Fermi pn excitations in 76Ge using a realistic Hilbert space shows that the pairing energy gaps in the modified mean field are diminished up to one half of the experimental value when strong proton-neutron correlations are present. Additionally, the Ikeda sum rule for Fermi transitions is violated due to the lack of scattering terms in the phonon operators. These results call for a critical revision of the double β decay half-lives estimated using the QRPA extensions when standard QRPA calculations collapse.
Deformation behaviour of Rheocast A356 Al alloy at microlevel considering approximated RVEs
NASA Astrophysics Data System (ADS)
Islam, Sk. Tanbir; Das, Prosenjit; Das, Santanu
2015-03-01
A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.
Approximate path integral solution for a Dirac particle in a deformed Hulthén potential
NASA Astrophysics Data System (ADS)
Kadja, A.; Benamira, F.; Guechi, L.
2017-05-01
The problem of a Dirac particle moving in a deformed Hulthén potential is solved in the framework of the path integral formalism. With the help of the Biedenharn transformation, the construction of a closed form for the Green's function of the second-order Dirac equation is done by using a proper approximation to the centrifugal term and the Green's function of the linear Dirac equation is calculated. The energy spectrum for the bound states is obtained from the poles of the Green's function. A Dirac particle in the standard Hulthén potential ( q = 1) and a Dirac hydrogen-like ion ( q = 1 and a → ∞) are considered as particular cases.
Skyrme random-phase-approximation description of lowest Kπ=2γ+ states in axially deformed nuclei
NASA Astrophysics Data System (ADS)
Nesterenko, V. O.; Kartavenko, V. G.; Kleinig, W.; Kvasil, J.; Repko, A.; Jolos, R. V.; Reinhard, P.-G.
2016-03-01
The lowest quadrupole γ -vibrational Kπ=2+ states in axially deformed rare-earth (Nd, Sm, Gd, Dy, Er, Yb, Hf, W) and actinide (U) nuclei are systematically investigated within the separable random-phase-approximation (SRPA) based on the Skyrme functional. The energies Eγ and reduced transition probabilities B (E 2 ) of 2γ+ states are calculated with the Skyrme forces SV-bas and SkM*. The energies of two-quasiparticle configurations forming the SRPA basis are corrected by using the pairing blocking effect. This results in a systematic downshift of Eγ by 0.3-0.5 MeV and thus in a better agreement with the experiment, especially in Sm, Gd, Dy, Hf, and W regions. For other isotopic chains, a noticeable overestimation of Eγ and too weak collectivity of 2γ+ states still persist. It is shown that domains of nuclei with low and high 2γ+ collectivity are related to the structure of the lowest two-quasiparticle states and conservation of the Nilsson selection rules. The description of 2γ+ states with SV-bas and SkM* is similar in light rare-earth nuclei but deviates in heavier nuclei. However SV-bas much better reproduces the quadrupole deformation and energy of the isoscalar giant quadrupole resonance. The accuracy of SRPA is justified by comparison with exact RPA. The calculations suggest that a further development of the self-consistent calculation schemes is needed for a systematic satisfactory description of the 2γ+ states.
Exact and approximate ensemble treatments of thermal pairing in a multilevel model
NASA Astrophysics Data System (ADS)
Hung, N. Quang; Dang, N. Dinh
2009-05-01
A systematic comparison is conducted for pairing properties of finite systems at nonzero temperature as predicted by the exact solutions of the pairing problem embedded in three principal statistical ensembles, as well as the unprojected (FTBCS1+SCQRPA) and Lipkin+Nogami projected (FTLN1+SCQRPA) theories that include the quasiparticle number fluctuation and coupling to pair vibrations within the self-consistent quasiparticle random-phase approximation. The numerical calculations are performed for the pairing gap, total energy, heat capacity, entropy, and microcanonical temperature within the doubly folded equidistant multilevel pairing model. The FTLN1+SCQRPA predictions agree best with the exact grand-canonical results. In general, all approaches clearly show that the superfluid-normal phase transition is smoothed out in finite systems. A novel formula is suggested for extracting the empirical pairing gap in reasonable agreement with the exact canonical results.
NASA Astrophysics Data System (ADS)
Onyeaju, M. C.; Ikot, A. N.; Onate, C. A.; Ebomwonyi, O.; Udoh, M. E.; Idiodi, J. O. A.
2017-07-01
The Pekeris approximate scheme is introduced to deal with the centrifugal term in a Dirac equation with the deformed Hylleraas plus Woods-Saxon (DHWS) potential model. The relativistic energy solutions for the spin and pseudospin symmetries are obtained via the Nikiforov-Uvarov (NU) method. In the non-relativistic limits we calculated the thermodynamics properties for some selected diatomic molecules.
Alemgadmi, Khaled I. K. Suparmi; Cari; Deta, U. A.
2015-09-30
The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Cooper, D. E.; Cohen, D.
1985-01-01
The effects of a uniform temperature change on the stresses and deformations of composite tubes are investigated. The accuracy of an approximate solution based on the principle of complementary virtual work is determined. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well. This, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory which predicts the expansion to be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depends on stacking sequence.
Weichert, Frank; Schröder, Andreas; Landes, Constantin; Shamaa, Ali; Awad, Said Kamel; Walczak, Lars; Müller, Heinrich; Wagner, Mathias
2010-06-01
In this article, we present a new method for the generation of surface meshes of biological soft tissue. The method is based on the deformable surface model technique and is extended to histological data sets. It relies on an iterative adjustment towards polygonal segments describing the histological structures of the soft tissue. The generated surface meshes allow for the construction of volumetric meshes through a standard constrained Delaunay approach and, thus, for the application in finite element methods. The geometric properties of volumetric meshes have an immediate influence on the numerical conditioning and, therewith, on the stability of the finite element method and the convergence of iterative solvers. In this article, the influence of the surface meshes on the quality of the volumetric meshes is analysed in terms of the spectral condition number of the stiffness matrices, which are assembled within Newton's method. The non-linear material behavior of biological soft tissue is modeled by the Mooney-Rivlin material law. The subject is motivated by the requirements of virtual surgery.
NASA Astrophysics Data System (ADS)
Haghshenasfard, Z.; Naderi, M. H.; Soltanolkotabi, M.
2009-09-01
In this paper, we investigate tunable control of the group velocity of a weak probe field propagating through an f-deformed Bose-Einstein condensate of Λ-type three-level atoms beyond the rotating wave approximation. For this purpose, we use an f-deformed generalization of an effective two-level quantum model of the three-level Λ-configuration without the rotating wave approximation in which the Gardiner's phonon operators for Bose-Einstein condensate are deformed by an operator-valued function, f(nˆ), of the particle-number operator nˆ. We consider the collisions between the atoms as a special kind of f-deformation where the collision rate κ is regarded as the deformation parameter. We demonstrate the enhanced effect of subluminal and superluminal propagation based on electromagnetically induced transparency and electromagnetically induced absorption, respectively. In particular, we find that (i) the absorptive and dispersive properties of the deformed condensate can be controlled effectively in the absence of the rotating wave approximation by changing the deformation parameter κ, the total number of atoms N^ and the counter-rotating terms parameter λ, (ii) by increasing the values of λ, κ and η = 1/ N, the group velocity of the probe pulse changes, from subluminal to superluminal and (iii) beyond the rotating wave approximation, the subluminal and superluminal behaviors of the probe field are enhanced.
NASA Astrophysics Data System (ADS)
Xu, Chun-Long; Zhang, Min-Cang
2017-01-01
The arbitrary l-wave solutions to the Schrödinger equation for the deformed hyperbolic Manning-Rosen potential is investigated analytically by using the Nikiforov-Uvarov method, the centrifugal term is treated with an improved Greene and Aldrich's approximation scheme. The wavefunctions depend on the deformation parameter q, which is expressed in terms of the Jocobi polynomial or the hypergeometric function. The bound state energy is obtained, and the discrete spectrum is shown to be independent of the deformation parameter q.
NASA Astrophysics Data System (ADS)
Egorova, Irina A.; Litvinova, Elena
2016-09-01
New results for electric dipole strength in the chain of even-even calcium isotopes with the mass numbers A =40 -54 are presented. Starting from the covariant Lagrangian of quantum hadrodynamics, spectra of collective vibrations (phonons) and phonon-nucleon coupling vertices for J ≤6 and natural parity were computed in a self-consistent relativistic quasiparticle random-phase approximation (RQRPA). These vibrations coupled to Bogoliubov two-quasiparticle configurations (2 q ⊗phonon ) formed the model space for the calculations of the dipole response function in the relativistic quasiparticle time blocking approximation. The calculations in the latter approach were performed for the giant dipole resonance (GDR) and compared to those obtained with the RQRPA and to available data. The evolution of the dipole strength with the neutron number is investigated for both high-frequency GDRs and low-lying strengths. The development of a pygmy resonant structure on the low-energy shoulder of the GDR is traced and analyzed in terms of transition densities. A dependence of the pygmy dipole strength on the isospin asymmetry parameter is extracted.
Ben Geloun, Joseph; Govaerts, Jan; Hounkonnou, M. Norbert
2007-03-15
Classes of (p,q) deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q) arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translates into (p,q) deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Ide, S.
2014-12-01
It is well known that the statistical probability of earthquake occurrence changes over the course of a day due to periodic variations in the tidal stress acting on faults. However, periodicity on a decadal scale (8.85 and 18.61 years) has been studied by relatively few researchers and clear correlations have not been obtained. In this study, by investigating historical large earthquakes that occurred over 1,000 years in Japan, it is shown that a stronger periodicity of 8.85 years and a weaker periodicity of 18.61 years appear in the seismicity along the Japan Trench and the Nankai Trough, respectively. The past strain and tilt observations conducted during the 1950s through the 1970s indicate that, nationwide, gradual compression repeated every 8-10 years in the direction of relative plate motion. These compression periods are in accordance with the periods of higher seismic activity in the area along the Japan Trench. This agreement between the phase of the increasing seismicity and the compression periods seen in the long-term cyclic crustal deformation suggests that the periodicity is not merely a coincidence and that the transient crustal movement may be relevant with the tides. Considering the seismiity in the Nankai region, periodicity of 18.61 years should be superimposed on the crustal deformation with periods of 8-10 years. However, the approximately twenty-year observation was too short to extract it. According to a recently proposed model based on the combination of the nonlinear fault rheology and oscillating tidal stress, the above transient crustal deformation with periods of approximately 9 years may be caused by long-term variations in the occurrence rate of tremors. The initiation of the past slow slip events in the Tokai area also agreed with the phase of the 9-year mode except for the largest event from the year 2000.
Some exploitations of the self-consistent QRPA approach with the Gogny force
Peru, S.; Martini, M.; Dupuis, M.
2012-10-20
Fully consistent axially-symmetric-deformed quasiparticle random phase approximation calculations have been performed with the D1S Gogny force. Giant resonances in exotic nuclei as well as in deformed Mg and Si isotopes have been studied. Dipole responses have been calculated in Ne isotopes and N=16 isotones to study the existence of soft dipole modes in exotic nuclei. The same formalism has been used to describe multipole responses up to octupole in the deformed and heavy nucleus {sup 238}U. Low energy spectroscopy of nickel isotopes has been studied, revealing 0{sup +} states which display a particular structure.
NASA Technical Reports Server (NTRS)
Wiener, Bernard; Harris, Agnes E
1950-01-01
Time histories are presented of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber during abrupt pitching maneuvers at a pressure altitude of approximately 20,000 feet. The normal and pitching accelerations measured varied from -0.90b to 3.41g and from -0.73 to 0.80 radian per second per second (sic), respectively, with a Mach number variation of from 0.40 to o.75. The maximum horizontal-tail load measured was 17,250 pounds down. The maximum elevator load was 1900 pounds up. The stabilizer twisted a maximum of 0.76 degrees leading edge down at the tip. The greatest fuselage deflection at the tail was about 1.7 inches down.
beta-decay properties of neutron-rich Zr and Mo isotopes
Sarriguren, P.; Pereira, J.
2010-06-15
Gamow-Teller strength distributions, beta-decay half-lives, and beta-delayed neutron emission are investigated in neutron-rich Zr and Mo isotopes within a deformed quasiparticle random-phase approximation. The approach is based on a self-consistent Skyrme Hartree-Fock mean field with pairing correlations and residual separable particle-hole and particle-particle forces. Comparison with recent measurements of half-lives stresses the important role that nuclear deformation plays in the description of beta-decay properties in this mass region.
NASA Astrophysics Data System (ADS)
Tanaka, Yoshiyuki
2014-02-01
It is well known that the statistical probability of earthquake occurrence changes over the course of a day due to periodic variations in the tidal stress acting on faults. However, periodicity on a decadal scale has been studied by relatively few researchers. It has been reported that an approximately 10-yr periodicity is observed globally for the seismicity of M-8-class large earthquakes. However, the mechanism underlying this periodicity has not yet been revealed. In this study, the decadal-scale periodicity of earthquakes along the Japan Trench is investigated. A new finding is presented that in northeast Japan, the probability of the occurrence of historical earthquakes with an M ≥ 6 that have occurred during the past 1000 yr has increased approximately every 9 yr. Periodicity becomes even more apparent for large earthquakes with an M > 7.5 and approximately half the recorded events intensively occurred within two successive years on a cycle of approximately 9 yr. This implies the presence of a periodic stress disturbance at an appreciably regular interval. The past strain and tilt observations conducted in Japan during the 1950s through the 1970s indicate that, nationwide, gradual compression repeated every 8-10 yr in the direction of relative plate motion. These compression periods are in accordance with the periods of higher seismic activity discussed above. As a first step in investigating the origin of earthquake periodicity, periods associated with lunar motion are considered. It is shown that long-term motion primarily governed by the period of the lunar perigee is synchronized with the cyclic variation in seismicity and crustal deformation described above. Decadal changes in tidal stress, as calculated using an ordinary theory of solid Earth tides, are too small to cause periodic variations in seismicity. Therefore, the conditions by which tidal stress is sufficiently amplified to trigger an earthquake are investigated. The results show that, if one
NASA Astrophysics Data System (ADS)
Hassanabadi, H.; Ikot, A. N.; Onyenegecha, C. P.; Zarrinkamar, S.
2017-09-01
Analytical bound and scattering state solutions of Dirac equation are investigated for the modified deformed Hylleraas potential with a Yukawa-type tensor interaction. The energy equation, phase shifts and normalization constants of the pseudospin and spin symmetry limits are represented. Since the modified deformed Hylleraas potential reduces to the Pöschl-Teller, Hulthén and deformed Hylleraas potential, we have obtained energy equation and scattering properties of the Dirac equation for these potentials within a Yukawa-type tensor interaction. We have also reported some numerical results to show the effect of tensor interaction.
Skyrme RPA description of γ-vibrational states in rare-earth nuclei
NASA Astrophysics Data System (ADS)
Nesterenko, V. O.; Kartavenko, V. G.; Kleinig, W.; Kvasil, J.; Repko, A.; Jolos, R. V.; Reinhard, P.-G.
2016-01-01
The lowest γ-vibrational states with Kπ = 2+γ in well-deformed Dy, Er and Yb isotopes are investigated within the self-consistent separable quasiparticle random-phase-approximation (QRPA) approach based on the Skyrme functional. The energies Eγ and reduced transition probabilities B(E2)γ of the states are calculated with the Skyrme force SV-mas10. We demonstrate the strong effect of the pairing blocking on the energies of γ-vibrational states. It is also shown that collectivity of γ-vibrational states is strictly determined by keeping the Nilsson selection rules in the corresponding lowest 2qp configurations.
Relativistic Energy Density Functionals: Exotic modes of excitation
Vretenar, D.; Paar, N.; Marketin, T.
2008-11-11
The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of {beta}-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.
Is it possible to enhance the nuclear Schiff moment by nuclear collective modes?
Auerbach, N. Dmitriev, V. F. Flambaum, V. V. Lisetskiy, A. Sen'kov, R. A. Zelevinsky, V. G.
2007-09-15
The nuclear Schiff moment is predicted to be enhanced in nuclei with static quadrupole and octupole deformation. The analogous suggestion of the enhanced contribution to the Schiff moment from the soft collective quadrupole and octupole vibrations in spherical nuclei is tested in the framework of the quasiparticle random phase approximation with separable quadrupole and octupole forces applied to the odd {sup 217-221}Ra and {sup 217-221}Rn isotopes. In this framework, we confirm the existence of the enhancement effect due to the soft modes, but only in the limit when the frequencies of quadrupole and octupole vibrations are close to zero.
Phenomenological Relativistic Energy Density Functionals
Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.
2009-08-26
The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.
β-decay properties of neutron-deficient Pt, Hg, and Pb isotopes
Sarriguren, P.; Boillos, J. M.; Moreno, O.; Moya de Guerra, E.
2015-10-15
Neutron-deficient isotopes in the lead region are well established examples of the shape coexistence phenomenon in nuclei. In this work, bulk and decay properties, including deformation energy curves, charge mean square radii, Gamow-Teller (GT) strength distributions, and β-decay half-lives, are studied in neutron-deficient Pt, Hg, and Pb isotopes. The nuclear structure involved is described microscopically from deformed quasiparticle random-phase approximation calculations with residual interactions in both particle-hole and particle-particle channels, performed on top of a self-consistent deformed quasiparticle Skyrme Hartree-Fock basis. The sensitivity to deformation of the GT strength distributions in those isotopes is proposed as an additional complementary signature of the nuclear shape. The β-decay half-lives resulting from the GT strength distributions are compared to experiment to demonstrate the ability of the method.
{beta}-decay in neutron-deficient Hg, Pb, and Po isotopes
Moreno, O.; Sarriguren, P.; Alvarez-Rodriguez, R.; Guerra, E. Moya de
2006-05-15
The effect of nuclear deformation on the energy distributions of the Gamow-Teller strength is studied in neutron-deficient Hg, Pb, and Po even isotopes. The theoretical framework is based on a self-consistent deformed Skyrme Hartree-Fock mean field with pairing correlations between like nucleons in BCS approximation and residual spin-isospin interactions treated in the proton-neutron quasiparticle random-phase approximation. After a systematic study of the Gamow-Teller strength distributions in the low-excitation-energy region, relevant for {beta}{sup +} decay, we have identified the best candidates to look for deformation signatures in their {beta}{sup +}-decay patterns. {beta}{sup +} half-lives and total Gamow-Teller strengths B(GT{sup {+-}}) are analyzed as well.
Supersymmetric q-deformed quantum mechanics
Traikia, M. H.; Mebarki, N.
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
NASA Astrophysics Data System (ADS)
Larson, Kristine M.
1995-07-01
Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.
Shape study of the N =Z nucleus 72Kr via β decay
NASA Astrophysics Data System (ADS)
Briz, J. A.; Nácher, E.; Borge, M. J. G.; Algora, A.; Rubio, B.; Dessagne, Ph.; Maira, A.; Cano-Ott, D.; Courtin, S.; Escrig, D.; Fraile, L. M.; Gelletly, W.; Jungclaus, A.; Le Scornet, G.; Maréchal, F.; Miehé, Ch.; Poirier, E.; Poves, A.; Sarriguren, P.; Taín, J. L.; Tengblad, O.
2015-11-01
The β decay of the N =Z nucleus 72Kr has been studied with the total absorption spectroscopy technique at ISOLDE (CERN). A total B (GT) =0.79 (4 ) gA2/4 π has been found up to an excitation energy of 2.7 MeV. The B (GT) distribution obtained is compared with predictions from state-of-the-art theoretical calculations to learn about the ground state deformation of 72Kr. Although a dominant oblate deformation is suggested by direct comparison with quasiparticle random phase approximation (QRPA) calculations, beyond-mean-field and shell-model calculations favor a large oblate-prolate mixing in the ground state.
Photon Scattering from the Stable Even-Mass Mo Isotopes Below the Neutron-Separation Energy
NASA Astrophysics Data System (ADS)
Rusev, G.; Hutcheson, A.; Kwan, E.; Tonchev, A. P.; Tornow, W.; Angell, C.; Hammond, S.; Karwowski, H. J.; Kelley, J. H.; Schwengner, R.; Dönau, F.; Wagner, A.
2008-10-01
We present results from photon-scattering experiments on the stable even-mass molybdenum isotopes below the neutron-separation energy carried out with bremsstrahlung at the superconducting electron accelerator ELBE at the Research Center Dresden-Rossendorf in Germany, and with monoenergetic photon beams at the HIγS facility at TUNL. We applied statistical methods in order to correct for the branching and cascade transitions and to determine the photoabsorption cross section. The obtained results allowed us to extend the tail of the Giant Dipole Resonance below the (,) threshold down to 4 MeV. The photoabsorption cross sections deduced from the present experiments show that the dipole strength increases with the neutron number of the Mo isotopes. The experimental results are discussed in the frame of Quasiparticle-Random-Phase-Approximation in a deformed basis which describe the increasing strength as a result of the deformation.
Magnetic dipole strength in 128Xe and 134Xe in the spin-flip resonance region
NASA Astrophysics Data System (ADS)
Massarczyk, R.; Rusev, G.; Schwengner, R.; Dönau, F.; Bhatia, C.; Gooden, M. Â. E.; Kelley, J. Â. H.; Tonchev, A. Â. P.; Tornow, W.
2014-11-01
The magnetic dipole strength in the energy region of the spin-flip resonance is investigated in 128Xe and 134Xe using quasimonoenergetic and linearly polarized γ -ray beams at the High-Intensity γ -Ray Source facility in Durham, North Carolina, USA. Absorption cross sections were deduced for the magnetic and electric and dipole strength distributions separately for various intervals of excitation energy, including the strength of states in the unresolved quasicontinuum. The magnetic dipole strength distributions show structures resembling a resonance in the spin-flip region around an excitation energy of 8 MeV. The electric dipole strength distributions obtained from the present experiments are in agreement with the ones deduced from an earlier experiment using broad-band bremsstrahlung instead of a quasimonoenergetic beam. The experimental magnetic and electric dipole strength distributions are compared with phenomenological approximations and with predictions of a quasiparticle random phase approximation in a deformed basis.
Galerkin approximations for dissipative magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Hudong; Shan, Xiaowen; Montgomery, David
1990-01-01
A Galerkin approximation scheme is proposed for voltage-driven, dissipative magnetohydrodynamics. The trial functions are exact eigenfunctions of the linearized continuum equations and represent helical deformations of the axisymmetric, zero-flow, driven steady state. The lowest nontrivial truncation is explored: one axisymmetric trial function and one helical trial function each for the magnetic and velocity fields. The system resembles the Lorenz approximation to Benard convection, but in the region of believed applicability, its dynamical behavior is rather different, including relaxation to a helically deformed state similar to those that have emerged in the much higher resolution computations of Dahlburg et al.
Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.
1997-01-01
Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525
Self-consistent approach to beta decay and delayed neutron emission
NASA Astrophysics Data System (ADS)
Borzov, I. N.
2016-11-01
A brief overview of the recent self-consistent studies of nuclear beta decay is given including the relativistic quasi-particle random-phase approximation or QRPA and Finite Amplitude Method. The results of our self-consistent continuum QRPA model based on the density functional description of the ground states are presented. They are in a good agreement with the recent experimental beta-decay half-lives and delayed neutron emission branchings for the nuclei approaching (and beyond) the neutron closed shells N = 50 near 78Ni and N = 82 near 132Sn. A comparison with the recent calculations from relativistic QRPA model, Finite Amplitude Method and semi-microscopic finite-range droplet model is performed. An importance of the quasi-particle phonon coupling is stressed for the description of the beta decay and delayed multi-neutron emission rates. A strategy of extending our approach to the deformed nuclei and the open problems are discussed.
Electron capture decay of {sup 116}In and nuclear structure of double {beta} decays
Bhattacharya, M.; Garcia, A.; Ortiz, C.E.; Kaloskamis, N.I.; Hindi, M.M.; Norman, E.B.; Davids, C.N.; Civitarese, O.; Suhonen, J.
1998-08-01
Quasiparticle-random-phase-approximation (QRPA) calculations of double {beta} decays have not been able to reproduce data in the A=100 system. We propose the A=116 system{emdash}because of its smaller deformation{emdash}as a simpler system to test QRPA calculations. We present results of two experiments we performed, which determine the electron-capture-decay branch of {sup 116}In to be (2.27{plus_minus}0.63){times}10{sup {minus}2}{percent}, from which we deduce logft=4.39{sub {minus}0.15}{sup +0.10}. We present QRPA calculations and compare their predictions to experimental data. Finally we use these calculations to predict the 2{nu} double-{beta}-decay rate of {sup 116}Cd to the ground and excited states of {sup 116}Sn. {copyright} {ital 1998} {ital The American Physical Society}
Contribution of excited states to stellar weak-interaction rates in odd-A nuclei
NASA Astrophysics Data System (ADS)
Sarriguren, P.
2016-05-01
Weak-interaction rates, including β decay and electron capture, are studied in several odd-A nuclei in the p f -shell region at various densities and temperatures of astrophysical interest. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus. The nuclear structure involved in the weak processes is studied within a quasiparticle random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. In the range of densities and temperatures considered, it is found that the total rates do not differ much from the rates of the ground state fully populated. In any case, the changes are not larger than the uncertainties due to the nuclear-model dependence of the rates.
Self-consistent approach to beta decay and delayed neutron emission
Borzov, I. N.
2016-11-15
A brief overview of the recent self-consistent studies of nuclear beta decay is given including the relativistic quasi-particle random-phase approximation or QRPA and Finite Amplitude Method. The results of our self-consistent continuum QRPA model based on the density functional description of the ground states are presented. They are in a good agreement with the recent experimental beta-decay half-lives and delayed neutron emission branchings for the nuclei approaching (and beyond) the neutron closed shells N = 50 near {sup 78}Ni and N = 82 near {sup 132}Sn. A comparison with the recent calculations from relativistic QRPA model, Finite Amplitude Method and semi-microscopic finite-range droplet model is performed. An importance of the quasi-particle phonon coupling is stressed for the description of the beta decay and delayed multi-neutron emission rates. A strategy of extending our approach to the deformed nuclei and the open problems are discussed.
β -decay properties of neutron-rich rare-earth isotopes
NASA Astrophysics Data System (ADS)
Sarriguren, P.
2017-01-01
In this paper, β -decay properties of even-even neutron-rich isotopes in the rare-earth mass region are studied within a microscopic theoretical approach based on a proton-neutron quasiparticle random-phase approximation. The underlying mean field is constructed self-consistently from a deformed Hartree-Fock calculation with Skyrme interactions and pairing correlations to which particle-hole and particle-particle residual interactions are added. Nuclei in this mass region participate in the astrophysical rapid neutron capture process and are directly involved in the generation of the rare-earth peak in the isotopic abundance pattern centered at A ≃160 . The energy distributions of the Gamow-Teller strength as well as the β -decay half-lives and the β -delayed neutron-emission probabilities are discussed and compared with the available experimental information and with calculations based on different approaches.
Beta-decay spectroscopy relevant to the r-process nucleosynthesis
Nishimura, Shunji; Collaboration: RIBF Decay Collaboration
2012-11-12
A scientific program of beta-decay spectroscopy relevant to r-process nucleosynthesis has been started using high intensity U-beam at the RIBF. The first results of {beta}-decay half-lives of very neutron-rich Kr to Tc nuclides, all of which lie close to the r-process path, suggest a systematic enhancement of the the {beta}-decay rates of the Zr and Nb isotopes around A110 with respect to the predictions of the deformed quasiparticle-random-phase-approximation model (FRDM + QRPA). An impact of the results on the astrophysical r-process is discussed together with the future perspective of the {beta}-decay spectroscopy with the EURICA.
Dislocation kinetics and the acoustic-wave approximation for liquids
Stout, R.B.
1983-03-01
A dislocation-dependent model for liquids describes the lattice deformation and the fluidity deformation as additive deformations. The lattice deformation represents distortions of an atom's potential energy structure and is a recoverable deformation response. The fluidity deformation represents discontinuous repositioning of atoms by dislocation kinetics in the lattice structure and is a nonrecoverable deformation response. From this model, one concludes that in liquids the acoustic-wave approximation is a description of a recoverable oscillation deformation that has dissipation because of dislocation kinetics. Other more-complex waves may exist, but such waves would rapidly disappear because of the small thermodynamic potential for dislocation kinetics in liquids.
Kozin, Scott H; Zlotolow, Dan A
2015-10-01
Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Crustal deformation and earthquakes
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1984-01-01
The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.
Crustal deformation and earthquakes
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1984-01-01
The manner in which the Earth's surface deforms during the cycle of stress accumulation and release along major faults is investigated. In an investigation of the crustal deformation associated with a thin channel asthenosphere displacements are reduced from those computed for a half space asthenosphere. A previous finding by other workers that displacements are enhanced when flow is confined to a thin channel is based on several invalid approximations. The major predictions of the finite element model are that the near field postseismic displacements and strain rates are less than those for a half space asthenosphere and that the postseismic strain rates at intermediate distances are greater (in magnitude). The finite width of the asthenosphere ceases to have a significant impact on the crustal deformation pattern when its magnitude exceeds about three lithosphere thicknesses.
... deformity is often called “pump bump” because the rigid backs of pump-style shoes can create pressure ... when walking. In fact, any shoes with a rigid back, such as ice skates, men’s dress shoes ...
Deformity - contracture ... Contracture can be caused by any of the following: Brain and nervous system disorders, such as cerebral ... Follow your health care provider's instructions for treating contracture at home. Treatments may include: Doing exercises and ...
Bunnell, W P
1986-12-01
Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis.
Experimental Deformation of Magnetite
NASA Astrophysics Data System (ADS)
Till, J. L.; Rybacki, E.; Morales, L. F. G.
2015-12-01
Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.
Deformation mechanisms in experimentally deformed Boom Clay
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Schuck, Bernhard; Urai, Janos
2016-04-01
Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures
Brown, R.D. Jr.
1990-01-01
Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.
Interpolation and Approximation Theory.
ERIC Educational Resources Information Center
Kaijser, Sten
1991-01-01
Introduced are the basic ideas of interpolation and approximation theory through a combination of theory and exercises written for extramural education at the university level. Topics treated are spline methods, Lagrange interpolation, trigonometric approximation, Fourier series, and polynomial approximation. (MDH)
A perfect-fluid spacetime for a slightly deformed mass
NASA Astrophysics Data System (ADS)
Abishev, M.; Boshkayev, K.; Quevedo, H.; Toktarbay, S.
We present approximate exterior and interior solutions of Einstein's equations which describe the gravitational field of a static deformed mass distribution. The deformation of the source is taken into account up to the first order in the quadrupole.
Partially segmented deformable mirror
Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.
1991-05-21
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.
Partially segmented deformable mirror
Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.
1991-01-01
A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
NASA Astrophysics Data System (ADS)
Niiniluoto, Ilkka
2014-03-01
Approximation of laws is an important theme in the philosophy of science. If we can make sense of the idea that two scientific laws are "close" to each other, then we can also analyze such methodological notions as approximate explanation of laws, approximate reduction of theories, approximate empirical success of theories, and approximate truth of laws. Proposals for measuring the distance between quantitative scientific laws were given in Niiniluoto (1982, 1987). In this paper, these definitions are reconsidered as a response to the interesting critical remarks by Liu (1999).
Polygonal deformation bands in sandstone
NASA Astrophysics Data System (ADS)
Antonellini, Marco; Nella Mollema, Pauline
2017-04-01
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are dm-wide zones of shear deformation bands that developed under shallow burial conditions in the lower portion of the Jurassic Entrada Fm (Utah, USA). The edges of the polygons are 1 to 5 meters long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain < 0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. Density inversion, that takes place where under-compacted and over-pressurized layers (Carmel Fm) lay below normally compacted sediments (Entrada Sandstone), may be an important process for polygonal deformation bands formation. The gravitational sliding and soft sediment structures typically observed within the Carmel Fm support this hypothesis. Soft sediment deformation may induce polygonal faulting in the section of the Entrada Sandstone just above the Carmel Fm. The permeability of the polygonal deformation bands is approximately 10-14 to 10-13 m2, which is less than the permeability of the host, Entrada Sandstone (range 10-12 to 10-11 m2). The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.
Cohen, Bruce E; Nicholson, Christopher W
2007-05-01
The bunionette, or tailor's bunion, is a lateral prominence of the fifth metatarsal head. Most commonly, bunionettes are the result of a widened 4-5 intermetatarsal angle with associated varus of the metatarsophalangeal joint. When symptomatic, these deformities often respond to nonsurgical treatment methods, such as wider shoes and padding techniques. When these methods are unsuccessful, surgical treatment is based on preoperative radiographs and associated lesions, such as hyperkeratoses. In rare situations, a simple lateral eminence resection is appropriate; however, the risk of recurrence or overresection is high with this technique. Patients with a lateral bow to the fifth metatarsal are treated with a distal chevron-type osteotomy. A widened 4-5 intermetatarsal angle often requires a diaphyseal osteotomy for correction.
Approximate symmetries of Hamiltonians
NASA Astrophysics Data System (ADS)
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
NASA Astrophysics Data System (ADS)
Barry, D. A.; Parlange, J.-Y.; Li, L.; Jeng, D.-S.; Crapper, M.
