Science.gov

Sample records for deforming patient model

  1. Patient-specific liver deformation modeling for tumor tracking

    NASA Astrophysics Data System (ADS)

    Oh, Young-Taek; Hwang, Youngkyoo; Kim, Jung-Bae; Bang, Won-Chul; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    We present a new method for patient-specific liver deformation modeling for tumor tracking. Our method focuses on deforming two main blood vessels of the liver - hepatic and portal vein - to utilize them as features. A novel centerline editing algorithm based on ellipse fitting is introduced for vessel deformation. Centerline-based blood vessel model and various interpolation methods are often used for generating a deformed model at the specific time t. However, it may introduce artifacts when models used in interpolation are not consistent. One of main reason of this inconsistency is the location of bifurcation points differs from each image. To solve this problem, our method generates a base model from one of patient's CT images. Next, we apply a rigid iterative closest point (ICP) method to the base model with centerlines of other images. Because the transformation is rigid, the length of each vessel's centerline is preserved while some part of the centerline is slightly deviated from centerlines of other images. We resolve this mismatch using our centerline editing algorithm. Finally, we interpolate three deformed models of liver, blood vessels, tumor using quadratic Bézier curves. We demonstrate the effectiveness of the proposed approach with the real patient data.

  2. Patient-specific Deformation Modelling via Elastography: Application to Image-guided Prostate Interventions

    PubMed Central

    Wang, Yi; Ni, Dong; Qin, Jing; Xu, Ming; Xie, Xiaoyan; Heng, Pheng-Ann

    2016-01-01

    Image-guided prostate interventions often require the registration of preoperative magnetic resonance (MR) images to real-time transrectal ultrasound (TRUS) images to provide high-quality guidance. One of the main challenges for registering MR images to TRUS images is how to estimate the TRUS-probe-induced prostate deformation that occurs during TRUS imaging. The combined statistical and biomechanical modeling approach shows promise for the adequate estimation of prostate deformation. However, the right setting of the biomechanical parameters is very crucial for realistic deformation modeling. We propose a patient-specific deformation model equipped with personalized biomechanical parameters obtained from shear wave elastography to reliably predict the prostate deformation during image-guided interventions. Using data acquired from a prostate phantom and twelve patients with suspected prostate cancer, we compared the prostate deformation model with and without patient-specific biomechanical parameters in terms of deformation estimation accuracy. The results show that the patient-specific deformation model possesses favorable model ability, and outperforms the model without patient-specific biomechanical parameters. The employment of the patient-specific biomechanical parameters obtained from elastography for deformation modeling shows promise for providing more precise deformation estimation in applications that use computer-assisted image-guided intervention systems. PMID:27272239

  3. Patient-specific Deformation Modelling via Elastography: Application to Image-guided Prostate Interventions

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Ni, Dong; Qin, Jing; Xu, Ming; Xie, Xiaoyan; Heng, Pheng-Ann

    2016-06-01

    Image-guided prostate interventions often require the registration of preoperative magnetic resonance (MR) images to real-time transrectal ultrasound (TRUS) images to provide high-quality guidance. One of the main challenges for registering MR images to TRUS images is how to estimate the TRUS-probe-induced prostate deformation that occurs during TRUS imaging. The combined statistical and biomechanical modeling approach shows promise for the adequate estimation of prostate deformation. However, the right setting of the biomechanical parameters is very crucial for realistic deformation modeling. We propose a patient-specific deformation model equipped with personalized biomechanical parameters obtained from shear wave elastography to reliably predict the prostate deformation during image-guided interventions. Using data acquired from a prostate phantom and twelve patients with suspected prostate cancer, we compared the prostate deformation model with and without patient-specific biomechanical parameters in terms of deformation estimation accuracy. The results show that the patient-specific deformation model possesses favorable model ability, and outperforms the model without patient-specific biomechanical parameters. The employment of the patient-specific biomechanical parameters obtained from elastography for deformation modeling shows promise for providing more precise deformation estimation in applications that use computer-assisted image-guided intervention systems.

  4. A patient-specific, finite element model for noncommunicating hydrocephalus capable of large deformation.

    PubMed

    Lefever, Joel A; Jaime García, José; Smith, Joshua H

    2013-05-31

    A biphasic model for noncommunicating hydrocephalus in patient-specific geometry is proposed. The model can take into account the nonlinear behavior of brain tissue under large deformation, the nonlinear variation of hydraulic conductivity with deformation, and contact with a rigid, impermeable skull using a recently developed algorithm. The model was capable of achieving over a 700 percent ventricular enlargement, which is much greater than in previous studies, primarily due to the use of an anatomically realistic skull recreated from magnetic resonance imaging rather than an artificial skull created by offsetting the outer surface of the cerebrum. The choice of softening or stiffening behavior of brain tissue, both having been demonstrated in previous experimental studies, was found to have a significant effect on the volume and shape of the deformed ventricle, and the consideration of the variation of the hydraulic conductivity with deformation had a modest effect on the deformed ventricle. The model predicts that noncommunicating hydrocephalus occurs for ventricular fluid pressure on the order of 1300 Pa.

  5. Patient-specific model of brain deformation: application to medical image registration.

    PubMed

    Wittek, Adam; Miller, Karol; Kikinis, Ron; Warfield, Simon K

    2007-01-01

    This contribution presents finite element computation of the deformation field within the brain during craniotomy-induced brain shift. The results were used to illustrate the capabilities of non-linear (i.e. accounting for both geometric and material non-linearities) finite element analysis in non-rigid registration of pre- and intra-operative magnetic resonance images of the brain. We used patient-specific hexahedron-dominant finite element mesh, together with realistic material properties for the brain tissue and appropriate contact conditions at boundaries. The model was loaded by the enforced motion of nodes (i.e. through prescribed motion of a boundary) at the brain surface in the craniotomy area. We suggest using explicit time-integration scheme for discretised equations of motion, as the computational times are much shorter and accuracy, for practical purposes, the same as in the case of implicit integration schemes. Application of the computed deformation field to register (i.e. align) the pre-operative images with the intra-operative ones indicated that the model very accurately predicts the displacements of the tumour and the lateral ventricles even for limited information about the brain surface deformation. The prediction accuracy improves when information about deformation of not only exposed (during craniotomy) but also unexposed parts of the brain surface is used when prescribing loading. However, it appears that the accuracy achieved using information only about the deformation of the exposed surface, that can be determined without intra-operative imaging, is acceptable. The presented results show that non-linear biomechanical models can complement medical image processing techniques when conducting non-rigid registration. Important advantage of such models over the previously used linear ones is that they do not require unrealistic assumptions that brain deformations are infinitesimally small and brain stress-strain relationship is linear.

  6. Simulations of blood flow in patient-specific aortic dissections with a deformable wall model

    NASA Astrophysics Data System (ADS)

    Baeumler, Kathrin; Vedula, Vijay; Sailer Karmann, Anna; Marsden, Alison; Fleischmann, Dominik

    2016-11-01

    Aortic dissection is a life-threatening condition in which blood penetrates into the vessel wall, creating a second flow channel, often requiring emergency surgical repair. Up to 50% of patients who survive the acute event face late complications like aortic dilatation and eventual rupture. Prediction of late complications, however, remains challenging. We therefore aim to perform accurate and reliable patient-specific simulations of blood flow in aortic dissections, validated by 4D-Flow MRI. Among other factors, this is a computational challenge due to the compliance of the vessel walls and the large degree of membrane deformation between the two flow channels. We construct an anatomic patient-specific model from CT data including both flow channels and the membrane between them. We then run fluid structure interaction simulations using an arbitrary Lagrangian-Eulerian (ALE) formulation within a multiscale variational framework, employing stabilized finite element methods. We compare hemodynamics between a rigid and a deformable wall model and examine membrane dynamics and pressure differences between the two flow channels. The study focuses on the computational and modeling challenges emphasizing the importance of employing a deformable wall model for aortic dissections.

  7. Effects of Degree of Surgical Correction for Flatfoot Deformity in Patient-Specific Computational Models.

    PubMed

    Spratley, E M; Matheis, E A; Hayes, C W; Adelaar, R S; Wayne, J S

    2015-08-01

    A cohort of adult acquired flatfoot deformity rigid-body models was developed to investigate the effects of isolated tendon transfer with successive levels of medializing calcaneal osteotomy (MCO). Following IRB approval, six diagnosed flatfoot sufferers were subjected to magnetic resonance imaging (MRI) and their scans used to derive patient-specific models. Single-leg stance was modeled, constrained solely through physiologic joint contact, passive soft-tissue tension, extrinsic muscle force, body weight, and without assumptions of idealized mechanical joints. Surgical effect was quantified using simulated mediolateral (ML) and anteroposterior (AP) X-rays, pedobarography, soft-tissue strains, and joint contact force. Radiographic changes varied across states with the largest average improvements for the tendon transfer (TT) + 10 mm MCO state evidenced through ML and AP talo-1st metatarsal angles. Interestingly, 12 of 14 measures showed increased deformity following TT-only, though all increases disappeared with inclusion of MCO. Plantar force distributions showed medial forefoot offloading concomitant with increases laterally such that the most corrected state had 9.0% greater lateral load. Predicted alterations in spring, deltoid, and plantar fascia soft-tissue strain agreed with prior cadaveric and computational works suggesting decreased strain medially with successive surgical repair. Finally, joint contact force demonstrated consistent medial offloading concomitant with variable increases laterally. Rigid-body modeling thus offers novel advantages for the investigation of foot/ankle biomechanics not easily measured in vivo.

  8. Advanced deformation process modeling

    SciTech Connect

    Kocks, U.F.; Embury, J.D.; Beaudoin, A.J.; Dawson, P.R.; MacEwen, S.R.; Mecking, H.J.

    1997-08-01

    Progress was made in achieving a comprehensive and coherent description of material behavior in deformation processing. The materials included were metals, alloys, intermetallic compounds, arbitrary lattice structure, and metal matrix composites. Aspects of behavior modeled included kinetics of flow and strain hardening, as well as recrystallization and the various anisotropies of strength and compliance. Highlights include a new prediction of the limiting strength of materials at high temperature, a new understanding of the generation of new grain boundaries during forming operations, and a quantitatively verified computer simulation of texture development and the resulting behavioral anisotropies.

  9. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  10. Modeling patterns of anatomical deformations in prostate patients undergoing radiation therapy with an endorectal balloon

    NASA Astrophysics Data System (ADS)

    Brion, Eliott; Richter, Christian; Macq, Benoit; Stützer, Kristin; Exner, Florian; Troost, Esther; Hölscher, Tobias; Bondar, Luiza

    2017-03-01

    External beam radiation therapy (EBRT) treats cancer by delivering daily fractions of radiation to a target volume. For prostate cancer, the target undergoes day-to-day variations in position, volume, and shape. For stereotactic photon and for proton EBRT, endorectal balloons (ERBs) can be used to limit variations. To date, patterns of non-rigid variations for patients with ERB have not been modeled. We extracted and modeled the patient-specific patterns of variations, using regularly acquired CT-images, non-rigid point cloud registration, and principal component analysis (PCA). For each patient, a non-rigid point-set registration method, called Coherent Point Drift, (CPD) was used to automatically generate landmark correspondences between all target shapes. To ensure accurate registrations, we tested and validated CPD by identifying parameter values leading to the smallest registration errors (surface matching error 0.13+/-0.09 mm). PCA demonstrated that 88+/-3.2% of the target motion could be explained using only 4 principal modes. The most dominant component of target motion is a squeezing and stretching in the anterior-posterior and superior-inferior directions. A PCA model of daily landmark displacements, generated using 6 to 10 CT-scans, could explain well the target motion for the CT-scans not included in the model (modeling error decreased from 1.83+/-0.8 mm for 6 CT-scans to 1.6+/-0.7 mm for 10 CT-scans). PCA modeling error was smaller than the naive approximation by the mean shape (approximation error 2.66+/-0.59 mm). Future work will investigate the use of the PCA-model to improve the accuracy of EBRT techniques that are highly susceptible to anatomical variations such as, proton therapy

  11. Tuning of patient-specific deformable models using an adaptive evolutionary optimization strategy.

    PubMed

    Vidal, Franck P; Villard, Pierre-Frédéric; Lutton, Evelyne

    2012-10-01

    We present and analyze the behavior of an evolutionary algorithm designed to estimate the parameters of a complex organ behavior model. The model is adaptable to account for patient's specificities. The aim is to finely tune the model to be accurately adapted to various real patient datasets. It can then be embedded, for example, in high fidelity simulations of the human physiology. We present here an application focused on respiration modeling. The algorithm is automatic and adaptive. A compound fitness function has been designed to take into account for various quantities that have to be minimized. The algorithm efficiency is experimentally analyzed on several real test cases: 1) three patient datasets have been acquired with the "breath hold" protocol, and 2) two datasets corresponds to 4-D CT scans. Its performance is compared with two traditional methods (downhill simplex and conjugate gradient descent): a random search and a basic real-valued genetic algorithm. The results show that our evolutionary scheme provides more significantly stable and accurate results.

  12. Deformed Richardson-Gaudin model

    NASA Astrophysics Data System (ADS)

    Kulish, P.; Stolin, A.; Johannesson, L. H.

    2014-09-01

    The Richardson-Gaudin model describes strong pairing correlations of fermions confined to a finite chain. The integrability of the Hamiltonian allows the algebraic construction of its eigenstates. In this work we show that the quantum group theory provides a possibility to deform the Hamiltonian preserving integrability. More precisely, we use the so-called Jordanian r-matrix to deform the Hamiltonian of the Richardson-Gaudin model. In order to preserve its integrability, we need to insert a special nilpotent term into the auxiliary L-operator which generates integrals of motion of the system. Moreover, the quantum inverse scattering method enables us to construct the exact eigenstates of the deformed Hamiltonian. These states have a highly complex entanglement structure which require further investigation.

  13. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    PubMed

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Patient-Specific Non-Linear Finite Element Modelling for Predicting Soft Organ Deformation in Real-Time; Application to Non-Rigid Neuroimage Registration

    PubMed Central

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K.; Miller, Karol

    2010-01-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using a NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. PMID:20868706

  15. SU-C-BRA-07: Variability of Patient-Specific Motion Models Derived Using Different Deformable Image Registration Algorithms for Lung Cancer Stereotactic Body Radiotherapy (SBRT) Patients

    SciTech Connect

    Dhou, S; Williams, C; Lewis, J

    2016-06-15

    Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported

  16. Integrable Deformations of T -Dual σ Models

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Wulff, Linus

    2016-12-01

    We present a method to deform (generically non-Abelian) T duals of two-dimensional σ models, which preserves classical integrability. The deformed models are identified by a linear operator ω on the dualized subalgebra, which satisfies the 2-cocycle condition. We prove that the so-called homogeneous Yang-Baxter deformations are equivalent, via a field redefinition, to our deformed models when ω is invertible. We explain the details for deformations of T duals of principal chiral models, and present the corresponding generalization to the case of supercoset models.

  17. Deformable human body model development

    SciTech Connect

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

  18. Fetal akinesia deformation sequence: an animal model.

    PubMed

    Moessinger, A C

    1983-12-01

    Rat fetuses were paralyzed by daily transuterine injections of curare from day 18 of gestation until term (day 21). The following anomalies were noted at the time of delivery: multiple joint contractures, pulmonary hypoplasia, micrognathia, fetal growth retardation, short umbilical cords, and polyhydramnios. Neither sham-operated nor untouched littermate control fetuses had any of these anomalies. The group of anomalies (or deformation sequence) obtained with this animal model is presumed to result from the paralytic effect of curare. This phenotype bears a striking resemblance to the syndrome of ankyloses, facial anomalies, and pulmonary hypoplasia (also known as Pena and Shokeir I), presumably inherited in an autosomal recessive manner. It is suggested that this phenotype is not specific but, rather, represents a deformation sequence which results from fetal immobilization or akinesia. Diagnostic evaluation of patients with this group of anomalies should include the identification of the underlying pathologic process (etiology of the akinesia) to allow for proper classification and genetic counseling.

  19. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael; Dzurisin, Daniel

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  20. Reconstruction of 3D lung models from 2D planning data sets for Hodgkin's lymphoma patients using combined deformable image registration and navigator channels

    SciTech Connect

    Ng, Angela; Nguyen, Thao-Nguyen; Moseley, Joanne L.; Hodgson, David C.; Sharpe, Michael B.; Brock, Kristy K.

    2010-03-15

    Purpose: Late complications (cardiac toxicities, secondary lung, and breast cancer) remain a significant concern in the radiation treatment of Hodgkin's lymphoma (HL). To address this issue, predictive dose-risk models could potentially be used to estimate radiotherapy-related late toxicities. This study investigates the use of deformable image registration (DIR) and navigator channels (NCs) to reconstruct 3D lung models from 2D radiographic planning images, in order to retrospectively calculate the treatment dose exposure to HL patients treated with 2D planning, which are now experiencing late effects. Methods: Three-dimensional planning CT images of 52 current HL patients were acquired. 12 image sets were used to construct a male and a female population lung model. 23 ''Reference'' images were used to generate lung deformation adaptation templates, constructed by deforming the population model into each patient-specific lung geometry using a biomechanical-based DIR algorithm, MORFEUS. 17 ''Test'' patients were used to test the accuracy of the reconstruction technique by adapting existing templates using 2D digitally reconstructed radiographs. The adaptation process included three steps. First, a Reference patient was matched to a Test patient by thorax measurements. Second, four NCs (small regions of interest) were placed on the lung boundary to calculate 1D differences in lung edges. Third, the Reference lung model was adapted to the Test patient's lung using the 1D edge differences. The Reference-adapted Test model was then compared to the 3D lung contours of the actual Test patient by computing their percentage volume overlap (POL) and Dice coefficient. Results: The average percentage overlapping volumes and Dice coefficient expressed as a percentage between the adapted and actual Test models were found to be 89.2{+-}3.9% (Right lung=88.8%; Left lung=89.6%) and 89.3{+-}2.7% (Right=88.5%; Left=90.2%), respectively. Paired T-tests demonstrated that the

  1. Modeling lung deformation: A combined deformable image registration method with spatially varying Young's modulus estimates

    PubMed Central

    Li, Min; Castillo, Edward; Zheng, Xiao-Lin; Luo, Hong-Yan; Castillo, Richard; Wu, Yi; Guerrero, Thomas

    2013-01-01

    Purpose: Respiratory motion introduces uncertainties in tumor location and lung deformation, which often results in difficulties calculating dose distributions in thoracic radiation therapy. Deformable image registration (DIR) has ability to describe respiratory-induced lung deformation, with which the radiotherapy techniques can deliver high dose to tumors while reducing radiation in surrounding normal tissue. The authors' goal is to propose a DIR method to overcome two main challenges of the previous biomechanical model for lung deformation, i.e., the requirement of precise boundary conditions and the lack of elasticity distribution. Methods: As opposed to typical methods in biomechanical modeling, the authors' method assumes that lung tissue is inhomogeneous. The authors thus propose a DIR method combining a varying intensity flow (VF) block-matching algorithm with the finite element method (FEM) for lung deformation from end-expiratory phase to end-inspiratory phase. Specifically, the lung deformation is formulated as a stress–strain problem, for which the boundary conditions are obtained from the VF block-matching algorithm and the element specific Young's modulus distribution is estimated by solving an optimization problem with a quasi-Newton method. The authors measure the spatial accuracy of their nonuniform model as well as a standard uniform model by applying both methods to four-dimensional computed tomography images of six patients. The spatial errors produced by the registrations are computed using large numbers (>1000) of expert-determined landmark point pairs. Results: In right-left, anterior–posterior, and superior–inferior directions, the mean errors (standard deviation) produced by the standard uniform FEM model are 1.42(1.42), 1.06(1.05), and 1.98(2.10) mm whereas the authors' proposed nonuniform model reduces these errors to 0.59(0.61), 0.52(0.51), and 0.78(0.89) mm. The overall 3D mean errors are 3.05(2.36) and 1.30(0.97) mm for the

  2. Decoherence of spin-deformed bosonic model

    SciTech Connect

    Dehdashti, Sh.; Mahdifar, A.; Bagheri Harouni, M.; Roknizadeh, R.

    2013-07-15

    The decoherence rate and some parameters affecting it are investigated for the generalized spin-boson model. We consider the spin-bosonic model when the bosonic environment is modeled by the deformed harmonic oscillators. We show that the state of the environment approaches a non-linear coherent state. Then, we obtain the decoherence rate of a two-level system which is in contact with a deformed bosonic environment which is either in thermal equilibrium or in the ground state. By using some recent realization of f-deformed oscillators, we show that some physical parameters strongly affect the decoherence rate of a two-level system. -- Highlights: •Decoherence of the generalized spin-boson model is considered. •In this model the environment consists of f-oscillators. •Via the interaction, the state of the environment approaches non-linear coherent states. •Effective parameters on decoherence are considered.

  3. Modelling deformation and fracture in confectionery wafers

    NASA Astrophysics Data System (ADS)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-01

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  4. Modelling deformation and fracture in confectionery wafers

    SciTech Connect

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  5. Mathematical modeling of deformation during hot rolling

    SciTech Connect

    Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.

    1994-12-31

    The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.

  6. Measurement of ship deformation based on ARX model

    NASA Astrophysics Data System (ADS)

    Ma, Xianglu; Qin, Shiqiao; Wang, Xingshu; Hu, Feng; Wu, Wei; Zheng, JiaXing

    2016-01-01

    Ship deformation is the main error source of partial reference. Such deformation can be estimated by laser gyro units and Kalman filter technology. For Kalman filter, deformation was divide into two parts, dynamic deformation, and static deformation. Traditionally, dynamic deformation is treated as AR2 model .In this paper, dynamic deformation is taken as a kind of ARX model. Based on actual data measured by Yuanwang-3 Space Survey Ship, simulation experiments are studied. Results show that the novel model can improve the measurement precision.

  7. Windswept lower limb deformities in patients with hypophosphataemic rickets.

    PubMed

    Al Kaissi, Ali; Farr, Sebastian; Ganger, Rudolf; Klaushofer, Klaus; Grill, Franz

    2013-12-06

    X-linked hypophosphataemic rickets is an X-linked dominant disorder that is secondary to renal phosphate-wasting. Genu varum and/or genu valgum have been described as the most common deformities in patients with hypophosphataemic rickets. Windswept deformity, which is valgus deformity in one knee and varus deformity in the other, was the most common deformity encountered in our department. We collected seven patients who had phenotypic and genotypic features consistent with the diagnosis of X-linked hypophosphataemic rickets. All presented with windswept lower limb deformity. We discuss the phenotypic and genotypic correlation, and the surgical procedures applied. Surgical interventions were scheduled to correct the triad of appearance, function and biomechanics. Re-alignment orthopaedic measures were applied to correct and to restore normal growth and development in these children. Post-operative measurements showed dramatic improvements in balance and gait. The most common deformity seen in patients with hypophosphataemic rickets is gradual anetrolateral bowing of the femur combined with tibia vara. Windswept lower limb deformity was the most common angular deformity in our patients with hypophosphataemic rickets. Baseline skeletal surveys and genotypic characterisation were subject to close scrutiny and assessment, with the aim of proper diagnosis and treatment. Nevertheless, recurrence of deformity is a common sequel and younger patients have a higher risk for recurrence.

  8. Personalized heterogeneous deformable model for fast volumetric registration.

    PubMed

    Si, Weixin; Liao, Xiangyun; Wang, Qiong; Heng, Pheng Ann

    2017-02-20

    Biomechanical deformable volumetric registration can help improve safety of surgical interventions by ensuring the operations are extremely precise. However, this technique has been limited by the accuracy and the computational efficiency of patient-specific modeling. This study presents a tissue-tissue coupling strategy based on penalty method to model the heterogeneous behavior of deformable body, and estimate the personalized tissue-tissue coupling parameters in a data-driven way. Moreover, considering that the computational efficiency of biomechanical model is highly dependent on the mechanical resolution, a practical coarse-to-fine scheme is proposed to increase runtime efficiency. Particularly, a detail enrichment database is established in an offline fashion to represent the mapping relationship between the deformation results of high-resolution hexahedral mesh extracted from the raw medical data and a newly constructed low-resolution hexahedral mesh. At runtime, the mechanical behavior of human organ under interactions is simulated with this low-resolution hexahedral mesh, then the microstructures are synthesized in virtue of the detail enrichment database. The proposed method is validated by volumetric registration in an abdominal phantom compression experiments. Our personalized heterogeneous deformable model can well describe the coupling effects between different tissues of the phantom. Compared with high-resolution heterogeneous deformable model, the low-resolution deformable model with our detail enrichment database can achieve 9.4× faster, and the average target registration error is 3.42 mm, which demonstrates that the proposed method shows better volumetric registration performance than state-of-the-art. Our framework can well balance the precision and efficiency, and has great potential to be adopted in the practical augmented reality image-guided robotic systems.

  9. Unified Model Deformation and Flow Transition Measurements

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.

    1999-01-01

    The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.

  10. Acoustoelasticity model of inhomogeneously deformed bodies

    NASA Astrophysics Data System (ADS)

    Kravchishin, O. Z.; Chekurin, V. F.

    2009-10-01

    We consider a mathematical model of dynamics of small elastic perturbations in an inhomogeneously deformed rigid body, where for the determining parameters of a local state we take the tensor characteristics of a given actual (strained) configuration (the Cauchy stress tensor and the Hencky or Almansi or Figner strain measure). An iteration algorithm is developed to solve the Cauchy problem stated in the framework of this model for a system of hyperbolic equations with variable coefficients that describes the propagation of elastic pulses in an inhomogeneous deformed continuum. In the case of two-dimensional stress fields, we obtain acoustoelasticity integral relations between the probing pulse parameters and the initial strain (stress) distribution in the direction of pulse propagation in the strained body. We also consider an example of application of the obtained integral relations in the inverse acoustic tomography problem for residual strains in a strip.

  11. A Digital Video Model Deformation System

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.; Childers, B. A.

    1986-01-01

    The use of slid-state array cameras and a PC controlled image acquisition system to measure model deformation in a wind tunnel is discussed. This digital system is an improvement to an earlier video model deformation system used at the National Transonic Facility (NTF) which employed high-resolution tube cameras and required the manual measurement of targets on video hardcopy images. The new system eliminates both the vibration-induced distortion associated with tube cameras and the manual readup of video images necessary in the earlier version. Camera calibration and data reduction procedures necessary to convert pixel image plane data from two cameras into wing deflections are presented. Laboratory tests to establish the uncertainty of the new system with the geometry to be used at the NTF are described.

  12. A digital video model deformation system

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.; Childers, B. A.

    The use of solid-state array cameras and a PC-controlled image acquisition system to measure model deformation in a wind tunnel is discussed. This digital system improves an earlier video model deformation system that used high-resolution tube cameras and required the manual measurement of targets on video hardcopy images. The new system eliminates both the vibration-induced distortion associated with tube cameras and the manual readup of video images necessary in the earlier version. Camera calibration and data reduction procedures necessary to convert pixel image plane data from two cameras into wing deflections are presented. Laboratory tests to establish the uncertainty of the system with the geometry to be used are described.

  13. Getting inflationary models using the deformation method

    NASA Astrophysics Data System (ADS)

    Rodrigues, J. J.; Souza, M. A. M.

    2015-04-01

    In this paper we show that the dynamics associated with slow-roll models of inflation can be investigated through a method called the deformation procedure. Using the latter, we explicitly derive an expression linking two slow-roll inflationary potentials, applying the resulting framework to show how to construct an eternal inflation from chaotic inflation, or even, a natural inflation from hilltop inflation, easily.

  14. Modeling plasticity by non-continuous deformation

    NASA Astrophysics Data System (ADS)

    Ben-Shmuel, Yaron; Altus, Eli

    2016-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  15. Explicit Seesaw Model and Deformed Fermion Universality

    NASA Astrophysics Data System (ADS)

    Krolikowski, Wojciech

    2003-01-01

    In the simple model of neutrino texture presented in this paper, the Majorana lefthanded mass matrix is zero, the Majorana righthanded mass matrix --- diagonal and degenerate, and the Dirac mass matrix has a hierarchical structure, deformed unitarily by nearly bimaximal mixing. In the case, when the Majorana righthanded term dominates over the Dirac term, the familiar seesaw mechanism leads effectively to the nearly bimaximal oscillations of active neutrinos, consistent with solar and atmospheric neutrino experiments. If the Dirac term, before its unitary deformation, is similar in shape to the known charged-lepton mass matrix, then parameters for solar ν e's and atmospheric ν μ 's become related to each other, predicting from the SuperKamiokande value of Δ m322 a tiny Δ m212 typical for MSW LOW solar solution rather than for MSW Large Mixing Angle solution. The predicted mass spectrum is then hierarchical. In Appendix a suggestive form of nearly bimaximal effective mass matrix is derived.

  16. Tracking of object deformations in color and depth video: deformation models and applications

    NASA Astrophysics Data System (ADS)

    Jordt, Andreas; Reinhold, Stefan; Koch, Reinhard

    2015-05-01

    The research on deformation tracking based on color image data has continuously gained a wide interest in the last 15 years. In addition, using depth sensors such as the Microsoft Kinect, allows to mitigate the ambiguity problems that arise when trying to solve the deformation tracking tasks on color images only, by adding depth information. However, the fusion of color and depth data is not straight forward, and the deformation tracking task is still ill-posed due to the lack of a general deformation model. The problem is usually circumvented by providing special deformation functions for the task at hand, e.g., skeleton-based for reconstructing people or triangle-based for tracking planar surfaces. In this article we summarize the Analysis by Synthesis (AbS) approach for deformation tracking in depth and color video and show some successful applications of specialized deformation functions. To overcome the issues with NURBS based deformation tracking we propose a new geodesic RBF-based deformation model, which can adapt to any surface topology and shape, while keeping the number of deformation parameters low. Example deformations for objects of different topologies are given, showing the versatility and efficiency of the proposed model.

  17. Modelling highly deformable metal extrusion using SPH

    NASA Astrophysics Data System (ADS)

    Prakash, Mahesh; Cleary, Paul W.

    2015-05-01

    Computational modelling is often used to reduce trial extrusions through accurate defect prediction. Traditionally, metal extrusion is modelled using mesh based finite element methods. However, large plastic deformations can lead to heavy re-meshing and numerical diffusion. Here we use the mesh-less smoothed particle hydrodynamics method since it allows simulation of large deformations without re-meshing and the tracking of history dependent properties such as plastic strain making it suitable for defect prediction. The variation in plastic strain and deformation for aluminium alloy in a cylindrical 3D geometry with extrusion ratio and die angle is evaluated. The extrusion process is found to have three distinct phases consisting of an initial sharp rise in extrusion force, a steady phase requiring constant force and terminating in a sharp decline in force as metal is completely extruded. Deformation and plastic strain increased significantly with extrusion ratio but only moderately with die angle. Extrusion force increased by 150 % as the extrusion ratio increased from 2:1 to 4:1 but had only a marginal change with die angle. A low strain zone in the centre of the extruded product was found to be a function of extrusion ratio but was persistent and did not vary with die angle. Simulation of a complex 3D building industry component showed large variations in plastic strain along the length of the product at two scales. These were due to change in metal behaviour as extrusion progressed from phase 1 to phase 2. A stagnation zone at the back of the die was predicted that could lead to the "funnel" or "pipe" defect.

  18. Deformations of Geometric Structures in Topological Sigma Models

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.

    2010-11-01

    We study a Lie algebra of formal vector fields Wn with it application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are described by a Hochschild cohomology of the DG-algebra A = (A,Q), Q = ∂¯+∂deform, which is defined to be the cohomology of (-1)nQ+dHoch. Here ∂¯ is the initial non-deformed BRST operator while ∂deform is the deformed part whose algebra is a Lie algebra of linear vector fields gln.

