Science.gov

Sample records for deformed two-phase stainless

  1. Automatic assessment of a two-phase structure in the duplex stainless-steel SAF 2205

    SciTech Connect

    Komenda, J. ); Sandstroem, R. )

    1993-10-01

    Automatic image analysis was used to study the effect of deformation on the size and distribution of the austenite and ferrite phases in the duplex stainless steel SAF 2205 (22Cr-5Ni-3Mo-15N). The main parameters used were the chord size to characterize the ferrite phase and Feret's diameter for the austenite phase. As the deformation increased, ferrite bands became more elongated and thinner, contributing to a pronounced banding. The amount of banding can be quantified by using a ratio between the slopes of the chord size distributions in the longitudinal and short transverse directions. According to a proposed model of the influence of deformation on the two-phase structure, the process of austenite elongation and subdivision of austenite islands (crushing) is described. The effect of deformation on the yield and tensile strength was expressed using a Hall-Petch type relationship where the grain size was represented by the average width of the ferrite bands. The observed anisotropy in strength properties is believed to be due to texture hardening. Because elongation at a given strength level is the same in both the longitudinal and transverse directions, the banding itself does not influence the ductility. Nor can the strength anisotropy be due to banding, because the strength is greater in the longitudinal than in the transverse direction.

  2. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.

    2016-11-01

    The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

  3. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.

    2016-08-01

    The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

  4. Invasion Patterns During Two-phase Flow In Deformable Porous Media

    NASA Astrophysics Data System (ADS)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2016-04-01

    , when normalized by obtained power laws with time N(t) ∝ tα and r(t) ∝ tβ. [1] Eriksen F.K., Toussaint R., Måløy K.J. and Flekkøy E.G. (2015) Invasion patterns during two-phase flow in deformable porous media. Front. Phys. 3:81. doi: 10.3389/fphy.2015.00081

  5. A dual-porosity model for two-phase flow in deforming porous media

    NASA Astrophysics Data System (ADS)

    Shu, Zhengying

    Only recently has one realized the importance of the coupling of fluid flow with rock matrix deformations for accurately modeling many problems in petroleum, civil, environmental, geological and mining engineering. In the oil industry, problems such as reservoir compaction, ground subsidence, borehole stability and sanding need to be simulated using a coupled approach to make more precise predictions than when each process is considered to be independent of the other. Due to complications associated with multiple physical processes and mathematical representation of a multiphase now system in deformable fractured reservoirs, very few references, if any, are available in the literature. In this dissertation, an approach, which is based on the dual-porosity concept and takes into account rock deformations, is presented to derive rigorously a set of coupled differential equations governing the behavior of fractured porous media and two-phase fluid flow. The finite difference numerical method, as an alternative method for finite element, is applied to discretize the governing equations both in time and space domains. Throughout the derived set of equations, the fluid pressures and saturations as well as the solid displacements are considered as the primary unknowns. The model is tested against the case of single-phase flow in a 1-D consolidation problem for which analytical solutions are available. An example of coupled two-phase fluid flow and rock deformations for a scenario of a one-dimensional, fractured porous medium is also discussed. The numerical model and simulator, RFIA (Rock Fluid InterAction), developed in this dissertation can be a powerful tool to solve difficult problems not only in petroleum engineering such as ground subsidence, borehole stability and sand control, but also in civil engineering such as groundwater flow through fractured bedrock and in environmental engineering such as waste deposit concerns in fractured and unconsolidated formations

  6. Consequences of viscous anisotropy for melt localization in a deforming, two-phase aggregate

    NASA Astrophysics Data System (ADS)

    Takei, Y.; Katz, R. F.

    2012-12-01

    Melt localization in the deforming, partially molten mantle has been of interest because it affects the melt extraction rate, mantle deformability, and chemical interaction between the melt and host rock. Experimental studies have reported the spontaneous segregation of melt into melt-rich bands in samples deformed under simple shear and torsion (Holtzman et al, 2003, King et al, 2010). Efforts to clarify the instability mechanism have so far revealed that rheological properties of partially molten rocks control the occurrence of instability. Porosity-weakening viscosity, empirically written as exp(- λ × f) with porosity f and constant λ(= 25-45), plays an essential role in the destabilization of porosity perturbation in the shear flow of a two-phase aggregate (eg., pure shear flow, simple shear flow): the perturbation growth rate is proportional to the product of shear strain rate and the factor λ (Stevenson, 1989). The stress exponent n of the viscosity affects the angle of the perturbation plane with maximum growthrate, where n=3-6 (power-law creep) explains the experimentally observed low angle to the shear plane (Katz et al, 2006). However, in-situ experimental measurements of n indicate that it takes values as low as unity without affecting the observed orientation of melt bands. Viscous anisotropy provides an alternative explanation for the observed band angles. It is produced by the stress-induced microstructural anisotropy (Daines and Kohlstedt, 1997; Zimmermann et al., 1999; Takei, 2010), and it enhances the coupling between melt migration and matrix shear deformation (Takei and Holtzman, 2009). Even without any porosity perturbation, viscous anisotropy destabilizes simple patterns of two-phase flow with a stress/strain gradient (eg., Poiseuille flow, torsional flow) and gives rise to shear-induced melt localization: the growth rate of this mechanism depends on the shear strain rate and the compaction length relative to the spatial scale of the

  7. Creep mechanisms and interface-enhanced deformation twinning in a two-phase lamellar TiAl alloy

    SciTech Connect

    Hsiung, L.M., LLNL

    1997-03-01

    Deformation mechanisms and the role of interfaces in deformation twinning of a two-phase [TiAl({gamma})/Ti{sub 3}Al({alpha}{sub 2})] lamellar alloy creep deformed at elevated temperatures have been investigated. Since the multiplication of lattice dislocations within both {gamma} and {alpha}{sub 2} lamellae is very limited at a low stress level due to a refined lamellar microstructure, the glide of interfacial dislocations on both {gamma}/{alpha}{sub 2} and {gamma}/{gamma} interfaces (i.e interface sliding) becomes an important deformation mode. Obstacles such as impinged lattice dislocations can impede the movement of interfacial dislocations, which glide in a cooperative fashion along the lamellar interfaces. The impediment of dislocation motion subsequently causes a dislocation pile-up in front of obstacles as creep strain accumulates. When the crystals deform at high stress level, deformation twinning becomes a predominant deformation mode. Deformation twins are found to nucleate from the interfaces as a result of a local stress concentration generated from dislocation pile-ups. It is suggested that the deformation twinning in lamellar TiAl/Ti{sub 3}Al crystals can be vieived as a stress relaxation process for the concentration of stress at the head of each dislocation pile-up. An interface-assisted twinning mechanism is accordingly proposed and discussed.

  8. Development of a Two-Phase Model for the Hot Deformation of Highly-Alloyed Aluminum

    SciTech Connect

    A. J. Beaudoin; J. A. Dantzig; I. M. Robertson; B. E. Gore; S. F. Harnish; H. A. Padilla

    2005-10-31

    Conventional processing methods for highly alloyed aluminum consist of ingot casting, followed by hot rolling and thermal treatments. Defects result in lost productivity and wasted energy through the need to remelt and reprocess the material. This research centers on developing a fundamental understanding for deformation of wrought 705X series alloys, a key alloy system used in structural airframe applications. The development of damage at grain boundaries is characterized through a novel test that provides initiation of failure while preserving a controlled deformation response. Data from these mechanical tests are linked to computer simulations of the hot rolling process through a critical measure of damage. Transmission electron microscopy provides fundamental insight into deformation at these high working temperatures, and--in a novel link between microscale and macroscale response--the evolution of microstructure (crystallographic orientation) provides feedback for tuning of friction in the hot rolling process. The key product of this research is a modeling framework for the analysis of industrial hot rolling.

  9. Structure and fracture mechanism of a two-phase chromium-nickel alloy during high-temperature deformation

    NASA Astrophysics Data System (ADS)

    Mironenko, V. N.; Aronin, A. S.; Vasenev, V. V.; Aristova, I. M.; Shmyt'ko, I. M.; Trushnikova, A. S.

    2016-09-01

    The structure and mechanical properties of a two-phase Kh65N33V2FT alloy has been studied after tests at room and high temperatures. The morphology of the main phases, namely, solid solutions of nickel in chromium (α) and chromium in nickel (γ), is changed depending on temperature. The lattice parameters of the main phases have been determined. The main mechanism of deformation for this alloy is shown to be grain-boundary sliding. Bulk and grain-boundary diffusion creep and self-regulating diffusion-viscous flow is possible in the γ phase during high-temperature deformation. The heat resistance of this alloy is restricted to 1000°C because of the formation of a γ-phase percolation cluster.

  10. Hot compression deformation behavior of AISI 321 austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haj, Mehdi; Mansouri, Hojjatollah; Vafaei, Reza; Ebrahimi, Golam Reza; Kanani, Ali

    2013-06-01

    The hot compression behavior of AISI 321 austenitic stainless steel was studied at the temperatures of 950-1100°C and the strain rates of 0.01-1 s-1 using a Baehr DIL-805 deformation dilatometer. The hot deformation equations and the relationship between hot deformation parameters were obtained. It is found that strain rate and deformation temperature significantly influence the flow stress behavior of the steel. The work hardening rate and the peak value of flow stress increase with the decrease of deformation temperature and the increase of strain rate. In addition, the activation energy of deformation ( Q) is calculated as 433.343 kJ/mol. The microstructural evolution during deformation indicates that, at the temperature of 950°C and the strain rate of 0.01 s-1, small circle-like precipitates form along grain boundaries; but at the temperatures above 950°C, the dissolution of such precipitates occurs. Energy-dispersive X-ray analyses indicate that the precipitates are complex carbides of Cr, Fe, Mn, Ni, and Ti.

  11. Effect of deformation texture on the anisotropy of elasticity and damage of two-phase steel sheets

    NASA Astrophysics Data System (ADS)

    Bryukhanov, A. A.; Gerstein, G.; Dyachok, D. A.; Nürnberger, F.

    2016-07-01

    The effect of small tensile deformation (3, 6, and 10%) on the texture of preliminary annealed sheets of two-phase DP600 steel (0.10 C, 0.15 Si, 1.4 Mn, 0.007 P, 0.008 S, 0,009 N, 0.02-0,06 Al, 1 Cr-Mo-Ni (wt %)) is studied. Against the background of the annealing texture in the sheets, the {001} <110>, {111} <110>, {111} <112>, {111} <312> components of the slip texture and {115} <110>, {115} <552>, {221} <110>, {221} <114> orientations are developed, which can be associated with the twinning processes. The anisotropy pattern of the Young's modulus ( E) in the sheet plane remains the same after tensile deformation of the annealed sheets. After tension, the values of E decrease in all directions as a result of the onset and development of microdamages. The anisotropy of damage ( D) in the plane of the steel sheets after tension is characterized by a maximum in the transverse direction (TD) and a minimum in the rolling direction (RD).

  12. Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel.

    PubMed

    Yoshikuni, Nobutaka; Baba, Takayuki; Tsunoda, Natsuki; Oguma, Koichi

    2005-03-31

    A polyethylene glycol (PEG)-based aqueous two-phase system has been established for the extraction of Ni-dimethylglyoximato complex. Appropriate amounts of PEG solution and solid (NH(4))(2)SO(4) were added to the Ni-dimethylglyoximato complex which had been formed in the presence of sodium tartrate and K(2)S(2)O(8) at pH 12 in a separatory funnel and shaken vigorously for about 1min. The mixture was allowed to stand for 10min and then the absorbance of the extracted complex in the upper PEG-rich phase was measured at 470nm. Beer's law was obeyed over the range of 0.26-2.1ppm Ni. The proposed extraction method has been applied to the determination of Ni in steel. A steel sample was decomposed with an appropriate acid mixture. An aliquot of the sample solution was taken, treated with H(3)PO(4) and most of the iron and copper were removed by hydroxide precipitation using solid BaCO(3) to control the pH of the sample solution in advance of the extraction of Ni. The analytical results obtained for Ni in steel certified reference material JSS 650-10 (The Japan Iron and Steel Federation), BCS 323 (Bureau of Analysed Samples Ltd.) and NIST SRM 361 and 362 (National Institute of Standards and Technology) were in good agreement with certified values.

  13. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  14. Effect of pre-strain on mechanical properties and deformation induced transformation of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Zulfi, Fahri R.; Korda, Akhmad A.

    2016-08-01

    Effect of pre-strain on mechanical properties and deformation induced phase transformation of 304 stainless steel under tensile deformation has been studied. Pre-strain with the variation percentage of deformation was applied to the tensile test specimens. Tensile and hardness testing were carried out after pre-strain to study the mechanical properties change. Deformation induced phase transformation was investigated by using X-ray diffraction and optical microscope. XRD study indicates that metastable austenite transforms to martensite due to deformation. The martensite volume fraction increases with the increase in percentage of deformation. The increase in strength and hardness were associated with an increase in the volume fraction of martensite.

  15. Modeling of Developing Inhomogeneities in the Ferrite Microstructure and Resulting Mechanical Properties Induced by Deformation in the Two-Phase Region

    SciTech Connect

    Majta, J; Zurek, A.K.; Pietrzyk, M.

    1999-07-13

    The differences in microstructure development of hot deformed steels in the austenite and two-phase region have been effectively described using an integrated computer modeling process. In general, the complete model presented here takes into account kinetics of recrystallization, precipitation, phase transformation, recrystallized austenite grain size, ferrite grain size, and the resulting mechanical properties. The transformation submodel of niobium-microalloyed steels is based on the nucleation and grain growth theory and additivity rule. The thermomechanical part of the modeling process was effectively carried out using the finite element method. Results were obtained in different temperatures, strain rates, and range of deformation. The thermomechanical treatments are different for two grades of niobium-steels to make possible analysis of the resulting structure and properties for different histories of deformation and chemical composition.

  16. Necking and spheroidization of {alpha}{sub 2} plates in lamellar microstructure of a hot-deformed two-phase TiAl alloy during annealing

    SciTech Connect

    Zhang, L.C. |; Chen, G.L.; Wang, J.G.; Ye, H.Q.

    1998-03-13

    It is well known that two-phase TiAl alloys exhibit better mechanical properties than single phase {gamma}-TiAl alloys. Recently Kim reported that the thermomechanical treatments (TMT) or thermomechanical processing (TMP) for TiAl alloys can significantly change the microstructures resulting in an improved balanced mechanical properties. Besides changes in grain size, lamellar spacing and the ratio of {gamma} to {alpha}{sub 2} lamellae, TMT or TMP may also lead to the formation of numerous dislocations and deformation twins, and various nonequilibrium structures of lamellar interfaces. Chen et al. have observed by high-resolution transmission electron microscopy (HRTEM) that hot-deformation results in {alpha}{sub 2}/{gamma} and {gamma}/{gamma} interfaces with numerous ledges, so the boundary plane is no longer parallel to the (111){sub {gamma}} or (0001){sub {alpha}{sub 2}} plane, and some interfacial ledges correspond to 1/3 [111] Frank partial dislocations in {gamma} plate, as consistent with the deviation of (111){sub {gamma}} from being parallel to (0001){sub {alpha}{sub 2}} plane near the {alpha}{sub 2}/{gamma} interface. The thermal instability of the deformed {alpha}{sub 2}/{gamma} lamellar microstructure, such as necking and spheroidization of {alpha}{sub 2} plates, formation of subgrains in plates and recrystallization, has been recently studied. However, no report has been made on the detailed evolution of deformed microstructure during annealing. This paper reports some TEM observations on necking and spheroidization of {alpha}{sub 2} plates in a hot-deformed two-phase TiAl alloy upon subsequent short-time annealing.

  17. Effect of Preaging Deformation on Aging Characteristics of 2507 Super Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Rao, A. G.; Sarkar, R.; Kashyap, B. P.; Prabhu, N.

    2016-02-01

    In the present study, precipitation of sigma (σ) phase was investigated over the temperature range of 700-850 °C in undeformed and deformed (60% cold rolling) samples of 2507 super duplex stainless steel. The fraction of sigma phase formed as a result of the transformation α → σ + γ2 increases with increasing time and temperature. The increase in sigma phase leads to increase in yield strength and decrease in ductility. Preaging deformation leads to accelerated precipitation of sigma phase. The activation energy for sigma phase precipitation in deformed sample is found to be lower than that in undeformed sample.

  18. Effect of uniaxial deformation to 50% on the sensitization process in 316 stainless steel

    SciTech Connect

    Ramirez, L.M.; Almanza, E.; Murr, L.E. . E-mail: fekberg@utep.edu

    2004-09-15

    The effect of uniaxial deformation to 50% on the degree of sensitization (DOS) in 316 stainless steel was investigated at 625 and 670 deg. C for 5-100 h using the electrochemical potentiokinetic reactivation (EPR) test. The results showed that the deformation accelerated the sensitization/desensitization process, especially at 670 deg. C. However, the material is still sensitized after up to 100 h of aging time. Transmission electron microscopy was used to corroborate these results. The deformed material showed more carbide precipitates (Cr{sub 23}C{sub 6}) at the grain boundaries and twin intersections than did the nondeformed material.

  19. EBSD investigation of the microstructure and texture characteristics of hot deformed duplex stainless steel.

    PubMed

    Cizek, P; Wynne, B P; Rainforth, W M

    2006-05-01

    The microstructure and crystallographic texture characteristics were studied in a 22Cr-6Ni-3Mo duplex stainless steel subjected to plastic deformation in torsion at a temperature of 1000 degrees C using a strain rate of 1 s(-1). High-resolution EBSD was successfully used for precise phase and substructural characterization of this steel. The austenite/ferrite ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over large sample areas. The deformation mechanisms in each phase and the interrelationship between the two are discussed. PMID:16774517

  20. Numerical modeling of two-phase fluid flow in deformable fractured porous media using the extended finite element method and an equivalent continuum model

    NASA Astrophysics Data System (ADS)

    Khoei, A. R.; Hosseini, N.; Mohammadnejad, T.

    2016-08-01

    In the present paper, a numerical model is developed based on a combination of the extended finite element method and an equivalent continuum model to simulate the two-phase fluid flow through fractured porous media containing fractures with multiple length scales. The governing equations involve the linear momentum balance equation and the flow continuity equation for each fluid phase. The extended finite element method allows for an explicit and accurate representation of cracks by enriching the standard finite element approximation of the field variables with appropriate enrichment functions, and captures the mass transfer between the fracture and the matrix. Due to the high computational cost of X-FEM, this technique is only used to model large fractures. The pre-existing short fractures, which are distributed randomly in the porous medium, contribute to the increase of the effective permeability tensor and are modeled with an equivalent continuum model. Finally, the robustness of the proposed computational model is demonstrated through several numerical examples, and the effects of crack orientation, capillary pressure function, solid skeleton deformation, and existence of short cracks on the pattern of fluid flow are investigated. It is shown that the developed model provides a correct prediction of flow pattern for different crack configurations.

  1. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  2. Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part I- Temperature Dependence

    SciTech Connect

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    This paper describes the temperature dependence of deformation and failure behaviors in the austenitic stainless steels (annealed 304, 316, 316LN, and 20% cold-worked 316LN) in terms of equivalent true stress-true strain curves. The true stress-true strain curves up to the final fracture were calculated from the tensile test data obtained at -150 ~ 450oC using an iterative technique of finite element simulation. Analysis was largely focused on the necking deformation and fracture: Key parameters such as the strain hardening rate, equivalent fracture stress, fracture strain, and tensile fracture energy were evaluated, and their temperature dependencies were investigated. It was shown that a significantly high strain hardening rate was still retained during unstable deformation although overall strain hardening rate beyond the onset of necking was lower than that of the uniform deformation. The values of the parameters except for fracture strain decreased with temperature up to 200oC and were saturated as the temperature came close to the maximum test temperature 450oC. The fracture strain increased and had a maximum at -50oC to 20oC before decreasing with temperature. It was explained that these temperature dependencies of fracture properties were associated with a change in the dominant strain hardening mechanism with test temperature. Also, it was seen that the pre-straining of material has little effect on the strain hardening rate during necking deformation and on fracture properties.

  3. Microstructural Characterization of Deformation Localization at Small Strains in a Neutron Irradiated 304 Stainless Steel

    SciTech Connect

    Field, Kevin G; Gussev, Maxim N; Busby, Jeremy T

    2014-01-01

    Deformation localization and structure evolution were investigated in an AISI 304 austenitic stainless steel deformed to 0.8% strain. Using SEM-EBSD, it was shown local plastic deformation may reach significant levels even when the bulk averaged strain level remains below 1%. Local misorientation values up to 24 were observed in these regions of high local plastic deformation. EBSD analysis of FIB lift-out specimens demonstrated that local misorientation level was highest near the free surface and diminished with increasing depth. (S)TEM observations on the same specimen indicated the local density of dislocation channels may vary up to an order of magnitude depending on local grain configuration, distance to the surface and/or local grain boundary structure. It was found that in the case of RT deformation, dislocation defect-free channels may contain twin or may be twin-free with twinning occurring inside channels. Formation of BCC-phase colonies (martensite) was observed in near-surface layer whereas no transformation in the volume of the specimen was detected at this strain level. Martensite formation was associated with channel-grain boundary intersection points where high local misorientation was observed using EBSD.

  4. Characterization of hydrogen-induced crack initiation in metastable austenitic stainless steels during deformation

    NASA Astrophysics Data System (ADS)

    Zhang, L.; An, B.; Fukuyama, S.; Iijima, T.; Yokogawa, K.

    2010-09-01

    Hydrogen-induced crack initiation in hydrogen-charged metastable austenitic stainless steels during deformation at 295 K is characterized by performing a combined tensile and hydrogen release experiment and scanning probe microscopy. Strain-induced martensite (α') not only provides a path for rapid hydrogen diffusion in austenite (γ) but also promotes crack initiation. Hydrogen rapidly diffuses from α' and accumulates at the boundary between the α'-rich and γ-rich zones during deformation due to the high hydrogen diffusivity and low hydrogen solubility in α', resulting in crack initiation at the boundary between the α'-rich and γ-rich zones. The hydrogen-induced crack initially grows along the boundary between the α'-rich and γ-rich zones and then propagates in the α'-rich zone.

  5. Corrosion sensitization behavior and mechanical properties of liquid-nitrogen-deformed austenitic 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Maldonado, Julio Gerardo

    Plastic deformation of 304 stainless steel at liquid nitrogen temperature ({-}196sp°C) produces an almost complete transformation to strain-induced alphasp'/-martensite which provides the necessary conditions for a pseudo-recrystallization of the microstructure. This "so-called" pseudo-recrystallization results directly from the martensitic reversion (i.e. martensite to austenite reverse transformation) upon the application of heat treatment within the sensitization temperature range. The very fine duplex (alpha/gamma) microstructure which results (after heat treatment-0.1h-670sp°C) is also accompanied by a very extensive and homogeneous precipitation of chromium-rich carbides. The concomitant pseudo-recrystallization and precipitation processes not only have a profound positive effect on the sensitization behavior, but also affect the mechanical properties of the material. This suggests that 304 stainless steel could be thermo-mechanically treated, to in essence, heal itself and simultaneously produce an extremely fine (≈0.1mum) duplex grain structure with intermixed carbides to form a very high strength product. This might have important practical implications since 304 stainless steel is the material of choice in many engineering applications. Electrochemical testing, transmission electron microscopy, scanning electron microscopy, optical microscopy, neutron diffraction, X-ray diffraction, and mechanical testing were some of the techniques employed in this work.

  6. Analysis of tensile deformation and failure in austenitic stainless steels: Part II - Irradiation dose dependence

    NASA Astrophysics Data System (ADS)

    Kim, Jin Weon; Byun, Thak Sang

    2010-01-01

    Irradiation effects on the stable and unstable deformation and fracture behavior of austenitic stainless steels (SSs) have been studied in detail based on the equivalent true stress versus true strain curves. An iterative finite element simulation technique was used to obtain the equivalent true stress-true strain data from experimental tensile curves. The simulation result showed that the austenitic stainless steels retained high strain hardening rate during unstable deformation even after significant irradiation. The strain hardening rate was independent of irradiation dose up to the initiation of a localized necking. Similarly, the equivalent fracture stress was nearly independent of dose before the damage (embrittlement) mechanism changed. The fracture strain and tensile fracture energy decreased with dose mostly in the low dose range <˜2 dpa and reached nearly saturation values at higher doses. It was also found that the fracture properties for EC316LN SS were less sensitive to irradiation than those for 316 SS, although their uniform tensile properties showed almost the same dose dependencies. It was confirmed that the dose dependence of tensile fracture properties evaluated by the linear approximation model for nominal stress was accurate enough for practical use without elaborate calculations.

  7. Analyses of Transient and Tertiary Small Punch Creep Deformation of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2016-09-01

    Creep deformation behavior of 316LN stainless steel (SS) under small punch creep (SPC) and uniaxial creep test has been assessed and compared at 923 K (650 °C). The transient and tertiary creep deformation behaviors have been analyzed according to the equation proposed for SPC deflection, δ = δ0 + δ_{{T}} \\cdot (1 - {{e}}^{ - κ \\cdot t} ) + dot{δ }_{{s}} t + δ3 {{e}}^{{[ {φ ( {t - t_{{r}} } )} ]}} on the basis of Dobes and Cadek equation for uniaxial creep strain. Trends in the variations of (i) rate of exhaustion of transient creep ( κ) with steady-state deflection rate ( dot{δ }_{{s}} ) (ii) ` κ' with time to attain steady-state deflection rate, and (iii) initial creep deflection rate with steady-state deflection rate implied that transient SPC deformation obeyed first-order reaction rate theory. The rate of exhaustion of transient creep ( r') values that were determined from uniaxial creep tests were correlated with those obtained from SPC tests. Master curves representing transient creep deformation in both SPC and uniaxial creep tests have been derived and their near coincidence brings unique equivalence between both the test techniques. The relationships between (i) rate of acceleration of tertiary creep ( φ) and steady-state deflection rate, (ii) ` φ' and time spent in tertiary stage, and (iii) final creep deflection rate and steady-state deflection rate revealed that first-order reaction rate theory governed SPC deformation throughout the tertiary region also. Interrelationship between the transient, secondary, and tertiary creep parameters indicated that the same mechanism prevailed throughout the SPC deformation.

  8. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    SciTech Connect

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L.

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  9. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels

    SciTech Connect

    Pawel, J.E.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L.; Shiba, K.

    1996-04-01

    An austenitic stainless steel, designated 316LN-IG, has been chosen for the first wall/shield (FW/S) structure for the International Thermonuclear Experimental Reactor (ITER). The proposed operational temperature range for the structure (100 to 250{degree}C) is below the temperature regimes for void swelling (400-600{degree}C) and for helium embrittlement (500-700{degree}C). However, the proposed neutron dose is such that large changes in yield strength, deformation mode, and strain hardening capacity could be encountered which could significantly affect fracture properties. Definition of the irradiation regimes in which this phenomenon occurs is essential to the establishment of design rules to protect against various modes of failure.

  10. THE EFFECTS OF HYDROGEN, TRITIUM, AND HEAT TREATMENT ON THE DEFORMATION AND FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL

    SciTech Connect

    Morgan, M.; Tosten, M.; Chapman, G.

    2013-09-06

    The deformation and fracture toughness properties of forged stainless steels pre-charged with tritium were compared to the deformation and fracture toughness properties of the same steels heat treated at 773 K or 873 K and precharged with hydrogen. Forged stainless steels pre-charged with tritium exhibit an aging effect: Fracture toughness values decrease with aging time after precharging because of the increase in concentration of helium from tritium decay. This study shows that forged stainless steels given a prior heat treatment and then pre-charged with hydrogen also exhibit an aging effect: Fracture toughness values decrease with increasing time at temperature. A microstructural analysis showed that the fracture toughness reduction in the heat-treated steels was due to patches of recrystallized grains that form within the forged matrix during the heat treatment. The combination of hydrogen and the patches of recrystallized grains resulted in more deformation twinning. Heavy deformation twinning on multiple slip planes was typical for the hydrogen-charged samples; whereas, in the non-charged samples, less twinning was observed and was generally limited to one slip plane. Similar effects occur in tritium pre-charged steels, but the deformation twinning is brought on by the hardening associated with decay helium bubbles in the microstructure.

  11. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE PAGESBeta

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  12. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    SciTech Connect

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.

  13. Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map

    NASA Astrophysics Data System (ADS)

    Kishor, Brij; Chaudhari, G. P.; Nath, S. K.

    2016-07-01

    Hot compression tests were performed to study the hot deformation characteristics of 13Cr-4Ni stainless steel. The tests were performed in the strain rate range of 0.001-10 s-1 and temperature range of 900-1100 °C using Gleeble® 3800 simulator. A constitutive equation of Arrhenius type was established based on the experimental data to calculate the different material constants, and average value of apparent activation energy was found to be 444 kJ/mol. Zener-Hollomon parameter, Z, was estimated in order to characterize the flow stress behavior. Power dissipation and instability maps developed on the basis of dynamic materials model for true strain of 0.5 show optimum hot working conditions corresponding to peak efficiency range of about 28-32%. These lie in the temperature range of 950-1025 °C and corresponding strain rate range of 0.001-0.01 s-1 and in the temperature range of 1050-1100 °C and corresponding strain rate range of 0.01-0.1 s-1. The flow characteristics in these conditions show dynamic recrystallization behavior. The microstructures are correlated to the different stability domains indicated in the processing map.

  14. Numerical Modeling of Ti Deformation for the Development of a Titanium and Stainless Steel Transition Joint

    NASA Astrophysics Data System (ADS)

    Mukherjee, A. B.; Kapoor, R.; Thota, M. K.; Chakravartty, J. K.

    2016-07-01

    Finite element analysis (FEA) was used to model the joining of titanium grade 2 (Ti) to AISI 321 stainless steel (SS) transition joint of lap configuration with grooves at the interface on SS side. The hot forming of Ti for filling the grooves without defects was simulated. FEA involving large plastic flow with sticking friction condition was initially validated using compression test on cylindrical specimen at 900 °C. The barreled shape and a no-deformation zone in the sample predicted by FEA matched with those of the compression experiments. For the joining process, FEA computed the distribution of strain and hydrostatic stress in Ti and the minimum ram load required for a defect-free joint. The hot forming parameters for Ti to fill the grooves without defects and any geometrical distortion of the die were found to be 0.001 s-1 at 900 °C. Using these conditions a defect-free Ti-SS joint was experimentally produced.

  15. Effect of cold deformation on pitting corrosion of 00Cr18Mn15Mo2N0.86 stainless steel for coronary stent application.

    PubMed

    Ren, Yibin; Zhao, Haochuan; Liu, Wenpeng; Yang, Ke

    2016-03-01

    The high nitrogen nickel-free stainless steel has offered an alternative to further improve the performance of the coronary stents, and simultaneously avoids the potential harms of nickel element. Both cold deformation and pitting corrosion are very important for coronary stents made of stainless steel. In this work, the effect of cold deformation on the pitting corrosion resistance of a high nitrogen nickel-free stainless steel (00Cr18Mn15Mo2N0.86) in 0.9% saline solution was investigated. The results showed that the pitting corrosion of the steel was nearly unchanged with increases of the cold deformation up to 50%, indicating that the higher nitrogen content can reduce the negative effect of cold deformation on the pitting corrosion resistance, which is beneficial for the long term service of coronary stents in blood vessel.

  16. On the evolution of lattice deformation in austenitic stainless steels—The role of work hardening at finite strains

    NASA Astrophysics Data System (ADS)

    Li, Dong-Feng; O'Dowd, Noel P.

    2011-12-01

    In this work, a three dimensional crystal plasticity-based finite element model is presented to examine the micromechanical behaviour of austenitic stainless steels. The model accounts for realistic polycrystal micromorphology, the kinematics of crystallographic slip, lattice rotation, slip interaction (latent hardening) and geometric distortion at finite deformation. We utilise the model to predict the microscopic lattice strain evolution of austenitic stainless steels during uniaxial tension at ambient temperature with validation through in situ neutron diffraction measurements. Overall, the predicted lattice strains are in very good agreement with those measured in both longitudinal and transverse directions (parallel and perpendicular to the tensile loading axis, respectively). The information provided by the model suggests that the observed nonlinear response in the transverse {200} grain family is associated with a competitive bimodal evolution of strain during inelastic deformation. The results associated with latent hardening effects at the microscale also indicate that in situ neutron diffraction measurements in conjunction with macroscopic uniaxial tensile data may be used to calibrate crystal plasticity models for the prediction of the inelastic material deformation response.

  17. Effects of Cyclic and Monotonic Deformations on Nonlinear Ultrasonic Response of Austenitic Stainless Steel: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-Zhen; Xiang, Yanxun; Zhao, Peng

    2016-05-01

    The effect of plastic deformations on the nonlinear ultrasonic response in austenite stainless steel was investigated under the tensile, asymmetric cyclic, and symmetric cyclic loadings. Nonlinear ultrasonic wave measurement was performed on the interrupted specimens. Results show that cyclic and monotonic plastic deformations lead to the significantly different acoustic nonlinear response. The increase of dislocation density and martensite transformation causes the increase of acoustic nonlinearity. By contrast, the well-developed cell structures decrease the acoustic nonlinear response. Under the asymmetric cyclic loading condition, the lightly decrease of acoustic nonlinearity is caused by the development of cell structures, while the slight increase of acoustic nonlinearity should be attributed to the increase of martensite transformation. Comparatively, the severe increase of acoustic nonlinearity during the first stage under symmetric cyclic loading is ascribed to the fast generation of dislocation structures and martensite transformation.

  18. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-10-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ɛ-martensite→α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  19. Two-phase nickel aluminides

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Vedula, K.; Shabel, B. S.

    1987-01-01

    The as-extruded microstructures of two alloys in the two phase field consisting of Ni3Al and NiAl in the Ni-Al phase diagram exhibit fibrous morphology and consist of Ll(2) Ni3Al and B2 NiAl. These as-extruded microstructures can be modified dramatically by suitable heat treatments. Martensite plus NiAl or martensite plus Ni3Al microstructures are obtained upon quenching from 1523 K. Aging of martensite at 873 K results in the recently identified phase Ni5Al, whereas aging at 1123 K reverts the microstructures to Ni3Al plus NiAl. The microstructures with predominantly martensite of Ni5Al3 phases are brittle in tension at room temperature. The latter microstructure does not deform plastically even in compression at room temperature. However, some promise of room temperature tensile ductility is indicated by the Ni3Al plus NiAl phase mixtures.

  20. Two Phase Streaming Potentials

    SciTech Connect

    Marsden, S S; Wheatall, M W

    1987-01-20

    The streaming potentials generated by the flow of both liquid and gas through either a Pyrex capillary tube or else an unconsolidated Pyrex porous medium were investigated. This mixture of distilled water plus nitrogen gas simulated wet stream but allowed experiments to be run at room temperature. Single-phase flow of distilled water alone resulted in a constant voltage-to-pressure drop ratio, E/Δp, of +0.15 v/psi for the capillary tube and -0.52 v/psi for the porous medium. For both single- and two-phase flow through the capillary tube, the upstream potential was always positive relative to the downstream electrode while the opposite was true for the porous medium. The maximum two-phase potentials generated in the porous medium were about four times as great as those generated in the capillary tube for similar gas fractions, Γ. For the capillary tube experiments the potentials generated when Γ < ≈ 0.5 were equal to or slightly less than those for single-phase flow, while for the porous medium the potentials were always greater than those for single-phase flow. When Γ > ≈ 0.5 for both kinds of flow systems Γ had a profound effect on streaming potential and reached a pronounced maximum when 0.94 < Γ < 0.99. The implications of these streaming potentials for geothermal exploration and delineation of geothermal reservoirs is also discussed in the paper. 7 figs., 10 refs.

  1. Effect of forging strain rate and deformation temperature on the mechanical properties of warm-worked 304L stainless steel

    SciTech Connect

    Switzner, N. T.; Van Tyne, C. J.; Mataya, M. C.

    2010-01-25

    Stainless steel 304L forgings were produced with four different types of production forging equipment – hydraulic press, mechanical press, screw press, and high-energy rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The final forgings were done at the warm working (low hot working) temperatures of 816 °C, 843°C, and 871°C. The objectives of the study were to characterize and understand the effect of industrial strain rates (i.e. processing equipment), and deformation temperature on the mechanical properties for the final component. Some of the components were produced with an anneal prior to the final forging while others were deformed without the anneal. The results indicate that lower strain rates produced lower strength and higher ductility components, but the lower strain rate processes were more sensitive to deformation temperature variation and resulted in more within-part property variation. The highest strain rate process, HERF, resulted in slightly lower yield strength due to internal heating. Lower processing temperatures increased strength, decreased ductility but decreased within-part property variation. The anneal prior to the final forging produced a decrease in strength, a small increase in ductility, and a small decrease of within-part property variation.