2005-10-01
The solution to the Green and Ampt infiltration equation is expressible in terms of the Lambert W-1 function. Approximations for Green and Ampt infiltration are thus derivable from approximations for the W-1 function and vice versa. An infinite family of asymptotic expansions to W-1 is presented. Although these expansions do not converge near the branch point of the W function (corresponds to Green-Ampt infiltration with immediate ponding), a method is presented for approximating W-1 that is exact at the branch point and asymptotically, with interpolation between these limits. Some existing and several new simple and compact yet robust approximations applicable to Green-Ampt infiltration and flux are presented, the most accurate of which has a maximum relative error of 5 × 10 -5%. This error is orders of magnitude lower than any existing analytical approximations.
Microscopic justification of the equal filling approximation
Perez-Martin, Sara; Robledo, L. M.
2008-07-15
The equal filling approximation, a procedure widely used in mean-field calculations to treat the dynamics of odd nuclei in a time-reversal invariant way, is justified as the consequence of a variational principle over an average energy functional. The ideas of statistical quantum mechanics are employed in the justification. As an illustration of the method, the ground and lowest-lying states of some octupole deformed radium isotopes are computed.
Intrinsic Nilpotent Approximation.
1985-06-01
RD-A1II58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 1/2 OF TECH CAMBRIDGE LAB FOR INFORMATION AND, DECISION UMCLRSSI SYSTEMS C...TYPE OF REPORT & PERIOD COVERED Intrinsic Nilpotent Approximation Technical Report 6. PERFORMING ORG. REPORT NUMBER LIDS-R-1482 7. AUTHOR(.) S...certain infinite-dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras or g . where x E M, (x,,Z) E T*M/O. It
Anomalous diffraction approximation limits
NASA Astrophysics Data System (ADS)
Videen, Gorden; Chýlek, Petr
It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.
Quantal rotation and its coupling to intrinsic motion in nuclei
NASA Astrophysics Data System (ADS)
Nakatsukasa, Takashi; Matsuyanagi, Kenichi; Matsuzaki, Masayuki; Shimizu, Yoshifumi R.
2016-07-01
Symmetry breaking is an important concept in nuclear physics and other fields of physics. Self-consistent coupling between the mean-field potential and the single-particle motion is a key ingredient in the unified model of Bohr and Mottelson, which could lead to a deformed nucleus as a consequence of spontaneous breaking of the rotational symmetry. Some remarks on the finite-size quantum effects are given. In finite nuclei, the deformation inevitably introduces the rotation as a symmetry-restoring collective motion (Anderson-Nambu-Goldstone mode), and the rotation affects the intrinsic motion. In order to investigate the interplay between the rotational and intrinsic motions in a variety of collective phenomena, we use the cranking prescription together with the quasiparticle random phase approximation (QRPA). At low spin, the coupling effect can be seen in the generalized intensity relation. A feasible quantization of the cranking model is presented, which provides a microscopic approach to the higher-order intensity relation. At high spin, the semiclassical cranking prescription works well. We discuss properties of collective vibrational motions under rapid rotation and/or large deformation. The superdeformed shell structure plays a key role in emergence of a new soft mode which could lead to instability toward the {K}π ={1}- octupole shape. A wobbling mode of excitation, which is a clear signature of the triaxiality, is discussed in terms of a microscopic point of view. A crucial role played by the quasiparticle alignment is presented.
Low-lying dipole resonance in neutron-rich Ne isotopes
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi; van Giai, Nguyen
2008-07-01
Microscopic structure of the low-lying isovector dipole excitation mode in neutron-rich Ne26,28,30 is investigated by performing deformed quasiparticle-random-phase-approximation (QRPA) calculations. The particle-hole residual interaction is derived from a Skyrme force through a Landau-Migdal approximation. We obtain the low-lying resonance in Ne26 at around 8.6 MeV. It is found that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule. This excitation mode is composed of several QRPA eigenmodes, one is generated by a ν(2s1/2-12p3/2) transition dominantly and the other mostly by a ν(2s1/2-12p1/2) transition. The neutron excitations take place outside of the nuclear surface reflecting the spatially extended structure of the 2s1/2 wave function. In Ne30, the deformation splitting of the giant resonance is large, and the low-lying resonance overlaps with the giant resonance.
Covariant approximation averaging
NASA Astrophysics Data System (ADS)
Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2015-06-01
We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.
Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Cisewski, Jessi
2015-08-01
Explicitly specifying a likelihood function is becoming increasingly difficult for many problems in astronomy. Astronomers often specify a simpler approximate likelihood - leaving out important aspects of a more realistic model. Approximate Bayesian computation (ABC) provides a framework for performing inference in cases where the likelihood is not available or intractable. I will introduce ABC and explain how it can be a useful tool for astronomers. In particular, I will focus on the eccentricity distribution for a sample of exoplanets with multiple sub-populations.
Linear-response calculation in the time-dependent density functional theory
Nakatsukasa, Takashi; Inakura, Tsunenori; Avogadro, Paolo; Ebata, Shuichiro; Sato, Koichi; Yabana, Kazuhiro
2012-11-12
Linear response calculations based on the time-dependent density-functional theory are presented. Especially, we report results of the finite amplitude method which we have recently proposed as an alternative and feasible approach to the (quasiparticle-)random-phase approximation. Calculated properties of the giant resonances and low-energy E1 modes are discussed. We found a universal linear correlation between the low-energy E1 strength and the neutron skin thickness.
Neutral current reaction cross sections for the stable 100 Mo isotope
NASA Astrophysics Data System (ADS)
Balasi, K. G.; Kosmas, T. S.; Divari, P. C.; Ejiri, H.
2010-01-01
Motivated by the ongoing MOON neutrino experiment at Japan aiming to search for double beta and neutrinoless double beta decay events, we investigate inelastic neutrino scattering cross sections for the stable 100Mo isotope by performing state-by-state calculations. The required many body nuclear wave functions are constructed within the context of the quasi-particle random phase approximation (QRPA) tested in the reproducibility of the low-lying spectrum of the 100Mo isotope.
Microscopic description of large-amplitude shape-mixing dynamics with local QRPA inertial functions
Hinohara, Nobuo; Yoshida, Kenichi; Nakatsukasa, Takashi; Sato, Koichi; Matsuo, Masayuki
2011-05-06
We introduce a microscopic approach to derive all the inertial functions in the five-dimensional quadrupole collective Hamiltonian. Local normal modes are evaluated on the constrained mean field in the quasiparticle random-phase approximation in order to derive the inertial functions. The collective Hamiltonians for neutron-rich Mg isotopes are determined with use of this approach, and the shape coexistence/mixing around the N = 20 region is analyzed.
Gamma-ray strength at low energies using relativistic QRPA with exact coupling to the continuum
NASA Astrophysics Data System (ADS)
Daoutidis, I.; Goriely, S.
2012-02-01
Continuum-quasiparticle random-phase Approximation (CQRPA) within the relativistic point-coupling model with density-dependent coupling constants is applied to investigate collective excitations in spherical nuclei. In particular we study the impact of the exact continuum on the giant-dipole and pygmy resonance of several Sn isotopes as well as the radiative neutron capture rates of importance for astrophysical calculations.
Low-lying Gamow-Teller transitions in spherical nuclei
Cakmak, N.; Uenlue, S.; Selam, C.
2012-01-15
The Pyatov Method has been used to study the low-lying Gamow-Teller transitions in the mass region of 98 Less-Than-Or-Slanted-Equal-To A Less-Than-Or-Slanted-Equal-To 130. The eigenvalues and eigenfunctions of the total Hamiltonian have been solved within the framework of proton-neutron quasiparticle random-phase approximation. The low-lying {beta} decay log(ft) values have been calculated for the nuclei under consideration.
Multicriteria approximation through decomposition
Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.
1998-06-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Multicriteria approximation through decomposition
Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |
1997-12-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
ERIC Educational Resources Information Center
Wolff, Hans
This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Optimizing the Zeldovich approximation
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.
1994-01-01
We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1978-01-01
The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.
Topics in Metric Approximation
NASA Astrophysics Data System (ADS)
Leeb, William Edward
This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.
Watanabe, H.; Zhang, G. X.; Yoshida, K.; Walker, P. M.; Liu, J. J.; Wu, J.; Regan, P. H.; Söderström, P. -A.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Nishimura, S.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C. -B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.
2016-09-01
The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71(5) s and Kπ = 8- has been identified at 1278 keV, which decays to the ground-state and γ -vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ = 8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ -vibrational levels have been identified at unusually low excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.
NASA Astrophysics Data System (ADS)
Watanabe, H.; Zhang, G. X.; Yoshida, K.; Walker, P. M.; Liu, J. J.; Wu, J.; Regan, P. H.; Söderström, P.-A.; Kanaoka, H.; Korkulu, Z.; Lee, P. S.; Nishimura, S.; Yagi, A.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Doornenbal, P.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, C. S.; Lee, E. J.; Lorusso, G.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Nita, C. R.; Odahara, A.; Patel, Z.; Phong, V. H.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Shimizu, Y.; Sumikama, T.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dóbon, J. J.; Xu, Z. Y.
2016-09-01
The level structure of 172Dy has been investigated for the first time by means of decay spectroscopy following in-flight fission of a 238U beam. A long-lived isomeric state with T1/2 = 0.71 (5) s and Kπ =8- has been identified at 1278 keV, which decays to the ground-state and γ-vibrational bands through hindered electromagnetic transitions, as well as to the daughter nucleus 172Ho via allowed β decays. The robust nature of the Kπ =8- isomer and the ground-state rotational band reveals an axially-symmetric structure for this nucleus. Meanwhile, the γ-vibrational levels have been identified at unusually low excitation energy compared to the neighboring well-deformed nuclei, indicating the significance of the microscopic effect on the non-axial collectivity in this doubly mid-shell region. The underlying mechanism of enhanced γ vibration is discussed in comparison with the deformed Quasiparticle Random-Phase Approximation based on a Skyrme energy-density functional.
Uncertainties in Astrophysical β-decay Rates from the FRDM
Bertolli, M.G.; Möller, P.; Jones, S.
2014-06-15
β{sup −}-decay rates are of crucial importance in stellar evolution and nucleosynthesis, as they are a key component in stellar processes. Tabulated values of the decay rates as functions of both temperature T and density ρ are necessary input to stellar evolution codes such as MESA, or largescale nucleosynthesis simulations such as those performed by the NuGrid collaboration. Therefore, it is interesting to know the uncertainties in these rates and the effects of these uncertainties on stellar structure and isotopic yields. We have calculated β-strength functions and reaction rates for nuclei ranging from {sup 16}O to {sup 339}136, extending from the proton drip line to the neutron drip line based on a quasi-particle random-phase approximation (QRPA) in a deformed folded-Yukawa single-particle model. Q values are determined from the finite-range droplet mass model (FRDM). We have investigated the effect of model uncertainty on astrophysical β{sup −}-decay rates calculated by the FRDM. The sources of uncertainty considered are Q values and deformation. The rates and their uncertainties are generated for a variety of temperature and density ranges, corresponding to key stellar processes. We demonstrate the effects of these rate uncertainties on isotopic abundances using the NuGrid network calculations.
Chalasani, P.; Saias, I.; Jha, S.
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Beyond the Kirchhoff approximation
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto
1989-01-01
The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.
NASA Technical Reports Server (NTRS)
Clark, T. A.; Thomsen, P.
1988-01-01
A study is presented of deformations in antennas with the emphasis on their influence on VLBI measurements. The GIFTS structural analysis program has been used to model the VLBI antenna in Fairbanks (Alaska). The report identifies key deformations and studies the effect of gravity, wind, and temperature. Estimates of expected deformations are given.
Hierarchical Approximate Bayesian Computation
Turner, Brandon M.; Van Zandt, Trisha
2013-01-01
Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior distribution of a model’s parameters. It is especially important when the model to be fit has no explicit likelihood function, which happens for computational (or simulation-based) models such as those that are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied only to models with few parameters. Extending ABC to hierarchical models has been difficult because high-dimensional hierarchical models add computational complexity that conventional ABC cannot accommodate. In this paper we summarize some current approaches for performing hierarchical ABC and introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian techniques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models. We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one with and one without a tractable likelihood function. PMID:24297436
Roy, Swapnoneel; Thakur, Ashok Kumar
2008-01-01
Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.
Deformable Nanolaminate Optics
Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K
2006-05-12
We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.
Supratip deformity: a closer look.
Guyuron, B; DeLuca, L; Lash, R
2000-03-01
Supratip deformity, a hallmark of a poorly executed rhinoplasty or an inauspicious healing, continues to plague the novice often and the experts on occasion. A clinical and histopathologic study was conducted to search for the surgical causes of this deformity and its histologic presentation. An organized, logical management program was then developed. Clinically, supratip fullness was observed in both primary (26 of 298 patients; 9 percent) and secondary (40 of 112 patients; 36 percent) rhinoplasty candidates. In primary patients, the deformity was the result of inadequate tip projection (pseudodeformity), an overprojected caudal dorsum, a combination of both, or cephalically oriented lower lateral cartilages. In secondary patients, the deformity was caused by an underresected or overresected caudal dorsum, overresected midvault, underprojected tip (pseudodeformity), or a combination of some of these factors. The histopathologic evaluation demonstrated significant fibrosis in the supratip soft tissue of 14 of 16 patients undergoing secondary rhinoplasty without the injection of triamcinolone acetonide and in only 13 of 23 patients who underwent primary rhinoplasty (p<0.05). A supratip deformity can be eschewed by proper resection of the caudal dorsum, avoidance of dead space, restoration of adequate projection to the nasal tip, and an approximation of the supratip subcutaneous tissue to the underlying cartilage using a supratip suture, hence eliminating the dead space. If the problem is noted shortly after surgery, in the presence of collapsible consistency of the supratip tissue and adequate projection, the treatment is taping the supratip tissue as often as it is practical. If no favorable response is elicited in 6 to 8 weeks, thejudicious injection of a small amount of triamcinolone acetonide (0.2 to 0.4 cc of 20 mg/cc) in the deep subcutaneous tissue (not in the dermis) is done. The injection is repeated in 4-week intervals until the desired effect is achieved
Hybrid Approximate Message Passing
NASA Astrophysics Data System (ADS)
Rangan, Sundeep; Fletcher, Alyson K.; Goyal, Vivek K.; Byrne, Evan; Schniter, Philip
2017-09-01
The standard linear regression (SLR) problem is to recover a vector $\\mathbf{x}^0$ from noisy linear observations $\\mathbf{y}=\\mathbf{Ax}^0+\\mathbf{w}$. The approximate message passing (AMP) algorithm recently proposed by Donoho, Maleki, and Montanari is a computationally efficient iterative approach to SLR that has a remarkable property: for large i.i.d.\\ sub-Gaussian matrices $\\mathbf{A}$, its per-iteration behavior is rigorously characterized by a scalar state-evolution whose fixed points, when unique, are Bayes optimal. AMP, however, is fragile in that even small deviations from the i.i.d.\\ sub-Gaussian model can cause the algorithm to diverge. This paper considers a "vector AMP" (VAMP) algorithm and shows that VAMP has a rigorous scalar state-evolution that holds under a much broader class of large random matrices $\\mathbf{A}$: those that are right-rotationally invariant. After performing an initial singular value decomposition (SVD) of $\\mathbf{A}$, the per-iteration complexity of VAMP can be made similar to that of AMP. In addition, the fixed points of VAMP's state evolution are consistent with the replica prediction of the minimum mean-squared error recently derived by Tulino, Caire, Verd\\'u, and Shamai. The effectiveness and state evolution predictions of VAMP are confirmed in numerical experiments.
Countably QC-Approximating Posets
Mao, Xuxin; Xu, Luoshan
2014-01-01
As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730
Scattering problem in deformed space with minimal length
Stetsko, M. M.; Tkachuk, V. M.
2007-07-15
We investigated the elastic scattering problem with deformed Heisenberg algebra leading to the existence of a minimal length. The continuity equations for the moving particle in deformed space were constructed. We obtained the Green's function for a free particle, the scattering amplitude, and the cross section in deformed space. We also calculated the scattering amplitudes and differential cross sections for the Yukawa and the Coulomb potentials in the Born approximation.
Nuclear Deformation Effects in the Cluster Radioactivity
NASA Astrophysics Data System (ADS)
Misicu, Serban; Protopopescu, Dan
1999-01-01
We investigate the influence of the nuclear deformation on the decay rates of some cluster emission processes. The interaction between the daughter and the cluster is given by a double folding potential including quadrupole and hexadecupole deformed densities of both fragments. The nuclear part of the nucleus--nucleus interaction is density dependent and at small distances a repulsive core in the potential will occur. In the frame of the WKB-approximation the assault frequency of the cluster will depend on the geometric properties of the potential pocket whereas the penetrability will be sensitive to changes in the barrier location. The results obtained in this paper point out that various combinations of cluster and daughter deformations may account for the measured values of the decay rate. The decay rates are however more sensitive to the changes in the daughter deformation due to the large mass asymmetry of the process.
Approximate universal relations among tidal parameters for neutron star binaries
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yunes, Nicolás
2017-01-01
One of largest uncertainties in nuclear physics is the relation between the pressure and density of supranuclear matter: the equation of state. Some of this uncertainty may be removed through future gravitational wave observations of neutron star binaries by extracting the tidal deformabilities (or Love numbers) of neutron stars, a novel way to probe nuclear physics in the high-density regime. Previous studies have shown that only a certain combination of the individual (quadrupolar) deformabilities of each body (the so-called chirp tidal deformability) can be measured with second-generation, gravitational wave interferometers, such as Adv. LIGO, due to correlations between the individual deformabilities. To overcome this, we search for approximately universal (i.e. approximately equation-of-state independent) relations between two combinations of the individual tidal deformabilities, such that once one of them has been measured, the other can be automatically obtained and the individual ones decoupled through these relations. We find an approximately universal relation between the symmetric and the anti-symmetric combination of the individual tidal deformabilities that is equation-of-state-insensitive to 20 % for binaries with masses less than 1.7{{M}⊙} . We show that these relations can be used to eliminate a combination of the tidal parameters from the list of model parameters, thus breaking degeneracies and improving the accuracy in parameter estimation. A simple (Fisher) study shows that the universal binary Love relations can improve the accuracy in the extraction of the symmetric combination of tidal parameters by as much as an order of magnitude, making the overall accuracy in the extraction of this parameter slightly better than that of the chirp tidal deformability. These new universal relations and the improved measurement accuracy on tidal parameters not only are important to astrophysics and nuclear physics, but also impact our ability to probe
Approximate Feedback Control for a System With Memory
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
Report presents algorithm for calculating feedback gain for control of hereditary dynamical systems with control delay. Problem is to approximate optimal feedback gain that minimizes cost function of state and control. Theory applicable to design of controllers for mechanical systems subject to thermal deformation, electrical systems with delay, electrical systems with plasma components, and other systems that exhibit memory.
Fast approximate stochastic tractography.
Iglesias, Juan Eugenio; Thompson, Paul M; Liu, Cheng-Yi; Tu, Zhuowen
2012-01-01
Many different probabilistic tractography methods have been proposed in the literature to overcome the limitations of classical deterministic tractography: (i) lack of quantitative connectivity information; and (ii) robustness to noise, partial volume effects and selection of seed region. However, these methods rely on Monte Carlo sampling techniques that are computationally very demanding. This study presents an approximate stochastic tractography algorithm (FAST) that can be used interactively, as opposed to having to wait several minutes to obtain the output after marking a seed region. In FAST, tractography is formulated as a Markov chain that relies on a transition tensor. The tensor is designed to mimic the features of a well-known probabilistic tractography method based on a random walk model and Monte-Carlo sampling, but can also accommodate other propagation rules. Compared to the baseline algorithm, our method circumvents the sampling process and provides a deterministic solution at the expense of partially sacrificing sub-voxel accuracy. Therefore, the method is strictly speaking not stochastic, but provides a probabilistic output in the spirit of stochastic tractography methods. FAST was compared with the random walk model using real data from 10 patients in two different ways: 1. the probability maps produced by the two methods on five well-known fiber tracts were directly compared using metrics from the image registration literature; and 2. the connectivity measurements between different regions of the brain given by the two methods were compared using the correlation coefficient ρ. The results show that the connectivity measures provided by the two algorithms are well-correlated (ρ = 0.83), and so are the probability maps (normalized cross correlation 0.818 ± 0.081). The maps are also qualitatively (i.e., visually) very similar. The proposed method achieves a 60x speed-up (7 s vs. 7 min) over the Monte Carlo sampling scheme, therefore
Deformations of superconformal theories
NASA Astrophysics Data System (ADS)
Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth
2016-11-01
We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d ≥ 3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.
Deformations of superconformal theories
Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth
2016-11-22
Here, we classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d ≥ 3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and noncentral charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.
Totonchi, Ali; Guyuron, Bahman
2016-01-01
The alar rim plays an important role in nasal harmony. Alar rim flaws are common following the initial rhinoplasty. Classification of the deformities helps with diagnosis and successful surgical correction. Diagnosis of the deformity requires careful observation of the computerized or life-sized photographs. Techniques for treatment of these deformities can easily be learned with attention to detail. Copyright © 2016 Elsevier Inc. All rights reserved.
Tidal deformability of boson stars and dark matter clumps
NASA Astrophysics Data System (ADS)
Mendes, Raissa F. P.; Yang, Huan
2017-09-01
In this work we consider minimally-coupled boson stars immersed in a tidal environment and compute their tidal deformability to leading order. We also describe an approximate correspondence between Newtonian boson star configurations (described by the Schrödinger–Poisson equations) and dynamical dark matter clumps (described by the collisionless Boltzmann equation). This allows us to map our results for the tidal deformability of boson stars to approximate statements for dark matter clumps.
Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei
NASA Astrophysics Data System (ADS)
Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet
2010-12-01
In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B(E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.
Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei
NASA Astrophysics Data System (ADS)
Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet
2010-12-01
In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B( E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.
Effects of wing deformation on aerodynamic forces in hovering hoverflies.
Du, Gang; Sun, Mao
2010-07-01
We studied the effects of wing deformation on the aerodynamic forces of wings of hovering hoverflies by solving the Navier-Stokes equations on a dynamically deforming grid, employing the recently measured wing deformation data of hoverflies in free-flight. Three hoverflies were considered. By taking out the camber deformation and the spanwise twist deformation one by one and by comparing the results of the deformable wing with those of the rigid flat-plate wing (the angle of attack of the rigid flat-plate wing was equal to the local angle of attack at the radius of the second moment of wing area of the deformable wing), effects of camber deformation and spanwise twist were identified. The main results are as follows. For the hovering hoverflies considered, the time courses of the lift, drag and aerodynamic power coefficients of the deformable wing are very similar to their counterparts of the rigid flat-plate wing, although lift of the deformable wing is about 10% larger, and its aerodynamic power required about 5% less than that of the rigid flat-plate wing. The difference in lift is mainly caused by the camber deformation, and the difference in power is mainly caused by the spanwise twist. The main reason that the deformation does not have a very large effect on the aerodynamic force is that, during hovering, the wing operates at a very high angle of attack (about 50 deg) and the flow is separated, and separated flow is not very sensitive to wing deformation. Thus, as a first approximation, the deformable wing in hover flight could be modeled by a rigid flat-plate wing with its angle of attack being equal to the local angle of attack at the radius of second moment of wing area of the deformable wing.
Resurgent deformation quantisation
Garay, Mauricio; Goursac, Axel de; Straten, Duco van
2014-03-15
We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.
DALI: Derivative Approximation for LIkelihoods
NASA Astrophysics Data System (ADS)
Sellentin, Elena
2015-07-01
DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.
Vertex finding with deformable templates at LHC
NASA Astrophysics Data System (ADS)
Stepanov, Nikita; Khanov, Alexandre
1997-02-01
We present a novel vertex finding technique. The task is formulated as a discrete-continuous optimisation problem in a way similar to the deformable templates approach for the track finding. Unlike the track finding problem, "elastic hedgehogs" rather than elastic arms are used as deformable templates. They are initialised by a set of procedures which provide zero level approximation for vertex positions and track parameters at the vertex point. The algorithm was evaluated using the simulated events for the LHC CMS detector and demonstrated good performance.
Strain localization during deformation of Westerly granite
NASA Technical Reports Server (NTRS)
Brodsky, N. S.; Spetzler, H. A.
1984-01-01
A specimen of Westerly granite was cyclically loaded to near failure at 50 MPa confining pressure. Holographic interferometry provided detailed measurements of localized surface deformations during loading and unloading. The data are consistent with deformation occurring primarily elastically at low differential stress; in conjunction with one incipient fault zone between approximately 350 and 520 MPa differential stress; and in conjunction with a second incipient fault zone above 580 MPa and/or during creep. During unloading only one fault zone, that which is active at the intermediate stress levels during loading, is seen to recede.
Taylor Approximations and Definite Integrals
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2007-01-01
We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)
Taylor Approximations and Definite Integrals
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2007-01-01
We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)
Approximate equilibria for Bayesian games
NASA Astrophysics Data System (ADS)
Mallozzi, Lina; Pusillo, Lucia; Tijs, Stef
2008-07-01
In this paper the problem of the existence of approximate equilibria in mixed strategies is central. Sufficient conditions are given under which approximate equilibria exist for non-finite Bayesian games. Further one possible approach is suggested to the problem of the existence of approximate equilibria for the class of multicriteria Bayesian games.
Approximating the dynamic response of strain-hardening structures
Youngdahl, C.K.
1991-01-01
A mode approximation method is being developed to predict the dynamic plastic deformation of strain-hardening structures. A mode shape having time-dependent coefficients is based on quasi-static deformation profiles. Two stress fields are associated with the modal shape, one satisfying the dynamic relations and the other satisfying the constitutive equations. The application of suitable matching conditions results in a set of simultaneous differential and algebraic equations for the amplitude coefficients and plastic region size. Using the example of a simply supported beam, the effect of varying the number of matching conditions on the accuracy of the solution is presented. 5 refs., 7 figs.
An autoregulatory enhancer element of the Drosophila homeotic gene Deformed.
Bergson, C; McGinnis, W
1990-12-01
The stable determination of different anterior-posterior regions of the Drosophila embryo is controlled by the persistent expression of homeotic selector genes. One mechanism that has been proposed to explain the persistent expression of the homeotic gene Deformed is an autoactivation circuit that would be used once Deformed expression had been established by earlier acting patterning genes. Here we show that a large cis-regulatory element mapping approximately 5 kb upstream of the Deformed transcription start has the properties predicted for a Deformed autoregulatory enhancer. This element provides late, spatially localized expression in the epidermal cells of the maxillary and mandibular segments which is wholly dependent upon endogenous Deformed function. In addition, the autoregulatory enhancer can be activated ectopically in embryos and in imaginal disc cells by ectopic expression of Deformed protein. Deletion analysis of the autoregulatory element indicates that it contains compartment specific sub-elements similar to those of other homeotic loci.
Deformation properties of lead isotopes
Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.
2016-01-15
The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron
Evans, D
1975-08-01
A discussion of the essential deformity in calcaneo-valgus feet develops a theme originally put forward in 1961 on the relapsed club foot (Evans 1961). Whereas in the normal foot the medial and lateral columns are about equal in length, in talipes equino-varus the lateral column is longer and in calcaneo-valgus shorter than the medial column. The suggestion is that in the treatment of both deformities the length of the columns be made equal. A method is described of treating calcaneo-valgus deformity by inserting cortical bone grafts taken from the tibia to elongate the anterior end of the calcaneus.
Hamiltonian deformations of Gabor frames: First steps.
de Gosson, Maurice A
2015-03-01
Gabor frames can advantageously be redefined using the Heisenberg-Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed - as the title suggests - as the very first steps towards a general deformation theory for Gabor frames.
Hamiltonian deformations of Gabor frames: First steps
de Gosson, Maurice A.
2015-01-01
Gabor frames can advantageously be redefined using the Heisenberg–Weyl operators familiar from harmonic analysis and quantum mechanics. Not only does this redefinition allow us to recover in a very simple way known results of symplectic covariance, but it immediately leads to the consideration of a general deformation scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings passing through the identity). We will study in some detail an associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from semiclassical physics involving coherent states and Gaussian approximations. We will thereafter discuss possible applications and extensions of our method, which can be viewed – as the title suggests – as the very first steps towards a general deformation theory for Gabor frames. PMID:25892903
Yudovich, A. ); Chin, L.Y. ); Morgan, D.R. )
1989-07-01
Casing deformation resulting from reservoir compaction occurred in the Ekofisk field operated by Phillips Petroleum Co. Norway and is a serious problem in three of the fields. This study established a relationship between reservoir compaction and casing failure by statistical analyses, finite-element modeling (FEM), and the analyses of deformed casing and logs run through collapsed casings. Ekofisk casing deformation is related primarily to the near well incremental strain, well inclination, and casing diameter. Useful correlations to estimate future probabilities of casing deformation as a function of reservoir variables and well parameters were also obtained. The authors concluded that casing failure induced by reservoir compaction can be minimized through a pressure-maintenance program to reduce strain by drilling with the highest practical angle and by using the largest possible casing in the well.
NASA Astrophysics Data System (ADS)
Green, Harry
The Third Rock Deformation Colloquium was held December 4, 1989, at the AGU Fall Meeting in San Francisco. Steve Kirby of the U.S. Geological Survey, Menlo Park, Calif., reported on actions taken by the rock deformation steering committee. Brian Wernicke of Harvard University, Cambridge, Mass., talked on the structural geology of the Great Basin.The steering committee voted for “Committee on Deformation of Earth Materials” as the name for the AGU technical committee on rock deformation, Kirby said. Considerable discussion has occurred in the steering committee over our relationship to the AGU Mineral Physics Committee. Indeed, Kirby will become chairman of that committee in 1990, underlining the overlap of the two groups. It was agreed that we will pursue closer association with Mineral Physics.
Wrist deformities after fracture.
Vanheest, Ann
2006-02-01
Wrist deformities can occur after fracture because of malunion of the fracture or injury to the growth plate leading to imbalance of growth. Prevention of malunion is paramount by early recognition with proper reduction and casting or fixation with casting. If a mal-union occurs, an osteotomy may be necessary if anticipated growth will not correct the deformity. Injury of the growth plate may lead to wrist deformity in two ways: angular growth or growth arrest. Angular growth deformities are corrected most commonly by osteotomy. Growth arrest of the radius or the ulna leads to an ulnar-positive or an ulnar-negative variance at the wrist. If the ulnar variance is symptomatic, treatment is centered on achieving a level joint. Options for joint leveling procedures include epiphysiodesis or physeal stapling of the longer bone, lengthening osteotomy of the shorter bone, or shortening osteotomy of the longer bone.
Combining global and local approximations
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
1991-01-01
A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.
Combining global and local approximations
Haftka, R.T. )
1991-09-01
A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model. 6 refs.
Principles of rock deformation
Nicolas, A.
1987-01-01
This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.
Phenomenological applications of rational approximants
NASA Astrophysics Data System (ADS)
Gonzàlez-Solís, Sergi; Masjuan, Pere
2016-08-01
We illustrate the powerfulness of Padé approximants (PAs) as a summation method and explore one of their extensions, the so-called quadratic approximant (QAs), to access both space- and (low-energy) time-like (TL) regions. As an introductory and pedagogical exercise, the function 1 zln(1 + z) is approximated by both kind of approximants. Then, PAs are applied to predict pseudoscalar meson Dalitz decays and to extract Vub from the semileptonic B → πℓνℓ decays. Finally, the π vector form factor in the TL region is explored using QAs.
NASA Astrophysics Data System (ADS)
Antonellini, Marco; Mollema, Pauline Nella
2015-12-01
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.
Deformations of superconformal theories
Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth
2016-11-22
Here, we classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d ≥ 3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and noncentral charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact thatmore » short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.« less
Learning a hierarchical deformable template for rapid deformable object parsing.
Zhu, Long Leo; Chen, Yuanhao; Yuille, Alan
2010-06-01
In this paper, we address the tasks of detecting, segmenting, parsing, and matching deformable objects. We use a novel probabilistic object model that we call a hierarchical deformable template (HDT). The HDT represents the object by state variables defined over a hierarchy (with typically five levels). The hierarchy is built recursively by composing elementary structures to form more complex structures. A probability distribution--a parameterized exponential model--is defined over the hierarchy to quantify the variability in shape and appearance of the object at multiple scales. To perform inference--to estimate the most probable states of the hierarchy for an input image--we use a bottom-up algorithm called compositional inference. This algorithm is an approximate version of dynamic programming where approximations are made (e.g., pruning) to ensure that the algorithm is fast while maintaining high performance. We adapt the structure-perceptron algorithm to estimate the parameters of the HDT in a discriminative manner (simultaneously estimating the appearance and shape parameters). More precisely, we specify an exponential distribution for the HDT using a dictionary of potentials, which capture the appearance and shape cues. This dictionary can be large and so does not require handcrafting the potentials. Instead, structure-perceptron assigns weights to the potentials so that less important potentials receive small weights (this is like a "soft" form of feature selection). Finally, we provide experimental evaluation of HDTs on different visual tasks, including detection, segmentation, matching (alignment), and parsing. We show that HDTs achieve state-of-the-art performance for these different tasks when evaluated on data sets with groundtruth (and when compared to alternative algorithms, which are typically specialized to each task).