  19. Modeling plastic deformation effect on magnetization in ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Li, Jianwei; Xu, Minqiang; Leng, Jiancheng; Xu, Mingxiu

    2012-03-01

    Based on the Sablik-Landgraf model, an integrated model has been developed which provides a description of the effect of plastic deformation on magnetization. The modeling approach is to incorporate the effect of plastic deformation on the effective field and that on the model parameters. The effective field incorporates the contributions of residual stress, stress demagnetization term, and the plastic deformation. We also consider the effect of plastic deformation on the model parameters: pinning coefficient, the scaling constant and the interdomain coupling coefficient. The computed magnetization exhibits sharp change in the preliminary stage of plastic deformation, and then decreases slowly with the increase of plastic strain, in agreement with experimental results.

  20. A tumor growth model with deformable ECM.

    PubMed

    Sciumè, G; Santagiuliana, R; Ferrari, M; Decuzzi, P; Schrefler, B A

    2014-11-26

    Existing tumor growth models based on fluid analogy for the cells do not generally include the extracellular matrix (ECM), or if present, take it as rigid. The three-fluid model originally proposed by the authors and comprising tumor cells (TC), host cells (HC), interstitial fluid (IF) and an ECM, considered up to now only a rigid ECM in the applications. This limitation is here relaxed and the deformability of the ECM is investigated in detail. The ECM is modeled as a porous solid matrix with Green-elastic and elasto-visco-plastic material behavior within a large strain approach. Jauman and Truesdell objective stress measures are adopted together with the deformation rate tensor. Numerical results are first compared with those of a reference experiment of a multicellular tumor spheroid (MTS) growing in vitro, then three different tumor cases are studied: growth of an MTS in a decellularized ECM, growth of a spheroid in the presence of host cells and growth of a melanoma. The influence of the stiffness of the ECM is evidenced and comparison with the case of a rigid ECM is made. The processes in a deformable ECM are more rapid than in a rigid ECM and the obtained growth pattern differs. The reasons for this are due to the changes in porosity induced by the tumor growth. These changes are inhibited in a rigid ECM. This enhanced computational model emphasizes the importance of properly characterizing the biomechanical behavior of the malignant mass in all its components to correctly predict its temporal and spatial pattern evolution.

  1. A tumor growth model with deformable ECM

    PubMed Central

    Sciumè, G; Santagiuliana, R; Ferrari, M; Decuzzi, P; Schrefler, B A

    2015-01-01

    Existing tumor growth models based on fluid analogy for the cells do not generally include the extracellular matrix (ECM), or if present, take it as rigid. The three-fluid model originally proposed by the authors and comprising tumor cells (TC), host cells (HC), interstitial fluid (IF) and an ECM, considered up to now only a rigid ECM in the applications. This limitation is here relaxed and the deformability of the ECM is investigated in detail. The ECM is modeled as a porous solid matrix with Green-elastic and elasto-visco-plastic material behavior within a large strain approach. Jauman and Truesdell objective stress measures are adopted together with the deformation rate tensor. Numerical results are first compared with those of a reference experiment of a multicellular tumor spheroid (MTS) growing in vitro, then three different tumor cases are studied: growth of an MTS in a decellularized ECM, growth of a spheroid in the presence of host cells and growth of a melanoma. The influence of the stiffness of the ECM is evidenced and comparison with the case of a rigid ECM is made. The processes in a deformable ECM are more rapid than in a rigid ECM and the obtained growth pattern differs. The reasons for this are due to the changes in porosity induced by the tumor growth. These changes are inhibited in a rigid ECM. This enhanced computational model emphasizes the importance of properly characterizing the biomechanical behavior of the malignant mass in all its components to correctly predict its temporal and spatial pattern evolution. PMID:25427284

  2. Implicit modeling of folds and overprinting deformation

    NASA Astrophysics Data System (ADS)

    Laurent, Gautier; Ailleres, Laurent; Grose, Lachlan; Caumon, Guillaume; Jessell, Mark; Armit, Robin

    2016-12-01

    Three-dimensional structural modeling is gaining importance for a broad range of quantitative geoscientific applications. However, existing approaches are still limited by the type of structural data they are able to use and by their lack of structural meaning. Most techniques heavily rely on spatial data for modeling folded layers, but are unable to completely use cleavage and lineation information for constraining the shape of modeled folds. This lack of structural control is generally compensated by expert knowledge introduced in the form of additional interpretive data such as cross-sections and maps. With this approach, folds are explicitly designed by the user instead of being derived from data. This makes the resulting structures subjective and deterministic. This paper introduces a numerical framework for modeling folds and associated foliations from typical field data. In this framework, a parametric description of fold geometry is incorporated into the interpolation algorithm. This way the folded geometry is implicitly derived from observed data, while being controlled through structural parameters such as fold wavelength, amplitude and tightness. A fold coordinate system is used to support the numerical description of fold geometry and to modify the behavior of classical structural interpolators. This fold frame is constructed from fold-related structural elements such as axial foliations, intersection lineations, and vergence. Poly-deformed terranes are progressively modeled by successively modeling each folding event going backward through time. The proposed framework introduces a new modeling paradigm, which enables the building of three-dimensional geological models of complex poly-deformed terranes. It follows a process based on the structural geologist approach and is able to produce geomodels that honor both structural data and geological knowledge.

  3. Chewing simulation with a physically accurate deformable model.

    PubMed

    Pascale, Andra Maria; Ruge, Sebastian; Hauth, Steffen; Kordaß, Bernd; Linsen, Lars

    2015-01-01

    Nowadays, CAD/CAM software is being used to compute the optimal shape and position of a new tooth model meant for a patient. With this possible future application in mind, we present in this article an independent and stand-alone interactive application that simulates the human chewing process and the deformation it produces in the food substrate. Chewing motion sensors are used to produce an accurate representation of the jaw movement. The substrate is represented by a deformable elastic model based on the finite linear elements method, which preserves physical accuracy. Collision detection based on spatial partitioning is used to calculate the forces that are acting on the deformable model. Based on the calculated information, geometry elements are added to the scene to enhance the information available for the user. The goal of the simulation is to present a complete scene to the dentist, highlighting the points where the teeth came into contact with the substrate and giving information about how much force acted at these points, which therefore makes it possible to indicate whether the tooth is being used incorrectly in the mastication process. Real-time interactivity is desired and achieved within limits, depending on the complexity of the employed geometric models. The presented simulation is a first step towards the overall project goal of interactively optimizing tooth position and shape under the investigation of a virtual chewing process using real patient data (Fig 1).

  4. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  5. Modelling of orbital deformation using finite-element analysis

    PubMed Central

    Al-Sukhun, Jehad; Lindqvist, Christian; Kontio, Risto

    2005-01-01

    The purpose of this study was to develop a three-dimensional finite-element model (FEM) of the human orbit, containing the globe, to predict orbital deformation in subjects following a blunt injury. This study investigated the hypothesis that such deformation could be modelled using finite-element techniques. One patient who had CT-scan examination to the maxillofacial skeleton including the orbits, as part of her treatment, was selected for this study. A FEM of one of the orbits containing the globe was constructed, based on CT-scan images. Simulations were performed with a computer using the finite-element software NISA (EMRC, Troy, USA). The orbit was subjected to a blunt injury of a 0.5 kg missile with 30 m s−1 velocity. The FEM was then used to predict principal and shear stresses or strains at each node position. Two types of orbital deformation were predicted during different impact simulations: (i) horizontal distortion and (ii) rotational distortion. Stress values ranged from 213.4 to 363.3 MPa for the maximum principal stress, from −327.8 to −653.1 MPa for the minimum principal stress, and from 212.3 to 444.3 MPa for the maximum shear stress. This is the first finite-element study, which demonstrates different and concurrent patterns of orbital deformation in a subject following a blunt injury. Finite element modelling is a powerful and invaluable tool to study the multifaceted phenomenon of orbital deformation. PMID:16849235

  6. Semiautomated four-dimensional computed tomography segmentation using deformable models

    SciTech Connect

    Ragan, Dustin; Starkschall, George; McNutt, Todd; Kaus, Michael; Guerrero, Thomas; Stevens, Craig W.

    2005-07-15

    The purpose of this work is to demonstrate a proof of feasibility of the application of a commercial prototype deformable model algorithm to the problem of delineation of anatomic structures on four-dimensional (4D) computed tomography (CT) image data sets. We acquired a 4D CT image data set of a patient's thorax that consisted of three-dimensional (3D) image data sets from eight phases in the respiratory cycle. The contours of the right and left lungs, cord, heart, and esophagus were manually delineated on the end inspiration data set. An interactive deformable model algorithm, originally intended for deforming an atlas-based model surface to a 3D CT image data set, was applied in an automated fashion. Triangulations based on the contours generated on each phase were deformed to the CT data set on the succeeding phase to generate the contours on that phase. Deformation was propagated through the eight phases, and the contours obtained on the end inspiration data set were compared with the original manually delineated contours. Structures defined by high-density gradients, such as lungs, cord, and heart, were accurately reproduced, except in regions where other gradient boundaries may have confused the algorithm, such as near bronchi. The algorithm failed to accurately contour the esophagus, a soft-tissue structure completely surrounded by tissue of similar density, without manual interaction. This technique has the potential to facilitate contour delineation in 4D CT image data sets; and future evolution of the software is expected to improve the process.

  7. A geometric deformable model for echocardiographic image segmentation

    NASA Technical Reports Server (NTRS)

    Hang, X.; Greenberg, N. L.; Thomas, J. D.

    2002-01-01

    Gradient vector flow (GVF), an elegant external force for parametric deformable models, can capture object boundaries from both sides. A new geometric deformable model is proposed that combines GVF and the geodesic active contour model. The level set method is used as the numerical method of this model. The model is applied for echocardiographic image segmentation.

  8. A geometric deformable model for echocardiographic image segmentation

    NASA Technical Reports Server (NTRS)

    Hang, X.; Greenberg, N. L.; Thomas, J. D.

    2002-01-01

    Gradient vector flow (GVF), an elegant external force for parametric deformable models, can capture object boundaries from both sides. A new geometric deformable model is proposed that combines GVF and the geodesic active contour model. The level set method is used as the numerical method of this model. The model is applied for echocardiographic image segmentation.

  9. Approach to analyze a deformable moving target by using the shape deformation model and morphological operators

    NASA Astrophysics Data System (ADS)

    Wu, Weiguo; Asai, Take; Akatsuka, Takao

    1995-10-01

    The measurement of the characteristic parameters for a moving object with deformation is often an important problem. Here, an approach to analyze the shape change of a ball, when it is kicked in soccer, is proposed by using a simple shape deformation model to evaluate the shape change from the image sequence. Moreover, to determine the parameters of the model which apply to actual ball deformation, the detection of ball is necessary, and the pattern spectrum based on morphological operators is considered. Here, we assume that the deformation surface of the ball is a circular arc, when it is kicked by foot, and the arc is always convex when it is observed from the kicking side. To obtain the parameters of the arc, the preprocessing of the ball image such as local binarization, the region filling and noisy smoothing with morphological operators, is performed from actual image sequence. In order to detect the ball, the pattern spectrum with morphological operators is measured, and then circumscribed circle of the ball is extracted. So, the center and radius of the ball from circumscribed circle and the arc of the deformation surface of the model are obtained. Finally, the characteristic parameters of a moving ball such as the deformation are measured by using the shape deformation model. To demonstrate the effect of this method, we show an application to extract the deformation of the ball in football for the actual sports skill training.

  10. Real-time deformable models for surgery simulation: a survey.

    PubMed

    Meier, U; López, O; Monserrat, C; Juan, M C; Alcañiz, M

    2005-03-01

    Simulating the behaviour of elastic objects in real time is one of the current objectives of computer graphics. One of its fields of application lies in virtual reality, mainly in surgery simulation systems. In computer graphics, the models used for the construction of objects with deformable behaviour are known as deformable models. These have two conflicting characteristics: interactivity and motion realism. The different deformable models developed to date have promoted only one of these (usually interactivity) to the detriment of the other (biomechanical realism). In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.

  11. Videogrammetric Model Deformation Measurement System User's Manual

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2002-01-01

    The purpose of this manual is to provide the user of the NASA VMD system, running the MDef software, Version 1.10, all information required to operate the system. The NASA Videogrammetric Model Deformation system consists of an automated videogrammetric technique used to measure the change in wing twist and bending under aerodynamic load in a wind tunnel. The basic instrumentation consists of a single CCD video camera and a frame grabber interfaced to a computer. The technique is based upon a single view photogrammetric determination of two-dimensional coordinates of wing targets with fixed (and known) third dimensional coordinate, namely the span-wise location. The major consideration in the development of the measurement system was that productivity must not be appreciably reduced.

  12. Prosthodontic rehabilitation of a patient with bilateral auricular deformity

    PubMed Central

    Thombre, Ram U.; Pallavi, Daigavane

    2011-01-01

    Maxillofacial prosthodontics is an art and science which provides life like appearance to the person with facial deformity. Maxillofacial prosthetic rehabilitation for acquired defects has become more complex and sophisticated with advancement in techniques and materials. This case report describes the clinical and laboratory procedure for fabricating an auricular prosthesis for a patient with trauma related bilateral auricular deformity. Ear prosthesis was fabricated in two parts taking retention from external auditory canal. PMID:21814620

  13. Prosthodontic rehabilitation of a patient with bilateral auricular deformity.

    PubMed

    Mantri, Sneha Shivkumar; Thombre, Ram U; Pallavi, Daigavane

    2011-06-01

    Maxillofacial prosthodontics is an art and science which provides life like appearance to the person with facial deformity. Maxillofacial prosthetic rehabilitation for acquired defects has become more complex and sophisticated with advancement in techniques and materials. This case report describes the clinical and laboratory procedure for fabricating an auricular prosthesis for a patient with trauma related bilateral auricular deformity. Ear prosthesis was fabricated in two parts taking retention from external auditory canal.

  14. On the sigma-model of deformed special geometry

    NASA Astrophysics Data System (ADS)

    Lopes Cardoso, Gabriel; Véliz-Osorio, Alvaro

    2013-07-01

    We discuss the deformed sigma-model that arises when considering four-dimensional N=2 abelian vector multiplets in the presence of an arbitrary chiral background field. In addition, we allow for a class of deformations of special geometry by non-holomorphic terms. We analyze the geometry of the sigma-model in terms of intrinsic torsion classes. We show that, generically, the deformed geometry is non-Kähler. We illustrate our findings with an example. We also express the deformed sigma-model in terms of the Hesse potential that underlies the real formulation of special geometry.

  15. Deformation methods in modelling of the inner magnetospheric electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Toivanen, P. K.

    2007-12-01

    Various deformation methods have been widely used in animation image processing. In common terms, they are mathematical presentations of deformations of an image drawn on an elastic material under stretching or compression of the material. Such a method has also been used in modelling of the magnetospheric magnetic fields, and recently been generalized to include also the electric fields. In this presentations, the theory of the deformation method and an application in a form of a new global magnetospheric electromagnetic field model are previewed. The main focus of the presentation is on the inner magnetospheric current systems and associated electromagnetic fields during quiet and disturbed periods. Finally, a short look at the modern deformation methods in image processing is taken. These methods include the Free Form Deformations and Moving Least Squares Deformations, and their future applications in magnetospheric field modelling are discussed.

  16. Cervical Disc Deformation During Flexion–Extension in Asymptomatic Controls and Single-Level Arthrodesis Patients

    PubMed Central

    Anderst, William; Donaldson, William; Lee, Joon; Kang, James

    2016-01-01

    The aim of this study was to characterize cervical disc deformation in asymptomatic subjects and single-level arthrodesis patients during in vivo functional motion. A validated model-based tracking technique determined vertebral motion from biplane radiographs collected during dynamic flexion–extension. Level-dependent differences in disc compression–distraction and shear deformation were identified within the anterior and posterior annulus (PA) and the nucleus of 20 asymptomatic subjects and 15 arthrodesis patients using a mixed-model statistical analysis. In asymptomatic subjects, disc compression and shear deformation per degree of flexion–extension progressively decreased from C23 to C67. The anterior and PA experienced compression–distraction deformation of up to 20%, while the nucleus region was compressed between 0% (C67) and 12% (C23). Peak shear deformation ranged from 16% (at C67) to 33% (at C45). In the C5–C6 arthrodesis group, C45 discs were significantly less compressed than in the control group in all disc regions (all p ≤ 0.026). In the C6–C7 arthrodesis group, C56 discs were significantly less compressed than the control group in the nucleus (p = 0.023) and PA (p = 0.014), but not the anterior annulus (AA; p = 0.137). These results indicate in vivo disc deformation is level-dependent, and single-level anterior arthrodesis alters the compression–distraction deformation in the disc immediately superior to the arthrodesis. PMID:23861160

  17. dMODELS: A software package for modeling volcanic deformation

    NASA Astrophysics Data System (ADS)

    Battaglia, M.

    2013-12-01

    dMODELS is software package including the most common source models used to interpret deformation measurements near active volcanic centers. The emphasis is on estimating the parameters of analytical models of deformation by inverting data from the Global Positioning System (GPS), InSAR, tiltmeters and strainmeters. Source models include: (a) pressurized spherical, ellipsoidal and sill-like magma chambers in an elastic, homogeneous, flat half-space; and (b) pressurized spherical magma chamber with correction for the effect of topography (i.e., Williams and Wadge, 1998). All the expressions have been extended to include deformation and strain within the Earth's crust (as opposed to only the Earth's surface) and verified against finite element models. The software has been developed using Matlab but compiled versions that can be run using the free Matlab Compiler Runtime (MCR) are available for Linux, and Windows 7 (32bit and 64bit). The MATLAB scripts and compiled files are open source and intended for teaching and research. The software can be downloaded from the USGS web site pubs.usgs.gov/tm/13/b1/. Please e-mail the author at mbattaglia@usgs.gov if you would like to be included in the dMODELS mail list to get information about the release of software updates.

  18. Calcaneus deformity in the ambulant patient with myelomeningocele.

    PubMed

    Fraser, R K; Hoffman, E B

    1991-11-01

    We reviewed our experience of tibialis anterior transfer and anterior release for calcaneus deformity in 46 feet of 26 ambulant patients with myelomeningocele. At an average follow-up of 8.4 years (2 to 17.6) there were 89% who had satisfactory results; 64% of the patients having tibialis anterior transfers were able to stand on their toes. Hip abductor power was a good predictor of a functional transfer. Pre-operative trophic ulceration of the heel increased from 3.2% to 33% if surgery was delayed. Secondary deformities, two-thirds of them into valgus, developed in 76% of feet.

  19. Jordanian deformation of the open sℓ(2) Gaudin model

    NASA Astrophysics Data System (ADS)

    António, N. Cirilo; Manojlović, N.; Nagy, Z.

    2014-04-01

    We derive a deformed sℓ( 2) Gaudin model with integrable boundaries. Starting from the Jordanian deformation of the SL( 2)-invariant Yang R-matrix and generic solutions of the associated reflection equation and the dual reflection equation, we obtain the corresponding inhomogeneous spin- 1/2 XXX chain. The semiclassical expansion of the transfer matrix yields the deformed sℓ( 2) Gaudin Hamiltonians with boundary terms.

  20. Probabilistic multiobject deformable model for MR/SPECT brain image registration and segmentation

    NASA Astrophysics Data System (ADS)

    Nikou, Christophoros; Heitz, Fabrice; Armspach, Jean-Paul

    1999-05-01

    A probabilistic deformable model for the representation of brain structures is described. The statistically learned deformable model represents the relative location of head (skull and scalp) and brain surfaces in MR/SPECT images pairs and accommodates the significant variability of these anatomical structures across different individuals. To provide a training set, a representative collection of 3D MRI volumes of different patients have first been registered to a reference image. The head and brain surfaces of each volume are parameterized by the amplitudes of the vibration modes of a deformable spherical mesh. For a given MR image in the training set, a vector containing the largest vibration modes describing the head and the brain is created. This random vector is statistically constrained by retaining the most significant variations modes of its Karhunen-Loeve expansion on the training population. By these means, both head and brain surfaces are deformed according to the anatomical variability observed in the training set. Two applications of the probabilistic deformable model are presented: the deformable model-based registration of 3D multimodal (MR/SPECT) brain images and the segmentation of the brain from MRI using the probabilistic constraints embedded in the deformable model. The multi-object deformable model may be considered as a first step towards the development of a general purpose probabilistic anatomical atlas of the brain.

  1. Deformation modeling and constitutive modeling for anisotropic superalloys

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    A study of deformation mechanisms in the single crystal superalloy PWA 1480 was conducted. Monotonic and cyclic tests were conducted from 20 to 1093 C. Both (001) and near-(123) crystals were tested, at strain rates of 0.5 and 50 percent/minute. The deformation behavior could be grouped into two temperature regimes: low temperatures, below 760 C; and high temperatures, above 820 to 950 C depending on the strain rate. At low temperatures, the mechanical behavior was very anisotropic. An orientation dependent CRSS, a tension-compression asymmetry, and anisotropic strain hardening were all observed. The material was deformed by planar octahedral slip. The anisotropic properties were correlated with the ease of cube cross-slip, as well as the number of active slip systems. At high temperatures, the material was isotropic, and deformed by homogeneous gamma by-pass. It was found that the temperature dependence of the formation of superlattice-intrinsic stacking faults was responsible for the local minimum in the CRSS of this alloy at 400 C. It was proposed that the cube cross-slip process must be reversible. This was used to explain the reversible tension-compression asymmetry, and was used to study models of cross-slip. As a result, the cross-slip model proposed by Paidar, Pope and Vitek was found to be consistent with the proposed slip reversibility. The results were related to anisotropic viscoplastic constitutive models. The model proposed by Walter and Jordan was found to be capable of modeling all aspects of the material anisotropy. Temperature and strain rate boundaries for the model were proposed, and guidelines for numerical experiments were proposed.

  2. HSR Model Deformation Measurements from Subsonic to Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Erickson, G. E.; Goodman, W. L.; Fleming, G. A.

    1999-01-01

    This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.

  3. [Rehabilitation of patients with deformations after periorbital burns].

    PubMed

    Korotkova, N L; Ivanov, S Iu; Mitrofanov, N V; Muraev, A A

    2013-01-01

    The study involved 152 patients with facial burns consequences (including 118 patients with burns of the mouth). Specific post-burn deformities were revealed: I type - deformity of the anatomical unit caused by scar tissue traction from adjacent regions (the unit itself preserved); II type - distortion caused by single scars without significant tissue defect; III type - post-burn deformities with total or subtotal skin scarring; IV type - tissue defects characterized by loss of anatomical unit with deep anatomical structures down to the bone and possible exposition of the paranasal sinuses and face cavities. Such classification based on the amount of tissue loss dictates the choice of surgical technique, allowing optimal functional and aesthetic treatment results.

  4. Preliminary deformation model for National Seismic Hazard map of Indonesia

    SciTech Connect

    Meilano, Irwan; Gunawan, Endra; Sarsito, Dina; Prijatna, Kosasih; Abidin, Hasanuddin Z.; Susilo,; Efendi, Joni

    2015-04-24

    Preliminary deformation model for the Indonesia’s National Seismic Hazard (NSH) map is constructed as the block rotation and strain accumulation function at the elastic half-space. Deformation due to rigid body motion is estimated by rotating six tectonic blocks in Indonesia. The interseismic deformation due to subduction is estimated by assuming coupling on subduction interface while deformation at active fault is calculated by assuming each of the fault‘s segment slips beneath a locking depth or in combination with creeping in a shallower part. This research shows that rigid body motion dominates the deformation pattern with magnitude more than 15 mm/year, except in the narrow area near subduction zones and active faults where significant deformation reach to 25 mm/year.

  5. Modeling the effects of particle deformation in chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Chen, Xiaochun; Zhao, Yongwu; Wang, Yongguang

    2012-09-01

    In a chemical mechanical polishing (CMP) process, an active abrasive particle participating in the wear process will contact the pad and the wafer at the same time. The applied polishing load causes the deformation of the pad in the contact interface of the particle and the pad, and the deformation of the wafer in the contact interface of the particle and the wafer. Besides, this force causes the deformation of the abrasive particle. Based on the elastic-plastic micro-contact mechanics and abrasive wear theory, a novel model for material removal rate (MRR) with consideration of the abrasive particle deformation is presented in this paper. The deformation of the abrasive particle, affecting the indentation depth of the particle into the wafer, is quantitatively incorporated into the model. The results and analyses show that the present model is in good agreement with the experimental data.

  6. Analysis of deformable image registration accuracy using computational modeling

    SciTech Connect

    Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.

    2010-03-15

    Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results show that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter

  7. Robust Shape Estimation with Deformable Models

    NASA Astrophysics Data System (ADS)

    Marques, Jorge S.; Nascimento, Jacinto C.; Abrantes, Arnaldo J.; Silveira, Margarida

    This paper addresses the estimation of 2D object boundary from noisy data, using deformable contours. First, it discusses the relationship between deformable contours and other Pattern Recognition algorithms (e.g., Kohonen maps, mean shift, fuzzy c-means) and derives a unified framework which allows a joint formulation for a wide set of methods. Afterwords, the paper addresses the estimation of deformable curves in cluttered images, assuming that there is a large number of outlier features detected in the image. The paper presents two robust algorithms: the adaptive snake for static objects and a robust tracker (S-PDAF) for moving objects in video sequences. The advantages of both algorithms with respect to classic methods are illustrated by examples.

  8. Effect of Material Property Heterogeneity on Biomechanical Modeling of Prostate under Deformation

    PubMed Central

    Samavati, Navid; McGrath, Deirdre M.; Jewett, Michael A.S.; van der Kwast, Theo; Ménard, Cynthia; Brock, Kristy K.

    2015-01-01

    Biomechanical model based deformable image registration has been widely used to account for prostate deformation in various medical imaging procedures. Biomechanical material properties are important components of a biomechanical model. In this study, the effect of incorporating tumor-specific material properties in the prostate biomechanical model was investigated to provide insight into the potential impact of material heterogeneity on the prostate deformation calculations First, a simple spherical prostate and tumor model was used to analytically describe the deformations and demonstrate the fundamental effect of changes in the tumor volume and stiffness in the modeled deformation. Next, using clinical prostate model, a parametric approach was used to describe the variations in the heterogeneous prostate model by changing tumor volume, stiffness, and location, to show the differences in the modeled deformation between heterogeneous and homogeneous prostate models. Finally, five clinical prostatectomy examples were used in separately performed homogeneous and heterogeneous biomechanical model based registrations to describe the deformations between 3D reconstructed histopathology images and ex vivo Magnetic Resonance Imaging (MRI), and examine the potential clinical impact of modeling biomechanical heterogeneity of the prostate. The analytical formulation showed that increasing the tumor volume and stiffness could significantly increase the impact of heterogeneous prostate model in the calculated displacement differences compared to homogeneous model. The parametric approach using a single prostate model indicated up to 4.8 mm of displacement difference at the tumor boundary compared to a homogeneous model. . Such differences in the deformation of prostate could bepotentially clinically significant given the voxel size of the ex vivo MR images (0.3×0.3×0.3 mm). However, no significant changes in the registration accuracy were observed using heterogeneous models

  9. Effect of material property heterogeneity on biomechanical modeling of prostate under deformation.

    PubMed

    Samavati, Navid; McGrath, Deirdre M; Jewett, Michael A S; van der Kwast, Theo; Ménard, Cynthia; Brock, Kristy K

    2015-01-07

    Biomechanical model based deformable image registration has been widely used to account for prostate deformation in various medical imaging procedures. Biomechanical material properties are important components of a biomechanical model. In this study, the effect of incorporating tumor-specific material properties in the prostate biomechanical model was investigated to provide insight into the potential impact of material heterogeneity on the prostate deformation calculations. First, a simple spherical prostate and tumor model was used to analytically describe the deformations and demonstrate the fundamental effect of changes in the tumor volume and stiffness in the modeled deformation. Next, using a clinical prostate model, a parametric approach was used to describe the variations in the heterogeneous prostate model by changing tumor volume, stiffness, and location, to show the differences in the modeled deformation between heterogeneous and homogeneous prostate models. Finally, five clinical prostatectomy examples were used in separately performed homogeneous and heterogeneous biomechanical model based registrations to describe the deformations between 3D reconstructed histopathology images and ex vivo magnetic resonance imaging, and examine the potential clinical impact of modeling biomechanical heterogeneity of the prostate. The analytical formulation showed that increasing the tumor volume and stiffness could significantly increase the impact of the heterogeneous prostate model in the calculated displacement differences compared to the homogeneous model. The parametric approach using a single prostate model indicated up to 4.8 mm of displacement difference at the tumor boundary compared to a homogeneous model. Such differences in the deformation of the prostate could be potentially clinically significant given the voxel size of the ex vivo MR images (0.3  ×  0.3  ×  0.3 mm). However, no significant changes in the registration accuracy were

  10. Multimodality tumor delineation via fuzzy fusion and deformable modeling

    NASA Astrophysics Data System (ADS)

    Wasserman, Richard M.; Acharya, Raj S.; Sibata, Claudio H.; Shin, Kyu H.

    1995-05-01

    Radiation therapy is a treatment modality which seeks to deliver radiation energy to a localized site within a patient, in order to destroy a malignant tumor. The nature of radio-therapy results in dual, conflicting treatment goals: (1) the ability to deliver sufficient energy to a site so as to destroy the growth and, (2) sufficient localization of the energy to minimize the damage of surrounding, healthy tissue. One of the most important aspects of radiation dose treatment planning is the accurate localization of tumor masses. In order for a course of radiation therapy to be successful, the treatment volume must encompass the entire malignant process. Accordingly, the treatment volume must include the primary tumor of interest, as well as the direct and indirect course of the cancer's metastasis. Clinical results have demonstrated that a patient's tolerance to a given dose of radiation decreases as the volume exposed is increased. Therefore, improvements in tumor localization will provide the maximum amount of tissue sparing to the patient while encompassing the necessary target volume. An improved methodology is presented for the localization of tumors. This approach focuses on the integration of MRI and CT imaging data towards the generation of a mathematically optimal, tumor boundary. The solution to this problem is formulated within a framework integrating concepts from the fields of deformable modeling, fuzzy logic, and data fusion. Fuzzy edges derived from CT and MR are combined to form an integrated edge map, which subsequently guides the `growth' of a deformable tumor model. The fusion algorithm yields tumor contours which may be employed directly in the radiation therapy treatment planning process. Results are presented for the case of a phantom data set, with a simulated-implanted tumor, as well as for an actual patient.

  11. dMODELS: A software package for modeling volcanic deformation

    NASA Astrophysics Data System (ADS)

    Battaglia, Maurizio

    2017-04-01

    dMODELS is a software package that includes the most common source models used to interpret deformation measurements near active volcanic centers. The emphasis is on estimating the parameters of analytical models of deformation by inverting data from the Global Positioning System (GPS), Interferometric Synthetic Aperture Radar (InSAR), tiltmeters and strainmeters. Source models include: (a) pressurized spherical, ellipsoidal and sill-like magma chambers in an elastic, homogeneous, flat half-space; (b) pressurized spherical magma chambers with topography corrections; and (c) the solutions for a dislocation (fracture) in an elastic, homogeneous, flat half-space. All of the equations have been extended to include deformation and strain within the Earth's crust (as opposed to only at the Earth's surface) and verified against finite element models. Although actual volcanic sources are not embedded cavities of simple shape, we assume that these models may reproduce the stress field created by the actual magma intrusion or hydrothermal fluid injection. The dMODELS software employs a nonlinear inversion algorithm to determine the best-fit parameters for the deformation source by searching for the minimum of the cost function χv2 (chi square per degrees of freedom). The non-linear inversion algorithm is a combination of local optimization (interior-point method) and random search. This approach is more efficient for hyper-parameter optimization than trials on a grid. The software has been developed using MATLAB, but compiled versions that can be run using the free MATLAB Compiler Runtime (MCR) module are available for Windows 64-bit operating systems. The MATLAB scripts and compiled files are open source and intended for teaching and research. The software package includes both functions for forward modeling and scripts for data inversion. A software demonstration will be available during the meeting. You are welcome to contact the author at mbattaglia@usgs.gov for

  12. Brst-Invariant Deformations of Geometric Structures in Sigma Models

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.