  2. Eddy Current Assessment of the Cold Rolled Deformation Behavior of AISI 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Liu, Kunpeng; Zhao, Zihua; Zhang, Zheng

    2012-08-01

    Applicability of the eddy current (EC) technique in assessing martensite phase transformation during cold reduction in AISI 321 stainless steel was investigated. An empirical model based on measured EC parameters was developed for predicting the volume fraction of strain-induced martensite. Good agreement was found between the model-predicted and the experimental data.

  3. Interplay of stresses induced by phase transformation and plastic deformation during cyclic load of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Taran, Yu. V.; Daymond, M. R.; Schreiber, J.

    2004-07-01

    Austenitic stainless steel AISI 321 samples subjected to low-cycle fatigue (LCF) were analysed using in situ neutron diffraction stress rig experiments on the ENGIN instrument at the ISIS pulsed neutron facility. The elastoplastic properties of the austenitic matrix and martensitic inclusions as well as the residual stresses of the both phases were studied. The martensite formation is connected with volume dilation. Since the specific volume of martensite is larger (about 2%) than that one of austenite, the martensite phase is generally expected to be in hydrostatic compression, whereas the austenite one is in tension. However, these phase transformation stresses can be superimposed on the deformation stresses caused by the plastic deformation during LCF. The resulting residual stresses have a nonhydrostatic nature. In this study, only deviatoric components of the residual stress tensor were obtained because of the lack of the strain free lattice parameters of both phases. We have established that in the axial direction (along cyclic load) the deviatoric phase stress and the microstress of the austenitic phase were compressive and tensile for the martensite phase, i.e. an overshot of the deformation stress is observed.

  4. Effect of Pulse Current on the Tensile Deformation of SUS304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Wang, Shen; Zhao, Shuangjun; Ding, Wei; Chen, Jun; Wu, Guohong

    2015-12-01

    The effect of pulse current on the mechanical properties of SUS304 metastable austenitic stainless steel was studied by tension test with and without air-cooling under different current densities. The microstructural variations at different conditions were also studied by SEM, TEM, and Feritscope. A negative effect on the plasticity was observed when current pulse was applied without air-cooling. But when Joule heating resulting from current pulse was excluded by air-cooling, the elongation of SUS304 stainless steel was increased to 72.4% at a current density of 2.95 A/mm2, which is 23.3% higher than that tested without pulse current at room temperature. Pulse current can decrease the dislocation density and dislocation pile-ups. Furthermore, EP effect from pulse current can accelerate martensitic transformation and enhance TRIP effect. The mechanism of current-induced martensitic transformation was discussed from Gibbs free energy change.

  5. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    NASA Astrophysics Data System (ADS)

    Latha, S.; Mathew, M. D.; Parameswaran, P.; Nandagopal, M.; Mannan, S. L.

    2011-02-01

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  6. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-08-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  7. On the Stacking Fault Energy Evaluation and Deformation Mechanism of Sanicro-28 Super-Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Mirzaei, Ahmad

    2015-06-01

    In the present study, the reliance of deformation mechanism of a super-austenitic steel (Sanicro-28) on the external stress and stacking fault energy (SFE) was quantitatively investigated by analyzing the stacking fault separation. The stacking fault energy of the experimental alloy was determined using line profile analysis through x-ray diffraction measurements. Considering the calculated SFE and external stress, the predominant deformation mechanism was predicted by a quantitative model. A set of experimental examinations were carried out validating the applied model. The experimental findings reveal that the plasticity mechanism of steel can be divided into two stages. In the first stage (at lower strain), no mechanical twin was observed in the microstructure and the dislocation glide would control the plasticity. In the second stage (at higher strain), the mechanical twinning was considered as the predominant plasticity mechanism. Furthermore, regarding the stress threshold of mechanical twin formation, as the SFE increases, the critical stress for mechanical twinning initiation intensifies. However, in the present super-austenitic stainless steel, the mechanical twinning was observed at the stresses lower than those predicted by the applied model. This was related to the various interactions between dislocation and different barriers in the solid solution matrix.

  8. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Laha, K.; Mathew, M. D.; Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K. K.; Jayakumar, T.

    2012-08-01

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  9. Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Cheng; Sun, Gui-Xun; Jiang, Zhong-Hao; Ji, Chang-Tao; Liu, Jia-An; Lian, Jian-She

    2014-02-01

    Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.

  10. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Mannan, S. L.; Mathew, M. D.; Rao, K. Bhanu

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  11. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  12. Acoustic emission studies on welded and thermally treated AISI 304 stainless steel during tensile deformation

    SciTech Connect

    Mukherjee, P.; Barat, P.; Jayakumar, T.; Kalyanasundaram, P.; Rajagopalan, C.; Raj, B.

    1997-10-15

    The present investigations are planned to study the influence of prior martensites formed due to cold treatment as 77K in AISI 304 SS welded specimens, on strain-induced martensites occurred during tensile deformation using AE technique. AE parameters like count rate and root mean square (r.m.s.) voltage have been used to characterize AE activities generated during tensile deformation process in as-welded and welded-treated samples. Frequency spectrum analysis of AE signals captured from the samples has been done to understand the dynamic behavior of the martensite phase formation. Tensile properties of these samples have also been reported. Volume fraction of the magnetic phase (martensite and delta ferrite) formed in these samples are measured before and after straining. X-ray diffraction (XRD) technique has been used to support the presence of delta ferrite (formed during welding) and martensite in the weld region.

  13. The role of deformation mechanisms in flow localization of 316L stainless steel

    NASA Astrophysics Data System (ADS)

    Wu, Xianglin; Pan, Xiao; Mabon, James C.; Li, Meimei; Stubbins, James F.

    2006-09-01

    Type 316 SS is widely used as a structural material in a variety of current accelerator driven systems and designs as well as in a number of current and advanced fission and fusion reactor concepts. The material is found to be very sensitive to irradiation damage in the temperature range of 150-400 °C, where low levels of irradiation exposure, as little as 0.1 dpa, can substantially reduce the uniform elongation in tensile tests. This process, where the plastic flow becomes highly localized resulting in very low overall ductility, is referred to as flow localization. The process controlling this restriction of flow is related to the difference between the yield and ultimate strengths such that dramatic irradiation-induced increases in the yield strength results in very limited plastic flow until necking. In this study, the temperature dependence of this process is examined in light of the operating deformation mechanisms. It is found that twinning is an important deformation mechanism at lower temperatures but is not available in the temperature range of concern since the stress to activate twinning becomes excessively high. This limits the deformation and leads to the flow localization process.

  14. Creep deformation and fracture behaviour of a nitrogen-bearing type 316 stainless steel weld metal

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Mathew, M. D.; Bhanu Sankara Rao, K.; Mannan, S. L.

    1999-08-01

    Creep properties of a nuclear grade type 316 stainless steel (SS) weld metal containing ˜0.08 wt% of nitrogen were studied at 873 and 923 K. These properties were compared with those of a type 316 SS weld metal without nitrogen. In general, the nitrogen-bearing weld metal exhibited better creep and rupture properties. The rupture strengths of the nitrogen-containing weld metal was ˜40% higher than that for the type 316 SS weld metal at both the temperatures. The steady-state (minimum) creep rates were up to two orders of magnitude lower for the nitrogen-containing weld metal compared to 316 SS weld metal. Rupture ductility of nitrogen-containing weld metal was lower at all the test conditions; the long-term ductility at 923 K was below 5%. The differences in creep behaviour of the two weld metals are discussed with respect to the influence of nitrogen on microstructural evolution in the two weld metals.

  15. Microstructural evolution in a ferritic-martensitic stainless steel and its relation to high-temperature deformation and rupture models

    SciTech Connect

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.

    1991-01-01

    The ferritic-martensitic stainless steel HT-9 exhibits an anomalously high creep strength in comparison to its high-temperature flow strength from tensile tests performed at moderate rates. A constitutive relation describing its high-temperature tensile behavior over a wide range of conditions has been developed. When applied to creep conditions the model predicts deformation rates orders of magnitude higher than observed. To account for the observed creep strength, a fine distribution of precipitates is postulated to evolve over time during creep. The precipitate density is calculated at each temperature and stress to give the observed creep rate. The apparent precipitation kinetics thereby extracted from this analysis is used in a model for the rupture-time kinetics that compares favorably with observation. Properly austenitized and tempered material was aged over times comparable to creep conditions, and in a way consistent with the precipitation kinetics from the model. Microstructural observations support the postulates and results of the model system. 16 refs., 10 figs.

  16. Low-Temperature Nitriding of Deformed Austenitic Stainless Steels with Various Nitrogen Contents Obtained by Prior High-Temperature Solution Nitriding

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2016-08-01

    In the past decades, high nitrogen steels (HNS) have been regarded as substitutes for conventional austenitic stainless steels because of their superior mechanical and corrosion properties. However, the main limitation to their wider application is their expensive production process. As an alternative, high-temperature solution nitriding has been applied to produce HNS from three commercially available stainless steel grades (AISI 304L, AISI 316, and EN 1.4369). The nitrogen content in each steel alloy is varied and its influence on the mechanical properties and the stability of the austenite investigated. Both hardness and yield stress increase and the alloys remain ductile. In addition, strain-induced transformation of austenite to martensite is suppressed, which is beneficial for subsequent low-temperature nitriding of the surface of deformed alloys. The combination of high- and low-temperature nitriding results in improved properties of both bulk and surface.

  17. Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Karlsen, Wade; Diego, Gonzalo; Devrient, Bastian

    2010-11-01

    Cold-work has been associated with the occurrence of intergranular cracking of stainless steels employed in light water reactors. This study examined the deformation behavior of AISI 304, AISI 347 and a higher stacking fault energy model alloy subjected to bulk cold-work and (for 347) surface deformation. Deformation microstructures of the materials were examined and correlated with their particular mechanical response under different conditions of temperature, strain rate and degree of prior cold-work. Select slow-strain rate tensile tests in autoclaves enabled the role of local strain heterogeneity in crack initiation in pressurized water reactor environments to be considered. The high stacking fault energy material exhibited uniform strain hardening, even at sub-zero temperatures, while the commercial stainless steels showed significant heterogeneity in their strain response. Surface treatments introduced local cold-work, which had a clear effect on the surface roughness and hardness, and on near-surface residual stress profiles. Autoclave tests led to transgranular surface cracking for a circumferentially ground surface, and intergranular crack initiation for a polished surface.

  18. On the stability of cold drawn, two-phase wires

    SciTech Connect

    Hong, S.I.; Hill, M.A.; Sakai, Y.; Wood, J.T.; Embury, J.D.

    1995-09-01

    Two-phase materials can be deformed by wire drawing to produce materials with tensile strength levels of the order of E/100. In this condition, they possess ultrafine scale microstructures. this paper examines various aspects of the stability of such structures including the mechanical stability of elastically stressed second phases, the tendency to instability by spheroidization, and the occurrence of discontinuous coarsening due to large local gradients of stored energy in drawn two-phase structures.

  19. Two phase heat exchanger symposium

    SciTech Connect

    Pearson, J.T.; Kitto, J.B.

    1985-01-01

    This book compiles the papers presented at the conference on the subject of heat transfer mechanics and instrumentation. Theoretical and experimental data are provided in each paper. The topics covered are: temperature effects of steel; optimization of design of two-phase heat exchanges; thermosyphon system and low grade waste heat recovery; condensation heat transfer in plate heat exchangers; forced convective boiling; and performance analysis of full bundle submerged boilers.

  20. Studies of two phase flow

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.

    1994-01-01

    The development of instrumentation for the support of research in two-phase flow in simulated microgravity conditions was performed. The funds were expended in the development of a technique for characterizing the motion and size distribution of small liquid droplets dispersed in a flowing gas. Phenomena like this occur in both microgravity and normal earth gravity situations inside of conduits that are carrying liquid-vapor mixtures at high flow rates. Some effort to develop a conductance probe for the measurement of liquid film thickness was also expended.

  1. Two-phase viscoelastic jetting

    SciTech Connect

    Yu, J-D; Sakai, S.; Sethian, J.A.

    2008-12-10

    A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.

  2. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  3. Analytical modeling of the thermomechanical behavior of ASTM F-1586 high nitrogen austenitic stainless steel used as a biomaterial under multipass deformation.

    PubMed

    Bernardes, Fabiano R; Rodrigues, Samuel F; Silva, Eden S; Reis, Gedeon S; Silva, Mariana B R; Junior, Alberto M J; Balancin, Oscar

    2015-06-01

    Precipitation-recrystallization interactions in ASTM F-1586 austenitic stainless steel were studied by means of hot torsion tests with multipass deformation under continuous cooling, simulating an industrial laminating process. Samples were deformed at 0.2 and 0.3 at a strain rate of 1.0s(-1), in a temperature range of 900 to 1200°C and interpass times varying from 5 to 80s. The tests indicate that the stress level depends on deformation temperature and the slope of the equivalent mean stress (EMS) vs. 1/T presents two distinct behaviors, with a transition at around 1100°C, the non-recrystallization temperature (Tnr). Below the Tnr, strain-induced precipitation of Z-phase (NbCrN) occurs in short interpass times (tpass<30s), inhibiting recrystallization and promoting stepwise stress build-up with strong recovery, which is responsible for increasing the Tnr. At interpass times longer than 30s, the coalescence and dissolution of precipitates promote a decrease in the Tnr and favor the formation of recrystallized grains. Based on this evidence, the physical simulation of controlled processing allows for a domain refined grain with better mechanical properties.

  4. Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik; Shin, Chansun

    2016-03-01

    Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress-strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.

  5. Analytical modeling of the thermomechanical behavior of ASTM F-1586 high nitrogen austenitic stainless steel used as a biomaterial under multipass deformation.

    PubMed

    Bernardes, Fabiano R; Rodrigues, Samuel F; Silva, Eden S; Reis, Gedeon S; Silva, Mariana B R; Junior, Alberto M J; Balancin, Oscar

    2015-06-01

    Precipitation-recrystallization interactions in ASTM F-1586 austenitic stainless steel were studied by means of hot torsion tests with multipass deformation under continuous cooling, simulating an industrial laminating process. Samples were deformed at 0.2 and 0.3 at a strain rate of 1.0s(-1), in a temperature range of 900 to 1200°C and interpass times varying from 5 to 80s. The tests indicate that the stress level depends on deformation temperature and the slope of the equivalent mean stress (EMS) vs. 1/T presents two distinct behaviors, with a transition at around 1100°C, the non-recrystallization temperature (Tnr). Below the Tnr, strain-induced precipitation of Z-phase (NbCrN) occurs in short interpass times (tpass<30s), inhibiting recrystallization and promoting stepwise stress build-up with strong recovery, which is responsible for increasing the Tnr. At interpass times longer than 30s, the coalescence and dissolution of precipitates promote a decrease in the Tnr and favor the formation of recrystallized grains. Based on this evidence, the physical simulation of controlled processing allows for a domain refined grain with better mechanical properties. PMID:25842112

  6. In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid.

    PubMed

    Talha, Mohd; Behera, C K; Sinha, O P

    2014-07-01

    This work was focused on the evaluation of the corrosion behavior of deformed (10% and 20% cold work) and annealed (at 1050 °C for 15 min followed by water quenching) Ni-free high nitrogen austenitic stainless steels (HNSs) in simulated body fluid at 37°C using weight loss method (long term), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Scanning electron microscopy (SEM) was used to understand the surface morphology of the alloys after polarization test. It has been observed that cold working had a significant influence on the corrosion resistant properties of these alloys. The weight loss and corrosion rates were observed to decrease with increasing degree of cold working and nitrogen content in the alloy. The corrosion resistance of the material is directly related to the resistance of the passive oxide film formed on its surface which was enhanced with cold working and nitrogen content. It was also observed that corrosion current densities were decreased and corrosion potentials were shifted to more positive values. By seeing pit morphology under SEM, shallower and smaller pits were associated with HNSs and cold worked samples, indicating that corrosion resistance increases with increasing nitrogen content and degree of cold deformation. X-ray diffraction profiles of annealed as well as deformed alloys were revealed and there is no evidence for formation of martensite or any other secondary phases.

  7. Microstructural Evolution of an Al-Alloyed Duplex Stainless Steel During Tensile Deformation Between 77 K and 473 K (-196 °C and 200 °C)

    NASA Astrophysics Data System (ADS)

    Rahimi, Reza; Ullrich, Christiane; Rafaja, David; Biermann, Horst; Mola, Javad

    2016-06-01

    Tensile deformation behavior of an Al-alloyed Fe-17Cr-6Mn-4Al-3Ni-0.45C (mass pct) duplex stainless steel containing approximately 20 vol pct ferrite was studied in the temperature range from 77 K to 473 K (-196 °C to 200 °C). While the elongation exhibited a maximum near room temperature, the yield strength continuously increased at lower tensile test temperatures. According to the microstructural examinations, the twinning-induced plasticity and the dislocation cell formation were the dominant deformation mechanisms in the austenite and ferrite, respectively. Reduction of the tensile ductility at T < 273 K (0 °C) was attributed to the ready material decohesion at the ferrite/austenite boundaries. Tensile testing at 473 K (200 °C) was associated with the serrated flow which was ascribed to the Portevin-Le Chatelier effect. Due to a rise in the stacking fault energy of austenite, the occurrence of mechanical twinning was impeded at higher tensile test temperatures. Furthermore, the evolution of microstructural constituents at room temperature was studied by interrupted tensile tests. The deformation in the austenite phase started with the formation of Taylor lattices followed by mechanical twinning at higher strains/stresses. In the ferrite phase, on the other hand, the formation of dislocation cells, cell refinement, and microbands formation occurred in sequence during deformation. Microhardness evolution of ferrite and austenite in the interrupted tensile test specimens implied a higher strain-hardening rate for the austenite as it clearly became the harder phase at higher tensile strain levels.

  8. Keratocytes generate traction forces in two phases.

    PubMed

    Burton, K; Park, J H; Taylor, D L

    1999-11-01

    Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement. PMID:10564269

  9. Effect of Friction-Induced Deformation on the Structure, Microhardness, and Wear Resistance of Austenitic Chromium—Nickel Stainless Steel Subjected to Subsequent Oxidation

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Chernenko, N. L.

    2016-03-01

    The effect of plastic deformation that occurs in the zone of the sliding friction contact on structural transformations in the 12Kh18N9T austenitic steel subjected to subsequent 1-h oxidation in air at temperatures of 300-800°C, as well as on its wear resistance, has been studied. It has been shown that severe deformation induced by dry sliding friction produces the two-phase nanocrystalline γ + α structure in the surface layer of the steel ~10 μm thick. This structure has the microhardness of 5.2 GPa. Subsequent oxidation of steel at temperatures of 300-500°C leads to an additional increase in the microhardness of its deformed surface layer to the value of 7.0 GPa. This is due to the active saturation of the austenite and the strain-assisted martensite (α') with the oxygen atoms, which diffuse deep into the metal over the boundaries of the γ and α' nanocrystals with an increased rate. The concentration of oxygen in the surface layer of the steel and in wear products reaches 8 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ and α' phases, which enhances the strength and wear resistance of the surface of the 12Kh18N9T steel. The oxidation of steel at temperatures of 550-800°C under a light normal load (98 N) results in the formation of a large number of Fe3O4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance during dry sliding friction in a pair with 40Kh13 steel. Under a heavy normal load (196 N), the toughness of 12Kh18N9T steel and, therefore, the wear resistance of its surface layer decrease due to the presence of the brittle oxide phase.

  10. Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    NASA Technical Reports Server (NTRS)

    Mebs, R W; Mcadam, D J

    1947-01-01

    A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were

  11. Electrical impedance string probes for two-phase void and velocity measurements. [PWR

    SciTech Connect

    Hardy, J E; Hylton, J O

    1982-05-01

    An instrumentation scheme has been developed to measure two-phase flow velocity and void fraction during the refill/reflood stages of a loss-of-coolant accident in experimental test facilities. The instrumentation's principle of operation was based on measurement of the electrical impedance of two-phase mixtures. Two-phase velocity is estimated by time-of-flight analysis of signals from two spatially separate sensors. A relative capacitive technique was employed to measure void fraction. The impedance sensor consists of a pair of stainless steel wires strung back and forth across a stainless steel frame. This sensor was dubbed string probe for this reason. The string probe was designed to withstand temperatures of 350/sup 0/C, thermal transients of approx. 300/sup 0/C/s, and severe fluid- and condensation-induced shocks.

  12. One- and Two-Phase Nozzle Flows

    SciTech Connect

    Chang, I-Shih

    1980-12-01

    A time-dependent technique, in conjunction with the boundary-fitted coordinates system, is applied to solve a gas-only one-phase flow and a fully-coupled, gas-particle two-phase flow inside nozzles with small throat radii of curvature, steep wall gradients, and submerged configurations. The emphasis of the study has been placed on one- and two-phase flow in the transonic region. Various particle sizes and particle mass fractions have been investigated in the two-phase flow. The salient features associated with the two-phase nozzle flow compared with those of the one-phase flow are illustrated through the calculations of the JPL nozzle, the Titan III solid rocket motor, and the submerged nozzle configuration found in the Inertial Upper Stage (IUS) solid rocket motor.

  13. Two-Phase Flow Separator Investigation

    NASA Video Gallery

    The goal of the Two-Phase Flow Separator investigation is to help increase understanding of how to separate gases and liquids in microgravity. Many systems on the space station contain both liquids...

  14. Electrostatic Charged Two-Phase Flow Equations

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Wen, Jianlong; Wang, Junfeng; Tang, Zhihua; Luo, Tiqian

    2007-06-01

    Electrostatic charged two-phase flows exit in electrostatic spray crop-dusting and fuel spray and so on. Electrostatic charged spray applying to FGD scrubber can improve desulfurization efficiency, decrease water usage. For the complexity of two-phase flow's structure in FGD scrubber, and there exit coupled action between non-uniform electric and flow field, also exit phase interaction between charged particles and continuous phase, which makes the flow more complex. So the complete theory has not formed at present. This paper adopts Lagrange and Euler method of combining together and takes the dispersed particle as fluid, and applies the Reynolds transport principle to set up a Reynolds transport equation, which suit electrostatic charged particle and liquid phase. Then based on Reynolds transport equation, equations for the volume average and instantaneous state of the electrostatic charged two-phase flow are obtained. Similar to equations for single phase turbulent flow, this paper applies Reynolds-average method, and develops equations for Reynolds-average equations for electrostatic charged two-phase flow. Finally, according to the model of single phase turbulent flow, equations for electrostatic charged two-phase flows has been closed. So the k - ɛ - kp model is obtained. Contrast of result by PIV and simulation has been finished.

  15. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  16. Two-phase flow in horizontal pipes

    SciTech Connect

    Maeder, P.F.; Michaelides, E.E.; DiPippo, R.

    1981-09-01

    A method is developed in this paper which calculates the two-phase flow friction factor at any state of the fluid in the pipe. The mixing-length theory was employed for the calculation of the Reynolds stresses in turbulent two-phase flow. The friction factors obtained this way are in good agreement with experimental data. It is clear that the choice of the parameter m, or the density distribution, is rather arbitrary. Careful experimentation is required to refine the analysis given in this study, and in particular to provide guidance in the proper selection of the parameter m.

  17. Two phase detonation studies conducted in 1971

    NASA Technical Reports Server (NTRS)

    Nicholls, J. A.

    1972-01-01

    A report is presented describing the research conducted on five phases: (1) ignition of fuel drops by a shock wave and passage of a shock wave over a burning drop, (2) the energy release pattern of a two-phase detonation with controlled drop sizes, (3) the attenuation of shock and detonation waves passing over an acoustic liner, (4) experimental and theoretical studies of film detonations, and (5) a simplified analytical model of a rotating two-phase detonation wave in a rocket motor.

  18. Two-phase flow in fractured rock

    SciTech Connect

    Davies, P.; Long, J.; Zuidema, P.

    1993-11-01

    This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here.

  19. Apparatus for monitoring two-phase flow

    DOEpatents

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  20. Dynamic failure in two-phase materials

    SciTech Connect

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.

  1. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred (Inventor)

    1987-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  2. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  3. Two-phase charge-coupled device

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.

  4. Dynamics Coefficient for Two-Phase Soil Model

    NASA Astrophysics Data System (ADS)

    Wrana, Bogumił

    2015-02-01

    The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.

  5. Numerical Simulation of Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    2001-01-01

    Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.

  6. Microgravity Two-Phase Flow Transition

    NASA Technical Reports Server (NTRS)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  7. Dynamic failure in two-phase materials

    NASA Astrophysics Data System (ADS)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-01

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parent materials. In this work, we present results on three different polycrystalline materials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces on void nucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the overall two-phase material.

  8. Dynamic failure in two-phase materials

    DOE PAGESBeta

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less

  9. Stability of oscillatory two phase Couette flow

    NASA Technical Reports Server (NTRS)

    Coward, Adrian V.; Papageorgiou, Demetrios T.

    1993-01-01

    We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.

  10. Tracer Partitioning in Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2012-12-01

    The concentration distributions of geochemical tracers in a subsurface reservoir can be used as an indication of the reservoir flow paths and constituent fluid origin. In this case, we are motivated by the origin of marked geochemical gradients in the Bravo Dome natural CO2 reservoir in northeastern New Mexico. This reservoir contains 99% CO2 with various trace noble gas components and overlies the formation brine in a sloping aquifer. It is thought that magmatic CO2 entered the reservoir, and displaced the brine. This displacement created gradients in the concentrations of the noble gases. Two models to explain noble gas partitioning in two-phase flow are presented here. The first model assumes that the noble gases act as tracers and uses a first order non-linear partial differential equation to compute the volume fraction of each phase along the displament path. A one-way coupled partial differential equation determines the tracer concentration, which has no effect on the overall flow or phase saturations. The second model treats each noble gas as a regular component resulting in a three-component, two-phase system. As the noble gas injection concentration goes to zero, we see the three-component system behave like the one-way coupled system of the first model. Both the analytical and numerical solutions are presented for these models. For the process of a gas displacing a liquid, we see that a noble gas tracer with greater preference for the gas phase, such as Helium, will move more quickly along the flowpath than a heavier tracer that will more easily enter the liquid phase, such as Argon. When we include partial miscibility of both the major and trace components, these differences in speed are shown in a bank of the tracer at the saturation front. In the three component model, the noble gas bank has finite width and concentration. In the limit where the noble gas is treated as a tracer, the width of the bank is zero and the concentration increases linearly

  11. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2010-11-15

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

  12. Two-Phase Quality/Flow Meter

    NASA Technical Reports Server (NTRS)

    Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)

    1999-01-01

    A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.

  13. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1991-12-31

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  14. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B. ); Hughes, E.D. )

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  15. Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

    SciTech Connect

    Shirdel, M.; Mirzadeh, H.; Parsa, M.H.

    2015-05-15

    A comprehensive study was carried out on the strain-induced martensitic transformation, its reversion to austenite, the resultant grain refinement, and the enhancement of strength and strain-hardening ability through the transformation-induced plasticity (TRIP) effect in a commercial austenitic 304L stainless steel with emphasis on the mechanisms and the microstructural evolution. A straightforward magnetic measurement device, which is based on the measurement of the saturation magnetization, for evaluating the amount of strain-induced martensite after cold rolling and reversion annealing in metastable austenitic stainless steels was used, which its results were in good consistency with those of the X-ray diffraction (XRD) method. A new parameter called the effective reduction in thickness was introduced, which corresponds to the reasonable upper bound on the obtainable martensite fraction based on the saturation in the martensitic transformation. By means of thermodynamics calculations, the reversion mechanisms were estimated and subsequently validated by experimental results. The signs of thermal martensitic transformation at cooling stage after reversion at 850 °C were found, which was attributed to the rise in the martensite start temperature due to the carbide precipitation. After the reversion treatment, the average grain sizes were around 500 nm and the nanometric grains of the size of ~ 65 nm were also detected. The intense grain refinement led to the enhanced mechanical properties and observation of the change in the work-hardening capacity and TRIP effect behavior. A practical map as a guidance for grain refining and characterizing the stability against grain growth was proposed, which shows the limitation of the reversion mechanism for refinement of grain size. - Graphical abstract: Display Omitted - Highlights: • Nano/ultrafine grained austenitic stainless steel through martensite treatment • A parameter descriptive of a reasonable upper bound on

  16. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  17. Keratocytes Generate Traction Forces in Two PhasesV⃞

    PubMed Central

    Burton, Kevin; Park, Jung H.; Taylor, D. Lansing

    1999-01-01

    Forces generated by goldfish keratocytes and Swiss 3T3 fibroblasts have been measured with nanonewton precision and submicrometer spatial resolution. Differential interference contrast microscopy was used to visualize deformations produced by traction forces in elastic substrata, and interference reflection microscopy revealed sites of cell-substratum adhesions. Force ranged from a few nanonewtons at submicrometer spots under the lamellipodium to several hundred nanonewtons under the cell body. As cells moved forward, centripetal forces were applied by lamellipodia at sites that remained stationary on the substratum. Force increased and abruptly became lateral at the boundary of the lamellipodium and the cell body. When the cell retracted at its posterior margin, cell-substratum contact area decreased more rapidly than force, so that stress (force divided by area) increased as the cell pulled away. An increase in lateral force was associated with widening of the cell body. These mechanical data suggest an integrated, two-phase mechanism of cell motility: (1) low forces in the lamellipodium are applied in the direction of cortical flow and cause the cell body to be pulled forward; and (2) a component of force at the flanks pulls the rear margins forward toward the advancing cell body, whereas a large lateral component contributes to detachment of adhesions without greatly perturbing forward movement. PMID:10564269

  18. Solutal Marangoni instability in layered two-phase flow

    NASA Astrophysics Data System (ADS)

    Picardo, Jason; Radhakrishna, T. G.; Pushpavanam, S.

    2015-11-01

    In this work, the instability of layered two-phase flow caused by the presence of a surface-active solute is studied. The fluids are density matched to focus on surfactant effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of soluble surfactant from one fluid to the other, in the base state. A linear stability analysis is carried out, supported by energy budget calculations. The flow is first analyzed in the creeping flow regime. Long wave as well as short wave Marangoni instabilities are identified, each with a distinct energy signature. The short wave instability manifests as two distinct modes, characterized by the importance of interfacial deformations or lack thereof. The primary instability switches between these different modes as parameters are varied. The effect of small but finite inertia on these solutal Marangoni modes is then examined. The effect of soluble surfactant on a finte inertia flow is also studied, with focus on the transition from the viscosity-induced instability to solutal Marangoni instability. This analysis is relevant to microfluidic applications, such as solvent extraction, in which mass transfer is carried out between stratified immiscible fluids.

  19. Stability of stratified two-phase flows in horizontal channels

    NASA Astrophysics Data System (ADS)

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.

    2016-04-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  20. Reynolds transport theorem for a two-phase flow

    NASA Astrophysics Data System (ADS)

    Collado, Francisco J.

    2007-01-01

    Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.

  1. Effect of Laves Phase on High-Temperature Deformation and Microstructure Evolution in an 18Cr-2Mo-0.5Nb Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ikeda, Ken-ichi; Yamoah, Nana Kwame Gyan; Reynolds, William T.; Hamada, Jun-ichi; Murayama, Mitsuhiro

    2015-08-01

    Niobium-containing ferritic stainless steels are finding new applications in automotive exhaust components because of their oxidation resistance, thermal fatigue resistance, and high-temperature strength. The mechanical behavior of Nb-containing ferritic steels at service temperatures of 973 K (700 °C) and higher results from the convolution of dynamic microstructural changes including precipitation, precipitate coarsening, strain hardening, recovery, and recrystallization. The relative contributions of these competing processes have yet to be clarified. In this study, the high-temperature flow strength of an 18Cr-2Mo-0.5Nb ferritic stainless steel (SUS 444) was correlated with microstructure under different strain and initial precipitate distributions to clarify the relative role of the strengthening and softening processes. High-temperature tensile tests at 1023 K (750 °C) of un-aged (initial microstructure is precipitate-free) and pre-aged (initial microstructure contains precipitates) samples were carried out and transmission electron microscopy was used to assess dislocation distributions and precipitate morphology. The difference in the stress-strain curves between un-aged and pre-aged samples was drastic; the yield strength of the un-aged sample was twice that of the pre-aged sample, and the un-aged sample exhibits a noticeable yield drop. Transmission electron microscopy revealed a Laves phase nucleated and grew during the high-temperature tensile test in the un-aged sample and the majority of the precipitates in the pre-aged sample were the same Laves phase. Furthermore, a strain effect on precipitate growth was recognized in un-aged and pre-aged conditions by comparing grip (no strain) and gage (strained) sections of tensile samples. The dominant strengthening contribution in un-aged samples is initially the precipitate shearing mechanism and it changes to Orowan strengthening beyond the ultimate tensile strength, whereas the dominant contribution in

  2. Flow Behavior Modeling of a Nitrogen-Alloyed Ultralow Carbon Stainless Steel During Hot Deformation: A Comparative Study of Constitutive Models

    NASA Astrophysics Data System (ADS)

    Shang, Xuekun; He, An; Wang, Yanli; Yang, Xiaoya; Zhang, Hailong; Wang, Xitao

    2015-10-01

    The present study focuses on comparison of accuracy of Johnson-Cook, modified Johnson-Cook, and modified Zerilli-Armstrong constitutive models to predict flow behavior of a nitrogen-alloyed ultralow carbon stainless steel at evaluated temperature. True strain-true stress data obtained from hot compression experiments performed with temperatures of 1223-1423 K and strain rates of 0.001-10 s-1 on a Gleeble-3500 thermal-simulator were employed to develop these three models. Furthermore, the ability of the three models to predict the outcomes was evaluated by comparing the correlation coefficient, absolute average related error, ability to track the experimental flow stress, numbers of material constants, and computational time required to develop models. The results show that the modified Johnson-Cook has a better description of the flow behaviors of the studied steel than the other two models. However, under certain conditions, the modified Zerilli-Armstrong model has accuracy comparable to the modified Johnson-Cook model.

  3. Film boiling on spheres in single- and two-phase flows. Final report

    SciTech Connect

    Liu, C.; Theofanous, T.G.

    1994-12-01

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40{degrees}C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900{degrees}C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-{alpha}){sup 1/4} (with {alpha} being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.

  4. Film boiling on spheres in single- and two-phase flows.

    SciTech Connect

    Liu, C.; Theofanous, T. G.

    2000-08-29

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

  5. Two-phase flow measurements with advanced instrumented spool pieces

    SciTech Connect

    Turnage, K.C.

    1980-09-01

    A series of two-phase, air-water and steam-water tests performed with instrumented piping spool pieces is described. The behavior of the three-beam densitometer, turbine meter, and drag flowmeter is discussed in terms of two-phase models. Results from application of some two-phase mass flow models to the recorded spool piece data are shown. Results of the study are used to make recommendations regarding spool piece design, instrument selection, and data reduction methods to obtain more accurate measurements of two-phase flow parameters. 13 refs., 23 figs., 1 tab.

  6. Magnetohydrodynamic generators using two-phase liquid-metal flows

    NASA Technical Reports Server (NTRS)

    Petrick, M.

    1969-01-01

    Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.

  7. Effective property models for homogeneous two-phase flows

    SciTech Connect

    Awad, M.M.; Muzychka, Y.S.

    2008-10-15

    Using an analogy between thermal conductivity of porous media and viscosity in two-phase flow, new definitions for two-phase viscosity are proposed. These new definitions satisfy the following two conditions: namely (i) the two-phase viscosity is equal to the liquid viscosity at the mass quality = 0% and (ii) the two-phase viscosity is equal to the gas viscosity at the mass quality = 100%. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. These new models are assessed using published experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels in the form of Fanning friction factor (f{sub m}) versus Reynolds number (Re{sub m}). The published data include different working fluids such as R-12, R-22, argon (R740), R717, R134a, R410A and propane (R290) at different diameters and different saturation temperatures. Models are assessed on the basis minimizing the root mean square error (e{sub RMS}). It is shown that these new definitions of two-phase viscosity can be used to analyze the experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels using simple friction models. (author)

  8. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.

  9. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  10. Two-phase flow characteristics in multiple orifice valves

    SciTech Connect

    Alimonti, Claudio; Falcone, Gioia; Bello, Oladele

    2010-11-15

    This work presents an experimental investigation on the characteristics of two-phase flow through multiple orifice valve (MOV), including frictional pressure drop and void fraction. Experiments were carried out using an MOV with three different sets of discs with throat thickness-diameter ratios (s/d) of 1.41, 1.66 and 2.21. Tests were run with air and water flow rates ranging between 1.0 and 3.0 m{sup 3}/h, respectively. The two-phase flow patterns established for the experiment were bubbly and slug. Two-phase frictional multipliers, frictional pressure drop and void fraction were analyzed. The determined two-phase multipliers were compared against existing correlations for gas-liquid flows. None of the correlations tested proved capable of predicting the experimental results. The large discrepancy between predicted and measured values points at the role played by valve throat geometry and thickness-diameter ratio in the hydrodynamics of two-phase flow through MOVs. A modification to the constants in the two-phase multiplier equation used for pipe flow fitted the experimental data. A comparison between computed frictional pressure drop, calculated with the modified two-phase multiplier equation and measured pressure drop yielded better agreement, with less than 20% error. (author)

  11. What types of investors generate the two-phase phenomenon?

    NASA Astrophysics Data System (ADS)

    Ryu, Doojin

    2013-12-01

    We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.