Structural deformation of the Leoville chondrite
NASA Technical Reports Server (NTRS)
Cain, P. M.; Mcsween, H. Y., Jr.; Woodward, N. B.
1986-01-01
A petrofabric study of the Leoville chondrite was performed in order to gain an understanding of its deformation process. Strain values were determined from the chondrules' axial ratios or by the all-object-separation method, and the compaction required to deform Leoville chondrules was calculated from the decrease of radius in the circle-to-ellipse transformation. Structural and strain studies indicate the following order of events experienced by Leoville: (1) formation as an accretionary breccia, (2) compaction and development of foliation, (3) fracturing, possibly due to impact on earth, and (4) terrestrial weathering. Similarities between the axial ratios of chondrules (1.9-2.0) and of the whole meteorite (2.0) indicate either that Leoville deformed homogeneously or that it deformed as a framework of touching chondrules. This amount of strain corresponds to approximately 33 percent uniaxial shortening, assuming constant volume, and is likely to have been caused by compaction due to overburden from progressive accretion on the chondrite body. Diffusional flow is believed to be the mechanism by which olivines in these chondrules deformed.
Approximating Functions with Exponential Functions
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2005-01-01
The possibility of approximating a function with a linear combination of exponential functions of the form e[superscript x], e[superscript 2x], ... is considered as a parallel development to the notion of Taylor polynomials which approximate a function with a linear combination of power function terms. The sinusoidal functions sin "x" and cos "x"…
Structural optimization with approximate sensitivities
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.
1994-01-01
Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Optimal approximation of harmonic growth clusters by orthogonal polynomials
Teodorescu, Razvan
2008-01-01
Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.
Approximating subtree distances between phylogenies.
Bonet, Maria Luisa; St John, Katherine; Mahindru, Ruchi; Amenta, Nina
2006-10-01
We give a 5-approximation algorithm to the rooted Subtree-Prune-and-Regraft (rSPR) distance between two phylogenies, which was recently shown to be NP-complete. This paper presents the first approximation result for this important tree distance. The algorithm follows a standard format for tree distances. The novel ideas are in the analysis. In the analysis, the cost of the algorithm uses a "cascading" scheme that accounts for possible wrong moves. This accounting is missing from previous analysis of tree distance approximation algorithms. Further, we show how all algorithms of this type can be implemented in linear time and give experimental results.
Interfacial Bubble Deformations
NASA Astrophysics Data System (ADS)
Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert
Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.
Rytov approximation in electron scattering
NASA Astrophysics Data System (ADS)
Krehl, Jonas; Lubk, Axel
2017-06-01
In this work we introduce the Rytov approximation in the scope of high-energy electron scattering with the motivation of developing better linear models for electron scattering. Such linear models play an important role in tomography and similar reconstruction techniques. Conventional linear models, such as the phase grating approximation, have reached their limits in current and foreseeable applications, most importantly in achieving three-dimensional atomic resolution using electron holographic tomography. The Rytov approximation incorporates propagation effects which are the most pressing limitation of conventional models. While predominately used in the weak-scattering regime of light microscopy, we show that the Rytov approximation can give reasonable results in the inherently strong-scattering regime of transmission electron microscopy.
Dual approximations in optimal control
NASA Technical Reports Server (NTRS)
Hager, W. W.; Ianculescu, G. D.
1984-01-01
A dual approximation for the solution to an optimal control problem is analyzed. The differential equation is handled with a Lagrange multiplier while other constraints are treated explicitly. An algorithm for solving the dual problem is presented.
Minster, B.; Prescott, W.; Royden, L.
1991-02-01
Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.
Exponential approximations in optimal design
NASA Technical Reports Server (NTRS)
Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.
1990-01-01
One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.
Mathematical algorithms for approximate reasoning
NASA Technical Reports Server (NTRS)
Murphy, John H.; Chay, Seung C.; Downs, Mary M.
1988-01-01
Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away
Approximation techniques for neuromimetic calculus.
Vigneron, V; Barret, C
1999-06-01
Approximation Theory plays a central part in modern statistical methods, in particular in Neural Network modeling. These models are able to approximate a large amount of metric data structures in their entire range of definition or at least piecewise. We survey most of the known results for networks of neurone-like units. The connections to classical statistical ideas such as ordinary least squares (LS) are emphasized.
Abductor pollicis longus tendon division with swan neck thumb deformity.
Zacharia, Balaji; Puthezhath, Kishore
2012-08-01
Swan neck thumb deformity can be caused by osteoarthritis, rheumatoid arthritis, systemic lupus erythematosus, tendon transfers and paralytic diseases. Abductor pollicis longus is one of the major stabilizing tendon of the carpometacarpal joint of thumb. To the best of our knowledge, swan neck thumb deformity owing to division of abductor pollicis longus tendon is rare. In this article, we describe a case of isolated division of abductor pollicis longus tendon presenting with swan-neck deformity of thumb and discuss the mechanism, management and outcome. The patient was treated by repair of the divided tendon using palmaris longus tendon graft. At approximately 107 weeks following treatment, the patient was having full range of thumb movement and the deformity completely disappeared. We also describe the unusual mechanism whereby an isolated division of abductor pollicis longus tendon results in swan neck thumb deformity. Level of clinical evidence IV.
Deformation and failure mechanisms in metal matrix composites
NASA Technical Reports Server (NTRS)
Newaz, G.; Majumdar, B. S.
1991-01-01
An investigation was undertaken to determine the key deformation mechanisms and their interaction leading to failure of both 0 degree and 90 degree Ti 15-3/SCS-6 laminae under monotonic loading. The experimental results suggest that inelastic deformation in the 0-degree lamina is dominated by plastic deformation and that in the 90-degree lamina is dominated by both fiber-matrix debonding and plasticity. The loading-unloading response, monitoring of Poisson's ratio and microscopy were utilized to identify the key deformation mechanisms. The sequence of deformation mechanisms leading to failure are identified for both the 0 and the 90-degree specimens. The threshold strains for plasticity or damage which are referred to as 'microdeformation' in the 0 deg and 90 deg laminae are approximately 0.004 and 0.002, respectively, at room temperature. These strain levels may be considered critical in initiation based structural design with these composites.
Micromachined, Electrostatically Deformable Reflectors
NASA Technical Reports Server (NTRS)
Bartman, Randall K.; Wang, Paul K. C.; Miller, Linda M.; Kenny, Thomas W.; Kaiser, William J.; Hadaegh, Fred Y.; Agronin, Michael L.
1995-01-01
Micromachined, closed-loop, electrostatically actuated reflectors (microCLEARs) provide relatively simple and inexpensive alternatives to large, complex, expensive adaptive optics used to control wavefronts of beams of light in astronomy and in experimental laser weapons. Micromachining used to make deformable mirror, supporting structure, and actuation circuitry. Development of microCLEARs may not only overcome some of disadvantages and limitations of older adaptive optics but may also satisfy demands of potential market for small, inexpensive deformable mirrors in electronically controlled film cameras, video cameras, and other commercial optoelectronic instruments.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2010-04-06
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
Nanolaminate deformable mirrors
Papavasiliou, Alexandros P.; Olivier, Scot S.
2009-04-14
A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.
Approximating random quantum optimization problems
NASA Astrophysics Data System (ADS)
Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.
2013-06-01
We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.
Explosive loading of deformable gas-permeable axisymmetric structural elements
NASA Astrophysics Data System (ADS)
Glazova, E. G.; Konstantinov, A. Yu.; Kochetkov, A. V.; Krylov, S. V.
2016-09-01
A mathematical model is proposed which describes the interrelated processes of unsteady elastoplastic deformation of stacks of woven metal wire mesh and wave processes in pore gas in a two-dimensional axisymmetric approximation. The nonlinear equations of the dynamics of two interpenetrating continua are solved numerically using a modified Godunov's scheme. The problem of explosive loading of a multilayer shell with an internal permeable deformable layer is solved. The results of numerical solutions are compared with experimental data. The influence of the gas-permeable layer on shell deformation is determined.
Dense deformation field estimation for brain intraoperative images registration
NASA Astrophysics Data System (ADS)
De Craene, Mathieu S.; du Bois d'Aische, Aloys; Talos, Ion-Florin; Ferrant, Matthieu; Black, Peter M.; Jolesz, Ferenc; Kikinis, Ron; Macq, Benoit; Warfield, Simon K.
2004-05-01
A new fast non rigid registration algorithm is presented. The algorithm estimates a dense deformation field by optimizing a criterion that measures image similarity by mutual information and regularizes with a linear elastic energy term. The optimal deformation field is found using a Simultaneous Perturbation Stochastic Approximation to the gradient. The implementation is parallelized for symmetric multi-processor architectures. This algorithm was applied to capture non-rigid brain deformations that occur during neurosurgery. Segmentation of the intra-operative data is not required but preoperative segmentation of the brain allows the algorithm to be robust to artifacts due to the craniotomy.
MEMS Actuated Deformable Mirror
Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M
2005-11-10
This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.
Wavelet Sparse Approximate Inverse Preconditioners
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
Gadgets, approximation, and linear programming
Trevisan, L.; Sudan, M.; Sorkin, G.B.; Williamson, D.P.
1996-12-31
We present a linear-programming based method for finding {open_quotes}gadgets{close_quotes}, i.e., combinatorial structures reducing constraints of one optimization problems to constraints of another. A key step in this method is a simple observation which limits the search space to a finite one. Using this new method we present a number of new, computer-constructed gadgets for several different reductions. This method also answers a question posed by on how to prove the optimality of gadgets-we show how LP duality gives such proofs. The new gadgets improve hardness results for MAX CUT and MAX DICUT, showing that approximating these problems to within factors of 60/61 and 44/45 respectively is N P-hard. We also use the gadgets to obtain an improved approximation algorithm for MAX 3SAT which guarantees an approximation ratio of .801. This improves upon the previous best bound of .7704.
Rational approximations for tomographic reconstructions
NASA Astrophysics Data System (ADS)
Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas
2013-06-01
We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp-Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image.
Heat pipe transient response approximation.
Reid, R. S.
2001-01-01
A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper.
Adaptive approximation models in optimization
Voronin, A.N.
1995-05-01
The paper proposes a method for optimization of functions of several variables that substantially reduces the number of objective function evaluations compared to traditional methods. The method is based on the property of iterative refinement of approximation models of the optimand function in approximation domains that contract to the extremum point. It does not require subjective specification of the starting point, step length, or other parameters of the search procedure. The method is designed for efficient optimization of unimodal functions of several (not more than 10-15) variables and can be applied to find the global extremum of polymodal functions and also for optimization of scalarized forms of vector objective functions.
Approximating spatially exclusive invasion processes.
Ross, Joshua V; Binder, Benjamin J
2014-05-01
A number of biological processes, such as invasive plant species and cell migration, are composed of two key mechanisms: motility and reproduction. Due to the spatially exclusive interacting behavior of these processes a cellular automata (CA) model is specified to simulate a one-dimensional invasion process. Three (independence, Poisson, and 2D-Markov chain) approximations are considered that attempt to capture the average behavior of the CA. We show that our 2D-Markov chain approximation accurately predicts the state of the CA for a wide range of motility and reproduction rates.
Second Approximation to Conical Flows
1950-12-01
Public Release WRIGHT AIR DEVELOPMENT CENTER AF-WP-(B)-O-29 JUL 53 100 NOTICES ’When Government drawings, specifications, or other data are used V...so that the X, the approximation always depends on the ( "/)th, etc. Here the second approximation, i.e., the terms in C and 62, are computed and...the scheme shown in Fig. 1, the isentropic equations of motion are (cV-X2) +~X~C 6 +- 4= -x- 1 It is assumed that + Ux !E . $O’/ + (8) Introducing Eqs
Shear deformation in thick auxetic plates
NASA Astrophysics Data System (ADS)
Lim, Teik-Cheng
2013-08-01
This paper aims to understand the effect of auxeticity on shear deformation in thick plates. Three models for the shear correction factor of plates as a function of Poisson’s ratio were proposed: an analytical model, a cubic fit model and a modified model. Of these three, the cubic fit model exhibits the best accuracy over the entire range of Poisson’s ratio from -1 to 0.5. The extent of shear deformation is herein investigated using the example of uniformly loaded circular plates. It was found that the maximum deformation of such plates based on Mindlin theory approximates to those according to Kirchhoff theory when the Poisson’s ratio of the plate material is highly negative. When the Poisson’s ratio of the plate material is -1 and the edge of the plate is simply supported, the calculation of the maximum deflection by Mindlin theory simplifies into that by Kirchhoff theory. These results suggest that auxeticity reduces shear deformation in thick plates, permitting the use of classical plate theory for thick plates only if the plate material is highly auxetic.
Deformation and seismicity of Taiwan.
Vita-Finzi, C
2000-10-10
14C-dated Holocene coastal uplift, conventional and satellite geodetic measurements, and coseismic and aseismic fault slip reveal the pattern of distributed deformation at Taiwan resulting from convergence between the Philippine Sea plate and Eurasia; as in other subduction orogenic settings, the locus of strain release and accumulation is strongly influenced by changes in fault geometry across strike. Uplift evidence from the islands of Lutao and Lanhsu is consistent with progressive oblique collision between the Luzon arc and the Chinese continental margin. In the Coastal Range, geodetic and seismic records show that shortening is taken up serially by discontinuous slip on imbricate faults. The geodetic data point to net extension across the Central Range, but deformed Holocene shorelines in the Hengchun Peninsula at its southern extremity suggest that the extension is a superficial effect partly caused by blind reverse faulting. The fastest shortening rates indicated by geodesy are recorded on the Longitudinal Valley fault and across the Chukou fault within the fold-and-thrust belt. In the former, the strain is dissipated mainly as aseismic reverse and strike-slip displacement. In contrast, the fold-and-thrust belt has witnessed five earthquakes with magnitudes of 6.5 or above in the 20th century, including the 1999.9.21 Chi-Chi earthquake (magnitude approximately 7.6) on a branch of the Chukou fault. The neotectonic and geodetic data for Taiwan as a whole suggest that the fold-and-thrust belt will continue to host the majority of great earthquakes on the island.
Pythagorean Approximations and Continued Fractions
ERIC Educational Resources Information Center
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Pythagorean Approximations and Continued Fractions
ERIC Educational Resources Information Center
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Singularly Perturbed Lie Bracket Approximation
Durr, Hans-Bernd; Krstic, Miroslav; Scheinker, Alexander; Ebenbauer, Christian
2015-03-27
Here, we consider the interconnection of two dynamical systems where one has an input-affine vector field. We show that by employing a singular perturbation analysis and the Lie bracket approximation technique, the stability of the overall system can be analyzed by regarding the stability properties of two reduced, uncoupled systems.
Nanoscale deformation mechanisms in bone.
Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter
2005-10-01
Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.
Metabolic dependence of red cell deformability
Weed, Robert I.; LaCelle, Paul L.; Merrill, Edward W.
1969-01-01
The contribution of the metabolic state of human erythrocytes to maintenance of cellular deformability was studied during and after in vitro incubation in serum for periods up to 28 hr. An initial loss of membrane deformability became apparent between 4 and 6 hr when cellular adenosine triphosphate (ATP) levels were approximately 70% of initial values. Membrane deformability then remained stable between 6 and 10 hr. After 10 hr, when cellular ATP had decreased to < 15% of initial values, progressive parallel changes occurred in red cell calcium which increased 400% by 24 hr and in the viscosity of red cell suspensions which had risen 500-750% at 24 hr. A further progressive decrease in membrane deformability also occurred and was reflected by a 1000% increase in negative pressure required to deform the membrane. Red cell filterability decreased to zero as the disc-sphere shape transformation ensued. These changes were accompanied by an increase in ghost residual hemoglobin and nonhemoglobin protein. Regeneration of ATP in depleted cells by incubation with adenosine produced significant reversal of these changes, even in the presence of ouabain. Introduction of calcium into reconstituted ghosts prepared from fresh red cells mimicked the depleted state, and introduction of ATP, ethylenediamine tetraacetate (EDTA), and magnesium into depleted cells mimicked the adenosine effects in intact depleted cells. ATP added externally to 24-hr depleted cells was without effect. Simultaneous introduction of EDTA, ATP, or magnesium along with calcium into reconstituted ghosts prevented the marked decrease in deformability produced by calcium alone. Incorporation of adenosine diphosphate (ADP), nicotinamide adenine dinucleotide (NAD), NAD phosphate (NADP), NADP, reduced form (NADPH), glutatione, reduced form (GSH), inosine triphosphate (ITP), guanosine triphosphate (GTP), and uridine triphosphate (UTP) was without effect. These data suggest that a major role of ATP in maintenance
Many-body correlations of QRPA in nuclear matrix elements of double-beta decay
Terasaki, J.
2015-10-28
We present two new ideas on the quasiparticle random-phase approximation (QRPA) approach for calculating nuclear matrix elements of double-beta decay. First, it is necessary to calculate overlaps of the QRPA states obtained on the basis of the ground states of different nuclei. We calculate this overlap using quasiboson vacua as the QRPA ground states. Second, we show that two-particle transfer paths are possible to use for the calculation under the closure approximation. A calculation is shown for {sup 150}Nd→{sup 150}Sm using these two new ideas, and their implication is discussed.
Cosmetic and Functional Nasal Deformities
... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...
Spinal osteotomies for rigid deformities.
Gupta, Munish C; Kebaish, Khalid; Blondel, Benjamin; Klineberg, Eric
2013-04-01
Various osteotomies are useful in making a rigid deformity flexible enough for realignment in coronal and sagittal plane. This article defines the osteotomies and their usefulness in treatment of specific rigid deformities. The pedicle subtraction osteotomy and vertebral column resection used in treating rigid deformities are described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Humphreys, Eugene D.; Weldon, Ray J., II
1994-01-01
We obtain a locally based estimate of Pacific-North America relative motion and an uncertainly in this estimate by integrating deformation rate along three different paths leading west across southwestern North America from east of the Rio Grande Rift to near the continental escarpment. Data are primarily Quatenary geologic slip rates estimates, and resulting deformation determinations therefore are 'instantaneous' in a geologic sense but 'long term' with respect to earthquake cycles. We deduce a rate of motion of the Pacific plane relative to North America that is 48 +/- 2 mm/yr, a rate indistinguishable from that predicted by the global kinematics models RM2 and NUVEL-1; however, we obtain an orientation that is 5-9 deg counterclockwise of these models. A more westerly motion of the Pacific plate, with respect to North America, is calculated from all three paths. The relatively westerly motion of the Pacific plate is accomodated by deformation in the North American continent that includes slip on relatively counterclockwise-oriented strike-slip faults (including the San Andreas fault), whic is especially relevant in and south of the Transverse Ranges, and a margin-normal component of net extension across the continent, which is especially relevant north of the Transverse Ranges. Deformation of the SW United States occurs in regionally coherent domains within the style of deformation is approximately uniform.
[Babies with cranial deformity].
Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J
2009-01-01
Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.
Probing deformed quantum commutators
NASA Astrophysics Data System (ADS)
Rossi, Matteo A. C.; Giani, Tommaso; Paris, Matteo G. A.
2016-07-01
Several quantum gravity theories predict a minimal length at the order of magnitude of the Planck length, under which the concepts of space and time lose their physical meaning. In quantum mechanics, the insurgence of such a minimal length can be described by introducing a modified position-momentum commutator, which in turn yields a generalized uncertainty principle, where the uncertainty on position measurements has a lower bound. The value of the minimal length is not predicted by theories and must be estimated experimentally. In this paper, we address the quantum bound to the estimability of the minimal uncertainty length by performing measurements on a harmonic oscillator, which is analytically solvable in the deformed algebra induced by the deformed commutation relations.
Koleski, Goce; Fournier, Jean-Baptiste
2016-05-01
The linear response approximation, used within effective field theory to calculate mediated interactions between inclusions, is studied for an exactly solvable one-dimensional model. We show that it works poorly in the case of inclusions imposing absolute deformations to the field, while it works well for massless theories in the case of inclusions imposing relative deformations to the field.
NASA Astrophysics Data System (ADS)
Lukierski, J.
2009-08-01
We transform the oscillator algebra with κ-deformed multiplication rule, proposed in [1, 2], into the oscillator algebra with κ-deformed flip operator and standard multiplication. We recall that the κ-multiplication of the κ-oscillators puts them off-shell. We study the explicit forms of modified mass-shell conditions in both formulations: with κ-multiplication and with κ-flip operation. On the example of κ-deformed 2-particle states we study the clustered nonfactorizable form of the κ-deformed multiparticle states. We argue that the κ-deformed star product of two free fields leads in similar way to a nonfactorizable κ-deformed bilocal field. We conclude with general remarks concerning the κ-deformed n-particle clusters and κ-deformed star product of n fields.
Advanced Curvature Deformable Mirrors
2010-09-01
designs using just a glass wafer and a wafer of Carbon Fiber Reinforced Polymer ( CFRP ). In both cases minimum bend radius decreases and the resonant... matrix is consequently nearly diagonal. The long actuators at the outer edge of the deformable mirror are largely outside the working pupil so their...formal reconstruction of the wave front either explicitly or implicitly in the control matrix . The WFS-DM combination is acting like an analog computer
Surface Deformation Image Analyzer
2012-09-27
such as MRI, positron emission tomography (PET) and ultrasound , provide Attorney Docket No. 101700 3 of 36 detailed images of abnormalities...the time frame and cost for treating non-healing wounds. SUMMARY OF THE INVENTION [0012] The present invention provides a device which includes...the surface of interest and the type of deformation anticipated; it may be helpful to treat the surface of interest with a heat source, such as
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
Osteotomies for bunionette deformity.
Weil, Lowell; Weil, Lowell Scott
2011-12-01
A variety of surgical osteotomy procedures have been described for the bunionette deformity.Metatarsal osteotomies narrow the forefoot, maintain the length of the metatarsal, and preserve function of the metatarsophalangeal joint. Distal metatarsal osteotomies produce less correction and reduce postoperative disability; however, they pose a risk of inadequate correction because of the small width of the fifth metatarsal head and transfer lesions if shortened or dorsiflexed excessively. The sliding oblique metaphyseal osteotomy described by Smith and Weil (without fixation) and later by Steinke (with fixation) is easy to perform and provides good cancellous bone contact. Fixation is sometimes difficult and bone healing can take a few months owing to the unstable construct of this osteotomy. Kitaoka described a distal chevron osteotomy, which provides lateral pressure relief and reduced plantar pressure. This osteotomy is currently the most common procedure used; however, it may prove difficult to perform if the deformity is large and the bone is narrow. Diaphyseal osteotomies are indicated when greater correction is needed; however, they require more dissection and there is greater postoperative convalescence with non–weight bearing for several weeks. Proximal base osteotomies may be used to address significantly increased 4–5 IMAs or when a large degree of sagittal plane correction is required. Approaches that have been described include opening and closing base wedges and basal chevrons. Advantages to this approach are the ability to avoid epiphyseal plates in pediatric patients and maintain function of the MTPJ, while disadvantages include inherent instability of the location of the osteotomy, embarrassment of intraosseous and extraosseus blood supply of the metatarsal, and technical demand. Non–weight bearing is essential for several weeks. The Scarfette procedure is a combination head–shaft procedure, which is indicated to treat mild to moderate
Crustal deformation in Great California Earthquake cycles
NASA Technical Reports Server (NTRS)
Li, Victor C.; Rice, James R.
1987-01-01
A model in which coupling is described approximately through a generalized Elsasser model is proposed for computation of the periodic crustal deformation associated with repeated strike-slip earthquakes. The model is found to provide a more realistic physical description of tectonic loading than do simpler kinematic models. Parameters are chosen to model the 1857 and 1906 San Andreas ruptures, and predictions are found to be consistent with data on variations of contemporary surface strain and displacement rates as a function of distance from the 1857 and 1906 rupture traces. Results indicate that the asthenosphere appropriate to describe crustal deformation on the earthquake cycle time scale lies in the lower crust and perhaps the crust-mantle transition zone.
Crustal deformation in Great California Earthquake cycles
NASA Technical Reports Server (NTRS)
Li, Victor C.; Rice, James R.
1987-01-01
A model in which coupling is described approximately through a generalized Elsasser model is proposed for computation of the periodic crustal deformation associated with repeated strike-slip earthquakes. The model is found to provide a more realistic physical description of tectonic loading than do simpler kinematic models. Parameters are chosen to model the 1857 and 1906 San Andreas ruptures, and predictions are found to be consistent with data on variations of contemporary surface strain and displacement rates as a function of distance from the 1857 and 1906 rupture traces. Results indicate that the asthenosphere appropriate to describe crustal deformation on the earthquake cycle time scale lies in the lower crust and perhaps the crust-mantle transition zone.
Deformable micro torque swimmer
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke
2015-11-01
We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.
Deformation of Wrinkled Graphene
2015-01-01
The deformation of monolayer graphene, produced by chemical vapor deposition (CVD), on a polyester film substrate has been investigated through the use of Raman spectroscopy. It has been found that the microstructure of the CVD graphene consists of a hexagonal array of islands of flat monolayer graphene separated by wrinkled material. During deformation, it was found that the rate of shift of the Raman 2D band wavenumber per unit strain was less than 25% of that of flat flakes of mechanically exfoliated graphene, whereas the rate of band broadening per unit strain was about 75% of that of the exfoliated material. This unusual deformation behavior has been modeled in terms of mechanically isolated graphene islands separated by the graphene wrinkles, with the strain distribution in each graphene island determined using shear lag analysis. The effect of the size and position of the Raman laser beam spot has also been incorporated in the model. The predictions fit well with the behavior observed experimentally for the Raman band shifts and broadening of the wrinkled CVD graphene. The effect of wrinkles upon the efficiency of graphene to reinforce nanocomposites is also discussed. PMID:25765609
[Neurogenic foot deformities].
Senst, S
2010-01-01
There is a multitude of neurological diseases which may lead to neuro-orthopaedic problems and subsequently to neurogenic foot deformities. For this reason the diagnostician will be consistently surprised that there is a great multitude of different foot abnormalities and that not only the typical spastic talipes equines dominates. Of particular significance here is that these deformities almost always develop progressively, whereas most diseases persist per se, cerebral palsy being a typical case in point. However, in MMC (myelomeningocele) patients, there is also the danger of a worsening of the basic problem in the case of tethered cord syndrome. Unlike congenital talipes equinovarus, neuro-orthopaedic talipes equinovarus often shows over- or undercorrection postoperatively due to a shift in muscle imbalance. It is important, therefore, that the basis of conservative therapy include regular physiotherapy and orthoses during the day and, if necessary, at night. Botulinum toxin has been established as an additional measure for spasticity; however, this cannot always prevent surgical intervention, but is able to delay this to a better point in the development of the child/patient. The present article describes the diversity of neurological deformities and presents conservative as well as surgical therapeutic approaches.
Ab initio dynamical vertex approximation
NASA Astrophysics Data System (ADS)
Galler, Anna; Thunström, Patrik; Gunacker, Patrik; Tomczak, Jan M.; Held, Karsten
2017-03-01
Diagrammatic extensions of dynamical mean-field theory (DMFT) such as the dynamical vertex approximation (DΓ A) allow us to include nonlocal correlations beyond DMFT on all length scales and proved their worth for model calculations. Here, we develop and implement an Ab initio DΓ A approach (AbinitioDΓ A ) for electronic structure calculations of materials. The starting point is the two-particle irreducible vertex in the two particle-hole channels which is approximated by the bare nonlocal Coulomb interaction and all local vertex corrections. From this, we calculate the full nonlocal vertex and the nonlocal self-energy through the Bethe-Salpeter equation. The AbinitioDΓ A approach naturally generates all local DMFT correlations and all nonlocal G W contributions, but also further nonlocal correlations beyond: mixed terms of the former two and nonlocal spin fluctuations. We apply this new methodology to the prototypical correlated metal SrVO3.
Random-Phase Approximation Methods
NASA Astrophysics Data System (ADS)
Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp
2017-05-01
Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.
Testing the frozen flow approximation
NASA Technical Reports Server (NTRS)
Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro
1993-01-01
We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.
Potential of the approximation method
Amano, K.; Maruoka, A.
1996-12-31
Developing some techniques for the approximation method, we establish precise versions of the following statements concerning lower bounds for circuits that detect cliques of size s in a graph with m vertices: For 5 {le} s {le} m/4, a monotone circuit computing CLIQUE(m, s) contains at least (1/2)1.8{sup min}({radical}s-1/2,m/(4s)) gates: If a non-monotone circuit computes CLIQUE using a {open_quotes}small{close_quotes} amount of negation, then the circuit contains an exponential number of gates. The former is proved very simply using so called bottleneck counting argument within the framework of approximation, whereas the latter is verified introducing a notion of restricting negation and generalizing the sunflower contraction.
Nonlinear Filtering and Approximation Techniques
1991-09-01
Shwartz), Academic Press (1991). [191 M.Cl. ROUTBAUD, Fiting lindairc par morceaux avec petit bruit d’obserration, These. Universit6 de Provence ( 1990...Kernel System (GKS), Academic Press (1983). 181 H.J. KUSHNER, Probability methods for approximations in stochastic control and for elliptic equations... Academic Press (1977). [9] F. LE GLAND, Time discretization of nonlinear filtering equations, in: 28th. IEEE CDC, Tampa, pp. 2601-2606. IEEE Press (1989
Analytical solution approximation for bearing
NASA Astrophysics Data System (ADS)
Hanafi, Lukman; Mufid, M. Syifaul
2017-08-01
The purpose of lubrication is to separate two surfaces sliding past each other with a film of some material which can be sheared without causing any damage to the surfaces. Reynolds equation is a basic equation for fluid lubrication which is applied in the bearing problem. This equation can be derived from Navier-Stokes equation and continuity equation. In this paper Reynolds equation is solved using analytical approximation by making simplification to obtain pressure distribution.
Ultrafast approximation for phylogenetic bootstrap.
Minh, Bui Quang; Nguyen, Minh Anh Thi; von Haeseler, Arndt
2013-05-01
Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and the Shimodaira-Hasegawa-like approximate likelihood ratio test have been introduced to speed up the bootstrap. Here, we suggest an ultrafast bootstrap approximation approach (UFBoot) to compute the support of phylogenetic groups in maximum likelihood (ML) based trees. To achieve this, we combine the resampling estimated log-likelihood method with a simple but effective collection scheme of candidate trees. We also propose a stopping rule that assesses the convergence of branch support values to automatically determine when to stop collecting candidate trees. UFBoot achieves a median speed up of 3.1 (range: 0.66-33.3) to 10.2 (range: 1.32-41.4) compared with RAxML RBS for real DNA and amino acid alignments, respectively. Moreover, our extensive simulations show that UFBoot is robust against moderate model violations and the support values obtained appear to be relatively unbiased compared with the conservative standard bootstrap. This provides a more direct interpretation of the bootstrap support. We offer an efficient and easy-to-use software (available at http://www.cibiv.at/software/iqtree) to perform the UFBoot analysis with ML tree inference.
Approximate Counting of Graphical Realizations.
Erdős, Péter L; Kiss, Sándor Z; Miklós, István; Soukup, Lajos
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations.
Approximate Counting of Graphical Realizations
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994
Computer Experiments for Function Approximations
Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C
2007-10-15
This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.
Approximate reasoning using terminological models
NASA Technical Reports Server (NTRS)
Yen, John; Vaidya, Nitin
1992-01-01
Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved.
NASA Technical Reports Server (NTRS)
Strauss, Karl F.; Sheldon, Douglas J.
2011-01-01
Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic
Low rank approximation in G0W0 calculations
Shao, MeiYue; Lin, Lin; Yang, Chao; ...
2016-06-04
The single particle energies obtained in a Kohn-Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in tr ansport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green’s function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G0W0 approximation is a widely used technique in whichmore » the self energy is expressed as the convolution of a noninteracting Green’s function (G0) and a screened Coulomb interaction (W0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W 0 at multiple frequencies. In this paper, we discuss how the cost of G0W0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W 0 . In particular, we examine the effect of such a low rank approximation on the accuracy of the G0W0 approximation. We also discuss how the numerical convolution of G0 and W0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.« less
Neighbourhood approximation using randomized forests.
Konukoglu, Ender; Glocker, Ben; Zikic, Darko; Criminisi, Antonio
2013-10-01
Leveraging available annotated data is an essential component of many modern methods for medical image analysis. In particular, approaches making use of the "neighbourhood" structure between images for this purpose have shown significant potential. Such techniques achieve high accuracy in analysing an image by propagating information from its immediate "neighbours" within an annotated database. Despite their success in certain applications, wide use of these methods is limited due to the challenging task of determining the neighbours for an out-of-sample image. This task is either computationally expensive due to large database sizes and costly distance evaluations, or infeasible due to distance definitions over semantic information, such as ground truth annotations, which is not available for out-of-sample images. This article introduces Neighbourhood Approximation Forests (NAFs), a supervised learning algorithm providing a general and efficient approach for the task of approximate nearest neighbour retrieval for arbitrary distances. Starting from an image training database and a user-defined distance between images, the algorithm learns to use appearance-based features to cluster images approximating the neighbourhood structured induced by the distance. NAF is able to efficiently infer nearest neighbours of an out-of-sample image, even when the original distance is based on semantic information. We perform experimental evaluation in two different scenarios: (i) age prediction from brain MRI and (ii) patch-based segmentation of unregistered, arbitrary field of view CT images. The results demonstrate the performance, computational benefits, and potential of NAF for different image analysis applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Topics in Multivariate Approximation Theory.