    The closed string correlators can be constructed from the open ones using topological string theories as a model. The space of physical closed string states is isomorphic to the Hochschild cohomology of (A,Q) (operator Q of ghost number one), - this statement has been verified by means of computation of the Hochschild cohomology of the category of D-branes. We study a Lie algebra of formal vector fields Wn with its application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are describing by a Hochschild cohomology theory of the DG-algebra, {A} = (A, Q), Q = bar ∂ + {∂ {deform}}, which is defined to be the cohomology of (-1)nQ+dHoch. Here bar ∂ is the initial non-deformed BRST operator while ∂deform is the deformed part whose algebra is a Lie algebra of linear vector fields gln. We assume that if in the theory exists a single D-brane then all the information associated with deformations is encoded in an associative algebra A equipped with a differential Q = bar ∂ + {∂ {deform}}. In addition equivalence classes of deformations of these data are described by a Hochschild cohomology of (A,Q), an important geometric invariant of the (anti)holomorphic structure on X. We also discuss the identification of the harmonic structure (HT•(X) HΩ•(X)) of affine space X and the group {Ext}Xn ({ {O}_Δ }, { {O}Δ }) (the HKR isomorphism), and bulk-boundary deformation pairing.

  13. Macroscopic modelling of semisolid deformation for considering segregation bands induced by shear deformation

    NASA Astrophysics Data System (ADS)

    Morita, S.; Yasuda, H.; Nagira, T.; Gourlay, C. M.; Yoshiya, M.; Sugiyama, A.

    2012-07-01

    In-situ observation was carried out to observe deformation of semi-solid Fe-2mass%C steel with 65% solid and globular morphology by X-ray radiography. Deformation was predominantly controlled by the rearrangement of globules. The solid particles were pushed into each other and rearrangement caused lower solid fraction regions to form. On the basis of the observation, a macroscopic model that introduces a normal stress acting on the solid due to collisions and rearrangement is proposed. The solid particles are treated as a non-Newtonian fluid. The stiffness parameters, which characterize the flow of the solid, are introduced. Stability of semisolid to fluctuations in solid fraction during simple shear was analysed. Shear deformation can be stably localized in the semisolid with a certain solid fraction range. The model essentially reproduces band segregation formation.

  14. a Visualization Model of Flower Based on Deformation

    NASA Astrophysics Data System (ADS)

    Lu, Ling; Wang, Lei; Yang, Xuedong

    We present a simple and effective modeling method for flowers. It starts with an initial geometric shape, such as ellipsoid, cylinder, or plane surface et al., and then simulates flower components (such as pedicel, receptacle, pistils, stamens, petals and sepals) by addition deformation to the basic geometric shape. The detailed geometry of flower component is defined by basic equation for the basic shape along with a deformation function. A variety of flower can be produced by varying the deformation parameters. A number of examples are given in the paper to demonstrate the effectiveness of the proposed model.

  15. A Phase-field Model for Deformation Twinning

    SciTech Connect

    Heo, Tae Wook; Wang, Yi; Bhattacharya, Saswata; Sun, Xin; Hu, Shenyang Y.; Chen, Long-Qing

    2011-02-01

    We propose a phase-field model for modeling microstructure evolution during deformation twinning. Using a face-centered cubic aluminum as an example, the deformation energy as a function of shear strain is obtained using first-principle calculations. The gradient energy coefficients are fitted to the twin boundary energies and to the dislocation core energies. The elastic energy of twinned structures is included using the Khachaturyan’s elasticity theory. We simulated the twinning process under a number of fixed deformation magnitudes and predicted the microstructures.

  16. Generation of deformation twins in nanocrystalline metals: Theoretical model

    SciTech Connect

    Gutkin, M. Yu.; Ovid'ko, I. A.; Skiba, N. V.

    2006-11-01

    A theoretical model is suggested that describes the generation of deformation twins at grain boundaries in nanocrystalline metals. Within the model, a thick twin lamella in a nanoscale grain is generated due to stress-driven emission of twinning dislocations from a grain boundary. The lamella consists of overlapping stacking faults. The results account for experimental data on observation of deformation twins in nanocrystalline Al and Cu reported in the literature.

  17. Inelastic deformation and phenomenological modeling of aluminum including transient effect

    SciTech Connect

    Cho, C.W.

    1980-01-01

    A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelastic spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.

  18. Droplet Deformation Prediction With the Droplet Deformation and Breakup Model (DDB)

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  19. A multi-organ biomechanical model to analyze prostate deformation due to large deformation of the rectum

    NASA Astrophysics Data System (ADS)

    Brock, Kristy K.; Ménard, Cynthia; Hensel, Jennifer; Jaffray, David A.

    2006-03-01

    Magnetic resonance imaging (MRI) with an endorectal receiver coil (ERC) provides superior visualization of the prostate gland and its surrounding anatomy at the expense of large anatomical deformation. The ability to correct for this deformation is critical to integrate the MR images into the CT-based treatment planning for radiotherapy. The ability to quantify and understand the physiological motion due to large changes in rectal filling can also improve the precision of image-guided procedures. The purpose of this study was to understand the biomechanical relationship between the prostate, rectum, and bladder using a finite element-based multi-organ deformable image registration method, 'Morfeus' developed at our institution. Patients diagnosed with prostate cancer were enrolled in the study. Gold seed markers were implanted in the prostate and MR scans performed with the ERC in place and its surrounding balloon inflated to varying volumes (0-100cc). The prostate, bladder, and rectum were then delineated, converted into finite element models, and assigned appropriate material properties. Morfeus was used to assign surface interfaces between the adjacent organs and deform the bladder and rectum from one position to another, obtaining the position of the prostate through finite element analysis. This approach achieves sub-voxel accuracy of image co-registration in the context of a large ERC deformation, while providing a biomechanical understanding of the multi-organ physiological relationship between the prostate, bladder, and rectum. The development of a deformable registration strategy is essential to integrate the superior information offered in MR images into the treatment planning process.

  20. Brst-Invariant Deformations of Geometric Structures in Sigma Models

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.

    2011-06-01

    The closed string correlators can be constructed from the open ones using topological string theories as a model. The space of physical closed string states is isomorphic to the Hochschild cohomology of (A, Q) (operator Q of ghost number one), - this statement has been verified by means of computation of the Hochschild cohomology of the category of D-branes. We study a Lie algebra of formal vector fields Wn with its application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are describing by a Hochschild cohomology theory of the DG-algebra {A} = (A, Q), Q = /line{\\part} + \\part { deform}, which is defined to be the cohomology of (-1)n Q + dHoch. Here /line{\\part} is the initial non-deformed BRST operator while \\partdeform is the deformed part whose algebra is a Lie algebra of linear vector fields gln. We assume that if in the theory exists a single D-brane then all the information associated with deformations is encoded in an associative algebra A equipped with a differential Q = /line{\\part}+\\part { deform}. In addition equivalence classes of deformations of these data are described by a Hochschild cohomology of (A, Q), an important geometric invariant of the (anti)holomorphic structure on X. We also discuss the identification of the harmonic structure (HT•(X); HΩ•(X)) of affine space X and the group ExtXn({O}\\triangle , {O}\\triangle ) (the HKR isomorphism), and bulk-boundary deformation pairing.

  1. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches

    USGS Publications Warehouse

    Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.

    2013-01-01

    This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.

  2. Integrability of the η-deformed Neumann-Rosochatius model

    NASA Astrophysics Data System (ADS)

    Arutyunov, Gleb; Heinze, Martin; Medina-Rincon, Daniel

    2017-01-01

    An integrable deformation of the well-known Neumann-Rosochatius system is studied by considering generalised bosonic spinning solutions on the η-deformed \\text{Ad}{{\\text{S}}5}× {{\\text{S}}5} background. For this integrable model we construct a 4× 4 Lax representation and a set of integrals of motion that ensures its Liouville integrability. These integrals of motion correspond to the deformed analogues of the Neumann-Rosochatius integrals and generalise the previously found integrals for the η-deformed Neumann and {{≤ft(\\text{Ad}{{\\text{S}}5}× {{\\text{S}}5}\\right)}η} geodesic systems. Finally, we briefly comment on consistent truncations of this model.

  3. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  4. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    PubMed

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  5. A study of structural foot deformity in stroke patients

    PubMed Central

    Jang, Gwon Uk; Kweon, Mi Gyoug; Park, Seol; Kim, Ji Young; Park, Ji Won

    2015-01-01

    [Purpose] The aim of this study was to evaluate the structural deformity of the foot joint on the affected side in hemiplegic patients to examine factors that affect this kind of structural deformity. [Subjects and Methods] Thirty-one hemiplegic patients and 32 normal adults participated. The foot posture index (FPI) was used to examine the shape of the foot, the modified Ashworth scale test was used to examine the degree of ankle joint rigidity, the navicular drop test was used to investigate the degree of navicular change, and the resting calcaneal stance position test was used to identify location change of the heel bone. [Results] The FPIs of the paretic side of the hemiplegic patients, the non-paretic side of the hemiplegic patients, and normal participants were −0.25 ± 2.1, 1.74 ± 2.3, and 2.12 ± 3.4 respectively. [Conclusion] Our findings indicated that in stroke-related hemiplegic patients, the more severe the spasticity, the more supinated the foot. Further, the smaller the degree of change in the navicular height of hemiplegic patients is, the more supinated the paretic side foot is. Additionally, a greater change in the location of the calcaneus was associated with greater supination of the overall foot. PMID:25642071

  6. Development and Validation of a Novel Adult Spinal Deformity Surgical Invasiveness Score: Analysis of 464 Patients.

    PubMed

    Neuman, Brian J; Ailon, Tamir; Scheer, Justin K; Klineberg, Eric; Sciubba, Daniel M; Jain, Amit; Zebala, Lukas P; Passias, Peter G; Daniels, Alan H; Burton, Douglas C; Protopsaltis, Themi S; Hamilton, D Kojo; Ames, Christopher P

    2017-06-06

    A surgical invasiveness index (SII) has been validated in general spine procedures but not adult spinal deformity (ASD). To assess the ability of the SII to determine the invasiveness of ASD surgery and to create and validate a novel ASD index incorporating deformity-specific factors, which could serve as a standardized metric to compare outcomes and risk stratification of different ASD procedures for a given deformity. Four hundred sixty-four patients who underwent ASD surgery between 2009 and 2012 were identified in 2 multicenter prospective registries. Multivariable models of estimated blood loss (EBL) and operative time were created using deformity-specific factors. Beta coefficients derived from these models were used to attribute points to each component. Scoring was iteratively refined to determine the R 2 value of multivariate models of EBL and operative time using adult spinal deformity-surgical (ASD-S) as an independent variable. Similarly, we determined weighting of postoperative changes in radiographical parameters, which were incorporated into another index (adult spinal deformity-surgical and radiographical [ASD-SR]). The ability of these models to predict surgical invasiveness was assessed in a validation cohort. Each index was a significant, independent predictor of EBL and operative time ( P < .001). On multivariate analysis, ASD-S and ASD-SR explained more variability in EBL and operative time than did the SII ( P < .001). The ASD-SR explained 21% of the variation in EBL and 10% of the variation in operative time, whereas the SII explained 17% and 3.2%, respectively. The ASD-SR, which incorporates deformity-specific components, more accurately predicts the magnitude of ASD surgery than does the SII.

  7. Prosthetic Rehabilitation of a Patient with Congenitally Deformed Ears.

    PubMed

    Raju, Minu; Shetty, Manoj; Prasad D, Krishna

    2014-12-01

    Treacher Collins syndrome is a rare autosomal dominant congenital disorder characterized by craniofacial deformities and is found in about 1 in 50,000 births. This is a bilaterally symmetrical abnormalities derived from the first and second brachial arches and the nasal placode. Unfortunately, many of the new surgical techniques are extensive and compromise the patient's quality of life, not only function and esthetics but also the psychological status of the patient. These problems require prompt rehabilitation with surgery or prosthetic rehabilitation. This article presents a procedure in the basic fabrication of a prosthetic ear by a three-piece die technique.

  8. Deformed Calogero-Sutherland model and fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Atai, Farrokh; Langmann, Edwin

    2017-01-01

    The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.

  9. Robust Deformable Image Registration using Prior Shape Information for Atlas to Patient Registration

    PubMed Central

    Ellingsen, Lotta M.; Chintalapani, Gouthami; Taylor, Russell H.; Prince, Jerry L.

    2009-01-01

    Statistical atlases enable the individualization of atlas information for patient specific applications such as surgical planning. In this paper, a statistical atlas comprising a point distribution model defined on the vertices of a tetrahedral mesh is registered to a subject’s computed tomography scan of the human pelvis. The approach consists of a volumetric deformable registration method augmented to maintain the topology of the atlas mesh after deformation as well as incorporating the dominant three-dimensional shape modes in the atlas. Experimental results demonstrate that incorporation of the statistical shape atlas helps to stabilize the registration and improves robustness and registration accuracy. PMID:19515532

  10. Active deformation of the Gorda plate: Constraining deformation models with new geophysical data

    NASA Astrophysics Data System (ADS)

    Chaytor, Jason D.; Goldfinger, Chris; Dziak, Robert P.; Fox, Christopher G.

    2004-04-01

    The Gorda plate, the southernmost fragment of the larger Juan de Fuca plate system, is an example of a nonrigidly deforming tectonic accommodation zone or buffer plate, absorbing deformation and allowing the surrounding larger plates to act in a more rigid fashion. Here we present a new structural analysis of the plate based on full-plate bathymetric coverage, augmented by seismic reflection data and earthquake moment tensors and locations. We interpret internal deformation of the Gorda plate as an asymmetrical flexural-slip buckle with a vertical axis, utilizing reactivation of spreading-ridge fabric normal faults as strike-slip faults. Newly formed second-generation faults crosscutting the structural grain overprint the reactivated structures. The spreading fabric faults finally begin a second phase of extension as the plate approaches the subduction zone. This model, based on fault constraints, has allowed investigation of ridge-plate subduction interactions, and suggests that spreading-rate variations along the Gorda Ridge may be controlled by internal deformation of the plate rather than the reverse, as previously hypothesized.

  11. Computational model of deformable lenses actuated by dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Tongqing; Cai, Shengqiang; Wang, Huiming; Suo, Zhigang

    2013-09-01

    A recent design of deformable lens mimics the human eye, adjusting its focal length in response to muscle-like actuation. The artificial muscle is a membrane of a dielectric elastomer subject to a voltage. Here, we calculate the coupled and inhomogeneous deformation of the lens and the dielectric elastomer actuator by formulating a nonlinear boundary-value problem. We characterize the strain-stiffening elastomer with the Gent model and describe the voltage-induced deformation using the model of ideal dielectric elastomer. The computational predictions agree well with experimental data. We use the model to explore the space of parameters, including the prestretch of the membrane, the volume of the liquid in the lens, and the size of the dielectric elastomer actuator relative to the lens. We examine how various modes of failure limit the minimum radius of curvature.

  12. Symmetry Based No Core Shell Model in a Deformed Basis

    NASA Astrophysics Data System (ADS)

    Kekejian, David; Draayer, Jerry; Launey, Kristina

    2017-01-01

    To address current limitations of shell-model descriptions of large spatial deformation and cluster structures, we adopt a no-core shell model with a deformed harmonic oscillator basis and implement an angular momentum projection in a symmetry-adapted scheme. This approach allows us to reach larger model spaces as a result of computational memory savings for calculations of highly deformed states, such as the Hoyle state in C-12. The method is first tested with schematic interactions, but the ultimate goal is to carry forward calculations with realistic nucleon-nucleon interactions in future work. Supported by the U.S. NSF (OCI-0904874, ACI-1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and LSU's Center for Computation & Technology.

  13. Tidal deformation of planets: experience in experimental modeling.

    NASA Astrophysics Data System (ADS)

    Bobryakov, A. P.; Revuzhenko, A. F.; Shemyakin, E. I.

    1992-06-01

    Two types of apparatus are described for laboratory modeling of tidal deformation. Plane deformation occurs in the first, and the model of the body has the shape of an elliptical cylinder; in the second three-dimensional deformation occurs, and the model is spheroidal in shape. In both cases displacements simulating motion of the tidal wave are assigned on the boundary. A global mechanism of directed mass transfer has been discovered. It is connected with transformation of vertical displacements to horizontal ones. The internal particles describe almost closed trajectories in one complete rotation of the tidal wave, but do not return to their original position. Residual displacements accumulate with increasing number of cycles and lead to differential rotation of internal masses. Questions surrounding experimental measurement of energy dissipation and the role of an internal rigid core are investigated. The effect of directed transfer on the physical fields of planets is discussed.

  14. Role of anelastic rheology in volcanic deformation modelling

    NASA Astrophysics Data System (ADS)

    Trasatti, E.; Giunchi, C.; Bonafede, M.

    2003-04-01

    Analogical models of ground deformation in volcanic areas often show better agreement with observations than mathematical models assuming a perfectly elastic behaviour of the medium. In particular, extensive sand-box experiments show that, following an inflation episode at depth, strain localization takes place above the source, along fault-like structures, which play a fundamental role in governing the cumulative long term deformation of the medium. Owing to the low lithostatic pressure, to the widespread presence of fluids and to the low cohesion of volcanic material, shallow layers in a volcanic region are better described in terms of the modified Mohr-Coulomb constitutive relation. Deep layers, on the other side, are better described in terms of viscoelastic constitutive relations, owing to the high temperatures close to magma reservoirs. Taking into account the inelastic properties of the medium, it is possible to lower considerably the overpressure estimates inferred from elastic models and to reconcile inferred overpressure values with petrologic constraints. In this study, we develop finite element models of ground deformation in volcanic areas, employing elastic and inelastic constitutive laws. The aim of the analysis is to elucidate how a heterogeneous structure of the medium (variations in rheologic parameters and pore pressure) affect the stress and strain distribution. The huge ground deformation (more than 1.5 m) observed at Campi Flegrei caldera (Italy) during 1982-84 is modelled in terms of an inelastic behaviour of the medium. The caldera is characterized by different mechanical (elastic and inelastic) properties with respect to the host rocks, due to the different formation and evolution. Axi-symmetric finite element models are developed, involving an overpressure source located at depth greater than the deepest limit of hypocenter distribution. Models take into account gravity and the initial isotropic (lithostatic) stress state is perturbed by

  15. Modeling of Intellite 3 Layer Deformable Mirror

    SciTech Connect

    Papavasiliou, A

    2002-04-15

    This is a report on modeling of the Intellite three layer membrane mirror design. The goal of this project was to provide Intellite with a model that will allow them to design a mirror with confidence.

  16. Symmetries and deformations in the spherical shell model

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Pittel, S.

    2016-02-01

    We discuss symmetries of the spherical shell model that make contact with the geometric collective model of Bohr and Mottelson. The most celebrated symmetry of this kind is SU(3), which is the basis of Elliott’s model of rotation. It corresponds to a deformed mean field induced by a quadrupole interaction in a single major oscillator shell N and can be generalized to include several major shells. As such, Elliott’s SU(3) model establishes the link between the spherical shell model and the (quadrupole component of the) geometric collective model. We introduce the analogue symmetry induced by an octupole interaction in two major oscillator shells N-1 and N, leading to an octupole-deformed solution of the spherical shell model. We show that in the limit of large oscillator shells, N\\to ∞ , the algebraic octupole interaction tends to that of the geometric collective model.

  17. Forward and inverse modelling of post-seismic deformation

    NASA Astrophysics Data System (ADS)

    Crawford, Ophelia; Al-Attar, David; Tromp, Jeroen; Mitrovica, Jerry X.

    2017-02-01

    We consider a new approach to both the forward and inverse problems in post-seismic deformation. We present a method for forward modelling post-seismic deformation in a self-gravitating, heterogeneous and compressible earth with a variety of linear and nonlinear rheologies. We further demonstrate how the adjoint method can be applied to the inverse problem both to invert for rheological structure and to calculate the sensitivity of a given surface measurement to changes in rheology or time-dependence of the source. Both the forward and inverse aspects are illustrated with several numerical examples implemented in a spherically symmetric earth model.

  18. Forward and inverse modelling of post-seismic deformation

    NASA Astrophysics Data System (ADS)

    Crawford, Ophelia; Al-Attar, David; Tromp, Jeroen; Mitrovica, Jerry X.

    2016-11-01

    We consider a new approach to both the forward and inverse problems in post-seismic deformation. We present a method for forward modelling post-seismic deformation in a self-gravitating, heterogeneous and compressible earth with a variety of linear and non-linear rheologies. We further demonstrate how the adjoint method can be applied to the inverse problem both to invert for rheological structure and to calculate the sensitivity of a given surface measurement to changes in rheology or time-dependence of the source. Both the forward and inverse aspects are illustrated with several numerical examples implemented in a spherically symmetric earth model.

  19. Data driven modeling of plastic deformation

    DOE PAGES

    Versino, Daniele; Tonda, Alberto; Bronkhorst, Curt A.

    2017-05-01

    In this paper the application of machine learning techniques for the development of constitutive material models is being investigated. A flow stress model, for strain rates ranging from 10–4 to 1012 (quasi-static to highly dynamic), and temperatures ranging from room temperature to over 1000 K, is obtained by beginning directly with experimental stress-strain data for Copper. An incrementally objective and fully implicit time integration scheme is employed to integrate the hypo-elastic constitutive model, which is then implemented into a finite element code for evaluation. Accuracy and performance of the flow stress models derived from symbolic regression are assessed by comparisonmore » to Taylor anvil impact data. The results obtained with the free-form constitutive material model are compared to well-established strength models such as the Preston-Tonks-Wallace (PTW) model and the Mechanical Threshold Stress (MTS) model. Here, preliminary results show candidate free-form models comparing well with data in regions of stress-strain space with sufficient experimental data, pointing to a potential means for both rapid prototyping in future model development, as well as the use of machine learning in capturing more data as a guide for more advanced model development.« less

  20. Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation

    NASA Astrophysics Data System (ADS)

    Hooper, Andrew John

    While conventional interferometric synthetic aperture radar (InSAR) is a very effective technique for measuring crustal deformation, almost any interferogram includes large areas where the signals decorrelate and no measurement is possible. Consequently, most InSAR studies to date have focused on areas that are dry and sparsely vegetated. A relatively new analysis technique, permanent scatterer InSAR, overcomes the decorrelation problem by identifying resolution elements whose echo is dominated by a single scatterer in a series of interferograms. This technique has been useful for analysis of urban areas, where angular structures produce efficient reflectors that dominate background scattering. However, man-made structures are absent from most of the Earth's surface. Furthermore, this technique requires, a priori, an approximate temporal model for the deformation, whereas characterizing the temporal pattern of deformation is commonly one of the aims of any study. We have developed a new method of analysis, StaMPS, using spatial correlation of interferogram phase to find a network of stable pixels in all terrains, with or without buildings. Prior knowledge of temporal variations in the deformation rate is not required. We refer to these pixels as persistent scatterers (PS). A key component of our method is the development of two algorithms to unwrap a three-dimensional series of interferograms. We observe temporally-variable deformation, using an initial version of StaMPS, in data acquired over Long Valley caldera in California, for a period when deformation rates varied significantly. The inferred displacements of the PS compare well with ground truth. Using an enhanced version of StaMPS, we detect a period of steady deflation within the Volcan Alcedo caldera in the Galapagos Islands between 1997 and 2001, which we model with a contracting ellipsoidal magma body. Conventional InSAR has been limited here until now by high rates of temporal decorrelation over much of

  1. Deformation of facial model for complete denture prosthesis using ARAP group method and elastic properties.

    PubMed

    Cheng, Cheng; Cheng, Xiaosheng; Dai, Ning; Sun, Yuchun; Jiang, Xiaotong; Li, Weiwei

    2017-02-07

    With the development of 3D printing and computer graphics technology, mouth rehabilitation has increasingly adopted digital methods. This research proposes a new method to transform the appearance of facial model after complete denture prosthesis. A feature template with few feature points is first constructed according to the facial muscle anatomy and facial deformation after complete denture prosthesis. Next, the traditional as-rigid-as-possible (ARAP) method is optimised by clustering based on facial muscles. The optimised ARAP method is then used for real-time and interactive simulations. Finally, by classifying the degrees of elasticity in the model with additional weights, the simulation can be customised to the skin of individual patients. Different degrees of elastic deformation and post-operative models are superimposed for match analysis. Compared with our previous study, the error is reduced by 24.05%. Results show that our method can deform facial models accurately and efficiently.

  2. Mathematical models of carbon-carbon composite deformation

    NASA Astrophysics Data System (ADS)

    Golovin, N. N.; Kuvyrkin, G. N.

    2016-09-01

    Mathematical models of carbon-carbon composites (CCC) intended for describing the processes of deformation of structures produced by using CCC under high-temperature loading are considered. A phenomenological theory of CCC inelastic deformation is proposed, where such materials are considered as homogeneous ones with effective characteristics and where their high anisotropy of mechanical characteristics and different ways of resistance to extension and compression are taken into account. Micromechanical models are proposed for spatially reinforced CCC, where the difference between mechanical characteristics of components and the reinforcement scheme are taken into account. Themodel parameters are determined from the results of experiments of composite macrospecimens in the directions typical of the material. A version of endochronictype theory with several internal times "launched" for each composite component and related to some damage accumulation mechanisms is proposed for describing the inelastic deformation. Some practical examples are considered.

  3. Modeling Large-Strain, High-Rate Deformation in Metals

    SciTech Connect

    Lesuer, D R; Kay, G J; LeBlanc, M M

    2001-07-20

    The large strain deformation response of 6061-T6 and Ti-6Al-4V has been evaluated over a range in strain rates from 10{sup -4} s{sup -1} to over 10{sup 4} s{sup -1}. The results have been used to critically evaluate the strength and damage components of the Johnson-Cook (JC) material model. A new model that addresses the shortcomings of the JC model was then developed and evaluated. The model is derived from the rate equations that represent deformation mechanisms active during moderate and high rate loading. Another model that accounts for the influence of void formation on yield and flow behavior of a ductile metal (the Gurson model) was also evaluated. The characteristics and predictive capabilities of these models are reviewed.

  4. Matrix model description of baryonic deformations

    SciTech Connect

    Bena, Iosif; Murayama, Hitoshi; Roiban, Radu; Tatar, Radu

    2003-03-13

    We investigate supersymmetric QCD with N{sub c} + 1 flavors using an extension of the recently proposed relation between gauge theories and matrix models.The impressive agreement between the two sides provides a beautiful confirmation of the extension of the gauge theory-matrix model relation to this case.

  5. Treatment of Varus Deformities of the Lower Limbs in Patients with Achondroplasia and Hypochondroplasia

    PubMed Central

    Kaissi, Ali Al; Farr, Sebastian; Ganger, Rudolf; Hofstaetter, Jochen G; Klaushofer, Klaus; Grill, Franz

    2013-01-01

    Angular deformities of the lower limbs are a common clinical problem encountered in pediatric orthopaedic practices particularly in patients with osteochondrodysplasias. The varus deformity is more common than the valgus deformity in achondroplasia and hypochondroplasia patients because of the unusual growth of the fibulae than that of the tibiae. We retrospectively reviewed six patients (four patients with achondroplasia and two patients with hypochondroplsia) with relevant limb deformities due to the above-mentioned entities. All patients manifested significant varus deformity of the lower limbs. Detailed phenotypic characterization, radiologic and genetic testing was carried out as baseline diagnostic tool. We described the re-alignment procedures, which have been applied accordingly. Therefore, bilateral multi-level procedures, multi-apical planning and limb lengthening have been successfully applied. While recognition of the underlying syndromic association in patients who are manifesting angular deformities is the baseline for proper orthopaedic management, this paper demonstrates how to evaluate and treat these complex patients. PMID:23459260

  6. Modeling deformation behavior of the baseball.

    PubMed

    Nicholls, Rochelle Llewelyn; Miller, Karol; Elliott, Bruce C

    2005-02-01

    Regulating ball response to impact is one way to control ball exit velocity in baseball. This is necessary to reduce injuries to defensive players and maintain the balance between offense and defense in the game. This paper presents a model for baseball velocity-dependent behavior. Force-displacement data were obtained using quasi-static compression tests to 50% of ball diameter (n = 70 baseballs). The force-displacement curves for a very stiff baseball (Model B) and a softer type (Model C) were characterized by a Mooney-Rivlin model using implicit finite element analysis (ANSYS software, version 6.1). Agreement between experimental and numerical results was excellent for both Model B (C(10) = 0, C(01) = 3.7e(6) Pa) and Model C (C(10) = 0, C(01) = 2.6e(6) Pa). However, this material model was not available in the ANSYS/LSDYNA explicit dynamic software (version 6.1) used to quantify the transient behavior of the ball. Therefore the modeling process was begun again using a linear viscoelastic material. G(infinity), the long-term shear modulus of the material, was determined by the same implicit FEA procedure. Explicit FEA was used to quantify the time-dependent response of each ball in terms of instantaneous shear modulus (G0) and a decay term (beta). The results were evaluated with respect to published experimental data for the ball coefficient of restitution at five velocities (13.4-40.2 ms(-1)) and were in agreement with the experimental values. The model forms the basis for future research on baseball response to impact with the bat.

  7. Storm Tracks and Barotropic Deformation in Climate Models.

    NASA Astrophysics Data System (ADS)

    Black, Robert X.; Dole, Randall M.

    2000-08-01

    The relationship between the time-mean planetary-scale deformation field and the structure of midlatitude storm tracks is studied in wintertime simulations of the National Center for Atmospheric Research (NCAR) Community Climate Model and the National Aeronautics and Space Administration (NASA) Goddard Earth Observing System model. Model biases are determined by contrasting model simulations (forced by observed SSTs) with parallel analyses of NCEP-NCAR reanalyses. Barotropic diagnostics are employed to identify potential dynamical linkages between regional biases in the midlatitude storm tracks and the horizontal deformation field. Initial observational analyses confirm that synoptic eddies are optimally configured to transfer kinetic energy to the mean flow in the jet exit regions, where strong stretching deformation exists. In these regions, the major axes of the synoptic eddies are aligned along the dilatation axes of the mean flow. Consequently, mean flow advection stretches synoptic eddies along their major axes, thereby increasing their anisotropy and weakening their kinetic energy.A strong link is identified between model biases in the horizontal structure of the midlatitude storm tracks and the representation of upper-tropospheric barotropic deformation. In particular, model-simulated storm tracks extend too far downstream in regions where the zonal stretching deformation (associated with horizontal diffluence in jet exit regions) is either too weak in magnitude or displaced westward in comparison with observations. These biases are associated with anomalously weak or westward-displaced patterns of negative barotropic energy conversions, which normally act as a sink of synoptic eddy activity in the jet exit. The anomalous energy conversion patterns are primarily due to model biases in the winter-mean flow rather than the simulated horizontal eddy structures, which closely resemble observations.The results indicate that the horizontal structure of

  8. Target Recognition Using Neural Networks for Model Deformation Measurements

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.; Hibler, David L.

    1999-01-01

    Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.

  9. Biomedical image segmentation using geometric deformable models and metaheuristics.

    PubMed

    Mesejo, Pablo; Valsecchi, Andrea; Marrakchi-Kacem, Linda; Cagnoni, Stefano; Damas, Sergio

    2015-07-01

    This paper describes a hybrid level set approach for medical image segmentation. This new geometric deformable model combines region- and edge-based information with the prior shape knowledge introduced using deformable registration. Our proposal consists of two phases: training and test. The former implies the learning of the level set parameters by means of a Genetic Algorithm, while the latter is the proper segmentation, where another metaheuristic, in this case Scatter Search, derives the shape prior. In an experimental comparison, this approach has shown a better performance than a number of state-of-the-art methods when segmenting anatomical structures from different biomedical image modalities.

  10. Gauged spinning models with deformed supersymmetry

    NASA Astrophysics Data System (ADS)

    Fedoruk, Sergey; Ivanov, Evgeny

    2016-11-01

    New models of the SU(2|1) supersymmetric mechanics based on gauging the systems with dynamical ( 1, 4, 3) and semi-dynamical ( 4, 4, 0) supermultiplets are presented. We propose a new version of SU(2|1) harmonic superspace approach which makes it possible to construct the Wess-Zumino term for interacting ( 4, 4, 0) multiplets. A new {N}=4 extension of d = 1 Calogero-Moser multiparticle system is obtained by gauging the U( n) isometry of matrix SU(2|1) harmonic superfield model.