  12. Review of present approaches to two-phase flow problems

    NASA Astrophysics Data System (ADS)

    Wolf, L.

    Experimental data and computational results of interest in the context of major technological hazards are reviewed. The discussed areas of two-phase flow include pipe break flow, vessel depressurization, flow through safety relief valves, and two-phase flow jet formation and impingement. Although most data stems from nuclear reactor safety research, important conclusions may be drawn for other technical areas. Data and simulations from models of different sophistication are shown. The applicability of the individual two-phase models and associated codes are discussed.

  13. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    PubMed

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties. PMID:23721654

  14. Characterization of a cold-rolled 2101 lean duplex stainless steel.

    PubMed

    Bassani, Paola; Breda, Marco; Brunelli, Katya; Mészáros, Istvan; Passaretti, Francesca; Zanellato, Michela; Calliari, Irene

    2013-08-01

    Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes σ- and χ-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than ~20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.

  15. Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)

    SciTech Connect

    Cady, C.M.; Chen, K.C.; Kotula, P.G.; Mauro, M.E.; Thoma, D.J.

    1998-12-07

    A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.

  16. Fluid structure interaction solver coupled with volume of fluid method for two-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.

    2016-06-01

    In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.

  17. Measurement of the density of a two-phase fluid

    SciTech Connect

    Sreepada, S.R.; Rippel, R.R.

    1992-05-05

    This patent describes an apparatus for measuring the average density of an essentially transparent, dispersed two-phase fluid having a dispersed phase made up of essentially transparent bubbles, droplets, or particles that have smooth, rounded surfaces. It comprises: a source which produces a collimated beam that has a diameter no larger than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase; a diffraction grating, to which the collimated beam is directed; means for isolating a single-order component of the diffracted beam and directing it through the dispersed two-phase fluid; containing means for the dispersed two-phase fluid that allows the single-order component of the diffracted beam to pass through, and measuring means for determining the refraction of the beam by the dispersed two-phase fluid.

  18. A jet polishing technique for thinning two phase materials

    SciTech Connect

    Witcomb, M.J. ); Dahmen, U. )

    1990-11-01

    A common problem in the preparation of thin foils for transmission electron microscopy is the different thinning rate in two-phase materials. Often this leads to foils in which the majority, or matrix, phase is evenly polished while the minority, or precipitate, phase is either etched out or stands proud of the surrounding material. In the present report we describe a two-stage jet polishing technique that has been used successfully on different relatively coarse two-phase structures. 3 figs.

  19. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  20. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  1. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies

  2. Electron backscatter diffraction study of deformation and recrystallization textures of individual phases in a cross-rolled duplex steel

    SciTech Connect

    Zaid, Md; Bhattacharjee, P.P.

    2014-10-15

    The evolution of microstructure and texture during cross-rolling and annealing was investigated by electron backscatter diffraction in a ferritic–austenitic duplex stainless steel. For this purpose an alloy with nearly equal volume fraction of the two phases was deformed by multi-pass cross-rolling process up to 90% reduction in thickness. The rolling and transverse directions were mutually interchanged in each pass by rotating the sample by 90° around the normal direction. In order to avoid deformation induced phase transformation and dynamic strain aging, the rolling was carried out at an optimized temperature of 898 K (625 °C) at the warm-deformation range. The microstructure after cross warm-rolling revealed a lamellar structure with alternate arrangement of the bands of two phases. Strong brass and rotated brass components were observed in austenite in the steel after processing by cross warm-rolling. The ferrite in the cross warm-rolling processed steel showed remarkably strong RD-fiber (RD//< 011 >) component (001)< 011 >. The development of texture in the two phases after processing by cross warm-rolling could be explained by the stability of the texture components. During isothermal annealing of the 90% cross warm-rolling processed material the lamellar morphology was retained before collapse of the lamellar structure to the mutual interpenetration of the phase bands. Ferrite showed recovery resulting in annealing texture similar to the deformation texture. In contrast, the austenite showed primary recrystallization without preferential orientation selection leading to the retention of deformation texture. The evolution of deformation and annealing texture in the two phases of the steel was independent of one another. - Highlights: • Effect of cross warm-rolling on texture formation is studied in duplex steel. • Brass texture in austenite and (001)<110 > in ferrite are developed. • Ferrite shows recovery during annealing retaining the (001

  3. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  4. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.

  5. Two-Phase Thermal Management Systems for Space

    NASA Astrophysics Data System (ADS)

    Downing, Scott; Andres, Mike; Nguyen, Dam; Halsey, Dave; Bauch, Tim

    2006-01-01

    Active two-phase thermal management systems have been shown to be weight and power effective for space platforms dissipating over 20 kWt of waste heat. A two-phase thermal management system can provide nearly isothermal heat transport at mass flows significantly lower than required for single-phase systems by employing a working fluid's latent heat rather than absorbing the heat sensibly in temperature change. Phase management issues specific to reduced gravity include pump cavitation, loop inventory control and potential dry out in the evaporator. Hamilton Sundstrand has developed and demonstrated in a reduced gravity aircraft environment, a suite of two-phase technologies that manage the liquid-vapor phase distribution. These technologies keep the liquid phase available at the pump inlet for pumping and present at heat acquisition boundaries for evaporation. This paper reviews these technologies for future high power, long duration space platforms.

  6. Transient well testing in two-phase geothermal reservoirs

    SciTech Connect

    Aydelotte, S.R.

    1980-03-01

    A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

  7. Acoustoelastic constants in dilute two-phase alloys

    NASA Technical Reports Server (NTRS)

    Salama, K.; Schneider, E.; Chu, S. L.

    1986-01-01

    Acoustoelastic constants are calculated for two-phase alloys containing dilute concentrations of precipitates in a solid-solution matrix, on the basis of a model in which the precipitates are represented as a dilute elastic suspension of spherical particle inclusions in an infinite matrix. The longitudinal propagation velocity in the alloy is thereby obtained in terms of the precipitates' concentration and the elastic moduli of the two phases. Results are presented which indicate that the acoustoelastic constant of longitudinal waves in a dilute two-phase alloy varies linearly with the concentration of second-phase precipitates, in agreement with recent measurements in aluminum and steel alloys where the acoustoelastic constants changed linearly with the second phase's volume fraction.

  8. Thermal Vibrational Convection in a Two-phase Stratified Liquid

    NASA Technical Reports Server (NTRS)

    Chang, Qingming; Alexander, J. Iwan D.

    2007-01-01

    The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different than that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed.

  9. Experimental study on confined two-phase jets

    SciTech Connect

    Levy, Y.; Albagli, D. )

    1991-09-01

    The basic mixing phenomena in confined, coaxial, particle-laden turbulent flows are studied within the scope of ram combustor research activities. Cold-flow experiments in a relatively simple configuration of confined, coaxial two-phase jets provided both qualitative and quantitative insight on the multiphase mixing process. Pressure, tracer gas concentration, and two-phase velocity measurements revealed that unacceptably long ram combustors are needed for complete confined jet mixing. Comparison of the experimental results with a previous numerical simulation displayed a very good agreement, indicating the potential of the experimental facility for validation of computational parametric studies. 38 refs.

  10. Pumped, Two-Phase Heat-Transfer Loop

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1986-01-01

    Two-phase heat-transfer system delivers coolant to equipment as liquid and removes it as vapor. Alternatively, system heats equipment by delivering vapor and removing condensed liquid. Two-phase scheme effective for heat transfer over long distances. Heat-transfer plates remove heat from or supply heat to equipment. If temperature of plate is high, valve opens liquid-supply line to plate, and cooling results. If plate temperature is low, valve opens liquid-suction line to plate, and heating ensues.

  11. Two-Phase Model of Combustion in Explosions

    SciTech Connect

    Kuhl, A L; Khasainov, B; Bell, J

    2006-06-19

    A two-phase model for Aluminum particle combustion in explosions is proposed. It combines the gas-dynamic conservation laws for the gas phase with the continuum mechanics laws of multi-phase media, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by the Khasainov model. Combustion is specified as material transformations in the Le Chatelier diagram which depicts the locus of thermodynamic states in the internal energy-temperature plane according to Kuhl. Numerical simulations are used to show the evolution of two-phase combustion fields generated by the explosive dissemination of a powdered Al fuel.

  12. Two Phase Flow and Space-Based Applications

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    1999-01-01

    A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.

  13. Effect of alloying on superplasticity of two-phase brasses

    NASA Astrophysics Data System (ADS)

    Yakovtseva, O. A.; Mikhailovskaya, A. V.; Kotov, A. D.; Portnoi, V. K.

    2016-07-01

    Superplasticity characteristics of two-component and multicomponent brasses in the temperature range 525-600°C have been investigated at tension tests under the conditions of stepwise enhancement in the strain rate and when maintaining a constant strain rate of 1 × 10-3 s-1. The effective energy for activating superplastic deformation has been determined. It has been shown that brass alloyed with aluminum, tin, and iron exhibits large elongations and less porosity due to superplastic deformation. Changes in the granular structure and sample surfaces have been analyzed after deformation, and signs of grain-boundary sliding and intragrain deformation have been revealed in the alloys studied.

  14. Single- and two-phase flow characterization using optical fiber bragg gratings.

    PubMed

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  15. Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings

    PubMed Central

    Baroncini, Virgínia H.V.; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E.M.

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  16. A two-phase model of compaction, damage and material weakening

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Bercovici, D. A.

    2013-12-01

    Fluids permeate the pores and cracks of crustal rocks and have a significant effect on rock deformation and failure under stress. A distributed damage within the very low permeable rocks introduced by hydraulic fracturing could enhance the production of oils and gas or the capacity of CO2-bearing fluid during carbon sequestration. We study the dynamics of a simple two-phase flow based on an averaging approach, combined with the mass, momentum and energy conservations for the mixture. A non-equilibrium relation between surface energy and deformational work is investigated during the flow transport within the poro-visco-elastic medium. The generation and growth of void/microcracks are associated with the creation of surface energy during the deformation, i.e. that part of the viscous and elastic deformational energy is partitioned towards surface energy, instead of being dissipated as frictional heat. The resulting equations provide a continuum description of weakening mechanism and show that the shear strength is reduced and the fluid diffusion becomes more effective with a distributed damage. Simple applications to the injection of the fluid with varied pressure are addressed and an enhanced porosity profile is observed near to the injection site with the occurrence of damage.

  17. Coal-Face Fracture With A Two-Phase Liquid

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.

  18. Low gravity two-phase flow with heat transfer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1991-01-01

    A realistic model for the transfer line chilldown operation under low-gravity conditions is developed to provide a comprehensive predictive capability on the behavior of liquid vapor, two-phase diabatic flows in pipes. The tasks described involve the development of numerical code and the establishment of the necessary experimental data base for low-gravity simulation.

  19. Two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Bush, Mia L.; Omrani, Adel; Yan, An

    1995-01-01

    Coiled tube heat exchangers involving two-phase flows are used in a variety of application areas, extending from the aerospace industry to petrochemical, refrigeration land power generation industries. The optimal design in each situation requires a fundamental understanding of the heat, mass and momentum transfer characteristic of the flowing two-phase mixture. However, two-phase flows in lengths of horizontal or vertical straight channels with heat transfer are often quite difficult in themselves to understand sufficiently well to permit accurate system designs. The present study has the following general objectives: (1) Observe two-phase flow patterns of air-water and R-113 working fluids over a range of flow conditions, for helical and spiral coil geometries, of circular and rectangular cross-section; (2) Compare observed flow patterns with predictions of existing flow maps; (3) Study criteria for flow regime transitions for possible modifications of existing flow pattern maps; and (4) Measure associated pressure drops across the coiled test sections over the rage of flow conditions specified.

  20. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  1. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGESBeta

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  2. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  3. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGESBeta

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  4. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results

  5. Investigations of two-phase flame propagation under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Gokalp, Iskender

    2016-07-01

    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets

  6. Water transport in two-phase fuel cell microchannels

    NASA Astrophysics Data System (ADS)

    Lee, Eon Soo

    Many fuel cells contain small rectangular channels in which three of the channel walls are smooth, impermeable metal and the fourth wall is a porous gas-diffusion layer. The main function of the channels is to supply reactant gases through the porous layer to the reaction surface, but also to remove water formed by the electro-chemical reactions. Analysis of the two-phase flow through these channels is complicated by the fact that both gas and liquid can move through either the channel or the porous layer. This study presents the flow regime maps for the two-phase flow and a 1-D two-phase flow model for the frictional characteristics of the porous wall bounded channel flow. Experiments were performed on a straight 200 by 500 micron by 150 mm long rectangular channel. Three walls of the channel were machined into a solid piece of acrylic. One of the 500 micron wide walls was a commercial Toray carbon paper gas-diffusion layer (GDL) material held in place by a flat sheet of acrylic. Water was forced through the GDL layer from four evenly spaced holes in the flat acrylic piece. Two-phase flow regime maps were constructed from flow visualization in terms of a superficial gas velocity, JG and the superficial liquid velocity, JL at the channel exit between 0 < JG < 20 m/s and 0 < JL < 10 mm/s. Flow regimes were observed to change from plug flow to stratified flow through an intermediate flow regime as superficial gas velocities increased. The transition from plug flow generally occurs at a constant superficial gas velocity and a two-phase Weber number is proposed as an appropriate dimensionless parameter to characterize this transition. A one-dimensional, two-phase flow model was developed which included the effect of air and water flows in both the channel and GDL. The analysis from experimental measurements showed that the product of the friction factor and the gas flow Reynolds number was very nearly a constant, indicating that the model captures the critical physical

  7. Method and apparatus for monitoring two-phase flow. [PWR

    DOEpatents

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  8. Convective heat transfer in a closed two-phase thermosyphon

    NASA Astrophysics Data System (ADS)

    Al-Ani, M. A.

    2014-08-01

    A numerical analysis of heat transfer processes and hydrodynamics in a two-phase closed thermosyphon in a fairly wide range of variation of governing parameters has been investigated. A mathematical model is formulated based on the laws of mass conservation, momentum and energy in dimensionless variables "stream function - vorticity vector velocity - temperature". The analysis of the modes of forced and mixed convection for different values of Reynolds number and heat flows in the evaporation zone, the possibility of using two-phase thermosyphon for cooling gas turbine blades, when the heat is coming from the turbine blades to the thermosyphon is recycled a secondary refrigerant has been studied with different values of the centrifugal velocity. Nusselet Number, streamlines, velocity, temperature fields and temperature profile has been calculated during the investigation.

  9. Gelfand-type problem for two-phase porous media

    PubMed Central

    Gordon, Peter V.; Moroz, Vitaly

    2014-01-01

    We consider a generalization of the Gelfand problem arising in Frank-Kamenetskii theory of thermal explosion. This generalization is a natural extension of the Gelfand problem to two-phase materials, where, in contrast to the classical Gelfand problem which uses a single temperature approach, the state of the system is described by two different temperatures. We show that similar to the classical Gelfand problem the thermal explosion occurs exclusively owing to the absence of stationary temperature distribution. We also show that the presence of interphase heat exchange delays a thermal explosion. Moreover, we prove that in the limit of infinite heat exchange between phases the problem of thermal explosion in two-phase porous media reduces to the classical Gelfand problem with renormalized constants. PMID:24611025

  10. On a simplified two-phase slug flow model

    SciTech Connect

    Yuwen Wang ); Baushei Pei; Weikeng Lin . Dept. of Nuclear Engineering)

    1994-02-01

    A simplified model of two-phase slug flow is constructed. Model equations containing 11 parameters can describe the characteristics of slug flow completely. These equations can generally be solved by an iterative method within 15 iterations, if the relative error tolerance is chosen to be 0.1%. The model is applicable to two-phase systems with various diameters with a correction in the liquid slug void fraction. The procedures for correcting the liquid slug void fraction and for solving the model equations are also presented. Some experimental time-varying signals of slug flow are selected to be analyzed. Model calculations are compared with both previously published and new experimental data. The comparisons show that the errors in the calculated results are generally within [+-]10%

  11. Gelfand-type problem for two-phase porous media.

    PubMed

    Gordon, Peter V; Moroz, Vitaly

    2014-03-01

    We consider a generalization of the Gelfand problem arising in Frank-Kamenetskii theory of thermal explosion. This generalization is a natural extension of the Gelfand problem to two-phase materials, where, in contrast to the classical Gelfand problem which uses a single temperature approach, the state of the system is described by two different temperatures. We show that similar to the classical Gelfand problem the thermal explosion occurs exclusively owing to the absence of stationary temperature distribution. We also show that the presence of interphase heat exchange delays a thermal explosion. Moreover, we prove that in the limit of infinite heat exchange between phases the problem of thermal explosion in two-phase porous media reduces to the classical Gelfand problem with renormalized constants.

  12. Recent advances in two-phase flow numerics

    SciTech Connect

    Mahaffy, J.H.; Macian, R.

    1997-07-01

    The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.

  13. Holdup of the liquid slug in two phase intermittent flow

    SciTech Connect

    Barnea, D.; Brauner, N.

    1985-01-01

    A physical model for the prediction of gas holdup in liquid slugs in horizontal and vertical two phase pipe slug flow is presented. This model can also be used to yield the transitio between elongated bubbles and slug flow within the intermittent flow pattern. In addition a previously published model for predicting the stable slug length in vertical upward slug flow is extended here for the case of horizontal slug flow.

  14. Modeling of two-phase porous flow with damage

    NASA Astrophysics Data System (ADS)

    Cai, Z.; Bercovici, D.

    2009-12-01

    Two-phase dynamics has been broadly studied in Earth Science in a convective system. We investigate the basic physics of compaction with damage theory and present preliminary results of both steady state and time-dependent transport when melt migrates through porous medium. In our simple 1-D model, damage would play an important role when we consider the ascent of melt-rich mixture at constant velocity. Melt segregation becomes more difficult so that porosity is larger than that in simple compaction in the steady-state compaction profile. Scaling analysis for compaction equation is performed to predict the behavior of melt segregation with damage. The time-dependent of the compacting system is investigated by looking at solitary wave solutions to the two-phase model. We assume that the additional melt is injected to the fracture material through a single pulse with determined shape and velocity. The existence of damage allows the pulse to keep moving further than that in simple compaction. Therefore more melt could be injected to the two-phase mixture and future application such as carbon dioxide injection is proposed.

  15. Definition of two-phase flow behaviors for spacecraft design

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.

    1991-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. A boiling and condensing experiment was built in which R-12 was used as the working fluid. A two-phase pump was used to circulate a freon mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown five times aboard the NASA KC-135 aircraft which simulates zero-g conditions by its parabolic flight trajectory. Test conditions included stratified and annual flow regimes in 1-g which became bubbly, slug, or annular flow regimes on 0-g. A portion of this work is the analysis of adiabatic flow regimes. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes.

  16. Designing piping systems for two-phase flow

    SciTech Connect

    Cindric, D.T.; Gandhi, S.L.; Williams, R.A.

    1987-03-01

    A wide range of industrial systems, such as thermosiphon reboilers and chemical reactors, involve two-phase gas-liquid flow in conduits. Design of these systems requires information about the flow regime, pressure drop, slug velocity and length, and heat transfer coefficient. An understanding of two-phase flow is critical for the reliable and cost-effective design of such systems. The successful design of a pipeline in two-phase flow, for example, is a two-step process. The first step is the determination of the flow regime. If an undesirable flow regime, such as slug flow, is not anticipated and adequately designed for, the resulting flow pattern can upset a tower control system or cause mechanical failures of piping components. The second step is the calculation of flow parameters such as pressure drop and density to size lines and equipment. Since the mechanism of fluid flow (and heat transfer) depends on the flow pattern, separate flow models are required for different flow patterns.

  17. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  18. Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.

    1994-01-01

    Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.

  19. Two-phase methane fermentation of municipal-industrial sludge

    SciTech Connect

    Ghosh, S.; Sajjad, A.

    1984-01-01

    This paper presents the development of an innovative two-phase methane fermentation process that provided a mesophilic methane yield of about 0.5 SCM/kg VS (8 SCF/lb VS) added from digestion of a municipal-industrial sludge at a system hydraulic residence time (HRT) of about 6 days compared with a yield of 0.22 to 0.31 SCM/kg VS (3.5 to 5.0 SCF/lb VS) added obtained from single-stage conventional high-rate digesters operated at HRT's of 10 to 20 days. This innovative process has substantive beneficial impact on the production of net energy and availability of surplus digester methane for sale or conversion to such other energy forms as substitute natural gas, electric power, hot water, or low-pressure steam. The research was conducted with a high-metal-content and difficult-to-treat primary sludge from the South Essex Sewerage District (SESD) water pollution control plant, Salem, Massachusetts. Wastewaters received at the plant include 40 to 60 vol % industrial wastes, the remainder being residential liquid wastes. Incineration, which was the sludge disposal process at the plant, is now unacceptable because it leads to the production of hexavalent chromium and other oxidized metals, and the incinerator ash containing these materials cannot be landfilled. The two-phase process does not generate oxidized species such as Cr/sup 6 +/, produces renewable energy and a highly stabilized residue, and could be an answer to the sludge disposal problems of SESD or other sewage districts. Results of bench-scale process development work are presented here. Design and operation of a 7500 L/day (2000 gal/day) two-phase pilot plant will be started this year with support from the above industrial sponsors and other governmental and public agencies. 6 references, 1 figure, 5 tables.

  20. Liquid jet pumps for two-phase flows

    SciTech Connect

    Cunningham, R.G.

    1995-06-01

    Isothermal compression of a bubbly secondary fluid in a mixing-throat and diffuser is described by a one-dimensional flow model of a liquid-jet pump. Friction-loss coefficients used in the four equations may be determined experimentally, or taken from the literature. The model reduces to the liquid-jet gas compressor case if the secondary liquid is zero. Conversely, a zero secondary-gas flow reduces the liquid-jet gas and liquid (LJGL) model to that of the familiar liquid-jet liquid pump. A ``jet loss`` occurs in liquid-jet pumps if the nozzle tip is withdrawn from the entrance plane of the throat, and jet loss is included in the efficiency equations. Comparisons are made with published test data for liquid-jet liquid pumps and for liquid-jet gas compressors. The LJGL model is used to explore jet pump responses to two-phase secondary flows, nozzle-to-throat area ratio, and primary-jet velocity. The results are shown in terms of performance curves versus flow ratios. Predicted peak efficiencies are approximately 50 percent. Under sever operating conditions, LJGL pump performance curves exhibit maximum-flow ratios or cut-offs. Cut-offs occurs when two-phase secondary-flow steams attain sonic values at the entry of the mixing throat. A dimensionless number correlates flow-ratio cut-offs with pump geometry and operating conditions. Throat-entry choking of the secondary flow can be predicted, hence avoided, in designing jet pumps to hand two-phase fluids.

  1. Laboratory experiment on poroelastic behavior of Berea sandstone under two-phase fluid flow condition

    NASA Astrophysics Data System (ADS)

    Goto, H.; Aichi, M.; Tokunaga, T.; Yamamoto, H.; Ogawa, T.; Aoki, T.

    2013-12-01

    Coupled two-phase fluid flow and deformation of Berea sandstone was discussed through laboratory experiments and numerical simulation. In the experiment, a triaxial compression apparatus with flow pipes to pass fluids through a rock sample was used. The experimental procedures were as follows. Firstly, external stresses close to hydrostatic condition were applied to a water saturated cylindrical Berea sandstone sample. Then, compressed air was infiltrated from the bottom of the sample. During the experiment, both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were measured. Both strains showed sudden extensions after a few seconds, and monotonically extended thereafter. The volumetric discharge of water showed that air breakthrough occurred in around 100 seconds after the commencement of the air injection. Numerical simulations based on thermodynamically consistent constitutive equations were conducted in order to quantitatively analyze the experimental results. In a simulation in which the material was assumed to be homogeneous isotropic, the axial strain at half the height of the sample and the volumetric discharge of water at the outlet were reproduced well by using reasonable parameters, while that was not the case with the circumferential strain at half the height of the sample. On the other hand, in a simulation in which anisotropy of the material was introduced, all experimental data were reproduced well by using reasonable parameters. This result is reasonable because Berea sandstone is well known to be anisotropic under such Terzaghi effective stress condition as used in our experiment, i.e., 3.0 MPa (Hart and Wang, 1999; Hart, 2000). Our results indicate that the theory of poroelasticity for two-phase fluid system can explain the strain behavior of porous media for two-phase fluid flow observed in laboratory experiments.

  2. Neutron Imaging of a Two-Phase Refrigerant Flow

    SciTech Connect

    Geoghegan, Patrick J

    2015-01-01

    Void fraction remains a crucial parameter in understanding and characterizing two-phase flow. It appears as a key variable in both heat transfer and pressure drop correlations of two-phase flows, from the macro to micro- channel scale. Void fraction estimation dictates the sizing of both evaporating and condensing phase change heat exchangers, for example. In order to measure void fraction some invasive approach is necessary. Typically, visualization is achieved either downstream of the test section or on top by machining to expose the channel. Both approaches can lead to inaccuracies. The former assumes the flow will not be affected moving from the heat exchanger surface to the transparent section. The latter distorts the heat flow path. Neutron Imaging can provide a non-invasive measurement because metals such as Aluminum are essentially transparent to neutrons. Hence, if a refrigerant is selected that provides suitable neutron attenuation; steady-state void fraction measurements in two-phase flow are attainable in-situ without disturbing the fluid flow or heat flow path. Neutron Imaging has been used in the past to qualitatively describe the flow in heat exchangers in terms of maldistributions without providing void fraction data. This work is distinguished from previous efforts because the heat exchanger has been designed and the refrigerant selected to avail of neutron imaging. This work describes the experimental flow loop that enables a boiling two-phase flow; the heat exchanger test section and downstream transparent section are described. The flow loop controls the degree of subcooling and the refrigerant flowrate. Heating cartridges embedded in the test section are employed to control the heat input. Neutron-imaged steady-state void fraction measurements are captured and compared to representative high-speed videography captured at the visualization section. This allows a qualitative comparison between neutron imaged and traditional techniques. The

  3. TOPLOSS - A thermal analyzer for two-phase loops

    NASA Astrophysics Data System (ADS)

    Schwarzott, Walter; Faust, Thomas; Rothmeyer, Markus

    Two phase flow cooling loops are an answer to the new thermal requirements established by future space missions which tend to larger size and higher power demand. The software package TOPLOSS simulates the thermal, fluid- and thermodynamic behavior of two and single phase cooling loops of arbitrary geometry including all relevant components. TOPLOSS structure is modular, the different loop components are modeled in separate adaptable subroutines. The fluid properties module is an improved version of GASP, a NASA-developed fluid property program. TOPLOSS is linked to the thermal network analyzer SINDA which is used to manage the thermal boundaries for the loop. An example illustrates TOPLOSS performance.

  4. Centrifugal inertia effects in two-phase face seal films

    NASA Technical Reports Server (NTRS)

    Basu, P.; Hughes, W. F.; Beeler, R. M.

    1987-01-01

    A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.

  5. A real two-phase submarine debris flow and tsunami

    SciTech Connect

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  6. SOLA-LOOP. Two-Phase Flow Network Analysis

    SciTech Connect

    Hirt, C.W.; Oliphant, T.A.; Rivard, W.C.; Romero, N.C.; Torrey, M.D.

    1992-01-13

    SOLA-LOOP is designed for the solution of transient two-phase flow in networks composed of one-dimensional components. The fluid dynamics is described by a nonequilibrium, drift-flux formulation of the fluid conservation laws. Although developed for nuclear reactor safety analysis, SOLA-LOOP may be used as the basis for other types of special-purpose network codes. The program can accommodate almost any set of constitutive relations, property tables, or other special features required for different applications.

  7. 3D X-ray Strain Microscopy in Two-Phase Composites at Submicron Length Scale

    SciTech Connect

    Barabash, Rozaliya; Bei, Hongbin; Ice, Gene E; Gao, Yanfei; Barabash, Oleg M

    2011-01-01

    Author note: Part of this research summary is based on findings first reported in Refs. [3-5, 18]. Renewed interest in composite materials is driven by the fact that their mechanical properties can be superior to those of individual constituent phases. Interfaces between the phases are the key elements responsible for the unique micro-mechanisms of plastic deformation in composites. In this study the depth-dependent residual strain distributed in the two phases and partitioned across the composite interfaces is directly measured at submicron length-scale using X-ray microdiffraction and compared to a detailed simulation within the framework of micromechanical stress analysis. Interface strength is determined from the analysis of the so-called slip zone caused by the near-surface stress relaxation. Two examples are discussed including NiAl/Mo and Ni/Mo composites.

  8. Volumetric monitoring of aqueous two phase system droplets using time-lapse optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bathany, C.; Ahn, Y.; Takayama, S.; Jung, W.

    2016-02-01

    We present a volumetric monitoring method to observe the morphological changes of aqueous two phase system (ATPS) droplets in a microfluidic system. Our method is based on time-lapse optical coherence tomography (OCT) which allows the study of the dynamics of ATPS droplets while visualizing their 3D structures and providing quantitative information on the droplets. In this study, we monitored the process of rehydration and deformation of an ATPS droplet in a microfluidic system and quantified the changes of its volume and velocity under both static and dynamic fluid conditions. Our results indicate that time-lapse OCT is a very promising tool to evaluate the unprecedented features of droplet-based microfluidics.

  9. Ductile two-phase alloys: prediction of strengthening at high strains

    SciTech Connect

    Funkenbusch, P.D.; Lee, J.K.; Courtney, T.H.

    1987-07-01

    When alloys containing two ductile phases are heavily deformed, composite-like microstructures develop and strengths well in excess of either of the phases in single-phase form may be exhibited as a result of microstructure/dislocation density effects. In this paper, a previously-published model for such strengthening is reviewed, and its application in a predictive capacity discussed. Flow stress vs fabrication strain data for the two components in single-phase from and for one two-phase alloy are necessary for this purpose. The model may then be applied to predict strength for any other two-phase alloy as a function of composition, fabrication strain, and interphase spacing. The approach is illustrated using existing data for several alloy systems. For Ag-Fe and Cu-Nb alloys (with very limited mutual solubility) strengths can be predicted within 15 to 20 pct of the experimental values over the entire range of strains and volume fractions for which data are available. In systems whre the potential for precipitation hardening exists (e.g., Cu-Fe) thermal history is important. When such hardening becomes a significant factor, the model cannot be used in its present form due to uncertainty over how to add the strengthening from this effect. Such hardening may, however, be useful in further improving the properties of these materials.

  10. A two-phase composite in simple shear: Effective mechanical anisotropy development and localization potential

    NASA Astrophysics Data System (ADS)

    Dabrowski, M.; Schmid, D. W.; Podladchikov, Y. Y.

    2012-08-01

    We present a combined shape and mechanical anisotropy evolution model for a two-phase inclusion-bearing rock subject to large deformation. A single elliptical inclusion embedded in a homogeneous but anisotropic matrix is used to represent a simplified shape evolution enforced on all inclusions. The mechanical anisotropy develops due to the alignment of elongated inclusions. The effective anisotropy is quantified using the differential effective medium (DEM) approach. The model can be run for any deformation path and an arbitrary viscosity ratio between the inclusion and host phase. We focus on the case of simple shear and weak inclusions. The shape evolution of the representative inclusion is largely insensitive to the anisotropy development and to parameter variations in the studied range. An initial hardening stage is observed up to a shear strain of γ = 1 irrespective of the inclusion fraction. The hardening is followed by a softening stage related to the developing anisotropy and its progressive rotation toward the shear direction. The traction needed to maintain a constant shear rate exhibits a fivefold drop at γ = 5 in the limiting case of an inviscid inclusion. Numerical simulations show that our analytical model provides a good approximation to the actual evolution of a two-phase inclusion-host composite. However, the inclusions develop complex sigmoidal shapes resulting in the formation of an S-C fabric. We attribute the observed drop in the effective normal viscosity to this structural development. We study the localization potential in a rock column bearing varying fraction of inclusions. In the inviscid inclusion case, a strain jump from γ = 3 to γ = 100 is observed for a change of the inclusion fraction from 20% to 33%.

  11. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    PubMed Central

    Gu, Hao; Duits, Michel H. G.; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed. PMID:21731459

  12. Ultrasonic scattering in two-phase polycrystalline media

    NASA Astrophysics Data System (ADS)

    Liu, Dalie; Turner, Joseph A.

    2005-09-01

    Successful processing of materials by powder sintering relies on the creation of strong interparticle bonds. During certain critical stages of the sintering process, the medium may be modeled as two phases consisting of the particles and a surrounding matrix. Ultrasonic methods have been proposed as a potential tool for monitoring such sintering processes. Thus, an understanding of the propagation and scattering of elastic waves in two-phase solids is of fundamental importance to these monitoring techniques. Here, a combined theoretical and numerical approach is used to address this problem. Ultrasonic attenuation and diffuse backscatter are studied theoretically using elastodynamic and stochastic wave theory, based on the spatial statistics of the density and Lamé parameters of the materials constituents under assumptions of statistical homogeneity and statistical isotropy. The numerical models are based on Voronoi polycrystals surrounded by a matrix of different material properties. Elastic wave simulations using the finite-element method (FEM) are then created to examine the influence of the grain size, wave type, and material statistics. The numerical results are compared with the attenuation theory proposed. The results presented are anticipated to impact the monitoring of materials processing of important engineering materials. [Work supported by U.S. DOE.

  13. Local Interfacial Structure in Downward Two-Phase Bubbly Flow

    SciTech Connect

    Hiroshi Goda; Seungjin Kim; Paranjape, Sidharth S.; Finch, Joshua P.; Mamoru Ishii; Uhle, Jennifer

    2002-07-01

    The local interfacial structure for vertical air-water co-current downward two-phase flow was investigated under adiabatic conditions. A multi-sensor conductivity probe was utilized in order to acquire the local two-phase flow parameters. The present experimental loop consisted of 25.4 mm and 50.8 mm ID round tubes as test sections. The measurement was performed at three axial locations: L/D = 13, 68 and 133 for the 25.4 mm ID loop and L/D 7, 34, 67 for the 50.8 mm ID loop, in order to study the axial development of the flow. A total of 7 and 10 local measurement points along the tube radius were chosen for the 25.4 mm ID loop and the 50.8 mm ID loop, respectively. The experimental flow conditions were determined within bubbly flow regime. The acquired local parameters included the void fraction, interfacial area concentration, bubble interface frequency, bubble Sauter mean diameter, and interfacial velocity. (authors)

  14. Ultrasonic wave propagation in two-phase media: Spherical inclusions

    NASA Technical Reports Server (NTRS)

    Fu, L. S.; Sheu, Y. C.

    1983-01-01

    The scattering theory, recently developed via the extended method of equivalent inclusion, is used to study the propagation of time-harmonic waves in two-phase media of elastic matrix with randomly distributed elastic spherical inclusion materials. The elastic moduli and mass density of the composite medium are determined as functions of frequencies when given properties and concentration of the spheres and the matrix. Velocity and attenuation of ultrasonic waves in two-phase media are determined for cases of distributed spheres and localized damage. An averaging theorem that requires the equivalence of the strain energy and the kinetic energy between the effective medium and the original matrix with spherical inhomogeneities is employed to derive the effective moduli and mass density. The functional dependency of these quantities upon frequencies and concentration provides a method of data analysis in ultrasonic evaluation of material properties. Numerical results or moduli, velocity and/or attenuation as functions of concentration of inclusion material, or porosity, are graphically displayed.

  15. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  16. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    PubMed Central

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  17. Theory and tests of two-phase turbines

    SciTech Connect

    Elliot, D.G.

    1982-03-15

    Two-phase turbines open the possibility of new types of power cycles operating with extremely wet mixtures of steam and water, organic fluids, or immiscible liquids and gases. Possible applications are geothermal power, waste-heat recovery, refrigerant expansion, solar conversion, transportation turbine engines, and engine bottoming cycles. A theoretical model for two-phase impulse turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water-and-nitrogen mixtures and Refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water-and-nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for Refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water-and-nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for Refrigerant 22 with a single-stage turbine, and 0.70 (measured) and 0.85 (theoretical) for water-and-nitrogen mixtures with a two-stage turbine.

  18. Microgravity two-phase fluid flow pattern modeling

    NASA Technical Reports Server (NTRS)

    Lee, Doojeong; Best, Frederick R.

    1988-01-01

    When gas and liquid mixtures flow in a pipe, the distribution of the two phases may take many forms. A flow pattern, or flow regime, is the characteristic spatial distribution of the phases of flow in a pipe. Because heat transfer and pressure drop are dependent on the characteristic distribution of phases, it is necessary to describe flow patterns in an appropriate manner so that a hydrodynamic or heat transfer theory applicable to that can be chosen. A theoretical two phase flow regime transition map under a microgravity environment was developed on physical concepts. These transitions use four basic flow patterns: dispersed flow, slug flow, stratified flow, and annular flow. The forces considered are body force, surface tension force, inertial force, friction, and the force from eddy turbulent fluctuation. Three dimensionless parameters were developed. Because these transition boundaries were developed based on physical concepts, they should be applicable to flow regimes occurring in various design conditions. Because the flow pattern data from KC-135 experiments are insufficient to verify these theoretical transition lines completely, an adiabatic experiment for flow regime analysis is recommended.