1982-05-01
of the Bramble -Hilbert lemma (see Bramble & Hhert (13ŕ). Kergin’s scheme raises some questions. In .ontrast £.t its univar- iate antecedent, it...J. R. Rice (19791# An adaptive algorithm for multivariate approximation giving optimal convergence rates, J.Approx. Theory 25, 337-359. J. H. Bramble ...J.Numer.Anal. 7, 112-124. J. H. Bramble & S. R. Hilbert (19711, BoUnds for a class of linear functionals with applications to Hermite interpolation
Approximate transferability in conjugated polyalkenes
NASA Astrophysics Data System (ADS)
Eskandari, Keiamars; Mandado, Marcos; Mosquera, Ricardo A.
2007-03-01
QTAIM computed atomic and bond properties, as well as delocalization indices (obtained from electron densities computed at HF, MP2 and B3LYP levels) of several linear and branched conjugated polyalkenes and O- and N-containing conjugated polyenes have been employed to assess approximate transferable CH groups. The values of these properties indicate the effects of the functional group extend to four CH groups, whereas those of the terminal carbon affect up to three carbons. Ternary carbons also modify significantly the properties of atoms in α, β and γ.
Improved non-approximability results
Bellare, M.; Sudan, M.
1994-12-31
We indicate strong non-approximability factors for central problems: N{sup 1/4} for Max Clique; N{sup 1/10} for Chromatic Number; and 66/65 for Max 3SAT. Underlying the Max Clique result is a proof system in which the verifier examines only three {open_quotes}free bits{close_quotes} to attain an error of 1/2. Underlying the Chromatic Number result is a reduction from Max Clique which is more efficient than previous ones.
Approximation for Bayesian Ability Estimation.
1987-02-18
posterior pdfs of ande are given by p(-[Y) p(F) F P((y lei’ j)P )d. SiiJ i (4) a r~d p(e Iy) - p(t0) 1 J i P(Yij ei, (5) As shown in Tsutakawa and Lin...inverse A Hessian of the log of (27) with respect to , evaulatedat a Then, under regularity conditions, the marginal posterior pdf of O is...two-way contingency tables. Journal of Educational Statistics, 11, 33-56. Lindley, D.V. (1980). Approximate Bayesian methods. Trabajos Estadistica , 31
Fermion tunneling beyond semiclassical approximation
Majhi, Bibhas Ranjan
2009-02-15
Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys. 06 (2008) 095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.
Generalized Gradient Approximation Made Simple
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-10-01
Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}
Earthquake deformation cycle in the Andean Back Arc, western Argentina
NASA Technical Reports Server (NTRS)
Reilinger, R.; Kadinsky-Cade, K.
1985-01-01
It is pointed out that the 1977 Caucete earthquake was an east-west compressive event which occurred at a depth of about 17 km in the Andean back arc approximately 450 km east of the Chile trench. The present study is primarily concerned with the mechanics of fault behavior prior to and after the 1977 earthquake, as evidenced by preseismic and postseismic vertical deformation. Simple fault models for each phase of deformation are presented. The models of preseismic slip, coseismic slip, and postseismic slip consist of uniform dislocations in an elastic half-space following the method of Chinnery (1961). The basically elastic models presented demonstrate that deformations in the vicinity of the 1977 Caucete, Argentina, earthquake are consistent with activity on some portion of the coseismic fault. This is evidence that these deformations are directly related to the processes of strain accumulation and release associated with the event.
Metastable Supersymmetry Breaking and Multitrace Deformations of SQCD
Essig, Rouven; Fortin, Jean-Francois; Sinha, Kuver; Torroba, Gonzalo; Strassler, Matthew J.; /Rutgers U., Piscataway
2009-02-23
Metastable vacua in supersymmetric QCD in the presence of single and multitrace deformations of the superpotential are explored, with the aim of obtaining an acceptable phenomenology. The metastable vacua appear at one loop, have a broken R-symmetry, and a magnetic gauge group that is completely Higgsed. With only a single trace deformation, the adjoint fermions from the meson superfield are approximately massless at one loop, even though they are massive at tree level and R-symmetry is broken. Consequently, if charged under the standard model, they are unacceptably light. A multitrace quadratic deformation generates fermion masses proportional to the deformation parameter. Phenomenologically viable models of direct gauge mediation can then be obtained, and some of their features are discussed.
Deformation Measurement Using SENTINEL-1A/B Imagery
NASA Astrophysics Data System (ADS)
Crosetto, M.; Monserrat, O.; Devanthéry, N.; Cuevas-González, M.; Barra, A.; Crippa, B.
2017-09-01
Land deformation monitoring based on C-band Synthetic Aperture Radar Sentinel-1A/B imagery is the main focus of this paper. This type of data is exploited using a Persistent Scatterer Interferometry technique. The paper describes a deformation monitoring strategy, which is related to a specific monitoring scenario: a relatively small deformation area of interest surrounded by a stable area. In the case study considered in this work, the scenario corresponds to an area of potential subsidence induced by underground water pumping. In this specific case, the deformation area of interest has a radius of approximately 1 km. The proposed monitoring strategy takes advantage of the specific scenario at hand, and, in particular, of the availability of stable areas close to the area that potentially is affected by deformation. In this paper we briefly describe the proposed data analysis strategy. The key component of the strategy, i.e. the estimation of the atmospheric component, is illustrated in detail. Some examples of the two main products of the procedure, i.e. the deformation velocity map and the deformation time series, are discussed.
Deformation mechanics of deep surface flaw cracks
NASA Technical Reports Server (NTRS)
Francis, P. H.; Nagy, A.; Beissner, R. E.
1972-01-01
A combined analytical and experimental program was conducted to determine the deformation characteristics of deep surface cracks in Mode I loading. An approximate plane finite element analysis was performed to make a parameter study on the influence of crack depth, crack geometry, and stress level on plastic zones, crack opening displacement, and back surface dimpling in Fe-3Si steel and 2219-T87 aluminum. Surface replication and profiling techniques were used to examine back surface dimple configurations in 2219-T87 aluminum. Interferometry and holography were used to evaluate the potential of various optical techniques to detect small surface dimples on large surface areas.
NASA Technical Reports Server (NTRS)
Stenholm, Stig
1993-01-01
A single mode cavity is deformed smoothly to change its electromagnetic eigenfrequency. The system is modeled as a simple harmonic oscillator with a varying period. The Wigner function of the problem is obtained exactly by starting with a squeezed initial state. The result is evaluated for a linear change of the cavity length. The approach to the adiabatic limit is investigated. The maximum squeezing is found to occur for smooth change lasting only a fraction of the oscillational period. However, only a factor of two improvement over the adiabatic result proves to be possible. The sudden limit cannot be investigated meaningfully within the model.
Advanced deformation process modeling
Kocks, U.F.; Embury, J.D.; Beaudoin, A.J.; Dawson, P.R.; MacEwen, S.R.; Mecking, H.J.
1997-08-01
Progress was made in achieving a comprehensive and coherent description of material behavior in deformation processing. The materials included were metals, alloys, intermetallic compounds, arbitrary lattice structure, and metal matrix composites. Aspects of behavior modeled included kinetics of flow and strain hardening, as well as recrystallization and the various anisotropies of strength and compliance. Highlights include a new prediction of the limiting strength of materials at high temperature, a new understanding of the generation of new grain boundaries during forming operations, and a quantitatively verified computer simulation of texture development and the resulting behavioral anisotropies.
NASA Astrophysics Data System (ADS)
Milton, Graeme Walter
2013-07-01
A complete characterization is given of the possible macroscopic deformations of periodic non-linear affine unimode metamaterials constructed from rigid bars and pivots. The materials are affine in the sense that their macroscopic deformations can only be affine deformations: on a local level the deformation may vary from cell to cell. Unimode means that macroscopically the material can only deform along a one dimensional trajectory in the six dimensional space of invariants describing the deformation (excluding translations and rotations). We show by explicit construction that any continuous trajectory is realizable to an arbitrarily high degree of approximation provided at all points along the trajectory the geometry does not collapse to a lower dimensional one. In particular, we present two and three dimensional dilational materials having an arbitrarily large flexibility window. These are perfect auxetic materials for which a dilation is the only easy mode of deformation. They are free to dilate to arbitrarily large strain with zero bulk modulus.
Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential
Bonatsos, Dennis; Georgoudis, P. E.; Lenis, D.; Minkov, N.; Quesne, C.
2011-04-15
Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.
Laguerre approximation of random foams
NASA Astrophysics Data System (ADS)
Liebscher, André
2015-09-01
Stochastic models for the microstructure of foams are valuable tools to study the relations between microstructure characteristics and macroscopic properties. Owing to the physical laws behind the formation of foams, Laguerre tessellations have turned out to be suitable models for foams. Laguerre tessellations are weighted generalizations of Voronoi tessellations, where polyhedral cells are formed through the interaction of weighted generator points. While both share the same topology, the cell curvature of foams allows only an approximation by Laguerre tessellations. This makes the model fitting a challenging task, especially when the preservation of the local topology is required. In this work, we propose an inversion-based approach to fit a Laguerre tessellation model to a foam. The idea is to find a set of generator points whose tessellation best fits the foam's cell system. For this purpose, we transform the model fitting into a minimization problem that can be solved by gradient descent-based optimization. The proposed algorithm restores the generators of a tessellation if it is known to be Laguerre. If, as in the case of foams, no exact solution is possible, an approximative solution is obtained that maintains the local topology.
Wavelet Approximation in Data Assimilation
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Atlas, Robert (Technical Monitor)
2002-01-01
Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.
Rational approximations to fluid properties
Kincaid, J.M.
1990-05-01
The purpose of this report is to summarize some results that were presented at the Spring AIChE meeting in Orlando, Florida (20 March 1990). We report on recent attempts to develop a systematic method, based on the technique of rational approximation, for creating mathematical models of real-fluid equations of state and related properties. Equation-of-state models for real fluids are usually created by selecting a function {tilde p} (T,{rho}) that contains a set of parameters {l brace}{gamma}{sub i}{r brace}; the {l brace}{gamma}{sub i}{r brace} is chosen such that {tilde p}(T,{rho}) provides a good fit to the experimental data. (Here p is the pressure, T the temperature and {rho} is the density). In most cases a nonlinear least-squares numerical method is used to determine {l brace}{gamma}{sub i}{r brace}. There are several drawbacks to this method: one has essentially to guess what {tilde p}(T,{rho}) should be; the critical region is seldom fit very well and nonlinear numerical methods are time consuming and sometimes not very stable. The rational approximation approach we describe may eliminate all of these drawbacks. In particular it lets the data choose the function {tilde p}(T,{rho}) and its numerical implementation involves only linear algorithms. 27 refs., 5 figs.
Adiabatic approximation via hodograph translation and zero-curvature equations
NASA Astrophysics Data System (ADS)
Karasev, M. V.
2014-04-01
For quantum as well classical slow-fast systems, we develop a general method which allows one to compute the adiabatic invariant (approximate integral of motion), its symmetries, the adiabatic guiding center coordinates and the effective scalar Hamiltonian in all orders of a small parameter. The scheme does not exploit eigenvectors or diagonalization, but is based on the ideas of isospectral deformation and zero-curvature equations, where the role of "time" is played by the adiabatic (quantization) parameter. The algorithm includes the construction of the zero-curvature adiabatic connection and its splitting generated by averaging up to an arbitrary order in the small parameter.
The Zeldovich & Adhesion approximations and applications to the local universe
NASA Astrophysics Data System (ADS)
Hidding, Johan; van de Weygaert, Rien; Shandarin, Sergei
2016-10-01
The Zeldovich approximation (ZA) predicts the formation of a web of singularities. While these singularities may only exist in the most formal interpretation of the ZA, they provide a powerful tool for the analysis of initial conditions. We present a novel method to find the skeleton of the resulting cosmic web based on singularities in the primordial deformation tensor and its higher order derivatives. We show that the A 3 lines predict the formation of filaments in a two-dimensional model. We continue with applications of the adhesion model to visualise structures in the local (z < 0.03) universe.
E2 transitions in deformed nuclei and the IBA
Warner, D.D.; Casten, R.F.
1981-01-01
The mechanism which determines the relative E2 strengths in the Interacting Boson Approximation is studied, and the structure of the E2 operator necessary to reproduce the empirical B(E2) values in deformed even-even nuclei in the rate earth region is investigated. (WHK)
Gamow-Teller strength and lepton captures rates on 66‑71Ni in stellar matter
NASA Astrophysics Data System (ADS)
Nabi, Jameel-Un; Majid, Muhammad
Charge-changing transitions play a significant role in stellar weak-decay processes. The fate of the massive stars is decided by these weak-decay rates including lepton (positron and electron) captures rates, which play a consequential role in the dynamics of core collapse. As per previous simulation results, weak interaction rates on nickel (Ni) isotopes have significant influence on the stellar core vis-à-vis controlling the lepton content of stellar matter throughout the silicon shell burning phases of high mass stars up to the presupernova stages. In this paper, we perform a microscopic calculation of Gamow-Teller (GT) charge-changing transitions, in the β-decay and electron capture (EC) directions, for neutron-rich Ni isotopes (66‑71Ni). We further compute the associated weak-decay rates for these selected Ni isotopes in stellar environment. The computations are accomplished by employing the deformed proton-neutron quasiparticle random phase approximation (pn-QRPA) model. A recent study showed that the deformed pn-QRPA theory is well suited for the estimation of GT transitions. The astral weak-decay rates are determined over densities in the range of 10-1011g/cm3 and temperatures in the range of 0.01 × 109-30 × 109K. The calculated lepton capture rates are compared with the previous calculation of Pruet and Fuller (PF). The overall comparison demonstrates that, at low stellar densities and high temperatures, our EC rates are bigger by as much as two orders of magnitude. Our results show that, at higher temperatures, the lepton capture rates are the dominant mode for the stellar weak rates and the corresponding lepton emission rates may be neglected.
Allowed and unique first-forbidden stellar electron emission rates of neutron-rich copper isotopes
NASA Astrophysics Data System (ADS)
Majid, Muhammad; Nabi, Jameel-Un; Daraz, Gul
2017-06-01
The allowed charge-changing transitions are the most common weak interaction processes of spin-isospin form that play a crucial role in several nuclear/astrophysical processes. The first-forbidden (FF) transition becomes important, in the circumstances where allowed Gamow-Teller (GT) transitions are unfavored, specifically for neutron-rich nuclei due to phase space considerations. In this paper deformed proton-neutron quasi-particle random phase approximation (pn-QRPA) model is applied, for the first time, for the estimation of allowed GT and unique first-forbidden (U1F) transitions (|Δ J| = 2) of neutron rich copper isotopes in mass range 72 ≤ A ≤ 82 under stellar conditions. We compared our computed terrestrial β-decay half-life values with previous calculations and experimental results. It was concluded that the pn-QRPA calculation is in good accordance with measured data. Our study suggests that the addition of rank (0 and 1) operators in FF transitions can further improve the comparison which remain unattended at this stage. The deformed pn-QRPA model was employed for the estimation of GT and U1F stellar electron emission (β--decay) rates over wide range of stellar temperature (0.01 GK-30 GK) and density (10-10^{11} g/cm3) domains for astrophysical applications. Our study shows that, in high density and low temperature regions, the contribution of U1F rates to total electron emission rates of neutron-rich copper nuclei is negligible.
Sang-Mook Lee; A. Lynn. Abbott; Neil A. Clark; Philip A. Araman
2003-01-01
Splines can be used to approximate noisy data with a few control points. This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of...
Civitarese, Osvaldo; Suhonen, Jouni
2013-12-30
In this work we report on general properties of the nuclear matrix elements involved in the neutrinoless double β{sup −} decays (0νβ{sup −}β{sup −} decays) of several nuclei. A summary of the values of the NMEs calculated along the years by the Jyväskylä-La Plata collaboration is presented. These NMEs, calculated in the framework of the quasiparticle random phase approximation (QRPA), are compared with those of the other available calculations, like the Shell Model (ISM) and the interacting boson model (IBA-2)
Inelastic neutrino scattering off stable even-even Mo isotopes at low and intermediate energies
NASA Astrophysics Data System (ADS)
Balasi, K. G.; Kosmas, T. S.; Divari, P. C.
2010-04-01
Inelastic neutrino scattering cross sections for the even-even Mo isotopes (contents of the MOON detector at Japan), at low and intermediate electron neutrino energies ( ɛi≤100 MeV), are calculated. MOON is a next-generation double beta and neutrino-less double-beta-decay experiment which is also a promising facility for low-energy neutrino detection. The nuclear wave functions required in this work have been constructed in the context of the quasi-particle random phase approximation (QRPA) and the results presented refer to 92Mo, 94Mo, 96Mo, 98Mo and 100Mo isotopes.
Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model
Kawano, Toshihiko; Moller, Peter; Wilson, William B
2008-01-01
Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.
NASA Astrophysics Data System (ADS)
Birch, M.; Singh, B.; Abriola, D.; Dillmann, I.; Johnson, T. D.; McCutchan, E. A.; Sonzogni, A. A.
2014-06-01
A comprehensive compilation and evaluation of beta-delayed neutron (β- n) emission probabilities, Pn, and associated half-lives for A ≤ 72 nuclei has been performed for the first time. The recommended values have been used to analyze the systematics of β- n emission in this region. The ratio Pn /T1/2 is better correlated with the Q-value of the β- n decay mode than the previously proposed Kratz-Herrmann Formula (KHF). The recommended values are also compared with theoretical quasi-particle random phase approximation (QRPA) calculations.
On the neutrinoless double β{sup +}/EC decays
Suhonen, Jouni
2013-12-30
The neutrinoless double positron-emission/electron-capture (0νβ{sup +}/EC) decays are studied for the magnitudes of the involved nuclear matrix elements (NMEs). Decays to the ground state, 0{sub gs}{sup +}, and excited 0{sup +} states are discussed. The participant many-body wave functions are evaluated in the framework of the quasiparticle random-phase approximation (QRPA). Effective, G-matrix-derived nuclear forces are used in realistic single-particle model spaces. The channels β{sup +}β{sup +}, β{sup +}EC, and the resonant neutrinoless double electron capture (R0νECEC) are discussed.
The 2νβ-β- decay rates within Pyatov's restoration method
NASA Astrophysics Data System (ADS)
Ünlü, Serdar; Çakmak, Neçla; Selam, Cevad
2017-01-01
We try to give a detailed analysis of the 2 νβ-β- decay rates to the final ground states for decay emitters: 70Zn, 80Se, 86Kr, 94Zr, 104Ru, 110Pd, 114Cd and 124Sn. The nucleon-nucleon residual interaction potential is defined according to Pyatov's restoration method. The nuclear matrix element for 2 νβ-β- decay is obtained by including the virtual contributions coming from the isobar analogue excitations within the framework of proton-neutron quasi-particle random phase approximation (pnQRPA). The calculated decay rates are compared with mean field, schematic model and other calculations.
Cal Latin-Small-Letter-Dotless-I k, A. E.; Gerceklioglu, M.; Selam, C.
2013-05-15
Within the framework of quasi-particle random phase approximation, the isospin breaking correction of superallowed 0{sup +} {yields} 0{sup +} beta decay and unitarity of Cabibbo-Kobayashi-Maskawa mixing matrix have been investigated. The broken isotopic symmetry of nuclear part of Hamiltonian has been restored by Pyatov's method. The isospin symmetry breaking correction with pairing correlations has been compared with the previous results without pairing. The effect of pairing interactions has been examined for nine superallowed Fermi beta decays; their parent nuclei are {sup 26}Al, {sup 34}Cl, {sup 38}K, {sup 42}Sc, {sup 46}V, {sup 50}Mn, {sup 54}Co, {sup 62}Ga, {sup 74}Rb.
On the interplay between allowed Gamow-Teller and Isovector Spin Monopole (IVSM) excitations
Bes, D. R.; Civitarese, O.; Suhonen, J.
2011-12-16
The excitation of Gamow-Teller (GT) and Isovector Spin Monopole (IVSM) modes in {sup 116}In by (p,n) and (n,p)) charge-exchange reactions is studied within the framework of the Quasiparticle Random-phase Approximation. It is shown that the admixture of the IVSM and Gamow-Teller (GT) excitations is negligible, and that the contribution to the strength above 20 MeV excitation energy, in {sup 116}In, is, most likely, due to the IVSM ({sigma}r{sup 2}{tau}{sup {+-}}) mode.
Igashov, S. Yu.; Rodin, V. A.; Urin, M. H.
2013-04-15
The Gamow-Teller strength functions for a number of antimony isotopes were calculated within a semimicroscopic approach based on the continuum version of the charge-exchange quasiparticle random-phase approximation and on phenomenologically taking into account the fragmentation effect. The structural effect of splitting of the main maximum of the Gamow-Teller resonance in these isotopes was confirmed. Experimental data on the excitation of this resonance in a direct and a resonance reaction for the {sup 118}Sn parent nucleus were analyzed with allowance for this effect.
Static and dynamic aspect of covariant density functional theory in proton rich nuclei
Ring, P.; Lalazissis, G. A.; Paar, N.; Vretenar, D.
2007-11-30
Proton rich nuclei are investigated in the framework of Covariant Density Functional Theory (CDFT). The Relativistic Hartree Bogoliubov (RHB) model is used to study the proton drip line in the region of heavy and superheavy nuclei. The dynamical behavior of nuclei with a large proton excess is studied within the Relativistic Quasiparticle Random Phase Approximation (RQRPA). Low lying El-strength is observed and it is shown that it corresponds to an oscillation of the proton skin against the isospin saturated neutron-proton core. This mode is in full analogy to the neutron pygmy resonances found in many nuclei with neutron excess.
Contributions of unique first-forbidden transitions to two-neutrino double-β-decay half-lives
NASA Astrophysics Data System (ADS)
Civitarese, O.; Suhonen, J.
1996-02-01
The two-neutrino double-β-decay transition of 76Ge to the ground state of 76Se is calculated using a realistic proton-neutron force and including unique first-forbidden single-β-decay transitions to virtual 2 - intermediate states. The corresponding nuclear matrix elements are computed by using the proton-neutron quasiparticle random-phase approximation (pn-QRPA). From the results of the present study it is concluded that the inclusion of virtual unique first-forbidden transitions, as possible "new" steps contributing to the half-life of the two-neutrino double-β-decay mode, can be disregarded.
Particulate fracture during deformation
NASA Astrophysics Data System (ADS)
Llorca, J.; Martin, A.; Ruiz, J.; Elices, M.
1993-07-01
The mechanisms of deformation and failure in a 2618 Al alloy reinforced with 15 vol pct SiC particilates were studied and compared with those of the unreinforced alloy, processed by spray forming as well. Tensile and fracture toughness tests were carried out on naturally aged and peak-aged specimens. The broken specimens were sliced through the middle, and the geometric features of fractured and intact particulates were measured. The experimental observations led to the conclusion that failure took place by the progressive fracture of the particulates until a critical volume fraction was reached. An influence of the particulate size and aspect ratio on the probability of fracture was found, the large and elongated particulates being more prone to fail, and the fracture stress in the particulates seemed to obey the Weibull statistics. The dif- ferences in ductility found between the naturally aged and peak-aged composites were explained in terms of the number of broken particulates as a function of the applied strain. Numerical simulations of the deformation process indicated that the stresses acting on the particulates are higher in the peak-aged material, precipitating the specimen failure. Moreover, the compressive residual stresses induced on the SiC during water quenching delayed the onset of particulate breakage in the naturally aged material.
Neutron halo in deformed nuclei
Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang
2010-07-15
Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus {sup 44}Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.
Analytical approximations for spiral waves
Löber, Jakob Engel, Harald
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +} with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.
Interplay of approximate planning strategies.
Huys, Quentin J M; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J; Dayan, Peter; Roiser, Jonathan P
2015-03-10
Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or "options."
Indexing the approximate number system.
Inglis, Matthew; Gilmore, Camilla
2014-01-01
Much recent research attention has focused on understanding individual differences in the approximate number system, a cognitive system believed to underlie human mathematical competence. To date researchers have used four main indices of ANS acuity, and have typically assumed that they measure similar properties. Here we report a study which questions this assumption. We demonstrate that the numerical ratio effect has poor test-retest reliability and that it does not relate to either Weber fractions or accuracy on nonsymbolic comparison tasks. Furthermore, we show that Weber fractions follow a strongly skewed distribution and that they have lower test-retest reliability than a simple accuracy measure. We conclude by arguing that in the future researchers interested in indexing individual differences in ANS acuity should use accuracy figures, not Weber fractions or numerical ratio effects.
Approximating metal-insulator transitions
NASA Astrophysics Data System (ADS)
Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej
2015-12-01
We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.
Analytical approximations for spiral waves.
Löber, Jakob; Engel, Harald
2013-12-01
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R(0). For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R(+)) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R(+) with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.
IONIS: Approximate atomic photoionization intensities
NASA Astrophysics Data System (ADS)
Heinäsmäki, Sami
2012-02-01
A program to compute relative atomic photoionization cross sections is presented. The code applies the output of the multiconfiguration Dirac-Fock method for atoms in the single active electron scheme, by computing the overlap of the bound electron states in the initial and final states. The contribution from the single-particle ionization matrix elements is assumed to be the same for each final state. This method gives rather accurate relative ionization probabilities provided the single-electron ionization matrix elements do not depend strongly on energy in the region considered. The method is especially suited for open shell atoms where electronic correlation in the ionic states is large. Program summaryProgram title: IONIS Catalogue identifier: AEKK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1149 No. of bytes in distributed program, including test data, etc.: 12 877 Distribution format: tar.gz Programming language: Fortran 95 Computer: Workstations Operating system: GNU/Linux, Unix Classification: 2.2, 2.5 Nature of problem: Photoionization intensities for atoms. Solution method: The code applies the output of the multiconfiguration Dirac-Fock codes Grasp92 [1] or Grasp2K [2], to compute approximate photoionization intensities. The intensity is computed within the one-electron transition approximation and by assuming that the sum of the single-particle ionization probabilities is the same for all final ionic states. Restrictions: The program gives nonzero intensities for those transitions where only one electron is removed from the initial configuration(s). Shake-type many-electron transitions are not computed. The ionized shell must be closed in the initial state. Running time: Few seconds for a
Approximate analytic solutions to the NPDD: Short exposure approximations
NASA Astrophysics Data System (ADS)
Close, Ciara E.; Sheridan, John T.
2014-04-01
There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.
Algorithmic deformation of matrix factorisations
NASA Astrophysics Data System (ADS)
Carqueville, Nils; Dowdy, Laura; Recknagel, Andreas
2012-04-01
Branes and defects in topological Landau-Ginzburg models are described by matrix factorisations. We revisit the problem of deforming them and discuss various deformation methods as well as their relations. We have implemented these algorithms and apply them to several examples. Apart from explicit results in concrete cases, this leads to a novel way to generate new matrix factorisations via nilpotent substitutions, and to criteria whether boundary obstructions can be lifted by bulk deformations.
Geodynamics of Cenozoic deformation in central Asia
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1981-01-01
This paper presents a study of the tectonic stresses in central Asia based on an interpretation of satellite gravity data for mantle convection and supplemented with published fault plane solutions of earthquakes. Northwest-southeast to north-south compressional stresses exist in the Tien Shan region where reverse faulting dominates. The maximum compressive stress is oriented approximately northeast-southwest in the regions of Altai and southern Mongolia. Farther north, compressive stress gives way to tensional stress which causes normal faulting in the Baikal rift system. It is also shown that all of the tectonic stresses in the Tibetan plateau and Himalayan frontal thrust are related to the convection-generated stress patterns inferred from satellite gravity data. These results suggest that the complex crustal deformation in central Asia can be convincingly described by the deformation of the lithosphere on top of the up- and down-welling asthenospheric material beneath it. This observational fact may not only upset the simple view of the fluid crustal model of the Tibetan plateau, but also provide some useful constraints for the future development of deformation theory of continental crust.
Vertebral Column Resection for Rigid Spinal Deformity
Laratta, Joseph L.; Petridis, Petros; Shillingford, Jamal N.; Lehman, Ronald A.; Lenke, Lawrence G.
2017-01-01
Study Design: Broad narrative review. Objective: To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. Methods: A literature review of posterior vertebral column resection was performed. The authors’ surgical technique is outlined in detail. The authors’ experience and the literature regarding vertebral column resection are discussed at length. Results: Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50–70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. Conclusion: The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands. PMID:28660112
Geodynamics of Cenozoic deformation in central Asia
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1981-01-01
This paper presents a study of the tectonic stresses in central Asia based on an interpretation of satellite gravity data for mantle convection and supplemented with published fault plane solutions of earthquakes. Northwest-southeast to north-south compressional stresses exist in the Tien Shan region where reverse faulting dominates. The maximum compressive stress is oriented approximately northeast-southwest in the regions of Altai and southern Mongolia. Farther north, compressive stress gives way to tensional stress which causes normal faulting in the Baikal rift system. It is also shown that all of the tectonic stresses in the Tibetan plateau and Himalayan frontal thrust are related to the convection-generated stress patterns inferred from satellite gravity data. These results suggest that the complex crustal deformation in central Asia can be convincingly described by the deformation of the lithosphere on top of the up- and down-welling asthenospheric material beneath it. This observational fact may not only upset the simple view of the fluid crustal model of the Tibetan plateau, but also provide some useful constraints for the future development of deformation theory of continental crust.
Deformation behaviour of a large underground cavern
NASA Astrophysics Data System (ADS)
Mizukoshi, Tatsuo; Mimaki, Youichi
1985-10-01
The Imaichi underground power station, with a cross sectional area of 1420 m2, which is now under construction by Tokyo Electric Power Co., Inc., is one of the largest underground caverns in the world. Due to the considerable depth of the over-burden of 400 m, the horseshoe-shaped section was adopted for the first time in Japan to minimize excesive stress concentration on the surrounding bedrock and keep loosened zones to a minimum. The bedrock consists of sandstone, slate, siliceous sandstone and breccia. The rock is generally hard and compact, with few fractured zones which may have an adverse influence on the excavation of the cavern. The supporting system of the cavern consists of prestressed rock anchors, rock bolts and shotcrete. Approximately 800 instruments, mainly multiple stage extensometers, were used to monitor behaviour of the surrounding rock during excavation of the cavern. With the exception of some cracks which occurred in a portion of the shotcrete when about half the height of the cavern had been excavated, excavation work was completed without any major trouble. In spite of the symmetrical shape of the cavern, the deformation behaviour of the surrounding rock during excavation was remarkedly asymmetric. The reason for this was concluded to be the peculiar deformation behaviour exhibited by Breccia during stress relief, as shown by in-situ rock tests, etc., and analysis of deformation data after completion of the excavation work.
Vertebral Column Resection for Rigid Spinal Deformity.
Saifi, Comron; Laratta, Joseph L; Petridis, Petros; Shillingford, Jamal N; Lehman, Ronald A; Lenke, Lawrence G
2017-05-01
Broad narrative review. To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. A literature review of posterior vertebral column resection was performed. The authors' surgical technique is outlined in detail. The authors' experience and the literature regarding vertebral column resection are discussed at length. Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50-70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands.
Angular Limb Deformities: Growth Retardation.
McCarrel, Taralyn M
2017-08-01
Angular limb deformities are common in foals; however, the importance of the deformity and if treatment is required depend on the degree of deformity relative to normal conformation for stage of growth, the breed and discipline expectations, age, and response to conservative therapies. This article addresses the importance of the foal conformation examination to determine which foals need surgical intervention to correct an angular deformity and when. Techniques for surgical growth retardation include the transphyseal staple, screw and wire transphyseal bridge, and transphyseal screw. Appropriate timing for intervention for each location and complications associated with each procedure are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Global feedforward and glocal feedback control of large deformable mirrors
NASA Astrophysics Data System (ADS)
Ruppel, Thomas; Sawodny, Oliver
2011-09-01
With an increasing demand for high spatial resolution and fast temporal response of AO components for ELTs, the need for actively controlled, electronically damped deformable mirrors is evident. With typically more than 1000 actuators and collocated sensors, the evolving multi-input multi-output control task for shaping the deformable mirror requires sophisticated control concepts. Although global position control of the mirror would be the most promising solution, the computational complexity for high order spatial control of the deformable element typically exceeds available computing power. Due to this reason, existing deformable membrane mirrors for large telescopes incorporate local feedback instead of global feedback control and neglect some of the global dynamics of the deformable mirror. As a side effect, coupling of the separately controlled actuators through the deformable membrane can lead to instability of the individually stable loops and draws the need for carefully designing the control parameters of the local feedback loops. In this presentation, the computational demands for global position control of deformable mirrors are revisited and a less demanding model-based modal control concept for large deformable membrane mirrors with distributed force actuators and collocated position sensors is presented. Both global feedforward and glocal feedback control is employed in a two-degree-of-freedom control structure allowing for separately designing tracking performance and disturbance rejection. In order to implement state feedback control, non-measureable state information is reconstructed by using model-based distributed state observers. By taking into account the circular symmetry of the deformable mirror geometry, the computational complexity of the algorithms is discussed and model reduction techniques with quasi-static state approximation are presented. As an example, the geometric layout of required sensor / actuator wiring and computational
Approximate Stress Analysis of Multistringer Beams with Shear Deformation of the Flanges
NASA Technical Reports Server (NTRS)
Kuhn, Paul
1938-01-01
The problem of the skin-stringer combinations used as axially loaded panels or as covers for box beams is considered from the point of view of the practical stress analyst. By a simple substitution the problem is reduced to the problem of the single-stringer structure, which has been treated in NACA Report no. 608. The method of making this substitution is essentially empirical; in order to justify it, comparisons are shown between calculations and strain-gage tests of three beams tested by the author and of one compression panel and three beams tested and reported elsewhere.