  11. Videogrammetric Model Deformation Measurement Technique for Wind Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.

    2006-01-01

    Videogrammetric measurement technique developments at NASA Langley were driven largely by the need to quantify model deformation at the National Transonic Facility (NTF). This paper summarizes recent wind tunnel applications and issues at the NTF and other NASA Langley facilities including the Transonic Dynamics Tunnel, 31-Inch Mach 10 Tunnel, 8-Ft high Temperature Tunnel, and the 20-Ft Vertical Spin Tunnel. In addition, several adaptations of wind tunnel techniques to non-wind tunnel applications are summarized. These applications include wing deformation measurements on vehicles in flight, determining aerodynamic loads based on optical elastic deformation measurements, measurements on ultra-lightweight and inflatable space structures, and the use of an object-to-image plane scaling technique to support NASA s Space Exploration program.

  12. Deformable part models for object detection in medical images

    PubMed Central

    2014-01-01

    Background Object detection in 3-D medical images is often necessary for constraining a segmentation or registration task. It may be a task in its own right as well, when instances of a structure, e.g. the lymph nodes, are searched. Problems from occlusion, illumination and projection do not arise, making the problem simpler than object detection in photographies. However, objects of interest are often not well contrasted against the background. Influence from noise and other artifacts is much stronger and shape and appearance may vary substantially within a class. Methods Deformable models capture the characteristic shape of an anatomic object and use constrained deformation for hypothesing object boundaries in image regions of low or non-existing contrast. Learning these constraints requires a large sample data base. We show that training may be replaced by readily available user knowledge defining a prototypical deformable part model. If structures have a strong part-relationship, or if they may be found based on spatially related guiding structures, or if the deformation is rather restricted, the supporting data information suffices for solving the detection task. We use a finite element model to represent anatomic variation by elastic deformation. Complex shape variation may be represented by a hierarchical model with simpler part variation. The hierarchy may be represented explicitly as a hierarchy of sub-shapes, or implicitly by a single integrated model. Data support and model deformation of the complete model can be represented by an energy term, serving as quality-of-fit function for object detection. Results The model was applied to detection and segmentation tasks in various medical applications in 2- and 3-D scenes. It has been shown that model fitting and object detection can be carried out efficiently by a combination of a local and global search strategy using models that are parameterized for the different tasks. Conclusions A part-based elastic

  13. A New Model for Episodic Caldera Deformation at Yellowstone

    NASA Astrophysics Data System (ADS)

    Cervelli, P. F.; Gervais, S. M.; Lowenstern, J. B.; Wicks, C. W.

    2012-12-01

    For nearly 90 years, geodetic measurements at Yellowstone have shown recurring episodes of uplift and subsidence confined mostly to the caldera but also extending into the Norris Geyser Basin. The most recent such episode began in late 2004 with the onset of caldera-wide uplift that continued for about 5 years before switching to subsidence in late 2009. The physical mechanism driving the deformation is unknown, though several researchers have proposed kinematic models that can reproduce the observed data. The "Lake" earthquake swarm, which occurred in the northern part of Yellowstone Lake from December 2008 through January 2009, provides a new constraint on caldera deformation models. The timing of the swarm correlates with an abrupt change in local deformation, which preceded the gradual transition from uplift to subsidence in late 2009. Thus, caldera deformation, at least in the vicinity of Yellowstone Lake, consists of two (or more) distinct parts, implying the existence of two (or more) distinct deformation sources. This fresh information leads us to propose a new kinematic model for deformation at Yellowstone, which we develop from the last 15 years of continuous GPS and InSAR data. Our new model consists of three deformation sources: (1) a cauldron block source that is subject to a constant displacement at its base while its surrounding ring fault remains locked; (2) a pressurizing (or depressurizing) spherical cavity near the Norris Geyser Basin, which is known to deform separately from the caldera; and (3) a pressurizing (or depressurizing) spherical cavity at the Sour Creek Dome, which we infer from the abrupt change in deformation rate after the Lake Swarm. We use the GPS and InSAR data from the period of strongest signal, summer 2005 through summer 2007, to optimize the geometry of the three sources: the locations and depths of the spherical cavity, and the perimeter of the cauldron block. We then, while holding their geometry fixed, estimate the

  14. Large deformations of reconfigurable active membranes: a finite element model

    NASA Astrophysics Data System (ADS)

    Son, Seyul; Goulbourne, N. C.

    2010-04-01

    In this paper, a finite element model is used to describe the inhomogeneous deformations of dielectric elastomers (DE). In our previous work, inhomogeneous deformations of the DE with simple boundary conditions represented by a system of highly nonlinear coupled differential equations (ordinary and partial) were solved using numerical approaches [1-3]. To solve for the electromechanical response for complex shapes (asymmetric), nonuniform loading, and complex boundary conditions a finite element scheme is required. This paper describes a finite element implementation of the DE material model proposed in our previous work in a commercial FE code (ABAQUS 6.8-1, PAWTUCKET, R.I, USA). The total stress is postulated as the summation of the elastic stress tensor and the Maxwell stress tensor, or more generally the electrostatic stress tensor. The finite element model is verified by analytical solutions and experimental results for planar membrane extensions subject to mechanical loads and an electric field: (i) equibiaxial extension and (ii) generalized biaxial extension. Specifically, the analytical solutions for equibiaxial extension of the DE is obtained by combining a modified large deformation membrane theory that accounts for the electromechanical coupling effect in actuation commonly referred to as the Maxwell stress [4]. A Mooney-Rivlin strain energy function is employed to describe the constitutive stress strain behavior of the DE. For the finite element implementation, the constitutive relationships from our previously proposed mathematical model [4] are implemented into the finite element code. Experimentally, a 250% equibiaxially prestretched DE sample is attached to a rigid joint frame and inhomogeneous deformations of the reconfigurable DE are observed with respect to mechanical loads and an applied electric field. The computational result for the reconfigurable DE is compared with the test result to validate the accuracy and robustness of the finite

  15. On the importance of modelling organ geometry and boundary conditions for predicting three-dimensional prostate deformation.

    PubMed

    Jahya, Alex; Schouten, Martijn G; Fütterer, Jurgen J; Misra, Sarthak

    2014-04-01

    The use of an ultrasound probe or a needle guide during biopsy deforms both the rectal wall and the prostate, resulting in lesion motion. An accurate patient-specific finite element (FE)-based biomechanical model can be used to predict prostate deformations. In this study, an FE model of a prostate phantom is developed using magnetic resonance images, while soft-tissue elasticity is estimated in vivo using an ultrasound-based acoustic radiation force impulse imaging technique. This study confirms that three-dimensional FE-predicted prostate deformation is predominantly dependent on accurate modelling of prostate geometry and boundary conditions. Upon application of various compressive displacements, our results show that a linear elastic FE model can accurately predict prostate deformations. The maximum global error between FE-predicted simulations and experimental results is 0.76 mm. Moreover, the effect of including the urethra, puboprostatic ligament and urinary bladder on prostate deformations is investigated by a sensitivity study.

  16. Volumetric intraoperative brain deformation compensation: model development and phantom validation.

    PubMed

    DeLorenzo, Christine; Papademetris, Xenophon; Staib, Lawrence H; Vives, Kenneth P; Spencer, Dennis D; Duncan, James S

    2012-08-01

    During neurosurgery, nonrigid brain deformation may affect the reliability of tissue localization based on preoperative images. To provide accurate surgical guidance in these cases, preoperative images must be updated to reflect the intraoperative brain. This can be accomplished by warping these preoperative images using a biomechanical model. Due to the possible complexity of this deformation, intraoperative information is often required to guide the model solution. In this paper, a linear elastic model of the brain is developed to infer volumetric brain deformation associated with measured intraoperative cortical surface displacement. The developed model relies on known material properties of brain tissue, and does not require further knowledge about intraoperative conditions. To provide an initial estimation of volumetric model accuracy, as well as determine the model's sensitivity to the specified material parameters and surface displacements, a realistic brain phantom was developed. Phantom results indicate that the linear elastic model significantly reduced localization error due to brain shift, from > 16 mm to under 5 mm, on average. In addition, though in vivo quantitative validation is necessary, preliminary application of this approach to images acquired during neocortical epilepsy cases confirms the feasibility of applying the developed model to in vivo data.

  17. Evaluation of deformable image registration and a motion model in CT images with limited features

    NASA Astrophysics Data System (ADS)

    Liu, F.; Hu, Y.; Zhang, Q.; Kincaid, R.; Goodman, K. A.; Mageras, G. S.

    2012-05-01

    Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.

  18. Meso-Scale Modeling of Polycrystal Deformation

    NASA Astrophysics Data System (ADS)

    Lim, Hojun

    Computational material modeling of material is essential to accelerate material/process design and reduce costs in wide variety of applications. In particular, multi-scale models are gaining momentum in many fields as computers become faster, and finer structures become accessible experimentally. An effective (i.e. sufficiently accurate and fast to have practical impact) multi-scale model of dislocation-based metal plasticity may have many important applications such as metal forming. A two-scale method to predict quantitatively the Hall-Petch effect, as well as dislocation densities and lattice curvatures throughout a polycrystal, has been developed and implemented. Based on a finite element formulation, the first scale is called a Grain-Scale Simulation (GSS) that is standard except for using novel single-crystal constitutive equations that were proposed and tested as part of this work (and which are informed from the second model scale). The GSS allows the determination of local stresses, strains, and slip magnitudes while enforcing compatibility and equilibrium throughout a polycrystal in a finite element sense. The second scale is called here a Meso-Scale Simulation (MSS) which is novel in concept and application. It redistributes the mobile part of the dislocation density within grains consistent with the plastic strain distribution, and enforces slip transmission criteria at grain boundaries that depend on local grain and boundary properties. Stepwise simulation at the two scales proceeds sequentially in order to predict the spatial distribution of dislocation density and the flow stress for each slip system within each grain, and each simulation point. The MSS was formulated with the minimum number of undermined or arbitrary parameters, three. Two of these are related to the shape of the strain hardening curve and the other represents the initial yield. These parameters do not invoke additional length scales. The new model made possible the following

  19. Volumetric Intraoperative Brain Deformation Compensation: Model Development and Phantom Validation

    PubMed Central

    DeLorenzo, Christine; Papademetris, Xenophon; Staib, Lawrence H.; Vives, Kenneth P.; Spencer, Dennis D.; Duncan, James S.

    2012-01-01

    During neurosurgery, nonrigid brain deformation may affect the reliability of tissue localization based on preoperative images. To provide accurate surgical guidance in these cases, preoperative images must be updated to reflect the intraoperative brain. This can be accomplished by warping these preoperative images using a biomechanical model. Due to the possible complexity of this deformation, intraoperative information is often required to guide the model solution. In this paper, a linear elastic model of the brain is developed to infer volumetric brain deformation associated with measured intraoperative cortical surface displacement. The developed model relies on known material properties of brain tissue, and does not require further knowledge about intraoperative conditions. To provide an initial estimation of volumetric model accuracy, as well as determine the model’s sensitivity to the specified material parameters and surface displacements, a realistic brain phantom was developed. Phantom results indicate that the linear elastic model significantly reduced localization error due to brain shift, from >16 mm to under 5 mm, on average. In addition, though in vivo quantitative validation is necessary, preliminary application of this approach to images acquired during neocortical epilepsy cases confirms the feasibility of applying the developed model to in vivo data. PMID:22562728

  20. Quantitative comparisons of numerical models of brittle deformation

    NASA Astrophysics Data System (ADS)

    Buiter, S.

    2009-04-01

    Numerical modelling of brittle deformation in the uppermost crust can be challenging owing to the requirement of an accurate pressure calculation, the ability to achieve post-yield deformation and localisation, and the choice of rheology (plasticity law). One way to approach these issues is to conduct model comparisons that can evaluate the effects of different implementations of brittle behaviour in crustal deformation models. We present a comparison of three brittle shortening experiments for fourteen different numerical codes, which use finite element, finite difference, boundary element and distinct element techniques. Our aim is to constrain and quantify the variability among models in order to improve our understanding of causes leading to differences between model results. Our first experiment of translation of a stable sand-like wedge serves as a reference that allows for testing against analytical solutions (e.g., taper angle, root-mean-square velocity and gravitational rate of work). The next two experiments investigate an unstable wedge in a sandbox-like setup which deforms by inward translation of a mobile wall. All models accommodate shortening by in-sequence formation of forward shear zones. We analyse the location, dip angle and spacing of thrusts in detail as previous comparisons have shown that these can be highly variable in numerical and analogue models of crustal shortening and extension. We find that an accurate implementation of boundary friction is important for our models. Our results are encouraging in the overall agreement in their dynamic evolution, but show at the same time the effort that is needed to understand shear zone evolution. GeoMod2008 Team: Markus Albertz, Michele Cooke, Susan Ellis, Taras Gerya, Luke Hodkinson, Kristin Hughes, Katrin Huhn, Boris Kaus, Walter Landry, Bertrand Maillot, Christophe Pascal, Anton Popov, Guido Schreurs, Christopher Beaumont, Tony Crook, Mario Del Castello and Yves Leroy

  1. Quantum inverse scattering and the lambda deformed principal chiral model

    NASA Astrophysics Data System (ADS)

    Appadu, Calan; Hollowood, Timothy J.; Price, Dafydd

    2017-07-01

    The lambda model is a one parameter deformation of the principal chiral model that arises when regularizing the non-compactness of a non-abelian T dual in string theory. It is a current-current deformation of a WZW model that is known to be integrable at the classical and quantum level. The standard techniques of the quantum inverse scattering method cannot be applied because the Poisson bracket is non ultra-local. Inspired by an approach of Faddeev and Reshetikhin, we show that in this class of models, there is a way to deform the symplectic structure of the theory leading to a much simpler theory that is ultra-local and can be quantized on the lattice whilst preserving integrability. This lattice theory takes the form of a generalized spin chain that can be solved by standard algebraic Bethe Ansatz techniques. We then argue that the IR limit of the lattice theory lies in the universality class of the lambda model implying that the spin chain provides a way to apply the quantum inverse scattering method to this non ultra-local theory. This points to a way of applying the same ideas to other lambda models and potentially the string world-sheet theory in the gauge-gravity correspondence.

  2. Masticatory function and temporomandibular disorders in patients with dentofacial deformities.

    PubMed

    Abrahamsson, Cecilia

    2013-01-01

    About 30% of individuals in the Swedish population will at some stage during life have treatment with orthodontic appliances. In more severe cases, when orthodontic treatment is not considered sufficient enough to correct the malocclusion, the orthodontic treatment is combined with orthognathic surgery. For these cases, a satisfying jaw relation is achieved by surgically moving the maxilla and/or the mandible into a pre-planned position. Patients due to be treated with orthognathic surgery often suffer from an impaired masticatory function, symptoms from the masticatory muscles or temporomandibular joints (temporomandibular disorders), headaches as well as dissatisfaction with their facial aesthetics. Since orthognathic treatment is expensive, in many cases arduous to the patient and not without complications, it is important to assess the treatment outcome and if this is satisfying for the patients. Previous studies that have examined the outcome after orthognathic treatment have had diverging study designs and have come to different conclusions with regard to both temporomandibular disorders and masticatory function. The overall aim of this thesis was to assess and compare the frequencies of temporomandibular disorders and the masticatory function in patients with dentofacial deformities before and after orthognathic treatment. THE THESIS IS BASED ON THE FOLLOWING STUDIES: Paper I is a systematic literature review aiming to, in an evidence-based approach, answer the question whether orthognathic treatment affects the prevalence of signs and symptoms of temporomandibular disorders. The review encompasses the period from January 1966 to April 2006 and was further extended to May 2013 in the frame story of this thesis. CONCLUSIONS IN PAPER I AND THE COMPLEMENTARY SURVEY: There is insufficient scientific evidence for a decrease of sub diagnoses of temporomandibular disorders after orthognathic treatment. There is limited scientific evidence for a reduction of

  3. The impact of deformation of an aneurysm model under pulsatile flow on hemodynamic analysis.

    PubMed

    Kawakami, T; Takao, H; Ichikawa, C; Kamiya, K; Murayama, Y; Motosuke, M

    2016-08-01

    Hemodynamic analysis of cerebral aneurysms has been widely carried out to clarify the mechanisms of their growth and rupture. In several cases, patient-specific aneurysm models made of transparent polymers have been used. Even though periodic changes in aneurysms due to the pulsation of blood flow could be important, the deformation of the model geometry and its effect on hemodynamic evaluation has not been fully investigated. In addition, the fabrication accuracy of aneurysm models has not been evaluated even though it may affect the hemodynamic parameters to be analyzed. In this study, the fabrication accuracy of a silicone aneurysm model was investigated. Additionally, the deformation of the model under pulsatile flow as well as its correlation with flow behavior was evaluated. Consequently, a fabrication method for an aneurysm model with high accuracy was established and the importance of the wall thickness of the model was also specified.

  4. Phenomenological model for transient deformation based on state variables

    SciTech Connect

    Jackson, M S; Cho, C W; Alexopoulos, P; Mughrabi, H; Li, C Y

    1980-01-01

    The state variable theory of Hart, while providing a unified description of plasticity-dominated deformation, exhibits deficiencies when it is applied to transient deformation phenomena at stresses below yield. It appears that the description of stored anelastic strain is oversimplified. Consideration of a simple physical picture based on continuum dislocation pileups suggests that the neglect of weak barriers to dislocation motion is the source of these inadequacies. An appropriately modified description incorporating such barriers then allows the construction of a macroscopic model including transient effects. Although the flow relations for the microplastic element required in the new theory are not known, tentative assignments may be made for such functions. The model then exhibits qualitatively correct behavior when tensile, loading-unloading, reverse loading, and load relaxation tests are simulated. Experimental procedures are described for determining the unknown parameters and functions in the new model.

  5. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  6. Compound dislocation models (CDMs) for volcano deformation analyses

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.; Lundgren, Paul R.; Prats-Iraola, Pau

    2017-02-01

    Volcanic crises are often preceded and accompanied by volcano deformation caused by magmatic and hydrothermal processes. Fast and efficient model identification and parameter estimation techniques for various sources of deformation are crucial for process understanding, volcano hazard assessment and early warning purposes. As a simple model that can be a basis for rapid inversion techniques, we present a compound dislocation model (CDM) that is composed of three mutually orthogonal rectangular dislocations (RDs). We present new RD solutions, which are free of artefact singularities and that also possess full rotational degrees of freedom. The CDM can represent both planar intrusions in the near field and volumetric sources of inflation and deflation in the far field. Therefore, this source model can be applied to shallow dikes and sills, as well as to deep planar and equidimensional sources of any geometry, including oblate, prolate and other triaxial ellipsoidal shapes. In either case the sources may possess any arbitrary orientation in space. After systematically evaluating the CDM, we apply it to the co-eruptive displacements of the 2015 Calbuco eruption observed by the Sentinel-1A satellite in both ascending and descending orbits. The results show that the deformation source is a deflating vertical lens-shaped source at an approximate depth of 8 km centred beneath Calbuco volcano. The parameters of the optimal source model clearly show that it is significantly different from an isotropic point source or a single dislocation model. The Calbuco example reflects the convenience of using the CDM for a rapid interpretation of deformation data.

  7. Modeling of friction-induced deformation and microstructures.

    SciTech Connect

    Michael, Joseph Richard; Prasad, Somuri V.; Jungk, John Michael; Cordill, Megan J.; Bammann, Douglas J.; Battaile, Corbett Chandler; Moody, Neville Reid; Majumdar, Bhaskar Sinha (New Mexico Institure of Mining and Technology)

    2006-12-01

    Frictional contact results in surface and subsurface damage that could influence the performance, aging, and reliability of moving mechanical assemblies. Changes in surface roughness, hardness, grain size and texture often occur during the initial run-in period, resulting in the evolution of subsurface layers with characteristic microstructural features that are different from those of the bulk. The objective of this LDRD funded research was to model friction-induced microstructures. In order to accomplish this objective, novel experimental techniques were developed to make friction measurements on single crystal surfaces along specific crystallographic surfaces. Focused ion beam techniques were used to prepare cross-sections of wear scars, and electron backscattered diffraction (EBSD) and TEM to understand the deformation, orientation changes, and recrystallization that are associated with sliding wear. The extent of subsurface deformation and the coefficient of friction were strongly dependent on the crystal orientation. These experimental observations and insights were used to develop and validate phenomenological models. A phenomenological model was developed to elucidate the relationships between deformation, microstructure formation, and friction during wear. The contact mechanics problem was described by well-known mathematical solutions for the stresses during sliding friction. Crystal plasticity theory was used to describe the evolution of dislocation content in the worn material, which in turn provided an estimate of the characteristic microstructural feature size as a function of the imposed strain. An analysis of grain boundary sliding in ultra-fine-grained material provided a mechanism for lubrication, and model predictions of the contribution of grain boundary sliding (relative to plastic deformation) to lubrication were in good qualitative agreement with experimental evidence. A nanomechanics-based approach has been developed for characterizing the

  8. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: a pilot study

    PubMed Central

    Mao, Keya; Xiao, Songhua; Liu, Zhengsheng; Zhang, Yonggang; Zhang, Xuesong; Wang, Zheng; Lu, Ning; Shourong, Zhu; Xifeng, Zhang; Geng, Cui; Baowei, Liu

    2010-01-01

    Surgical treatment of complex severe spinal deformity, involving a scoliosis Cobb angle of more than 90° and kyphosis or vertebral and rib deformity, is challenging. Preoperative two-dimensional images resulting from plain film radiography, computed tomography (CT) and magnetic resonance imaging provide limited morphometric information. Although the three-dimensional (3D) reconstruction CT with special software can view the stereo and rotate the spinal image on the screen, it cannot show the full-scale spine and cannot directly be used on the operation table. This study was conducted to investigate the application of computer-designed polystyrene models in the treatment of complex severe spinal deformity. The study involved 16 cases of complex severe spinal deformity treated in our hospital between 1 May 2004 and 31 December 2007; the mean ± SD preoperative scoliosis Cobb angle was 118° ± 27°. The CT scanning digital imaging and communication in medicine (DICOM) data sets of the affected spinal segments were collected for 3D digital reconstruction and rapid prototyping to prepare computer-designed polystyrene models, which were applied in the treatment of these cases. The computer-designed polystyrene models allowed 3D observation and measurement of the deformities directly, which helped the surgeon to perform morphological assessment and communicate with the patient and colleagues. Furthermore, the models also guided the choice and placement of pedicle screws. Moreover, the models were used to aid in virtual surgery and guide the actual surgical procedure. The mean ± SD postoperative scoliosis Cobb angle was 42° ± 32°, and no serious complications such as spinal cord or major vascular injury occurred. The use of computer-designed polystyrene models could provide more accurate morphometric information and facilitate surgical correction of complex severe spinal deformity. PMID:20213294

  9. Dislocation models of interseismic deformation in the western United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.

    2008-01-01

    The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.

  10. A large deformation viscoelastic model for double-network hydrogels

    NASA Astrophysics Data System (ADS)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  11. The Impact of Animation Deformity on Quality of Life in Post-Mastectomy Reconstruction Patients.

    PubMed

    Becker, Hilton; Fregosi, Nicole

    2017-05-01

    Animation deformity after subpectoral breast implant placement has been documented; however, the actual prevalence and effect on patient quality of life has not been studied much. The purpose of this study was to show that all patients with subpectoral implants experience some degree of animation deformity and that it can affect their quality of life, including causing embarrassment and discomfort in reconstructed patients. Patients who underwent breast implant surgery were contacted for inclusion in the study. Patients were obtained from a single surgeon's practice but included patients operated on outside the practice, and those seen in the practice for a consultation. A six-item questionnaire was developed by the senior author (H.B.) and the medical student (N.F.) involved in the study, to assess quality of life related to animation deformity. Patients had their degree of animation deformity assessed by the senior author and a medical student. Of 25 patients who agreed to the questionnaire and assessment, 20% had grade I distortion, 44% grade II, 24% grade III, and 12% grade IV. Of the patients questioned, 80% were bothered by an animation deformity and 45% of those patients were bothered to a significant degree (≥6 out of 10). In addition, 48% of patients felt that the animation deformity interfered with their daily life, and 28% (7/25) of patients underwent, or were scheduled to undergo, revision of their reconstruction at the time of interview. The degree of the clinically observed animation deformity was correlated with patient dissatisfaction, with an R value of 0.47 (P value = 0.0145). All patients with subpectoral implant positioning will experience some degree of animation deformity. Especially in the reconstructed breast population, animation deformity, and its severity, affects patients' quality of life. Other approaches to reconstruction should be considered to prevent animation deformity in this population. 4.

  12. A Multiple Object Geometric Deformable Model for Image Segmentation

    PubMed Central

    Bogovic, John A.; Prince, Jerry L.; Bazin, Pierre-Louis

    2012-01-01

    Deformable models are widely used for image segmentation, most commonly to find single objects within an image. Although several methods have been proposed to segment multiple objects using deformable models, substantial limitations in their utility remain. This paper presents a multiple object segmentation method using a novel and efficient object representation for both two and three dimensions. The new framework guarantees object relationships and topology, prevents overlaps and gaps, enables boundary-specific speeds, and has a computationally efficient evolution scheme that is largely independent of the number of objects. Maintaining object relationships and straightforward use of object-specific and boundary-specific smoothing and advection forces enables the segmentation of objects with multiple compartments, a critical capability in the parcellation of organs in medical imaging. Comparing the new framework with previous approaches shows its superior performance and scalability. PMID:23316110

  13. Modeling and analysis methodology for aeroelastically tailored chordwise deformable wings

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Chang, Stephen; Zischka, Peter J.

    1992-01-01

    Structural concepts have been created which produce chordwise camber deformation that results in enhanced lift. A wing box can be tailored to utilize each of these with composites. In attempting to optimize the aerodynamic benefits, we have found there are two optimal designs that are of interest. There is a weight optimum which corresponds to the maximum lift per unit structural weight. There is also a lift optimum that corresponds to maximum absolute lift. New structural models, the basic deformation mechanisms that are utilized and typical analytical results are presented. It appears that lift enhancements of sufficient magnitude can be produced to render this type of wing tailoring of practical interest. Experiments and finite element correlations are performed which confirm the validity of the theoretical models utilized.

  14. A skeleton family generator via physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2009-01-01

    This paper presents a novel approach for object skeleton family extraction. The introduced technique utilizes a 2-D physics-based deformable model that parameterizes the objects shape. Deformation equations are solved exploiting modal analysis, and proportional to model physical characteristics, a different skeleton is produced every time, generating, in this way, a family of skeletons. The theoretical properties and the experiments presented demonstrate that obtained skeletons match to hand-labeled skeletons provided by human subjects, even in the presence of significant noise and shape variations, cuts and tears, and have the same topology as the original skeletons. In particular, the proposed approach produces no spurious branches without the need of any known skeleton pruning method.

  15. Progression of spinal deformity in wheelchair-dependent patients with Duchenne muscular dystrophy who are not treated with steroids: coronal plane (scoliosis) and sagittal plane (kyphosis, lordosis) deformity.

    PubMed

    Shapiro, F; Zurakowski, D; Bui, T; Darras, B T

    2014-01-01

    We determined the frequency, rate and extent of development of scoliosis (coronal plane deformity) in wheelchair-dependent patients with Duchenne muscular dystrophy (DMD) who were not receiving steroid treatment. We also assessed kyphosis and lordosis (sagittal plane deformity). The extent of scoliosis was assessed on sitting anteroposterior (AP) spinal radiographs in 88 consecutive non-ambulatory patients with DMD. Radiographs were studied from the time the patients became wheelchair-dependent until the time of spinal fusion, or the latest assessment if surgery was not undertaken. Progression was estimated using a longitudinal mixed-model regression analysis to handle repeated measurements. Scoliosis ≥ 10° occurred in 85 of 88 patients (97%), ≥ 20° in 78 of 88 (89%) and ≥ 30° in 66 of 88 patients (75%). The fitted longitudinal model revealed that time in a wheelchair was a highly significant predictor of the magnitude of the curve, independent of the age of the patient (p < 0.001). Scoliosis developed in virtually all DMD patients not receiving steroids once they became wheelchair-dependent, and the degree of deformity deteriorated over time. In general, scoliosis increased at a constant rate, beginning at the time of wheelchair-dependency (p < 0.001). In some there was no scoliosis for as long as three years after dependency, but scoliosis then developed and increased at a constant rate. Some patients showed a rapid increase in the rate of progression of the curve after a few years - the clinical phenomenon of a rapidly collapsing curve over a few months. A sagittal plane kyphotic deformity was seen in 37 of 60 patients (62%) with appropriate radiographs, with 23 (38%) showing lumbar lordosis (16 (27%) abnormal and seven (11%) normal). This study provides a baseline to assess the effects of steroids and other forms of treatment on the natural history of scoliosis in patients with DMD, and an approach to assessing spinal deformity in the coronal and

  16. Modified Sachs's Model of Deformation of Polycrystalline Magnesium

    NASA Astrophysics Data System (ADS)

    Kesarev, A. G.; Vlasova, A. M.

    2017-09-01

    There are a large number of approaches to a description of work hardening of metal polycrystals with various crystal lattices. In the present work, Sachs's model is generalized to uniaxial tension/compression of polycrystalline magnesium with hexagonal densely packed crystal lattice. The tensile yield stress is estimated taking into account two deformation modes: (0001)< 11\\overline{2}0> easy basal slip and (10\\overline{1}2)< \\overline{1}011> twinning.

  17. Model Deformation Measurements at a Cryogenic Wind Tunnel Using Photogrammetry

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1982-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility (NTF) is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. Data reduction procedures and the results of tunnel tests at the NTF are presented.

  18. Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression.

    PubMed

    Fiot, Jean-Baptiste; Raguet, Hugo; Risser, Laurent; Cohen, Laurent D; Fripp, Jurgen; Vialard, François-Xavier

    2014-01-01

    In the context of Alzheimer's disease, two challenging issues are (1) the characterization of local hippocampal shape changes specific to disease progression and (2) the identification of mild-cognitive impairment patients likely to convert. In the literature, (1) is usually solved first to detect areas potentially related to the disease. These areas are then considered as an input to solve (2). As an alternative to this sequential strategy, we investigate the use of a classification model using logistic regression to address both issues (1) and (2) simultaneously. The classification of the patients therefore does not require any a priori definition of the most representative hippocampal areas potentially related to the disease, as they are automatically detected. We first quantify deformations of patients' hippocampi between two time points using the large deformations by diffeomorphisms framework and transport these deformations to a common template. Since the deformations are expected to be spatially structured, we perform classification combining logistic loss and spatial regularization techniques, which have not been explored so far in this context, as far as we know. The main contribution of this paper is the comparison of regularization techniques enforcing the coefficient maps to be spatially smooth (Sobolev), piecewise constant (total variation) or sparse (fused LASSO) with standard regularization techniques which do not take into account the spatial structure (LASSO, ridge and ElasticNet). On a dataset of 103 patients out of ADNI, the techniques using spatial regularizations lead to the best classification rates. They also find coherent areas related to the disease progression.

  19. Model Deformation Measurements at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Burner, A. W.

    1998-01-01

    Only recently have large amounts of model deformation data been acquired in NASA wind tunnels. This acquisition of model deformation data was made possible by the development of an automated video photogrammetric system to measure the changes in wing twist and bending under aerodynamic load. The measurement technique is based upon a single view photogrammetric determination of two dimensional coordinates of wing targets with a fixed third dimensional coordinate, namely the spanwise location. A major consideration in the development of the measurement system was that use of the technique must not appreciably reduce wind tunnel productivity. The measurement technique has been used successfully for a number of tests at four large production wind tunnels at NASA and a dedicated system is nearing completion for a fifth facility. These facilities are the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel at NASA Langley, and the 12-FT Pressure Tunnel at NASA Ames. A dedicated system for the Langley 16-Foot Transonic Tunnel is scheduled to be used for the first time for a test in September. The advantages, limitations, and strategy of the technique as currently used in NASA wind tunnels are presented. Model deformation data are presented which illustrate the value of these measurements. Plans for further enhancements to the technique are presented.