  19. Droplets formation and merging in two-phase flow microfluidics.

    PubMed

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  20. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  1. Two-phase volcanic eruptions: Compaction, compression, and choking

    NASA Astrophysics Data System (ADS)

    Bercovici, D.; Michaut, C.

    2009-12-01

    Volcanic eruptions involve turbulent, often super-sonic flows of gas and magma or ash mixtures. The mixture density is controlled both by gas content as well as gas compressibility, both of which vary according to different processes of compaction and compression, respectively. Moreover, the two phases of the mixture separate because of their different densities, and the interaction forces (turbulent drag and inertial exchange) can be complex. We develop and explore a model for two-phase, high Reynolds number flow of a compacting suspension of magma particles in a compressible gas. The model is used to examine acoustic-porosity wave propagation and the development of shocks or choking in a volcanic conduit. Standard pseudo-gas treatments of volcanic eruptions -- wherein the phases are assumed to move with the same velocity -- predict greatly reduced accoustic sound waves, and thus shock development at relatively low velocities. Sound waves in separable mixtures, however, are highly dispersive with fast waves propagating at the pure gas sound speed at small wavelengths, slow waves traveling at the pseudo-gas speed at long wavelengths, and pure attenuation and sound blocking at intermediate wavelengths. Short-wavelength disturbances on an erupting column will thus only induce shocks if the column's gas velocity reaches the gas sound speed. Long-wavelength disturbances will develop shocks if the column is erupting at least as fast as the reduced pseudo-gas sound speed. Intermediate-wavelength disturbances associated with sound blocking will induce shocks at any column velocity. However, steepening by shock development will force the long wavelength disturbances toward shorter wavelengths, at which point they can propagate up to the gas sound speed without inducing shocks. This dispersive behavior provides a natural mechanism by which long wavelength disturbances choke and then unchoke by shock steepening. Non-linear, finite-amplitude steady-state models of eruptions

  2. Flooding in counter-current two-phase flow

    SciTech Connect

    Ragland, W.A.; Ganic, E.N.

    1982-01-01

    Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.

  3. A simplified model for two phase face seal design

    NASA Technical Reports Server (NTRS)

    Lau, S. Y.; Hughes, W. F.; Basu, P.; Beatty, P. A.

    1990-01-01

    A simplified quasi-isothermal low-leakage laminar model for analyzing the stiffness and the stability characteristics of two-phase face seals with real fluids is developed. Sample calculations with this model for low-leakage operations are compared with calculations for high-leakage operations, performed using the adiabatic turbulent model of Beatty and Hughes (1987). It was found that the seal characteristics predicted using the two extreme models tend to overlap with each other, indicating that the simplified laminar model may be a useful tool for seal design. The effect of coning was investigated using the simplified model. The results show that, for the same balance, a coned seal has a higher leakage rate than a parallel face seal.

  4. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge

  5. Two-phase flow instabilities in a vertical annular channel

    SciTech Connect

    Babelli, I.; Nair, S.; Ishii, M.

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  6. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  7. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-11-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  8. Two-phase flow cell for chemiluminescence and bioluminescence measurements

    SciTech Connect

    Mullin, J.L.; Seitz, W.R.

    1984-01-01

    A new approach to two-phase CL (chemiluminescence) measurements is reported. A magnetically stirred reagent phase is separated from the analyte phase by a dialysis membrane so that only smaller molecules can go from one phase to the other. The system is designed so that the analyte phase flows through a spiral groove on an aluminum block that is flush against the dialysis membrane. As solution flows through the spiral grove, analyte diffuses into the reagent phase where it reacts to produce light. A simple model is developed to predict how this system will behave. Experimentally, the system is evaluated by using the luminol reaction catalyzed by peroxidase, the firefly reaction, and the bacterial bioluminescence reaction. 10 references, 4 tables, 6 figures.

  9. Design of an advanced two-phase capillary cold plate

    NASA Technical Reports Server (NTRS)

    Chalmers, D. R.; Kroliczek, E. J.; Ku, J.

    1986-01-01

    The functional principles and implementation of capillary pumped loop (CPL) two phase heat transport system for various elements of the Space Station program are described. Circulation of the working fluid by the surface-tension forces in a fine-pore capillary wick is the core principle of CPL systems. The liquid, usually NH3 at the moment, is changed into a vapor by heat absorption at one end of the loop, and the vapor is carrried back along the wick by the surface tension within the wick. NASA specifications and the results of mechanical and thermal tests for prototype cold plate and the capillary pump designs are outlined. The CPL is targeted for installation on free-flying platforms, attached payloads, and power subsystem thermal control systems.

  10. Conceptual design for spacelab two-phase flow experiments

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; King, C. D.

    1977-01-01

    KC-135 aircraft tests confirmed the gravity sensitivity of two phase flow correlations. The prime component of the apparatus is a 1.5 cm dia by 90 cm fused quartz tube test section selected for visual observation. The water-cabin air system with water recycle was a clear choice for a flow regime-pressure drop test since it was used satisfactorily on KC-135 tests. Freon-11 with either overboard dump or with liquid-recycle will be used for the heat transfer test. The two experiments use common hardware. The experimental plan covers 120 data points in six hours with mass velocities from 10 to 640 kg/sec-sq m and qualities 0.01 to 0.64. The apparatus with pump, separator, storage tank and controls is mounted in a double spacelab rack. Supporting hardware, procedures, measured variables and program costs are defined.

  11. Theory and tests of two-phase turbines

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1982-01-01

    A theoretical model for two-phase turbines was developed. Apparatus was constructed for testing one- and two-stage turbines (using speed decrease from stage to stage). Turbines were tested with water and nitrogen mixtures and refrigerant 22. Nozzle efficiencies were 0.78 (measured) and 0.72 (theoretical) for water and nitrogen mixtures at a water/nitrogen mixture ratio of 68, by mass; and 0.89 (measured) and 0.84 (theoretical) for refrigerant 22 expanding from 0.02 quality to 0.28 quality. Blade efficiencies (shaft power before windage and bearing loss divided by nozzle jet power) were 0.63 (measured) and 0.71 (theoretical) for water and nitrogen mixtures and 0.62 (measured) and 0.63 (theoretical) for refrigerant 22 with a single stage turbine, and 0,70 (measured) and 0.85 (theoretical) for water and nitrogen mixtures with a two-stage turbine.

  12. Advanced investigation of two-phase charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    The performance of experimental two phase, charge-coupled shift registers constructed using polysilicon gates overlapped by aluminum gates was studied. Shift registers with 64, 128, and 500 stages were built and operated. Devices were operated at the maximum clock frequency of 20 MHz. Loss per transfer of less than .0001 was demonstrated for fat zero operation. The effect upon transfer efficiency of various structural and materials parameters was investigated including substrate orientation, resistivity, and conductivity type; channel width and channel length; and method of channel confinement. Operation of the devices with and without fat zero was studied as well as operation in the complete charge transfer mode and the bias charge, or bucket brigade mode.

  13. Thermoseparating aqueous two-phase systems: Recent trends and mechanisms.

    PubMed

    Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke

    2016-02-01

    Having the benefits of being environmentally friendly, providing a mild environment for bioseparation, and scalability, aqueous two-phase systems (ATPSs) have increasingly caught the attention of industry and researchers for their application in the isolation and recovery of bioproducts. The limitations of conventional ATPSs give rise to the development of temperature-induced ATPSs that have distinctive thermoseparating properties and easy recyclability. This review starts with a brief introduction to thermoseparating ATPSs, including its history, unique characteristics and advantages, and lastly, key factors that influence partitioning. The underlying mechanism of temperature-induced ATPSs is covered together with a summary of recent applications. Thermoseparating ATPSs have been proven as a solution to the demand for economically favorable and environmentally friendly industrial-scale bioextraction and purification techniques. PMID:26447739

  14. Measurement of two-phase flow momentum with force transducers

    SciTech Connect

    Hardy, J.E.; Smith, J.E.

    1990-01-01

    Two strain-gage-based drag transducers were developed to measure two-phase flow in simulated pressurized water reactor (PWR) test facilities. One transducer, a drag body (DB), was designed to measure the bidirectional average momentum flux passing through an end box. The second drag sensor, a break through detector (BTD), was designed to sense liquid downflow from the upper plenum to the core region. After prototype sensors passed numerous acceptance tests, transducers were fabricated and installed in two experimental test facilities, one in Japan and one in West Germany. High-quality data were extracted from both the DBs and BTDs for a variety of loss-of-coolant accident (LOCA) scenarios. The information collected from these sensors has added to the understanding of the thermohydraulic phenomena that occur during the refill/reflood stage of a LOCA in a PWR. 9 refs., 15 figs.

  15. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  16. Interfacial characteristic measurements in horizontal bubbly two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

    1990-10-01

    Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

  17. Correct numerical simulation of a two-phase coolant

    NASA Astrophysics Data System (ADS)

    Kroshilin, A. E.; Kroshilin, V. E.

    2016-02-01

    Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.

  18. Supporting Universal Prevention Programs: A Two-Phased Coaching Model

    PubMed Central

    Becker, Kimberly D.; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S.

    2013-01-01

    Schools are adopting evidence-based programs designed to enhance students’ emotional and behavioral competencies at increasing rates (Hemmeter, Snyder, & Artman, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter & Van Norman, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al., 2005; Stormont, Reinke, Newcomer, Darney, & Lewis, 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker, Bradshaw, Domitrovich, & Ialongo, 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS® curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs. PMID:23660973

  19. A Two Phase Treatment of an Infected Hip Endoprosthesis.

    PubMed

    Ciriviri, Jasmin; Talevski, Darko; Nestorovski, Zoran; Vraniskoski, Tode; Mishevska-Perchinkova, Snežana

    2015-01-01

    The revision of the two phase treatment represents a golden standard in the treatment of infected endoprosthesis. Throughout this study, the results of 21 patients with an infected hip endoprosthesis treated in two phases have been processed, with the use of an antibiotic spacer, within the period of 2009 and 2012. Thereby, a unique protocol for diagnosis and treatment of infections has been applied to all the patients, which entails a preoperational x-ray image, laboratory findings (Se, CRP), as well as a puncture aspiration with a microbiological and biochemical examination of the aspirated fragments. The operational treatment consists of: taking a sample for microbiological and histopathological diagnosis, removal of the implanted endoprosthesis, excision of the avascular and necrotic tissue and installing an antibiotic spacer. Postoperatively, the patients are treated with a parenteral application of an antibiotics based on an antibiogram, throughout a period of two weeks, and later on an oral treatment, a combination of two antibiotics, depending on the antibiogram, within the following four to six weeks. After the appeasement of the local findings and the laboratory results, a revision with a removal of the antibiotic spacer and reimplantation of an endoprosthesis - revisional or primary has been conducted on the patients, depending on the bone deficit. The functionality of the joint is graded based on the Haris Hip Score. The patients are being observed postoperatively for a period of 12 to 36 months. A definite reimplantation has been applied to 20 patients, while one patient has been treated with a resection method. The Haris Hip Score was 45 preoperatively, and 80 postoperatively. The applied protocol of the treatment of infected endoprosthesis is effective in the eradication of the infection and the final reimplantation. PMID:27442385

  20. Quantitative study on experimentally observed poroelastic behavior of Berea sandstone in two-phase fluid system

    NASA Astrophysics Data System (ADS)

    Goto, Hiroki; Aichi, Masaatsu; Tokunaga, Tomochika; Yamamoto, Hajime; Ogawa, Toyokazu; Aoki, Tomoyuki

    2014-08-01

    Coupled two-phase fluid flow and poroelastic deformation of Berea sandstone is studied through laboratory experiment and numerical simulation. In the experiment, compressed air was infiltrated from the bottom of a water-saturated cylindrical Berea sandstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample showed sudden extension and monotonic and gradual extension afterward. Numerical simulation based on thermodynamically consistent constitutive equations was conducted in order to quantitatively analyze the experimental results. In a simulation assuming isotropy of material properties, the volumetric discharge rate of water at the outlet and one of the axial, circumferential, and volumetric strains at half the height of the sample were reproduced well by each parameter set, while the other two strains were not. When introducing transverse isotropy, all the experimental data were reproduced well. In addition, the effect of saturation dependency of Bishop's effective stress coefficient on the deformation behavior of porous media was discussed, and it was found that strains, both axial and circumferential, are sensitive to the coefficient.

  1. Transport processes in boiling and two-phase systems, including near-critical fluids

    NASA Technical Reports Server (NTRS)

    Hsu, Y.-Y.; Graham, R. W.

    1976-01-01

    Aspects of pool boiling are considered, taking into account nucleate boiling, the nucleate boiling mechanism, film boiling, and the transition between nucleate and film boiling. The characteristics of two-phase flow are also investigated, giving attention to two-phase flow parameters and equations, the flow pattern in two-phase flow, the pressure drop in two-phase flow, heat transfer in two-phase flow, two-phase flow dynamics, the boiling crisis in two-phase flow, the critical flow rate, the propagation of the pressure pulse and the sonic velocity in two-phase media, instrumentation for two-phase flow, and geometry and field effects on boiling and two-phase flow. Near-critical fluids are also considered.

  2. Turbulent transition modification in dispersed two-phase pipe flow

    NASA Astrophysics Data System (ADS)

    Winters, Kyle; Longmire, Ellen

    2014-11-01

    In a pipe flow, transition to turbulence occurs at some critical Reynolds number, Rec , and transition is associated with intermittent swirling structures extending over the pipe cross section. Depending on the magnitude of Rec , these structures are known either as puffs or slugs. When a dispersed second liquid phase is added to a liquid pipe flow, Rec can be modified. To explore the mechanism for this modification, an experiment was designed to track and measure these transitional structures. The facility is a pump-driven circuit with a 9m development and test section of diameter 44mm. Static mixers are placed upstream to generate an even dispersion of silicone oil in a water-glycerine flow. Pressure signals were used to identify transitional structures and trigger a high repetition rate stereo-PIV system downstream. Stereo-PIV measurements were obtained in planes normal to the flow, and Taylor's Hypothesis was employed to infer details of the volumetric flow structure. The presentation will describe the sensing and imaging methods along with preliminary results for the single and two-phase flows. Supported by Nanodispersions Technology.

  3. Initiation of detonation regimes in hybrid two-phase mixtures

    NASA Astrophysics Data System (ADS)

    Khasainov, B. A.; Veyssiere, B.

    1996-06-01

    The problem of detonation initiation is studied in the case of hybrid two-phase mixtures consisting of a hydrogen-air gaseous mixture with suspended fine aluminium particles. In preceding works on this subject, investigation of the steady propagation regimes has shown that three main propagation regimes could exist: the Pseudo-Gas Detonation (PGD), the Single-Front Detonation (SFD), and the Double-Front Detonation (DFD). In the present study, a one-dimensional unsteady numerical code has been improved to study the build-up of the detonation in a heterogeneous solid particle gas mixture contained in a tube. The initiation is simulated by the deposition of a given energy in a point source explosion, and the formation of the detonation is observed over distances of 15 m to 30 m. As the code has been designed to run on a micro-computer, memory limitations preclude sufficient accuracy for quantitative results, however, good qualitative agreement has been found with the results of the steady analysis. In addition, it has been demonstrated that when both PGD and SFD could exist at the same particle concentration, the PGD regime was unstable and was able to exist only over a limited distance (a few meters): after some time, the reaction of aluminium particles in the unsteady flow perturbs the leading wave and accelerates it to the SFD regime. Influence of particle diameter and of initiation energy are examined.

  4. Particle Rotation Effects in Rarefied Two-Phase Plume Flows

    NASA Astrophysics Data System (ADS)

    Burt, Jonathan M.; Boyd, Iain D.

    2005-05-01

    We evaluate the effects of solid particle rotation in high-altitude solid rocket exhaust plume flows, through the development and application of methods for the simulation of two phase flows involving small rotating particles and a nonequilibrium gas. Green's functions are derived for the force, moment, and heat transfer rate to a rotating solid sphere within a locally free-molecular gas, and integration over a Maxwellian gas velocity distribution is used to determine the influence of particle rotation on the heat transfer rate at the equilibrium limit. The use of these Green's functions for the determination of particle phase properties through the Direct Simulation Monte Carlo method is discussed, and a procedure is outlined for the stochastic modeling of interphase collisions. As a test case, we consider the nearfield plume flow for a Star-27 solid rocket motor exhausting into a vacuum, and vary particle angular velocities at the nozzle exit plane in order to evaluate the influence of particle rotation on various flow properties. Simulation results show that rotation may lead to slightly higher particle temperatures near the central axis, but for the case considered the effects of particle rotation are generally found to be negligible.

  5. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  6. Passive Two-Phase Cooling for Automotive Power Electronics

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-01-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated and tested using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245 fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator concept that incorporates features to improve performance and reduce its size was designed. Simulation results indicate the concept's thermal resistance can be 58% to 65% lower than automotive dual-side-cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers-plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  7. Unsteady flow analysis of a two-phase hydraulic coupling

    NASA Astrophysics Data System (ADS)

    Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.

    2016-06-01

    Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.

  8. Cytoplasm dynamics and cell motion: two-phase flow models.

    PubMed

    Alt, W; Dembo, M

    1999-03-01

    The motion of amoeboid cells is characterized by cytoplasmic streaming and by membrane protrusions and retractions which occur even in the absence of interactions with a substratum. Cell translocation requires, in addition, a transmission mechanism wherein the power produced by the cytoplasmic engine is applied to the substratum in a highly controlled fashion through specific adhesion proteins. Here we present a simple mechano-chemical model that tries to capture the physical essence of these complex biomolecular processes. Our model is based on the continuum equations for a viscous and reactive two-phase fluid model with moving boundaries, and on force balance equations that average the stochastic interactions between actin polymers and membrane proteins. In this paper we present a new derivation and analysis of these equations based on minimization of a power functional. This derivation also leads to a clear formulation and classification of the kinds of boundary conditions that should be specified at free surfaces and at the sites of interaction of the cell and the substratum. Numerical simulations of a one-dimensional lamella reveal that even this extremely simplified model is capable of producing several typical features of cell motility. These include periodic 'ruffle' formation, protrusion-retraction cycles, centripetal flow and cell-substratum traction forces. PMID:10204394

  9. Diffusion path representation for two-phase ternary diffusion couples

    SciTech Connect

    Dayananda, M A; Venkatasubramanian, R

    1986-01-01

    Several two-phase, solid-solid diffusion couples from diffusion studies in the ternary Cu-Ni-Zn, Fe-Ni-Al and Cu-Ag-Au systems were investigated for their analytical representation on the basis of characteristic path parameters. The concentration profiles were examined in terms of relative concentration variables for cross-over compositions and internal consistency. The diffusion paths delineated single or double S-shaped curves crossing the straight line joining the terminal alloy compositions once or thrice. Cross-over compositions were identified in the individual phase regions or at an interface. Based on the symmetry between the path segments on either side of cross-over compositions, the paths were analytically represented with the aid of cross-over compositions and path slopes at these compositions, considered as path parameters. Exprestion for the ratios of diffusion depth on the two sides of the Matano plane were derived in terms of cross-over compositions and the estimated ratios of diffusion depths were found to be consistent with those observed from the concentration profiles.

  10. Cryogenic Two-Phase Flight Experiment: Results overview

    NASA Technical Reports Server (NTRS)

    Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.

    1995-01-01

    This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.

  11. STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS

    SciTech Connect

    Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams

    1998-11-18

    Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of

  12. Dense Heterogeneous Continuum Model of Two-Phase Explosion Fields

    SciTech Connect

    Kuhl, A L; Bell, J B

    2010-04-07

    A heterogeneous continuum model is proposed to describe the dispersion of a dense Aluminum particle cloud in an explosion. Let {alpha}{sub 1} denote the volume fraction occupied by the gas and {alpha}{sub 2} the fraction occupied by the solid, satisfying the volume conservation relation: {alpha}{sub 1} + {alpha}{sub 2} = 1. When the particle phase occupies a non-negligible volume fraction (i.e., {alpha}{sub 2} > 0), additional terms, proportional to {alpha}{sub 2}, appear in the conservation laws for two-phase flows. These include: (i) a particle pressure (due to particle collisions), (ii) a corresponding sound speed (which produces real eigenvalues for the particle phase system), (iii) an Archimedes force induced on the particle phase (by the gas pressure gradient), and (iv) multi-particle drag effects (which enhance the momentum coupling between phases). These effects modify the accelerations and energy distributions in the phases; we call this the Dense Heterogeneous Continuum Model. A characteristics analysis of the Model equations indicates that the system is hyperbolic with real eigenvalues for the gas phase: {l_brace}v{sub 1}, v{sub 1} {+-} {alpha}{sub 1}{r_brace} and for the 'particle gas' phase: {l_brace}v{sub 2}, v{sub 2} {+-}{alpha}{sub 2}{r_brace} and the particles: {l_brace}v{sub 2}{r_brace}, where v{sub i} and {alpha}{sub i} denote the velocity vector and sound speed of phase i. These can be used to construct a high-order Godunov scheme to integrate the conservation laws of a dense heterogeneous continuum.

  13. Two Phase Flow Mapping and Transition Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Parang, Masood; Chao, David F.

    1998-01-01

    In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.

  14. Momentum rate probe for use with two-phase flows

    NASA Astrophysics Data System (ADS)

    Bush, S. G.; Bennett, J. B.; Sojka, P. E.; Panchagnula, M. V.; Plesniak, M. W.

    1996-05-01

    An instrument for measuring the momentum rate of two-phase flows is described, and design and construction details are provided. The device utilizes a conelike body to turn the flow from the axial to the radial direction. The force resulting from the change in momentum rate of the turning flow is measured using a strain-gage-instrumented cantilevered beam. The instrument is applicable to a wide range of flows including nuclear reactor coolant streams, refrigerants in heating-ventilating air-conditioning equipment, impingement cooling of small scale electronic hardware (computer chips are one example), supercritical fuel injection (in Diesel engines, for instance), and consumer product sprays (such as hair-care product sprays produced using effervescent atomizers). The latter application is discussed here. Features of the instrument include sensitivity to a wide range of forces and the ability to damp oscillations of the deflection cone. Instrument sensitivity allows measurement of momentum rates considerably lower (below 0.01 N) than those that could be obtained using previous devices. This feature is a direct result of our use of precision strain gages, capable of sensing strains below 20 μm/m, and the damping of oscillations which can overwhelm the force measurements. Oscillation damping results from a viscous fluid damper whose resistance is easily varied by changing fluids. Data used to calibrate the instrument are presented to demonstrate the effectiveness of the technique. As an example of the instrument's utility, momentum rate data obtained using it will be valuable in efforts to explain entrainment of surrounding air into effervescent atomizer-produced sprays and also to model the effervescent atomization process.

  15. Downstream antibody purification using aqueous two-phase extraction.

    PubMed

    Mao, Lisong Nathan; Rogers, Jameson K; Westoby, Matthew; Conley, Lynn; Pieracci, John

    2010-01-01

    The extraction of antibodies using a polyethylene glycol (PEG)-citrate aqueous two-phase system (ATPS) was investigated. Studies using purified monoclonal antibody (mAb) identified operating ranges for successful phase formation and factors that significantly affected antibody partitioning. The separation of antibody and host cell protein (HCP) from clarified cell culture media was examined using statistical design of experiments (DOE). The partitioning of antibody was nearly complete over the entire range of the operating space examined. A model of the HCP partitioning was generated in which both NaCl and citrate concentrations were identified as significant factors. To achieve the highest purity, the partitioning of HCP from cell culture fluid into the product containing phase was minimized using a Steepest Descent algorithm. An optimal ATPS consisting of 14.0% (w/w) PEG, 8.4% (w/w) citrate, and 7.2% (w/w) NaCl at pH 7.2 resulted in a product yield of 89%, an approximate 7.6-fold reduction in HCP levels relative to the clarified cell culture fluid before extraction and an overall purity of 70%. A system consisting of 15% (w/w) PEG, 8% (w/w) citrate, and 15% (w/w) NaCl at pH 5.5 reduced product-related impurities (aggregates and low molecular product fragments) from ∼40% to less than 0.5% while achieving 95% product recovery. At the experimental conditions that were optimized in the batch mode, a scale-up model for the use of counter-current extraction technology was developed to identify potential improvements in purity and recovery that could be realized in the continuous operational mode. PMID:20853347

  16. Macroscopic and microscopic investigations on uniaxial ratchetting of two-phase Ti–6Al–4V alloy

    SciTech Connect

    Kang, Guozheng; Dong, Yawei; Liu, Yujie; Jiang, Han

    2014-06-01

    The uniaxial ratchetting of Ti–6Al–4V alloy with two phases (i.e., primary hexagonal close packed (HCP) α and secondary body-centered cubic (BCC) β phases) was investigated by macroscopic and microscopic experiments at room temperature. Firstly, the effects of cyclic softening/hardening feature, applied mean stress and stress amplitude on the uniaxial ratchetting of the alloy were discussed. The macroscopic investigation of Ti–6Al–4V alloy presents obvious strain-amplitude-dependent cyclic softening, as well as a three-staged evolution curve with regard to the ratchetting strain rate. The ratchetting depends greatly on the applied mean stress and stress amplitude while the ratchetting strain increases with the increasing applied mean stress and stress amplitude. Then, the evolution of dislocation patterns and deformation twinning during the uniaxial ratchetting of two-phase Ti–6Al–4V alloy were observed using transmission electron microscopy (TEM). The microscopic observation shows that deformation twinning occurs in the primary α phase and its amount increases gradually during the uniaxial ratchetting. Simultaneously, the planar dislocation evolves from discrete lines to some dislocation nets and parallel lines with the increasing number of cycles. The deformation twinning in the primary α phase is one of main contributions to the uniaxial ratchetting of Ti–6Al–4V alloy, and should be considered in the construction of corresponding constitutive model. - Highlights: • A three-staged ratchetting occurs in the stress-controlled cyclic tests of Ti–6Al–4V alloy. • Dislocation patterns change from discrete lines to nets and parallel lines. • Deformation twinning occurs during the uniaxial ratchetting. • Both dislocation slipping and twinning are the causes of ratchetting.

  17. Tracking Interfaces in Vertical Two-Phase Flows

    SciTech Connect

    Aktas, Birol

    2002-07-01

    The presence of stratified liquid-gas interfaces in vertical flows poses difficulties to most classes of solution methods for two-phase flows of practical interest in the field of reactor safety and thermal-hydraulics. These difficulties can plague the reactor simulations unless handled with proper care. To illustrate these difficulties, the US NRC Consolidated Thermal-hydraulics Code (TRAC-M) was exercised with selected numerical bench-mark problems. These numerical benchmarks demonstrate that the use of an average void fraction for computational volumes simulating vertical flows is inadequate when these volumes consist of stratified liquid-gas interfaces. In these computational volumes, there are really two regions separated by the liquid-gas interface and each region has a distinct flow topology. An accurate description of these divided computational volumes require that separate void fractions be assigned to each region. This strategy requires that the liquid-gas interfaces be tracked in order to determine their location, the volumes of regions separated by the interface, and the void fractions in these regions. The idea of tracking stratified liquid-gas interfaces is not new. There are examples of tracking methods that were developed for reactor safety codes and applied to reactor simulations in the past with some limited success. The users of these safety codes were warned against potential flow oscillations, conflicting water levels, and pressure disturbances which could be caused by the tracking methods themselves. An example of these methods is the level tracking method of TRAC-M. A review of this method is given here to explore the reasons behind its failures. The review shows that modifications to the field equations are mostly responsible for these failures. Following the review, a systematic approach to incorporate interface tracking methods is outlined. This approach is applicable to most classes of solution methods. For demonstration, the approach to

  18. A Direct Numerical Simulation of Annular Two-Phase Laminar Flow and Heat Transfer in a Circular Pipe

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-feng; Chung, J. N.

    2010-06-01

    An accurate finite-volume based numerical method is developed for the direct numerical simulation of two-phase flow dynamics and heat transfer in a circular pipe consisting of a liquid slug translating in a non-reacting gas. This method is built on a sharp interface concept and developed on an Eulerian-Cartesian fixed-grid system with a cut-cell scheme and marker points to track the moving interface. The unsteady, axisymmetric Navier-Stokes equations in both liquid and gas phases are solved separately. The mass continuity and momentum flux conditions are explicitly matched at the true surface phase boundary to determine the interface shape and movement. A quadratic curve fitting algorithm with marker points is used to yield smooth and accurate information of the interface curvatures. Two-phase flow and heat transfer characteristics are predicted for air-water flows under low and high Weber numbers to evaluate the heat transfer enhancement levels due to the moving liquid slug and the effects of surface tension force. The method reported in this paper offers, for the first time, a new capability of simulating two-phase gas-liquid flow dynamics and heat transfer directly without any modeling. This numerical simulation involves liquid phase deformation, moving interface boundary, curvature variations due to surface tension, property jumps, and heat transfer at the interface.

  19. 48 CFR 36.301 - Use of two-phase design-build selection procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Use of two-phase design...-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures. (a) During formal or informal acquisition planning (see part 7), if considering the use of two-phase...

  20. 48 CFR 36.301 - Use of two-phase design-build selection procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Use of two-phase design...-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures. (a) During formal or informal acquisition planning (see part 7), if considering the use of two-phase...

  1. 24 CFR 115.201 - The two phases of substantial equivalency certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The two phases of substantial... ENFORCEMENT AGENCIES Certification of Substantially Equivalent Agencies § 115.201 The two phases of.... The Department has developed a two-phase process of substantial equivalency certification....

  2. 23 CFR 636.202 - When are two-phase design-build selection procedures appropriate?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false When are two-phase design-build selection procedures... When are two-phase design-build selection procedures appropriate? You may consider the following criteria in deciding whether two-phase selection procedures are appropriate. A negative response...

  3. Vertically stratified two-phase flow in a curved channel: Insights from a domain perturbation analysis

    SciTech Connect

    Garg, P.; Picardo, J. R.; Pushpavanam, S.

    2014-07-15

    In this work, we investigate the fully developed flow field of two vertically stratified fluids (one phase flowing above the other) in a curved channel of rectangular cross section. The domain perturbation technique is applied to obtain an analytical solution in the asymptotic limit of low Reynolds numbers and small curvature ratios (the ratio of the width of the channel to its radius of curvature). The accuracy of this solution is verified by comparison with numerical simulations of the nonlinear equations. The flow is characterized by helical vortices within each fluid, which are driven by centrifugal forces. The number of vortices and their direction of circulation varies with the parameters of the system (the volume fraction, viscosity ratio, and Reynolds numbers). We identify nine distinct flow patterns and organize the parameter space into corresponding flow regimes. We show that the fully developed interface between the fluids is not horizontal, in general, but is deformed by normal stresses associated with the circulatory flow. The results are especially significant for flows in microchannels, where the Reynolds numbers are small. The mathematical results in this paper include an analytical solution to two coupled biharmonic partial differential equations; these equations arise in two-phase, two-dimensional Stokes flows.

  4. Length scales of magma transport in reactive two-phase flow

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, S.; Takei, Y.

    2007-12-01

    During magma migration, both interfacial tension and mass exchange between the matrix and the melt play an important role in controlling the efficiency and rate of melt extraction and the chemical signature of the magma. In this work, we develop a new formulation governing the dynamics of a two-phase aggregate coupling effects of interfacial tension and mass exchange between the melt and the matrix by dissolution-precipitation. Dissolution-precipitation, which is limited by the rate and length scales of diffusive mass transport of ions, typically redistributes melt over small length scales. A process likely to dominate in the length scale of laboratory experiments. Rapid diffusive mass redistribution can also significantly reduce the rate of segregation of buoyant small-wavelength melt pockets. Growth or decay of large wavelength melt structures such as melt-rich layers in the Earth's lower mantle, blobs of core-forming material in the proto-Earth, and magma bodies beneath volcanic arcs and midoceanic ridges is dominated by a balance between interfacial tension, buoyancy, and viscous deformation of the matrix. Efficiency of buoyancy-driven extraction of large wavelength melt structures are strongly modulated by interfacial tension depending on the average grain size of the matrix and the state of disaggregation of the matrix.

  5. Novel Techniques for Examining Detailed Microstructure of Two-phase Lower Mantle Mineral Analogs with SEM and EBSD

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Mariani, E.; Dawson, K.

    2015-12-01

    We examined deformation microstructures of an analog two-phase system of the lower mantle using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Halite (NaCl) and neighborite (NaMgF3) were used as analogs to lower mantle minerals ferropericlase (Mg,Fe)O and bridgmanite MgSiO3, respectively, and deformed to 30% strain at 4 GPa in the D-DIA. We have adapted techniques previously used for EBSD preparation of halite (NaCl) (e.g. Pennock et al. 2002, Journal of Microscopy, v205; Staiger et al. 2010, Materials Characterization, v61) to prepare halite and neighborite for EBSD. Because halite is soft and hydrophilic, it is tricky to prepare for high quality EBSD. On the other hand, neighborite is much harder than halite (with a bulk modulus 5 times that of halite) and requires high quality polishing for longer and through various polishing-medium sizes. EBSD maps were obtained by polishing with very fine colloidal alumina, followed by etching or a final polish in a precision ion polishing system (PIPS). Distribution of phases, grain size and shape, and crystallographic preferred orientation were examined to determine which phase controls the deformation and which deformation mechanisms dominate. Preliminary results show the softer halite is likely interconnected at just 25 volume % or less and controls the deformation through a mechanism that does not promote development of crystallographic preferred orientation. This suggests that periclase may control deformation in the lower mantle resulting in a weaker, more viscous lower mantle and may help to explain why the bulk of the lower mantle is mostly isotropic.

  6. Haglund's Deformity

    MedlinePlus

    ... Is Haglund’s Deformity? Haglund’s deformity is a bony enlargement on the back of the heel. The soft ... the Achilles tendon becomes irritated when the bony enlargement rubs against shoes. This often leads to painful ...

  7. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    SciTech Connect

    Altobelli, Stephen A; Fukushima, Eiichi

    2006-08-14

    different nuclei, protons and 19F. It also uses two different types of NMR image formation, a conventional spin-echo and a single-point method. The single-point method is notable for being useful for imaging materials which are much more rigid than can usually be studied by NMR imaging. We use it to image “low density” polyethylene (LDPE) plastic in this application. We have reduced the imaging time for this three-phase imaging method to less than 10 s per pair of profiles by using new hardware. Directly measuring the solid LDPE signal was a novel feature for multi-phase flow studies. We also used thermally polarized gas NMR (as opposed to hyper-polarized gas) which produces low signal to noise ratios because gas densities are on the order of 1000 times smaller than liquid densities. However since we used multi-atom molecules that have short T1's and operated at elevated pressures we could overcome some of the losses. Thermally polarized gases have advantages over hyperpolarized gases in the ease of preparation, and in maintaining a well-defined polarization. In these studies (Codd and Altobelli, 2003), we used stimulated echo sequences to successfully obtain propagators of gas in bead packs out to observation times of 300 ms. Zarraga, et al. (2000) used laser-sheet profilometry to investigate normal stress differences in concentrated suspensions. Recently we developed an NMR imaging analog for comparison with numerical work that is being performed by Rekha Rao at Sandia National Laboratories (Rao, Mondy, Sun, et al, 2002). A neutrally buoyant suspension of 100 mm PMMA spheres in a Newtonian liquid was sheared in a vertical Couette apparatus inside the magnet. The outer cylinder rotates and the inner cylinder is fixed. At these low rotation rates, the free-surface of the Newtonian liquid shows no measurable deformation, but the suspension clearly shows its non-Newtonian character.

  8. Articles comprising ferritic stainless steels

    DOEpatents

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  9. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  10. Chromium-Makes stainless steel stainless

    USGS Publications Warehouse

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  11. Tidal Response and Stability of Two-phase Media: Implications for Io, Europa and Titan

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2002-12-01

    Most models of planets and satellites assume homogeneous or layered media in which each layer is one phase. However, real planets and satellites may have two phase media (e.g., solid plus liquid) throughout a significant portion of their interior. I concentrate here on percolation media (a deformable solid matrix with an interconnected fluid-filled pore space that allows fluid redistribution under the action of stress). In such a medium, the phases are individually incompressible but Darcy flow from one region to another could lead to an overall effective compressibility, pumping of liquid in spite of the overall tendency towards gravitational separation, and possibly an additional heat transfer mechanism. In particular, I answer here the following questions, which appear to be unrelated but are in fact closely related: (1) Could a partially molten asthenosphere of Io behave like a compressible medium and allow decoupling of the lithosphere from the deeper interior? (2) Could tidally -driven flow of water in the ice of Europa's crust lead to net upward transfer of liquid water? (3) Can tidal response of an ethane/methane-bearing outer layer of water ice on Titan (i.e., a hidden ocean) satisfy the requirement that the large orbital eccentricity persist over geologic time? The answers are (1) No. (2) Maybe. (3) Yes. The common factors in treating these problems are: (a)The comparison of tidal stress to the stress associated with the hydrostatic head arising from a density difference of solid and liquid over an interesting distance (e.g., 10km). Typically, these two stresses are comparable. (b)The compaction length which is the scale below which viscous stresses of a deforming solid matrix are more important in determining flow than the simple Darcy flow formula. This is typically small (e.g., 10km or less) except in outermost regions (e.g. Titan). (c) The tidally driven Darcy flux (expressed as a velocity) in comparison to the velocity of time-varying equipotentials

  12. Realistic micromechanical modeling and simulation of two-phase heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Sreeranganathan, Arun

    This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry

  13. Stress corrosion cracking of stainless steels in NaCl solutions

    NASA Astrophysics Data System (ADS)

    Speidel, Markus O.