Dynamic soft tissue deformation estimation based on energy analysis
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Yao, Bin
2016-10-01
The needle placement accuracy of millimeters is required in many needle-based surgeries. The tissue deformation, especially that occurring on the surface of organ tissue, affects the needle-targeting accuracy of both manual and robotic needle insertions. It is necessary to understand the mechanism of tissue deformation during needle insertion into soft tissue. In this paper, soft tissue surface deformation is investigated on the basis of continuum mechanics, where a geometry model is presented to quantitatively approximate the volume of tissue deformation. The energy-based method is presented to the dynamic process of needle insertion into soft tissue based on continuum mechanics, and the volume of the cone is exploited to quantitatively approximate the deformation on the surface of soft tissue. The external work is converted into potential, kinetic, dissipated, and strain energies during the dynamic rigid needle-tissue interactive process. The needle insertion experimental setup, consisting of a linear actuator, force sensor, needle, tissue container, and a light, is constructed while an image-based method for measuring the depth and radius of the soft tissue surface deformations is introduced to obtain the experimental data. The relationship between the changed volume of tissue deformation and the insertion parameters is created based on the law of conservation of energy, with the volume of tissue deformation having been obtained using image-based measurements. The experiments are performed on phantom specimens, and an energy-based analytical fitted model is presented to estimate the volume of tissue deformation. The experimental results show that the energy-based analytical fitted model can predict the volume of soft tissue deformation, and the root mean squared errors of the fitting model and experimental data are 0.61 and 0.25 at the velocities 2.50 mm/s and 5.00 mm/s. The estimating parameters of the soft tissue surface deformations are proven to be useful
Bone creep can cause progressive vertebral deformity.
Pollintine, Phillip; Luo, Jin; Offa-Jones, Ben; Dolan, Patricia; Adams, Michael A
2009-09-01
Vertebral deformities in elderly people are conventionally termed "fractures", but their onset is often insidious, suggesting that time-dependent (creep) processes may also be involved. Creep has been studied in small samples of bone, but nothing is known about creep deformity of whole vertebrae, or how it might be influenced by bone mineral density (BMD). We hypothesise that sustained compressive loading can cause progressive and measurable creep deformity in elderly human vertebrae. 27 thoracolumbar "motion segments" (two vertebrae and the intervening disc and ligaments) were dissected from 20 human cadavers aged 42-91 yrs. A constant compressive force of approximately 1.0 kN was applied to each specimen for either 0.5 h or 2 h, while the anterior, middle and posterior heights of each of the 54 vertebral bodies were measured at 1 Hz using a MacReflex 2D optical tracking system. This located 6 reflective markers attached to the lateral cortex of each vertebral body, with resolution better than 10 microm. Experiments were at laboratory temperature, and polythene film was used to minimise water loss. Volumetric BMD was calculated for each vertebral body, using DXA to measure mineral content, and water immersion for volume. In the 0.5 h tests, creep deformation in the anterior, middle and posterior vertebral cortex averaged 4331, 1629 and 614 micro-strains respectively, where 10,000 micro-strains represents 1% loss in height. Anterior creep strains exceeded posterior (P<0.01) so that anterior wedging of the vertebral bodies increased, by an average 0.08 degrees (STD 0.14 degrees ). Similar results were obtained after 2 h, indicating that creep rate slowed considerably with time. Less than 40% of the creep strain was recovered after 2 h. Increases in anterior wedging during the 0.5 h creep test were inversely proportional to BMD, but only in a selected sub-set of 20 specimens with average BMD<0.15 g/cm3 (P=0.042). Creep deformation caused more than 5% height loss in
[Rheumatic forefoot deformities].
Fuhrmann, R
2014-11-01
The frequency and extent of rheumatic forefoot deformities have been greatly reduced since the introduction of disease-modifying antirheumatic drugs (DMARD). The accompanying reduction in arthritic destruction of joints opens up new treatment options whereby priority is given to joint preservation. This is true for the first middle foot ray as well as for the small toe rays. Whereas resection arthroplasty of the metatarsophalangeal joints II-V was previously considered the gold standard treatment, joint-preserving operative procedures (e.g. metatarsal osteotomy and periarticular soft tissue interventions) are now being increasingly more propagated. Resection arthroplasty of the first midfoot ray has major biomechanical disadvantages so that it is not surprising that reconstructive procedures are given priority. In patients with severe arthritic destruction of the first metatarsophalangeal joint, arthrodesis has substantial biomechanical advantages compared to resection arthroplasty. Nevertheless, it has not yet been confirmed that fusion leads to superior clinical results.
NASA Astrophysics Data System (ADS)
Price, C. E.; Shepard, J. R.
1991-04-01
We compute properties of the nucleon in a hybrid chiral model based on the linear σ-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and gA. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations.
Weiss, Leonard
1967-01-01
Cells grown in suspension culture were incubated with EDTA-disodium salt and shown to have more easily deformable surfaces and raised electrophoretic mobility than controls, following this treatment. The reversibility of these observations by the addition of calcium ions, and other parallel experiments, support the conclusion that, in these cells, calcium is bound to anionic sites at the cell periphery, some of which are located at the cellular electrokinetic surface. These cells should, therefore, exhibit demonstrable calcium-sensitive aggregation, if current theories on the role of calcium in the physiological situation are correct. The fact that no calcium-sensitive aggregation was observed suggests that calcium does not form "bridges" between the adjacent anionic sites on different cells, and does not act directly by its effects on the diffuse electrical double-layer in this situation. An alternative hypothesis is advanced for the role played by calcium in cell adhesion and separation processes. PMID:4964313
Multidimensional stochastic approximation Monte Carlo
NASA Astrophysics Data System (ADS)
Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .
Randomized approximate nearest neighbors algorithm
Jones, Peter Wilcox; Osipov, Andrei; Rokhlin, Vladimir
2011-01-01
We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {xj} in , the algorithm attempts to find k nearest neighbors for each of xj, where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k2·(d + log k), with T the number of iterations performed. The memory requirements of the procedure are of the order N·(d + k). A by-product of the scheme is a data structure, permitting a rapid search for the k nearest neighbors among {xj} for an arbitrary point . The cost of each such query is proportional to T·(d·(log d) + log(N/k)·k·(d + log k)), and the memory requirements for the requisite data structure are of the order N·(d + k) + T·(d + N). The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed by a local graph search. We analyze the scheme’s behavior for certain types of distributions of {xj} and illustrate its performance via several numerical examples. PMID:21885738
Interplay of approximate planning strategies
Huys, Quentin J. M.; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J.; Dayan, Peter; Roiser, Jonathan P.
2015-01-01
Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or “options.” PMID:25675480
Femtolensing: Beyond the semiclassical approximation
NASA Technical Reports Server (NTRS)
Ulmer, Andrew; Goodman, Jeremy
1995-01-01
Femtolensoing is a gravitational lensing effect in which the magnification is a function not only of the position and sizes of the source and lens, but also of the wavelength of light. Femtolensing is the only known effect of 10(exp -13) - 10(exp -16) solar mass) dark-matter objects and may possibly be detectable in cosmological gamma-ray burst spectra. We present a new and efficient algorithm for femtolensing calculation in general potentials. The physical optics results presented here differ at low frequencies from the semiclassical approximation, in which the flux is attributed to a finite number of mutually coherent images. At higher frequencies, our results agree well with the semicalssical predictions. Applying our method to a point-mass lens with external shear, we find complex events that have structure at both large and small spectral resolution. In this way, we show that femtolensing may be observable for lenses up to 10(exp -11) solar mass, much larger than previously believed. Additionally, we discuss the possibility of a search femtolensing of white dwarfs in the Large Magellanic Cloud at optical wavelengths.
Review of Approximate Analyses of Sheet Forming Processes
NASA Astrophysics Data System (ADS)
Weiss, Matthias; Rolfe, Bernard; Yang, Chunhui; de Souza, Tim; Hodgson, Peter
2011-08-01
Approximate models are often used for the following purposes: • in on-line control systems of metal forming processes where calculation speed is critical; • to obtain quick, quantitative information on the magnitude of the main variables in the early stages of process design; • to illustrate the role of the major variables in the process; • as an initial check on numerical modelling; and • as a basis for quick calculations on processes in teaching and training packages. The models often share many similarities; for example, an arbitrary geometric assumption of deformation giving a simplified strain distribution, simple material property descriptions—such as an elastic, perfectly plastic law—and mathematical short cuts such as a linear approximation of a polynomial expression. In many cases, the output differs significantly from experiment and performance or efficiency factors are developed by experience to tune the models. In recent years, analytical models have been widely used at Deakin University in the design of experiments and equipment and as a pre-cursor to more detailed numerical analyses. Examples that are reviewed in this paper include deformation of sandwich material having a weak, elastic core, load prediction in deep drawing, bending of strip (particularly of ageing steel where kinking may occur), process analysis of low-pressure hydroforming of tubing, analysis of the rejection rates in stamping, and the determination of constitutive models by an inverse method applied to bending tests.
NASA Astrophysics Data System (ADS)
Limat, Laurent; de Pascalis, Riccardo; Dervaux, Julien; Ionescu, Ioan; Perthame, Benoit
2016-11-01
Wetting on soft compounds is still imperfectly understood, especially when the dry and wetted parts of the substrate have two different values of surface energies (contact angle different than 90 degrees). The problem is made very complex by geometrical non-linearities arising from finite slope of the substrate and finite deformations, that must be absolutely considered, to distinguish at second order between Young law and Neuman equilibrium of surface tensions. We have developed a numerical, finite element, code that allows one to minimize surface and bulk energies, with finite deformations and asymmetry of the surface energies. The results are compared to a linear theory based on Green function theory and Fredholm integrals, and with recent experiments using X-ray visualization. The non-linear numerics reproduce very well the observed profiles, while the linear approach gives helpful analytical approximates.
Multiparameter deformation theory for quantum confined systems
Aleixo, A. N. F.; Balantekin, A. B.
2009-11-15
We introduce a generalized multiparameter deformation theory applicable to all supersymmetric and shape-invariant systems. Taking particular choices for the deformation factors used in the construction of the deformed ladder operators, we show that we can generalize the one-parameter quantum-deformed harmonic oscillator models and build alternative multiparameter deformed models that are also shape invariant like the primary undeformed system.
Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach
NASA Astrophysics Data System (ADS)
Camassa, R.; Falqui, G.; Ortenzi, G.
2017-02-01
The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.
NASA Astrophysics Data System (ADS)
Haghshenasfard, Z.; Naderi, M. H.; Soltanolkotabi, M.
2009-10-01
In this paper, we investigate the spectrum of light scattered from a Bose-Einstein condensate (BEC) in the framework of an f-deformed boson model. We use an f-deformed quantum model in which Gardiner's phonon operators for the BEC are deformed by an operator-valued function, f(\\hat{n}) , of the particle-number operator \\hat{n} . We also consider the collisions between the atoms as a special kind of f-deformation where the collision rate κ is regarded as the corresponding deformation parameter. By applying the small fluctuation approximation, we obtain the spectrum of light scattered from the f-deformed BEC. By analysing the scattering spectrum we find that by increasing the values of the deformation parameters κ and \\eta = \\frac{1}{N} (N is the total number of condensate atoms) the spectrum shows deviation from the spectrum associated with the non-deformed Bose-Einstein condensate.
Incremental analysis of large elastic deformation of a rotating cylinder
NASA Technical Reports Server (NTRS)
Buchanan, G. R.
1976-01-01
The effect of finite deformation upon a rotating, orthotropic cylinder was investigated using a general incremental theory. The incremental equations of motion are developed using the variational principle. The governing equations are derived using the principle of virtual work for a body with initial stress. The governing equations are reduced to those for the title problem and a numerical solution is obtained using finite difference approximations. Since the problem is defined in terms of one independent space coordinate, the finite difference grid can be modified as the incremental deformation occurs without serious numerical difficulties. The nonlinear problem is solved incrementally by totaling a series of linear solutions.
Deformation and paleomagnetism
NASA Astrophysics Data System (ADS)
Borradaile, Graham J.
We may use tectonic structures to confirm the primary age of a paleomagnetic remanence component but only if we know how to undo the natural strain history. It is normally insufficient to untilt fold limbs, as in the original version of Graham''s Fold Test. One may need to remove also the bulk or local strain and account for strain heterogeneities, achieved by grain-strain and the more elusive intergranular flow. Most important, one must know the sequence of strains and tilts that occurred through geological history because the order of these noncommutative events critically affects the final orientation of the remanence component.In many non-metamorphic rocks, strain-rotation of a remanence component approximates a simple formula, although the actual rotation mechanism is complex. This simple, passive line approximation is confirmed experimentally for strains up to 45% oblate shortening. The passive line hypothesis has permitted successful paleomagnetic restorations in several natural case studies.
[Spectrum research on metamorphic and deformation of tectonically deformed coals].
Li, Xiao-Shi; Ju, Yi-Wen; Hou, Quan-Lin; Lin, Hong
2011-08-01
The structural and compositive evolution of tectonically deformed coals (TDCs) and their influencing factors were investigated and analyzed in detail through Fourier transform infrared spectroscopy (FTIR) and laser Raman spectra analysis. The TDC samples (0.7% < Ro,max <3.1%) were collected from Huaibei coalfield with different deformation mechanisms and intensity. The FTIR of TDCs shows that the metamorphism and the deformation affect the degradation and polycondensation process of macromolecular structure to different degree. The Raman spectra analysis indicates that secondary structure defects can be produced mainly by structural deformation, also the metamorphism influences the secondary structure defects and aromatic structure. Through comprehensive analysis, it was discussed that the ductile deformation could change to strain energy through the increase and accumulation of dislocation in molecular structure units of TDC, and it could make an obvious influence on degradation and polycondensation. While the brittle deformation could change to frictional heat energy and promote the metamorphism and degradation of TDC structure, but has less effect on polycondensation. Furthermore, degradation is the main reason for affecting the structural evolution of coal in lower metamorphic stage, and polycondensation is the most important controlling factor in higher metamorphic stage. Under metamorphism and deformation, the small molecules which break and fall off from the macromolecular tructure of TDC are preferentially replenished and embedded into the secondary structure defects or the residual aromatic rings were formed into aromatic structure by polycondensation. This process improved the stability of coal structure. It is easier for ductile deformation of coal to induce the secondary structure defects than brittle deformation.
Inelastic deformation in crystalline rocks
NASA Astrophysics Data System (ADS)
Rahmani, H.; Borja, R. I.
2011-12-01
The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.
Perceptual transparency from image deformation
Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin’ya
2015-01-01
Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid’s surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of “invisible” transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation. PMID:26240313
Correction of postburn equinus deformity.
Hur, Gi-Yeun; Rhee, Byung-Jun; Ko, Jang-Hyu; Seo, Dong-Kook; Choi, Jai-Koo; Jang, Young-Chul; Lee, Jong-Wook
2013-03-01
Equinus deformity is characterized by an abnormal tiptoe gait and does not allow normal walking, hence needing correction. Congenital causes of equinus deformity include neurological diseases such as cerebral palsy and poliomyelitis. Acquired causes include injuries such as extensive trauma. We have corrected equinus deformity from extensive lower leg burns by a single operation through excisional release of the scar, Achilles lengthening, and radial forearm free flap. Fifteen patients with postburn equinus deformity who were treated between January 2000 and March 2012 were retrospectively studied. We investigated their age, sex, cause and severity of burn injury, equinus degree, ankle range of motion and the changes in the activity, extent of Achilles lengthening, flap size, complication, and the recurrence in these patients. The average degree of equinus deformity before the operation was 45 degrees. With an average Achilles lengthening of 4.6 cm, all patients achieved neutral position. The patients who had poor activity due to tiptoe gait before the operation showed good to fair levels of walking ability postoperatively. During an average follow-up period of 3 years and 9 months, no patients had a recurrence. Equinus deformity causes significant restrictions to walking and the reconstruction is a challenging problem. Although prevention is more important during the initial stages of treatment, we have successfully corrected patients with existing equinus deformity by scar release, Z-tenoplasty of Achilles, and radial forearm free flap.
Quantifying the Erlenmeyer flask deformity
Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P
2012-01-01
Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032
Quantifying the Erlenmeyer flask deformity.
Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P
2012-07-01
Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher's disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher's disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher's disease to be undertaken.
Perceptual transparency from image deformation.
Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya
2015-08-18
Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.
A simulation study of planar swaging deformation
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Gen; Jen, Gwang-Shen; Su, Gwang-Huei
1992-08-01
Planar swaging deformation was studied with a photoplastic method. The domestic polycarbonate was used as a simulation material. The full-field strain distribution for planar swaging deformation was obtained. The average error of the calculated strain was less than 7 percent. The deformation area and the effect of friction on deformation area were studied with the characteristics of photoplasticity. This paper points out the special features of planar swaging deformation and the effect of lubrication on deformation flow.
Femoral deformity planning: intentional placement of the apex of deformity.
Fabricant, Peter D; Camara, James M; Rozbruch, S Robert
2013-05-01
Traditionally, correction of femoral deformity has been performed with osteotomies through the center of rotation of angulation (CORA), but the CORA location is not always practical. If the osteotomy is created at a site adjacent to the CORA, an additional translation must be performed to accurately correct the deformity. However, at times, the ideal osteotomy site may require an unfeasible amount of translation. Multiple osteotomies may also be problematic, and when overcorrection of the mechanical axis is planned, the CORA method is not practical.This article describes a novel method by which the surgeon may choose the location of the osteotomy regardless of the location of the CORA and may consolidate a multiapical deformity into a single corrective osteotomy. Furthermore, intentional mechanical axis overcorrection may be performed to unload knee joint arthritis. Simple, complex, and multiapical deformities may now be corrected via a single familiar surgical procedure, such as a distal femoral osteotomy, and the need for translation is eliminated.
Global organization of tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Bilotti, Frank; Connors, Chris; Suppe, John
1993-01-01
The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the
Control of micromachined deformable mirrors
NASA Technical Reports Server (NTRS)
Agronin, M. L.; Bartman, R.; Hadaegh, F. Y.; Kaiser, W.; Wang, P. K. C.
1993-01-01
A micromachined deformable mirror with pixelated electrostatic actuators is proposed. The paper begins with a physical description of the proposed mirror. Then a mathematical model in the form of a nonlinear partial differential equation describing the mirror surface deformations is derived. This model is used to derive the required voltages for the actuators to achieve a specified static deformation of the mirror surface. This is followed by the derivation of a static nonlinear feedback controller for achieving noninteracting actuation. Then the structure for a complete control system for wavefront correction is proposed. The paper concludes with a discussion of the physical implementation of the proposed control system.
Videogrammetric Model Deformation Measurement Technique
NASA Technical Reports Server (NTRS)
Burner, A. W.; Liu, Tian-Shu
2001-01-01
The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.
Producing approximate answers to database queries
NASA Technical Reports Server (NTRS)
Vrbsky, Susan V.; Liu, Jane W. S.
1993-01-01
We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.
Continuum calculations of continental deformation in transcurrent environments
NASA Technical Reports Server (NTRS)
Sonder, L. J.; England, P. C.; Houseman, G. A.
1986-01-01
A thin viscous sheet approximation is used to investigate continental deformation near a strike-slip boundary. The vertically averaged velocity field is calculated for a medium characterized by a power law rheology with stress exponent n. Driving stresses include those applied along boundaries of the sheet and those arising from buoyancy forces related to lateral differences in crustal thickness. Exact and approximate analytic solutions for a region with a sinusoidal strike-slip boundary condition are compared with solutions for more geologically relevant boundary conditions obtained using a finite element technique. The across-strike length scale of the deformation is approximately 1/4pi x sq rt n times the dominant wavelength of the imposed strike-slip boundary condition for both the analytic and the numerical solutions; this result is consistent with length scales observed in continental regions of large-scale transcurrent faulting. An approximate, linear relationship between displacement and rotation is found that depends only on the deformation length scale and the rheology. Calculated displacements, finite rotations, and distribution of crustal thicknesses are consistent with those observed in the region of the Pacific-North America plate boundary in California.
Low-energy nuclear spectroscopy in a microscopic multiphonon approach
NASA Astrophysics Data System (ADS)
Lo Iudice, N.; Ponomarev, V. Yu; Stoyanov, Ch; Sushkov, A. V.; Voronov, V. V.
2012-04-01
The low-lying spectra of heavy nuclei are investigated within the quasiparticle-phonon model. This microscopic approach goes beyond the quasiparticle random-phase approximation by treating a Hamiltonian of separable form in a microscopic multiphonon basis. It is therefore able to describe the anharmonic features of collective modes as well as the multiphonon states, whose experimental evidence is continuously growing. The method can be put in close correspondence with the proton-neutron interacting boson model. By associating the microscopic isoscalar and isovector quadrupole phonons with proton-neutron symmetric and mixed-symmetry quadrupole bosons, respectively, the microscopic states can be classified, just as in the algebraic model, according to their phonon content and their symmetry. In addition, these states disclose the nuclear properties which are to be ascribed to genuine shell effects, not included in the algebraic approach. Due to its flexibility, the method can be implemented numerically for systematic studies of spectroscopic properties throughout entire regions of vibrational nuclei. The spectra and multipole transition strengths so computed are in overall good agreement with the experimental data. By exploiting the correspondence of the method with the interacting boson model, it is possible to embed the microscopic states into this algebraic frame and, therefore, face the study of nuclei far from shell closures, not directly accessible to merely microscopic approaches. Here, it is shown how this task is accomplished through systematic investigations of magnetic dipole and, especially, electric dipole modes along paths moving from the vibrational to the transitional regions. The method is very well suited to the study of well-deformed nuclei. It provides reliable descriptions of low-lying magnetic as well as electric multipole modes of nuclei throughout the rare-earth and actinide regions. Attention is focused here on the low-lying 0+ states
Fine-grid calculations for stellar electron and positron capture rates on Fe isotopes
Nabi, Jameel-Un; Tawfik, Abdel Nasser
2013-03-15
The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (Y{sub e}) of the corematerial. It is suggested that the temporal variation of Y{sub e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly {sup 54-56}Fe, are considered to be key players in controlling Y{sub e} ratio via electron capture on these nuclides. Recently an improved microscopic calculation of weak-interaction-mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random-phase-approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic state-by-state calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the Y{sub e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on {sup 54-56}Fe. The sensitivity of the pn-QRPA calculated capture rates to the deformation parameter is also studied in this work. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.
NASA Astrophysics Data System (ADS)
Nabi, Jameel-Un
2008-09-01
A few white dwarfs, located in binary systems, may acquire sufficiently high mass-accretion rates resulting in the burning of carbon and oxygen under nondegenerate conditions forming an O+Ne+Mg core. These O+Ne+Mg cores are gravitationally less bound than more massive progenitor stars and can release more energy due to the nuclear burning. They are also amongst the probable candidates for low entropy r-process sites. Recent observations of subluminous Type II-P supernovae (e.g. 2005cs, 2003gd, 1999br and 1997D) were able to rekindle the interest in 8-10 Modot which develop O+Ne+Mg cores. Microscopic calculations of capture rates on 24Mg, which may contribute significantly to the collapse of O+Ne+Mg cores, using the shell model and the proton-neutron quasiparticle random-phase approximation (pn-QRPA) theory, were performed earlier and comparisons made. Simulators, however, may require these capture rates on a fine scale. For the first time, a detailed microscopic calculation of the electron and positron capture rates on 24Mg on an extensive temperature-density scale is presented here. This type of scale is more appropriate for interpolation purposes and of greater utility for simulation codes. The calculations are done using the pn-QRPA theory using a separable interaction. The deformation parameter, believed to be a key parameter in QRPA calculations, is adopted from experimental data to increase the reliability of the QRPA results further. The resulting calculated rates are up to a factor of 14 or more enhanced as compared to shell model rates and may lead to some interesting scenarios for core collapse simulators.
The Unloading Modulus of Akdq Steel after Uniaxial and Near Plane-Strain Plastic Deformation
NASA Astrophysics Data System (ADS)
Pavlina, E. J.; Levy, B. S.; van Tyne, C. J.; Kwon, S. O.; Moon, Y. H.
Springback is a problem in the manufacture of a variety of automotive components. To determine springback, it is necessary to know the strength of the material after plastic deformation and the slope of the unloading curve (i.e. the unloading modulus). Prior investigations have shown that the unloading modulus for steels after plastic deformation has a slope that is lower than the normally accepted value for Young's modulus. Previous studies on the slope of the unloading curve were after uniaxial tensile plastic deformation. In the present study, the unloading modulus for an aluminum killed drawing quality (AKDQ) steel was evaluated after both uniaxial and near plane strain deformation. A tube hydroforming system was used for near plane-strain deformation. The average unloading modulus following uniaxial deformation for the AKDQ steel is approximately 168 GPa. The average unloading modulus for the circumferential stress component after near plane-strain deformation is lower than after uniaxial deformation. For a given amount of overall plastic deformation, the axial component of the unloading modulus is greater than the circumferential component, and with increased plastic strain, the unloading modulus for both components decreases. These results demonstrate that the components of the unloading modulus are dependent on the strain path of the prior plastic deformation.
Anisotropic ripple deformation in phosphorene
Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; Chen, Changfeng
2015-04-07
Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS_{2}. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.
Anisotropic ripple deformation in phosphorene
Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; ...
2015-04-07
Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticitymore » theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.« less
Taylor, W. C.
1965-01-01
Ten children with gross deformity of the external ear were observed. In six the facial bones were underdeveloped on the same side as the deformed ear. In all six there was a congenital abnormality of the kidney or upper urinary tract, usually on the same side as the deformed ear. In addition there were usually other associated congenital defects in each case. In the remaining four children the facial bones appeared normal, and pyelography showed no abnormality of the urinary tract. In these four children there were no other associated defects. These observations emphasize the importance of investigating the urinary tract in children with gross deformity of the external ear, especially where there is an associated underdevelopment of the facial bones. PMID:14317453
ROCK DEFORMATION. Final Progress Report
2002-05-24
The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.
Anisotropic Ripple Deformation in Phosphorene.
Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng
2015-05-07
Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.
Variable focal length deformable mirror
Headley, Daniel; Ramsey, Marc; Schwarz, Jens
2007-06-12
A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.
Effect of vorticity on polycrystalline ice deformation
NASA Astrophysics Data System (ADS)
Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D.; Gomez-Rivas, Enrique; Jansen, Daniela; Lebensohn, Ricardo A.; Weikusat, Ilka
2017-04-01
Understanding ice sheet dynamics requires a good knowledge of how dynamic recrystallisation controls ice microstructures and rheology at different boundary conditions. In polar ice sheets, pure shear flattening typically occurs at the top of the sheets, while simple shearing dominates near their base. We present a series of two-dimensional microdynamic numerical simulations that couple ice deformation with dynamic recrystallisation of various intensities, paying special attention to the effect of boundary conditions. The viscoplastic full-field numerical modelling approach (VPFFT) (Lebensohn, 2001) is used to calculate the response of a polycrystalline aggregate that deforms purely by dislocation glide. This code is coupled with the ELLE microstructural modelling platform that includes recrystallisation in the aggregate by intracrystalline recovery, nucleation by polygonisation, as well as grain boundary migration driven by the reduction of surface and strain energies (Llorens et al., 2016a, 2016b, 2017). The results reveal that regardless the amount of DRX and ice flow a single c-axes maximum develops all simulations. This maximum is oriented approximately parallel to the maximum finite shortening direction and rotates in simple shear towards the normal to the shear plane. This leads to a distinctly different behaviour in pure and simple shear. In pure shear, the lattice preferred orientation (LPO) and shape-preferred orientation (SPO) are increasingly unfavourable for deformation, leading to hardening and an increased activity of non-basal slip. The opposite happens in simple shear, where the imposed vorticity causes rotation of the LPO and SPO to a favourable orientation, leading to strain softening. An increase of recrystallisation enhances the activity of the non-basal slip, due to the reduction of deformation localisation. In pure shear conditions, the pyramidal slip activity is thus even more enhanced and can become higher than the basal-slip activity. Our
Rotational deformity following metacarpal fracture.
Royle, S G
1990-02-01
Ninety-one consecutive patients with 98 metacarpal fractures were looked at prospectively for rotational deformity. Whilst a quarter had minor rotation of the fracture of less than 10 degrees, only five had more than this. In just two cases, was there rotational instability requiring operative intervention. Assessment of rotational deformity must include an end-on view of the finger-nail, as there is often restricted movement at the metacarpal phalangeal joint following fracture.
Plastic Deformation of Granular Materials
1993-01-25
discontinuities. These result will be important in our granular flow work, when considering viscoplastic constitutive relations (i.e. relaxation systems...5 CUNDN( NUMRES Plastic Deformation of Granular Materials (U) 61102F 6. AUTHOR(S) 2304/A4 Dr. E. Bruce Pitman 7 PERFORMING ORGANIZATION NA .h • 8...lose hyperbolicity. 98 3 81 061! SUBJECT TERMS 15. NUMBER OF PAGES granular material ; plastic deformation; hyperbolic 12 equations 16. PRICE CODE 17
Cleft Nasal Deformity and Rhinoplasty
Kaufman, Yoav; Buchanan, Edward P.; Wolfswinkel, Erik M.; Weathers, William M.; Stal, Samuel
2012-01-01
The cleft nasal deformity is a complex challenge in plastic surgery involving the skin, cartilage, mucosa, and skeletal platform. Ever since Blair and Brown first described the intricacies of the cleft pathology in 1931, the appropriate approach has been extensively debated in the literature with respect to timing, technique, and extent of surgical intervention. In this article, the authors review the literature and summarize the various modalities for achieving a successful rhinoplasty in the patient with a cleft nasal deformity. PMID:24179452
Signal Approximation with a Wavelet Neural Network
1992-12-01
specialized electronic devices like the Intel Electronically Trainable Analog Neural Network (ETANN) chip. The WNN representation allows the...accurately approximated with a WNN trained with irregularly sampled data. Signal approximation, Wavelet neural network .
Rough Set Approximations in Formal Concept Analysis
NASA Astrophysics Data System (ADS)
Yamaguchi, Daisuke; Murata, Atsuo; Li, Guo-Dong; Nagai, Masatake
Conventional set approximations are based on a set of attributes; however, these approximations cannot relate an object to the corresponding attribute. In this study, a new model for set approximation based on individual attributes is proposed for interval-valued data. Defining an indiscernibility relation is omitted since each attribute value itself has a set of values. Two types of approximations, single- and multiattribute approximations, are presented. A multi-attribute approximation has two solutions: a maximum and a minimum solution. A maximum solution is a set of objects that satisfy the condition of approximation for at least one attribute. A minimum solution is a set of objects that satisfy the condition for all attributes. The proposed set approximation is helpful in finding the features of objects relating to condition attributes when interval-valued data are given. The proposed model contributes to feature extraction in interval-valued information systems.
Remanent magnetism and ductile deformation in an experimentally deformed magnetite-bearing limestone
NASA Astrophysics Data System (ADS)
Borradaile, Graham J.
1991-07-01
A limestone with pseudo-single-domain (PSD) pure magnetite is given an isothermal remanent magnetization (IRM). Samples are deformed triaxially at 200 MPa (2 kbar) confining pressure at room temperature and at a strain-rate of 10 -5 s -1. The limestone deforms in a ductile manner by twinning to produce sufficiently homogeneously strained specimens up to about 20% shortening. The uniform, saturation IRM rotates away from the shortening axis, approximately by an amount expected for the homogeneous strain of a non-material line marker. Hydrostatic compaction alone shows that this is time-dependent and compatible with progressive damage of the ferrimagnetic grains. Strain produces an increase in coercivity of the magnetite, an increase in its saturation remanence, and an increase in its anisotropy of magnetization (with respect to IRM). These observations are compatible with reduction in effective grain size and change of shape of magnetite. Experimental deformation reduces the intensity of magnetisation, chiefly by the removal of low-coercivity components of remanence when there is a pure IRM vector.
Mixing of discontinuously deforming media.
Smith, L D; Rudman, M; Lester, D R; Metcalfe, G
2016-02-01
Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations-such as shear banding or wall slip-creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems.