  20. Heavy quark potential from deformed AdS5 models

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-qiang; Hou, De-fu; Chen, Gang

    2017-04-01

    In this paper, we investigate the heavy quark potential in some holographic QCD models. The calculation relies on a modified renormalization scheme mentioned in a previous work of Albacete et al. After studying the heavy quark potential in Pirner-Galow model and Andreev-Zakharov model, we extend the discussion to a general deformed AdS5 case. It is shown that the obtained potential is negative definite for all quark-antiquark separations, differs from that using the usual renormalization scheme.

  1. Modeling Permanent Deformations of Superelastic and Shape Memory Materials.

    PubMed

    Urbano, Marco Fabrizio; Auricchio, Ferdinando

    2015-06-11

    In this paper we propose a modification of the polycrystalline shape memory alloy constitutive model originally proposed by Souza. By introducing a transformation strain energy with two different hardening coefficients, we are able to take into account the effect of the martensitic transformation of unfavorably oriented grains occurring after the main plateau. By choosing a proper second hardening coefficient, it is possible to reproduce the correct stress strain behavior of the material after the plateau without the need of introducing a much smaller Young modulus for martensite. The proposed modification is introduced in the model comprising permanent deformation effects. Model results for uniaxial stress tests are compared to experimental results showing good agreement.

  2. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    NASA Astrophysics Data System (ADS)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  3. Modelling of deformation and recrystallisation microstructures in rocks and ice

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation

  4. On the unimportance of constitutive models in computing brain deformation for image-guided surgery.

    PubMed

    Wittek, Adam; Hawkins, Trent; Miller, Karol

    2009-02-01

    Imaging modalities that can be used intra-operatively do not provide sufficient details to confidently locate the abnormalities and critical healthy areas that have been identified from high-resolution pre-operative scans. However, as we have shown in our previous work, high quality pre-operative images can be warped to the intra-operative position of the brain. This can be achieved by computing deformations within the brain using a biomechanical model. In this paper, using a previously developed patient-specific model of brain undergoing craniotomy-induced shift, we conduct a parametric analysis to investigate in detail the influences of constitutive models of the brain tissue. We conclude that the choice of the brain tissue constitutive model, when used with an appropriate finite deformation solution, does not affect the accuracy of computed displacements, and therefore a simple linear elastic model for the brain tissue is sufficient.

  5. Visualization of cardiac dynamics using physics-based deformable model

    NASA Astrophysics Data System (ADS)

    Lin, Wei-te; Robb, Richard A.

    2000-04-01

    Modeling of moving anatomic structures is complicated by the complexity of motion intrinsic and extrinsic to the structures. However when motion is cyclical, such as in heart, effective dynamic modeling can be approached using modern fast imaging techniques, which provide 3D structural data. Data may be acquired as a sequence of 3D volume images throughout the cardiac cycle. To model the intricate non- linear motion of the heart, we created a physics-based surface model which can realistically deform between successive time points in the cardiac cycle, yielding a dynamic 4D model of cardiac motion. Sequences of fifteen 3D volume images of intact canine beating hearts were acquired during compete cardiac cycles using the Dynamic Spatial Reconstructor and the Electron Beam CT. The chambers of the heart were segmented at successive time points, typically at 1/15-second intervals. The left ventricle of the first item point was reconstructed as an initial triangular mesh. A mass-spring physics-based deformable model, which can expand and shrink with local contraction and stretching forces distributed in an anatomically accurate simulation of cardiac motion, was applied to the initial mesh and allowed the initial mesh to deform to fit the left ventricle in successive time increments of the sequence. The resultant 4D model can be interactively transformed and displayed with associated regional electrical activity mapped onto the anatomic surfaces, producing a 5D mode, which faithfully exhibits regional cardiac contraction and relaxation patterns over the entire heart. For acquisition systems that may provide only limited 4D data, the model can provide interpolated anatomic shape between time points. This physics-based deformable model accurately represents dynamic cardiac structural changes throughout the cardiac cycle. Such models provides the framework for minimizing the number of time points required to usefully depict regional motion of myocardium and allowing

  6. Surrogate Modeling of Deformable Joint Contact using Artificial Neural Networks

    PubMed Central

    Eskinazi, Ilan; Fregly, Benjamin J.

    2016-01-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models. PMID:26220591

  7. Surrogate modeling of deformable joint contact using artificial neural networks.

    PubMed

    Eskinazi, Ilan; Fregly, Benjamin J

    2015-09-01

    Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs). The method uses special sampling techniques to gather input-output data points from an original (slow) contact model in multiple domains of input space, where each domain represents a different physical situation likely to be encountered. For each contact force and torque output by the original contact model, a multi-layer feed-forward ANN is defined, trained, and incorporated into a surrogate contact model. As an evaluation problem, we created an ANN-based surrogate contact model of an artificial tibiofemoral joint using over 75,000 evaluations of a fine-grid elastic foundation (EF) contact model. The surrogate contact model computed contact forces and torques about 1000 times faster than a less accurate coarse grid EF contact model. Furthermore, the surrogate contact model was seven times more accurate than the coarse grid EF contact model within the input domain of a walking motion. For larger input domains, the surrogate contact model showed the expected trend of increasing error with increasing domain size. In addition, the surrogate contact model was able to identify out-of-contact situations with high accuracy. Computational contact models created using our proposed ANN approach may remove an important computational bottleneck from musculoskeletal simulations or optimizations incorporating deformable joint contact models.

  8. Frame junction vibration transmission with a modified frame deformation model.

    PubMed

    Moore, J A

    1990-12-01

    A previous paper dealt with vibration transmission through junctions of connected frame members where the allowed frame deformations included bending, torsion, and longitudinal motions [J.A. Moore, J. Acoust. Soc. Am. 88, 2766-2776 (1990)]. In helicopter and aircraft structures the skin panels can constitute a high impedance connection along the length of the frames that effectively prohibits in-plane motion at the elevation of the skin panels. This has the effect of coupling in-plane bending and torsional motions within the frame. This paper discusses the transmission behavior through frame junctions that accounts for the in-plane constraint in idealized form by assuming that the attached skin panels completely prohibit inplane motion in the frames. Also, transverse shear deformation is accounted for in describing the relatively deep web frame constructions common in aircraft structures. Longitudinal motion in the frames is not included in the model. Transmission coefficient predictions again show the importance of out-of-plane bending deformation to the transmission of vibratory energy in an aircraft structure. Comparisons are shown with measured vibration transmission data along the framing in the overhead of a helicopter airframe, with good agreement. The frame junction description has been implemented within a general purpose statistical energy analysis (SEA) computer code in modeling the entire airframe structure including skin panels.

  9. Modeling the behaviour of shape memory materials under large deformations

    NASA Astrophysics Data System (ADS)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  10. Oscillatory athermal quasistatic deformation of a model glass

    NASA Astrophysics Data System (ADS)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2013-08-01

    We report computer simulations of oscillatory athermal quasistatic shear deformation of dense amorphous samples of a three-dimensional model glass former. A dynamical transition is observed as the amplitude of the deformation is varied: For large values of the amplitude the system exhibits diffusive behavior and loss of memory of the initial conditions, whereas localization is observed for small amplitudes. Our results suggest that the same kind of transition found in driven colloidal systems is present in the case of amorphous solids (e.g., metallic glasses). The onset of the transition is shown to be related to the onset of energy dissipation. Shear banding is observed for large system sizes, without, however, affecting qualitative aspects of the transition.

  11. Foundation model testing of the second deformation modulus Eν2

    NASA Astrophysics Data System (ADS)

    Sun, Xiao

    2017-09-01

    The bearing capacity of the soil foundation can be reflected by its second deformation modulus Eν2 , and the construction quality of the soil foundation can be evaluated by this deformation modulus. At present, the detection method of Eν2 has been applied in construction quality control of soil foundation in applications such as the foundations of airports, railways, and highways. In order to show the feasibility and reliability of the laboratory test method of calculating Eν2 , the field test method is simulated to test the value of Eν2 of the fill foundation model and compare it with the laboratory test method. The results show that the results of field testing and laboratory testing were in good agreement. This provides a new method for testing the value of Eν2 .

  12. Improved techniques for thermomechanical testing in support of deformation modeling

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Ellis, John R.

    1992-01-01

    The feasibility of generating precise thermomechanical deformation data to support constitutive model development was investigated. Here, the requirement is for experimental data that is free from anomalies caused by less than ideal equipment and procedures. A series of exploratory tests conducted on Hastelloy X showed that generally accepted techniques for strain controlled tests were lacking in at least three areas. Specifically, problems were encountered with specimen stability, thermal strain compensation, and temperature/mechanical strain phasing. The source of these difficulties was identified and improved thermomechanical testing techniques to correct them were developed. These goals were achieved by developing improved procedures for measuring and controlling thermal gradients and by designing a specimen specifically for thermomechanical testing. In addition, innovative control strategies were developed to correctly proportion and phase the thermal and mechanical components of strain. Subsequently, the improved techniques were used to generate deformation data for Hastelloy X over the temperature range, 200 to 1000 C.

  13. Finite element modeling of the deformation of magnetoelastic film

    SciTech Connect

    Barham, Matthew I.; White, Daniel A.; Steigmann, David J.

    2010-09-01

    Recently a new class of biocompatible elastic polymers loaded with small ferrous particles, a magnetoelastic polymer, has been developed. This engineered material is formed into a thin film using spin casting. An applied magnetic field will deform the film. The magnetic deformation of this film has many possible applications, particularly in microfluidic pumps and pressure regulators. In this paper a finite element method suitable for the transient simulation of arbitrarily shaped three-dimensional magnetoelastic polymers subjected to time-varying magnetic fields is developed. The approach is similar to that employed in finite elment magnetohydrodynamic simulations, the key difference is a more complex hyperelastic material model. In order to confirm the validity of the approach, finite element solutions for an axially symmetric thin film are compared to an analytical solution based on the membrane (infinitely thin) approximation. For this particular problem the two approaches give qualitatively similar results and converge as the film thickness approaches zero.

  14. Elastic properties of compressed cryocrystals in a deformed atom model

    NASA Astrophysics Data System (ADS)

    Gorbenko, Ie. Ie.; Zhikharev, I. V.; Troitskaya, E. P.; Chabanenko, Val. V.; Pilipenko, E. A.

    2013-06-01

    A model with deformed atom shells was built to investigate the elastic properties of rare-gas Ne and Kr crystals under high pressure. It is shown that the observed deviation from the Cauchy relation δ cannot be adequately reproduced when taking into account only the many-body interaction. The individual pressure dependence of δ is the result of competition of the many-body interaction and the quadrupole interaction associated with the quadrupole-type deformation of electron shells of the atoms during the displacement of the nuclei. Each kind of interaction makes a strongly pressure dependent contribution to δ. In the case of Ne and Kr, contributions of these interactions are compensated to a good precision, providing δ being almost constant against pressure.

  15. Quasiequilibrium models for triaxially deformed rotating compact stars

    SciTech Connect

    Huang Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryu, Koji

    2008-12-15

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  16. A nonaffine network model for elastomers undergoing finite deformations

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2013-08-01

    In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.

  17. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  18. Software for Mathematical Modeling of Plastic Deformation in FCC Metals

    NASA Astrophysics Data System (ADS)

    Petelin, A. E.; Eliseev, A. S.

    2017-08-01

    The question on the necessity of software implementation in the study of plastic deformation in FCC metals with the use of mathematical modeling methods is investigated. This article describes the implementation features and the possibility of using the software Dislocation Dynamics of Crystallographic Slip (DDCS). The software has an advanced user interface and is designed for users without an extensive experience in IT-technologies. Parameter values of the mathematical model, obtained from field experiments and accumulated in a special database, are used in DDCS to carry out computational experiments. Moreover, the software is capable of accumulating bibliographic information used in research.

  19. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy

    PubMed Central

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang

    2014-01-01

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may

  20. Active deformable sheets: prototype implementation, modeling, and control

    NASA Astrophysics Data System (ADS)

    Lind, Robert J.; Johnson, Norbert; Doumanidis, Charalabos C.

    2000-06-01

    Active deformable sheets are integrated smart planar sheet structures performing off-plane deformations under computer actuation and control, to take up a desired dynamic morphology specified in CAD software or obtained by 3-D scanning of a solid surface. The sheet prototypes are implemented in the laboratory by elastic neoprene foil layers with embedded asymmetric grids of SMA wires (Nitinol), which upon electrical contraction bend the sheet to the necessary local curvature distribution. An analytical model of such prototypes, consisting of an electrical, a thermal, a material and a mechanical module, as well as a more complex finite element thermomechanical simulation of the sheet structure have been developed and validated experimentally. Besides open-loop control of the sheet curvatures by modulation of the SMA wire actuation current, a closed-loop control system has been implemented, using feedback of the wire electrical resistance measurements in real time, correlating to the material transformation state. The active deformable sheets are intended for applications such as reconfigurable airfoils and aerospace structures, variable focal length optics and electromagnetic reflectors, flexible and rapid tooling and microrobotics.

  1. Soliton-like excitations in a deformable spin model

    NASA Astrophysics Data System (ADS)

    Nguenang, Jean-Pierre; Kenfack, Aurelien J.; Kofané, Timoleon C.

    2004-01-01

    Nonlinear excitations in a one-dimensional deformable, discrete, classical, ferromagnetic chain are numerically investigated. In the continuum limit the equations of motion are reduced to a Klein-Gordon equation, with a Remoissenet-Peyrard substrate potential. From a numerical computation of the discrete system with a suitable choice of the deformability parameters, the soliton solutions are shown to exist and move both with a monotonic oscillating (i.e. nanopteron) and a monotonic nonoscillating tail, and also with a non-oscillating tail but with a splitting propagating shape. The stability of all these various soliton shapes is confirmed numerically in a range of the reduced magnetic fields greater than for a rigid magnetic chain i.e. 0 \\le b \\le 0.33 . From a kink-antikink and a kink-kink colliding simulation, we found various effects, including a bound state of a kink and an antikink, as well as a moving kink profile with higher topological charge that appears to be the bound state of two kinks. For some values of the deformability parameter, with a suitable choice of the initial velocity, we observed that the presence of an internal mode leads to the combination of an attractive and a repulsive phenomenon, that arises when the kink-kink collision is engaged. The fact that this collision happens only in the centre of the magnetic chain with the presence of a minimal distance between the two kinks as long as the collision is produced is also a feature of the deformability effect in the dynamics of a magnetic chain. From our results, it appears that the value of the shape parameter of the substrate potential or the modified Zeeman energy is a factor of utmost importance when modelling magnetic chains.

  2. Multiscale Combination of Physically-Based Registration and Deformation Modeling

    SciTech Connect

    Tsap, L.; Goldgof, D.B.; Sarkar, S.

    1999-11-08

    In this paper the authors present a novel multiscale approach to recovery of nonrigid motion from sequences of registered intensity and range images. The main idea of the approach is that a finite element (FEM) model can naturally handle both registration and deformation modeling using a single model-driving strategy. The method includes a multiscale iterative algorithm based on analysis of the undirected Hausdorff distance to recover correspondences. The method is evaluated with respect to speed, accuracy, and noise sensitivity. Advantages of the proposed approach are demonstrated using man-made elastic materials and human skin motion. Experiments with regular grid features are used for performance comparison with a conventional approach (separate snakes and FEM models). It is shown that the new method does not require a grid and can adapt the model to available object features.

  3. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration.

    PubMed

    Neylon, J; Qi, X; Sheng, K; Staton, R; Pukala, J; Manon, R; Low, D A; Kupelian, P; Santhanam, A

    2015-01-01

    Validating the usage of deformable image registration (dir) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating dir algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass-spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may be caused by the

  4. Severe Skew Foot Deformity in a Patient With Freeman-Sheldon Syndrome

    PubMed Central

    Kaissi, Ali Al; Klaushofer, Klaus; Grill, Franz

    2011-01-01

    We report on a 3-year-old boy with the full phenotypic features of Freeman Sheldon syndrome (FSS). Severe skew foot deformity has been recognized as additional skeletal abnormality. Parents were first degree cousins, raising the possibility of autosomal recessive pattern of inheritance. To the best of our knowledge this is the first report of severe skew foot deformity in a patient with (FSS). Keywords Freeman-Sheldon syndrome; Skew foot deformity; Metatarsus adductus PMID:22383916

  5. A coupled model for intragranular deformation and chemical diffusion

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Vrijmoed, Johannes; Moulas, Evangelos; Tajčmanová, Lucie

    2017-09-01

    A coupled model for chemical diffusion and mechanical deformation is developed in analogy to the studies of poroelasticity and thermoelasticity. Nondimensionalization of the governing equations yields a controlling dimensionless parameter, the Deborah number, given by the ratio of the characteristic time for pressure relaxation and concentration homogenization. Using the Deborah number two types of plausible chemical zonation are distinguished, i.e. diffusion controlled, and mechanically controlled. The transition between these two types of chemical zonation is determined at the conditions where the Deborah number equals one. We apply our model to a chemically zoned plagioclase rim in a spherical coordinate frame assuming homogeneous initial pressure. Using thermodynamic data, an experimentally derived diffusion coefficient and a viscous flow law for plagioclase, our numerical simulations show that up to ∼0.6 GPa grain-scale pressure variation is generated during the diffusion-deformation process. Due to the mechanical-chemical coupling, the pressure variations maintain the chemical zonation longer than predicted by the classical diffusion model. The fully coupled mechanical-chemical model provides an alternative explanation for the preservation of chemically zoned minerals, and may contribute to a better understanding of metamorphic processes in the deep Earth interior.

  6. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    SciTech Connect

    Neylon, J. Qi, X.; Sheng, K.; Low, D. A.; Kupelian, P.; Santhanam, A.; Staton, R.; Pukala, J.; Manon, R.

    2015-01-15

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may

  7. Improved Rubin-Bodner model for the prediction of soft tissue deformations.

    PubMed

    Zhang, Guangming; Xia, James J; Liebschner, Michael; Zhang, Xiaoyan; Kim, Daeseung; Zhou, Xiaobo

    2016-11-01

    In craniomaxillofacial (CMF) surgery, a reliable way of simulating the soft tissue deformation resulted from skeletal reconstruction is vitally important for preventing the risks of facial distortion postoperatively. However, it is difficult to simulate the soft tissue behaviors affected by different types of CMF surgery. This study presents an integrated bio-mechanical and statistical learning model to improve accuracy and reliability of predictions on soft facial tissue behavior. The Rubin-Bodner (RB) model is initially used to describe the biomechanical behavior of the soft facial tissue. Subsequently, a finite element model (FEM) computers the stress of each node in soft facial tissue mesh data resulted from bone displacement. Next, the Generalized Regression Neural Network (GRNN) method is implemented to obtain the relationship between the facial soft tissue deformation and the stress distribution corresponding to different CMF surgical types and to improve evaluation of elastic parameters included in the RB model. Therefore, the soft facial tissue deformation can be predicted by biomechanical properties and statistical model. Leave-one-out cross-validation is used on eleven patients. As a result, the average prediction error of our model (0.7035mm) is lower than those resulting from other approaches. It also demonstrates that the more accurate bio-mechanical information the model has, the better prediction performance it could achieve.

  8. Comparison of Three Optical Methods for Measuring Model Deformation

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Fleming, G. A.; Hoppe, J. C.

    2000-01-01

    The objective of this paper is to compare the current state-of-the-art of the following three optical techniques under study by NASA for measuring model deformation in wind tunnels: (1) video photogrammetry, (2) projection moire interferometry, and (3) the commercially available Optotrak system. An objective comparison of these three techniques should enable the selection of the best technique for a particular test undertaken at various NASA facilities. As might be expected, no one technique is best for all applications. The techniques are also not necessarily mutually exclusive and in some cases can be complementary to one another.

  9. Neural Network method for Inverse Modeling of Material Deformation

    SciTech Connect

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    A method is described for inverse modeling of material deformation in applications of importance to the sheet metal forming industry. The method was developed in order to assess the feasibility of utilizing empirical data in the early stages of the design process as an alternative to conventional prototyping methods. Because properly prepared and employed artificial neural networks (ANN) were known to be capable of codifying and generalizing large bodies of empirical data, they were the natural choice for the application. The product of the work described here is a desktop ANN system that can produce in one pass an accurate die design for a user-specified part shape.

  10. Finite Element Model and Validation of Nasal Tip Deformation.

    PubMed

    Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian J F

    2017-03-01

    Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.

  11. Constitutive model for fiber-reinforced materials with deformable matrices.

    PubMed

    Planas, J; Guinea, G V; Elices, M

    2007-10-01

    A great number of biological structures are composed of fibers (elastin, collagen, etc.) dispersed on an aqueous matrix in such a complex way that a detailed mechanical analysis based on microconstituents is, for practical purposes, out of reach. Consequently, the preferred approach to the mechanical behavior of these materials is based on setting up of constitutive equations that homogenize the behavior while capturing their main microstructural features. This work presents a simple macroscopic model for fiber-reinforced materials with deformable matrices, especially suited to many biological structural tissues. The constitutive equation is derived by imposing equivalence between the virtual works of both the fiber-reinforced and the equivalent continuum media, showing that it is independent of the control volume used for such equivalence. The model is particularized to incompressible materials, and an extension to orthotropic biological fibers is shown. Numerical simulations of uniaxial tests on silk fibers demonstrate the model's ability to capture the progressive alignment of the microconstituents under large deformations.

  12. Modeling and Prediction of Hot Deformation Flow Curves

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Cabrera, Jose Maria; Najafizadeh, Abbas

    2012-01-01

    The modeling of hot flow stress and prediction of flow curves for unseen deformation conditions are important in metal-forming processes because any feasible mathematical simulation needs accurate flow description. In the current work, in an attempt to summarize, generalize, and introduce efficient methods, the dynamic recrystallization (DRX) flow curves of a 17-4 PH martensitic precipitation hardening stainless steel, a medium carbon microalloyed steel, and a 304 H austenitic stainless steel were modeled and predicted using (1) a hyperbolic sine equation with strain dependent constants, (2) a developed constitutive equation in a simple normalized stress-normalized strain form and its modified version, and (3) a feed-forward artificial neural network (ANN). These methods were critically discussed, and the ANN technique was found to be the best for the modeling available flow curves; however, the developed constitutive equation showed slightly better performance than that of ANN and significantly better predicted values than those of the hyperbolic sine equation in prediction of flow curves for unseen deformation conditions.

  13. Statistical modeling of interfractional tissue deformation and its application in radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Vile, Douglas J.

    In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model's ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author's knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup

  14. Improvement of erythrocyte deformability by cholesterol-lowering therapy with pravastatin in hypercholesterolemic patients.

    PubMed

    Kohno, M; Murakawa, K; Yasunari, K; Yokokawa, K; Horio, T; Kano, H; Minami, M; Yoshikawa, J

    1997-03-01

    Erythrocyte deformation is an important regulatory factor of the microcirculation. The present study was designed to examine whether erythrocyte deformability is altered in hypercholesterolemic patients and, if so, whether cholesterol-lowering therapy affects this parameter in these patients. The erythrocyte deformability of 37 hypercholesterolemic patients was evaluated before and after 1 year of therapy with pravastatin, an inhibitor of hepatic hydroxymethyl glutaryl coenzyme A reductase, under various shear stresses (4.7, 9.5, 23.6, 47.3, 118.1, and 236.2 dyne/cm2) using laser diffractometry. At study entry, erythrocyte deformability under 4.7 and 9.5 dyne/cm2 shear stress, which is actually observed in human vessels, was reduced compared with that in 20 age-matched normocholesterolemic subjects and was inversely correlated with serum cholesterol and low-density lipoprotein (LDL) cholesterol. Pravastatin therapy for 1 year, which reduced serum cholesterol from 288 +/- 28 to 223 +/- 20 mg/dL, significantly improved erythrocyte deformability by approximately 20%. There was a significant relation between the improvement of erythrocyte deformability and the reduction of serum cholesterol or LDL cholesterol. The results suggest that erythrocyte deformability is reduced in hypercholesterolemic patients, and that long-term cholesterol-lowering therapy can improve reduced erythrocyte deformability, which may contribute to the improvement of organ perfusion.

  15. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  16. Modeling Permanent Deformations of Superelastic and Shape Memory Materials

    PubMed Central

    Urbano, Marco Fabrizio; Auricchio, Ferdinando

    2015-01-01

    In this paper we propose a modification of the polycrystalline shape memory alloy constitutive model originally proposed by Souza. By introducing a transformation strain energy with two different hardening coefficients, we are able to take into account the effect of the martensitic transformation of unfavorably oriented grains occurring after the main plateau. By choosing a proper second hardening coefficient, it is possible to reproduce the correct stress strain behavior of the material after the plateau without the need of introducing a much smaller Young modulus for martensite. The proposed modification is introduced in the model comprising permanent deformation effects. Model results for uniaxial stress tests are compared to experimental results showing good agreement. PMID:26110494

  17. Shell-model-based deformation analysis of light cadmium isotopes

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Heyde, K. L. G.; Blazhev, A.; Jolie, J.

    2017-07-01

    Large-scale shell-model calculations for the even-even cadmium isotopes 98Cd-108Cd have been performed with the antoine code in the π (2 p1 /2;1 g9 /2) ν (2 d5 /2;3 s1 /2;2 d3 /2;1 g7 /2;1 h11 /2) model space without further truncation. Known experimental energy levels and B (E 2 ) values could be well reproduced. Taking these calculations as a starting ground we analyze the deformation parameters predicted for the Cd isotopes as a function of neutron number N and spin J using the methods of model independent invariants introduced by Kumar [Phys. Rev. Lett. 28, 249 (1972), 10.1103/PhysRevLett.28.249] and Cline [Annu. Rev. Nucl. Part. Sci. 36, 683 (1986), 10.1146/annurev.ns.36.120186.003343].

  18. Modelling Polymer Deformation and Welding Behaviour during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    2016-11-01

    3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.

  19. Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation

    NASA Astrophysics Data System (ADS)

    Söhn, M.; Birkner, M.; Yan, D.; Alber, M.

    2005-12-01

    We present a method of modelling inter-fractional organ deformation and correlated motion of adjacent organ structures in terms of so-called eigenmodes. The method is based on a principal component analysis (PCA) of organ shapes and allows for reducing the large dimensionality of geometry information from multiple CT studies to a few-parametric statistical model of organ motion and deformation. Eigenmodes are 3D vectorfields of correlated displacements of the organ surface points and can be seen as fundamental 'modes' of the patient's geometric variability. The amount of variability represented by the eigenmodes is quantified in terms of corresponding eigenvalues. Weighted sums of eigenmodes describe organ displacements/deformations and can be used to generate new organ geometries. We applied the method to four patient datasets of prostate/rectum/bladder with N = 15-18 CTs to assess interfractional geometric variation. The spectrum of eigenvalues was found to be dominated by only few values, indicating that the geometric variability of prostate/bladder/rectum is governed by only few patient specific eigenmodes. We evaluated the capability of this approach to represent the measured organ samples by calculating the residual errors for the organ surface points, using a varying number of eigenmodes. The distribution of residual errors shows fast convergence with the number of eigenmodes. Using 4 dominating modes, the range of residual errors for the four patients was 1.3-2.0 mm (prostate), 1.4-1.9 mm (rectum) and 1.5-1.9 mm (bladder). Thus, individual geometric variation taken from multiple imaging data can be described accurately by few dominating eigenmodes, thereby providing the most important factors to characterize deformable organ motion, which can assist adaptive radiotherapy planning.

  20. 3D Morphology Prediction of Progressive Spinal Deformities from Probabilistic Modeling of Discriminant Manifolds.

    PubMed

    Kadoury, Samuel; Mandel, William; Roy-Beaudry, Marjolaine; Nault, Marie-Lyne; Parent, Stefan

    2017-01-23

    We introduce a novel approach for predicting the progression of adolescent idiopathic scoliosis from 3D spine models reconstructed from biplanar X-ray images. Recent progress in machine learning have allowed to improve classification and prognosis rates, but lack a probabilistic framework to measure uncertainty in the data. We propose a discriminative probabilistic manifold embedding where locally linear mappings transform data points from high-dimensional space to corresponding lowdimensional coordinates. A discriminant adjacency matrix is constructed to maximize the separation between progressive and non-progressive groups of patients diagnosed with scoliosis, while minimizing the distance in latent variables belonging to the same class. To predict the evolution of deformation, a baseline reconstruction is projected onto the manifold, from which a spatiotemporal regression model is built from parallel transport curves inferred from neighboring exemplars. Rate of progression is modulated from the spine flexibility and curve magnitude of the 3D spine deformation. The method was tested on 745 reconstructions from 133 subjects using longitudinal 3D reconstructions of the spine, with results demonstrating the discriminatory framework can identify between progressive and non-progressive of scoliotic patients with a classification rate of 81% and prediction differences of 2.1o in main curve angulation, outperforming other manifold learning methods. Our method achieved a higher prediction accuracy and improved the modeling of spatiotemporal morphological changes in highly deformed spines compared to other learning methods.

  1. Continuum modeling of deformation and aggregation of red blood cells.

    PubMed

    Yoon, Daegeun; You, Donghyun

    2016-07-26

    In order to gain better understanding for rheology of an isolated red blood cell (RBC) and a group of multiple RBCs, new continuum models for describing mechanical properties of cellular structures of an RBC and inter-cellular interactions among multiple RBCs are developed. The viscous property of an RBC membrane, which characterizes dynamic behaviors of an RBC under stress loading and unloading processes, is determined using a generalized Maxwell model. The present model is capable of predicting stress relaxation and stress-strain hysteresis, of which prediction is not possible using the commonly used Kelvin-Voigt model. Nonlinear elasticity of an RBC is determined using the Yeoh hyperelastic material model in a framework of continuum mechanics using finite-element approximation. A novel method to model inter-cellular interactions among multiple adjacent RBCs is also developed. Unlike the previous modeling approaches for aggregation of RBCs, where interaction energy for aggregation is curve-fitted using a Morse-type potential function, the interaction energy is analytically determined. The present aggregation model, therefore, allows us to predict various effects of physical parameters such as the osmotic pressure, the thickness of a glycocalyx layer, the penetration depth, and the permittivity, on the depletion and electrostatic energy among RBCs. Simulations for elongation and recovery deformation of an RBC and for aggregation of multiple RBCs are conducted to evaluate the efficacy of the present continuum modeling methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Modelling couplings between reaction, fluid flow and deformation: Kinetics

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Podladchikov, Yury Y.; Connolly, James A. D.

    2016-04-01

    Mineral assemblages out of equilibrium are commonly found in metamorphic rocks testifying of the critical role of kinetics for metamorphic reactions. As experimentally determined reaction rates in fluid-saturated systems generally indicate complete reaction in less than several years, i.e. several orders of magnitude faster than field-based estimates, metamorphic reaction kinetics are generally thought to be controlled by transport rather than by processes at the mineral surface. However, some geological processes like earthquakes or slow-slip events have shorter characteristic timescales, and transport processes can be intimately related to mineral surface processes. Therefore, it is important to take into account the kinetics of mineral surface processes for modelling fluid/rock interactions. Here, a model coupling reaction, fluid flow and deformation was improved by introducing a delay in the achievement of equilibrium. The classical formalism for dissolution/precipitation reactions was used to consider the influence of the distance from equilibrium and of temperature on the reaction rate, and a dependence on porosity was introduced to model evolution of reacting surface area during reaction. The fitting of experimental data for three reactions typically occurring in metamorphic systems (serpentine dehydration, muscovite dehydration and calcite decarbonation) indicates a systematic faster kinetics close from equilibrium on the dehydration side than on the hydration side. This effect is amplified through the porosity term in the reaction rate since porosity is formed during dehydration. Numerical modelling indicates that this difference in reaction rate close from equilibrium plays a key role in microtextures formation. The developed model can be used in a wide variety of geological systems where couplings between reaction, deformation and fluid flow have to be considered.

  3. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    PubMed

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  4. [DEFORMITY OF LEFT VENTRICLE WALLS IN PATIENTS WITH AORTAL VALVE STENOSIS].