    1981-05-01

    The metallurgical influences on the stress corrosion resistance of many commercial stainless steels have been studied using the fracture mechanics approach. The straight-chromium ferritic stainless steels, two-phase ferritic-austenitic stainless steels and high-nickel solid solutions (like alloys 800 and 600) investigated are all fully resistant to stress corrosion cracking at stress intensity (K1) levels ≤ MN • m-3/2 in 22 pct NaCl solutions at 105 °C. Martensitic stainless steels, austenitic stainless steels and precipitation hardened superalloys, all with about 18 pct chromium, may be highly susceptible to stress corrosion cracking, depending on heat treatment and other alloying elements. Molybdenum additions improve the stress corrosion cracking resistance of austenitic stainless steels significantly. The fracture mechanics approach to stress corrosion testing of stainless steels yields results which are consistent with both the service experience and the results from testing with smooth specimens. In particular, the well known “Copson curve” is reproduced by plotting the stress corrosion threshold stress intensity (ATISCC) vs the nickel content of stainless steels with about 18 pct chromium.

  14. Impact Testing of Stainless Steel Materials

    SciTech Connect

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-07-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a “total impact energy” approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper.

  15. Sensitization of stainless steel

    NASA Technical Reports Server (NTRS)

    Nagy, James P.

    1990-01-01

    The objective of this experiment is to determine the corrosion rates of 18-8 stainless steels that have been sensitized at various temperatures and to show the application of phase diagrams. The laboratory instructor will assign each student a temperature, ranging from 550 C to 1050 C, to which the sample will be heated. Further details of the experimental procedure are detailed.

  16. Welding of Stainless Materials

    NASA Technical Reports Server (NTRS)

    Bull, H; Johnson, Lawrence

    1929-01-01

    It would appear that welds in some stainless steels, heat-treated in some practicable way, will probably be found to have all the resistance to corrosion that is required for aircraft. Certainly these structures are not subjected to the severe conditions that are found in chemical plants.

  17. Two-phase modelling of equiaxed crystal sedimentation and thermomechanic stress development in the sedimented packed bed

    NASA Astrophysics Data System (ADS)

    Ludwig, A.; Vakhrushev, A.; Holzmann, T.; Wu, M.; Kharicha, A.

    2015-06-01

    During many industrial solidification processes equiaxed crystals form, grow and move. When those crystals are small they are carried by the melt, whereas when getting larger they sediment. As long as the volume fraction of crystals is below the packing limit, they are able to move relatively free. Crystals being backed in a so called packed bed form a semi-solid slurry, which may behave like a visco-plastic material. In addition, cooling-induced density increase of both, liquid and solid phases might lead to shrinkage of the whole casting domain. So deformation happens and gaps between casting and mold occur. In the present work, a two-phase Eulerian-Eulerian volume averaging model for describing the motion of equiaxed crystals in the melt is combined with a similar two-phase model for describing the dynamic of the packed bed. As constitutive equation for the solid skeleton in the packed bed Norton-Hoff law is applied. Shrinkage induced by density changes in the liquid or the solid phase is explicitly taken into account and handled by remeshing the calculation domain accordantly.

  18. A computational study of two-phase viscoelastic systems in a capillary tube with a sudden contraction/expansion

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Izbassarov, Daulet

    2015-11-01

    Two-phase viscoelastic systems are computationally studied in a pressure-driven tube with a sudden contraction and expansion using a finite-difference/front-tracking method. The effects of viscoelasticity in drop and bulk fluids are investigated including high Weissenberg and Reynolds number cases up to Wi = 100 and Re = 100 . The FENE-CR model is used to account for the fluid viscoelasticity. Extensive computations are performed to examine drop dynamics for a wide range of parameters. It is found that viscoelasticity interacts with drop interface in a non-monotonic and complicated way, and the two-phase viscoelastic systems exhibit very rich dynamics especially in the expansion region. At high Re , the drop undergoes large deformation in the contraction region followed by shape oscillations in the downstream of the expansion. For a highly viscous drop, a re-entrant cavity develops in the contraction region at the trailing edge which, in certain cases, grows and eventually causes encapsulation of ambient fluid. The re-entrant cavity formation is initiated at the entrance of the contraction and is highly influenced by the viscoelasticity. The effects of viscoelasticity are reversed in the constricted channel: Viscoelasticity in drop/continuous phase hinders/enhances format The authors are grateful to the Scientific and Technical Research Council of Turkey (TUBITAK) for the support of this research through Grant 112M181 and Turkish Academy of Sciences (TUBA).

  19. 48 CFR 570.305 - Two-phase design-build selection procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Two-phase design-build...-phase design-build selection procedures. (a) These procedures apply to acquisitions of leasehold interests if the contracting officer uses the two-phase design-build selection procedures authorized by...

  20. 23 CFR 636.202 - When are two-phase design-build selection procedures appropriate?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false When are two-phase design-build selection procedures... ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria § 636.202 When are two-phase design-build selection procedures appropriate? You may consider the...

  1. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  2. 48 CFR 570.305 - Two-phase design-build selection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... design information or cost or price information in phase one. Do not use cost related or price related... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... for Leasehold Interests in Real Property 570.305 Two-phase design-build selection procedures....

  3. 48 CFR 36.301 - Use of two-phase design-build selection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design-build selection procedures. 36.301 Section 36.301 Federal Acquisition Regulations System FEDERAL...-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....

  4. Strain localisation in two-phase materials: Insights from centimetre-scale numerical models and laboratory experiments with ice mixtures

    NASA Astrophysics Data System (ADS)

    Brune, S.; Czaplinska, D.; Piazolo, S.; Wilson, C. J. L.; Quinteros, J.

    2015-12-01

    Most numerical models of lithosphere deformation approximate the rheological behavior of polymineralic crust and mantle via single-phase flow laws assuming that the weakest or most abundant material controls the bulk rheology. However, previous work showed that in two phase aggregates the bulk viscosity of the dominant phase is significantly affected by second phase particles. Here we combine two unconventional approaches to quantify the relative impact of such particles on strain localisation and bulk response: (1) We run centimetre-scale numerical models of a matrix with inclusions using the elasto-visco-plastic FEM software Slim3D. Recrystallization-induced weakening processes in the matrix, i.e. grain boundary migration and nucleation, are approximated using strain-dependent viscous softening. (2) We conduct high T, constant strain rate deformation experiments with a matrix of deuterated ice (D2O) containing rigid or soft particles, i.e. calcite and graphite, respectively. Ice is a valuable rock analogue, as it replicates the microstructural and fabric changes as well as the non-Newtonian response of other anisotropic minerals, such as olivine and quartz. The laboratory experiments exhibit two types of rheological behaviour: stress partitioning between ice and particles and strain localization in rheologically softer material. To quantify the contribution of both response types, we calibrate numerical simulations with data derived from laboratory experiments. The strain rate, stress, and viscosity evolution of the numerical experiment provides insight to non-linear strain localization processes, particle motion and time-dependent stress concentrations during the deformation. We fit the parameters of the viscous softening function and thereby quantify the amount of additional weakening in the matrix of ice mixtures in comparison to pure ice, which allows to constrain softening parameters used in large-scale simulations of glacial flow and lithosphere deformation.

  5. On-demand generation of aqueous two-phase microdroplets with reversible phase transitions

    SciTech Connect

    Boreyko, Jonathan B; Mruetusatorn, Prachya; Retterer, Scott T; Collier, Pat

    2013-01-01

    Aqueous two-phase systems contained entirely within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microgel states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.

  6. The potential of cloud point system as a novel two-phase partitioning system for biotransformation.

    PubMed

    Wang, Zhilong

    2007-05-01

    Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed. PMID:17318534

  7. On-demand generation of aqueous two-phase microdroplets with reversible phase transitions

    NASA Astrophysics Data System (ADS)

    Collier, Charles

    2013-03-01

    Aqueous two-phase systems contained within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.

  8. Regimes of two-phase flow in micro- and minichannels ( review)

    NASA Astrophysics Data System (ADS)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-05-01

    The review deals with the analysis of the factors affecting the boundaries of two-phase regimes in the channels of different cross sections, whose minimal size is less than the capillary constant. The channels are classified by size. Data for two-phase flow regimes are systematized and summarized in tables for the round and rectangular tubes. It is indicated that the most studies identify the following two-phase flow regimes: bubble, slug and annular. The regimes found in some papers are described. The terminology used to describe the regimes is kept. Here we analyze the main factors affecting the structure of the two-phase flow, such as gas and liquid flow rates, parameters of the channel and input section, wettability of the inner surface of channels, liquid properties, and gravitational forces. It is shown that development of instability of the two-phase flow has a significant impact on formation, evolution, and change of the flow regimes.

  9. Analytical solution for two-phase flow in a wellbore using the drift-flux model

    SciTech Connect

    Pan, L.; Webb, S.W.; Oldenburg, C.M.

    2011-11-01

    This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.

  10. Synthesis and mechanical properties of two phase nanostructured aluminum based composites

    NASA Astrophysics Data System (ADS)

    Rajulapati, Koteswararao Venkata

    Nanostructured materials (<100 nm) exhibit novel and superior mechanical properties in comparison to their coarse grained counterparts. However the associated deformation mechanisms are poorly understood. Synthesizing bulk nanocrystalline materials to measure the meaningful/reasonable mechanical properties is still a grand challenge. Although there exist several experimental/theoretical studies on mechanical behavior of single phase materials, studies on the effect of a second phase (soft/hard) on the mechanical behavior of nanocrystalline materials are very limited. Therefore, the thrust of the current work is to synthesize bulk nanostructured two phase materials and to establish the influence of a second phase (soft/hard) on the mechanical properties of two phase materials benchmarked against the corresponding single phase material and to identify the governing mechanics of plasticity at the nano scale. Nanocrystalline aluminum was synthesized using ball milling at room temperature. The resultant powder material was consolidated to the bulk form using warm compaction and argon atmosphere and consolidation using high pressure torsion. The samples after high pressure torsion exhibited high end mechanical properties. The hardness of the nanostructured aluminum (of grain size 32 nm) was as high as 1200 MPa which is 6 times harder than its coarse grained counterpart. Nanocrystalline Al-W composites with varying compositions were synthesized. With the increased addition of W, the hardness of these nanocomposites was increased. This hardness trend followed the behavior predicted by the rule of mixtures based on the volume fractions of Al and W. With the addition of 4 atomic % of W, the strength of the nanocrystalline aluminum was elevated by 70%. Nanocrystalline Al-Pb composites were synthesized by two routes. In the first route, the room temperature ball milled samples were compacted at 573 K in an argon atmosphere. In the second route, the alloys were consolidated in

  11. Single and two-phase flow fluid dynamics in parallel helical coils

    NASA Astrophysics Data System (ADS)

    De Salve, M.; Orio, M.; Panella, B.

    2014-04-01

    The design of helical coiled steam generators requires the knowledge of the single and two-phase fluid dynamics. The present work reports the results of an experimental campaign on single-phase and two phase pressure drops and void fraction in three parallel helicoidal pipes, in which the total water flow rate is splitted by means of a branch. With this test configuration the distribution of the water flow rate in the helicoidal pipes and the phenomena of the instability of the two-phase flow have been experimentally investigated.

  12. Development of Numerical Simulation Method for Compressible Gas-Liquid Two-Phase Flows

    NASA Astrophysics Data System (ADS)

    Tamura, Y.

    2015-12-01

    A numerical simulation method of compressible gas-liquid two-phase flow is developed for analyses of a cavitation bubble. Thermodynamic state of both phases is described with stiffened gas equation of state. Interface of two phases is captured by Level-Set method. As internal energy jump between two phases is critical for the stability of computation, total energy equation is modified so that inviscid flux of energy is smoothly connected across the interface. Detail of governing equations as well as their discretization is described followed by the result of one-dimensional simple example computation.

  13. Deformation of orthodontic archwires over time.

    PubMed

    Wong, E K; Borland, D W; West, V C

    1994-10-01

    Most previous studies of archwire deformation over time (hereafter referred to as "time-dependent deformation of orthodontic wires") have been conducted at a constant room temperature. In the clinical situation however, arch wires are exposed to 37 degrees C as well as to periods of temperature increase when hot foods or fluids are ingested. The effects of the latter on time-dependent behaviour are largely unknown. Since the introduction of direct electric resistance heat treatment to superelastic nickel titanium wires, there have been no reports on its effect on time-dependent deformation. This study investigated the effects of repeated temperature increases (70 degrees C) on stainless steel, nickel titanium and beta titanium wires. The wires were deflected by approximately 3 and 5 mm on two jigs for periods of 1 minute, 1, 7, 14 and 28 days. Permanent deformation was measured optically with a measuring microscope and the amount of time-dependent deformation was calculated. Beta titanium wires demonstrated the greatest amount of time-dependent deformation; followed by non-superelastic nickel titanium, stainless steel, and superelastic nickel titanium. Exposure to repeated temperature (70 degrees C) increases and direct electric resistance heat treatment of superelastic nickel titanium did not affect time-dependent behaviour. PMID:8975645

  14. Irreversible entropy production in two-phase flows with evaporating drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N. A.

    2002-01-01

    A derivation of the irreversible entropy production, that is the dissipation, in two-phase flows is presented for the purpose of examining the effect of evaporative-drop modulation of flows having turbulent features.

  15. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  16. Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting

    SciTech Connect

    Staedtke, H.; Franchello, G.; Worth, B.

    1995-09-01

    This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.

  17. Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.

    1976-01-01

    A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.

  18. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Technical Reports Server (NTRS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-01-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  19. A theoretical evaluation of aluminum gel propellant two-phase flow losses on vehicle performance

    NASA Astrophysics Data System (ADS)

    Mueller, Donn C.; Turns, Stephen R.

    1993-11-01

    A one-dimensional model of a hydrocarbon/Al/O2(gaseous) fueled rocket combustion chamber was developed to study secondary atomization effects on propellant combustion. This chamber model was coupled with a two dimensional, two-phase flow nozzle code to estimate the two-phase flow losses associated with solid combustion products. Results indicate that moderate secondary atomization significantly reduces propellant burnout distance and Al2O3 particle size; however, secondary atomization provides only moderate decreases in two-phase flow induced I(sub sp) losses. Despite these two-phase flow losses, a simple mission study indicates that aluminum gel propellants may permit a greater maximum payload than the hydrocarbon/O2 bi-propellant combination for a vehicle of fixed propellant volume. Secondary atomization was also found to reduce radiation losses from the solid combustion products to the chamber walls, primarily through reductions in propellant burnout distance.

  20. Experimental study on transient behavior of semi-open two-phase thermosyphon.

    PubMed

    Zhu, Hua; Wang, Jian-Xin; Zhang, Qiao-Hui; Tu, Chuan-Jing

    2004-12-01

    An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50 min; a semi-open two-phase thermosyphon has good response to lack of water accident.

  1. Future directions in two-phase flow and heat transfer in space

    NASA Technical Reports Server (NTRS)

    Bankoff, S. George

    1994-01-01

    Some areas of opportunity for future research in microgravity two-phase flow and heat transfer are pointed out. These satisfy the dual requirements of relevance to current and future needs, and scientific/engineering interest.

  2. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    SciTech Connect

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  3. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

    PubMed Central

    Dong, S.; Wang, X.

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  4. Two-phase flow bubbly mixing for liquid metal magnetohydrodynamic energy conversion

    NASA Technical Reports Server (NTRS)

    Fabris, G.; Kwack, E.; Harstad, K.; Back, L. H.

    1990-01-01

    Experiments aimed at improving mixer design and investigating the effects of surfactants on the two-phase mixture in two-phase liquid metal MHD (LMMHD) energy conversion systems are described. In addition to conventional photography, flash X-ray imaging was used as a diagnostic tool. It was demonstrated that a high void fraction (0.8) and low velocity slip ratio (1.2) two-phase homogeneous bubbly mixture can be created. It is expected that such a two-phase mixture can be further expanded in a LMMHD generator while maintaining low velocity slip. In such a way, high generator and overall system efficiency would be achieved, making LMMHD systems competitive for a number of commercial applications.

  5. Predicting single-phase and two-phase non-Newtonian flow behavior in pipes

    SciTech Connect

    Kaminsky, R.D.

    1998-12-31

    Improved and novel prediction methods are described for single-phase and two-phase flow of non-Newtonian fluids in pipes. Good predictions are achieved for pressure drop, liquid holdup fraction, and two-phase flow regime. The methods are applicable to any visco-inelastic non-Newtonian fluid and include the effect of surface roughness. The methods utilize a reference fluid for which validated models exist. For single-phase flow the use of Newtonian and power-law reference fluids are illustrated. For two-phase flow a Newtonian reference fluid is used. Focus is given to shear-thinning fluids. The approach is theoretically based and is better suited than correlation methods for two-phase flow in high pressure pipelines, for which no experimental data is available in the literature.

  6. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field

    SciTech Connect

    Steven Enedy

    2001-12-14

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

  7. Bayesian hierarchical models for smoothing in two-phase studies, with application to small area estimation

    PubMed Central

    Ross, Michelle; Wakefield, Jon

    2015-01-01

    Summary Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation. PMID:26705382

  8. Purification of hyperthermophilic archaeal amylolytic enzyme (MJA1) using thermoseparating aqueous two-phase systems.

    PubMed

    Li, Mian; Peeples, Tonya L

    2004-07-25

    Purification of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii, was investigated in the ethylene oxide-propylene oxide random copolymer (PEO-PPO)/(NH(4))(2)SO(4), and poly(ethylene glycol) (PEG)/(NH(4))(2)SO(4) aqueous two-phase systems. MJA1 partitioned in the top polymer-rich phase, while the remainder of proteins partitioned in the bottom salt-rich phase. It was found that enzyme recovery of up to 90% with a purification factor of 3.31 was achieved using a single aqueous two-phase extraction step. In addition, the partition behavior of pure amyloglucosidase in polymer/salt aqueous two-phase systems was also evaluated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. This work is the first reported application of thermoseparating polymer aqueous two-phase systems for the purification of extremophile enzymes. PMID:15177162

  9. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.

    PubMed

    Dong, S; Wang, X

    2016-01-01

    Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

  10. Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.

    1982-01-01

    A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.

  11. In-step Two-phase Flow (TPF) Thermal Control Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.

  12. Scaling analysis of gas-liquid two-phase flow pattern in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho

    1993-01-01

    A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.

  13. Water property lookup table (sanwat) for use with the two-phase computational code shaft

    SciTech Connect

    Sherman, M.P.; Eaton, R.R.

    1980-10-01

    A lookup table for water thermodynamic and transport properties (SANWAT) has been constructed for use with the two-phase computational code, SHAFT. The table, which uses density and specific internal energy as independent variables, covers the liquid, two-phase, and vapor regions. The liquid properties of water are contained in a separate subtable in order to obtain high accuracy for this nearly incompressible region that is frequently encountered in studies of the characteristics of nuclear-waste repositories.

  14. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  15. Vibration of a tube bundle in two-phase Freon cross-flow

    SciTech Connect

    Pettigrew, M.J.; Taylor, C.E.; Jong, J.H.; Currie, I.G.

    1995-11-01

    Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.

  16. Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis.

    PubMed

    Oppermann, Sebastian; Stein, Florian; Kragl, Udo

    2011-02-01

    The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.

  17. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis. PMID:3786010

  18. A computational study of two-phase viscoelastic systems in a capillary tube with a sudden contraction/expansion

    NASA Astrophysics Data System (ADS)

    Izbassarov, Daulet; Muradoglu, Metin

    2016-01-01

    Two-phase viscoelastic systems are computationally studied in a pressure-driven flow with a sudden contraction and expansion using a finite-difference/front-tracking method. The effects of viscoelasticity in drop and bulk fluids are investigated including high Weissenberg and Reynolds number cases up to Wi = 100 and Re = 100. The Finitely Extensible Non-linear Elastic-Chilcott and Rallison (FENE-CR) model is used to account for the fluid viscoelasticity. Extensive computations are performed to examine drop dynamics for a wide range of parameters. It is found that viscoelasticity interacts with drop interface in a non-monotonic and complicated way, and the two-phase viscoelastic systems exhibit very rich dynamics especially in the expansion region. At high Re, the drop undergoes large deformation in the contraction region followed by strong shape oscillations in the downstream of the expansion. For a highly viscous drop, a re-entrant cavity develops in the contraction region at the trailing edge which, in certain cases, grows and eventually causes encapsulation of ambient fluid. The re-entrant cavity formation is initiated at the entrance of the contraction and is highly influenced by the viscoelasticity. Compared to the corresponding straight channel case, the effects of viscoelasticity are reversed in the constricted channel: Viscoelasticity in drop/continuous phase hinders/enhances formation of the re-entrant cavity and entrainment of ambient fluid into main drop. Encapsulation of ambient fluid into main droplet may be another route to produce a compound droplet in microfluidic applications.

  19. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  20. Design and test of a mechanically pumped two-phase thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Stark, J. A.; Butler, C. D.; Mcintosh, R.

    1987-01-01

    A flight experiment of a mechanically pumped two-phase ammonia thermal control system, incorporating a number of new component designs, has been assembled and tested in a 1-g environment. Additional microgravity tests are planned on the Space Shuttle when Shuttle flights are resumed. The primary purpose of this experiment is to evaluate the operation of a mechanically pumped two-phase ammonia system, with emphasis on determining the performance of an evaporative Two-Phase Mounting Plate. The experiment also evaluates the performance of other specially designed components, such as the two-phase reservoir for temperature control, condensing radiator/heat sink, spiral tube boiler, and pressure drop experiment. The 1-g tests have shown that start-up of the two-phase experiment is easily accomplished with only a partial fill of ammonia. The experiment maintained a constant mounting plate temperature without flow rate controls over a very wide range of heat loads, flow rates, inlet flow conditions and exit qualities. The tests also showed the successful operation of the mounting plate in the heat sharing condensing mode.

  1. GENERAL: Complex network analysis in inclined oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Jin, Ning-De

    2009-12-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil-water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil-water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil-water flow patterns. To investigate the dynamic characteristics of the inclined oil-water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil-water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil-water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice.

  2. A new two-phase erosion-deposition model for mass flows

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas

    2016-04-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  3. DSMC simulation of two-phase plume flow with UV radiation

    SciTech Connect

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-09

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  4. Gas-liquid two-phase flow across a bank of micropillars

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Santosh; Peles, Yoav

    2007-04-01

    Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.

  5. Rankine-Hugoniot analysis of two-phase flow with inter-phase slip

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.; Lear, W. E.; Sherif, S. A.

    This paper is one in a series of papers considering different characteristics of two-phase flow. The previous analyses were conducted to determine the momentum flux and the nozzle design for a two-phase supersonic cleanser, where the focus of this paper is on the general gas dynamic relationships of the two-phase mixture across a normal shock wave. Historically, normal shock analyses have provided closed form solutions for the downstream state in terms of the upstream state for perfect gases, i.e. the Rankine-Hugoniot analysis. This analysis examines the effect of the mass injection ratio and the inter-phase slip for a homogeneous, two-phase mixture by applying a control volume approach from the state immediately preceding the shock wave to the state immediately after the shock wave where the liquid phase has not had time to react, and from the state immediately after the shock wave to a state where the gas and liquid phases have had sufficient time to become re-equilibrated. The results show that the downstream Mach number decreases while the ratios of pressure, density, and temperature increase for increases in the mass injection ratio. The same trend is also shown for increases in the slip parameter. Whereas the previous analyses applied mainly to the characteristics of the industrial cleanser mentioned before, this analysis has far reaching implications ranging from two-phase particulate flow in solid rocket motors to sand blasting applications.

  6. Multi-needle capacitance probe for non-conductive two-phase flows

    NASA Astrophysics Data System (ADS)

    Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.

    2016-07-01

    Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.

  7. DSMC simulation of two-phase plume flow with UV radiation

    NASA Astrophysics Data System (ADS)

    Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling

    2014-12-01

    Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.

  8. Macro-to-microchannel transition in two-phase flow: Part 1 - Two-phase flow patterns and film thickness measurements

    SciTech Connect

    Ong, C.L.; Thome, J.R.

    2011-01-15

    The classification of macroscale, mesoscale and microscale channels with respect to two-phase processes is still an open question. The main objective of this study focuses on investigating the macro-to-microscale transition during flow boiling in small scale channels of three different sizes with three different refrigerants over a range of saturation conditions to investigate the effects of channel confinement on two-phase flow patterns and liquid film stratification in a single circular horizontal channel (Part 2 covers the flow boiling heat transfer and critical heat flux). This paper presents the experimental two-phase flow pattern transition data together with a top/bottom liquid film thickness comparison for refrigerants R134a, R236fa and R245fa during flow boiling in small channels of 1.03, 2.20 and 3.04 mm diameter. Based on this work, an improved flow pattern map has been proposed by determining the flow patterns transitions existing under different conditions including the transition to macroscale slug/plug flow at a confinement number of Co {approx} 0.3-0.4. From the top/bottom liquid film thickness comparison results, it was observed that the gravity forces are fully suppressed and overcome by the surface tension and shear forces when the confinement number approaches 1, Co {approx} 1. Thus, as a new approximate rule, the lower threshold of macroscale flow is Co = 0.3-0.4 while the upper threshold of symmetric microscale flow is Co {approx} 1 with a transition (or mesoscale) region in-between. (author)

  9. Quaternary deformation

    SciTech Connect

    Brown, R.D. Jr.

    1990-01-01

    Displaced or deformed rock units and landforms record the past 2 m.y. of faulting, folding, uplift, and subsidence in California. Properly interpreted, such evidence provides a quantitative basis for predicting future earthquake activity and for relating many diverse structures and landforms to the 5 cm/yr of horizontal motion at the boundary between the North American and Pacific plates. Modern techniques of geologic dating and expanded research on earthquake hazards have greatly improved our knowledge of the San Andreas fault system. Much of this new knowledge has been gained since 1965, and that part which concerns crustal deformation during the past 2 m.y. is briefly summarized here.

  10. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  11. Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-11-01

    Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.

  12. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1988-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized.

  13. The bubbly-slug transition in a boiling two-phase flow under microgravity

    NASA Technical Reports Server (NTRS)

    Kiper, Ali M.; Swanson, T. D.

    1993-01-01

    A theory is presented to describe, in reduced gravity flow boiling, the transition from bubbly two-phase flow to slug flow. It is shown that characteristics of the bubbly flow and the transition were controlled by the mechanism of vapor bubble growth dynamics. By considering in nucleate boiling, behavior of vapor bubbles at departure from a heated surface a condition required for transition was determined. Although required, this condition alone could not ensure coalescence of bubbles to cause the transition to slug two-phase flow. The condition leading to coalescence, therefore, was obtained by examining oscillations of vapor bubbles following their departure from the heated surface. The predicted transition conditions were compared with the prediction and test data reported for adiabatic reduced gravity two-phase flow, and good qualitative agreement was found.

  14. Adaptive sampling in two-phase designs: a biomarker study for progression in arthritis

    PubMed Central

    McIsaac, Michael A; Cook, Richard J

    2015-01-01

    Response-dependent two-phase designs are used increasingly often in epidemiological studies to ensure sampling strategies offer good statistical efficiency while working within resource constraints. Optimal response-dependent two-phase designs are difficult to implement, however, as they require specification of unknown parameters. We propose adaptive two-phase designs that exploit information from an internal pilot study to approximate the optimal sampling scheme for an analysis based on mean score estimating equations. The frequency properties of estimators arising from this design are assessed through simulation, and they are shown to be similar to those from optimal designs. The design procedure is then illustrated through application to a motivating biomarker study in an ongoing rheumatology research program. Copyright © 2015 © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25951124

  15. Numerical analysis of critical two-phase flow in a convergent-divergent nozzle

    SciTech Connect

    Romstedt, P.; Werner, W.

    1986-01-01

    The numerical calculation of critical two-phase flow in a convergent-divergent nozzle is complicated by a singularity of the fluid flow equations at the unknown critical point. A method of calculating critical state and its location without any additional assumptions is described. The critical state is identified by its mathematical properties: characteristics and solvability of linear systems with a singular matrix. Because the numerically estimable mathematical properties are the only necessary conditions for the existence of critical flow, some physical ''compatibility criteria'' (flow velocity equals model-consistent two-phase sonic velocity; critical flow is independent of downstream flow state variations) are used as substitutes for mathematically sufficient conditions. Numerical results are shown for the critical flow through LOBI nozzles and for the Super Moby Dick experiment. The two-phase flow is described by a model with equal phase velocities and thermodynamic nonequilibrium.

  16. The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution

    NASA Astrophysics Data System (ADS)

    Malaikah, K. R.

    2013-03-01

    We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem

  17. Device for measuring the fluid density of a two-phase mixture

    DOEpatents

    Cole, Jack H.

    1980-01-01

    A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.

  18. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    SciTech Connect

    Brauner, N.; Rovinsky, J.; Maron, D.M.

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  19. Entropy analysis on non-equilibrium two-phase flow models

    SciTech Connect

    Karwat, H.; Ruan, Y.Q.

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  20. Two-phase pressure drop across a hydrofoil-based micro pin device using R-123

    SciTech Connect

    Kosar, Ali

    2008-05-15

    The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)

  1. The effective diffusion coefficient of a small molecule in a two-phase gel medium

    NASA Astrophysics Data System (ADS)

    Kingsburry, Christine; Slater, Gary W.

    2009-12-01

    Using simple theoretical arguments and exact numerical lattice calculations, Hickey et al. [J. Chem. Phys. 124, 204903 (2006)] derived and tested an expression for the effective diffusion coefficient of a probe molecule in a two-phase medium consisting of a hydrogel with large gel-free inclusions. Although providing accurate predictions, this expression neglects important characteristics that such two-phase systems can present. In this article, we extend the previously derived expression in order to include local interactions between the gel and the analyte, interfacial effects between the main phase and the inclusions, and finally a possible incomplete separation between the two phases. We test our new, generalized expressions using exact numerical calculations. These generalized equations should be a useful tool for the development of novel multiphase systems for specific applications, such as drug-delivery platforms.

  2. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  3. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  4. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    SciTech Connect

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  5. Investigation of the Vibration Effect on the Closed Two-Phase Thermosyphon Operation

    NASA Astrophysics Data System (ADS)

    Prisniakov, K.

    2002-01-01

    thermosyphons goes by two paths. One way of research of operational modes is model of heat pipes or thermosyphons in a different variation of frequencies and amplitudes, designs, heat power, working fluid, types of capillary porous structure and so on. Another one is analysis of influencing of vibrations on processes of vaporization, boiling, condensation, flow of two-phase flows in a general formulation regardless to the particular type of a heat pipes. In the report the outcomes of researches of thermal modes of a water thermosyphons in conditions of vibration effects of different frequencies and amplitudes are presented. The boundary frequency bands and amplitude are determined, at which one heat and mass transfer in thermosyphons is improved and is degraded. For an investigated heat pipes of boundary values of frequencies are equal 60 Hz, and amplitudes are equal approximately 3 or 5 mm. The data of other authors are affirmed for another type heat pipes (they received for boundary frequencies 60 and 120-140 Hz). The outcomes of research of influencing of orientation of a heat pipes and thermosyphons on operating of vibrations are submitted. The idealised substantiation's vibration actions on heat and mass transfer of all three zones of thermal tubes - zone of vaporization, condensation and transport are given.

  6. Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code

    SciTech Connect

    Ortiz-Ramirez, Jaime

    1983-06-01

    A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.

  7. Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab

    NASA Technical Reports Server (NTRS)

    North, B. F.; Hill, M. E.

    1980-01-01

    Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.

  8. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  9. Hierarchy of two-phase flow models for autonomous control of cryogenic loading operation

    NASA Astrophysics Data System (ADS)

    Luchinskiy, Dmitry G.; Ponizovskaya-Devine, Ekaterina; Hafiychuk, Vasyl; Kashani, Ali; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara

    2015-12-01

    We report on the development of a hierarchy of models of cryogenic two-phase flow motivated by NASA plans to develop and maturate technology of cryogenic propellant loading on the ground and in space. The solution of this problem requires models that are fast and accurate enough to identify flow conditions, detect faults, and to propose optimal recovery strategy. The hierarchy of models described in this presentation is ranging from homogeneous moving- front approximation to separated non-equilibrium two-phase cryogenic flow. We compare model predictions with experimental data and discuss possible application of these models to on-line integrated health management and control of cryogenic loading operation.

  10. Dynamics of face and annular seals with two-phase flow

    NASA Technical Reports Server (NTRS)

    Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen

    1989-01-01

    A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the

  11. On the peculiarities of LDA method in two-phase flows with high concentrations of particles

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.

    2016-10-01

    Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.

  12. Stochastic Discrete Equation Method (sDEM) for two-phase flows

    SciTech Connect

    Abgrall, R.; Congedo, P.M.; Geraci, G.; Rodio, M.G.

    2015-10-15

    A new scheme for the numerical approximation of a five-equation model taking into account Uncertainty Quantification (UQ) is presented. In particular, the Discrete Equation Method (DEM) for the discretization of the five-equation model is modified for including a formulation based on the adaptive Semi-Intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating stochastic two-phase flows. Some reference test-cases are performed in order to demonstrate the convergence properties and the efficiency of the overall scheme. The propagation of initial conditions uncertainties is evaluated in terms of mean and variance of several thermodynamic properties of the two phases.

  13. Two-phase flow stability structure in a natural circulation system

    SciTech Connect

    Zhou, Zhiwei

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  14. 48 CFR 570.105-2 - Criteria for the use of two-phase design-build.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... two-phase design-build. 570.105-2 Section 570.105-2 Federal Acquisition Regulations System GENERAL... 570.105-2 Criteria for the use of two-phase design-build. The contracting officer may use the two-phase design-build selection procedures in 41 U.S.C. 253m for lease construction projects. This...

  15. Welding tritium exposed stainless steel

    SciTech Connect

    Kanne, W.R. Jr.

    1994-11-01

    Stainless steels that are exposed to tritium become unweldable by conventional methods due to buildup of decay helium within the metal matrix. With longer service lives expected for tritium containment systems, methods for welding on tritium exposed material will become important for repair or modification of the systems. Solid-state resistance welding and low-penetration overlay welding have been shown to mitigate helium embrittlement cracking in tritium exposed 304 stainless steel. These processes can also be used on stainless steel containing helium from neutron irradiation, such as occurs in nuclear reactors.

  16. Electrochemically induced annealing of stainless-steel surfaces.

    PubMed

    Burstein, G T; Hutchings, I M; Sasaki, K

    2000-10-19

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  17. Electrochemically induced annealing of stainless-steel surfaces

    NASA Astrophysics Data System (ADS)

    Burstein, G. T.; Hutchings, I. M.; Sasaki, K.

    2000-10-01

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  18. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    SciTech Connect

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  19. On the computation of viscous terms for incompressible two-phase flows with Level Set/Ghost Fluid Method

    NASA Astrophysics Data System (ADS)

    Lalanne, Benjamin; Villegas, Lucia Rueda; Tanguy, Sébastien; Risso, Frédéric

    2015-11-01

    In this paper, we present a detailed analysis of the computation of the viscous terms for the simulation of incompressible two-phase flows in the framework of Level Set/Ghost Fluid Method when viscosity is discontinuous across the interface. Two pioneering papers on the topic, Kang et al. [10] and Sussman et al. [26], proposed two different approaches to deal with viscous terms. However, a definitive assessment of their respective efficiency is currently not available. In this paper, we demonstrate from theoretical arguments and confirm from numerical simulations that these two approaches are equivalent from a continuous point of view and we compare their accuracies in relevant test-cases. We also propose a new intermediate method which uses the properties of the two previous methods. This new method enables a simple implementation for an implicit temporal discretization of the viscous terms. In addition, the efficiency of the Delta Function method [24] is also assessed and compared to the three previous ones, which allow us to propose a general overview of the accuracy of all available methods. The selected test-cases involve configurations wherein viscosity plays a major role and for which either theoretical results or experimental data are available as reference solutions: simulations of spherical rising bubbles, shape-oscillating bubbles and deformed rising bubbles at low Reynolds numbers.