Advanced materials characterization based on full field deformation measurements
NASA Astrophysics Data System (ADS)
Carpentier, A. Paige
approximation must be independent of the deformation measurements, independent of the material properties (geometric stress approximation), and be simple for use in the industry. A remarkable benefit of the full-field deformation measurement is that it lets us observe the physical phenomena of the deformation which enables the derivation of simple and accurate geometric stress approximations. In particular, linear axial through the thickness strain distributions consistently measured in composite short-beam specimens allow a rigorous derivation of extremely simple stress approximations. The observation of linear through the thickness axial strain distributions has become the basis for eliminating the need of using Bernoulli-Euler kinematic assumptions of the rigid cross sections remaining perpendicular to the beam neutral axis throughout the deformation. Such assumptions are not consistent with the deformation mechanisms and therefore are arguable as a rigorous basis for stress approximation. Simple stress approximations are derived in this work based on the observations from the full-field deformation measurements; accuracy of such approximations are verified; and their limitations determined.
An approximation technique for jet impingement flow
Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.
2015-03-10
The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.
Energy conservation - A test for scattering approximations
NASA Technical Reports Server (NTRS)
Acquista, C.; Holland, A. C.
1980-01-01
The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.
Approximation method for the kinetic Boltzmann equation
NASA Technical Reports Server (NTRS)
Shakhov, Y. M.
1972-01-01
The further development of a method for approximating the Boltzmann equation is considered and a case of pseudo-Maxwellian molecules is treated in detail. A method of approximating the collision frequency is discussed along with a method for approximating the moments of the Boltzmann collision integral. Since the return collisions integral and the collision frequency are expressed through the distribution function moments, use of the proposed methods make it possible to reduce the Boltzmann equation to a series of approximating equations.
Energy conservation - A test for scattering approximations
NASA Technical Reports Server (NTRS)
Acquista, C.; Holland, A. C.
1980-01-01
The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.
Compressive Imaging via Approximate Message Passing
2015-09-04
We propose novel compressive imaging algorithms that employ approximate message passing (AMP), which is an iterative signal estimation algorithm that...Approved for Public Release; Distribution Unlimited Final Report: Compressive Imaging via Approximate Message Passing The views, opinions and/or findings...Research Triangle Park, NC 27709-2211 approximate message passing , compressive imaging, compressive sensing, hyperspectral imaging, signal reconstruction
Fractal Trigonometric Polynomials for Restricted Range Approximation
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Navascués, M. A.; Viswanathan, P.; Katiyar, S. K.
2016-05-01
One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.
On Approximation of Distribution and Density Functions.
ERIC Educational Resources Information Center
Wolff, Hans
Stochastic approximation algorithms for least square error approximation to density and distribution functions are considered. The main results are necessary and sufficient parameter conditions for the convergence of the approximation processes and a generalization to some time-dependent density and distribution functions. (Author)
Deformation analysis of rotary combustion engine housings
NASA Technical Reports Server (NTRS)
Vilmann, Carl
1991-01-01
This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.
Kink's dynamics for a deformable substrate potential
NASA Astrophysics Data System (ADS)
Tchofo Dinda, P.; Willis, C. R.
1994-01-01
We study the static and dynamic properties of a kink in a chain of harmonically coupled atoms subjected to a deformable double-well substrate potential. We treat intrinsically the lattice discreteness without approximation and show that in some deformation-parameter ranges each period of the PN (Peierls-Nabarro) potential consists of two wells whose minima are located respectively on a lattice site and midway between two adjacent sites of the chain. In some other parameter ranges each period of the PN potential posseses a single well whose minimum is located either on a lattice site or midway between two adjacent lattice sites. We examine the kink's dynamics by using a multiple-collective-variable treatment, that is, we derive the exact equations of motion for the collective variables X and Y - which describe respectively the center-of-mass mode and the internal mode of the kink. We numerically solve the collective variable equations of motion for the trapped and untrapped regimes of the discrete-kink motion, and show that the presence of a nonlinear internal mode makes a contribution of particular importance in the discrete-kink's dynamics. Indeed, we show that during its untrapped regime, the discrete kink can undergo one or more temporary trappings and even a reflection back over several PN wells, and relate such behaviours to the effects of the excitations of the internal mode of the kink.
Perioperative Assessment of Myocardial Deformation
Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.
2014-01-01
Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to
Geodesics in the field of a rotating deformed gravitational source
NASA Astrophysics Data System (ADS)
Boshkayev, K. A.; Quevedo, H.; Abutalip, M. S.; Kalymova, Zh. A.; Suleymanova, Sh. S.
2016-01-01
We investigate equatorial geodesics in the gravitational field of a rotating and deformed source described by the approximate Hartle-Thorne metric. In the case of massive particles, we derive within the same approximation analytic expressions for the orbital angular velocity, the specific angular momentum and energy, and the radii of marginally stable and marginally bound circular orbits. Moreover, we calculate the orbital angular velocity and the radius of lightlike circular geodesics. We study numerically the frame dragging effect and the influence of the quadrupolar deformation of the source on the motion of test particles. We show that the effects originating from the rotation can be balanced by the effects due to the oblateness of the source.
Analysis of Mining Terrain Deformation Characteristics with Deformation Information System
NASA Astrophysics Data System (ADS)
Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr
2014-05-01
Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on
Postural & striatal deformities in Parkinson's disease: Are these rare?
Pandey, Sanjay; Garg, Hitesh
2016-01-01
Parkinson's disease (PD) is the most common neurodegenerative disease and is characterized by tremor, rigidity and akinesia. Diagnosis is clinical in the majority of the patients. Patients with PD may have stooped posture but some of them develop different types of postural and striatal deformities. Usually these deformities are more common in atypical parkinsonian disorders such as progressive supranuclear palsy and multisystem atrophy. But in many studies it has been highlighted that these may also be present in approximately one third of PD patients leading to severe disability. These include antecollis or dropped head, camptocormia, Pisa syndrome, scoliosis, striatal hands and striatal toes. The pathogenesis of these deformities is a complex combination of central and peripheral influences such as rigidity, dystonia and degenerative skeletal changes. Duration of parkinsonism symptoms is an important risk factor and in majority of the patients these deformities are seen in advanced statge of the disease. The patients with such symptoms may initially respond to dopaminergic medications but if not intervened they may become fixed and difficult to treat. Pain and restriction of movement are most common clinical manifestations and these may mimick symptoms of musculoskeletal disorders like rheumatoid arthritis. Early diagnosis is important as the patients may respond to adjustment in dopaminergic medications. Recent advances such as deep brain stimulation (DBS) and ultrasound guided botulinum toxin injection are helpful in management of these deformities in patients with PD. PMID:26997007
Large deformation mechanics of the enucleated eyeball.
Taber, L A
1984-08-01
Large deformation of enucleated pig eyeballs under rigid cylindrical indenters was studied analytically and experimentally. The analytic model for the eyeball consists of a fluid-filled spherical membrane composed of an incompressible, elastic material with an exponential strain energy function. The Rayleigh-Ritz technique provided an approximate solution via a potential energy formulation. Comparison with results from tests on eyeballs and a water-filled rubber (Mooney-Rivlin) shell shows good agreement at large deflection, where membrane action dominates. Due to the highly nonlinear stress-strain relations for the sclera, the load remains relatively small until the indenter displacement approaches 40-60 percent of the eyeball radius, and then the load increases rapidly. Depending on the indenter size, either a perforation or a rupture type of failure occurs.
Surface deformation in Houston, Texas using GPS
NASA Astrophysics Data System (ADS)
Engelkemeir, Richard; Khan, Shuhab D.; Burke, Kevin
2010-07-01
Surface deformation in the Houston area has been quantified by using a variety of methods including LIDAR, InSAR, extensometers, drilling (to approximately 100 m), and Ground Penetrating Radar. In this paper we report on GPS data acquired during the period between 1995 and 2005 that found evidence of ongoing subsidence (up to - 56 mm/year) in northwestern Houston and of possible horizontal surface movement towards the Gulf of Mexico (up to 6 mm/year). We describe the methods of data-processing used in the study and speculate on the possibility that the active elevation of salt domes, mainly at the south and east of the city, may indirectly influence other surface movements including fault movements and subsidence over areas > 1 km 2. Making use of our observations and analysis could help in natural hazard mitigation in the Houston area and possibly also indicate approaches to surface subsidence study that might be used in other urban areas.
NASA Astrophysics Data System (ADS)
Hooper, Andrew John
While conventional interferometric synthetic aperture radar (InSAR) is a very effective technique for measuring crustal deformation, almost any interferogram includes large areas where the signals decorrelate and no measurement is possible. Consequently, most InSAR studies to date have focused on areas that are dry and sparsely vegetated. A relatively new analysis technique, permanent scatterer InSAR, overcomes the decorrelation problem by identifying resolution elements whose echo is dominated by a single scatterer in a series of interferograms. This technique has been useful for analysis of urban areas, where angular structures produce efficient reflectors that dominate background scattering. However, man-made structures are absent from most of the Earth's surface. Furthermore, this technique requires, a priori, an approximate temporal model for the deformation, whereas characterizing the temporal pattern of deformation is commonly one of the aims of any study. We have developed a new method of analysis, StaMPS, using spatial correlation of interferogram phase to find a network of stable pixels in all terrains, with or without buildings. Prior knowledge of temporal variations in the deformation rate is not required. We refer to these pixels as persistent scatterers (PS). A key component of our method is the development of two algorithms to unwrap a three-dimensional series of interferograms. We observe temporally-variable deformation, using an initial version of StaMPS, in data acquired over Long Valley caldera in California, for a period when deformation rates varied significantly. The inferred displacements of the PS compare well with ground truth. Using an enhanced version of StaMPS, we detect a period of steady deflation within the Volcan Alcedo caldera in the Galapagos Islands between 1997 and 2001, which we model with a contracting ellipsoidal magma body. Conventional InSAR has been limited here until now by high rates of temporal decorrelation over much of
Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms
NASA Astrophysics Data System (ADS)
Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.
2014-12-01
The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.
Materials dependence of deformation texture development in various deformation modes
Stout, M.G.; Kallend, J.S.; Kocks, U.F.; Przystupa, M.A.; Rollett, A.D.
1987-01-01
Attempts to understand the development of deformation textures have long been hampered by the following dichotomy: in theory, one expects orientation changes to be governed entirely by the geometry of deformation and thus to be the same for all materials of the same lattice structure and the same deformation modes; yet in experiments, one observes differences between different materials of the same lattice structure. The current work represents an effort to address this problem anew. Four fcc single-phase materials (aluminium, copper, silver, and 70:30 brass) were deformed along three strain-paths (wire-drawing, compression, and torsion), with complete texture determinations before deformation and after strains of roughly 1.0 and 2.0. In parallel, 800 randomly oriented but weighted grains were subjected to simulation of these same tests by the Los Alamos polycrystal plasticity (LApp) code, taking account of the initial textures. An ancillary question which could be addressed in this way is how long initial textures can be remembered by the material; the answer depends on the circumstances and is not always small strains. 8 refs., 3 figs., 1 tab.
Matrix product approximations to conformal field theories
NASA Astrophysics Data System (ADS)
König, Robert; Scholz, Volkher B.
2017-07-01
We establish rigorous error bounds for approximating correlation functions of conformal field theories (CFTs) by certain finite-dimensional tensor networks. For chiral CFTs, the approximation takes the form of a matrix product state. For full CFTs consisting of a chiral and an anti-chiral part, the approximation is given by a finitely correlated state. We show that the bond dimension scales polynomially in the inverse of the approximation error and sub-exponentially in inverse of the minimal distance between insertion points. We illustrate our findings using Wess-Zumino-Witten models, and show that there is a one-to-one correspondence between group-covariant MPS and our approximation.
Nuclear energy surfaces at high-spin in the A{approximately}180 mass region
Chasman, R.R.; Egido, J.L.; Robledo, L.M.
1995-08-01
We are studying nuclear energy surfaces at high spin, with an emphasis on very deformed shapes using two complementary methods: (1) the Strutinsky method for making surveys of mass regions and (2) Hartree-Fock calculations using a Gogny interaction to study specific nuclei that appear to be particularly interesting from the Strutinsky method calculations. The great advantage of the Strutinsky method is that one can study the energy surfaces of many nuclides ({approximately}300) with a single set of calculations. Although the Hartree-Fock calculations are quite time-consuming relative to the Strutinsky calculations, they determine the shape at a minimum without being limited to a few deformation modes. We completed a study of {sup 182}Os using both approaches. In our cranked Strutinsky calculations, which incorporate a necking mode deformation in addition to quadrupole and hexadecapole deformations, we found three well-separated, deep, strongly deformed minima. The first is characterized by nuclear shapes with axis ratios of 1.5:1; the second by axis ratios of 2.2:1 and the third by axis ratios of 2.9:1. We also studied this nuclide with the density-dependent Gogny interaction at I = 60 using the Hartree-Fock method and found minima characterized by shapes with axis ratios of 1.5:1 and 2.2:1. A comparison of the shapes at these minima, generated in the two calculations, shows that the necking mode of deformation is extremely useful for generating nuclear shapes at large deformation that minimize the energy. The Hartree-Fock calculations are being extended to larger deformations in order to further explore the energy surface in the region of the 2.9:1 minimum.
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
A unified approach to the Darwin approximation
Krause, Todd B.; Apte, A.; Morrison, P. J.
2007-10-15
There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting.
Dynamics of Deformable Active Particles
NASA Astrophysics Data System (ADS)
Ohta, Takao
2017-07-01
In this review we discuss the dynamics of deformable active particles mainly from the theoretical point of view. Fluid droplets in a surfactant solution undergo translational motion under certain conditions by generating a gradient of the surface tension. This migration induces shape deformation due to the nonlinear coupling between the migration and shape degrees of freedom. On the other hand, migration is induced by shape deformation in living matter. The swimming of bacteria is a pertinent example. A repeated shape change is generally necessary for the crawling motion of eukaryotic cells on substrates. We introduce a set of time-evolution equations for deformable active particles in a manner as general as possible by a symmetry argument focusing on the interplay between the shape deformation and translational motion. The spinning of a particle is also considered as the active dynamics. Our basic assumption is that the migration velocity and lower modes of the shape deformation of a spherical particle (a circular particle in two dimensions) are the relevant slow degrees of freedom of the system. It is emphasized that our theory is not purely phenomenological and that the time-evolution equations are derived by an interfacial approach in an excitable reaction diffusion system and in chemically reacting ternary fluids, the latter of which gives rise to the self-generated Marangoni effect. We also investigate the dynamics of interacting deformable particles and show numerically that a soliton-like behavior occurs in collisions of collective density waves in two dimensions. In the final section, some open problems and future perspectives are discussed.
Finite deformation analysis of geomaterials
NASA Astrophysics Data System (ADS)
Jeremi, Boris; Runesson, Kenneth; Sture, Stein
2001-07-01
The mathematical structure and numerical analysis of classical small deformation elasto-plasticity is generally well established. However, development of large deformation elastic-plastic numerical formulation for dilatant, pressure sensitive material models is still a research area.In this paper we present development of the finite element formulation and implementation for large deformation, elastic-plastic analysis of geomaterials. Our developments are based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts. A consistent linearization of the right deformation tensor together with the Newton method at the constitutive and global levels leads toward an efficient and robust numerical algorithm. The presented numerical formulation is capable of accurately modelling dilatant, pressure sensitive isotropic and anisotropic geomaterials subjected to large deformations. In particular, the formulation is capable of simulating the behaviour of geomaterials in which eigentriads of stress and strain do not coincide during the loading process.The algorithm is tested in conjunction with the novel hyperelasto-plastic model termed the B material model, which is a single surface (single yield surface, affine single ultimate surface and affine single potential surface) model for dilatant, pressure sensitive, hardening and softening geomaterials. It is specifically developed to model large deformation hyperelasto-plastic problems in geomechanics.We present an application of this formulation to numerical analysis of low confinement tests on cohesionless granular soil specimens recently performed in a SPACEHAB module aboard the Space Shuttle during the STS-89 mission. We compare numerical modelling with test results and show the significance of added confinement by the thin hyperelastic latex membrane undergoing large stretching.
Bilateral cleft lip nasal deformity
Singh, Arun Kumar; Nandini, R.
2009-01-01
Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM) too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it's management both at the time of cleft lip repair and also secondarily
Deformation of second and third quantization
NASA Astrophysics Data System (ADS)
Faizal, Mir
2015-03-01
In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.
Transition from frictional to viscous deformation in granitoid fault rocks
NASA Astrophysics Data System (ADS)
Peč, M.; Heilbronner, R.; Stünitz, H.
2009-04-01
Fracturing of rocks in natural fault zones increases the permeability and produces extremely small grain sizes (< 0.1 μm). This fine grain size is a potential precursor to viscous deformation by diffusion creep, even at low temperatures if fluids are present. The aim of this study is to test the potential transition from frictional to viscous deformation in very fine-grained gouge material. We have performed a series of simple shear deformation experiments on fault gouge in a Griggs deformation apparatus. Crushed Verzasca gneiss powder (< 200 μm) with 0.2 wt% water added was placed between Verzasca Gneiss forcing blocks cut at 45 degrees and weld-sealed in a gold jackets. Before deformation, the gouge material needs to be compacted. This is achieved by a set 1 of frictional deformation experiments at different temperatures (T = 24 °C, 300 °C, 500 °C, Pc = 500 MPa, strain rate = 10ˆ-4) to shear strains of approximately gamma = 2.5. In the subsequent experiments (set 2), potential viscous deformation processes are tested in the pre-deformed gouge. After initial frictional deformation (set 1) the samples are left at peak differential stress conditions for one week. Finally, in a third type of experiments (set 3), the peak differential stress was lowered after frictional deformation to a level similar to the confining pressure and held constant for one week. In set 1, the peak shear stresses are temperature independent (given the limited stress resolution of the Griggs apparatus; 300° C = 780 - 870 MPa, 500° C = 760 - 820 MPa). In set 2, the stress relaxation after frictional deformation is clearly temperature dependent (after one week at 300° C, the shear stress is approx. 370 MPa; at 500° C, approx. 230 MPa). In set 3, no creep was observed. Further investigation of this phenomenon is required but probably the differential stress was too low. Microstructural observations show a striking difference between samples of set 1 and set 2. The samples deformed by
Quantifying torso deformity in scoliosis
NASA Astrophysics Data System (ADS)
Ajemba, Peter O.; Kumar, Anish; Durdle, Nelson G.; Raso, V. James
2006-03-01
Scoliosis affects the alignment of the spine and the shape of the torso. Most scoliosis patients and their families are more concerned about the effect of scoliosis on the torso than its effect on the spine. There is a need to develop robust techniques for quantifying torso deformity based on full torso scans. In this paper, deformation indices obtained from orthogonal maps of full torso scans are used to quantify torso deformity in scoliosis. 'Orthogonal maps' are obtained by applying orthogonal transforms to 3D surface maps. (An 'orthogonal transform' maps a cylindrical coordinate system to a Cartesian coordinate system.) The technique was tested on 361 deformed computer models of the human torso and on 22 scans of volunteers (8 normal and 14 scoliosis). Deformation indices from the orthogonal maps correctly classified up to 95% of the volunteers with a specificity of 1.00 and a sensitivity of 0.91. In addition to classifying scoliosis, the system gives a visual representation of the entire torso in one view and is viable for use in a clinical environment for managing scoliosis.
Transverse deformations of extreme horizons
NASA Astrophysics Data System (ADS)
Li, Carmen; Lucietti, James
2016-04-01
We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.
Subluminal to superluminal propagation of an optical pulse in an f-deformed Bose Einstein condensate
NASA Astrophysics Data System (ADS)
Haghshenasfard, Z.; Naderi, M. H.; Soltanolkotabi, M.
2008-08-01
In this paper, we investigate the propagation of a weak optical probe pulse in an f-deformed Bose-Einstein condensate of a gas with the Λ-type three-level atoms in the electromagnetically induced transparency regime. We use an f-deformed generalization of an effective two-level quantum model of the three-level Λ configuration in which Gardiner's phonon operators for Bose-Einstein condensates are deformed by an operator-valued function, f(\\hat n), of the particle-number operator \\hat n. By making use of the quantum approach of the angular momentum theory, we obtain the eigenvalues and eigenfunctions of the system up to a first-order approximation. We consider the collisions between the atoms as a special kind of f-deformation. The collision rate κ is regarded as the deformation parameter and light propagation in the deformed Bose-Einstein condensate is analysed. In particular, we show that the absorptive and dispersive properties of the deformed condensate can be controlled effectively by changing the deformation parameter κ and the total number of atoms. We find that by increasing the value of κ the group velocity of the probe pulse changes, through deformed condensate, from subluminal to superluminal.
Cosmological applications of Padé approximant
Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan E-mail: 764644314@qq.com
2014-01-01
As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation.
Forecasting volcanic eruptions: the control of elastic-brittle deformation
NASA Astrophysics Data System (ADS)
Kilburn, Christopher; Robertson, Robert; Wall, Richard; Steele, Alexander
2016-04-01
At volcanoes reawakening after long repose, patterns of unrest normally reflect the elastic-brittle deformation of crust above a magma reservoir. Local fault movements, detected as volcano-tectonic (VT) earthquakes, increase in number with surface deformation, at first approximately exponentially and then linearly. The trends describe how crustal behaviour evolves from quasi-elastic deformation under an increasing stress to inelastic deformation under a constant stress. They have been quantified and verified against experiments for deformation in compression [1]. We have extended the analysis to extensional deformation. The results agree well with field data for crust being stretched by a pressurizing magmatic system [2]. They also provide new criteria for enhancing the definitions of alert levels and preferred times to eruption. The VT-deformation sequence is a field proxy for changes in deformation with applied stress. The transition from quasi-elastic to inelastic behaviour is characterised in extension by the ratio of differential failure stress SF to tensile strength σT. Unrest data from at least basaltic to andesitic stratovolcanoes, as well as large calderas, yield preferred values for SF/σT ≤ 4, coinciding with the range for tensile failure expected from established theoretical constraints (from Mohr-Coulomb-Griffiths failure). We thus associate the transition with the approach to tensile rupture at the wall of a pressurized magma reservoir. In particular, values of about 2 are consistent with the rupture of a cylindrical reservoir, such as a closed conduit within a volcanic edifice, whereas values of about 3 suggest an approximately spherical reservoir, such as may exist at deeper levels. The onset of inelastic behaviour reflects the emergence of self-accelerating crack growth under a constant stress. Applied to forecasting eruptions, it provides a new and objective criterion for raising alert levels during an emergency; it yields the classic linear
Deformation of Unentangled Swollen Gels
NASA Astrophysics Data System (ADS)
Sariyer, Ozan; Panyukov, Sergey; Rubinstein, Michael
2014-03-01
We study the deformation characteristics (Poisson's ratios and stress-strain relations) of unentangled gels swollen and uniaxially or biaxially deformed in excess solvent by considering the balance of osmotic pressure and elastic stress in unconstrained dimensions. Our scaling theory predicts a crossover from theta solvent behavior to marginal solvent behavior upon stretching gels that are in concentrated regime at swelling equilibrium - a phenomenon that was experimentally observed long ago, but not understood theoretically. For gels that are in the semidilute good solvent regime at swelling equilibrium, we predict a crossover to theta solvent behavior upon compression and a crossover to marginal solvent behavior upon stretching. Our theory reproduces the previously known results for equilibrium swelling degree as well as known deformation characteristics in theta and athermal solvents.
Deformation processes in forging ceramics
NASA Technical Reports Server (NTRS)
Cannon, R. M.; Rhodes, W. H.
1973-01-01
The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.
Chaetal deformities in aquatic oligochaeta
Brinkhurst, R.O.; Wetzel, M.J.
1994-12-31
Gross deformities in the chaetae of specimens of the tubificid Potamothrix hammoniensis were described by Milbrink from Lake Vaenern, Sweden. This lake is one of the most mercury-polluted major lakes of the world. Statistical tests showed a highly significant correlation between the incidence of deformities and the mercury concentration in the sediments. Changes in the pulp and paper mill process led to marked reduction in specimens with deformities. Similarly modified specimens of various species have been observed at a number of sites contaminated with heavy metals or oil residues in North America. Experimental work on chaetal form has demonstrated changes due to conductivity which have also been observed in saline inland waters. These experiments suggest that chaetae may be shed and replaced by worms every few days. EDX observation of chaetae indicated that metals may accumulate in them, and so provide a potential depuration mechanism. Independent physiological studies suggest that worms may be capable of regulating their metal levels.
Deformed Richardson-Gaudin model
NASA Astrophysics Data System (ADS)
Kulish, P.; Stolin, A.; Johannesson, L. H.
2014-09-01
The Richardson-Gaudin model describes strong pairing correlations of fermions confined to a finite chain. The integrability of the Hamiltonian allows the algebraic construction of its eigenstates. In this work we show that the quantum group theory provides a possibility to deform the Hamiltonian preserving integrability. More precisely, we use the so-called Jordanian r-matrix to deform the Hamiltonian of the Richardson-Gaudin model. In order to preserve its integrability, we need to insert a special nilpotent term into the auxiliary L-operator which generates integrals of motion of the system. Moreover, the quantum inverse scattering method enables us to construct the exact eigenstates of the deformed Hamiltonian. These states have a highly complex entanglement structure which require further investigation.
Finite Deformation of Magnetoelastic Film
Barham, Matthew Ian
2011-05-31
A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.
Shock metamorphism of deformed quartz
NASA Technical Reports Server (NTRS)
Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter
1988-01-01
The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.
Shock metamorphism of deformed quartz
NASA Technical Reports Server (NTRS)
Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter
1988-01-01
The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.
Approximate dynamic model of a turbojet engine
NASA Technical Reports Server (NTRS)
Artemov, O. A.
1978-01-01
An approximate dynamic nonlinear model of a turbojet engine is elaborated on as a tool in studying the aircraft control loop, with the turbojet engine treated as an actuating component. Approximate relationships linking the basic engine parameters and shaft speed are derived to simplify the problem, and to aid in constructing an approximate nonlinear dynamic model of turbojet engine performance useful for predicting aircraft motion.
The JWKB approximation in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Craig, David; Singh, Parampreet
2017-01-01
We explore the JWKB approximation in loop quantum cosmology in a flat universe with a scalar matter source. Exact solutions of the quantum constraint are studied at small volume in the JWKB approximation in order to assess the probability of tunneling to small or zero volume. Novel features of the approximation are discussed which appear due to the fact that the model is effectively a two-dimensional dynamical system. Based on collaborative work with Parampreet Singh.
Approximation by Ridge Functions and Neural Networks
1997-01-01
univariate spaces Xn Other authors most notably Micchelli and Mhaskar MM MM and Mhaskar M have also considered approximation problems of the...type treated here The work of Micchelli and Mhaskar does not give the best order of approximation Mhaskar M has given best possible results but...function from its projections Duke Math J pp M H Mhaskar Neural networks for optimal approximation of smooth and ana lytic
Microstructure of deformed graywacke sandstones
Dengler, L.A.
1980-03-05
Microsctures in low-permeability graywacke sandstones were studied by optical and scanning electron microscopy (SEM). SEM specimens were prepared by ion-bombardment of thick polished samples. The undeformed rock contains grains in a matrix composed primarily of authigenic chlorite and kaolinite. Chlorite platelets are randomly arranged in face-to-edge relation to one another. Kaolinite occurs as pseudohexagonal crystals stacked face-to-face in pore filling books. Uniaxial-stress experiments covered a range of confining pressures from .1 to 600 MPa. Below 50 MPa confining pressure, intergranular fracturing occurs within the fault zone and near the sample's cylindrical surface. Between 100 and 300 MPa confining pressure, fault zones contain highly fractured grains, gauge and slickensides on grain surfaces. At 600 MPa, the sample contains a diffuse shear zone of highly fractured grains and no well-defined fault. In all samples, the distribution of microcracks is heterogeneous. Different clay minerals exhibit different modes of deformation. Chlorite structure responds to applied stress by compaction, reducing both pore size and volume. Chlorite platelets are plastically deformed in even the least strained samples. Kaolinite does not deform plastically in any of the samples examined. Deformation of kaolinite is restricted to toppling of the book structure. Dilatant crack growth was studied in two samples unloaded prior to failure. Uniaxially-strained samples deform primarily along grain boundaries, producing intergranular cracks and realignment of chlorite platelets. Intragranular crack density is linearly related to axial-strain, although grains are less fractured than in uniaxially-stressed samples tested at equivalent mean pressures. Cracks are rarely longer than a grain diameter. Nuclear-explosively deformed samples were recovered after the Rio Blanco gas stimulation experiment. (JGB)
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1990-01-01
This paper presents finite-dimensional approximations for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems, when a quadratic cost integral must be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in the case where the cost integral ranges over a finite time interval, as well as in the case where it ranges over an infinite time interval. The arguments in the last case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense.
Bent approximations to synchrotron radiation optics
Heald, S.
1981-01-01
Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors.
Controllable objective with deformable mirrors
Agafonov, V V; Safronov, A G
2004-03-31
A new optical device - an objective with deformable mirrors and parameters controlled in the dynamic regime is proposed. The computer simulation of the objective is performed. The dependences of some parameters of the objective on the control voltage are determined. The simulation showed that the ranges of control of the rear focal segment and the focal distance for the objective with the focal distance 602 mm were 1057 and 340 mm, respectively, which is substantially greater than in the control of an equivalent deformable mirror. (laser applications and other topics in quantum electronics)
Universal deformations of growing solids
NASA Astrophysics Data System (ADS)
Lychev, S. A.
2011-12-01
A class of universal deformations of accreted hyperelastic incompressible bodies is studied. Accretion is realized by adding prestrained layers [1-4]. The deformations correspond layerwise to the transformation of a parallelepiped to a hollow circular cylinder. Discrete and continuous accretion modes are considered and classified. Solutions of the boundary-value problems for the elastic Mooney-Rivlin potential are constructed. The solutions of the discrete accretion problems are shown to converge to solutions of the corresponding problems of continuous accretion as the number of layers increases and the layer thickness decreases.
Ilizarov principles of deformity correction.
Spiegelberg, B; Parratt, T; Dheerendra, S K; Khan, W S; Jennings, R; Marsh, D R
2010-03-01
Ilizarov frames provide a versatile fixation system for the management of bony deformities, fractures and their complications. The frames give stability, soft tissue preservation, adjustability and functionality allowing bone to realise its full osteogenic potential. It is important that we have a clear and concise understanding of the Ilizarov principles of deformity correction to best make use of this fixation system. In this review article, the history of Ilizarov frame, the basic sciences behind it, the mechanical principles governing its use and the clinical use of the fixation system are discussed.
Ilizarov principles of deformity correction
Spiegelberg, B; Parratt, T; Dheerendra, SK; Khan, WS; Jennings, R; Marsh, DR
2010-01-01
Ilizarov frames provide a versatile fixation system for the management of bony deformities, fractures and their complications. The frames give stability, soft tissue preservation, adjustability and functionality allowing bone to realise its full osteogenic potential. It is important that we have a clear and concise understanding of the Ilizarov principles of deformity correction to best make use of this fixation system. In this review article, the history of Ilizarov frame, the basic sciences behind it, the mechanical principles governing its use and the clinical use of the fixation system are discussed. PMID:20353638
Analytical volcano deformation source models
Lisowski, Michael; Dzurisin, Daniel
2007-01-01
Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.
Cavity coalescence in superplastic deformation
Stowell, M.J.; Livesey, D.W.; Ridley, N.
1984-01-01
An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.
Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning
Fortunati, Valerio; Verhaart, René F.; Angeloni, Francesco; Lugt, Aad van der; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; Walsum, Theo van
2014-09-01
Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealistic deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.
Spatiotemporal measurement of freezing-induced deformation of engineered tissues
Teo, Ka Yaw; Dutton, J. Craig; Han, Bumsoo
2010-01-01
In order to cryopreserve functional engineered tissues (ETs), the microstructure of the extracellular matrix (ECM) should be maintained as well as the cellular viability since the functionality is closely related to the ECM microstructure. Since the post-thaw ECM microstructure is determined by the deformation of ETs during cryopreservation, freezing-induced deformation of ETs was measured with a newly developed quantum dot (QD)-mediated cell image deformetry system using dermal equivalents as a model tissue. The dermal equivalents were constructed by seeding QD-labeled fibroblasts in type I collagen matrices. After 24 hour incubation, the ETs were directionally frozen by exposing them to a spatial temperature gradient (from 4 °C to −20 °C over a distance of 6 mm). While being frozen, the ETs were consecutively imaged, and consecutive pairs of these images were two-dimensionally cross-correlated to determine the local deformation during freezing. The results showed that freezing induced the deformation of ET, and its magnitude varied with both time and location. The maximum local dilatation was 0.006 s−1 and was always observed at the phase change interface. Due to this local expansion, the unfrozen region in front of the freezing interface experienced compression. This expansion-compression pattern was observed throughout the freezing process. In the unfrozen region, the deformation rate gradually decreased away from the freezing interface. After freezing/thawing, the ET experienced an approximately 28% decrease in thickness and 8% loss in weight. These results indicate that freezing-induced deformation caused the transport of interstitial fluid and the interstitial fluid was extruded. In summary, the results suggest that complex cell-fluid-matrix interactions occur within ETs during freezing, and these interactions determine the post-thaw ECM microstructure and eventual post-thaw tissue functionality. PMID:20459191
Inversion and approximation of Laplace transforms
NASA Technical Reports Server (NTRS)
Lear, W. M.