    PubMed

    Trembovetskaya, E M

    2015-04-01

    Parameters of longitudinal deformity of left ventricle walls in patients, suffering aortal valve stenosis (AVS), were analyzed. While the process of heart contraction in norm and in AVS occurs, longitudinal deformity is expressed maximally in its apical divisions. AVS deformity of apical divisions of left ventricle, as well as middle divisions of interventricular septum and lower wall, practically did not differ from such in norm, and deformity of basal divisions of all walls and middle divisions of posterior, lateral and anterior walls of left ventricle was trustworthy less than a norm. Thus, a reduction of the deformity indices in basal divisions of left ventricle and middle segments of its posterior, lateral and anterior walls in patients, suffering AVS with preserved output fraction, precedes the disorders of its hemodynamics and constitutes a predictor for the cardiac output reduction.

  5. On the Modeling of Plastic Deformation of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Ertürk, S.; Steglich, D.; Bohlen, J.; Letzig, D.; Brocks, W.

    2007-05-01

    Magnesium alloys are promising materials due to their low density and therefore high specific strength. However, the industrial application is not well established so far, especially for wrought products such as sheets or profiles. Due to its hexagonal crystallographic structure, deformation mechanisms observed in magnesium alloys are rather different from those in face centered cubic metals such as aluminum alloys. This leads not only to a mechanical anisotropy, but also to a tension-compression asymmetry, i.e. unequal compressive and tensile yield strength. The resulting complexity in the yielding behavior of such materials cannot be captured by conventional models of J2 plasticity. Cazacu and Barlat, therefore, proposed a phenomenological yield potential which accounts for the respective phenomena by introducing the third invariant of the stress tensor. Simulations based on this model are performed with ABAQUS/Explicit and a user defined routine VUMAT for validating the respective implementation. The application aims at simulating the extrusion process of magnesium alloys.

  6. Modeling cellular deformations using the level set formalism

    PubMed Central

    Yang, Liu; Effler, Janet C; Kutscher, Brett L; Sullivan, Sarah E; Robinson, Douglas N; Iglesias, Pablo A

    2008-01-01

    Background Many cellular processes involve substantial shape changes. Traditional simulations of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves. Here we demonstrate that accurate cell shape changes can be recreated using level set methods (LSM), in which the cellular shape is defined implicitly, thereby eschewing the need for updating boundaries. Results We obtain a viscoelastic model of Dictyostelium cells using micropipette aspiration and show how this viscoelastic model can be incorporated into LSM simulations to recreate the observed protrusion of cells into the micropipette faithfully. We also demonstrate the use of our techniques by simulating the cell shape changes elicited by the chemotactic response to an external chemoattractant gradient. Conclusion Our results provide a simple but effective means of incorporating cellular deformations into mathematical simulations of cell signaling. Such methods will be useful for simulating important cellular events such as chemotaxis and cytokinesis. PMID:18652669

  7. Modeling level structures of odd-odd deformed nuclei

    SciTech Connect

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1985-01-15

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earch region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed.

  8. Modeling level structures of odd-odd deformed nuclei

    SciTech Connect

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1984-09-07

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for /sup 238/Np, /sup 244/Am, and /sup 250/Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs.

  9. On the Modeling of Plastic Deformation of Magnesium Alloys

    SciTech Connect

    Ertuerk, S.; Steglich, D.; Bohlen, J.; Letzig, D.; Brocks, W.

    2007-05-17

    Magnesium alloys are promising materials due to their low density and therefore high specific strength. However, the industrial application is not well established so far, especially for wrought products such as sheets or profiles. Due to its hexagonal crystallographic structure, deformation mechanisms observed in magnesium alloys are rather different from those in face centered cubic metals such as aluminum alloys. This leads not only to a mechanical anisotropy, but also to a tension-compression asymmetry, i.e. unequal compressive and tensile yield strength. The resulting complexity in the yielding behavior of such materials cannot be captured by conventional models of J2 plasticity. Cazacu and Barlat, therefore, proposed a phenomenological yield potential which accounts for the respective phenomena by introducing the third invariant of the stress tensor. Simulations based on this model are performed with ABAQUS/Explicit and a user defined routine VUMAT for validating the respective implementation. The application aims at simulating the extrusion process of magnesium alloys.

  10. Multimodality Tumor Delineation and Predictive Modelling via Fuzzy-Fusion Deformable Models and Biological Potential Functions

    NASA Astrophysics Data System (ADS)

    Wasserman, Richard Marc

    The radiation therapy treatment planning (RTTP) process may be subdivided into three planning stages: gross tumor delineation, clinical target delineation, and modality dependent target definition. The research presented will focus on the first two planning tasks. A gross tumor target delineation methodology is proposed which focuses on the integration of MRI, CT, and PET imaging data towards the generation of a mathematically optimal tumor boundary. The solution to this problem is formulated within a framework integrating concepts from the fields of deformable modelling, region growing, fuzzy logic, and data fusion. The resulting fuzzy fusion algorithm can integrate both edge and region information from multiple medical modalities to delineate optimal regions of pathological tissue content. The subclinical boundaries of an infiltrating neoplasm cannot be determined explicitly via traditional imaging methods and are often defined to extend a fixed distance from the gross tumor boundary. In order to improve the clinical target definition process an estimation technique is proposed via which tumor growth may be modelled and subclinical growth predicted. An in vivo, macroscopic primary brain tumor growth model is presented, which may be fit to each patient undergoing treatment, allowing for the prediction of future growth and consequently the ability to estimate subclinical local invasion. Additionally, the patient specific in vivo tumor model will be of significant utility in multiple diagnostic clinical applications.

  11. Multiplanar Deformities Correction Using Taylor Spatial Frame in Skeletally Immature Patients

    PubMed Central

    Koren, Lior; Keren, Yaniv; Eidelman, Mark

    2016-01-01

    Background: Taylor Spatial Frame (TSF) is a modern circular external fixator that, using a virtual hinge, is able to correct six axis deformities simultaneously. Despite the growing popularity of this method, few reports exist about its use in children and adolescents. To evaluate the effectiveness of TSF in correcting multiplanar deformities in patients with open physis, we reviewed the results of treatment in children who had at least two planes deformities of lower limbs. Methods: Over a period of 8 years, we treated 51 patients, 40 boys, 11 girls, with a mean age of 12.4 years (range, 2-16 years). All patients had open physis at the time of the TSF application. All patients had at least two deformities (angular and/or rotational). Fifty-five osteotomies (11 femoral, 44 tibial) were performed. Patients were divided into four groups: 13 with post-traumatic malunions, 18 with tibia vara, six with rickets, and 14 with miscellaneous deformities. Correction goal was determined as correction of deformities to population-average parameters of the lower limbs in frontal and sagittal views and normal mechanical axis deviation. Results: Correction goal was achieved in all except one patient; four patients had recurrence of deformities post-operatively and were re-operated. Most common complications were pin tract infection (20 patients), delayed union (2), regenerate translation (1), post-removal femoral fractures (2), knee subluxation (1), nonunion (1), and one patient developed chronic osteomyelitis secondary to deep pin tract infection. Conclusion: TSF allowed accurate correction of complex limb deformities in children and adolescents with relatively few serious complications. Level of Evidence: Level IV. Case series. PMID:27347235

  12. Cochlear implant in a patient with mondini's deformity of the cochlea: pilot patient in Pakistan.

    PubMed

    Qadeer, Sadaf; Junaid, Montasir; Sobani, Zainul Abedeen; Nadeem, Naila; Awans, Mohammad Sohail

    2013-07-01

    Autosomal-recessive genes account for about 80% of the patients of non-syndromic deafness, and a major portion of those lead to cochlear pathology. Given the strong cultural practice of consanguineous marriages and the lack of awareness regarding screening modalities, a high prevalence of hereditary pre-lingual deafness is seen in Pakistan. Considering the situation, cochlear implant surgery was introduced by Aga Khan University Hospital (AKUH), Karachi, Pakistan, in 2003. Recently we decided to expand the profile and services available and conducted the first ever cochlear implant on an anatomically-challenged cochlea. The case report relates to the experience of our pilot patient who was suffering from Mondini's deformity.

  13. Segmentation of Pathological Structures by Landmark-Assisted Deformable Models.

    PubMed

    Ibragimov, Bulat; Korez, Robert; Likar, Bostjan; Pernus, Franjo; Xing, Lei; Vrtovec, Tomaz

    2017-02-13

    Computerized segmentation of pathological structures in medical images is challenging, as, in addition to unclear image boundaries, image artifacts and traces of surgical activities, the shape of pathological structures may be very different from the shape of normal structures. Even if a sufficient number of pathological training samples are collected, statistical shape modeling cannot always capture shape features of pathological samples as they may be suppressed by shape features of a considerably larger number of healthy samples. At the same time, landmarking can be efficient in analyzing pathological structures but often lacks robustness. In this paper, we combine the advantages of landmark detection and deformable models into a novel supervised multi-energy segmentation framework that can efficiently segment structures with pathological shape. The framework adopts the theory of Laplacian shape editing that was introduced in the field of computer graphics, so that the limitations of statistical shape modeling are avoided. The performance of the proposed framework was validated by segmenting fractured lumbar vertebrae from three-dimensional (3D) computed tomography (CT) images, atrophic corpora callosa from two-dimensional (2D) magnetic resonance (MR) crosssections and cancerous prostates from 3D MR images, resulting respectively in a Dice coefficient of 84.7 ± 5.0%, 85.3 ± 4.8% and 78.3 ± 5.1%, and boundary distance of 1.14 ± 0.49 mm, 1.42 ± 0.45mm and 2.27 ± 0.52 mm. The obtained results were shown to be superior in comparison to existing deformable modelbased segmentation algorithms.

  14. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  15. 3D Face modeling using the multi-deformable method.

    PubMed

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-09-25

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.

  16. Unified constitutive model for single crystal deformation behavior with applications

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Meyer, T. G.; Jordan, E. H.

    1988-01-01

    Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code.

  17. Video model deformation system for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  18. Video model deformation system for the National Transonic Facility

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-08-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  19. Problems, acceptance and social inequality: a study of the deformed leprosy patients and their families.

    PubMed

    Kopparty, S N

    1995-09-01

    Though the impact of social inequality on health conditions is widely known, its impact on the chronic and stigmatized disease, leprosy, has received little attention. Deformity sometimes leads to disabilities and to handicaps causing problems to the patient and his family. In this paper an attempt has been made to understand the impact of social inequality, prevalent in the form of the caste system in India on the deformed leprosy patients and on their families. This impact was examined in terms of the problems faced by the patients. A sample of 150 deformed patients and their families, drawn from two districts in Tamil Nadu, was selected for the study. About 57% of the deformed patients experienced their deformity as a handicap which caused social and economic problems while the rest did not. Of the three caste groups, the Lower Caste group experienced more severe economic problems while the Upper Caste group faced more social problems. The extent of acceptance of deformed patients in their family varied significantly among those facing and not facing problems due to their deformity. The deformed patients without any handicap were accepted in a large majority of their families (82%) regardless of their caste status. In contrast the deformed but handicapped patients were accepted differentially among the three caste groups with the Upper group accepting them in most of their families (80%) while in the Lower group much less number of families (54%) did. All the families of the deformed but not handicapped patients desired to keep their patients till their death irrespective of their caste status. On the contrary, while all the families in the Upper Caste group expressed their willingness to keep their handicapped patients in the family till their death, 10% in the Middle and 22% in the Lower Caste groups did not want to do so. This suggests the gradual marginalization, rejection and dehabilitation of the affected. Thus, one's caste status can be a broad indicator

  20. Modeling of ductile deformation in anisotropic rocks with slip surfaces

    NASA Astrophysics Data System (ADS)

    Dabrowski, Marcin

    2013-04-01

    Flanking structures and sheath folds can develop in layered rocks due to flow perturbation around slip surfaces in shear zones (Exner and Dabrowski, 2010; Reber et al., submitted). Mechanical anisotropy of the host rock has been shown to play a major role in determining the slip rate and the flow pattern around it (Kocher and Mancktelow, 2006; Fletcher, 2011). In addition, anisotropic fluids such as ductile foliated rocks have a 'memory' of deformation due to evolving microstructure. For example, the rotation of a rigid circular inclusion embedded in a layered host in layer-parallel shear results in the structural reorganization around it, which leads to the modification of the flow pattern in the host and in consequence to a massive reduction of the inclusion rotation rate (Dabrowski and Schmid, 2011). Willis (1964) derived an analytical elastic solution for an elliptical inclusion in a homogeneous anisotropic matrix subject to a uniform load in the far field. The solution can be reduced to the case of an incompressible viscous medium. The case of an arbitrarily oriented inviscid slit under shear parallel to the principal axis of anisotropy can be obtained by reducing it even further. Although derived for the initial state of homogeneous planar anisotropy, the solution provides useful insights into the large deformation behavior of the system. In this study, I will use different models and numerical modeling techniques to assess the impact of mechanical anisotropy and structural development on the perturbing flow around an inviscid slit (slip surface) embedded in a host comprising discrete isotropic layers in layer-parallel simple shear. In the limit of thin layers (the number of layers intercepting the slit tends to infinity), the host is modeled as an anisotropic fluid. The anisotropic viscosity is determined by the bulk anisotropic viscosity of the layered system. The layering is initially planar or equivalently the anisotropy is initially homogeneous. Both non

  1. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy.

    PubMed

    Diot, Quentin; Kavanagh, Brian; Vinogradskiy, Yevgeniy; Garg, Kavita; Gaspar, Laurie; Miften, Moyed

    2015-11-01

    To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20 lung SBRT patients. Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled "fibrosis" is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.

  2. Modeling Step-Strain Relaxation and Cyclic Deformations of Elastomers

    NASA Technical Reports Server (NTRS)

    Johnson, A.R.; Mead, J. L.

    2000-01-01

    Data for step-strain relaxation and cyclic compressive deformations of highly viscous short elastomer cylinders are modeled using a large strain rubber viscoelastic constitutive theory with a rate-independent friction stress term added. In the tests, both small and large amplitude cyclic compressive strains, in the range of 1% to 10%, were superimposed on steady state compressed strains, in the range of 5% to 20%, for frequencies of 1 and 10 Hz. The elastomer cylinders were conditioned prior to each test to soften them. The constants in the viscoclastic-friction constitutive theory are determined by employing a nonlinear least-squares method to fit the analytical stresses for a Maxwell model, which includes friction, to measured relaxation stresses obtained from a 20% step-strain compression test. The simulation of the relaxation data with the nonlinear model is successful at compressive strains of 5%, 10%, 15%, and 20%. Simulations of hysteresis stresses for enforced cyclic compressive strains of 20% +/- 5% are made with the model calibrated by the relaxation data. The predicted hysteresis stresses are lower than the measured stresses.

  3. Brain-skull boundary conditions in a computational deformation model

    NASA Astrophysics Data System (ADS)

    Ji, Songbai; Liu, Fenghong; Roberts, David; Hartov, Alex; Paulsen, Keith

    2007-03-01

    Brain shift poses a significant challenge to accurate image-guided neurosurgery. To this end, finite element (FE) brain models have been developed to estimate brain motion during these procedures. The significance of the brain-skull boundary conditions (BCs) for accurate predictions in these models has been explored in dynamic impact and inertial rotation injury computational simulations where the results have shown that the brain mechanical response is sensitive to the type of BCs applied. We extend the study of brain-skull BCs to quasi-static brain motion simulations which prevail in neurosurgery. Specifically, a frictionless brain-skull BC using a contact penalty method master-slave paradigm is incorporated into our existing deformation forward model (forced displacement method). The initial brain-skull gap (CSF thickness) is assumed to be 2mm for demonstration purposes. The brain surface nodes are assigned as either fixed (at bottom along the gravity direction), free (at brainstem), with prescribed displacement (at craniotomy) or as slave nodes potentially in contact with the skull (all the remaining). Each slave node is assigned a penalty parameter (β=5) such that when the node penetrates the rigid body skull inner-surface (master surface), a contact force is introduced proportionally to the penetration. Effectively, brain surface nodes are allowed to move towards or away from the cranium wall, but are ultimately restricted from penetrating the skull. We show that this scheme improves the model's ability to represent the brain-skull interface.

  4. Modeling Airflow Using Subject-Specific 4DCT-Based Deformable Volumetric Lung Models

    PubMed Central

    Ilegbusi, Olusegun J.; Li, Zhiliang; Seyfi, Behnaz; Min, Yugang; Meeks, Sanford; Kupelian, Patrick; Santhanam, Anand P.

    2012-01-01

    Lung radiotherapy is greatly benefitted when the tumor motion caused by breathing can be modeled. The aim of this paper is to present the importance of using anisotropic and subject-specific tissue elasticity for simulating the airflow inside the lungs. A computational-fluid-dynamics (CFD) based approach is presented to simulate airflow inside a subject-specific deformable lung for modeling lung tumor motion and the motion of the surrounding tissues during radiotherapy. A flow-structure interaction technique is employed that simultaneously models airflow and lung deformation. The lung is modeled as a poroelastic medium with subject-specific anisotropic poroelastic properties on a geometry, which was reconstructed from four-dimensional computed tomography (4DCT) scan datasets of humans with lung cancer. The results include the 3D anisotropic lung deformation for known airflow pattern inside the lungs. The effects of anisotropy are also presented on both the spatiotemporal volumetric lung displacement and the regional lung hysteresis. PMID:23365554

  5. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS

    SciTech Connect

    Anter El-Azab

    2013-04-08

    The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand strain hardening and cell structure formation under monotonic loading. These aspects of crystal deformation are manifestations of the evolution of the underlying dislocation system under mechanical loading. The project had three research tasks: 1) Investigating the statistical characteristics of dislocation systems in deformed crystals. 2) Formulating kinetic equations of dislocations and coupling these kinetics equations and crystal mechanics. 3) Computational solution of coupled crystal mechanics and dislocation kinetics. Comparison of dislocation dynamics predictions with experimental results in the area of statistical properties of dislocations and their field was also a part of the proposed effort. In the first research task, the dislocation dynamics simulation method was used to investigate the spatial, orientation, velocity, and temporal statistics of dynamical dislocation systems, and on the use of the results from this investigation to complete the kinetic description of dislocations. The second task focused on completing the formulation of a kinetic theory of dislocations that respects the discrete nature of crystallographic slip and the physics of dislocation motion and dislocation interaction in the crystal. Part of this effort also targeted the theoretical basis for establishing the connection between discrete and continuum representation of dislocations and the analysis of discrete dislocation simulation results within the continuum framework. This part of the research enables the enrichment of the kinetic description with information representing the discrete dislocation systems behavior. The third task focused on the development of physics-inspired numerical methods of solution of the coupled

  6. Statistical Modeling of CTV Motion and Deformation for IMRT of Early-Stage Rectal Cancer

    SciTech Connect

    Bondar, Luiza; Intven, Martijn; Burbach, J.P. Maarten; Budiarto, Eka; Kleijnen, Jean-Paul; Philippens, Marielle; Asselen, Bram van; Seravalli, Enrica; Reerink, Onne; Raaymakers, Bas

    2014-11-01

    Purpose: To derive and validate a statistical model of motion and deformation for the clinical target volume (CTV) of early-stage rectal cancer patients. Methods and Materials: For 16 patients, 4 to 5 magnetic resonance images (MRI) were acquired before each fraction was administered. The CTV was delineated on each MRI. Using a leave-one-out methodology, we constructed a population-based principal component analysis (PCA) model of the CTV motion and deformation of 15 patients, and we tested the model on the left-out patient. The modeling error was calculated as the amount of the CTV motion-deformation of the left-out-patient that could not be explained by the PCA model. Next, the PCA model was used to construct a PCA target volume (PCA-TV) by accumulating motion-deformations simulated by the model. A PCA planning target volume (PTV) was generated by expanding the PCA-TV by uniform margins. The PCA-PTV was compared with uniform and nonuniform CTV-to-PTV margins. To allow comparison, geometric margins were determined to ensure adequate coverage, and the volume difference between the PTV and the daily CTV (CTV-to-PTV volume) was calculated. Results: The modeling error ranged from 0.9 ± 0.5 to 2.9 ± 2.1 mm, corresponding to a reduction of the CTV motion-deformation between 6% and 60% (average, 23% ± 11%). The reduction correlated with the magnitude of the CTV motion-deformation (P<.001, R=0.66). The PCA-TV and the CTV required 2-mm and 7-mm uniform margins, respectively. The nonuniform CTV-to-PTV margins were 4 mm in the left, right, inferior, superior, and posterior directions and 8 mm in the anterior direction. Compared to uniform and nonuniform CTV-to-PTV margins, the PCA-based PTV significantly decreased (P<.001) the average CTV-to-PTV volume by 128 ± 20 mL (49% ± 4%) and by 35 ± 6 mL (20% ± 3.5%), respectively. Conclusions: The CTV motion-deformation of a new patient can be explained by a population-based PCA model. A PCA model

  7. A model of pulsatile flow in a uniform deformable vessel.

    PubMed

    Johnson, G A; Borovetz, H S; Anderson, J L

    1992-01-01

    Simulations of blood flow in natural and artificial conduits usually require large computers for numerical solution of the Navier-Stokes equations. Often, physical insight into the fluid dynamics is lost when the solution is purely numerical. An alternative to solving the most general form of the Navier-Stokes equations is described here, wherein a functional form of the solution is assumed in order to simplify the required computations. The assumed forms for the axial pressure gradient and velocity profile are chosen such that conservation of mass is satisfied for fully established pulsatile flow in a straight, deformable vessel. The resulting equations are cast in finite-difference form and solved explicitly. Results for the limiting cases of rigid wall and zero applied pressure are found to be in good agreement with analytical solutions. Comparison with the experimental results of Klanchar et al. [Circ. Res. 66, 1624-1635 (1990]) also shows good agreement. Application of the model to realistic physiological parameter values provides insight as to the influence of the pulsatile nature of the flow field on wall shear development in the presence of a moving wall boundary. Specifically, the model illustrates the dependence of flow rate and shear rate on the amplitude of the vessel wall motion and the phase difference between the applied pressure difference and the oscillations of the vessel radius. The present model can serve as a useful tool for experimentalists interested in quantifying the magnitude and character of velocity profiles and shearing forces in natural and artificial biologic conduits.

  8. A thermoelastic deformation model of tissue contraction during thermal ablation.

    PubMed

    Park, Chang Sub; Liu, Cong; Hall, Sheldon K; Payne, Stephen J

    2017-06-14

    Thermal ablation is an energy-based ablation technique widely used during minimally invasive cancer treatment. Simulations are used to predict the dead tissue post therapy. However, one difficulty with the simulations is accurately predicting the ablation zone in post-procedural images due to the contraction of tissue as a result of exposure to elevated temperatures. A mathematical model of the thermoelastic deformation for an elastic isotropic material was coupled with a three state thermal denaturation model to determine the contraction of tissue during thermal ablation. A finite difference method was considered to quantify the tissue contraction for a typical temperature distribution during thermal ablation. The simulations show that tissue displacement during thermal ablation was not bound to the tissue heated regions only. Both tissue expansion and contraction were observed at the different stages of the heating process. Tissue contraction of up to 42% was obtained with an applicator temperature of 90 °C. A recovery of around 2% was observed with heating removed as a result of unfolded state proteins returning back to its native state. Poisson's ratio and the applicator temperature have both been shown to affect the tissue displacement significantly. The maximum tissue contraction was found to increase with both increasing Poisson's ratio and temperature. The model presented here will allow predictions of thermal ablation to be corrected for tissue contraction, which is an important effect, during comparison with post-procedural images, thus improving the accuracy of mathematical simulations for treatment planning.

  9. Modeling Interseismic and Transient Deformation in Southcentral Alaska

    NASA Astrophysics Data System (ADS)

    Freed, A. M.; Ali, T.

    2009-12-01

    The convergent margin of Southern Alaska marks the active tectonic boundary between the North American and Pacific plates. Here we numerically model the response of the Alaskan lithosphere to interseismic, coseismic and postseismic loading in order to interpret the contemporary velocity field from GPS observations. Results suggest that, to first order, the surface velocities can be explained by the combination of interseismic deformation associated with a locked megathrust and postseismic viscous relaxation following large earthquakes, particularly the 1964 M9.2 Great Alaska earthquake. The best fitting model requires a weak mantle wedge sandwiched between a strong crust and the subducting slab. Most of the trenchward directed velocities observed in the GPS data, near the Kenai Peninsula and Kodiak Island as well in interior Alaska north of the Denali Fault, are a viscous relaxation response to the 1964 earthquake. In a few decades we should begin to see these velocities decay and subsequently point northwestwards. Postseismic viscous relaxation associated with large strike slip earthquakes since 1949 on the Queen Charlotte-Fairweather faults only provide a small contribution (~5mm/yr) to the present day GPS velocity field in that region. Our models demonstrate how subduction of the Pacific plate tends to load all the major faults at the margin including the central and eastern segments of the Denali fault and show how the 1964 earthquake and associated postseismic relaxation combined to increase Coulomb stress at the fault segment that ruptured during the 2002 M7.9 Denali earthquake.

  10. Model Deformation Measurement Technique NASA Langley HSR Experiences

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Wahls, R. A.; Owens, L. R.; Goad, W. K.

    1999-01-01

    Model deformation measurement techniques have been investigated and developed at NASA's Langley Research Center. The current technique is based upon a single video camera photogrammetric determination of two dimensional coordinates of wing targets with a fixed (and known) third dimensional coordinate, namely the spanwise location. Variations of this technique have been used to measure wing twist and bending at a few selected spanwise locations near the wing tip on HSR models at the National Transonic Facility, the Transonic Dynamics Tunnel, and the Unitary Plan Wind Tunnel. Automated measurements have been made at both the Transonic Dynamics Tunnel and at Unitary Plan Wind Tunnel during the past year. Automated measurements were made for the first time at the NTF during the recently completed HSR Reference H Test 78 in early 1996. A major problem in automation for the NTF has been the need for high contrast targets which do not exceed the stringent surface finish requirements. The advantages and limitations (including targeting) of the technique as well as the rationale for selection of this particular technique are discussed. Wing twist examples from the HSR Reference H model are presented to illustrate the run-to-run and test-to-test repeatability of the technique in air mode at the NTF. Examples of wing twist in cryogenic nitrogen mode at the NTF are also presented.

  11. Fluid-Structure interaction modeling in deformable porous arteries

    NASA Astrophysics Data System (ADS)

    Zakerzadeh, Rana; Zunino, Paolo

    2015-11-01

    A computational framework is developed to study the coupling of blood flow in arteries interacting with a poroelastic arterial wall featuring possibly large deformations. Blood is modeled as an incompressible, viscous, Newtonian fluid using the Navier-Stokes equations and the arterial wall consists of a thick material which is modeled as a Biot system that describes the mechanical behavior of a homogeneous and isotropic elastic skeleton, and connecting pores filled with fluid. Discretization via finite element method leads to the system of nonlinear equations and a Newton-Raphson scheme is adopted to solve the resulting nonlinear system through consistent linearization. Moreover, interface conditions are imposed on the discrete level via mortar finite elements or Nitsche's coupling. The discrete linearized coupled FSI system is solved by means of a splitting strategy, which allows solving the Navier-Stokes and Biot equations separately. The numerical results investigate the effects of proroelastic parameters on the pressure wave propagation in arteries, filtration of incompressible fluids through the porous media, and the structure displacement. The fellowship support from the Computational Modeling & Simulation PhD program at University of Pittsburgh for Rana Zakerzadeh is gratefully acknowledged.

  12. Accurate 3D Modeling of Breast Deformation for Temporal Mammogram Registration

    DTIC Science & Technology

    2008-09-01

    SUPPLEMENTARY NOTES 14. ABSTRACT In this research project, we have developed mathematical model of breast deformation to simulate breast compression during...proposed to simulate and analyze breast deformation that can significantly improve the accuracy of matching in temporal mammograms and thus, the...performance of diagnosis and treatment. In this research project, we have developed a mathematical model of breast deformation to simulate breast

  13. Total Knee Arthroplasty in Patients with Blount Disease or Blount-Like Deformity.

    PubMed

    Natoli, Roman M; Nypaver, Chrissy M; Schiff, Adam P; Hopkinson, William J; Rees, Harold W

    2016-01-01

    Blount disease is associated with complex deformity of the proximal tibia, and some patients will develop knee osteoarthritis. Five patients (eight knees) with Blount disease or Blount-like deformity underwent total knee arthroplasty. Mean proximal tibial metaphyseal-diaphyseal angle was 20.75°. Each patient had substantial posteromedial tibial bony defects and six knees required extensive medial releases. Two knees required increased constraint at index procedure. One patient has undergone bilateral revision surgery with rotating hinge prostheses. Mean WOMAC scores were 13.5 and Knee Society scores were 212.5 at average 75.2 month follow-up. Despite technical challenges, patients with these deformities can have successful outcomes after total knee arthroplasty. Surgeons should be prepared to address posteromedial tibial bony defects and consider constrained arthroplasty at the index procedure.

  14. Model Attitude and Deformation Measurements at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    2008-01-01

    The NASA Glenn Research Center is currently participating in an American Institute of Aeronautics and Astronautics (AIAA) sponsored Model Attitude and Deformation Working Group. This working group is chartered to develop a best practices document dealing with the measurement of two primary areas of wind tunnel measurements, 1) model attitude including alpha, beta and roll angle, and 2) model deformation. Model attitude is a principle variable in making aerodynamic and force measurements in a wind tunnel. Model deformation affects measured forces, moments and other measured aerodynamic parameters. The working group comprises of membership from industry, academia, and the Department of Defense (DoD). Each member of the working group gave a presentation on the methods and techniques that they are using to make model attitude and deformation measurements. This presentation covers the NASA Glenn Research Center s approach in making model attitude and deformation measurements.

  15. Focal deformity of the cranial nerves observed on multislice motion-sensitized driven equilibrium (MSDE) in patients with neurovascular compression.

    PubMed

    Kanoto, Masafumi; Hosoya, Takaaki; Oda, Atsuko; Honma, Tsuguo; Sugai, Yukio

    2012-01-01

    Our purpose is to demonstrate the deformity of the cranial nerves by arterial compression using a novel technique, multislice motion-sensitized driven equilibrium (MSDE). Subjects were 10 patients with neurovascular compression (5 patients with trigeminal neuralgia and 5 patients with hemifacial spasm). We observed the existence and extent of deformity of nerves by MSDE. Afterward, we compared operative findings with preoperative imaging findings and evaluated the validity of the latter. All compressing, blood vessels could be correctly identified through preoperative evaluation. Of all patients, 7 showed deformity of the cranial nerves, which was consistent with operative findings except in one case. In postoperative evaluation, patients' neurological symptoms improved and the deformity disappeared. Three patients did not show deformity on preoperative MSDE images. In these patients, neural compression was also not observed during the operation. The deformity of cranial nerves in patients with neurovascular compression was clearly shown using MSDE.

  16. Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models.