  20. A two-phase procedure for QTL mapping with regression models.

    PubMed

    Chen, Zehua; Cui, Wenquan

    2010-07-01

    It is typical in QTL mapping experiments that the number of markers under investigation is large. This poses a challenge to commonly used regression models since the number of feature variables is usually much larger than the sample size, especially, when epistasis effects are to be considered. The greedy nature of the conventional stepwise procedures is well known and is even more conspicuous in such cases. In this article, we propose a two-phase procedure based on penalized likelihood techniques and extended Bayes information criterion (EBIC) for QTL mapping. The procedure consists of a screening phase and a selection phase. In the screening phase, the main and interaction features are alternatively screened by a penalized likelihood mechanism. In the selection phase, a low-dimensional approach using EBIC is applied to the features retained in the screening phase to identify QTL. The two-phase procedure has the asymptotic property that its positive detection rate (PDR) and false discovery rate (FDR) converge to 1 and 0, respectively, as sample size goes to infinity. The two-phase procedure is compared with both traditional and recently developed approaches by simulation studies. A real data analysis is presented to demonstrate the application of the two-phase procedure.

  1. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    NASA Astrophysics Data System (ADS)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  2. Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop

    NASA Technical Reports Server (NTRS)

    Jain, K. C.

    1969-01-01

    Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

  3. Approaches to myosin modelling in a two-phase flow model for cell motility

    NASA Astrophysics Data System (ADS)

    Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.

    2016-04-01

    A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.

  4. Pore network modeling of two-phase flow in a liquid-(disconnected) gas system

    NASA Astrophysics Data System (ADS)

    Bravo, Maria C.; Araujo, Mariela; Lago, Marcelo E.

    2007-02-01

    The appropriate description of two-phase flow in some systems requires a detailed analysis of the fundamental equations of flow and transport including momentum transfer between fluid phases. In the particular case of two-phase flow of oil and gas through porous media, when the gas phase is present as disconnected bubbles, there are inconsistencies in calculated flow properties derived by using the conventional Darcean description. In a two-phase system, the motion of one fluid phase may induce significant changes in the mobility of the second phase, as known from the generalized transport equations derived by Whitaker and Kalaydjian. The relevance of such coupling coefficients with respect to the conventional relative permeability term in two-phase Darcean flow is evaluated in this work for an oil-(disconnected) gas system. The study was performed using a new Pore Network Simulator specially designed for this case. Results considering both, Darcy's equation and generalized flow equations suggest that the four transport coefficients (effective permeabilities and coupling coefficients) are needed for a proper description of the macroscopic flow in a liquid-disconnected gas system.

  5. The critical point and two-phase boundary of seawater, 200–500°C

    USGS Publications Warehouse

    Bischoff, James L.; Rosenbauer, Robert J.

    1984-01-01

    The two-phase boundary of seawater was determined by isothermal decompression of fully condensed seawater in the range of 200–500°C. The pressure at which phase separation occurred for each isotherm was determined by a comparison of the refractive index of fluid removed from the top and bottom of the reaction vessel. The critical point was determined to be in the range of 403–406°C, 285–302 bar and was located by the inflection in the two-phase boundary and by the relative volume of fluid and vapor as a function of temperature. The two-phase boundary of 3.2% NaCl solution was found to coincide exactly with that of seawater over the range tested in the present study. The boundary for both is described by a single seventh-order polynomial equation. The two-phase boundary defines the maximum temperature of seawater circulating at depth in the oceanic crust. Thus the boundary puts a limit of about 390°C for seawater circulating near the seafloor at active ocean ridges (2.5 km water depth), and about 465°C at the top of a magma chamber occurring at 2 km below the seafloor.

  6. Rank 0 invariant solutions of dynamics of two-phase medium

    NASA Astrophysics Data System (ADS)

    Panov, Alexandr

    2016-08-01

    A system of partial differential equations which describes dynamics of two-phase medium is considered. Lie algebra of symmetry group of this system was found. For some 4-dimensional subalgebras of invariant solutions is found. All other 4-dimensional subalgebras will give only partial invariant solutions of this system.

  7. Separation of gas from liquid in a two-phase flow system

    NASA Technical Reports Server (NTRS)

    Hayes, L. G.; Elliott, D. G.

    1973-01-01

    Separation system causes jets which leave two-phase nozzles to impinge on each other, so that liquid from jets tends to coalesce in center of combined jet streams while gas phase is forced to outer periphery. Thus, because liquid coalescence is achieved without resort to separation with solid surfaces, cycle efficiency is improved.

  8. Cell separation by an aqueous two-phase system in a microfluidic device.

    PubMed

    Tsukamoto, Masatoshi; Taira, Shu; Yamamura, Shohei; Morita, Yasutaka; Nagatani, Naoki; Takamura, Yuzuru; Tamiya, Eiichi

    2009-10-01

    We generated an aqueous two-phase laminar flow in a microfluidic chip and used the system to isolate leukocyte and erythrocyte cells from whole blood cells. The microfluidic system reduced the effect of gravity in the aqueous two-phase system (ATPS). Poly(ethylene glycol) (PEG) and dextran (Dex) solutions were used as the two phases, and the independent flow rates of the solutions were both 2 microL/min. When hydrophobic and hydrophilic polystyrene beads were introduced into the microfluidic device, the hydrophilic beads moved to the Dex layer and the hydrophobic beads to the interface between the two phases. In the case of living cells, Jurkat cells and erythrocytes moved more efficiently to the PEG and Dex layers, respectively, than they move in a conventional ATPS. When whole blood cells were inserted into the microfluidic chip, leukocytes could be separated from erythrocytes because erythrocytes moved to the Dex layer while leukocytes remained outside of this layer in the microfluidic system. The reported microfluidic chip for the whole blood cell separation can effectively be integrated into a Micro Total Analysis System designed for cell-based clinical, forensic, and environmental analyses.

  9. COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA

    EPA Science Inventory

    A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...

  10. Results of two-phase natural circulation in hot-leg U-bend simulation experiments

    SciTech Connect

    Ishii, M.; Lee, S.Y.; Abou El-Seoud, S.

    1987-01-01

    In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed using two different thermal-hydraulic loops. The main focus of the experiment was the two-phase flow behavior in the hot-leg U-bend typical of BandW LWR systems. The first group of experiments was carried out in the nitrogen gas-water adiabatic simulation loop and the second in the Freon 113 boiling and condensation loop. Both of the loops have been designed as a flow visualization facility and built according to the two-phase flow scaling criteria developed under this program. The nitrogen gas-water system has been used to isolate key hydrodynamic phenomena such as the phase distribution, relative velocity between phases, two-phase flow regimes and flow termination mechanisms, whereas the Freon loop has been used to study the effect of fluid properties, phase changes and coupling between hydrodynamic and heat transfer phenomena. Significantly different behaviors have been observed due to the non-equilibrium phase change phenomena such as the flashing and condensation in the Freon loop. The phenomena created much more unstable hydrodynamic conditions which lead to cyclic or oscillatory flow behaviors.

  11. Toward the use of similarity theory in two-phase choked flows

    NASA Technical Reports Server (NTRS)

    Hendericks, R. C.; Sengers, J. V.; Simoneau, R. J.

    1980-01-01

    Comparison of two phase choked flows in normalized coordinates were made between pure components and available data using a reference fluid to compute the thermophysical properties. The results are favorable. Solution of the governing equations for two LNG mixtures show some possible similarities between the normalized choked flows of the two mixtures, but the departures from the pure component loci are significant.

  12. Toward the use of similarity theory in two-phase choked flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Sengers, J. V.

    1980-01-01

    Comparison of two-phase choked flows in normalized coordinates were made between pure components and available data using a reference fluid to compute the thermophysical properties. The results are favorable. Solution of the governing equations for two LNG mixtures show some possible similarities between the normalized choked flows of the two mixtures, but the departures from the pure component locii are significant.

  13. Two Phase Flow in Porous Media and the Concept of Relative Permeabilities

    SciTech Connect

    Eliasson, Jonas; Kjaran, Snorri Pall; Gunnarsson, Gestur

    1980-12-16

    New equations for the two phase flow of water and steam are presented. The new equations coincide with those already in use for the case of horizontal flow but are different from those for vertical flow. It is shown that the usual equations can only be valid when the two phases are flowing in separate channels, where the channel dimensions are large compared with the grain size of the porous media, and in such a case the relative permeabilities should vary only slightly with the saturation ratio. It is shown that the actual variation of relative permeabilities with saturation ratio suggests a flow model where the flow channel dimensions are of the same order of magnitude as the grain size. On this basis a new set of equations is proposed, which with the associated flow model explain relative permeabilities qualitatively. In addition they show that water can flow upwards in two phase flow where the pressure gradient is less than hydrostatic. In a simple two phase flow test it is demonstrated that this happens as predicted by the new equation set.

  14. MONA: An accurate two-phase well flow model based on phase slippage

    SciTech Connect

    Asheim, H.

    1984-10-01

    In two phase flow, holdup and pressure loss are related to interfacial slippage. A model based on the slippage concept has been developed and tested using production well data from Forties, the Ekofisk area, and flowline data from Prudhoe Bay. The model developed turned out considerably more accurate than the standard models used for comparison.

  15. Probabilistic assessment of contamination using the two-phase flow model.

    PubMed

    Chen, Guan-Zhi; Hsu, Kuo-Chin; Lee, Cheng-Haw

    2003-08-01

    A physically motivated model is indispensable for a successful analysis of the impact of leaching from nuclear waste storage sites on the environment and public health. While most analyses use the single-phase flow model for modelling unsaturated flow and solute transport, the two-phase flow model considering the resistance of gas to water flow is a more realistic one. The effect of the two-phase flow model on the water content is theoretically investigated first in this study. Then, by combining a geostatistical generator using the turning bands method and a multi-phase transport code TOUGH2, an automatic process is used for Monte Carlo simulation of the solute transport. This stochastic approach is applied to a potentially polluted site by low-level nuclear waste in Taiwan. In the simulation, the saturated hydraulic conductivity is treated as the random variable. The stochastic approach provides a probabilistic assessment of contamination. The results show that even though water content from the two-phase flow model is only 1.5% less than the one from the single-phase flow model, the two-phase flow causes a slower movement but a wider lateral spreading of the plume in the unsaturated zone. The stochastic approach provides useful probability information which is not available from the deterministic approach. The probability assessment of groundwater contamination provides the basis for more informed waste management, better environmental assessment and improved evaluation of impact on public health.

  16. An experimental study of two-phase slug flow in hilly terrain pipelines

    SciTech Connect

    Zheng, G.H.; Brill, J.P.; Shoham, O.

    1995-11-01

    Experiments were conducted in a 76.2-mm diameter, 420-m long two-phase flow loop to study slug flow behavior in hilly terrain pipelines. Complex physical phenomena were observed, including generation of pseudoslugs at the horizontal/uphill elbow, variation of slug length along the pipeline, and persistent existence of slug flow in the downhill section.

  17. Simultaneous Velocity Discrimination Method of Two-Phase Flows Using Time Resolved Stereo PIV and PTV

    NASA Astrophysics Data System (ADS)

    Vanderwerker, P. B.; Chen, Y.; Torregrosa, M. M.; Diez, F. J.; Photos, S.; Troolin, D.

    2007-03-01

    Multiphase jets laden with particles appear in many engineering and environmental processes. Typical examples are sprays containing liquid fuel drops in combustion processes, air jets laden with coal particles in a power plant, and the dispersion of harmful substances like soot and pollutants from steady exhaust flows, among others. Studies of particle-laden turbulent flows suggest that particle distribution is not uniform but preferential. In order to understand the mechanism of particle dispersion, time resolved simultaneous 3D velocity measurements of the disperse phase and of the fluid flow were made. Two-phase discrimination algorithms were developed based upon the filtering methodology proposed by Khalitov & Longmire (2002), allowing for complete separation of the two-phases in stereo PIV images. The different filtering methods studied include separation of the two-phases using: (1) particle size discrimination, (2) particle intensity discrimination, (3) particle size and intensity discrimination, and (4) fluorescent particles for one of the two-phases. This methodology also enables time-resolved instantaneous 3D velocity fields using PTV and PIV on the disperse phase and fluid flow phase respectively. These allow visualization of 3D turbulent coherent structure evolution in the fluid as well as the evolution of the dispersed phase.

  18. Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements

    ERIC Educational Resources Information Center

    Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun

    2013-01-01

    In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…

  19. Phase distribution of nitrogen-water two-phase flow in parallel micro channels

    NASA Astrophysics Data System (ADS)

    Zhou, Mi; Wang, Shuangfeng; Zhou, You

    2016-08-01

    The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.

  20. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    SciTech Connect

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.; Evbota, D.; Lopes, M.; Nicol, T.; Sanders, R.; Schmitt, R.; Voirin, E.

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids

  1. Forced two-phase helium cooling scheme for the Mu2e transport solenoid

    NASA Astrophysics Data System (ADS)

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.; Evbota, D.; Lopes, M.; Nicol, T.; Sanders, R.; Schmitt, R.; Voirin, E.

    2015-12-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids.

  2. RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation

    SciTech Connect

    Ransom, V.H.; Wagner, R.J.; Trapp, J.A.

    1981-01-01

    The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given.

  3. 48 CFR 570.105-2 - Two-phase design-build selection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build selection procedures. 570.105-2 Section 570.105-2 Federal Acquisition Regulations System GENERAL SERVICES...-phase design-build selection procedures. Unless you use another acquisition procedure authorized by...

  4. Pressure Buildup Analysis for Two-Phase Geothermal Wells: Application to the Baca Geothermal Field

    NASA Astrophysics Data System (ADS)

    Riney, T. D.; Garg, S. K.

    1985-03-01

    The recently published pressure transient analysis methods for two-phase geothermal wells are employed to analyze the pressure buildup data for several wells located in the Redondo Creek area of the Baca geothermal field in New Mexico. The downhole drilling information and pressure/temperature surveys are first interpreted to locate zones at which fluid enters the well bore from the formation and to estimate the initial reservoir temperature and pressure in these zones. All of the Baca wells considered here induced flashing in the formation upon production. Interpretation of the buildup data for each well considers well bore effects (e.g., phase change in the well bore fluid and location of the pressure sensor with respect to the permeable horizon) and the carbon dioxide content of the fluid and its effects on the phase behavior of the reservoir fluids and differentiates between the single- and two-phase portions of the pressure buildup data. Different straight-line approximations to the two portions (i.e., single- and two-phase) of the data on the Homer plot are used to obtain corresponding estimates for the single- and two-phase mobilities. Estimates for the formation permeability-thickness (kH) product are also given.

  5. Joint X-Ray and Holographic Diagnostics of Heterogeneous Two-Phase Fluxes

    NASA Astrophysics Data System (ADS)

    Zakharov, V. M.; Polyakov, S. N.

    2016-07-01

    Probability of identification of materials of the particles in a two-phase flux is estimated theoretically on the base of their specific x-ray attenuation and efficiency of the identification is estimated for randomly oriented particles of two-component dispersed phases depending on their composition, as well as sizes and shapes of the particles.

  6. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a

  7. Two-phase convective CO2 dissolution in saline aquifers

    SciTech Connect

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

  8. Cryogenic two-phase flow and phase-change heat transfer in microgravity

    NASA Astrophysics Data System (ADS)

    Tai, Cheng-Feng

    The applications of cryogenic flow and heat transfer are found in many different types of industries, whether it be the liquid fuel for propulsion or the cryogenic cooling in medical applications. It is very common to find the transportation of cryogenic flow under microgravity in space missions. For example, the liquid oxygen and hydrogen are used to power launch vehicles and helium is used for pressurizing the fuel tank. During the transportation process in pipes, because of high temperature and heat flux from the pipe wall, the cryogenic flow is always in a two-phase condition. As a result, the physics of cryogenic two-phase flow and heat transfer is an important topic for research. In this research, numerical simulation is employed to study fluid flow and heat transfer. The Sharp Interface Method (SIM) with a Cut-cell approach (SIMCC) is adopted to handle the two-phase flow and heat transfer computation. In SIMCC, the background grid is Cartesian and explicit true interfaces are immersed into the computational domain to divide the entire domain into different sub-domains/phases. In SIMCC, each phase comes with its own governing equations and the interfacial conditions act as the bridge to connect the information between the two phases. The Cut-cell approach is applied to handle nonrectangular cells cut by the interfaces and boundaries in SIMCC. With the Cut-cell approach, the conservative properties can be maintained better near the interface. This research will focus on developing the numerical techniques to simulate the two-phase flow and phase change phenomena for one of the major flow patterns in film boiling, the inverted annular flow.

  9. A two-phase mechanical model for rock-ice avalanches

    NASA Astrophysics Data System (ADS)

    Pudasaini, Shiva P.; Krautblatter, Michael

    2014-10-01

    Rock-ice avalanche events are among the most hazardous natural disasters in the last century. In contrast to rock avalanches, the solid phase (ice) can transform to fluid during the course of the rock-ice avalanche and fundamentally alter mechanical processes. A real two-phase debris flow model could better address the dynamic interaction of solid (rock and ice) and fluid (water, snow, slurry, and fine particles) than presently used single-phase Voellmy- or Coulomb-type models. We present a two-phase model capable of performing dynamic strength weakening due to internal fluidization and basal lubrication and internal mass and momentum exchanges between the phases. Effective basal and internal friction angles are variable and correspond to evolving effective solid volume fraction, friction factors, volume fraction of the ice, true friction coefficients, and lubrication and fluidization factors. Benchmark numerical simulations demonstrate that the two-phase model can explain dynamically changing frictional properties of rock-ice avalanches that occur internally and along the flow path. The interphase mass and momentum exchanges are capable of demonstrating the mechanics of frontal surge head and multiple other surges in the debris body. This is an observed phenomenon in a real two-phase debris flow, but newly simulated here by applying the two-phase mass flow model. Mass and momentum exchanges between the phases and the associated internal and basal strength weakening control the exceptional long runout distances, provide a more realistic simulation especially during the critical initial and propagation stages of avalanche, and explain the exceptionally high and dynamically changing mobility of rock-ice avalanches.

  10. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  11. Crustal deformation

    NASA Astrophysics Data System (ADS)

    Larson, Kristine M.

    1995-07-01

    Geodetic measurements of crustal deformation provide direct tests of geophysical models which are used to describe the dynamics of the Earth. Although geodetic observations have been made throughout history, only in the last several hundred years have they been sufficiently precise for geophysical studies. In the 19th century, these techniques included leveling and triangulation. Approximately 25 years ago, trilateration measurements were initiated by the USGS (United States Geological Survey) to monitor active faults in the United States. Several years later, NASA (National Aeronautics and Space Administration) begin an effort to measure plate tectonic motions on a global scale, using space geodetic techniques, VLBI (Very Long Baseline Interferometry) and SLR (Satellite Laser Ranging). The period covered by this report to the IUGG, 1991-1994, was a transition period in the field of crustal deformation. Trilateration measurements (previously the backbone of measurements across plate boundaries in the western United States and Alaska) have been abandoned. This system was labor-intensive, involved highly trained crews to carry out the observations, and only measured the length between sites. In addition, NASA drastically cut the budgets for VLBI and SLR during this period. Fixed site VLBI systems are still operational, but mobile VLBI measurements in North America have ceased. SLR measurements continue on a global scale, but the remaining crustal deformation measurements are now being made with the Global Positioning System (GPS). Nonetheless, because of the time scales involved, older geodetic data (including leveling, triangulation, and trilateration) continue to be important for many geophysical studies.

  12. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  13. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    SciTech Connect

    Wronski, S.; Tarasiuk, J.; Bacroix, B.; Baczmanski, A.; Braham, C.

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distribution and misorientation characteristics are examined using EBSD.

  14. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass

  15. Stainless Steel Permeability

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  16. Performance of WPA Conductivity Sensor during Two-Phase Fluid Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Layne; O'Connor, Edward W.; Snowdon, Doug

    2003-01-01

    The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two-phase fluid flow (gadliquid) in microgravity. The source for this sensitivity is the fact that gas bubbles will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in l-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plan to measure the offset, which was determined to range between 0 and 50%. Based on these findings, a development program was initiated at the sensor s manufacturer to develop a sensor design fully compatible with two-phase fluid flow in microgravity.

  17. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes

    NASA Technical Reports Server (NTRS)

    Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.

    1992-01-01

    The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.

  18. On the Shape Sensitivity of the First Dirichlet Eigenvalue for Two-Phase Problems

    SciTech Connect

    Dambrine, M.; Kateb, D.

    2011-02-15

    We consider a two-phase problem in thermal conductivity: inclusions filled with a material of conductivity {sigma}{sub 1} are layered in a body of conductivity {sigma}{sub 2}. We address the shape sensitivity of the first eigenvalue associated with Dirichlet boundary conditions when both the boundaries of the inclusions and the body can be modified. We prove a differentiability result and provide the expressions of the first and second order derivatives. We apply the results to the optimal design of an insulated body. We prove the stability of the optimal design thanks to a second order analysis. We also continue the study of an extremal eigenvalue problem for a two-phase conductor in a ball initiated by Conca et al. (Appl. Math. Optim. 60(2):173-184, 2009) and pursued in Conca et al. (CANUM 2008, ESAIM Proc., vol. 27, pp. 311-321, EDP Sci., Les Ulis, 2009).

  19. Design of an ammonia two-phase Prototype Thermal Bus for Space Station

    NASA Astrophysics Data System (ADS)

    Brown, Richard F.; Gustafson, Eric; Parish, Richard

    1987-07-01

    The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.

  20. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review.

    PubMed

    Tang, Malcolm S Y; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Show, Pau Loke

    2016-08-19

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology. PMID:27396920

  1. Modeling of reflux condensation and countercurrent annular flow in a two-phase closed thermosyphon

    SciTech Connect

    Reed, J.G.; Tien, C.L.

    1985-12-01

    Reflux condensation in the steam generator tubes of a PWR is a potentially important heat removal mechanism during the cool-down phase following a small-break LOCA. This work studies reflux condensation using the two-phase closed thermosyphon as a model system. An analytical model based on control-volume formulations of mass, momentum, and energy balances for the liquid and vapor flows in each section of the device is developed. Numerical solutions to the system of governing equations are presented for both steady-state and transient operation of the device. While no data with which to compare the results of the transient analysis are currently available, the steady-state solutions compare well with available experimental data on flooding and film thickness. Thus, the analytical approach presented in this work is demonstrated to be a powerful technique for analyzing countercurrent, annular, two-phase flows. 17 refs., 17 figs.

  2. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  3. Droplet formation and shrinking in aqueous two-phase systems using a membrane emulsification method

    PubMed Central

    Breisig, Hans; Wessling, Matthias

    2015-01-01

    Using a membrane emulsification method based on porous hollow-fiber membranes in combination with an aqueous two-phase system (ATPS), we are able to produce “water-in-water” droplets with narrow-dispersed size distributions. The equilibrium phases of the aqueous two-phase system polyethylene glycol-dipotassium hydrogen phosphate are used for this purpose. The droplet diameter of a given fluid system is determined by the flow rates of the continuous and disperse phase as well as the hollow fiber dimensions. When diluting the disperse phase and thus moving the ATPS system out of equilibrium, the droplet size can be further reduced in comparison to the equilibrium case. Generally, droplets formed with this method have diameters 20%–60% larger than the inner hollow fiber diameter. The new strategy of diluting the disperse phase allows the production of droplet diameter below the inner diameter of the membrane. PMID:26339321

  4. Design of an ammonia two-phase Prototype Thermal Bus for Space Station

    NASA Technical Reports Server (NTRS)

    Brown, Richard F.; Gustafson, Eric; Parish, Richard

    1987-01-01

    The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.

  5. Workshop on Two-Phase Fluid Behavior in a Space Environment

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  6. A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.

    2015-11-01

    In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme

  7. Targeted delivery by smart capsules for controlling two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Abbaspourrad, Alireza; Weitz, David; Harvard Weitzgroup Team

    2015-11-01

    Two-phase flow in porous media is significantly influenced by the physical properties of the fluids and the geometry of the medium. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for targeted surfactant delivery to the vicinity of oil-water interface and targeted microgel delivery for improving the homogeneity of the porous medium, respectively. We further prove the concept by monitoring the capsule location and the fluid structure in the porous media by micro-CT and confocal microscopy. This technique not only is of particular importance to the relevant industry applications especially in the oil industry but also opens a new window to study the mechanism of two-phase flow in porous media. Advanced Energy Consortium BEG08-027.

  8. Targeted Delivery by Smart Capsules for Controlling Two-phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Fan, J.; Weitz, D.

    2015-12-01

    Understanding and controlling two-phase flow in porous media are of particular importance to the relevant industry applications, such as enhanced oil recovery, CO2 sequestration, and groundwater remediation. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for (a) delivering surfactant to the vicinity of oil-water interface and (b) delivering microgels to the high permeability region and therefore blocking the pore space there, respectively. We also show that flooding these two capsules into porous media effectively reduces the trapped oil and improves the homogeneity of the medium, respectively. Besides of its industrial applications, this technique also opens a new window to study the mechanism of two-phase flow in porous media.

  9. Two-phase dusty fluid flow along a cone with variable properties

    NASA Astrophysics Data System (ADS)

    Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy

    2016-09-01

    In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).

  10. Measurement of average density and relative volumes in a dispersed two-phase fluid

    SciTech Connect

    Sreepada, S.R.; Rippel, R.R.

    1990-12-19

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varying optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  11. Measurement of average density and relative volumes in a dispersed two-phase fluid

    SciTech Connect

    Sreepada, S.R.; Rippel, R.R.

    1992-05-05

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varying optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry. 3 figs.

  12. Single- and Two-Phase Turbulent Mixing Rate between Subchannels in Triangle Tight Lattice Rod Bundle

    NASA Astrophysics Data System (ADS)

    Kawahara, Akimaro; Sadatomi, Michio; Kudo, Hiroyuki; Kano, Keiko

    In order to obtain the data on turbulent mixing rate between triangle tight lattice subchannels, which will be adopted as the next generation BWR fuel rod bundle, adiabatic experiments were conducted for single- and two-phase flows under hydrodynamic equilibrium flow conditions. The gas and liquid mixing rates measured for two-phase flows were found to be affected by the void fraction and/or flow regime, as reported in our previous study on a simulated square lattice rod bundle channel having hydraulic diameters of about four times larger than the present tight lattice channel. Comparing the present mixing rate data with those for the square lattice channel and a triangle one in other institution, we found that the mixing rate was considerably smaller in the present channel than the other ones, i.e., a channel size effect.

  13. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Data were obtained for two phase and gaseous choked flow nitrogen in a long constant area duct of 16200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two phase homogeneous equilibrium choking flow model which includes wall friction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data resonably well, but about 15 percent low.

  14. Two phase choke flow in tubes with very large L/D

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1977-01-01

    Two phase and gaseous choked flow data for fluid nitrogen were obtained for a test section which was a long constant area duct of 16 200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two-phase homogeneous equilibrium choking flow model which includes wall fraction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data reasonably well, but about 15 percent low.

  15. Two-phase power-law modeling of pipe flows displaying shear-thinning phenomena

    SciTech Connect

    Ding, Jianmin; Lyczkowski, R.W.; Sha, W.T.

    1993-12-31

    This paper describes work in modeling concentrated liquid-solids flows in pipes. COMMIX-M, a three-dimensional transient and steady-state computer program developed at Argonne National Laboratory, was used to compute velocities and concentrations. Based on the authors` previous analyses, some concentrated liquid-solids suspension flows display shear-thinning rather than Newtonian phenomena. Therefore, they developed a two-phase non-Newtonian power-law model that includes the effect of solids concentration on solids viscosity. With this new two-phase power-law solids-viscosity model, and with constitutive relationships for interfacial drag, virtual mass effect, shear lift force, and solids partial-slip boundary condition at the pipe walls, COMMIX-M is capable of analyzing concentrated three-dimensional liquid-solids flows.

  16. Nonequilibrium hydrogen combustion in one- and two-phase supersonic flow

    SciTech Connect

    Chang, H.T.; Hourng, L.W.; Chien, L.C.

    1997-05-01

    A time-splitting method for the numerical simulation of stiff nonequilibrium combustion problem was developed. The algorithm has been applied to simulate the shock-induced combustion and to investigate a supersonic one-and two-phase flowfield. The results are physically reasonable and demonstrate that the presence of particles has a dramatic effect on the nozzle flowfield and the thrust. Supersonic combustion usually happens in high speed flying aerodynamic problems, such as supersonic combustion ramjet (scramjet) engine for hypersonic airbreathing vehicles. Particularly for the scramjet engine, due to short residence time in the combustion chamber, it still contains incomplete combustion fuel as it enters the nozzle. For solid propellant rocket motors, the exhaust stream contains particles of aluminum oxide. In these two-phase nozzle flows, transfer of momentum and heat between gas particles often result in a decrease of nozzle efficiency.

  17. Interfacial geometry and D-variation effects in two-phase systems. [binary alloys

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Unnam, J.

    1979-01-01

    Numerical solutions of the governing diffusion equation for two-phase concentration dependent diffusion coefficients are examined. Solutions were also calculated for planar, cylindrical, and spherical geometries to compare the effect of interface geometries with those caused by concentration-dependent diffusion coefficients, and two methods of averaging D were considered to determine the best averaging method for different types of D-variations. The effects of interface-location criteria on mass conservation and convergence of interface location, diffusion coefficient variation in the alpha and beta-phases of a two-phase binary alloy system, effect of D(alpha) variation in a cylindrical couple on beta-phase thickness, and geometry and D-variation effects on the degree of homogenization were determined. It is concluded that typical D(alpha)-variations can have a greater influence on the kinetics of interdiffusion than the geometry.

  18. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review

    NASA Astrophysics Data System (ADS)

    Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau

    2016-08-01

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

  19. Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report

    SciTech Connect

    Not Available

    1991-07-01

    The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.

  20. Measurement of average density and relative volumes in a dispersed two-phase fluid

    DOEpatents

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  1. Computer code for gas-liquid two-phase vortex motions: GLVM

    NASA Technical Reports Server (NTRS)

    Yeh, T. T.

    1986-01-01

    A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.

  2. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    PubMed

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  3. Enthalpy and mass flowrate measurements for two-phase geothermal production by Tracer dilution techniques

    SciTech Connect

    Hirtz, Paul; Lovekin, Jim; Copp, John; Buck, Cliff; Adams, Mike

    1993-01-28

    A new technique has been developed for the measurement of steam mass flowrate, water mass flowrate and total enthalpy of two-phase fluids produced from geothermal wells. The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of tracer. This technique has now been used extensively at the Coso geothermal project, owned and operated by California Energy Company. Initial validation of the method was performed at the Roosevelt Hot Springs geothermal project on wells producing to individual production separators equipped with orificeplate flowmeters for each phase.

  4. Numerical Simulation of Two-Phase Critical Flow with the Phase Change in the Nozzle Tube

    NASA Astrophysics Data System (ADS)

    Ishigaki, Masahiro; Watanabe, Tadashi; Nakamura, Hideo

    Two-phase critical flow in the nozzle tube is analyzed numerically by the best estimate code TRACE and the CFD code FLUENT, and the performance of the mass flow rate estimation by the numerical codes is discussed. For the best estimate analysis by the TRACE code, the critical flow option is turned on. The mixture model is used with the cavitation model and the evaporation-condensation model for the numerical simulation by the FLUENT code. Two test cases of the two-phase critical flow are analyzed. One case is the critical flashing flow in a convergent-divergent nozzle (Super Moby Dick experiment), and the other case is the break nozzle flow for a steam generator tube rupture experiment of pressurized water reactors at Large Scale Test Facility of Japan Atomic Energy Agency. The calculation results of the mass flow rates by the numerical simulations show good agreements with the experimental results.

  5. Two phase flow and heat transfer characteristics of a separate-type heat pipe

    NASA Astrophysics Data System (ADS)

    Tang, Zhiwei; Liu, Aijie; Jiang, Zhangyan

    2011-07-01

    Two phase flow and heat transfer characteristics of a separate-type heat pipe have been studied experimentally and theoretically. The experimental apparatus have the same geometry for the evaporator and the condenser which consist of 5-tube-banks, with working temperature ranges of 80-125°C. The experimental working fluid is dual-distilled water with corrosion-resistant agents. Heat transfer coefficients for boiling and condensation along with heat flux and working temperature are measured at different filling ratio. According to the results of the experiments, the optimized filling ratio ranges from 16 to 36%. Fitted correlations of average heat transfer coefficients of the evaporator and Nusselt numbers of the condenser at the proposed filling ratio are obtained. Two phase flow characteristics of the evaporator and the condenser as well as their influence on heat transfer are described on the basis of simplified analysis. Reasons for the pulse-boiling process remain to be studied.

  6. Lattice Boltzmann methods for viscous fluid flows and for two-phase fluid flows

    NASA Astrophysics Data System (ADS)

    Inamuro, Takaji

    2006-09-01

    Lattice Boltzmann methods (LBMs) for viscous fluid flows and for two-phase fluid flows are presented. First, the LBMs for incompressible viscous fluid flows and for temperature fields are described. Then, we derive a lattice kinetic scheme (LKS) which is an improved scheme of the LBM. The LKS does not require any velocity distribution functions and is more stable than the LBMs. In addition, the LBM for two-phase fluid flows is presented. The method can simulate flows with the density ratio up to 1000. Numerical examples of unsteady flows in a three-dimensional porous structure, binary droplet collision and rising bubbles in a square duct are illustrated. It is expected that the LBMs (and LKS) will become promising numerical schemes for simulating complex fluid flows.

  7. Two-phase velocity measurements around cylinders using particle image velocimetry

    SciTech Connect

    Hassan, Y.A.; Philip, O.G.; Schmidl, W.D.

    1995-09-01

    The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.

  8. Time integration for diffuse interface models for two-phase flow

    SciTech Connect

    Aland, Sebastian

    2014-04-01

    We propose a variant of the θ-scheme for diffuse interface models for two-phase flow, together with three new linearization techniques for the surface tension. These involve either additional stabilizing force terms, or a fully implicit coupling of the Navier–Stokes and Cahn–Hilliard equation. In the common case that the equations for interface and flow are coupled explicitly, we find a time step restriction which is very different to other two-phase flow models and in particular is independent of the grid size. We also show that the proposed stabilization techniques can lift this time step restriction. Even more pronounced is the performance of the proposed fully implicit scheme which is stable for arbitrarily large time steps. We demonstrate in a Taylor-flow application that this superior coupling between flow and interface equation can decrease the computation time by several orders of magnitude.

  9. Drowning-out crystallisation of sodium sulphate using aqueous two-phase systems.

    PubMed

    Taboada, M E; Graber, T A; Asenjo, J A; Andrews, B A

    2000-06-23

    A novel method to obtain crystals of pure, anhydrous salt, using aqueous two-phase systems was studied. A concentrated salt solution is mixed with polyethylene glycol (PEG), upon which three phases are formed: salt crystals, a PEG-rich liquid and a salt-rich liquid. After removal of the solid salt, a two-phase system is obtained. Both liquid phases are recycled, allowing the design of a continuous process, which could be exploited industrially. The phase diagram of the system water-Na2SO4-PEG 3350 at 28 degrees C was used. Several process alternatives are proposed and their economic potential is discussed. The process steps needed to produce sodium sulphate crystals include mixing, crystallisation, settling and, optionally, evaporation of water. The yield of sodium sulphate increases dramatically if an evaporation step is used. PMID:10942277

  10. Evaporation on/in Capillary Structures of High Heat Flux Two-Phase Devices

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Khrustalev, Dmitry

    1996-01-01

    Two-phase devices (heat pipes, capillary pumped loops, loop heat pipes, and evaporators) have become recognized as key elements in thermal control systems of space platforms. Capillary and porous structures are necessary and widely used in these devices, especially in high heat flux and zero-g applications, to provide fluid transport and enhanced heat transfer during vaporization and condensation. However, some unexpected critical phenomena, such as dryout in long heat pipe evaporators and high thermal resistance of loop heat pipe evaporators with high heat fluxes, are possible and have been encountered in the use of two-phase devices in the low gravity environment. Therefore, a detailed fundamental investigation is proposed to better understand the fluid behavior in capillary-porous structures during vaporization at high heat fluxes. The present paper addresses some theoretical aspects of this investigation.

  11. Use of two-phase flow heat transfer method in spacecraft thermal system

    NASA Technical Reports Server (NTRS)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  12. Decay of the 3D inviscid liquid-gas two-phase flow model

    NASA Astrophysics Data System (ADS)

    Zhang, Yinghui

    2016-06-01

    We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.

  13. Analytical solution of two-phase spherical Stefan problem by heat polynomials and integral error functions

    NASA Astrophysics Data System (ADS)

    Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan

    2016-08-01

    On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.

  14. Analysis of pulsating spray flames propagating in lean two-phase mixtures with unity Lewis number

    SciTech Connect

    Nicoli, C.; Haldenwang, P.; Suard, S.