1980-01-01
A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.
Approximate methods for equations of incompressible fluid
NASA Astrophysics Data System (ADS)
Galkin, V. A.; Dubovik, A. O.; Epifanov, A. A.
2017-02-01
Approximate methods on the basis of sequential approximations in the theory of functional solutions to systems of conservation laws is considered, including the model of dynamics of incompressible fluid. Test calculations are performed, and a comparison with exact solutions is carried out.
Quirks of Stirling's Approximation
ERIC Educational Resources Information Center
Macrae, Roderick M.; Allgeier, Benjamin M.
2013-01-01
Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…
Spline approximations for nonlinear hereditary control systems
NASA Technical Reports Server (NTRS)
Daniel, P. L.
1982-01-01
A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.
Computing Functions by Approximating the Input
ERIC Educational Resources Information Center
Goldberg, Mayer
2012-01-01
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…
Quirks of Stirling's Approximation
ERIC Educational Resources Information Center
Macrae, Roderick M.; Allgeier, Benjamin M.
2013-01-01
Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…
An approximation for inverse Laplace transforms
NASA Technical Reports Server (NTRS)
Lear, W. M.
1981-01-01
Programmable calculator runs simple finite-series approximation for Laplace transform inversions. Utilizing family of orthonormal functions, approximation is used for wide range of transforms, including those encountered in feedback control problems. Method works well as long as F(t) decays to zero as it approaches infinity and so is appliable to most physical systems.
Management of Congenital Chest Wall Deformities
Blanco, Felix C.; Elliott, Steven T.; Sandler, Anthony D.
2011-01-01
Congenital chest wall deformities are considered to be anomalies in chest wall growth. These can be categorized as either rib cage overgrowth or deformities related to inadequate growth (aplasia or dysplasia). Rib cage overgrowth leads to depression of the sternum (pectus excavatum) or protuberance of the sternum (pectus carinatum) and accounts for greater than 90% of congenital chest wall deformities. The remaining deformities are a result of inadequate growth. Evolution in the management of congenital chest wall deformities has made significant progress over the past 25 years. This article will review chest wall deformities and the current management strategies of these interesting anomalies. PMID:22294949
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1987-01-01
Finite dimensional approximations are presented for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems when a quadratic cost integral has to be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in case the cost integral ranges over a finite time interval as well as in the case it ranges over an infinite time interval. The arguments in the latter case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense. This feature is established using a vector-component stability criterion in the state space R(n) x L(2) and the favorable eigenvalue behavior of the piecewise linear approximations.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Approximating maximum clique with a Hopfield network.
Jagota, A
1995-01-01
In a graph, a clique is a set of vertices such that every pair is connected by an edge. MAX-CLIQUE is the optimization problem of finding the largest clique in a given graph and is NP-hard, even to approximate well. Several real-world and theory problems can be modeled as MAX-CLIQUE. In this paper, we efficiently approximate MAX-CLIQUE in a special case of the Hopfield network whose stable states are maximal cliques. We present several energy-descent optimizing dynamics; both discrete (deterministic and stochastic) and continuous. One of these emulates, as special cases, two well-known greedy algorithms for approximating MAX-CLIQUE. We report on detailed empirical comparisons on random graphs and on harder ones. Mean-field annealing, an efficient approximation to simulated annealing, and a stochastic dynamics are the narrow but clear winners. All dynamics approximate much better than one which emulates a "naive" greedy heuristic.
Spatiotemporal deformations of reflectionless potentials
NASA Astrophysics Data System (ADS)
Horsley, S. A. R.; Longhi, S.
2017-08-01
Reflectionless potentials for classical or matter waves represent an important class of scatteringless systems encountered in different areas of physics. Here we mathematically demonstrate that there is a family of non-Hermitian potentials that, in contrast to their Hermitian counterparts, remain reflectionless even when deformed in space or time. These are the profiles that satisfy the spatial Kramers-Kronig relations. We start by considering scattering of matter waves for the Schrödinger equation with an external field, where a moving potential is observed in the Kramers-Henneberger reference frame. We then generalize this result to the case of electromagnetic waves, by considering a slab of reflectionless material that both is scaled and has its center displaced as an arbitrary function of position. We analytically and numerically demonstrate that the backscattering from these profiles remains zero, even for extreme deformations. Our results indicate the supremacy of non-Hermitian Kramers-Kronig potentials over reflectionless Hermitian potentials in keeping their reflectionless property under deformation and could find applications to, e.g., reflectionless optical coatings of highly deformed surfaces based on perfect absorption.
Highly deformable nanofilaments in flow
NASA Astrophysics Data System (ADS)
Pawłowska, S.
2016-10-01
Experimental analysis of hydrogel nanofilaments conveyed by flow is conducted to help in understanding physical phenomena responsible for transport properties and shape deformations of long bio-objects, like DNA or proteins. Investigated hydrogel nanofilaments exhibit typical macromolecules-like behavior, as spontaneous conformational changes and cross-flow migration. Results of the experiments indicate critical role of thermal fluctuations behavior of single filaments.
Cryogenic deformable mirror technology development
NASA Astrophysics Data System (ADS)
Mulvihill, Maureen L.; Roche, Michael E.; Cavaco, Jeffrey L.; Shawgo, Ryan J.; Chaudhry, Zaffir A.; Ealey, Mark A.
2003-10-01
Xinetics is working with NASA to develop a cryogenic deformable mirror (DM) specific to the needs of future Origins Program missions such as TPF and JWST. Of utmost importance was the development of an electroceramic material that exhibited electrostrictive properties at cryogenic temperatures. In this paper, the actuator developmental tests and subsequent cryogenic deformable mirror design and cryogenic testing performance of the 349-channel discrete actuator deformable mirror demonstrator are discussed. The cofired actuator stroke response was nearly constant from 35 to 65 K such that at 150V the actuator free-stroke was ~3 microns. The 349-ch cryogenic DM was designed and built with as few parts and materials as possible to minimize the CTE mismatch. The polished mirror was cycled twice from 300 to 35 K. The rms surface figure was monitored using a Zygo interferometer on cooling and consistent data was measured during both temperature cycles. The figure changed from 0.5 waves (P-V) at 300 K to 5 waves at 35 K and returned to 0.6 waves at 300K. The actuators were powered and the influence functions were measured between 35 and 65 K. Even though it is not a functional DM at 35 K, it is a substantial step forward in the development of a cryogenic deformable mirror technology.
Stem Deformity in Black Cherry
Charles O. Rexrode
1978-01-01
A 2-year study of stem deformity in black cherry on the Allegheny and Monongahela National Forests revealed that insects, disease, frost, and browsing by deer were the major sources of injury to the terminal shoots of seedlings and saplings. Twenty-seven species of insects from 19 families and 5 orders were associated with young black cherry trees. Of these species,...
Electrostatics of Deformable Lipid Membranes
Vorobyov, Igor; Bekker, Borislava; Allen, Toby W.
2010-01-01
Abstract It was recently demonstrated that significant local deformations of biological membranes take place due to the fields of charged peptides and ions, challenging the standard model of membrane electrostatics. The ability of ions to retain their immediate hydration environment, combined with the lack of sensitivity of permeability to ion type or even ion pairs, led us to question the extent to which hydration energetics and electrostatics control membrane ion permeation. Using the arginine analog methyl-guanidinium as a test case, we find that although hydrocarbon electronic polarizability causes dramatic changes in ion solvation free energy, as well as a significant change (∼0.4 V) in the membrane dipole potential, little change in membrane permeation energetics occurs. We attribute this to compensation of solvation terms from polar and polarizable nonpolar components within the membrane, and explain why the dipole potential is not fully sensed in terms of the locally deformed bilayer interface. Our descriptions provide a deeper understanding of the translocation process and allow predictions for poly-ions, ion pairs, charged lipids, and lipid flip-flop. We also report simulations of large hydrophobic-ion-like membrane defects and the ionophore valinomycin, which exhibit little membrane deformation, as well as hydrophilic defects and the ion channel gramicidin A, to provide parallels to membranes deformed by unassisted ion permeation. PMID:20550903
The Tamm-Dancoff Approximation as the Contraction Limit of the Richardson-Gaudin Equations
NASA Astrophysics Data System (ADS)
de Baerdemacker, S.
2013-03-01
A connection is made between the exact eigenstates of the level-independent Bardeen-Cooper-Schrieffer (BCS) Hamiltonian and its Tamm-Dancoff Approximation (TDA). This is done by means of a deformation of the quasi-spin algebra, which connects the Bethe Ansatz states with a unique multi-phonon mode of the TDA. The procedure is illustrated with a model describing neutron superluidity in 56Fe.
Toloczko, M.B.; Garner, F.A.
1993-09-01
The eighth and final irradiation segment for pressurized tubes constructed from the fusion Prime Candidate Alloy (PCA) has been completed in FFTF. At 178 dpa and {approximately}400{degrees}C, the irradiation creep of 20% cold-worked PCA has become dominated by the {open_quotes}creep disappearance{close_quotes} phenomenon. The total diametral deformation rate has reached the limiting value of 0.33%/dpa at the three highest stress levels employed in this test. The stress-enhancement of swelling tends to camouflage the onset of creep disappearance, however, requiring the use of several non-traditional techniques to extract the creep coefficients. No failures occurred in these tubes, even though the swelling ranged from {approximately}20 to {approximately}40%.
Thorax deformity, joint hypermobility, and anxiety disorders.
Gulsun, Murat; Yilmaz, Mehmet B; Pinar, Murat; Tonbul, Murat; Celik, Cemil; Ozdemir, Barbaros; Dumlu, Kemal; Erbas, Mevlut
2007-12-01
To evaluate the association between thorax deformities, panic disorder, and joint hypermobility The study includes 52 males diagnosed with thorax deformity, and 40 healthy male controls without thorax deformity, in Tatvan Bitlis and Isparta, Turkey. The study was carried out from 2004 to 2006. The teleradiographic and thoracic lateral images of the subjects were evaluated to obtain the Beighton scores; subjects' psychiatric conditions were evaluated using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1), and the Hamilton Anxiety Scale (HAM-A) was applied in order to determine the anxiety levels. Both the subjects and controls were compared in sociodemographic, anxiety levels, and joint mobility levels. In addition, males with joint hypermobility and thorax deformity were compared to the group with thorax deformity without joint hypermobility. A significant difference in HAM-A scores was found between the groups with thorax deformity and without. In addition, 21 subjects with thorax deformity met the joint hypermobility criteria in the group with thorax deformity, and 7 subjects without thorax deformity met the joint hypermobility criteria in the group without thorax deformity, according to Beighton scoring. The Beighton scores of the subjects with thorax deformity were significantly different from those of the group without deformity. Additionally, anxiety scores of the males with thorax deformity and joint hypermobility were found higher than males with thorax deformity without joint hypermobility. Anxiety disorders, particularly panic disorder, have a significantly higher distribution in male subjects with thorax deformity compared to the healthy control group. In addition, the anxiety level of males with thorax deformity and joint hypermobility is higher than males with thorax deformity without joint hypermobility.
Cosca, Michael; Stunitz, Holger; Bourgiex, Anne-Lise; Lee, John P.
2011-01-01
The effects of deformation on radiogenic argon (40Ar*) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ~15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 degrees C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.
Uvular malformation in the presence of deformational plagiocephaly.
Archer, Kaete; Marrinan, Eileen; Stearns, Susan; Tatum, Sherard
2015-05-01
Deformational plagiocephaly is cranial asymmetry caused by external forces on the skull. Deformational plagiocephaly is seen in 5% to 48% of healthy newborns. Incomplete uvular fusion, in contrast, is one of many uvular malformations. The incidence of all degrees of incomplete uvular fusion is approximately 1% in healthy children. Bifid uvula is a malformation that is often considered a microform cleft palate or a marker for submucous cleft palate. This is a retrospective study of patients with deformational plagiocephaly seen at the Upstate Cleft and Craniofacial Center between January 1, 2006, and September 30, 2011. Patients were identified by the International Classification of Diseases, Ninth Revision code for plagiocephaly. Seventy-nine patients were excluded with craniosynostosis and syndromic diagnoses. One hundred forty-six patients with deformational plagiocephaly were included in the study. Data were collected for sex, age at presentation, parity, multiple births, delivery, oligohydramnios, cephalohematoma, uterine abnormalities, fetal position, and intrauterine growth restriction. Clinical findings were collected including location of cranial flattening and uvular malformations. Twenty-four of 146 patients with deformational plagiocephaly had incomplete fusion of the uvula ranging from complete bifid uvula to a notched uvular tip (16.4%). This association was statistically significant (odds ratio, 18; 95% confidence interval, 11.1-28.9). Most patients (62.3%) were male. We recorded primiparity (44.5%), multiple births (17.1%), vacuum-assisted delivery (6.2%), cesarean section (36.3%), oligohydramnios (4.1%), uterine abnormalities (2.1%), abnormal fetal position (3.4%), and intrauterine growth restriction (1.4%). Ten of the 24 patients with plagiocephaly and uvular malformation were seen for an initial consultation only in our chart system. Of the remaining 14 patients with follow-up, none had recorded signs or symptoms of velopharyngeal insufficiency
Experimental Deformation of Dehydrating Antigorite: Challenging Models of Dehydration Embrittlement
NASA Astrophysics Data System (ADS)
Hirth, Greg; Chernak, Linda
2010-05-01
To test the hypothesis that intermediate depth earthquakes in subduction zones are caused by the dehydration of hydrous phases, we conducted temperature-ramping experiments on antigorite serpentinite. Cold-pressed powdered samples of antigorite were deformed to a high differential stress at 400°C and 1.0 GPa, within the antigorite stability field, where we have shown that deformation localizes. Temperature was then increased at different rates, 1800°C/hr and 180°C/hr, to cross the reaction boundary while the sample continued to deform; samples were deformed at strain rates of 10-4 s-1, 10-5 s-1 and 10-6 s-1. Two additional experiments were conducted in a similar manner at 300°C, 1.5 GPa and 10-5 s-1 but samples remained 'statically' at high stress during the temperature increase. Our results show that although the decrease in stress during temperature ramping is large, stress relaxes stably, even after dehydration. We find that the slopes of the unloading curves are approximately the same for constant values of the ratio (strain rate/ramp rate) and that the unloading slope is greater for higher values of this ratio. In addition, we find that the unloading curves with the greatest slopes are similar to the apparatus compliance, suggesting that we are generating 'slow earthquakes' in our experiments over the course 5 to 10s of minutes. A strain rate stepping experiment indicates that antigorite has velocity strengthening behavior at 700°C and 1.5 GPa suggesting that as soon as an instability develops in the antigorite, the material strengthens sufficiently to not go unstable. Our results thus suggest that antigorite dehydration does not result in 'dehydration embrittlement' but that it may promote slow earthquakes. We have also conducted a preliminary experiment to study the role of effective pressure on deformation behavior after dehydration. A cold-pressed powdered sample of antigorite with a small core of coarse-grained olivine at one end was deformed at 700
Frankenstein's glue: transition functions for approximate solutions
NASA Astrophysics Data System (ADS)
Yunes, Nicolás
2007-09-01
Approximations are commonly employed to find approximate solutions to the Einstein equations. These solutions, however, are usually only valid in some specific spacetime region. A global solution can be constructed by gluing approximate solutions together, but this procedure is difficult because discontinuities can arise, leading to large violations of the Einstein equations. In this paper, we provide an attempt to formalize this gluing scheme by studying transition functions that join approximate analytic solutions together. In particular, we propose certain sufficient conditions on these functions and prove that these conditions guarantee that the joined solution still satisfies the Einstein equations analytically to the same order as the approximate ones. An example is also provided for a binary system of non-spinning black holes, where the approximate solutions are taken to be given by a post-Newtonian expansion and a perturbed Schwarzschild solution. For this specific case, we show that if the transition functions satisfy the proposed conditions, then the joined solution does not contain any violations to the Einstein equations larger than those already inherent in the approximations. We further show that if these functions violate the proposed conditions, then the matter content of the spacetime is modified by the introduction of a matter shell, whose stress energy tensor depends on derivatives of these functions.
Stochastic population dynamics: The Poisson approximation
NASA Astrophysics Data System (ADS)
Solari, Hernán G.; Natiello, Mario A.
2003-03-01
We introduce an approximation to stochastic population dynamics based on almost independent Poisson processes whose parameters obey a set of coupled ordinary differential equations. The approximation applies to systems that evolve in terms of events such as death, birth, contagion, emission, absorption, etc., and we assume that the event-rates satisfy a generalized mass-action law. The dynamics of the populations is then the result of the projection from the space of events into the space of populations that determine the state of the system (phase space). The properties of the Poisson approximation are studied in detail. Especially, error bounds for the moment generating function and the generating function receive particular attention. The deterministic approximation for the population fractions and the Langevin-type approximation for the fluctuations around the mean value are recovered within the framework of the Poisson approximation as particular limit cases. However, the proposed framework allows to treat other limit cases and general situations with small populations that lie outside the scope of the standard approaches. The Poisson approximation can be viewed as a general (numerical) integration scheme for this family of problems in population dynamics.
Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials
Plohr, Bradley J.; Plohr, Jeeyeon N.
2012-07-25
We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable
Beak deformities in Northwestern Crows: Evidence of a multispecies epizootic
Van Hemert, Caroline; Handel, Colleen M.
2010-01-01
Beak abnormalities are rare among adult birds and, typically, are not widespread in a given population, within a region, or across multiple species. A high concentration of beak deformities was recently documented in Black-capped Chickadees (Poecile atricapillus) and other resident avian species in Alaska. We describe a parallel condition in Northwestern Crows (Corvus caurinus) that signals the emergence of a multispecies epizootic. On the basis of 186 Northwestern Crows captured at six sites in Alaska during 2007 and 2008, we estimated the prevalence of beak deformities in adults to be 16.9 ± 5.3%, the highest rate of gross deformities ever recorded in a wild bird population. Prevalence varied among sites and was as high as 36% on the Kenai Peninsula, which suggests possible epizootic clusters. We also documented beak abnormalities in an additional 148 Northwestern Crows in south-central and southeastern Alaska and in 64 crows near Vancouver, British Columbia, and Puget Sound, Washington, a region where both Northwestern Crows and American Crows (C. brachyrhynchos) occur. The increase in frequency and distribution of crows observed with abnormal beaks throughout the Pacific Northwest since the late 1990s indicates a geographic expansion of this problem. Affected crows exhibited elongated and often crossed beaks that were morphologically similar to deformities documented in Black-capped Chickadees and other species in Alaska over approximately the same period. Additional research is needed to determine the etiology and potential adverse effects on bird populations affected by this disorder.
Electronic transport in graphene ribbons with a Gausssian deformation
NASA Astrophysics Data System (ADS)
Carrillo, Ramon; Faria, Daiara; Latgé, Andrea; Mireles, Francisco; Sandler, Nancy
2014-03-01
The coupling of geometrical and electronic properties is a promising avenue to engineer conduction properties in graphene. Confinement added to strain allows for interplay of different transport mechanisms with potential device applications. In particular, strain-predicted to produce localized states similar to those in an external magnetic field-can be tailored for desired transport properties. To investigate specific strain signatures on transport in confined geometries, we focus on graphene nanoribbons with different edge terminations and circularly symmetric deformations. In particular, we study nanoribbons with an inhomogeneous, out of plane Gaussian bump deformation, connected to reservoirs, with and without external magnetic field. We use the tight-binding approximation with the deformation described by elasticity theory. Using the recursive Green function algorithm, we calculate the local density of states and obtain the Landauer conductance. An enhancement of the density of states in the deformed region, similar to the one appearing with constant fields in confined regions is observed. We show how these confined states give rise to peculiar features in the emerging Landau levels and discuss their effect on the overall conductance. Supported by NSF-MWN/CIAM, NSF-PIRE and CONACyT (México).
Studies of normal deformation in {sup 151}Dy
Nisius, D.; Janssens, R.V.F.; Crowell, B.
1995-08-01
The wealth of data collected in the study of superdeformation in {sup 151}Dy allowed for new information to be obtained on the normally deformed structures in this nucleus. At high spin several new yrast states have been identified for the first time. They were associated with single-particle excitations. Surprisingly, a sequence was identified with energy spacings characteristic of a rotational band of normal ({beta}2 {approximately} 0.2) deformation. The bandhead spin appears to be 15/2{sup -} and the levels extend up to a spin of 87/2{sup -}. A clear backbend is present at intermediate spins. While a similar band based on a bandhead of 6{sup +} is known in {sup 152}Dy, calculations suggest that this collective prolate band should not be seen in {sup 151}Dy. In the experiment described earlier in this report that is aimed at determining the deformations associated with the SD bands in this nucleus and {sup 152}Dy, the deformation associated with this band will be determined. This will provide further insight into the origin of this band.
Structural Deformation of Sm@C88 under High Pressure.
Cui, Jinxing; Yao, Mingguang; Yang, Hua; Liu, Ziyang; Ma, Fengxian; Li, Quanjun; Liu, Ran; Zou, Bo; Cui, Tian; Liu, Zhenxian; Sundqvist, Bertil; Liu, Bingbing
2015-08-25
We have studied the structural transformation of Sm@C88 under pressure up to 18 GPa by infrared spectroscopy combined with theoretical simulations. The infrared-active vibrational modes of Sm@C88 at ambient conditions have been assigned for the first time. Pressure-induced blue and red shifts of the corresponding vibrational modes indicate an anisotropic deformation of the carbon cage upon compression. We propose that the carbon cage changes from ellipsoidal to approximately spherical around 7 GPa. A smaller deformation of the carbon bonds in the area close to the Sm atom in the cage suggests that the trapped Sm atom plays a role in minimizing the compression of the adjacent bonds. Pressure induced a significant reduction of the band gap of the crystal. The HOMO-LUMO gap of the Sm@C88 molecule decreases remarkably at 7 GPa as the carbon cage is deformed. Also, compression enhances intermolecular interactions and causes a widening of the energy bands. Both effects decrease the band gap of the sample. The carbon cage deforms significantly above 7 GPa, from spherical to a peanut-like shape and collapses at 18 GPa.
Structural Deformation of Sm@C88 under High Pressure
Cui, Jinxing; Yao, Mingguang; Yang, Hua; Liu, Ziyang; Ma, Fengxian; Li, Quanjun; Liu, Ran; Zou, Bo; Cui, Tian; Liu, Zhenxian; Sundqvist, Bertil; Liu, Bingbing
2015-01-01
We have studied the structural transformation of Sm@C88 under pressure up to 18 GPa by infrared spectroscopy combined with theoretical simulations. The infrared-active vibrational modes of Sm@C88 at ambient conditions have been assigned for the first time. Pressure-induced blue and red shifts of the corresponding vibrational modes indicate an anisotropic deformation of the carbon cage upon compression. We propose that the carbon cage changes from ellipsoidal to approximately spherical around 7 GPa. A smaller deformation of the carbon bonds in the area close to the Sm atom in the cage suggests that the trapped Sm atom plays a role in minimizing the compression of the adjacent bonds. Pressure induced a significant reduction of the band gap of the crystal. The HOMO-LUMO gap of the Sm@C88 molecule decreases remarkably at 7 GPa as the carbon cage is deformed. Also, compression enhances intermolecular interactions and causes a widening of the energy bands. Both effects decrease the band gap of the sample. The carbon cage deforms significantly above 7 GPa, from spherical to a peanut-like shape and collapses at 18 GPa. PMID:26303867
Three saints with deformed extremities in an Italian Renaissance altarpiece.
Albury, W R; Weisz, G M
2017-03-01
A fifteenth-century Florentine altarpiece painted by the Pollaiuolo brothers, Antonio (1433-1498) and Piero (1443-1496), shows three saints with evident deformities of the hands and feet. The pathologies concerned are tentatively identified, and various rationales for their presence in the painting are discussed. Of particular importance is the location of the altarpiece in a chapel which houses the tomb of the Cardinal of Portugal, Prince James of Lusitania (1433-1459). It is argued that both the artistic style of the day and the religious symbolism of the Cardinal's funeral chapel contributed to the artists' decision to portray the saints with deformities. An unnatural curvature of the fifth finger was apparently considered elegant in fifteenth-century paintings, and the depiction of bare feet with hallux valgus gave them a shape which approximated and could have been caused by fashionable pointed shoes. But in addition, deformities in religious art could be symbolic of suffering and martyrdom, a theme which the Cardinal's chapel emphasised in a number of ways. It is suggested therefore that the Pollaiuolo altarpiece reconciles these two disparate factors, portraying genuine deformities in a way that was artistically stylish and symbolically meaningful.
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks
Lai, Jinxing
2016-01-01
In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability. PMID:26819587
Finite deformations of an electroelastic circular cylindrical tube
NASA Astrophysics Data System (ADS)
Melnikov, Andrey; Ogden, Ray W.
2016-12-01
In this paper the theory of nonlinear electroelasticity is used to examine deformations of a pressurized thick-walled circular cylindrical tube of soft dielectric material with closed ends and compliant electrodes on its curved boundaries. Expressions for the dependence of the pressure and reduced axial load on the deformation and a potential difference between, or uniform surface charge distributions on, the electrodes are obtained in respect of a general isotropic electroelastic energy function. To illustrate the behaviour of the tube, specific forms of energy functions accounting for different mechanical properties coupled with a deformation independent quadratic dependence on the electric field are used for numerical purposes, for a given potential difference and separately for a given charge distribution. Numerical dependences of the non-dimensional pressure and reduced axial load on the deformation are obtained for the considered energy functions. Results are then given for the thin-walled approximation as a limiting case of a thick-walled cylindrical tube without restriction on the energy function. The theory described herein provides a general basis for the detailed analysis of the electroelastic response of tubular dielectric elastomer actuators, which is illustrated for a fixed axial load in the absence of internal pressure and fixed internal pressure in the absence of an applied axial load.
Kohno, M; Murakawa, K; Yasunari, K; Yokokawa, K; Horio, T; Kano, H; Minami, M; Yoshikawa, J
1997-03-01
Erythrocyte deformation is an important regulatory factor of the microcirculation. The present study was designed to examine whether erythrocyte deformability is altered in hypercholesterolemic patients and, if so, whether cholesterol-lowering therapy affects this parameter in these patients. The erythrocyte deformability of 37 hypercholesterolemic patients was evaluated before and after 1 year of therapy with pravastatin, an inhibitor of hepatic hydroxymethyl glutaryl coenzyme A reductase, under various shear stresses (4.7, 9.5, 23.6, 47.3, 118.1, and 236.2 dyne/cm2) using laser diffractometry. At study entry, erythrocyte deformability under 4.7 and 9.5 dyne/cm2 shear stress, which is actually observed in human vessels, was reduced compared with that in 20 age-matched normocholesterolemic subjects and was inversely correlated with serum cholesterol and low-density lipoprotein (LDL) cholesterol. Pravastatin therapy for 1 year, which reduced serum cholesterol from 288 +/- 28 to 223 +/- 20 mg/dL, significantly improved erythrocyte deformability by approximately 20%. There was a significant relation between the improvement of erythrocyte deformability and the reduction of serum cholesterol or LDL cholesterol. The results suggest that erythrocyte deformability is reduced in hypercholesterolemic patients, and that long-term cholesterol-lowering therapy can improve reduced erythrocyte deformability, which may contribute to the improvement of organ perfusion.
On the influence of a geothermal system on ground deformation during a volcanic eruption
NASA Astrophysics Data System (ADS)
Zarin, G. A.; Melnik, O. E.; Tsvetkova, Yu. D.; Afanasyev, A. A.
2016-12-01
The measurement of ground deformation during a volcanic eruption is one of the main tools for the monitoring of active volcanoes. The deformation is caused by processes that are occurring in the chamber-conduit system, as well as in the geothermal systems that are heated by ascending magma. The influence of the magma chamber and, to a lesser degree, of the conduit on deformation in host rocks is sufficiently well known theoretically, but no studies have been made to investigate the effects of a hydrothermal system on measurable ground deformation during a volcanic eruption. We made a comparative study of the ground deformation due to two deformation-initiating sources: a fissure conduit with a specified excess pressure and a hydrothermal system that was heated by magma flow. We show that the vertical deformation due to the activity of a geothermal system can exceed that due to magma flow by factors of several times. The spatial distributions of the deformation are also substantially different. The vertical displacement due to a geothermal system has its maximum above the fissure conduit, while when the pressure varies in the conduit it induces a local subsidence of the ground; the maximum ground uplift is at a distance of approximately twice the depth to the top of the conduit. The influence of the geothermal system should be incorporated in interpretations of data that come from the monitoring of active volcanoes.
Literature survey on cements for remediation of deformed casing in geothermal wells
Allan, M.L.; Philippacopoulos, A.J.
1998-12-31
Brookhaven National Laboratory was requested to conduct a literature survey for the best available cement to use in the proposed casing patch as part of the Geothermal Drilling Organization (GDO) project on remediation of deformed casings. A total of 50 wells have been identified with deformed production casing in Unocal`s portion of The Geysers geothermal field. A procedure to address the casing deformation and avoid abandonment of these wells has been developed as described in the Geysers Deformed Casing Remediation Proposal. The proposed remediation procedure involves isolation of the zone of interest with an inflatable packer, milling the deformed casing and cementing a 7 inch diameter liner to extend approximately 100 ft above and 100 ft below the milled zone. During the milling operation it is possible that the original cement and surrounding formation may slough away. In order to specify a suitable cement formulation for the casing patch it is first necessary to identify and understand the deformation mechanism/s operating in The Geysers field. Subsequently, the required cement mechanical properties to withstand further deformation of the repaired system must be defined. From this information it can be determined whether available cement formulations meet these requirements. In addition to The Geysers, other geothermal fields are at possible risk of casing deformation due to subsidence, seismic activity, lateral and vertical formation movement or other processes. Therefore, the proposed remediation procedure may have applications in other fields.
Ishtar deformed belts: Evidence for deformation from below?
NASA Technical Reports Server (NTRS)
Hansen, V. L.; Phillips, R. J.
1993-01-01
The mountain belts of Ishtar Terra are unique on Venus. Models for their formation include mantle upwelling, mantle downwelling, and horizontal convergence. The present forms of these models are too simple to predict surface strain, topography, or gravity. More detailed models will require specific constraints as imposed by geologic relations. In order to develop specific constraints for geodynamic models, we examine the geology of Ishtar Terra as viewed in Magellan SAR imagery in an attempt to interpret regional surface strain patterns. In this paper, we present geologic and structural relations that leads us to postulate that Ishtar deformed belts result from shear forces within the mantle acting on the lithosphere, and not by horizontal forces from colliding plates. We propose that the surface strains result from differential strain and displacement of domains within the upper mantle, and that further analysis of Ishtar deformation may allow us to identify individual domains within the mantle, and to constrain displacement trajectories between domains.
Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms
Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; ...
2014-11-07
Although the crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation andmore » find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.« less
Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms
Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; Kanitpanyacharoen, Waruntorn; Smith, Jesse S.; Sinogeikin, Stanislav; Wenk, Hans-Rudolf
2014-11-07
Although the crystal structure of the high pressure SiO_{2} polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.
Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms
NASA Astrophysics Data System (ADS)
Kaercher, Pamela M.; Zepeda-Alarcon, Eloisa; Prakapenka, Vitali B.; Kanitpanyacharoen, Waruntorn; Smith, Jesse S.; Sinogeikin, Stanislav; Wenk, Hans-Rudolf
2015-04-01
Although the crystal structure of the high-pressure SiO2 polymorph stishovite has been studied in detail, little is known about the development of crystallographic preferred orientation (CPO) during deformation in stishovite. Insight into CPO and associated deformation mechanics of stishovite would provide important information for understanding subduction of quartz-bearing crustal rocks into the mantle. To study CPO development, we converted a natural sample of flint to stishovite in a laser-heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. We collected diffraction patterns in radial geometry to examine in situ development of crystallographic preferred orientation and find that (001) poles preferentially align with the compression direction. Viscoplastic self-consistent modeling suggests the most likely slip systems at high pressure and ambient temperature are pyramidal and basal slip.
Highly deformable bones: unusual deformation mechanisms of seahorse armor.
Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna
2013-06-01
Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics.
Approximating Light Rays in the Schwarzschild Field
NASA Astrophysics Data System (ADS)
Semerák, O.
2015-02-01
A short formula is suggested that approximates photon trajectories in the Schwarzschild field better than other simple prescriptions from the literature. We compare it with various "low-order competitors," namely, with those following from exact formulas for small M, with one of the results based on pseudo-Newtonian potentials, with a suitably adjusted hyperbola, and with the effective and often employed approximation by Beloborodov. Our main concern is the shape of the photon trajectories at finite radii, yet asymptotic behavior is also discussed, important for lensing. An example is attached indicating that the newly suggested approximation is usable—and very accurate—for practically solving the ray-deflection exercise.