    PubMed

    Chen, Ting; Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2010-01-01

    Tagged magnetic resonance imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the robust point matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of 1) through-plane motion and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the moving least square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  17. Modelling the deformation and collapse of a weak snow layer

    NASA Astrophysics Data System (ADS)

    Mede, Tijan; Chambon, Guillaume; Hagenmuller, Pascal; Nicot, François

    2017-04-01

    Weak snow layers are thin layers of low cohesion and density, naturally occurring in the snowpack. The understanding of their mechanical behaviour is considered to be of great importance as they are believed to have a decisive effect on dry slab avalanche releases. These layers can be viewed as porous structures of sintered ice grains that collapse under loading, withdrawing support to the overlaying slab layer of snow. Field observations show that weak layers are usually formed by very distinct snow types and microstructures. The extremely fragile nature of these layers makes systematic laboratory experiments notoriously difficult. Here, to investigate the mechanical response of a weak layer under loading, we perform numerical experiments based on the actual microstructure of snow. The simulations are based on a discrete element model (DEM) of the weak layer that utilizes X-ray tomographical images of snow structure as input information. Individual grains are identified in the binary image of the snow matrix and then represented in the DEM model by a computation-efficient approximation based on sets of spheres. A medial axis-based algorithm has been developed in order to obtain a chosen level of grain shape approximation with the minimum number of spherical discrete elements. The optimal level of grain approximation is determined through a sensitivity analysis of different geometrical measures of grain shape to the approximating parameters. Thereby, an optimal balance can be found between computational efficiency and accuracy of the developed DEM model. Finally, by accounting for the fragile cohesion between individual grains of the snow matrix, the model gains ability to follow the material through different stages of deformation - from a porous network of sintered grains to the final stage of a decomposed granular material. The model is applied to multiple snow samples to reveal the effect of microstructure on the macroscopic mechanical response of snow. The

  18. Numerical modeling on progressive internal deformation in down-built diapirs

    NASA Astrophysics Data System (ADS)

    Fuchs, Lukas; Koyi, Hemin; Schmeling, Harro

    2014-09-01

    A two-dimensional finite difference code (FDCON) is used to estimate the finite deformation within a down-built diapir. The geometry of the down-built diapir is fixed by using two rigid rectangular overburden units which sink into a source layer of a constant viscosity. Thus, the model refers to diapirs consisting of a source layer feeding a vertical stem, and not to other salt structures (e.g. salt sheets or pillows). With this setup we study the progressive strain in three different deformation regimes within the ;salt; material: (I) a squeezed channel-flow deformation regime and (II) a corner-flow deformation regime within the source layer, and (III) a pure channel-flow deformation regime within the stem. We analyze the evolution of finite deformation in each regime individually, progressive strain for particles passing all three regimes, and total 2D finite deformation within the salt layer. Model results show that the material which enters the stem bears inherited strain accumulated from the other two domains. Therefore, finite deformation in the stem differs from the expected channel-flow deformation, due to the deformation accumulated within the source layer. The stem displays a high deformation zone within its center and areas of decreasing progressive strain between its center and its boundaries. High deformation zones within the stem could also be observed within natural diapirs (e.g. Klodowa, Polen). The location and structure of the high deformation zone (e.g. symmetric or asymmetric) could reveal information about different rates of salt supplies from the source layer. Thus, deformation pattern could directly be correlated to the evolution of the diapir.

  19. Distributed control in adaptive optics: deformable mirror and turbulence modeling

    NASA Astrophysics Data System (ADS)

    Ellenbroek, Rogier; Verhaegen, Michel; Doelman, Niek; Hamelinck, Roger; Rosielle, Nick; Steinbuch, Maarten

    2006-06-01

    Future large optical telescopes require adaptive optics (AO) systems whose deformable mirrors (DM) have ever more degrees of freedom. This paper describes advances that are made in a project aimed to design a new AO system that is extendible to meet tomorrow's specifications. Advances on the mechanical design are reported in a companion paper [6272-75], whereas this paper discusses the controller design aspects. The numerical complexity of controller designs often used for AO scales with the fourth power in the diameter of the telescope's primary mirror. For future large telescopes this will undoubtedly become a critical aspect. This paper demonstrates the feasibility of solving this issue with a distributed controller design. A distributed framework will be introduced in which each actuator has a separate processor that can communicate with a few direct neighbors. First, the DM will be modeled and shown to be compatible with the framework. Then, adaptive turbulence models that fit the framework will be shown to adequately capture the spatio-temporal behavior of the atmospheric disturbance, constituting a first step towards a distributed optimal control. Finally, the wavefront reconstruction step is fitted into the distributed framework such that the computational complexity for each processor increases only linearly with the telescope diameter.

  20. Factors affecting the degree of penile deformity in Peyronie disease: an analysis of 1001 patients.

    PubMed

    Kadioglu, Ates; Sanli, Oner; Akman, Tolga; Canguven, Onder; Aydin, Memduh; Akbulut, Fatih; Kucukdurmaz, Faruk

    2011-01-01

    Only a few studies have investigated the association between the severity of Peyronie disease (PD) and clinical parameters such as age and associated comorbidities. The aim of this study was to report the relationship between the degree of curvature of the penis and the clinical parameters among patients with PD. A total of 1001 patients with PD were evaluated retrospectively in terms of penile deformity, erectile status, and risk factors for systemic vascular diseases. The degree of curvature was assessed with a protractor during maximum erection in response to a combined injection and stimulation test and/or vacuum device. A modified Kelami classification was used to categorize penile deformities as follows: patients with deformities without curvature (notching, hourglass, and swan neck deformity, group 1), with mild curvature (≤ 30 degrees, group 2), with moderate curvature (31-60 degrees, group 3), or with severe curvature (> 60 degrees, group 4). Chi-square tests, 1-way analysis of variance, and univariate and multiple ordinal regression analyses were used for statistical analysis. Penile deformity without curvature was detected in 12.3% of the patients, whereas the curvature was less than 30 degrees in 39.5%, 30 to 60 degrees in 34.5%, and more than 60 degrees in 13.5% of the patients. Multiple ordinal regression analysis identified age (P = .013), side of deformity (P = .007), erectile dysfunction (P < .0001), and diabetes mellitus (P = .001) as significant independent predictors of the severity of penile curvature. In conclusion, patients' age, side of deformity, erectile function, and diabetes were significantly associated with the degree of curvature.

  1. Surgical Treatment of a Rare "Reverse" Madelung Deformity in 11 Years Female Patient.

    PubMed

    Ulici, Alexandru; Florea, Daniel Catalin; Tevanov, Iulia; Zaharie, Dan; Carp, Madalina

    2017-01-01

    Madelung deformity is an abnormality of the distal part of the forearm due to a growth arrest in the distal radial physis creating an increase of the radial tilt angle associated with a dorsal subluxation of the distal ulna in most cases. It is a rare condition which represents only 1.7% of hand deformities being characterized by the presence of an abnormal structure, Vickers ligament, that tethers the distal radius to the lunate bone. Although it is believed to be a congenital disorder, the symptoms are absent till late childhood. We present a case of a 11 years old girl patient, who came to our clinic for deformity of both forearms, which consisted of an anteriorly curved radius, volar proeminence of the distal ulna, partial limitation of supination and pain in the last 6 months, with and insidious onsed and aggravated lately. The mother of the patient, at the age of 13, was diagnosed with the same deformity which was surgically treated at that time. Furthermore, the patient has an older sister with no deformity of the forearms. X-rays revealed an increased radial tilt and anterior luxation of the distal ulna. Considering the deformity and the presence of pain we decided to excise the Vickers ligament and make an opening and derotation wedge osteotomy of the distal radius. Celsius.

  2. 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization.

    PubMed

    Noblet, Vincent; Heinrich, Christian; Heitz, Fabrice; Armspach, Jean-Paul

    2005-05-01

    This paper deals with topology preservation in three-dimensional (3-D) deformable image registration. This work is a nontrivial extension of, which addresses the case of two-dimensional (2-D) topology preserving mappings. In both cases, the deformation map is modeled as a hierarchical displacement field, decomposed on a multiresolution B-spline basis. Topology preservation is enforced by controlling the Jacobian of the transformation. Finding the optimal displacement parameters amounts to solving a constrained optimization problem: The residual energy between the target image and the deformed source image is minimized under constraints on the Jacobian. Unlike the 2-D case, in which simple linear constraints are derived, the 3-D B-spline-based deformable mapping yields a difficult (until now, unsolved) optimization problem. In this paper, we tackle the problem by resorting to interval analysis optimization techniques. Care is taken to keep the computational burden as low as possible. Results on multipatient 3-D MRI registration illustrate the ability of the method to preserve topology on the continuous image domain.

  3. Modeling of deformation behavior and texture evolution in magnesium alloy using the intermediate $\\phi$-model

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; M'Guil, S. M.; Wen, Wei; Lavender, Curt A.; Khaleel, Mohammad A.

    2014-01-06

    The viscoplastic intermediate phi-model was applied in this work to predict the deformation behavior and texture evolution in a magnesium alloy, an HCP material. We simulated the deformation behavior with different intergranular interaction strengths and compared the predicted results with available experimental results. In this approach, elasticity is neglected and the plastic deformation mechanisms are assumed as a combination of crystallographic slip and twinning systems. Tests are performed for rolling (plane strain compression) of random textured Mg polycrystal as well as for tensile and compressive tests on rolled Mg sheets. Simulated texture evolutions agree well with experimental data. Activities of twinning and slip, predicted by the intermediate $\\phi$-model, reveal the strong anisotropic behavior during tension and compression of rolled sheets.

  4. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  5. Deformation-induced damage and recovery in model hydrogels - A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zidek, Jan; Milchev, Andrey; Jancar, Josef; Vilgis, Thomas A.

    2016-09-01

    Using molecular dynamics simulation of a model hybrid cross-link hydrogel, we investigate the network damage evolution and the related structure transformations. We model the hydrogel structure as a network-connected assembly of crosslinked clusters whereby deformation-induced damage is considered along with network recovery. The two principal mechanisms involved in hydrogel recovery from deformation include segment hops of the building structure units (segments) between clusters and cluster shape modification. These mechanisms act either instantaneously, or with a certain time delay after the onset of deformation. By elucidating the conditions under which one of the mechanisms prevails, one may design hydrogel materials with a desired response to deformation.

  6. The impact of patient self assessment of deformity on HRQL in adults with scoliosis

    PubMed Central

    Tones, Megan J; Moss, Nathan D

    2007-01-01

    Background Body image and HRQL are significant issues for patients with scoliosis due to cosmetic deformity, physical and psychological symptoms, and treatment factors. A selective review of scoliosis literature revealed that self report measures of body image and HRQL share unreliable correlations with radiographic measures and clinician recommendations for surgery. However, current body image and HRQL measures do not indicate which aspects of scoliosis deformity are the most distressing for patients. The WRVAS is an instrument designed to evaluate patient self assessment of deformity, and may show some promise in identifying aspects of deformity most troubling to patients. Previous research on adolescents with scoliosis supports the use of the WRVAS as a clinical tool, as the instrument shares strong correlations with radiographic measures and quality of life instruments. There has been limited use of this instrument on adult populations. Methods The WRVAS and the SF-36v2, a HRQL measure, were administered to 71 adults with scoliosis, along with a form to report age and gender. Preliminary validation analyses were performed on the WRVAS (floor and ceiling effects, internal consistency and collinearity, correlations with the SF-36v2, and multiple regression with the WRVAS total score as the predictor, and SF-36v2 scores as outcomes). Results The psychometric properties of the WRVAS were acceptable. Older participants perceived their deformities as more severe than younger participants. More severe deformities were associated with lower scores on the Physical Component Summary Score of the SF-36v2. Total WRVAS score also predicted Physical Component Summary scores. Conclusion The results of the current study indicate that the WRVAS is a reliable tool to use with adult patients, and that patient self assessment of deformity shared a relationship with physical rather than psychological aspects of HRQL. The current and previous studies concur that revision of the

  7. Automated 3D Motion Tracking using Gabor Filter Bank, Robust Point Matching, and Deformable Models

    PubMed Central

    Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Tagged Magnetic Resonance Imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the Robust Point Matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of: 1) through-plane motion, and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the Moving Least Square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  8. A Novel Method of Modeling the Deformation Resistance for Clad Sheet

    SciTech Connect

    Hu Jianliang; Yi Youping; Xie Mantang

    2011-08-22

    Because of the excellent thermal conductivity, the clad sheet (3003/4004/3003) of aluminum alloy is extensively used in various heat exchangers, such as radiator, motorcar air conditioning, evaporator, and so on. The deformation resistance model plays an important role in designing the process parameters of hot continuous rolling. However, the complex behaviors of the plastic deformation of the clad sheet make the modeling very difficult. In this work, a novel method for modeling the deformation resistance of clad sheet was proposed by combining the finite element analysis with experiments. The deformation resistance model of aluminum 3003 and 4004 was proposed through hot compression test on the Gleeble-1500 thermo-simulation machine. And the deformation resistance model of clad sheet was proposed through finite element analysis using DEFORM-2D software. The relationship between cladding ratio and the deformation resistance was discussed in detail. The results of hot compression simulation demonstrate that the cladding ratio has great effects on the resistance of the clad sheet. Taking the cladding ratio into consideration, the mathematical model of the deformation resistance for clad sheet has been proved to have perfect forecasting precision of different cladding ratio. Therefore, the presented model can be used to predict the rolling force of clad sheet during the hot continuous rolling process.

  9. Domain Adaptation of Deformable Part-Based Models.

    PubMed

    Xu, Jiaolong; Ramos, Sebastian; Vázquez, David; López, Antonio M

    2014-12-01

    The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors.

  10. Four dimensional deformable image registration using trajectory modeling

    PubMed Central

    Castillo, Edward; Castillo, Richard; Martinez, Josue; Shenoy, Maithili; Guerrero, Thomas

    2013-01-01

    A four-dimensional deformable image registration (4D DIR) algorithm, referred to as 4D local trajectory modeling (4DLTM), is presented and applied to thoracic 4D computed tomography (4DCT) image sets. The theoretical framework on which this algorithm is built exploits the incremental continuity present in 4DCT component images to calculate a dense set of parameterized voxel trajectories through space as functions of time. The spatial accuracy of the 4DLTM algorithm is compared with an alternative registration approach in which component phase to phase (CPP) DIR is utilized to determine the full displacement between maximum inhale and exhale images. A publically available DIR reference database (http://www.dir-lab.com) is utilized for the spatial accuracy assessment. The database consists of ten 4DCT image sets and corresponding manually identified landmark points between the maximum phases. A subset of points are propagated through the expiratory 4DCT component images. Cubic polynomials were found to provide sufficient flexibility and spatial accuracy for describing the point trajectories through the expiratory phases. The resulting average spatial error between the maximum phases was 1.25 mm for the 4DLTM and 1.44 mm for the CPP. The 4DLTM method captures the long-range motion between 4DCT extremes with high spatial accuracy. PMID:20009196

  11. Water flow based geometric active deformable model for road network

    NASA Astrophysics Data System (ADS)

    Leninisha, Shanmugam; Vani, Kaliaperumal

    2015-04-01

    A width and color based geometric active deformable model is proposed for road network extraction from remote sensing images with minimal human interception. Orientation and width of road are computed from a single manual seed point, from which the propagation starts both right and left hand directions of the starting point, which extracts the interconnected road network from the aerial or high spatial resolution satellite image automatically. Here the propagation (like water flow in canal with defined boundary) is restricted with color and width of the road. Road extraction is done for linear, curvilinear (U shape and S shape) roads first, irrespective of width and color. Then, this algorithm is improved to extract road with junctions in a shape of L, T and X along with center line. Roads with small break or disconnected roads are also extracts by a modified version of this same algorithm. This methodology is tested and evaluated with various remote sensing images. The experimental results show that the proposed method is efficient and extracting roads accurately with less computation time. However, in complex urban areas, the identification accuracy declines due to the various sizes of obstacles, over bridges, multilane etc.

  12. Using transverse isotropy to model arbitrary deformation-induced anisotropy

    SciTech Connect

    Brannon, R.M.

    1996-07-01

    A unifying framework is developed for the analysis of brittle materials. Heretofore diverse classes of models result from different choices for unspecified coefficient and distribution functions in the unified theory. Material response is described in terms of expectation integrals of transverse symmetry tensors. First, a canonical body containing cracks of all the same orientation is argued to possess macroscopic transverse isotropy. An orthogonal basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth-order tensors associated with a given material vector is introduced and applied to deduce the explicit functional dependence of the compliance of such contrived materials on the shared crack orientation. A principle of superposition of strain rates is used to write the compliance for a more realistic material consisting of cracks of random size and orientation as an expectation integral of the transverse compliance for each orientation times the joint distribution function for the size and orientation. Utilizing an evolving (initially exponential) size- dependence in the joint distribution, the general theory gives unprecedented agreement with measurements of the dynamic response of alumina to impact loading, especially upon release where the calculations predict the development of considerable deformation- induced anisotropy, challenging the conventional notion of shocks as isotropic phenomena.

  13. Molecular modelling of structure and deformation mechanisms of auxetic behaviour in the α-quartz structures

    NASA Astrophysics Data System (ADS)

    Yao, Yong Tao; Alderson, Andrew; Alderson, Kim Lesley

    2011-11-01

    Force field based simulation has been employed to predict the deformation mechanisms of auxetic nano-materials having tetrahedral framework. The structure of α-quartz was studied in detail for subjecting to uniaxial loading along the Z direction. The cooperative dilation and rotation of tetrahedra acting concurrently were demonstrated to be the main deformation mechanism of α-quartz, confirming previous analytical model. Slight tetrahedral distortion also existed for undeformed and deformed structure.

  14. Molecular modelling of structure and deformation mechanisms of auxetic behaviour in the α-quartz structures

    NASA Astrophysics Data System (ADS)

    Yao, Yong Tao; Alderson, Andrew; Alderson, Kim Lesley

    2012-04-01

    Force field based simulation has been employed to predict the deformation mechanisms of auxetic nano-materials having tetrahedral framework. The structure of α-quartz was studied in detail for subjecting to uniaxial loading along the Z direction. The cooperative dilation and rotation of tetrahedra acting concurrently were demonstrated to be the main deformation mechanism of α-quartz, confirming previous analytical model. Slight tetrahedral distortion also existed for undeformed and deformed structure.

  15. An Approach for Measuring and Modeling of Plastic Deformation of Metallic Plates during High Velocity Impacts

    SciTech Connect

    O'Toole, Brendan J.; Trabia, Mohamed B.; Roy, Shawoon K.; Somasundarum, Deepak; Jennings, Richard; Matthes, Melissa; Hixson, Robert S.; Becker, Steven; Daykin, Edward P.; Pena, Michael T.; Machorro, Eric A.

    2014-05-29

    During high velocity impact experiments, projectile impact creates extreme pressure waves that results in a significant localized deformation within a short period of time. Experiments under these conditions require sophisticated data acquisition technique to better understand the materials deformation mechanisms. Since these experiments are expensive, it is also beneficial to develop accurate computational models that can predict this kind of deformation in high velocity impact events.

  16. Quasi-non-linear deformation modeling of a human liver based on artificial and experimental data.

    PubMed

    Dogan, Firat; Celebi, M Serdar

    2016-09-01

    Researchers working on error-prevention theories have shown that the use of replica models within simulation systems has improved operating skills, resulting in better patient outcomes. This study aims to provide material test data specifically for a human liver to validate the accuracy of viscoelastic soft tissue models. This allows the validation of virtual surgery simulators by comparison with physical test data obtained from material tests on a viscoelastic silicone gel pad. The results proved that stress behavior and relaxation curves of Aquaflex® experiment and FEM simulation are close if average liver response and respective material parameters and model are used. The precise representation of manipulated tissues used in virtual surgery trainers involves the accurate characterization of mechanical properties of the tissue. Consequently, successful implementations of these mechanical properties in a mathematical model of the deforming organ are of major importance. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. An asperity-deformation model for effective pressure

    NASA Astrophysics Data System (ADS)

    Gangi, Anthony F.; Carlson, Richard L.

    1996-05-01

    Variations of the mechanical and transport properties of cracked and/or porous rocks under isotropic stress depend on both the confining pressure ( Pc) and the pore-fluid pressure ( Pp). To a first approximation, these rock properties are functions of the differential pressure, Pd = Pc - Pp; at least for low differential pressures. However, at higher differential pressures, the properties depend in a more complicated way upon the two pressures. The concept of effective pressure, Pe, is used to denote this variation and it is defined as Pe( Pc, Pp) = Pc - n( Pc, Pp) Pp. If n = 1 (and therefore, is independent of Pc and Pp), the effective pressure is just the differential pressure. We have used an asperity-deformation model and a force-balance equation to derive expressions for the effective pressure. We equate the total external force (in one direction), Fc, to the total force on the asperities, Fa, and the force of the fluid, Fp, acting in that same direction. The fluid force, Fp, acts only on the parts of the crack (or pore-volume) faces which are not in contact. Then, the asperity pressure, Pa, is the average force per unit area acting on the crack (or grain) contacts P a = {F a}/{A} = {F c}/{A} - {F p}/{A} = P c - (1 - {A c}/{A})P p, where A is the total area over which Fc acts and Ac is the area of contact of the crack asperities or the grains. Thus, the asperity pressure, Pa, is greater than the differential pressure, Pd, because Pp acts on a smaller area, A- Ac, than the total area, A. For elastic asperities, the area of contact Ac and the strain (e.g., crack and pore openings) remain the same, to a high degree of approximation, at constant asperity pressure. Therefore, transport properties such as permeability, resistivity, thermal conductivity, etc. are constant, to the same degree of approximation, at constant asperity pressure. For these properties, the asperity pressure is, very accurately, the effective pressure, Pc. Using this model, we find that the

  18. Evaluation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound

    PubMed Central

    Clements, Logan W.; Collins, Jarrod A.; Weis, Jared A.; Simpson, Amber L.; Adams, Lauryn B.; Jarnagin, William R.; Miga, Michael I.

    2016-01-01

    Abstract. Soft-tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface-based metrics, and subsurface validation has largely been performed via phantom experiments. The proposed method involves the analysis of two deformation-correction algorithms for open hepatic image-guided surgery systems via subsurface targets digitized with tracked intraoperative ultrasound (iUS). Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration and for use in retrospective deformation-correction algorithms. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. Mean closest-point distances between the feature contours delineated in the iUS images and corresponding three-dimensional anatomical model generated from preoperative tomograms were computed to quantify the extent to which the deformation-correction algorithms improved registration accuracy. The results for six patients, including eight anatomical targets, indicate that deformation correction can facilitate reduction in target error of ∼52%. PMID:27081664

  19. Joint segmentation and deformable registration of brain scans guided by a tumor growth model.

    PubMed

    Gooya, Ali; Pohl, Kilian M; Bilello, Michel; Biros, George; Davatzikos, Christos

    2011-01-01

    This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth.

  20. Joint Segmentation and Deformable Registration of Brain Scans Guided by a Tumor Growth Model

    PubMed Central

    Gooya, Ali; Pohl, Kilian M.; Bilello, Michel; Biros, George; Davatzikos, Christos

    2011-01-01

    This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR ) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth. PMID:21995070

  1. Health-related quality of life and depression in patients with dentofacial deformity.

    PubMed

    de Ávila, Erica Dorigatti; de Molon, Rafael Scaf; Loffredo, Leonor Castro Monteiro; Massucato, Elaine Maria Sgavioli; Hochuli-Vieira, Eduardo

    2013-09-01

    Patients with dentofacial deformities present difficulties at work and in social adaptation. At the same time, they often appear depressed, and as a consequence, the psychosocial aspects of surgery play an important role. The aim of this study was to investigate the effects that depression causes in the quality of life of patients with dentofacial deformity. Filthy patients were recruited 1 year before undergoing orthognathic surgery and correlated oral and general health with the presence and absence of depression. In order to accomplish this, these patients received an adapted questionnaires of quality of life and Beck Depression Inventory to fill out. Fisher's test was applied, with a significance level of 5 %. Intercooled Stata version 9.0 was used to analyze data. Among the eight domains of quality of life, there were three associated with depression status: vitality (p < 0.001), social aspects (p = 0.011), and mental health (p = 0.008). There is growing interest in the impact of dentofacial deformity conditions on patients' quality of life. The scientific literature has discussed the social aspects of these deformities and showed that untreated patients had low self-esteem and suffered social restrictions before making the orthodontic and surgical treatments. This study concluded that the depression interferes significantly in vitality, social aspects of the individual, and mental health and, at the same time, emphasizes that the orthognathic surgery aims to not only restore esthetics and function to the patient but also improve the quality of life.

  2. Incidence and type of foot deformities in patients with spina bifida according to level of lesion.

    PubMed

    Gunay, Huseyin; Sozbilen, Murat Celal; Gurbuz, Yusuf; Altinisik, Mahmut; Buyukata, Beyhan

    2016-02-01

    The previously suggested association between the incidence of high-level foot deformity and muscle imbalance is no longer supported, when evaluated independent from motor and sensory loss and level of lesion, by current studies. The purpose of this study was to evaluate the association between level of lesion and foot deformity. Of 545 patients, a total of 136 (272 feet) patients admitted to the spina bifida clinic between 2010 and 2014 were included in this study. Levels of all lesions were evaluated using initial operation data, the motor-sensory exams, and direct radiography. All patients were categorized into four different groups: Thoracic region (group 1), high-level lumbar-L1-2 region (group 2), mild and lower lumbar regions (L3-4-5) (group 3), and Sacral region (group 4). The mean follow-up time was 34.9 months (range 8-176 months). Group 1, group 2, group 3, and group 4 included 24 (17.6%), 14 (10.3%), 19 (14%), and 79 (58.1%) patients with regards to level of lesion, respectively. The incidences of foot deformity were 85.4, 85.7, 81.5, and 50.6% in groups 1, 2, 3, and 4, respectively. Of all patients, 22% (61 feet) had clubfoot, 16% (44 feet) pes cavus, 10% (26 feet) pes valgus, 6% (17 feet) isolated equinus, 6 % (17 feet) pes calcaneus, and 5% (13 feet) metatarsus adductus. Patients without a foot deformity (81% of normal feet) usually had a lesion at the sacral level (p ≤ 0.05). On the other hand, isolated equinus (70%) and clubfoot (49%) deformities were mostly observed in spinal lesions (p > 0.05). The incidence of pes calcaneus, pes valgus, and adductus deformities inclined as the lesion level decreased (p > 0.05). In this study, it was concluded that foot deformities were directly related to the level of lesion. The comparison of higher and lower level lesions revealed that the types of foot deformity differed significantly. The muscle imbalance due to spina bifida was not sufficient to explain the pathology. On the other hand, the

  3. Deformable prostate registration from MR and TRUS images using surface error driven FEM models

    NASA Astrophysics Data System (ADS)

    Taquee, Farheen; Goksel, Orcun; Mahdavi, S. Sara; Keyes, Mira; Morris, W. James; Spadinger, Ingrid; Salcudean, Septimiu

    2012-02-01

    The fusion of TransRectal Ultrasound (TRUS) and Magnetic Resonance (MR) images of the prostate can aid diagnosis and treatment planning for prostate cancer. Surface segmentations of the prostate are available in both modalities. Our goal is to develop a 3D deformable registration method based on these segmentations and a biomechanical model. The segmented source volume is meshed and a linear finite element model is created for it. This volume is deformed to the target image volume by applying surface forces computed by assuming a negative relative pressure between the non-overlapping regions of the volumes and the overlapping ones. This pressure drives the model to increase the volume overlap until the surfaces are aligned. We tested our algorithm on prostate surfaces extracted from post-operative MR and TRUS images for 14 patients, using a model with elasticity parameters in the range reported in the literature for the prostate. We used three evaluation metrics for validating our technique: the Dice Similarity Coefficient (DSC) (ideally equal to 1.0), which is a measure of volume alignment, the volume change in source surface during registration, which is a measure of volume preservation, and the distance between the urethras to assess the anatomical correctness of the method. We obtained a DSC of 0.96+/-0.02 and a mean distance between the urethras of 1.5+/-1.4 mm. The change in the volume of the source surface was 1.5+/-1.4%. Our results show that this method is a promising tool for physicallybased deformable surface registration.

  4. Madelung Deformity.

    PubMed

    Kozin, Scott H; Zlotolow, Dan A

    2015-10-01

    Madelung deformity of the wrist is more common in females and is often associated with Leri Weill dyschondrosteosis, a mesomelic form of dwarfism. Patients with Madelung deformity often report wrist deformity resulting from the prominence of the relatively long ulna. The typical Madelung deformity is associated with a Vickers ligament that creates a tether across the volar-ulnar radial physis that restricts growth across this segment. The distal radius deforms in the coronal (increasing radial inclination) and the sagittal (increasing volar tilt) planes. There is lunate subsidence and the proximal carpal row adapts to the deformity by forming an upside-down pyramid shape or triangle. Treatment depends on the age at presentation, degree of deformity, and magnitude of symptoms. Mild asymptomatic deformity warrants a period of nonsurgical management with serial x-ray examinations because the natural history is unpredictable. Many patients never require surgical intervention. Progressive deformity in the young child with considerable growth potential remaining requires release of Vickers ligament and radial physiolysis to prevent ongoing deterioration Concomitant ulnar epiphysiodesis may be necessary. Advanced asymptomatic deformity in older children with an unacceptable-appearing wrist or symptomatic deformity are indications for surgery. A dome osteotomy of the radius allows 3-dimensional correction of the deformity. Positive radiographic and clinical results after dome osteotomy have been reported. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Modelling of the cellular automata space deformation within the RCAFE framework

    NASA Astrophysics Data System (ADS)

    Sitko, Mateusz; Madej, Łukasz

    2016-10-01

    Development of the innovative approach to micro scale cellular automata (CA) space deformation during dynamic recrystallization process (DRX) is the main goal of the present paper. Major assumptions of the developed CA DRX model as well as novel space deformation algorithm, which is based on the random cellular automata concept and FE method, are described. Algorithms and methods to transfer input/output data between FE and CA are presented in detail. Visualization tool to analyze progress of deformation in the irregular CA space is also highlighted. Finally, initial results in the form of deformed and recrystallized microstructures are presented and discussed.

  6. Benchmark analysis of diabetic patients with neuropathic (Charcot) foot deformity.

    PubMed

    Pinzur, M S

    1999-09-01

    During a 10-year period, 237 patients (129 women, 108 men) with a diagnosis of neuropathic (Charcot) arthropathy of the foot and ankle were treated in a tertiary care university hospital medical center. During this period, 115 of the patients (48.5%) were treated nonoperatively as outpatients with local skin and nail care, accommodative shoe wear, and custom foot orthoses. A total of 120 (50.6%) underwent 143 operations. Surgery included 21 major limb amputations, 29 ankle fusions, 26 hindfoot fusions, 23 exostectomies, and 23 debridements for osteomyelitis. It is widely accepted that patients with diabetes are at risk for developing foot ulcers, which can lead to lower extremity amputation. Within the population of diabetic patients, it is widely accepted that patients with neuropathic (Charcot) arthropathy of the foot and ankle have one of the highest likelihoods of having to undergo lower extremity amputation. The current emphasis in care of the foot of a diabetic patient involves a multidisciplinary team approach combining patient education, skin and nail care, and accommodative shoe wear. As data from prophylactic programs become available, resource allocation and cost of care can be compared with this benchmark baseline. This benchmark analysis can be used by those who are responsible for allocating resources and projecting healthcare costs for this "high utilization"/high risk patient population.