    2005-11-01

    Pulsating (or oscillatory) spray flames have recently been observed in experiments on two-phase combustion. Numerical studies have pointed out that such front oscillations can be obtained even with very simple models of homogeneous two-phase mixtures, including elementary vaporization schemes. The paper presents an analytical approach within the simple framework of the thermal-diffusive model, which is complemented by a vaporization rate independent of gas temperature, as soon as the latter reaches a certain thermal threshold ({theta}{sub v} in reduced form). The study involves the Damkoehler number (Da), the ratio of chemical reaction rate to vaporization rate, and the Zeldovich number (Ze) as essential parameters. We use the standard asymptotic method based on matched expansions in terms of 1/Ze. Linear analysis of two-phase flame stability is performed by studying, in the absence of differential diffusive effects (unity Lewis number), the linear growth rate of 2-D perturbations added to steady plane solutions and characterized by wavenumber k in the direction transverse to spreading. A domain of existence is found for the pulsating regime. It corresponds to mixture characteristics often met in air-fuel two-phase systems: low boiling temperature ({theta}{sub v} << 1), reaction rate not higher than vaporization rate (Da < 1, i.e., small droplets), and activation temperature assumed to be high compared with flame temperature (Ze {>=} 10). Satisfactory comparison with numerical simulations confirms the validity of the analytical approach; in particular, positive growth rates have been found for planar perturbations (k = 0) and for wrinkled fronts (k {ne} 0). Finally, comparison between predicted frequencies and experimental measurements is discussed.

  15. An optical method for determining level in two-phase cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Oberle, Lawrence G.; Weikle, Donald H.

    1992-01-01

    A method was evaluated to measure the liquid-gas and the liquid-slush interfaces in two-phase cryogen systems using optical means. This method makes use of the attenuation of a directed light beam caused by the difference in the index of refraction between the solid particles and the surrounding liquid. Preliminary experimental results obtained in slush nitrogen are shown. The possibility of extending this technique to include a measure of solid fraction is also discussed.

  16. Numerical Simulation of Two-Phase Flow in Severely Damaged Core Geometries

    SciTech Connect

    Meekunnasombat, Phongsan; Fichot, Florian; Quintard, Michel

    2006-07-01

    In the event of a severe accident in a nuclear reactor, the oxidation, dissolution and collapse of fuel rods is likely to change dramatically the geometry of the core. A large part of the core would be damaged and would look like porous medium made of randomly distributed pellet fragments, broken claddings and relocated melts. Such a complex medium must be cooled in order to stop the accident progression. IRSN investigates the effectiveness of the water re-flooding mechanism in cooling this medium where complex two-phase flows are likely to exist. A macroscopic model for the prediction of the cooling sequence was developed for the ICARE/CATHARE code (IRSN mechanistic code for severe accidents). It still needs to be improved and assessed. It appears that a better understanding of the flow at the pore scale is necessary. As a result, a direct numerical simulation (DNS) code was developed to investigate the local features of a two-phase flow in complex geometries. In this paper, the Cahn-Hilliard model is used to simulate flows of two immiscible fluids in geometries representing a damaged core. These geometries are synthesized from experimental tomography images (PHEBUS-FP project) in order to study the effects of each degradation feature, such as displacement and fragmentation of the fuel rods and claddings, on the two-phase flow. For example, the presence of fragmented fuel claddings is likely to enhance the trapping of the residual phase (either steam or water) within the medium which leads to less flow fluctuations in the other phase. Such features are clearly shown by DNS calculations. From a series of calculations where the geometry of the porous medium is changed, conclusions are drawn for the impact of rods damage level on the characteristics of two-phase flow in the core. (authors)

  17. Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Rezkallah, Kamiel S.

    1996-01-01

    Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.

  18. Two-Phase Working Fluids for the Temperature Range 50 to 350 C

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Owzarski, P. C.

    1977-01-01

    The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.

  19. Interrelation of material microstructure, ultrasonic factors, and fracture toughness of two phase titanium alloy

    NASA Technical Reports Server (NTRS)

    Vary, A.; Hull, D. R.

    1982-01-01

    The pivotal role of an alpha-beta phase microstructure in governing fracture toughness in a titanium alloy, Ti-662, is demonstrated. The interrelation of microstructure and fracture toughness is demonstrated using ultrasonic measurement techniques originally developed for nondestructive evaluation and material property characterization. It is shown that the findings determined from ultrasonic measurements agree with conclusions based on metallurgical, metallographic, and fractographic observations concerning the importance of alpha-beta morphology in controlling fracture toughness in two phase titanium alloys.

  20. Instrumentation development for multi-dimensional two-phase flow modeling

    SciTech Connect

    Kirouac, G.J.; Trabold, T.A.; Vassallo, P.F.; Moore, W.E.; Kumar, R.

    1999-06-01

    A multi-faceted instrumentation approach is described which has played a significant role in obtaining fundamental data for two-phase flow model development. This experimental work supports the development of a three-dimensional, two-fluid, four field computational analysis capability. The goal of this development is to utilize mechanistic models and fundamental understanding rather than rely on empirical correlations to describe the interactions in two-phase flows. The four fields (two dispersed and two continuous) provide a means for predicting the flow topology and the local variables over the full range of flow regimes. The fidelity of the model development can be verified by comparisons of the three-dimensional predictions with local measurements of the flow variables. Both invasive and non-invasive instrumentation techniques and their strengths and limitations are discussed. A critical aspect of this instrumentation development has been the use of a low pressure/temperature modeling fluid (R-134a) in a vertical duct which permits full optical access to visualize the flow fields in all two-phase flow regimes. The modeling fluid accurately simulates boiling steam-water systems. Particular attention is focused on the use of a gamma densitometer to obtain line-averaged and cross-sectional averaged void fractions. Hot-film anemometer probes provide data on local void fraction, interfacial frequency, bubble and droplet size, as well as information on the behavior of the liquid-vapor interface in annular flows. A laser Doppler velocimeter is used to measure the velocity of liquid-vapor interfaces in bubbly, slug and annular flows. Flow visualization techniques are also used to obtain a qualitative understanding of the two-phase flow structure, and to obtain supporting quantitative data on bubble size. Examples of data obtained with these various measurement methods are shown.

  1. Heat transfer performance of two-phase closed thermosyphon with oxidized CNT/water nanofluids

    NASA Astrophysics Data System (ADS)

    Zeinali Heris, Saeed; Fallahi, Marjan; Shanbedi, Mehdi; Amiri, Ahmad

    2016-01-01

    In this paper, the effects of different acids on the thermal performance of oxidized carbon nanotubes (CNT)/water nanofluids in a two-phase closed thermosyphon were studied. The structures morphology and functionalization degree were studied concurrently. The results indicated that strong oxidants increased dispersivity of CNT in the nanofluids. In other words, as the number of COOH groups increased in the nanofluids, an upward trend was also observed in the thermal efficiency of the thermosyphon.

  2. Application of the principle of corresponding states to two phase choked flow

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1973-01-01

    It is pointed out that several fluids including methane, oxygen, and nitrogen appear to form an average parametric plot which indicates that the isenthalpic Joule-Thomson coefficient must nearly obey the principle of corresponding states. With this as a basis, it was assumed that there could be several thermodynamic flow processes which nearly obey the principle. An examination was made to determine whether two-phase choked flow could be one of them. The analysis is described and the results are given.

  3. Stable response of axisymmetric two-phase water-saturated soil.

    PubMed

    Cai, Yuan-qiang; Meng, Kai; Xu, Chang-jie

    2004-09-01

    Biot's dynamic consolidation equations and Hankel transform were used to derive the integral solutions of stress and displacement for axisymmetric harmonic excitations in the two-phase saturated soil with subjacent rock-stratum. The influence of the coefficient of permeability and loading frequency on the soil displacement at the ground surface were studied. The results showed that higher loading frequency led to more dynamic characteristics; and that the effect of the soil permeability was more obvious at higher frequencies.

  4. Interfacial Tension Effect on Cell Partition in Aqueous Two-Phase Systems.

    PubMed

    Atefi, Ehsan; Joshi, Ramila; Mann, Jay Adin; Tavana, Hossein

    2015-09-30

    Aqueous two-phase systems (ATPS) provide a mild environment for the partition and separation of cells. We report a combined experimental and theoretical study on the effect of interfacial tension of polymeric ATPS on the partitioning of cells between two phases and their interface. Two-phase systems are generated using polyethylene glycol and dextran of specific properties as phase-forming polymers and culture media as the solvent component. Ultralow interfacial tensions of the solutions are precisely measured using an axisymmetric drop shape analysis method. Partition experiments show that two-phase systems with an interfacial tension of 30 μJ/m(2) result in distribution of majority of cells to the bottom dextran phase. An increase in the interfacial tension results in a distribution of cells toward the interface. An independent cancer cell spheroid formation assay confirms these observations: a drop of the dextran phase containing cancer cells is dispensed into the immersion polyethylene glycol phase to form a cell-containing drop. Only at very small interfacial tensions do cells remain within the drop to aggregate into a spheroid. We perform a thermodynamic modeling of cell partition to determine variations of free energy associated with displacement of cells in ATPS with respect to the ultralow interfacial tensions. This modeling corroborates with the experimental results and demonstrates that at the smallest interfacial tension of 30 μJ/m(2), the free energy is a minimum with cells in the bottom phase. Increasing the interfacial tension shifts the minimum energy and partition of cells toward the interfacial region of the two aqueous phases. Examining differences in the partition behavior and minimum free energy modeling of A431.H9 cancer cells and mouse embryonic stem cells shows that the surface properties of cells further modulate partition in ATPS. This combined approach provides a fundamental understanding of interfacial tension role on cell partition in

  5. Interfacial Tension Effect on Cell Partition in Aqueous Two-Phase Systems.

    PubMed

    Atefi, Ehsan; Joshi, Ramila; Mann, Jay Adin; Tavana, Hossein

    2015-09-30

    Aqueous two-phase systems (ATPS) provide a mild environment for the partition and separation of cells. We report a combined experimental and theoretical study on the effect of interfacial tension of polymeric ATPS on the partitioning of cells between two phases and their interface. Two-phase systems are generated using polyethylene glycol and dextran of specific properties as phase-forming polymers and culture media as the solvent component. Ultralow interfacial tensions of the solutions are precisely measured using an axisymmetric drop shape analysis method. Partition experiments show that two-phase systems with an interfacial tension of 30 μJ/m(2) result in distribution of majority of cells to the bottom dextran phase. An increase in the interfacial tension results in a distribution of cells toward the interface. An independent cancer cell spheroid formation assay confirms these observations: a drop of the dextran phase containing cancer cells is dispensed into the immersion polyethylene glycol phase to form a cell-containing drop. Only at very small interfacial tensions do cells remain within the drop to aggregate into a spheroid. We perform a thermodynamic modeling of cell partition to determine variations of free energy associated with displacement of cells in ATPS with respect to the ultralow interfacial tensions. This modeling corroborates with the experimental results and demonstrates that at the smallest interfacial tension of 30 μJ/m(2), the free energy is a minimum with cells in the bottom phase. Increasing the interfacial tension shifts the minimum energy and partition of cells toward the interfacial region of the two aqueous phases. Examining differences in the partition behavior and minimum free energy modeling of A431.H9 cancer cells and mouse embryonic stem cells shows that the surface properties of cells further modulate partition in ATPS. This combined approach provides a fundamental understanding of interfacial tension role on cell partition in

  6. Experimental study on exciting force by two-phase cross flow

    SciTech Connect

    Nakamura, T.; Fujita, K.; Shiraki, K.; Kanazawa, H.; Sakata, K.

    1982-01-01

    Buffeting forces acting on tube arrays and induced by air-water two-phase cross flow, in the range of bubble flow and slug flow (or froth flow), are experimentally examined. Experimental results are treated by statistical modal analysis for use in design calculation. Based on these results, a hypothesis, especially applicable in the region of slug flow, is proposed to explain the experimental results. 9 refs.

  7. The growth of vapor bubble and relaxation between two-phase bubble flow

    NASA Astrophysics Data System (ADS)

    Mohammadein, S. A.; Subba Reddy Gorla, Rama

    2002-10-01

    This paper presents the behavior of the bubble growth and relaxation between vapor and superheated liquid. The growth and thermal relaxation time between the two-phases are obtained for different levels of superheating. The heat transfer problem is solved numerically by using the extended Scriven model. Results are compared with those of Scriven theory and MOBY DICK experiment with reasonably good agreement for lower values of superheating.

  8. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    SciTech Connect

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  9. Two-phase flow and heat transfer in porous beds under variable body forces, part 7

    NASA Technical Reports Server (NTRS)

    Henry, H. R.

    1970-01-01

    The design of an experiment to determine the behavior of two-phase vapor-liquid and gas-liquid flow through porous beds in low gravity environments is discussed. The selection of porous materials, liquids, and gases is described. The parameters necessary for the design and development of a flight experimental system are examined. The general specifications for system elements requiring additional development are identified.

  10. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    SciTech Connect

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia`s Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93.

  11. A Heat Transfer Investigation of Liquid and Two-Phase Methane

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan

    2010-01-01

    A heat transfer investigation was conducted for liquid and two-phase methane. The tests were conducted at the NASA Glenn Research Center Heated Tube Facility (HTF) using resistively heated tube sections to simulate conditions encountered in regeneratively cooled rocket engines. This testing is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. Nontoxic propellants, such as liquid oxygen/liquid methane (LO2/LCH4), offer potential benefits in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications. Regeneratively cooled thrust chambers are one solution for high performance, robust LO2/LCH4 engines, but cooling data on methane is limited. Several test runs were conducted using three different diameter Inconel 600 tubes, with nominal inner diameters of 0.0225-, 0.054-, and 0.075-in. The mass flow rate was varied from 0.005 to 0.07 lbm/sec. As the current focus of the PCAD project is on pressure fed engines for LO2/LCH4, the average test section outlet pressures were targeted to be 200 psia or 500 psia. The heat flux was incrementally increased for each test condition while the test section wall temperatures were monitored. A maximum average heat flux of 6.2 Btu/in.2 sec was achieved and, at times, the temperatures of the test sections reached in excess of 1800 R. The primary objective of the tests was to produce heat transfer correlations for methane in the liquid and two-phase regime. For two-phase flow testing, the critical heat flux values were determined where the fluid transitions from nucleate boiling to film boiling. A secondary goal of the testing was to measure system pressure drops in the two-phase regime.

  12. An experimental investigation of two-phase crossflow over rigidly and flexibly mounted tubes

    SciTech Connect

    Gerhart, S.M.

    1991-12-31

    Two-phase crossflow over heat exchanger tubes induces vibrations which contribute greatly to the wear on the tubes. Of the three mechanisms leading to two-phase flow-induced vibrations which have been identified, fluid-elastic instability has been recognized as that which leads to the vibrations with the largest amplitude. The mass damping parameter is used to predict the onset of fluid-elastic instability, and the mean drag coefficient is used to calculate the mass damping parameter. In this thesis, the drag coefficient measured over single tubes and tubes within array, in single-phase and two-phase flow at various Reynolds numbers, is discussed. The drag coefficient was measured by two methods. For flexibly mounted tubes, strain gages were mounted on cantilever beams which held the tube in place and allowed it to vibrate in the direction parallel to the flow only. For both rigidly and flexibly mounted tubes, pressure distributions were measured around the perimeter of the tube. Forces, and then the drag coefficient, could be calculated from this information. The drag coefficient was not found to depend upon the flexibility of the tube mounting. As the void fraction of the flow increases, the drag coefficient over the tube increases. This effect was found to be quite large at low Reynolds numbers, and weaker at higher Reynolds numbers, and a different effect was found at very high Reynolds numbers.

  13. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    SciTech Connect

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-09

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  14. A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model

    SciTech Connect

    Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh

    2011-10-01

    We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.

  15. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    PubMed

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration.

  16. A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows

    SciTech Connect

    Ray A. Berry; Richard Saurel; Fabien Petitpas

    2009-05-01

    In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.

  17. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.

    PubMed

    Zhang, Bo; Cai, Wei-min; He, Pin-jing

    2007-01-01

    To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.

  18. Central Upwind Scheme for a Compressible Two-Phase Flow Model

    PubMed Central

    Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul

    2015-01-01

    In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242

  19. Gravitational instability in two-phase disks and the origin of the moon

    NASA Technical Reports Server (NTRS)

    Thompson, Christopher; Stevenson, David J.

    1988-01-01

    Two-phase disks may be gravitationally unstable at temperatures or surface densities at which a disk composed of either single phase would be highly stable. It is argued that two-phase disks can achieve a marginally unstable state (in addition to a highly unstable state that leads to fragmentation), limited by the ability of the photosphere to radiate the energy dissipated in the disk. A self-consistent prescription for the viscosity induced by the slow instabilities is provided. Two-phase disks are more centrally condensed than single-phase disks, and their secular cooling time may be comparable to their spreading time. A circumterrestrial disk of sufficient mass to form the moon provides a detailed example of all the preceding points. Its stability, structure, and dynamical evolution are investigated, and it is concluded that its spreading time is short (about 100 yr); the moon is formed molten, or partially molten; the moon's initial orbit lies in the earth's equatorial plane; and only a small fraction of the disk mass is lost in a wind, although this may represent a substantial fraction of volatiles. Most of these conclusions are independent of how the disk was formed, e.g., from a giant impact.

  20. Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs

    SciTech Connect

    Lai, C.H.; Bodvarsson, G.S.; Truesdell, A.H. . Earth Sciences Div.)

    1994-02-01

    Phase distribution as well as mass flow and heat transfer behavior in two-phase geothermal systems have been studied by numerical modeling. A two-dimensional porous-slab model was used with a non-uniform heat flux boundary conditions at the bottom. Steady-state solutions are obtained for the phase distribution and heat transfer behavior for cases with different mass of fluid (gas saturation) in place, permeabilities, and capillary pressures. The results obtained show very efficient heat transfer in the vapor-dominated zone due to the development of heat pipes and near-uniform saturations. The phase distribution below the vapor-dominated zone depends on permeability. For relatively high-permeability systems, single-phase liquid zones prevail, with convection providing the energy throughput. For lower permeability systems, a two-phase liquid-dominated zone develops, because single-phase liquid convection is not sufficient to dissipate heat released from the source. These results are consistent with observations from the field, where most high-temperature liquid-dominated two-phase systems have relatively low permeabilities e.g. Krafla, Iceland; Kenya; Baca, New Mexico. The numerical results obtained also show that for high heat flow a high-temperature single-phase vapor zone can develop below a typical (240 C) vapor-dominated zone, as has recently been found at the Geysers, California, and Larderello, Italy.

  1. Simulation experiments on two-phase natural circulation in a freon-113 flow visualization loop

    SciTech Connect

    Lee, Sang Yong; Ishii, Mamoru

    1988-01-01

    In order to study the two-phase natural circulaton and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed using a Freon-113 flow visualization loop. The main focus of the present experiment was placed on the two-phase flow behavior in the hot-leg U-bend typical of B and W LWR systems. The loop was built based on the two-phase flow scaling criteria developed under this program to find out the effect of fluid properties, phase changes and coupling between hydrodynamic and heat transfer phenomena. Significantly different flow behaviors have been observed due to the non-equilibrium phase change phenomena such as the flashing and condensation on the Freon loop in comparison with the previous adiabatic experiment. The phenomena created much more unstable hydrodynamic conditions which lead to cyclic or oscillatory flow behaviors. Also, the void distribution and primary loop flow rate were measured in detail in addition to the important key paramaters, such as the power input, loop friction and the liquid level inside the simulated steam generator.

  2. Pore-scale investigation of two-phase flow using micro particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Heshmati, M.; Piri, M.; Stegmeir, M.

    2015-12-01

    Utilizing a two phase, two fields of view (FOV) Micro Particle Image Velocimetry (uPIV) system, simultaneous flow of oil and water in PDMS and glass porous systems are studied. We use glass and PDMS micromodels that are water- and oil-wet, respectively. They allow the study the effect of wettability on the flow. The velocity field of each phase is resolved in real-time and space using two high speed 4 MP cameras and a high repetition dual-head laser for small FOV and two 29 MP cameras and a low repetition dual-head powerful laser for the large FOV. Small FOV part of the system is used to investigate details of the flow at the pore scale and the interactions between the fluids and the medium. The large FOV is used to resolve the velocity over the entire micromodel. High-resolution micro-CT images of Bentheimer sandstone are used to construct two-dimensional. Single- and two-phase flow experiments are performed in these models. In the two-phase flow tests, imbibition and drainage experiments are carried out to obtain capillary pressure-saturation curves for different flow combinations. The velocity fields are resolved during each imbibition and drainage test and the effect of saturation of each phase on the velocity field is shown.

  3. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  4. Aqueous Two-Phase Systems formed by Biocompatible and Biodegradable Polysaccharides and Acetonitrile

    PubMed Central

    de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M.; Freire, Mara G.; Soares, Cleide Mara Faria; Lima, Álvaro Silva

    2015-01-01

    In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol−1) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant – vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase. PMID:25729320

  5. The effect of spontaneous curvature on a two-phase vesicle

    PubMed Central

    Cox, Geoffrey; Lowengrub, John

    2015-01-01

    Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature’s propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. PMID:26097287

  6. A theory of electrophoresis of emulsion drops in aqueous two-phase polymer systems

    NASA Technical Reports Server (NTRS)

    Levine, S.

    1982-01-01

    An electrophoresis study has been carried out in an emulsion formed from an electrically neutral aqueous mixture of dextran and polyethylene glycol equilibrated at sufficient concentrations in the presence of electrolytes. Electrophoresis of a drop of one phase suspended in the other is observed, and the direction of the drop's motion is reversed when the disperse phase and the continuous phase are interchanged. In the presence of sulfate, phosphate, or citrate ions, an electrostatic potential difference of the order of a few mV exists between the two phases. The potential implied by the direction of the electrophoretic motion is opposite to the Donnan potential observed between the two phases. The mobility of an emulsion drop increases with the drop radius and depends on ion concentration. These results are explained in terms of a model postulating an electric dipole layer associated with a mixture of oriented polymer molecules at the surface of a drop, with a potential difference between the interiors of the two phases resulting from the unequal ion distribution.

  7. Two-phase distribution in the vertical flow line of a domestic wet central heating system

    NASA Astrophysics Data System (ADS)

    Fsadni, A.-M.; Ge, Y. T.

    2013-04-01

    The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.

  8. Analysis of Convective Heat Transfer Enhancement by Nanofluids: Single-Phase and Two-Phase Treatments

    NASA Astrophysics Data System (ADS)

    Kakaç, S.; Pramuanjaroenkij, A.

    2016-05-01

    Nanofluids have been investigated regarding their advantages and potentialities for the purpose of increasing convective heat transfer rates inside thermal systems where they are used as working fluids. Researchers in thermophysics have investigated these fluids experimentally and numerically. This review provides extensive theoretical information concerning nanofluids in the single-phase and two-phase treatments. Important published works on nanofluid properties and correlations are summarized and reviewed in detail. Heat transfer enhancement by nanofluids is a challenging problem due to the difficulties inherent in the model of the physical mechanism of interaction between the paricles. Here the interaction between the phases is modeled by several two-phase models, and the results are given in graphical and tabular forms. Despite the advantages of the mixture model, such as imlementation of physical properties and less computational power requirements, some studies showed that the results of the single-phase and two-phase models are very similar. The main difference consists in the effect of the drift velocities of the phases relative to each other.

  9. Optical readout of a two phase liquid argon TPC using CCD camera and THGEMs

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Ball, F.; Carroll, J.; Lazos, M.; McCormick, K. J.; Smith, N. A.; Touramanis, C.; Walker, J.

    2014-02-01

    This paper presents a preliminary study into the use of CCDs to image secondary scintillation light generated by THick Gas Electron Multipliers (THGEMs) in a two phase LAr TPC. A Sony ICX285AL CCD chip was mounted above a double THGEM in the gas phase of a 40 litre two-phase LAr TPC with the majority of the camera electronics positioned externally via a feedthrough. An Am-241 source was mounted on a rotatable motion feedthrough allowing the positioning of the alpha source either inside or outside of the field cage. Developed for and incorporated into the TPC design was a novel high voltage feedthrough featuring LAr insulation. Furthermore, a range of webcams were tested for operation in cryogenics as an internal detector monitoring tool. Of the range of webcams tested the Microsoft HD-3000 (model no:1456) webcam was found to be superior in terms of noise and lowest operating temperature. In ambient temperature and atmospheric pressure 1 ppm pure argon gas, the THGEM gain was ≈ 1000 and using a 1 msec exposure the CCD captured single alpha tracks. Successful operation of the CCD camera in two-phase cryogenic mode was also achieved. Using a 10 sec exposure a photograph of secondary scintillation light induced by the Am-241 source in LAr has been captured for the first time.

  10. Two-phase flow in geothermal energy sources. Final technical report

    SciTech Connect

    Not Available

    1981-07-01

    A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.

  11. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking

    NASA Astrophysics Data System (ADS)

    Mahesh, S.; Alur, K. C.; Mathew, M. D.

    2011-01-01

    A model of damage evolution in austenitic stainless steels under creep loading at elevated temperatures is proposed. The initial microstructure is idealized as a space-tiling aggregate of identical rhombic dodecahedral grains, which undergo power-law creep deformation. Damage evolution in the form of cavitation and wedge cracking on grain-boundary facets is considered. Both diffusion- and deformation-driven grain-boundary cavity growth are treated. Cavity and wedge-crack length evolution are derived from an energy balance argument that combines and extends the models of Cottrell (1961 Trans. AIME 212 191-203), Williams (1967 Phil. Mag. 15 1289-91) and Evans (1971 Phil Mag. 23 1101-12). The time to rupture predicted by the model is in good agreement with published experimental data for a type 316 austenitic stainless steel under uniaxial creep loading. Deformation and damage evolution at the microscale predicted by the present model are also discussed.

  12. P450cam biocatalysis in surfactant-stabilized two-phase emulsions.

    PubMed

    Ryan, Jessica D; Clark, Douglas S

    2008-04-15

    Cytochrome P450 monooxygenases (P450s) are powerful biocatalysts that have the ability to oxidize a broad range of substrates, often at non-reactive carbon centers. However, incorporation of P450s into synthetic schemes has so far been limited to a few whole-cell transformations. P450 substrates are often hydrophobic and have low water solubility, limiting the amount of product that can be produced. To help overcome this limitation, we have examined P450cam activity in two-phase hexane/water emulsions with and without the anionic surfactant, bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT). Hydroxylation of camphor to hydroxycamphor by the three- component P450cam system was chosen as the model reaction, and regeneration of NADH was accomplished with yeast alcohol dehydrogenase (YADH). P450cam was activated in the surfactant-free emulsions, and addition of AOT improved the activity even further, at least over the range of camphor concentrations for which initial rates were readily measurable in all media. The largest observed rate enhancement was 4.5-fold. Nearly 50-times more product was formed in the surfactant-stabilized emulsions than was achieved in aqueous buffer, with total turnover numbers reaching 28,900 for P450cam and 11,800 for YADH. In the absence of surfactant, the two-phase reaction appeared to be mass-transfer limited, while inclusion of AOT alleviated transport limitations and/or afforded a larger interfacial area for P450 activation. The oxidation of hydroxycamphor to 2,5-diketocamphane was also observed, owing to the large concentration of hydroxycamphor relative to camphor in the aqueous phase of the two-phase emulsion. This competing reaction was accompanied by the uncoupled oxidation of NADH (i.e., NADH oxidation without formation of 2,5-diketocamphane), which reduced the availability of NADH for camphor oxidation and further limited the yield of hydroxycamphor in the two-phase emulsions. These results indicate that a surfactant

  13. Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the

  14. An experimental study of single-phase and two-phase flows in microchannels

    NASA Astrophysics Data System (ADS)

    Chung, Peter Mang-Yu

    Recent literature on pressure drop and flow rate measurements in microchannels indicate that both the liquid and gas flow may deviate significantly from convention. Thus, an evaluation was made of the friction factor constant for laminar flow and critical Reynolds number for the laminar-to-turbulent flow transition. Experiments were performed to study the single-phase flow behaviour of water or nitrogen gas through a 100 mum circular microchannel. The liquid flow data were well predicted by the conventional friction factor equations for larger channels, and the critical Reynolds number was close to tradition. For single-phase gas flow, the measured friction factor agreed with theory if the effect of compressibility was considered. Rarefaction did not contribute to the experimental results. The effect of scaling on two-phase flow was investigated to identify micro-scale phenomena. Experiments were conducted with a mixture of nitrogen gas and water in circular channels of 530--50 mum diameter. The two-phase flow was characterized by the flow patterns, void fraction, and frictional pressure drop. In the 530 and 250 mum channels, the flow characteristics were typical of those obtained in minichannels. In the 100 and 50 mum channels, the flow behaviour was unconventional---the occurrence of slug flow dominated, the void fraction-volumetric quality relationship departed from tradition, and mass flux no longer influenced the two-phase frictional multiplier. Unique to these channels, the slug flow exhibited a ring-shaped liquid film or serpentine-like gas core. The sizing effect indicates that the critical diameter for a microchannel lies between 250 and 100 mum. A new model is proposed to expose physical insight into the observed flow patterns. To investigate the effect of channel geometry on two-phase microchannel flow, the same experiment was conducted in a 96 mum square microchannel and the data were compared with those obtained in the 100 mum circular microchannel

  15. A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: application to polyethylene materials with a variable range of crystal fractions.

    PubMed

    Abdul-Hameed, H; Messager, T; Ayoub, G; Zaïri, F; Naït-Abdelaziz, M; Qu, Z; Zaïri, F

    2014-09-01

    Polyethylene-based polymers as biomedical materials can contribute to a wide range of biomechanical applications. Therefore, it is important to identify, analyse, and predict with precision their mechanical behaviour. Polyethylene materials are semi-crystalline systems consisting of both amorphous and crystalline phases interacting in a rather complex manner. When the amorphous phase is in the rubbery state, the mechanical behaviour is strongly dependent on the crystal fraction, therefore leading to essentially thermoplastic or elastomeric responses. In this study, the finite deformation stress-strain response of polyethylene materials is modelled by considering these semi-crystalline polymers as two-phase heterogeneous media in order to provide insight into the role of crystalline and amorphous phases on the macro-behaviour and on the material deformation resistances, i.e. intermolecular and network resistances. A hyperelastic-viscoplastic model is developed in contemplation of representing the overall mechanical response of polyethylene materials under large deformation. An evolutionary optimization procedure based on a genetic algorithm is developed to identify the model parameters at different strain rates. The identification results show good agreement with experimental data, demonstrating the usefulness of the proposed approach: the constitutive model, with only one set of identified parameters, allows reproducing the stress-strain behaviour of polyethylene materials exhibiting a wide range of crystallinities, the crystal content becoming the only variable of the model.

  16. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  17. Characterizing dynamic hysteresis and fractal statistics of chaotic two-phase flow and application to fuel cells

    NASA Astrophysics Data System (ADS)

    Burkholder, Michael B.; Litster, Shawn

    2016-05-01

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.

  18. Large-scale gas dynamics in the adhesion model: implications for the two-phase massive galaxy formation scenario

    NASA Astrophysics Data System (ADS)

    Domínguez-Tenreiro, R.; Oñorbe, J.; Martínez-Serrano, F.; Serna, A.

    2011-06-01

    We have studied the mass assembly and star formation histories of massive galaxies identified at low redshift in different cosmological hydrodynamical simulations. To this end, we have carried out a detailed follow-up backwards in time of their constituent mass elements (sampled by particles) of different types. After that, the configurations they depict at progressively higher zs were carefully analysed. The analyses show that these histories share common generic patterns, irrespective of particular circumstances. In any case, however, the results we have found are different depending on the particle type. The most outstanding differences follow. We have found that by z˜ 3.5-6, mass elements identified as stellar particles at z= 0 exhibit a gaseous cosmic-web-like morphology with scales of ˜1 physical Mpc, where the densest mass elements have already turned into stars by z˜ 6. These settings are in fact the densest pieces of the cosmic web, where no hot particles show up, and dynamically organized as a hierarchy of flow convergence regions (FCRs), that is, attraction basins for mass flows. At high z FCRs undergo fast contractive deformations with very low angular momentum, shrinking them violently. Indeed, by z˜ 1 most of the gaseous or stellar mass they contain shows up as bound to a massive elliptical-like object at their centres, with typical half-mass radii of rmassstar˜ 2-3 kpc. After this, a second phase comes about where the mass assembly rate is much slower and characterized by mergers involving angular momentum. On the other hand, mass elements identified at the diffuse hot coronae surrounding massive galaxies at z= 0 do not display a clear web-like morphology at any z. Diffuse gas is heated when FCRs go through contractive deformations. Most of this gas remains hot and with low density throughout the evolution. To shed light on the physical foundations of the behaviour revealed by our analyses (i.e. a two-phase formation process with different

  19. Twinning and martensite in a 304 austenitic stainless steel

    SciTech Connect

    Shen, Yongfeng; Li, Xi; Sun, Xin; Wang, Y. D.; Zuo, Liang

    2012-08-30

    The microstructure characteristics and deformation behavior of 304L stainless steel during tensile deformation at two different strain rates have been investigated by means of interrupted tensile tests, electron-backscatter-diffraction (EBSD) and transmission electron microscopy (TEM) techniques. The volume fractions of transformed martensite and deformation twins at different stages of the deformation process were measured using X-ray diffraction method and TEM observations. It is found that the volume fraction of martensite monotonically increases with increasing strain but decreases with increasing strain rate. On the other hand, the volume fraction of twins increases with increasing strain for strain level less than 57%. Beyond that, the volume fraction of twins decreases with increasing strain. Careful TEM observations show that stacking faults (SFs) and twins preferentially occur before the nucleation of martensite. Meanwhile, both {var_epsilon}-martensite and {alpha}{prime}-martensite are observed in the deformation microstructures, indicating the co-existence of stress induced- transformation and strain-induced-transformation. We also discussed the effects of twinning and martensite transformation on work-hardening as well as the relationship between stacking faults, twinning and martensite transformation.

  20. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    , these systems exhibited a high bulk modulus, compared to the elastic modulus. These results are an indication and concur with the high compression strength of cement paste seen at engineering length scale. In addition, the bulk modulus of two-phase systems consisting of hydrated CSH and unhydrated C3S or C2S was found to increase with higher levels of unhydrated components. The interaction energies of two-phase cement paste molecular structures studied in the present work were calculated, showing that a higher interaction is attained when the two phases are admixed as small components instead of cluster of phases. Finally, the mechanical behavior under shear deformation was predicted by using a quasi-static deformation method and analyzed for a representative two-phase (CSH and C2S) macromolecular structure of cement paste.

  1. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    SciTech Connect

    Shin, Jong Ho

    2007-01-01

    During the directional solidification of peritectic alloys, a rich variety of two-phase microstructures develop, and the selection process of a specific microstructure is complicated due to the following two considerations. (1) In contrast to many single phase and eutectic microstructures that grow under steady state conditions, two-phase microstructures in a peritectic system often evolve under non-steady-state conditions that can lead to oscillatory microstructures, and (2) the microstructure is often governed by both the nucleation and the competitive growth of the two phases in which repeated nucleation can occur due to the change in the local conditions during growth. In this research, experimental studies in the Sn-Cd system were designed to isolate the effects of nucleation and competitive growth on the dynamics of complex microstructure formation. Experiments were carried out in capillary samples to obtain diffusive growth conditions so that the results can be analyzed quantitatively. At high thermal gradient and low velocity, oscillatory microstructures were observed in which repeated nucleation of the two phases was observed at the wall-solid-liquid junction. Quantitative measurements of nucleation undercooling were obtained for both the primary and the peritectic phase nucleation, and three different ampoule materials were used to examine the effect of different contact angles at the wall on nucleation undercooling. Nucleation undercooling for each phase was found to be very small, and the experimental undercooling values were orders of magnitude smaller than that predicted by the classical theory of nucleation. A new nucleation mechanism is proposed in which the clusters of atoms at the wall ahead of the interface can become a critical nucleus when the cluster encounters the triple junction. Once the nucleation of a new phase occurs, the microstructure is found to be controlled by the relative growth of the two phases that give rise to different

  2. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  3. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  4. Advanced numerical methods for three dimensional two-phase flow calculations

    SciTech Connect

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  5. One Component Two Phase Flow in Horizontal and Vertical Ducts: Some Basic Considerations

    SciTech Connect

    Maeder, Paul F.; Dickinson, David A.; Nikitopoulos, Dimitris E.

    1983-12-15

    For a description and analysis of the flow they consider the conservation equations of the two phases separately, but in thermal and mechanical equilibrium, coupled by the itnerface shear forces (two fluid model, drift flux model). Coupling may be weak or strong, depending on Froude and Mach numbers of the flow. The fluid is highly compressible, not because the individual phases move at such speeds that their individual density changes are significant but because evapiration (phase change) results in large density changes of the system at moderate pressure or temperature changes once flashing occurs. The slip between the phases is caused by unequal wall shear stress, acceleration of the fluid or gravitational forces and is hindered by the interface interaction. if they denote by {gamma} the ratio of the liquid density to the vapor density and by {sigma} the ratio of the vapor speed to the liquid speed they find that in horizontal flows {sigma} = {gamma}{sup 1/2} yields the maximum slip (neglecting acceleration effects) that can be reached with no interface force acting (assuming equal friction coefficients for both phases at the wall). If one investigates the conditions of thermodynamic flow similarity between different substances in two phase flow, one finds that the latent heat of vaporization is the principal controlling parameter. Thus, a 5 cm diameter test section in two phase R-114, at room temperature, corresponds to a 30 cm diameter duct in water-steam at boiling conditions at high temperatures such as encountered in geothermal and other power production systems.