Approximate knowledge compilation: The first order case
Val, A. del
1996-12-31
Knowledge compilation procedures make a knowledge base more explicit so as make inference with respect to the compiled knowledge base tractable or at least more efficient. Most work to date in this area has been restricted to the propositional case, despite the importance of first order theories for expressing knowledge concisely. Focusing on (LUB) approximate compilation, our contribution is twofold: (1) We present a new ground algorithm for approximate compilation which can produce exponential savings with respect to the previously known algorithm. (2) We show that both ground algorithms can be lifted to the first order case preserving their correctness for approximate compilation.
Approximate Bruechner orbitals in electron propagator calculations
Ortiz, J.V.
1999-12-01
Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.
Alternative approximation concepts for space frame synthesis
NASA Technical Reports Server (NTRS)
Lust, R. V.; Schmit, L. A.
1985-01-01
A method for space frame synthesis based on the application of a full gamut of approximation concepts is presented. It is found that with the thoughtful selection of design space, objective function approximation, constraint approximation and mathematical programming problem formulation options it is possible to obtain near minimum mass designs for a significant class of space frame structural systems while requiring fewer than 10 structural analyses. Example problems are presented which demonstrate the effectiveness of the method for frame structures subjected to multiple static loading conditions with limits on structural stiffness and strength.
APPROXIMATING LIGHT RAYS IN THE SCHWARZSCHILD FIELD
Semerák, O.
2015-02-10
A short formula is suggested that approximates photon trajectories in the Schwarzschild field better than other simple prescriptions from the literature. We compare it with various ''low-order competitors'', namely, with those following from exact formulas for small M, with one of the results based on pseudo-Newtonian potentials, with a suitably adjusted hyperbola, and with the effective and often employed approximation by Beloborodov. Our main concern is the shape of the photon trajectories at finite radii, yet asymptotic behavior is also discussed, important for lensing. An example is attached indicating that the newly suggested approximation is usable—and very accurate—for practically solving the ray-deflection exercise.
Information geometry of mean-field approximation.
Tanaka, T
2000-08-01
I present a general theory of mean-field approximation based on information geometry and applicable not only to Boltzmann machines but also to wider classes of statistical models. Using perturbation expansion of the Kullback divergence (or Plefka expansion in statistical physics), a formulation of mean-field approximation of general orders is derived. It includes in a natural way the "naive" mean-field approximation and is consistent with the Thouless-Anderson-Palmer (TAP) approach and the linear response theorem in statistical physics.
Ion induced deformation of soft tissue.
Myers, T G; Aldis, G K; Naili, S
1995-01-01
In this paper the effects of changing the ion concentration in and around a sample of soft tissue are investigated. The triphasic theory developed by Lai et al. (1990, Biomechanics of Diarthrodial Joints, Vol. 1, Berlin, Springer-Verlag) is reduced to two coupled partial differential equations involving fluid ion concentration and tissue solid deformation. These equations are given in general form for Cartesian, cylindrical and spherical geometries. After solving the two equations quantities such as fluid velocity, fluid pressure, chemical potentials and chemical expansion stress may be easily calculated. In the Cartesian geometry comparison is made with the experimental and theoretical work of Myers et al. (1984, ASME J. biomech. Engng, 106, 151-158). This dealt with changing the ion concentration of a salt shower on a strip of bovine articular cartilage. Results were obtained in both free swelling and isometric tension states, using an empirical formula to account for ion induced deformation. The present theory predicts lower ion concentrations inside the tissue than this earlier work. A spherical sample of tissue subjected to a change in salt bath ion concentration is also considered. Numerical results are obtained for both hypertonic and hypotonic bathing solutions. Of particular interest is the finding that tissue may contract internally before reaching a final swollen equilibrium state or swell internally before finally contracting. By considering the relative magnitude, and also variation throughout the time course of terms in the governing equations, an even simpler system is deduced. As well as being linear the concentration equation in the new system is uncoupled. Results obtained from the linear system compare well with those from the spherical section. Thus, biological swelling situations may be modelled by a simple system of equations with the possibility of approximate analytic solutions in certain cases.
Clusterization and quadrupole deformation in nuclei
Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.
2006-04-26
We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.
Application of Quaternions for Mesh Deformation
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2002-01-01
A new three-dimensional mesh deformation algorithm, based on quaternion algebra, is introduced. A brief overview of quaternion algebra is provided, along with some preliminary results for two-dimensional structured and unstructured viscous mesh deformation.
Twist deformation of rotationally invariant quantum mechanics
Chakraborty, B.; Kuznetsova, Z.; Toppan, F.
2010-11-15
Noncommutative quantum mechanics in 3D is investigated in the framework of an abelian Drinfeld twist which deforms a given Hopf algebra structure. Composite operators (of coordinates and momenta) entering the Hamiltonian have to be reinterpreted as primitive elements of a dynamical Lie algebra which could be either finite (for the harmonic oscillator) or infinite (in the general case). The deformed brackets of the deformed angular momenta close the so(3) algebra. On the other hand, undeformed rotationally invariant operators can become, under deformation, anomalous (the anomaly vanishes when the deformation parameter goes to zero). The deformed operators, Taylor-expanded in the deformation parameter, can be selected to minimize the anomaly. We present the deformations (and their anomalies) of undeformed rotationally invariant operators corresponding to the harmonic oscillator (quadratic potential), the anharmonic oscillator (quartic potential), and the Coulomb potential.
Deformation of Reservoir Sandstones by Elastic versus Inelastic Deformation Mechanisms
NASA Astrophysics Data System (ADS)
Pijnenburg, R.; Verberne, B. A.; Hangx, S.; Spiers, C. J.
2016-12-01
Hydrocarbon or groundwater production from sandstone reservoirs can result in surface subsidence and induced seismicity. Subsidence results from combined elastic and inelastic compaction of the reservoir due to a change in the effective stress state upon fluid extraction. The magnitude of elastic compaction can be accurately described using poroelasticity theory. However inelastic or time-dependent compaction is poorly constrained. Specifically, the underlying microphysical processes controlling sandstone compaction remain poorly understood. We use sandstones recovered by the field operator (NAM) from the Slochteren gas reservoir (Groningen, NE Netherlands) to study the importance of elastic versus inelastic deformation processes upon simulated pore pressure depletion. We conducted conventional triaxial tests under true in-situ conditions of pressure and temperature. To investigate the effect of applied differential stress (σ1 - σ3 = 0 - 50 MPa) and initial sample porosity (φi = 12 - 24%) on instantaneous and time-dependent inelastic deformation, we imposed multiple stages of axial loading and relaxation. The results show that inelastic strain develops at all stages of loading, and that its magnitude increases with increasing value of differential stress and initial porosity. The stress sensitivity of the axial creep strain rate and microstructural evidence suggest that inelastic compaction is controlled by a combination of intergranular slip and intragranular cracking. Intragranular cracking is shown to be more pervasive with increasing values of initial porosity. The results are consistent with a conceptual microphysical model, involving deformation by poro-elasticity combined with intergranular sliding and grain contact failure. This model aims to predict sandstone deformation behavior for a wide range of stress conditions.
Deformed special relativity and deformed symmetries in a canonical framework
Ghosh, Subir; Pal, Probir
2007-05-15
In this paper we have studied the nature of kinematical and dynamical laws in {kappa}-Minkowski spacetime from a new perspective: the canonical phase space approach. We discuss a particular form of {kappa}-Minkowski phase space algebra that yields the {kappa}-extended finite Lorentz transformations derived in [D. Kimberly, J. Magueijo, and J. Medeiros, Phys. Rev. D 70, 084007 (2004).]. This is a particular form of a deformed special relativity model that admits a modified energy-momentum dispersion law as well as noncommutative {kappa}-Minkowski phase space. We show that this system can be completely mapped to a set of phase space variables that obey canonical (and not {kappa}-Minkowski) phase space algebra and special relativity Lorentz transformation (and not {kappa}-extended Lorentz transformation). The complete set of deformed symmetry generators are constructed that obeys an unmodified closed algebra but induce deformations in the symmetry transformations of the physical {kappa}-Minkowski phase space variables. Furthermore, we demonstrate the usefulness and simplicity of this approach through a number of phenomenological applications both in classical and quantum mechanics. We also construct a Lagrangian for the {kappa}-particle.
Using the deformable mirror as a spatial filter: application to circular beams.
Tyson, R K
1982-03-01
Adaptive optics correction of a wave front by a deformable mirror that acts as a lossless spatial filter is studied. The decomposition of the wave front into Zernike polynomials provides a means for deriving the rms error of a corrected wave front in analytic form. The spatial filter is given in a functional form related to deformable mirror characteristics. A step filter approximation is derived and the conditions where the approximation holds are examined. An example is provided to demonstrate the utility of the spatial filtering concept for adaptive optics systems analysis.
Deformation of lunar and terrestrial minerals.
NASA Technical Reports Server (NTRS)
Christie, J. M.; Griggs, D. T.; Fisher, R. M.; Lally, J. S.; Heuer, A. H.; Radcliffe, S. V.
1972-01-01
The deformation substructures observed by TEM in breccia returned by the Apollo 14 mission are illustrated and their significance is discussed in the context of earlier work on mineral deformation. Shock-produced glass and heavily deformed mineral grains indicate severe shock deformation. Extensive local recovery and sub-microscopic recrystallization are evident and suggest that the coherency of the breccias is caused by a 'shock sintering' mechanism.
A Survey of Techniques for Approximate Computing
Mittal, Sparsh
2016-03-18
Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is to provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.
A Survey of Techniques for Approximate Computing
Mittal, Sparsh
2016-03-18
Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less
Approximate probability distributions of the master equation.
Thomas, Philipp; Grima, Ramon
2015-07-01
Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.
Linear Approximation SAR Azimuth Processing Study
NASA Technical Reports Server (NTRS)
Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.
1979-01-01
A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.
AN APPROXIMATE EQUATION OF STATE OF SOLIDS.
research. By generalizing experimental data and obtaining unified relations describing the thermodynamic properties of solids, and approximate equation of state is derived which can be applied to a wide class of materials. (Author)
Approximate Controllability Results for Linear Viscoelastic Flows
NASA Astrophysics Data System (ADS)
Chowdhury, Shirshendu; Mitra, Debanjana; Ramaswamy, Mythily; Renardy, Michael
2017-09-01
We consider linear viscoelastic flow of a multimode Maxwell or Jeffreys fluid in a bounded domain with smooth boundary, with a distributed control in the momentum equation. We establish results on approximate and exact controllability.
Approximation concepts for efficient structural synthesis
NASA Technical Reports Server (NTRS)
Schmit, L. A., Jr.; Miura, H.
1976-01-01
It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.
Approximate probability distributions of the master equation
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Grima, Ramon
2015-07-01
Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.
Computational aspects of pseudospectral Laguerre approximations
NASA Technical Reports Server (NTRS)
Funaro, Daniele
1989-01-01
Pseudospectral approximations in unbounded domains by Laguerre polynomials lead to ill-conditioned algorithms. Introduced are a scaling function and appropriate numerical procedures in order to limit these unpleasant phenomena.
Lesuer, D R; Syn, C K; Sherby, O D
2004-07-06
The mechanical response of a pearlitic UHCS-1.3C steel deformed at approximately 4000 s{sup -1} to large strains ({var_epsilon} = -0.9) has been studied. Failure, at both the macroscopic and the microscopic levels has been evaluated, and the ability of the material to absorb energy in compression has been examined. Failure occurred by the development of a shear band. However before failure, extensive buckling of the carbide plates was observed and the UHCS-1.3C material exhibited significant potential for compressive ductility and energy absorption due to the distributed buckling of these plates. Strain localization during adiabatic shear band development resulted in the formation of austenite. Subsequent cooling produced a divorced-eutectoid transformation with associated deformation, which resulted in a microstructure consisting of 50 to 100 nm sized grains. The stress-strain behavior within the shear band has also been determined. The results are used to critically evaluate the maximum shear stress criterion of shear band development. New criteria for the development of shear bands are developed based on a strain energy concept.
Polynomial approximation of functions in Sobolev spaces
Dupont, T.; Scott, R.
1980-04-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
Computing functions by approximating the input
NASA Astrophysics Data System (ADS)
Goldberg, Mayer
2012-12-01
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their output. Our approach assumes only the most rudimentary knowledge of algebra and trigonometry, and makes no use of calculus.
Approximate String Matching with Reduced Alphabet
NASA Astrophysics Data System (ADS)
Salmela, Leena; Tarhio, Jorma
We present a method to speed up approximate string matching by mapping the factual alphabet to a smaller alphabet. We apply the alphabet reduction scheme to a tuned version of the approximate Boyer-Moore algorithm utilizing the Four-Russians technique. Our experiments show that the alphabet reduction makes the algorithm faster. Especially in the k-mismatch case, the new variation is faster than earlier algorithms for English data with small values of k.
Some Recent Progress for Approximation Algorithms
NASA Astrophysics Data System (ADS)
Kawarabayashi, Ken-ichi
We survey some recent progress on approximation algorithms. Our main focus is the following two problems that have some recent breakthroughs; the edge-disjoint paths problem and the graph coloring problem. These breakthroughs involve the following three ingredients that are quite central in approximation algorithms: (1) Combinatorial (graph theoretical) approach, (2) LP based approach and (3) Semi-definite programming approach. We also sketch how they are used to obtain recent development.
Polynomial approximation of functions in Sobolev spaces
NASA Technical Reports Server (NTRS)
Dupont, T.; Scott, R.
1980-01-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
Polynomial approximation of functions in Sobolev spaces
NASA Technical Reports Server (NTRS)
Dupont, T.; Scott, R.
1980-01-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
Nonlinear Stochastic PDEs: Analysis and Approximations
2016-05-23
3.4.1 Nonlinear Stochastic PDEs: Analysis and Approximations We compare Wiener chaos and stochastic collocation methods for linear advection-reaction...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 nonlinear stochastic PDEs (SPDEs), nonlocal SPDEs, Navier...3.4.1 Nonlinear Stochastic PDEs: Analysis and Approximations Report Title We compare Wiener chaos and stochastic collocation methods for linear
Approximations and Solution Estimates in Optimization
2016-04-06
Approximations and Solution Estimates in Optimization Johannes O. Royset Operations Research Department Naval Postgraduate School joroyset@nps.edu...Abstract. Approximation is central to many optimization problems and the supporting theory pro- vides insight as well as foundation for algorithms. In...functions quantifies epi-convergence, we are able to obtain estimates of optimal solutions and optimal values through estimates of that distance. In
The closure approximation in the hierarchy equations.
NASA Technical Reports Server (NTRS)
Adomian, G.
1971-01-01
The expectation of the solution process in a stochastic operator equation can be obtained from averaged equations only under very special circumstances. Conditions for validity are given and the significance and validity of the approximation in widely used hierarchy methods and the ?self-consistent field' approximation in nonequilibrium statistical mechanics are clarified. The error at any level of the hierarchy can be given and can be avoided by the use of the iterative method.
An improved proximity force approximation for electrostatics
Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.
2012-08-15
A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.
Approximating centrality in evolving graphs: toward sublinearity
NASA Astrophysics Data System (ADS)
Priest, Benjamin W.; Cybenko, George
2017-05-01
The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.
Thermal deformation of helical gears
NASA Astrophysics Data System (ADS)
Zhang, Yong; Fei, Ye-tai; Liu, Shan-lin
2010-08-01
The analytical equation for the thermal field of a helical gear under normal working condition in a stable thermal field is established using mathematical physics, and the thermal deformation of the gear can be computed using this equation. The variations of gear geometric parameters, such as radial dimension, tooth depth, spiral angle, pressure angle, flank clearance and etc., are investigated with respect to the temperature change. According to the analytical and computational results obtained using the equation, the thermal deformation of the gear is strongly dependent on the choice of parameters, which is also confirmed using simulation software (COMSOL Multiphysic software). This is significant for the improvement of the rotation precision and working efficiency of screw gears.
Variational approach and deformed derivatives
NASA Astrophysics Data System (ADS)
Weberszpil, J.; Helayël-Neto, J. A.
2016-05-01
Recently, we have demonstrated that there exists a possible relationship between q-deformed algebras in two different contexts of Statistical Mechanics, namely, the Tsallis' framework and the Kaniadakis' scenario, with a local form of fractional-derivative operators for fractal media, the so-called Hausdorff derivatives, mapped into a continuous medium with a fractal measure. Here, in this paper, we present an extension of the traditional calculus of variations for systems containing deformed-derivatives embedded into the Lagrangian and the Lagrangian densities for classical and field systems. The results extend the classical Euler-Lagrange equations and the Hamiltonian formalism. The resulting dynamical equations seem to be compatible with those found in the literature, specially with mass-dependent and with nonlinear equations for systems in classical and quantum mechanics. Examples are presented to illustrate applications of the formulation. Also, the conserved Noether current is worked out.
Deformation of noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan
2016-09-01
In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .
NASA Technical Reports Server (NTRS)
Ito, K.
1984-01-01
The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A charactristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.
NASA Technical Reports Server (NTRS)
Ito, K.
1985-01-01
The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A characteristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.
Deformation Driven Alloying and Transformation
2015-03-03
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Wisconsin - Madison RESERACH & SPONSORED PROGRAMS 21 N. PARK ...Research Triangle Park , NC 27709-2211 Deformation Alloying, Mechanochemical Transduction, Multilayer, Driven System REPORT DOCUMENTATION PAGE 11...Styczynski A, Hartig C, Bohlen J, Letzig D. Scripta Mater 2004;50:943. [17] Sieber H, Park J, Weissmüller J, Perepezko J. Acta Mater 2001;49:1139
Large Scale Nanolaminate Deformable Mirror
Papavasiliou, A; Olivier, S; Barbee, T; Miles, R; Chang, K
2005-11-30
This work concerns the development of a technology that uses Nanolaminate foils to form light-weight, deformable mirrors that are scalable over a wide range of mirror sizes. While MEMS-based deformable mirrors and spatial light modulators have considerably reduced the cost and increased the capabilities of adaptive optic systems, there has not been a way to utilize the advantages of lithography and batch-fabrication to produce large-scale deformable mirrors. This technology is made scalable by using fabrication techniques and lithography that are not limited to the sizes of conventional MEMS devices. Like many MEMS devices, these mirrors use parallel plate electrostatic actuators. This technology replicates that functionality by suspending a horizontal piece of nanolaminate foil over an electrode by electroplated nickel posts. This actuator is attached, with another post, to another nanolaminate foil that acts as the mirror surface. Most MEMS devices are produced with integrated circuit lithography techniques that are capable of very small line widths, but are not scalable to large sizes. This technology is very tolerant of lithography errors and can use coarser, printed circuit board lithography techniques that can be scaled to very large sizes. These mirrors use small, lithographically defined actuators and thin nanolaminate foils allowing them to produce deformations over a large area while minimizing weight. This paper will describe a staged program to develop this technology. First-principles models were developed to determine design parameters. Three stages of fabrication will be described starting with a 3 x 3 device using conventional metal foils and epoxy to a 10-across all-metal device with nanolaminate mirror surfaces.
Deformation processes in forging ceramics
NASA Technical Reports Server (NTRS)
Cannon, R. M.; Rhodes, W. H.
1972-01-01
The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging are utilized to investigate both the flow and fracture processes involved. An additional hemisphere forging was done which failed prematurely. Analysis and comparison with available fracture data for AL2O3 indicated possible causes of the failure. Examination of previous forgings indicated an increase in grain boundary cavitation with increasing strain.
Validity of the thin viscous sheet approximation in models of continental collision
NASA Astrophysics Data System (ADS)
Garthwaite, Matthew C.; Houseman, Gregory A.
2011-02-01
The two-dimensional thin viscous sheet approximation is widely used to describe large-scale continental deformation. It treats the lithosphere as a fluid layer in which deformation results from a balance between buoyancy forces and tectonic boundary conditions. Comparisons between two-dimensional thin sheet and full three-dimensional solutions of a simple indenter model show that appreciable differences exist, especially when the indenter half width, D, is of the same order as the thickness of the deforming layer, L (i.e., D/L ≈ 1). These differences are amplified by increasing the power law exponent of the viscous constitutive law (n) but decrease as the Argand number (Ar) is increased. The greatest differences between two-dimensional and three-dimensional solutions are found at the indenter corner, where the thin sheet consistently overestimates vertical strain rates. Differences between strain rates at the corner may be 50% or greater for small Argand numbers. Other differences arise because a lithospheric root zone is formed in the three-dimensional solutions and vertically averaged strain rate is decreased in regions close to the indenter. This effect is absent from thin sheet calculations since the thickness of the load-bearing layer is assumed constant. In general, the thin viscous sheet approximation provides a reasonably accurate estimate of long wavelength deformation for D/L as low as 1 if n is less than ˜3. However, even at large D/L the solutions may be inaccurate close to strain rate concentrations at the indenter corners where horizontal gradients of deformation are large.
Investigation of Optimal Digital Image Correlation Patterns for Deformation Measurement
NASA Technical Reports Server (NTRS)
Bomarito, G. F.; Ruggles, T. J.; Hochhalter, J. D.; Cannon, A. H.
2016-01-01
Digital image correlation (DIC) relies on the surface texture of a specimen to measure deformation. When the specimen itself has little or no texture, a pattern is applied to the surface which deforms with the specimen and acts as an artificial surface texture. Because the applied pattern has an effect on the accuracy of DIC, an ideal pattern is sought for which the error introduced into DIC measurements is minimal. In this work, a study is performed in which several DIC pattern quality metrics from the literature are correlated to DIC measurement error. The resulting correlations give insight on the optimality of DIC patterns in general. Optimizations are then performed to produce patterns which are well suited for DIC. These patterns are tested to show their relative benefits. Chief among these benefits are a reduction in error of approximately 30 with respect to a randomly generated pattern.
Generalized seniority on a deformed single-particle basis
NASA Astrophysics Data System (ADS)
Jia, L. Y.
2017-09-01
Recently, I proposed a fast computing scheme for generalized seniority on a spherical single-particle basis [J. Phys. G: Nucl. Part. Phys. 42, 115105 (2015), 10.1088/0954-3899/42/11/115105]. This work redesigns the scheme to make it applicable to deformed single-particle basis. The algorithm is applied to the rare-earth-metal nucleus 94 64 158Gd for intrinsic (body-fixed frame) neutron excitations under the low-momentum NN interaction Vlow -k. By allowing as many as four broken pairs, I compute the lowest 300 intrinsic states of several multipolarities. These states converge well to the exact ones, showing generalized seniority is very effective in truncating the deformed shell model. Under realistic interactions, the picture remains approximately valid: The ground state is a coherent pair condensate and the pairs gradually break up as excitation energy increases.
Finite element modeling of the deformation of magnetoelastic film
Barham, Matthew I.; White, Daniel A.; Steigmann, David J.
2010-09-01
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles, a magnetoelastic polymer, has been developed. This engineered material is formed into a thin film using spin casting. An applied magnetic field will deform the film. The magnetic deformation of this film has many possible applications, particularly in microfluidic pumps and pressure regulators. In this paper a finite element method suitable for the transient simulation of arbitrarily shaped three-dimensional magnetoelastic polymers subjected to time-varying magnetic fields is developed. The approach is similar to that employed in finite elment magnetohydrodynamic simulations, the key difference is a more complex hyperelastic material model. In order to confirm the validity of the approach, finite element solutions for an axially symmetric thin film are compared to an analytical solution based on the membrane (infinitely thin) approximation. For this particular problem the two approaches give qualitatively similar results and converge as the film thickness approaches zero.
Graviton resonances on deformed branes
NASA Astrophysics Data System (ADS)
Cruz, W. T.; Gomes, A. R.; Almeida, C. A. S.
2011-11-01
Plane-wave solutions of Schrödinger-like equations obtained from the metric perturbations in 5D braneworld scenarios can present resonant modes. The search for those structures is important because they can provide us with massive modes with not suppressed couplings with the membrane. We propose in this paper the study of graviton Kaluza-Klein spectrum in a special kind of membrane that possesses internal structure. The interest in the study of these deformed defects is due to the fact that they have a richer internal structure that has implications in the matter energy density along the extra dimensions and this produces a space-time background whose curvature has a splitting, if compared to the usual kink-like models. Such models arise from (4, 1)-branes constructed with one scalar field coupled with gravity where we find two-kink solutions from deformations of a phi4 potential. The main objective of this work is to observe the effects of deformation process in the resonant modes as well as in the coupling between the graviton massive modes and the brane.
NASA Astrophysics Data System (ADS)
Titus, Sarah J.
The San Andreas fault system is a transpressional plate boundary characterized by sub-parallel dextral strike-slip faults separating internally deformed crustal blocks in central California. Both geodetic and geologic tools were used to understand the short- and long-term partitioning of deformation in both the crust and the lithospheric mantle across the plate boundary system. GPS data indicate that the short-term discrete deformation rate is ˜28 mm/yr for the central creeping segment of the San Andreas fault and increases to 33 mm/yr at +/-35 km from the fault. This gradient in deformation rates is interpreted to reflect elastic locking of the creeping segment at depth, distributed off-fault deformation, or some combination of these two mechanisms. These short-term fault-parallel deformation rates are slower than the expected geologic slip rate and the relative plate motion rate. Structural analysis of folds and transpressional kinematic modeling were used to quantify long-term distributed deformation adjacent to the Rinconada fault. Folding accommodates approximately 5 km of wrench deformation, which translates to a deformation rate of ˜1 mm/yr since the start of the Pliocene. Integration with discrete offset on the Rinconada fault indicates that this portion of the San Andreas fault system is approximately 80% strike-slip partitioned. This kinematic fold model can be applied to the entire San Andreas fault system and may explain some of the across-fault gradient in deformation rates recorded by the geodetic data. Petrologic examination of mantle xenoliths from the Coyote Lake basalt near the Calaveras fault was used to link crustal plate boundary deformation at the surface with models for the accommodation of deformation in the lithospheric mantle. Seismic anisotropy calculations based on xenolith petrofabrics suggest that an anisotropic mantle layer thickness of 35-85 km is required to explain the observed shear wave splitting delay times in central
The tendon approximator device in traumatic injuries.
Forootan, Kamal S; Karimi, Hamid; Forootan, Nazilla-Sadat S
2015-01-01
Precise and tension-free approximation of two tendon endings is the key predictor of outcomes following tendon lacerations and repairs. We evaluate the efficacy of a new tendon approximator device in tendon laceration repairs. In a comparative study, we used our new tendon approximator device in 99 consecutive patients with laceration of 266 tendons who attend a university hospital and evaluated the operative time to repair the tendons, surgeons' satisfaction as well as patient's outcomes in a long-term follow-up. Data were compared with the data of control patients undergoing tendon repair by conventional method. Totally 266 tendons were repaired by approximator device and 199 tendons by conventional technique. 78.7% of patients in first group were male and 21.2% were female. In approximator group 38% of patients had secondary repair of cut tendons and 62% had primary repair. Patients were followed for a mean period of 3years (14-60 months). Time required for repair of each tendon was significantly reduced with the approximator device (2 min vs. 5.5 min, p<0.0001). After 3-4 weeks of immobilization, passive and active physiotherapy was started. Functional Results of tendon repair were identical in the two groups and were not significantly different. 1% of tendons in group A and 1.2% in group B had rupture that was not significantly different. The new nerve approximator device is cheap, feasible to use and reduces the time of tendon repair with sustained outcomes comparable to the conventional methods.
Accidental degeneracies in nonlinear quantum deformed systems
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2011-09-01
We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.
Integrable Deformations of T -Dual σ Models
NASA Astrophysics Data System (ADS)
Borsato, Riccardo; Wulff, Linus
2016-12-01
We present a method to deform (generically non-Abelian) T duals of two-dimensional σ models, which preserves classical integrability. The deformed models are identified by a linear operator ω on the dualized subalgebra, which satisfies the 2-cocycle condition. We prove that the so-called homogeneous Yang-Baxter deformations are equivalent, via a field redefinition, to our deformed models when ω is invertible. We explain the details for deformations of T duals of principal chiral models, and present the corresponding generalization to the case of supercoset models.
On uniform approximation of elliptic functions by Padé approximants
NASA Astrophysics Data System (ADS)
Khristoforov, Denis V.
2009-06-01
Diagonal Padé approximants of elliptic functions are studied. It is known that the absence of uniform convergence of such approximants is related to them having spurious poles that do not correspond to any singularities of the function being approximated. A sequence of piecewise rational functions is proposed, which is constructed from two neighbouring Padé approximants and approximates an elliptic function locally uniformly in the Stahl domain. The proof of the convergence of this sequence is based on deriving strong asymptotic formulae for the remainder function and Padé polynomials and on the analysis of the behaviour of a spurious pole. Bibliography: 23 titles.
Approximation of Bivariate Functions via Smooth Extensions
Zhang, Zhihua
2014-01-01
For a smooth bivariate function defined on a general domain with arbitrary shape, it is difficult to do Fourier approximation or wavelet approximation. In order to solve these problems, in this paper, we give an extension of the bivariate function on a general domain with arbitrary shape to a smooth, periodic function in the whole space or to a smooth, compactly supported function in the whole space. These smooth extensions have simple and clear representations which are determined by this bivariate function and some polynomials. After that, we expand the smooth, periodic function into a Fourier series or a periodic wavelet series or we expand the smooth, compactly supported function into a wavelet series. Since our extensions are smooth, the obtained Fourier coefficients or wavelet coefficients decay very fast. Since our extension tools are polynomials, the moment theorem shows that a lot of wavelet coefficients vanish. From this, with the help of well-known approximation theorems, using our extension methods, the Fourier approximation and the wavelet approximation of the bivariate function on the general domain with small error are obtained. PMID:24683316
Recent advances in discrete dipole approximation
NASA Astrophysics Data System (ADS)
Flatau, P. J.
2012-12-01
I will describe recent advances and results related to Discrete Dipole Approximation. I will concentrate on Discrete Dipole Scattering (DDSCAT) code which has been jointly developed by myself and Bruce T. Draine. Discussion will concentrate on calculation of scattering and absorption by isolated particles (e.g., dust grains, ice crystals), calculations of scattering by periodic structures with applications to studies of scattering and absorption by periodic arrangement of finite cylinders, cubes, etc), very fast near field calculation, ways to display scattering targets and their composition using three dimensional graphical codes. I will discuss possible extensions. References Flatau, P. J. and Draine, B. T., 2012, Fast near field calculations in the discrete dipole approximation for regular rectilinear grids, Optics Express, 20, 1247-1252. Draine B. T. and Flatau P. J., 2008, Discrete-dipole approximation for periodic targets: theory and tests , J. Opt. Soc. Am. A., 25, 2693-2703. Draine BT and Flatau PJ, 2012, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2, arXiv:1202.3424v3.ear field calculations (Fast near field calculations in the discrete dipole approximation for regular rectilinear grids P. J. Flatau and B. T. Draine, Optics Express, Vol. 20, Issue 2, pp. 1247-1252 (2012))
Estimation of distribution algorithms with Kikuchi approximations.
Santana, Roberto
2005-01-01
The question of finding feasible ways for estimating probability distributions is one of the main challenges for Estimation of Distribution Algorithms (EDAs). To estimate the distribution of the selected solutions, EDAs use factorizations constructed according to graphical models. The class of factorizations that can be obtained from these probability models is highly constrained. Expanding the class of factorizations that could be employed for probability approximation is a necessary step for the conception of more robust EDAs. In this paper we introduce a method for learning a more general class of probability factorizations. The method combines a reformulation of a probability approximation procedure known in statistical physics as the Kikuchi approximation of energy, with a novel approach for finding graph decompositions. We present the Markov Network Estimation of Distribution Algorithm (MN-EDA), an EDA that uses Kikuchi approximations to estimate the distribution, and Gibbs Sampling (GS) to generate new points. A systematic empirical evaluation of MN-EDA is done in comparison with different Bayesian network based EDAs. From our experiments we conclude that the algorithm can outperform other EDAs that use traditional methods of probability approximation in the optimization of functions with strong interactions among their variables.
Occurrence of oral deformities in larval anurans
Drake, D.L.; Altig, R.; Grace, J.B.; Walls, S.C.
2007-01-01
We quantified deformities in the marginal papillae, tooth rows, and jaw sheaths of tadpoles from 13 population samples representing three families and 11 sites in the southeastern United States. Oral deformities were observed in all samples and in 13.5-98% of the specimens per sample. Batrachochytrium dendrobatidis (chytrid) infections were detected in three samples. There was high variability among samples in the pattern and number of discovered deformities. Pairwise associations between oral structures containing deformities were nonrandom for several populations, especially those with B. dendrobatidis infections or high total numbers of deformities. Comparisons of deformities among samples using multivariate analyses revealed that tadpole samples grouped together by family. Analyses of ordination indicated that three variables, the number of deformities, the number of significant associations among deformity types within populations, and whether populations were infected with B. dendrobatidis, were significantly correlated with the pattern of deformities. Our data indicate that the incidence of oral deformities can be high in natural populations and that phylogeny and B. dendrobatidis infection exert a strong influence on the occurrence and type of oral deformities in tadpoles. ?? by the American Society of Ichthyologists and Herperologists.