  6. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  7. Exact Jacobians in an implicit Newton method for two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Büsing, H.; Clauser, C.

    2012-04-01

    Geological storage of CO2 is one option for mitigating the effects of CO2 emissions on global warming. Since extensive on-site monitoring of the CO2 plume propagation is expensive, numerical simulations are an attractive alternative for gaining deeper insight in the dynamics of this system. We consider a model for two-phase flow in porous media for representing the injection stage of a CO2 sequestration scenario, when the plume propagation is dominated by advection. The porous medium filled by the two phases CO2 and brine is modelled as an initial-boundary-value problem consisting of two nonlinear, coupled partial differential equations, which are complemented by appropriate boundary and initial conditions. We present a new numerical approach to solve this fully coupled system using exact Jacobians. The method is based on the finite element, finite volume, box method [Huber & Helmig(2000)] for the space discretization and, since stability of the method is one of the main concerns, the fully implicit Euler method for the time discretization. A simple first order upwind method takes into account advective contributions. The resulting system of nonlinear algebraic equations is linearized by Newton's method. The required Jacobians can be obtained elegantly by automatic differentiation (AD) [Griewank & Walther(2008), Rall(1981)], a source code transformation giving exact derivatives of the discretized equations with respect to primary variables. The resulting system of linear equations is then solved by an iterative method (BiCGStab) with ILU0 preconditioning in every Newton step. We compare the forward AD differentiation mode to the standard finite difference method in terms of precision and performance. It turns out that AD performs favourable in both aspects. We also illustrate the advantages of exact Jacobians for two-phase flow in a sequestration scenario investigating the evolution of pressure and saturation.

  8. Research on soybean protein wastewater treatment by the integrated two-phase anaerobic reactor

    PubMed Central

    Yu, Yaqin

    2015-01-01

    The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II. PMID:26288554

  9. Design and construction of an experiment for two-phase flow in fractured porous media

    SciTech Connect

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  10. A two-phase analysis of solute partitioning into the stratum corneum.

    PubMed

    Nitsche, Johannes M; Wang, Tsuo-Feng; Kasting, Gerald B

    2006-03-01

    An analysis is presented of partition coefficients K(SC/w) describing solute distribution into fully hydrated stratum corneum (SC) from dilute aqueous solution (w). A comprehensive database is compiled from the experimental literature covering more than eight decades in the octanol/water partition coefficient K(o/w). It is analyzed according to a two-phase model following that of Anderson, Raykar, and coworkers (1988, 1989), which accounts for uptake by intercellular lipid and corneocyte (keratin plus water) phases having inherently different lipophilicities, as characterized by an SC lipid/water partition coefficient K(lip/w) and a partition coefficient PC(pro/w) quantifying cornoeocyte-phase binding. Regression of 72 data points yields useful best-fit recalibrations of power laws (or linear free energy relationships) giving K(lip/w) and PC(pro/w) as functions of K(o/w). The specific conclusions of the analysis are as follows: (i) The two-phase model offers substantial improvements over previously proposed analytical representations of K(SC/w), yielding an rms error in log(10)K(SC/w) of 0.30 limited by the scatter in the data. (ii) The best-fit description of the lipid phase is given by the power law K(lip/w) = 0.43 (K(o/w))(0.81), suggesting about half the absolute value of K(lip/w) relative to previous estimates. (iii) The best-fit description of corneocyte-phase binding differs negligibly from the correlation found by Anderson, Raykar, and coworkers for the more limited set of compounds studied by them. Explicit consideration of the two-phase nature of the SC also furnishes a rational basis for predicting the effects of varying hydration state upon K(SC/w).

  11. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  12. NMR studies of granular media and two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyu

    This dissertation describes two experimental studies of a vibrofluidized granular medium and a preliminary study of two-phase fluid flow in a porous medium using Nuclear Magnetic Resonance (NMR). The first study of granular medium is to test a scaling law of the rise in center of mass in a three-dimensional vibrofluidized granular system. Our granular system consisted of mustard seeds vibrated vertically at 40 Hz from 0g to 14g. We used Magnetic Resonance Imaging (MRI) to measure density profile in vibrated direction. We observed that the rise in center of mass scaled as nu 0alpha/Nlbeta with alpha = 1.0 +/- 0.2 and beta = 0.5 +/- 0.1, where nu 0 is the vibration velocity and Nl is the number of layers of grains in the container. A simple theory was proposed to explain the scaling exponents. In the second study we measured both density and velocity information in the same setup of the first study. Pulsed Field Gradient (PFG)-NMR combined with MRI was used to do this measurement. The granular system was fully fluidized at 14.85g 50 Hz with Nl ≤ 4. The velocity distributions at horizontal and vertical direction at different height were measured. The distributions were nearly-Gaussian far from sample bottom and non-Gaussian near sample bottom. Granular temperature profiles were calculated from the velocity distributions. The density and temperature profile were fit to a hydrodynamic theory. The theory agreed with experiments very well. A temperature inversion near top was also observed and explained by additional transport coefficient from granular hydrodynamics. The third study was the preliminary density measurement of invading phase profile in a two-phase flow in porous media. The purpose of this study was to test an invasion percolation with gradient (IPG) theory in two-phase flow of porous media. Two phases are dodecane and water doped with CuSO4. The porous medium was packed glass beads. The front tail width sigma and front width of invading phase were

  13. Method and turbine for extracting kinetic energy from a stream of two-phase fluid

    NASA Technical Reports Server (NTRS)

    Elliott, D. G. (Inventor)

    1979-01-01

    An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.

  14. High-yield isolation of extracellular vesicles using aqueous two-phase system.

    PubMed

    Shin, Hyunwoo; Han, Chungmin; Labuz, Joseph M; Kim, Jiyoon; Kim, Jongmin; Cho, Siwoo; Gho, Yong Song; Takayama, Shuichi; Park, Jaesung

    2015-01-01

    Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (~70%) in a short time (~15 min). Consequently, it can significantly increase the diagnostic applicability of EVs. PMID:26271727

  15. Working fluid selection for space-based two-phase heat transport systems

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1988-01-01

    The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.

  16. Measurements of viscosity and permeability of two phase miscible fluid flow in rock cores.

    PubMed

    Williams, J L; Taylor, D G

    1994-01-01

    This paper describes the application of 1H magnetic resonance imaging (MRI) to the measurement of fluid viscosity and rock core plug permeability during two phase miscible displacements in certain rock types. The core plug permeability was determined by monitoring glycerol solutions displacing D2O. Simple physical principles were used to calculate the core permeability from the measured displacement angle for a set of Lochaline sandstone core plugs. In a further experiment the viscosity of polyacrylamide solution 1500 ppm was determined in the core plug. The permeability and viscosity results compared well to conventional core analysis methods.

  17. Two-Phase Flow Research on the ISS for Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.

    2013-01-01

    With the era of full utilization of the ISS now upon us, this presentation will discuss some of the highest-priority areas for two-phase flow systems with thermal control applications. These priorities are guided by recommendations of a 2011 NRC Decadal Survey report, Recapturing a Future for Space Exploration, Life and Physical Sciences for a New Era as well as an internal NASA exercise in response to the NRC report conducted in early 2012. Many of these proposals are already in various stages of development, while others are still conceptual.

  18. Two phase sampling for wheat acreage estimation. [large area crop inventory experiment

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Hay, C. M.

    1977-01-01

    A two phase LANDSAT-based sample allocation and wheat proportion estimation method was developed. This technique employs manual, LANDSAT full frame-based wheat or cultivated land proportion estimates from a large number of segments comprising a first sample phase to optimally allocate a smaller phase two sample of computer or manually processed segments. Application to the Kansas Southwest CRD for 1974 produced a wheat acreage estimate for that CRD within 2.42 percent of the USDA SRS-based estimate using a lower CRD inventory budget than for a simulated reference LACIE system. Factor of 2 or greater cost or precision improvements relative to the reference system were obtained.

  19. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  20. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.

    2014-12-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  1. Two phase flow and heat transfer in porous beds under variable body forces, part 2

    NASA Technical Reports Server (NTRS)

    Evers, J. L.; Henry, H. R.

    1969-01-01

    Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.

  2. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf. PMID:26521001

  3. Prediction of gas-liquid two-phase flow regime in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho; Platt, Jonathan A.

    1993-01-01

    An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.

  4. Dynamics of two-phase transport properties in reacting porous media

    NASA Astrophysics Data System (ADS)

    Raoof, A.; Van Genuchten, M.

    2015-12-01

    Progress of (multi-component) chemical reactions in porous media may cause pore-space alteration and change in hydraulic properties such as porosity and permeability (Figure 1). Pore size evolution affects two-phase flow properties such as capillary pressure-saturation relation (Figure 2). Moreover, in the case of solute transport, presence of the two phases affects solute mixing and dispersion (Figure 3) within each phase. This study presents a comprehensive reactive pore-scale model to simulate changes in the above-mentioned flow and transport hydraulic proprieties, under two-phase flow, due to the dissolution/precipitation in the presence of multi-component chemical reactions. The pore space is represented using a large number of interconnected pore elements of different sizes. Flow and transport of chemical components are simulated within each pore element by taking into account advective and diffusive transport processes, as well as both equilibrium and kinetic type chemical reactions. We will show how regime of flow and reaction (characterized using Péclet number and Damköhler number) results in different responses such as uniform dissolution, shaper front dissolution as well as formation of channels or wormholes. Each of these reaction regimes affects pore-size distribution differently controlling two-phase hydraulic proprieties. Figure descriptions:Figure 1: Porosity-hydraulic conductivity relation, due to dissolution, for different flow rates (Péclet Number). Maximum conductivity is obtained under regime of high Péclet Number due to uniform dissolution throughout the sample. Conductivity values are normalized using the initial conductivity. Figure 2: Water content-capillary (i.e., saturation*porosity) capillary pressure relation for a sample at three different stages of dissolution. Dissolution causes increase in porosity (i.e., initial water content) and lowers the capillary entry-pressure due to the increase of pore sizes. Figure 3: Relation between

  5. Numerical modeling of two-phase behavior in the PEFC gas diffusion layer

    SciTech Connect

    Mukherjee, Partha Pa223876; Kang, Qinjun; Mukundan, Rangachary; Borup, Rod L

    2009-01-01

    A critical performance limitation in the polymer electrolye fuel cell (PEFC) is attributed to the mass transport loss originating from suboptimal liquid water transport and flooding phenomena. Liquid water can block the porous pathways in the fibrous gas diffusion layer (GDL) and the catalyst layer (CL), thus hindering oxygen transport from the flow field to the electrochemically actives sites in the catalyst layer. In this paper, the study of the two phase behavior and the durability implications due to the wetting characteristics in the carbon paper GDL are presented using a pore-scale modeling framework.

  6. Investigation of the overall transient performance of the industrial two-phase closed loop thermosyphon

    NASA Astrophysics Data System (ADS)

    Vincent, Charles C. J.; Kok, Jim B. W.

    1992-06-01

    The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial shear forces are neglected as only co-current flows are present. Heat transfer coefficients are based on empirical correlations. It is found that the density ratio vapor-liquid, dimensionless friction coefficient, and water column length determine respectively the overall dynamic behavior characteristics such as response time, damping, and oscillation frequency.

  7. Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling

    NASA Astrophysics Data System (ADS)

    Bieliński, Henryk; Mikielewicz, Jarosław

    2016-03-01

    This paper focuses on the computer cooling capacity using the thermosyphon loop with minichannels and minipump. The one-dimensional separate model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels and minipump has been used in calculations. The latest correlations for minichannels available in literature have been applied. This model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser and the falling tube. A numerical analysis of the mass flux and heat transfer coefficient in the steady state has been presented.

  8. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.

    PubMed

    Yang, Zhaochu; Dong, Tao; Halvorsen, Einar

    2014-01-01

    This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.

  9. Two-phase treatment of patients with crossbite and tendency toward skeletal Class III malocclusion*

    PubMed Central

    Bayerl, Maria de Lourdes Machado

    2014-01-01

    Angle Class III malocclusion is characterized by an inadequate anteroposterior dental relationship which may or may not be accompanied by skeletal changes. In general, patients are distressed by a significantly compromised facial aspect which, when associated with a deficient middle third, encourages patients to seek treatment. This article reports a two-phase treatment carried out in a female patient aged six years and six months with a tendency towards a Class III skeletal pattern. This case was presented to the Brazilian Board of Orthodontics and Facial Orthopedics (BBO). It is representative of the Discrepancy Index (DI) category, and fulfills part of the requirements for obtaining BBO Diploma. PMID:25279531

  10. Incompressible two-phase flows with an inextensible Newtonian fluid interface

    NASA Astrophysics Data System (ADS)

    Reuther, Sebastian; Voigt, Axel

    2016-10-01

    We introduce a diffuse interface approximation for an incompressible two-phase flow problem with an inextensible Newtonian fluid interface. This approach allows to model lipid membranes as viscous fluids. In the present setting the membranes are assumed to be stationary. We validate the model and the numerical approach, which is based on a stream function formulation for the surface flow problem, an operator splitting approach and a semi-implicit adaptive finite element discretization, against observed flow patterns in vesicles, which are adhered to a solid surface and are subjected to shear flow. The influence of the Gaussian curvature on the surface flow pattern is discussed.

  11. Viscous singular shock profiles for a system of conservation laws modeling two-phase flow

    NASA Astrophysics Data System (ADS)

    Hsu, Ting-Hao

    2016-08-01

    This paper is concerned with singular shocks for a system of conservation laws via the Dafermos regularization ut + f(u)x = ɛtuxx. For a system modeling incompressible two-phase fluid flow, the existence of viscous profiles is proved using Geometric Singular Perturbation Theory. The weak convergence and the growth rate of the viscous solution are also derived; the weak limit is the sum of a piecewise constant function and a δ-measure supported on a shock line, and the maximum value of the viscous solution is of order exp ⁡ (1 / ɛ).

  12. Digital phase conjugate mirror by parallel arrangement of two phase-only spatial light modulators.

    PubMed

    Shibukawa, Atsushi; Okamoto, Atsushi; Goto, Yuta; Honma, Satoshi; Tomita, Akihisa

    2014-05-19

    In a conventional digital phase conjugation system, only the phase of an input light is time-reversed. This deteriorates phase conjugation fidelity and restricts application fields to specific cases only when the input light has uniformly-distributed scattered wavefront. To overcome these difficulties, we present a digital phase conjugate mirror based on parallel alignment of two phase-only spatial light modulators (SLMs), in which both amplitude and phase of the input light can be time-reversed. Experimental result showed that, in the phase conjugation through a holographic diffuser with diffusion angle of 0.5 degree, background noises decrease to 65% by our digital phase conjugation mirror.

  13. Electrical impedance imaging in two-phase, gas-liquid flows: 1. Initial investigation

    NASA Technical Reports Server (NTRS)

    Lin, J. T.; Ovacik, L.; Jones, O. C.

    1991-01-01

    The determination of interfacial area density in two-phase, gas-liquid flows is one of the major elements impeding significant development of predictive tools based on the two-fluid model. Currently, these models require coupling of liquid and vapor at interfaces using constitutive equations which do not exist in any but the most rudimentary form. Work described herein represents the first step towards the development of Electrical Impedance Computed Tomography (EICT) for nonintrusive determination of interfacial structure and evolution in such flows.

  14. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  15. Prediction of slug frequency in horizontal two-phase slug flow

    SciTech Connect

    Tronconi, E. )

    1990-05-01

    In this paper available data on slug frequency in horizontal two-phase intermittent flow are predicted with adequate accuracy by assuming that the slug frequency is one half of the frequency of the unstable waves precursors slugs, as determined according to published analyses of finite amplitude waves in conduits. The experimental effects of gas and liquid flow rates, pipe diameter, gas density and liquid viscosity on slug frequency are explained by modifications of the wave properties due to changes in the liquid level of the stratified flow existing in the pipe inlet region prior to slug formation. Simple generalized equations are proposed to estimate the slug frequency for engineering calculations.

  16. Two-phase anaerobic digestion of spent tea leaves for biogas and manure generation.

    PubMed

    Goel, B; Pant, D C; Kishore, V V

    2001-11-01

    Anaerobic digestion of spent tea leaves from an instant tea manufacturing factory was studied in a two-phase digester. The hydrolysis and acidification phase resulted in the formation of high organic strength liquid called leachate, with a chemical oxygen demand (COD) of 12,880 mg/l, within the retention time of 10 days. The leachate was tested in a batch methanaogensis reactor for biogas production. An average biogas yield of 0.48 m3/kg of COD destroyed was obtained with an average COD reduction of 93%. The biogas was analyzed for 73% methane content. PMID:11563707

  17. μPIV measurements of two-phase flows of an operated direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens

    2013-05-01

    In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The

  18. The partitioning of Staphylococcus epidermidis in aqueous two-phase systems.

    PubMed

    Bruce, D L; Fisher, D; Hart, C A

    1987-09-01

    The surface properties of two isolates of Staphylococcus epidermis were compared by cell partitioning in aqueous two-phase systems. Strain K805 was isolated from the cerebrospinal fluid of a child with a shunt infection and strain 1105 was obtained from human faeces and not known to have caused infection. Strain K805 was significantly more negatively charged than strain 1105 but there was no significant difference in hydrophobicity when cultures were grown for 18 h. However, prolonged incubation of strain K805 caused the production of extracellular slime and a marked increase in surface hydrophobicity. Both strains showed enhanced growth in biphasic cultures. PMID:2443705

  19. The effect of surface-active block copolymers on two-phase flow

    NASA Astrophysics Data System (ADS)

    Martin, Jeffrey D.

    Blending two thermodynamically immiscible polymers to create a material with desirable properties is an attractive alternative to synthesizing polymers from new monomers. The microstructure of the blend often determines its physical properties and thus its uses. It is therefore beneficial to control the microstructure during blending, and it is well known that compatibilizers (macromolecular surfactants) can alter the morphological evolution of polymer blends. This work aims to examine the effect of compatibilizers on flow phenomena in which interfacial tension plays an important role, i.e. two-phase flow during the morphological development of immiscible polymer blends. We study compatibilizer effects on the two-phase flow of polymers at two length scales: single drops and macroscopic blends. A key concern is the effects of compatibilizer on rheological properties. Experiments on the effect of surfactant on single drop dynamics in a PEO/PPO/Pluronic system showed complex and previously unknown and unusual behavior. We hypothesize that this unusual behavior was caused by the sample preparation protocol. For multi-drop systems, or blends, of a PIB/PDMS model system near phase inversion, we identify the key role of the compatibilizer as immobilizing the interface, and we also identify the effect of such immobilization on two-phase rheology and coalescence suppression. Also, the compatibilizer affected the morphological development by decreasing the drop size through a combination of a decreased interfacial tension and coalescence suppression. We attempted to exploit this coalescence suppression phenomenon as a mechanism of kinetically trapping the morphology in desired states. By varying the sequence of mixing, a double emulsion morphology was created. These double emulsion blends show complex relaxation behavior and an increase in viscosity due to the increased effective droplet volume fraction. We also attempted to exploit coalescence suppression to create a blend

  20. Fluctuations and correlations in molecular dynamics calculations at the coexistence of two phases

    NASA Astrophysics Data System (ADS)

    Morales, Juan J.; Cuadros, Francisco; Rull, Luis F.

    1987-03-01

    Using long run computer simulations of molecular dynamics (E,V,N) the fluctuations of a two-dimensional system were studied in the melting zone. The system formed by the coexistence of two phases was obtained by rescaling two systems, one from the solid region and the other from the liquid region. Two different algorithms were used to integrate the equations of motion to see the influence on the thermodynamic properties and their fluctuations. In order to estimate the correlations over long times with each algorithm, a method suggested by Smith and Wells, and amplified by Straatsma et al. was used.

  1. Thermostabilization System Based on Two-phase Closed Cryogenic Thermosyphon for RED100 Detector

    NASA Astrophysics Data System (ADS)

    Bolozdynya, A. I.; Efremenko, Yu. V.; Khromov, V. A.; Shafigullin, R. R.; Shakirov, A. V.; Sosnovtsev, V. V.; Tolstukhin, I. A.

    The RED 100 emission detector requires thermostabilization at about 100K. The heat transfer characteristics of a two-phase closed cryogenic thermosyphon made of copper pipe and bellow flex hoses with nitrogen fluid have been investigated. The thermosyphon consists of sealed pipe enclosed in a vacuum jacket and uses a free-boiling liquid nitrogen pool as a cooling machine. The system is very flexible and can provide heat transfer rate up to 100 W in the temperature range of 80-100 K.

  2. Precursors in two-phase detonation: Occurrence of a contact discontinuity

    NASA Astrophysics Data System (ADS)

    Brailovsky, Irina; Sivashinsky, Gregory

    2015-11-01

    This paper is concerned with detonation-propelled shocks (precursors) occurring in gas-permeable charges. It is shown that the basic aspects of the event may successfully be reproduced within a one-dimensional two-phase picture widely employed in the modelling of porous energetic materials. Precursor shocks are sustained by intense gasification of the solid phase, provided the ignition pressure (Pign) exceeds a certain critical level. At high enough Pign, the post-shock flow is found to acquire a contact discontinuity. Although this pattern is compatible with the associated self-similar solution, the question of the mechanism governing its formation remains open.

  3. Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system.

    PubMed

    Hüsken, Leonie E; Oomes, Mirjam; Schroën, Karin; Tramper, Johannes; de Bont, Jan A M; Beeftink, Rik

    2002-07-01

    Bioproduction of 3-methylcatechol from toluene by Pseudomonas putida MC2 was studied in the presence of an additional 1-octanol phase. This solvent was used to supply the substrate and extract the product, in order to keep the aqueous concentrations low. A hollow-fibre membrane kept the octanol and aqueous phase separated to prevent phase toxicity towards the bacterium. Volumetric production rates increased approximately 40% as compared to two-phase 3-methylcatechol production with direct phase contact. Preliminary investigations on downstream processing of 3-methylcatechol showed that 1 M of sodium hydroxide selectively extracted the disodium salt of 3-methylcatechol into an aqueous phase. PMID:12044556

  4. Nonequilibrium, Drift-Flux Code System for Two-Phase Flow Network Analysis

    2000-08-01

    Version: 00 SOLA-LOOP is designed for the solution of transient two-phase flow in networks composed of one-dimensional components. The fluid dynamics is described by a nonequilibrium, drift-flux formulation of the fluid conservation laws. Although developed for nuclear reactor safety analysis, SOLA-LOOP may be used as the basis for other types of special-purpose network codes. The program can accommodate almost any set of constitutive relations, property tables, or other special features required for different applications.

  5. Computation of Space Shuttle high-pressure cryogenic turbopump ball bearing two-phase coolant flow

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen

    1990-01-01

    A homogeneous two-phase fluid flow model, implemented in a three-dimensional Navier-Stokes solver using computational fluid dynamics methodology is described. The application of the model to the analysis of the pump-end bearing coolant flow of the high-pressure oxygen turbopump of the Space Shuttle main engine is studied. Results indicate large boiling zones and hot spots near the ball/race contact points. The extent of the phase change of the liquid oxygen coolant flow due to the frictional and viscous heat fluxes near the contact areas has been investigated for the given inlet conditions of the coolant.

  6. Two-Phase Cryogenic Heat Exchanger for the Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.

    2011-01-01

    A two-phase cryogenic heat exchanger for a thermodynamic vent system was designed and analyzed, and the predicted performance was compared with test results. A method for determining the required size of the Joule-Thomson device was also developed. Numerous sensitivity studies were performed to show that the design was robust and possessed a comfortable capacity margin. The comparison with the test results showed very similar heat extraction performance for similar inlet conditions. It was also shown that estimates for Joule- Thomson device flow rates and exit quality can vary significantly and these need to be accommodated for with a robust system design.

  7. Study on law of negative corona discharge in microparticle-air two-phase flow media

    NASA Astrophysics Data System (ADS)

    He, Bo; Li, Tianwei; Xiu, Yaping; Zhao, Heng; Peng, Zongren; Meng, Yongpeng

    2016-03-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity) measurements and ultraviolet observations.

  8. Decay of the 3D viscous liquid-gas two-phase flow model with damping

    NASA Astrophysics Data System (ADS)

    Zhang, Yinghui

    2016-08-01

    We establish the optimal Lp - L2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, Lp - L2 estimates for the linearized equations, and delicate energy estimates.

  9. Serrated flow behavior in AL6XN austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.; Pang, G. W.

    2009-10-01

    Serrated flow behavior of the AL6XN austenitic stainless steel has been investigated at different temperatures and strain rates. The results show the serrated flow, peak/plateau in flow stress and negative strain rate sensitivity appearing in tensile deformation of the AL6XN steel at 773-973 K and 3.3 × 10 -5-3.3 × 10 -3 s -1 (excluding 873 K, 3.3 × 10 -5 s -1), suggesting the occurrence of dynamic strain aging (DSA). The activation energy for type-A and -(A + B) serrations was calculated to be 304 kJ/mol and diffusion of substitutional solutes, such as chromium and molybdenum is considered as the mechanism of serrated flow. TEM observations further revealed a typical planar slip mode in the regime of DSA of the deformed AL6XN steel.

  10. Bounds and estimates for the effect of strain gradients upon the effective plastic properties of an isotropic two-phase composite

    NASA Astrophysics Data System (ADS)

    Fleck, Norman A.; Willis, John R.

    2004-08-01

    Predictions are made for the size effect on strength of a random, isotropic two-phase composite. Each phase is treated as an isotropic, elastic-plastic solid, with a response described by a modified deformation theory version of the Fleck-Hutchinson strain gradient plasticity formulation (Fleck and Hutchinson, J. Mech. Phys. Solids 49 (2001) 2245). The essential feature of the new theory is that the plastic strain tensor is treated as a primary unknown on the same footing as the displacement. Minimum principles for the energy and for the complementary energy are stated for a composite, and these lead directly to elementary bounds analogous to those of Reuss and Voigt. For the case of a linear hardening solid, Hashin-Shtrikman bounds and self-consistent estimates are derived. A non-linear variational principle is constructed by generalising that of Ponte Castañeda (J. Mech. Phys. Solids 40 (1992) 1757). The minimum principle is used to derive an upper bound, a lower estimate and a self-consistent estimate for the overall plastic response of a statistically homogeneous and isotropic strain gradient composite. Sample numerical calculations are performed to explore the dependence of the macroscopic uniaxial response upon the size scale of the microstructure, and upon the relative volume fraction of the two phases.

  11. Deformation twinning mechanisms in FCC and HCP metals

    SciTech Connect

    Wang, Jian; Tome, Carlos N; Beyerlein, Irene J; Misra, Amit; Mara, N

    2011-01-31

    We report the recent work on twinning and detwinning in fcc and hcp metals based on the in situ and ex situ TEM observations and molecular dynamics simulations. Three aspects are discussed in this paper. (1) Detwinning in single-phase Cu with respect to growth twins, (2) deformation twinning in Ag-Cu composites, and (3) deformation twinning mechanisms in hcp metals. The main conclusion is that atomic structures of interfaces (twin boundaries, two-phases interface, and grain boundaries) play a crucial role in nucleating and propagating of deformation twins.

  12. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  13. Austenitic stainless steel patterning by plasma assisted diffusion treatments

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Marcos, G.; Thiriet, T.; Guo, Y.; Belmonte, T.

    2009-09-01

    The new concept of surface texturing or surface patterning on austenitic stainless steel by plasma assisted diffusion treatment is presented in this paper. It allows the creation of uniform micro or nano relief with regularly shaped asperities or depressions. Plasma assisted diffusion treatments are based on the diffusion of nitrogen and/or carbon in a metallic material at moderate to elevated temperatures. Below 420°C, a plasma assisted nitriding treatment of austenitic stainless steel produces a phase usually called expanded austenite. Expanded austenite is a metastable nitrogen supersaturated solid solution with a disordered fcc structure and a distorted lattice. The nitrided layer with the expanded austenite is highly enriched in nitrogen (from 10 to 35 at%) and submitted to high compressive residual stresses. From mechanical consideration, it is shown that the only possible deformation occurs in the direction perpendicular to the surface. Such an expansion of the layer from the initial surface of the substrate to the gas phase is used here for surface patterning of stainless steel parts. The surface patterning is performed by using masks (TEM grid) and multi-dipolar plasmas.

  14. The effect of long-term deflection on permanent deformation of nickel-titanium archwires.

    PubMed

    Hudgins, J J; Bagby, M D; Erickson, L C

    1990-01-01

    The clinician must now consider the alloy along with cross-sectional shape and size when selecting archwires. The purpose of this study is to quantify permanent deformation after long-term deflection of available nickel-titanium archwires. Nine nickel-titanium, one beta-titanium and one stainless steel archwires, .016 inch round, were deflected into orthodontic brackets of simulated archform. One lateral incisor was positioned to yield a deflection of 5 mm in a lingual direction. After wire deactivation, deformation was measured at 1, 14, and 28 days. Two-way ANOVA and Tukey's critical difference tests were used to determine statistical differences. The nickel-titanium wires exhibited better springback characteristics and less permanent deformation than the stainless steel and TMA wires. Several wires increased deformation as deflection time increased. No clinically significant difference was found between presently available nickel-titanium wires in terms of permanent deformation, long- or short-term. PMID:2256566

  15. Application of integral-equation theory to aqueous two-phase partitioning systems

    SciTech Connect

    Haynes, C.A.; Benitez, F.J.; Blanch, H.W.; Prausnitz, J.M. )

    1993-09-01

    A molecular-thermodynamic model is developed for representing thermodynamic properties of aqueous two-phase systems containing polymers, electrolytes, and proteins. The model is based on McMillan-Mayer solution theory and the generalized mean-spherical approximation to account for electrostatic forces between unlike ions. The Boublik-Mansoori equation of state for hard-sphere mixtures is coupled with the osmotic virial expansion truncated after the second-virial terms to account for short-range forces between molecules. Osmotic second virial coefficients are reported from low-angle laser-light scattering (LALLS) data for binary and ternary aqueous solutions containing polymers and proteins. Ion-polymer specific-interaction coefficients are determined from osmotic-pressure data for aqueous solutions containing a water-soluble polymer and an alkali chloride, phosphate or sulfate salt. When coupled with LALLS and osmotic-pressure data reported here, the model is used to predict liquid-liquid equilibria, protein partition coefficients, and electrostatic potentials between phases for both polymer-polymer and polymer-salt aqueous two-phase systems. For bovine serum albumin, lysozyme, and [alpha]-chymotrypsin, predicted partition coefficients are in excellent agreement with experiment.

  16. Ionic liquid-based aqueous two-phase system extraction of sulfonamides in milk.

    PubMed

    Shao, Mingyuan; Zhang, Xuli; Li, Na; Shi, Jiayuan; Zhang, Huijie; Wang, Zhibing; Zhang, Hanqi; Yu, Aimin; Yu, Yong

    2014-06-15

    A simple method for the determination of six sulfonamides (SAs) in milk samples was developed. 1-Butyl-3-methylimidazolium tetrafluoroborate and trisodium citrate dihydrate were used to form aqueous two-phase system. The aqueous two phase system was applied to the extraction of the SAs and the determination of the analytes was performed by high-performance liquid chromatography. To achieve optimum extraction performance, several experimental parameters, including the type and the amount of salt, the type and amount of ionic liquid, ultrasonic time and pH of sample solution, were investigated and optimized. Under the optimal experimental conditions, good linearity was observed in the range of 8.55-1036.36ngmL(-1). The limits of detection and quantification were in the range of 2.04-2.84 and 6.73-9.37ngmL(-1), respectively. The present method was successfully applied to the determination of SAs in milk samples, and the recoveries of analytes were in the range of 72.32-108.96% with relative standard deviations ranging from 0.56 to 12.20%. The results showed that the present method was rapid, feasible and environmentally friendly. PMID:24854709

  17. Axial Development of Gas-Liquid Two-Phase Flow in Mini-Channels

    SciTech Connect

    Junichi Uematsu; Yoshinori Hirose; Tatsuya Hazuku; Tomoji Takamasa; Takashi Hibiki

    2006-07-01

    Accurate prediction of the interfacial area concentration is essential to successful development of the interfacial transfer terms in the two-fluid model. Mechanistic modeling of the interfacial area concentration entirely relies on accurate local flow measurements over extensive flow conditions and channel geometries. From this point of view, accurate measurements of flow parameters such as void fraction, interfacial area concentration, gas velocity, bubble Sauter mean diameter, and bubble number density were performed by the image processing method at five axial locations in vertical upward bubbly flows using 1.02 and 0.55 mm-diameter pipes. The frictional pressure loss was also measured by a differential pressure cell. In the experiment, the superficial liquid velocity and the void fraction ranged from 0.475 m/s to 4.89 m/s and from 0.980% to 28.6%, respectively. The obtained data give near complete information on the time-averaged local hydrodynamic parameters of two-phase flow. These data can be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. As the first step to understand the flow characteristics in mini-channels, the applicability of the existing drift-flux model, interfacial area correlation, and frictional pressure correlation was examined by the data obtained in the mini-channels. (authors)

  18. The binary eutectic of NSAIDS and two-phase liquid system for enhanced membrane permeation.

    PubMed

    Yuan, Xudong; Capomacchia, A C

    2005-01-01

    The eutectic properties of binary mixtures of some nonsteroidal anti-inflammatory drugs (NSAIDs) with ibuprofen were studied using differential scanning calorimetry (DSC) and phase equilibrium diagrams. The melting points of selected NSAIDs were significantly depressed due to binary eutectic formation with ibuprofen. Ketoprofen and ibuprofen were selected to study the effect of eutectic formation on membrane permeation using Franz diffusion cells and snake skin as the model membrane. The presence of aqueous isopropyl alcohol (IPA) was necessary to completely transform the solid drugs into an oily state at ambient temperature. As much as the 99.6% of ibuprofen and the 88.8% of ketoprofen added were found in the oily phase of the two-phase liquid system formed when aqueous IPA was added to the eutectic mixture. Due to the high drug concentration in the oily phase, and maximum thermodynamic activity, the two-phase liquid system showed enhanced membrane permeation rates of ibuprofen (37.5 microg/cm2/hr) and ketoprofen (33.4 microg/cm2/hr) compared to other reference preparations used. PMID:15776808

  19. A single/two-phase, regenerative, variable speed, induction motor drive with sinusoidal input current

    SciTech Connect

    Rahman, M.F.; Zhong, L.

    1995-12-31

    The single phase induction motor with two windings, main and auxiliary, is probably the most widely used motor in the world. The mains operated single-phase motor usually operates at low power factor, low efficiency and at fixed speed. At most, two or three fixed speeds are provided when required, through manual intervention. Such fixed speed operation hinders product designers from incorporating many interesting and useful features in their products. The present concern on harmonic pollution of the supply and low power factor operation, as embodied in the recent IEC555-2 standard, also calls for power factor correction measures to be included in applications where a single phase motor is used. This paper presents a variable speed single-phase motor (with two windings) drive that utilizes just six switches as found in the emerging intelligent power modules (IPM). Just one integrated module with six switches serves to implement the input rectifier with sinusoidal input current, and the two-phase VSI or CSI inverter to drive the two phases of the motor with balanced ampere-turns. The input rectifier is also reversible, so that the motor can be braked with energy return to the mains, thus operating with high efficiency at all times.

  20. Dynamics of propionic acid degradation in a two-phase anaerobic system.

    PubMed

    Xiao, Keke; Zhou, Yan; Guo, Chenghong; Maspolim, Yogananda; Ng, Wun-Jern

    2015-12-01

    This paper reports on propionic acid (HPr) degradation in a laboratory scale two-phase anaerobic system, where HPr was accumulated in the acidogenic reactor and degraded in the methanogenic reactor. Batch tests using biomass from the two-phase anaerobic system showed HPr degradation was rarely detectable in the acidogenic reactor when HPr concentration ranged from 639 to 4531mgHPrL(-1) and at pH 4.50 to 6.50. Biomass from the methanogenic reactor could, however, successfully degrade HPr at its initial concentration of up to 4585mgHPrL(-1) at pH 6.40-7.30. ATP results showed that differences in the degradation ability of HPr by the acidogenic and methanogenic biomass may be related with their respective different biomass activities. Results from pyrosequencing showed that the predominant propionic acid oxidizing bacteria (POB) in the methanogenic reactor were Smithella (2.68%) and Syntrophobacter (0.35%); while poor degradation of HPr in the acidogenic reactor may be associated with the low abundance of POB (0.02% Desulfacinum and 0.08% Desulfobulbus). This might have been induced by the long-term unfavorable environment for POB growth in the acidogenic reactor.