  7. Predictive Model for Cervical Alignment and Malalignment Following Surgical Correction of Adult Spinal Deformity.

    PubMed

    Passias, Peter G; Oh, Cheongeun; Jalai, Cyrus M; Worley, Nancy; Lafage, Renaud; Scheer, Justin K; Klineberg, Eric O; Hart, Robert A; Kim, Han Jo; Smith, Justin S; Lafage, Virginie; Ames, Christopher P

    2016-09-15

    Retrospective review of prospective multicenter database. Use predictive modeling to identify patient characteristics, radiographic, and surgical variables that predict reaching an outcome threshold of suboptimal cervical alignment after adult spinal deformity (ASD) surgery. Cervical deformity (CD) after ASD correction has been defined with the following criteria: T1S-CL>20°, C2-C7 SVA>40 mm, and/or C2-C7 kyphosis >10°. While studies have analyzed CD predictors, few have defined and identified predictors of optimal cervical alignment after thoracolumbar surgery. Inclusion criteria were surgical ASD patients with baseline and 2-year follow-up. Postoperative cervical alignment (CA) and malalignment (nonCA) at 2 years was defined with the following radiographic criteria: 0°≤T1S-CL≤20°, 0 mm≤C2-C7 SVA≤40 mm, or C2-C7 lordosis >0°. Three thresholds classifying malalignment were defined: (T1) missing 1 criterion, (T2) missing 2 criteria, (T3) missing 3 criteria. Multivariable logistic stepwise regression models with bootstrap resampling procedure were performed for demographic, surgical, and radiographic variables. The model was validated with receiver operative characteristic and area under the curve. Two hundred twenty-five surgical ASD patients were included. At 2 years 208 patients (92.4%) were grouped as CA in T3, while 17 (7.6%) were nonCA. Patients were similar in age (CA: 56.10 vs. nonCA: 55.78 years, P = 0.150), BMI (CA: 26.93 vs. nonCA: 26.94 kg/m, P = 0.716), and sex (CA: 76.5% vs. nonCA: 87.0%, P = 0.194). The final predictive model included C2 slope, C2-T3 CL, T1S-CL, C2-C7 CL, Pelvic Tilt, C2-S1 SVA, PI-LL, and Smith-Peterson osteotomies number. In this model (area under the curve 89.22% [97.49-80.96%]), the following variables were identified as predictors of nonCA: increased Smith-Peterson osteotomies use (OR: 1.336, P = 0.017), and C2-T3 angle (OR: 1.048, P = 0.005). This study created a statistical model that

  8. Improved Porosity and Permeability Models with Coal Matrix Block Deformation Effect

    NASA Astrophysics Data System (ADS)

    Zhou, Yinbo; Li, Zenghua; Yang, Yongliang; Zhang, Lanjun; Qi, Qiangqiang; Si, Leilei; Li, Jinhu

    2016-09-01

    Coal permeability is an important parameter in coalbed methane (CBM) exploration and greenhouse gas storage. A reasonable theoretical permeability model is helpful for analysing the influential factors of gas flowing in a coalbed. As an unconventional reservoir, the unique feature of a coal structure deformation determines the state of gas seepage. The matrix block and fracture change at the same time due to changes in the effective stress and adsorption; the porosity and permeability also change. Thus, the matrix block deformation must be ignored in the theoretical model. Based on the cubic model, we analysed the characteristics of matrix block deformation and fracture deformation. The new models were developed with the change in matrix block width a. We compared the new models with other models, such as the Palmer-Manson (P-M) model and the Shi-Durucan (S-D) model, and used a constant confining stress. By matching the experimental data, our model matches quite well and accurately predicts the evolution of permeability. The sorption-induced strain coefficient f differs between the strongly adsorbing gases and weakly adsorbing gases because the matrix block deformation is more sensitive for the weakly adsorbing gases and the coefficient f is larger. The cubic relationship between porosity and permeability overlooks the importance of the matrix block deformation. In our model, the matrix block deformation suppresses the permeability ratio growth. With a constant confining stress, the weight of the matrix block deformation for the strongly adsorbing gases is larger than that for weakly adsorbing gases. The weight values increase as the pore pressure increases. It can be concluded that the matrix block deformation is an important phenomenon for researching coal permeability and can be crucial for the prediction of CBM production due to the change in permeability.

  9. Automatic brain segmentation and validation: image-based versus atlas-based deformable models

    NASA Astrophysics Data System (ADS)

    Aboutanos, Georges B.; Dawant, Benoit M.

    1997-04-01

    Due to the complexity of the brain surface, there is at present no segmentation method that proves to work automatically and consistently on any 3-D magnetic resonance (MR) images of the head. There is a definite lack of validation studies related to automatic brain extraction. In this work we present an image-base automatic method for brain segmentation and use its results as an input to a deformable model method which we call image-based deformable model. Combining image-based methods with a deformable model can lead to a robust segmentation method without requiring registration of the image volumes into a standardized space, the automation of which remains challenging for pathological cases. We validate our segmentation results on 3-D MP-RAGE (magnetization-prepared rapid gradient-echo) volumes for the image model prior- and post-deformation and compare it to an atlas model prior- and post-deformation. Our validation is based on volume measurement comparison to manually segmented data. Our analysis shows that the improvement afforded by the deformable model methods are statistically significant, however there are no significant differences between the image-based and atlas-based deformable model methods.

  10. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.

    PubMed

    Korin, Natanel; Bransky, Avishay; Dinnar, Uri

    2007-01-01

    The motion and deformation of red blood cells (RBCs) flowing in a microchannel were studied using a theoretical model and a novel automated rheoscope. The theoretical model was developed to predict the cells deformation under shear as a function of the cells geometry and mechanical properties. Fluid dynamics and membrane mechanics are incorporated, calculating the traction and deformation in an iterative manner. The model was utilized to evaluate the effect of different biophysical parameters, such as: inner cell viscosity, membrane shear modulus and surface to volume ratio on deformation measurements. The experimental system enables the measurement of individual RBCs velocity and their deformation at defined planes within the microchannel. Good agreement was observed between the simulation results, the rheoscope measurements and published ektacytometry results. The theoretical model results imply that such deformability measuring techniques are weakly influenced by changes in the inner viscosity of the cell or the ambient fluid viscosity. However, these measurements are highly sensitive to RBC shear modulus. The shear modulus, estimated by the model and the rheoscope measurements, falls between the values obtained by micropipette aspiration and laser trapping. The study demonstrates the integration of a theoretical model with a microfabricated device in order to achieve a better understanding of RBC mechanics and their measurement using microfluidic shear assays. The system and the model have the potential of serving as quantitative clinical tools for diagnosing deformability disorders in RBCs.

  11. Patients seeking symmetrical recontouring for "perceived" deformities in the width of the face and skull.

    PubMed

    Edgerton, M T; Langman, M W; Pruzinsky, T

    1990-01-01

    This article describes plastic surgery patients who sought symmetrical recontouring of the width of the face and skull. The basic demographic and personality characteristics of these facial width deformity (FWD) patients and the surgical procedures performed on them are discussed. Details of the surgical and psychological management of three representative cases are given. Speculative conclusions regarding the general characteristics of the FWD population are offered. Suggestions are proposed for a combined surgical-medical psychotherapeutic collaboration in managing these patients.

  12. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients

    PubMed Central

    Onofrey, John A.; Staib, Lawrence H.; Papademetris, Xenophon

    2015-01-01

    This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods. PMID:26900569

  13. Nasal septal deformities in chronic rhinosinusitis patients: clinical and radiological aspects.

    PubMed

    Poje, G; Zinreich, J S; Skitarelić, N; Đurić Vuković, K; Passàli, G C; Passàli, D; Mladina, R

    2014-04-01

    Septal deformities are very frequent in patients suffering from chronic rhinosinusitis (CRS). The question is whether or not some types of septal deformities are involved more frequently in this process or not. The authors observed the incidence of particular types of septal deformities in a group of CRS patients using Mladina classification. The same has been done with a control group that consisted of healthy volunteers. In the literature, type 7 has been found very frequently, i.e. in nearly 30% of all CRS cases. Herein, type 7 was mostly composed of types 3 and 5. Type 3 can be accurately recognised on axial MSCT scans, while type 5 can be accurately recognised on coronal views. Concomitant septal surgery at the time of endoscopic sinus surgery is recommended.

  14. A Deformable Generic 3D Model of Haptoral Anchor of Monogenean

    PubMed Central

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903

  15. A deformable generic 3D model of haptoral anchor of Monogenean.

    PubMed

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.

  16. Construction of a deformable spatiotemporal MRI atlas of the fetal brain: evaluation of similarity metrics and deformation models.

    PubMed

    Gholipour, Ali; Limperopoulos, Catherine; Clancy, Sean; Clouchoux, Cedric; Akhondi-Asl, Alireza; Estroff, Judy A; Warfield, Simon K

    2014-01-01

    The development and identification of best methods in fetal brain MRI analysis is crucial as we expect an outburst of studies on groupwise and longitudinal analysis of early brain development in the upcoming years. To address this critical need, in this paper, we have developed a mathematical framework for the construction of an unbiased deformable spatiotemporal atlas of the fetal brain MRI and compared it to alternative configurations in terms of similarity metrics and deformation models. Our contributions are twofold: first we suggest a novel approach to fetal brain spatiotemporal atlas construction that shows high capability in capturing anatomic variation between subjects; and second, within our atlas construction framework we evaluate and compare a set of plausible configurations for inter-subject fetal brain MRI registration and identify the most accurate approach that can potentially lead to most accurate results in population atlas construction, atlas-based segmentation, and group analysis. Our evaluation results indicate that symmetric diffeomorphic deformable registration with cross correlation similarity metric outperforms other configurations in this application and results in sharp unbiased atlases that can be used in fetal brain MRI analysis.

  17. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  18. Pulmonary function in patients with hereditary motor and sensory neuropathy: a comparison of patients with and without spinal deformity.

    PubMed

    Horacek, Ondrej; Chlumsky, Jan; Mazanec, Radim; Kolar, Pavel; Andel, Ross; Kobesova, Alena

    2012-12-01

    We assessed pulmonary function in hereditary motor and sensory neuropathy. Fourteen neuropathy patients without spinal deformity (group 1), 14 with spinal deformity (group 2), and 16 individuals with idiopathic spinal deformity (group 3) matched to group 2 for age, height and Cobb angle, were included. Hereditary motor and sensory neuropathy severity was measured with Charcot-Marie-Tooth Neuropathy Score. All participants exhibited mild decrease in maximal inspiratory pressure at the mouth. One-way analysis of variance yielded significant main effects for lung volumes - slow vital capacity, forced expiratory volume in 1s, and total lung capacity (p's<.01), attributable to greater volumes in group 1 compared to groups with spinal deformity - and transfer factor for carbon monoxide (p=.013), reflecting differences between groups 1 vs. 2. Slow vital capacity and total lung capacity correlated with maximal inspiratory pressure at the mouth in group 2, whereas slow vital capacity correlated with muscle work in group 3 (p's<.05). Decreased lung volume may be due to impaired respiratory muscle strength in hereditary motor and sensory neuropathy with spinal deformity and due to spinal deformity in idiopathic patients.

  19. Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients

    PubMed Central

    Sutter, Martin A.; Grob, Dieter; Jeszenszky, Dezsö; Dvorak, Jiri

    2007-01-01

    A prospective study was performed on 217 patients who received MIOM during corrective surgery of spinal deformities between March 2000 and December 2005. Aim is to determine the sensitivity and specificity of MIOM techniques used to monitor spinal cord and nerve root function during corrective spine surgery. MIOM is becoming an increasingly used method of monitoring function during corrective spine surgery. The combination of monitoring of ascending and descending pathways may provide more sensitive and specific results giving immediate feedback information regarding any neurological deficits during the operation. Intraoperative somatosensory spinal and cerebral evoked potentials combined with continuous EMG and motor evoked potentials of the spinal cord and muscles were evaluated and compared with postoperative clinical neurological changes. A total of 217 consecutive patients with spinal deformities of different aetiologies were monitored by means of MIOM during the surgical procedure. Out of which 201 patients presented true negative findings while one patient presented false negative and three patients presented false positive findings. Twelve patients presented true positive findings where neurological deficit after the operation was predicted. All neurological deficits in those 12 patients recovered completely. The sensitivity of MIOM applied during surgery of spinal deformities has been calculated of 92.3% and the specificity 98.5%. Based upon the results of this study MIOM is an effective method of monitoring the spinal cord and nerve root function during corrective surgery of spinal deformities and consequently improves postoperative results. The Wake-up test for surgical procedure of spinal deformities became obsolete in our institution. PMID:17632737

  20. Twisted supersymmetry in a deformed Wess-Zumino model in (2 + 1) dimensions

    NASA Astrophysics Data System (ADS)

    Palechor, C.; Ferrari, A. F.; Quinto, A. G.

    2017-01-01

    Non-anticommutative deformations have been studied in the context of super-symmetry (SUSY) in three and four space-time dimensions, and the general picture is that highly nontrivial to deform supersymmetry in a way that still preserves some of its important properties, both at the formal algebraic level (e.g., preserving the associativity of the deformed theory) as well as at the physical level (e.g., maintaining renormalizability). The Hopf algebra formalism allows the definition of algebraically consistent deformations of SUSY, but this algebraic consistency does not guarantee that physical models build upon these structures will be consistent from the physical point of view. We will investigate a deformation induced by a Drinfel'd twist of the N = 1 SUSY algebra in three space-time dimensions. The use of the Hopf algebra formalism allows the construction of deformed N = 1 SUSY algebras that should still preserve a deformed version of supersymmetry. We will construct the simplest deformed version of the Wess-Zumino model in this context, but we will show that despite the consistent algebraic structure, the model in question is not invariant under SUSY transformation and is not renormalizable. We will comment on the relation of these results with previous ones discussed in the literature regarding similar four-dimensional constructions.

  1. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  2. [Research progress on real-time deformable models of soft tissues for surgery simulation].

    PubMed

    Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie

    2010-04-01

    Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.

  3. Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation

    SciTech Connect

    Sablik, M.J.; Rios, S.; Landgraf, F.J.G.; Yonamine, T.; Campos, M.F. de

    2005-05-15

    In 2.2% Si electrical steel, the magnetic hysteresis behavior is sharply sheared by a rather small plastic deformation (0.5%). A modification to the Jiles-Atherton hysteresis model makes it possible to model magnetic effects of plastic deformation. In this paper, with this model, it is shown how a narrow hysteresis with an almost steplike hysteresis curve for an undeformed specimen is sharply sheared by plastic deformation. Computed coercivity and hysteresis loss show a sharp step to higher values at small strain due to an n=1/2 power law dependence on residual strain. The step is seen experimentally.

  4. Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market.

  5. Thermal debinding modeling of mass transport and deformation in powder-injection molding compact

    NASA Astrophysics Data System (ADS)

    Shengjie, Ying; Lam, Y. C.; Yu, S. C. M.; Tam, K. C.

    2002-06-01

    A two-dimensional model of mass transport and deformation in thermal debinding for the powder-injection molding (PIM) compact, based on mass and heat transfer in deformable porous media and elasticity theory, is proposed. The primary mechanisms of mass transport, i.e., liquid flow, gas flow, vapor diffusion, and convection, as well as heat transfer, polymer pyrolysis, powder-particle packing, compact deformation, and their interactions are simultaneously included in the model. A computer code, in which integrated control-volume finite-difference and finite-element methods are employed, is developed to simulate the process. The simulated results revealed that the nonuniform distribution of polymer residue, which results from the nonuniform flow of the polymer, causes the nonuniform deformation in the compact. Severe nonuniform deformation in the compact might lead to cracking, distortion, and failure of the compact during the polymer-removal process.

  6. Models for rupture mechanics of plate boundaries and crustal deformation

    NASA Technical Reports Server (NTRS)

    Nur, A.

    1983-01-01

    The role of pull aparts and pushups in transcurrent systems, the rotation of faults and blocks within transcurrent fault systems, the role of accretion tectonics in plate boundary deformation, and power law creep behavior and the yielding at plate boundaries were investigated.

  7. Skuller: A volumetric shape registration algorithm for modeling skull deformities.

    PubMed

    Sahillioğlu, Yusuf; Kavan, Ladislav

    2015-07-01

    We present an algorithm for volumetric registration of 3D solid shapes. In comparison to previous work on image based registration, our technique achieves higher efficiency by leveraging a template tetrahedral mesh. In contrast to point- and surface-based registration techniques, our method better captures volumetric nature of the data, such as bone thickness. We apply our algorithm to study pathological skull deformities caused by a particular condition, i.e., craniosynostosis. The input to our system is a pair of volumetric 3D shapes: a tetrahedral mesh and a voxelized object represented by a set of voxel cells segmented from computed tomography (CT) scans. Our general framework first performs a global registration and then launches a novel elastic registration process that uses as much volumetric information as possible while deforming the generic template tetrahedral mesh of a healthy human skull towards the underlying geometry of the voxel cells. Both data are high-resolution and differ by large non-rigid deformations. Our fully-automatic solution is fast and accurate, as compared with the state of the arts from the reconstruction and medical image registration fields. We use the resulting registration to match the ground-truth surfaces extracted from the medical data as well as to quantify the severity of the anatomical deformity.

  8. Models for rupture mechanics of plate boundaries and crustal deformation

    NASA Astrophysics Data System (ADS)

    Nur, A.

    1983-02-01

    The role of pull aparts and pushups in transcurrent systems, the rotation of faults and blocks within transcurrent fault systems, the role of accretion tectonics in plate boundary deformation, and power law creep behavior and the yielding at plate boundaries were investigated.

  9. Patients cured of acromegaly do not experience improvement of their skull deformities.

    PubMed

    Rick, Jonathan W; Jahangiri, Arman; Flanigan, Patrick M; Aghi, Manish K

    2017-04-01

    Acromegaly is a rare disease that is associated with many co-morbidities. This condition also causes progressive deformity of the skull which includes frontal bossing and cranial thickening. Surgical and/or medical management can cure this condition in many patients, but it is not understood if patients cured of acromegaly experience regression of their skull deformities. We performed a retrospective analysis on patients treated at our dedicated pituitary center from 2009 to 2014. We looked at all MRI images taken during the treatment of these patients and recorded measurements on eight skull dimensions. We then analyzed these measurements for changes over time. 29 patients underwent curative treatment for acromegaly within our timeframe. The mean age for this population was 45.0 years old (range 19-70) and 55.2 % (n = 16) were female. All of these patients were treated with a transsphenoidal resection for a somatotropic pituitary adenoma. 9 (31.1%) of these patients required further medical therapy to be cured. We found statically significant variation in the coronal width of the sella turcica after therapy, which is likely attributable to changes from transsphenoidal surgery. None of the other dimensions had significant variation over time after cure. Patients cured of acromegaly should not expect natural regression of their skull deformities. Our study suggests that both frontal bossing and cranial thickening do not return to normal after cure.

  10. The superior mesenteric artery syndrome in patients with spinal deformity.

    PubMed

    Altiok, Haluk; Lubicky, John P; DeWald, Christopher J; Herman, Jean E

    2005-10-01

    A retrospective review. To determine the incidence of the superior mesenteric artery syndrome (SMAS) after surgical correction for scoliosis and if it is influenced by newer derotation/translation surgical systems. The SMAS is a known complication after surgery. Of 2939 charts reviewed, 17 patients between 1960 and 2002 matched inclusion criteria. Our incidence of the SMAS was 0.5%. Onset of symptoms was 7.2 days. Several scoliosis diagnoses were included in the study group. Instrumentation that was used included: nondistraction systems (n = 14), Harrington rod with body cast (n = 1), Luque rod with sublaminar wires (n = 1), and casted in situ posterior spinal fusion (n = 1). Before surgery, 10 of 17 patients weighed less than the 50th percentile. Mean preoperative BMI was 18.6 kg/cm/cm. Postoperative height gain averaged 3.175 cm, and weight loss at onset of symptoms averaged 4.5 kg. There were 14 patients who required nasogastric suction for an average duration of 10.2 days, 11 required hyperalimentation, and 5 concurrently received hyperalimentation with enteric feeding. The SMAS recurred in 2 patients. Postoperative weight loss appears to be more important for the development of the SMAS than asthenic body type. Newer derotation/translation corrective techniques have not eliminated the SMAS. Gastrointestinal imaging is indicated when nausea and vomiting occur 6-12 days after surgery, associated with early satiety and normal bowel sounds. Decompression and nutritional support remain the mainstays of treatment.

  11. Experimental Deformation of Dehydrating Antigorite: Challenging Models of Dehydration Embrittlement

    NASA Astrophysics Data System (ADS)

    Hirth, Greg; Chernak, Linda

    2010-05-01

    To test the hypothesis that intermediate depth earthquakes in subduction zones are caused by the dehydration of hydrous phases, we conducted temperature-ramping experiments on antigorite serpentinite. Cold-pressed powdered samples of antigorite were deformed to a high differential stress at 400°C and 1.0 GPa, within the antigorite stability field, where we have shown that deformation localizes. Temperature was then increased at different rates, 1800°C/hr and 180°C/hr, to cross the reaction boundary while the sample continued to deform; samples were deformed at strain rates of 10-4 s-1, 10-5 s-1 and 10-6 s-1. Two additional experiments were conducted in a similar manner at 300°C, 1.5 GPa and 10-5 s-1 but samples remained 'statically' at high stress during the temperature increase. Our results show that although the decrease in stress during temperature ramping is large, stress relaxes stably, even after dehydration. We find that the slopes of the unloading curves are approximately the same for constant values of the ratio (strain rate/ramp rate) and that the unloading slope is greater for higher values of this ratio. In addition, we find that the unloading curves with the greatest slopes are similar to the apparatus compliance, suggesting that we are generating 'slow earthquakes' in our experiments over the course 5 to 10s of minutes. A strain rate stepping experiment indicates that antigorite has velocity strengthening behavior at 700°C and 1.5 GPa suggesting that as soon as an instability develops in the antigorite, the material strengthens sufficiently to not go unstable. Our results thus suggest that antigorite dehydration does not result in 'dehydration embrittlement' but that it may promote slow earthquakes. We have also conducted a preliminary experiment to study the role of effective pressure on deformation behavior after dehydration. A cold-pressed powdered sample of antigorite with a small core of coarse-grained olivine at one end was deformed at 700

  12. Rebound Deformity After Growth Modulation in Patients With Coronal Plane Angular Deformities About the Knee: Who Gets It and How Much?

    PubMed

    Leveille, Lise A; Razi, Ozan; Johnston, Charles E

    2017-05-18

    With observed success and increased popularity of growth modulation techniques, there has been a trend toward use in progressively younger patients. Younger age at growth modulation increases the likelihood of complete deformity correction and need for implant removal before skeletal maturity introducing the risk of rebound deformity. The purpose of this study was to quantify magnitude and identify risk factors for rebound deformity after growth modulation. We performed a retrospective review of all patients undergoing growth modulation with a tension band plate for coronal plane deformity about the knee with subsequent implant removal. Exclusion criteria included completion epiphysiodesis or osteotomy at implant removal, ongoing growth modulation, and <1 year radiographic follow-up without rebound deformity. Mechanical lateral distal femoral angle, mechanical medial proximal tibial angle, hip-knee-ankle angle (HKA), and mechanical axis station were measured before growth modulation, before implant removal, and at final follow-up. In total, 67 limbs in 45 patients met the inclusion criteria. Mean age at growth modulation was 9.8 years (range, 3.4 to 15.4 y) and mean age at implant removal was 11.4 years (range, 5.3 to 16.4 y). Mean change in HKA after implant removal was 6.9 degrees (range, 0 to 23 degrees). In total, 52% of patients had >5 degrees rebound and 30% had >10 degrees rebound in HKA after implant removal. Females below 10 years and males below 12 years at time of growth modulation had greater mean change in HKA after implant removal compared with older patients (8.4 vs. 4.7 degrees, P=0.012). Patients with initial deformity >20 degrees had an increased frequency of rebound >10 degrees compared with patients with less severe initial deformity (78% vs. 22%, P=0.002). Rebound deformity after growth modulation is common. Growth modulation at a young age and large initial deformity increases risk of rebound. However, rebound does not occur in all at risk

  13. Erythrocyte oxidative stress is associated with cell deformability in patients with retinal vein occlusion.

    PubMed

    Becatti, M; Marcucci, R; Gori, A M; Mannini, L; Grifoni, E; Alessandrello Liotta, A; Sodi, A; Tartaro, R; Taddei, N; Rizzo, S; Prisco, D; Abbate, R; Fiorillo, C

    2016-11-01

    Essentials Retinal vein occlusion (RVO), characterized by blood hyperviscosity, has an unclear pathogenesis. We aimed to find out if hemorheological profile is altered by oxidative stress in RVO patients. Red blood cell (RBC) oxidative stress is associated to whole blood viscosity and RBC deformability. Reactive oxygen species alter RBC membrane rigidity, playing a key role in RVO pathogenesis.

  14. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  15. Lung deformations and radiation-induced regional lung collapse in patients treated with stereotactic body radiation therapy

    SciTech Connect

    Diot, Quentin Kavanagh, Brian; Vinogradskiy, Yevgeniy; Gaspar, Laurie; Miften, Moyed; Garg, Kavita

    2015-11-15

    Purpose: To differentiate radiation-induced fibrosis from regional lung collapse outside of the high dose region in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Lung deformation maps were computed from pre-treatment and post-treatment computed tomography (CT) scans using a point-to-point translation method. Fifty anatomical landmarks inside the lung (vessel or airway branches) were matched on planning and follow-up scans for the computation process. Two methods using the deformation maps were developed to differentiate regional lung collapse from fibrosis: vector field and Jacobian methods. A total of 40 planning and follow-ups CT scans were analyzed for 20 lung SBRT patients. Results: Regional lung collapse was detected in 15 patients (75%) using the vector field method, in ten patients (50%) using the Jacobian method, and in 12 patients (60%) by radiologists. In terms of sensitivity and specificity the Jacobian method performed better. Only weak correlations were observed between the dose to the proximal airways and the occurrence of regional lung collapse. Conclusions: The authors presented and evaluated two novel methods using anatomical lung deformations to investigate lung collapse and fibrosis caused by SBRT treatment. Differentiation of these distinct physiological mechanisms beyond what is usually labeled “fibrosis” is necessary for accurate modeling of lung SBRT-induced injuries. With the help of better models, it becomes possible to expand the therapeutic benefits of SBRT to a larger population of lung patients with large or centrally located tumors that were previously considered ineligible.

  16. Population model of bladder motion and deformation based on dominant eigenmodes and mixed-effects models in prostate cancer radiotherapy.

    PubMed

    Rios, Richard; De Crevoisier, Renaud; Ospina, Juan D; Commandeur, Frederic; Lafond, Caroline; Simon, Antoine; Haigron, Pascal; Espinosa, Jairo; Acosta, Oscar

    2017-05-01

    In radiotherapy for prostate cancer irradiation of neighboring organs at risk may lead to undesirable side-effects. Given this setting, the bladder presents the largest inter-fraction shape variations hampering the computation of the actual delivered dose vs. planned dose. This paper proposes a population model, based on longitudinal data, able to estimate the probability of bladder presence during treatment, using only the planning computed tomography (CT) scan as input information. As in previously-proposed principal component analysis (PCA) population-based models, we have used the data to obtain the dominant eigenmodes that describe bladder geometric variations between fractions. However, we have used a longitudinal analysis along each mode in order to properly characterize patient's variance from the total population variance. We have proposed is a mixed-effects (ME) model in order to separate intra- and inter-patient variability, in an effort to control confounding cohort effects. Other than using PCA, bladder shapes are represented by using spherical harmonics (SPHARM) that additionally enables data compression without information lost. Based on training data from repeated CT scans, the ME model was thus implemented following dimensionality reduction by means of SPHARM and PCA. We have evaluated the model in a leave-one-out cross validation framework on the training data but also using independent data. Probability maps (PMs) were thus generated with several draws from the learnt model as predicted regions where the bladder will likely move and deform. These PMs were compared with the actual regions using metrics based on mutual information distance and misestimated voxels. The prediction was also compared with two previous population PCA-based models. The proposed model was able to reduce the uncertainties in the estimation of the probable region of bladder motion and deformation. This model can thus be used for tailoring radiotherapy treatments. Copyright

  17. Deformable Surface Model for the Evaluation of Abdominal Aortic Aneurysms Treated with an Endovascular Sealing System.

    PubMed

    Casciaro, Mariano E; El-Batti, Salma; Chironi, Gilles; Simon, Alain; Mousseaux, Elie; Armentano, Ricardo L; Alsac, Jean-Marc; Craiem, Damian

    2016-05-01

    Rupture of abdominal aortic aneurysms (AAA) is responsible for 1-3% of all deaths among the elderly population in developed countries. A novel endograft proposes an endovascular aneurysm sealing (EVAS) system that isolates the aneurysm wall from blood flow using a polymer-filled endobag that surrounds two balloon-expandable stents. The volume of injected polymer is determined by monitoring the endobag pressure but the final AAA expansion remains unknown. We conceived and developed a fully deformable surface model for the comparison of pre-operative sac lumen size and final endobag size (measured using a follow-up scan) with the volume of injected polymer. Computed tomography images were acquired for eight patients. Aneurysms were manually and automatically segmented twice by the same observer. The injected polymer volume resulted 9% higher than the aneurysm pre-operative lumen size (p < 0.05), and 11% lower than the final follow-up endobag volume (p < 0.01). The automated method required minimal user interaction; it was fast and used a single set of parameters for all subjects. Intra-observer and manual vs. automated variability of measured volumes were 0.35 ± 2.11 and 0.07 ± 3.04 mL, respectively. Deformable surface models were used to quantify AAA size and showed that EVAS system devices tended to expand the sac lumen size.

  18. A discrete curvature-based deformable surface model with application to segmentation of volumetric images.

    PubMed

    Ghanei, Amir; Soltanian-Zadeh, Hamid

    2002-12-01

    In this paper, we present a new curvature-based three-dimensional (3-D) deformable surface model. The model deforms under defined force terms. Internal forces are calculated from local model curvature, using a robust method by a least-squares error (LSE) approximation to the Dupin indicatrix. External forces are calculated by applying a step expansion and restoration filter (SEF) to the image data. A solution for one of the most common problems associated with deformable models, self-cutting, has been proposed in this work. We use a principal axis analysis and reslicing of the deformable model, followed by triangulation of the slices, to remedy self-cutting. We use vertex resampling, multiresolution deformation, and refinement of the mesh grid to improve the quality of the model deformation, which leads to better results. Examples of the model application to different cases (simulation, magnetic resonance imaging (MRI), computerized tomography (CT), and ultrasound images) are presented, showing diversity and flexibility of the model.

  19. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  20. Stress and deformation characteristics of sea ice in a high resolution numerical sea ice model.

    NASA Astrophysics Data System (ADS)

    Heorton, Harry; Feltham, Daniel; Tsamados, Michel

    2017-04-01

    The drift and deformation of sea ice floating on the polar oceans is due to the applied wind and ocean currents. The deformations of sea ice over ocean basin length scales have observable patterns; cracks and leads in satellite images and within the velocity fields generated from floe tracking. In a climate sea ice model the deformation of sea ice over ocean basin length scales is modelled using a rheology that represents the relationship between stresses and deformation within the sea ice cover. Here we investigate the link between observable deformation characteristics and the underlying internal sea ice stresses and force balance using the Los Alamos numerical sea ice climate model. In order to mimic laboratory experiments on the deformation of small cubes of sea ice we have developed an idealised square domain that tests the model response at spatial resolutions of up to 500m. We use the Elastic Anisotropic Plastic and Elastic Viscous Plastic rheologies, comparing their stability over varying resolutions and time scales. Sea ice within the domain is forced by idealised winds in order to compare the confinement of wind stresses and internal sea ice stresses. We document the characteristic deformation patterns of convergent, divergent and rotating stress states.

  1. Erythrocyte: A systems model of the control of aggregation and deformability.

    PubMed

    Bazanovas, Antonina N; Evstifeev, Aleksandr I; Khaiboullina, Svetlana F; Sadreev, Ildar I; Skorinkin, Andrey I; Kotov, Nikolay V

    2015-05-01

    Human erythrocytes are highly specialized enucleate cells that are involved in providing efficient gas transport. Erythrocytes have been extensively studied both experimentally and by mathematical modeling in recent years. However, understanding of how aggregation and deformability are regulated is limited. These properties of the erythrocyte are essential for the physiological functioning of the cell. In this work, we propose a novel mathematical model of the molecular system that controls the aggregation and deformability of the erythrocyte. This model is based on the experimental results of previously published studies. Our model suggests fundamentally new mechanisms that regulate aggregation and deformability in a latch-like manner. The results of this work could be used as a general explanation of how the erythrocytes regulate their aggregation and deformability, and are essential in understanding erythrocyte disorders and aging.

  2. Using GPS loading deformation to distinguish different hydrological measurements and models

    NASA Astrophysics Data System (ADS)

    Fu, Y.; van Dam, T. M.

    2015-12-01

    The earth's lithosphere is deformed elastically by seasonal and inter-annual surface mass variations. The Global Positioning System (GPS) accurately measures 3D crustal deformation caused by surface hydrological mass movements. In this study, we calculate the loading deformation using different hydrological models and in-situ hydrological measurements, and compare those modeled results with actual deformation measurements of the dense GPS network in United States and Europe. Therefore, GPS can be used as an independent tool to evaluate the differences between hydrological measurements and models. We are particularly interested in comparing the snow volume differences between in-situ snow measurement (such as SNOTEL) and the snow components of simulated models (such as GLDAS or NLDAS). We, therefore, demonstrate that GPS as a geodetic observation can provide valuable information for hydrological studies.

  3. Treatment of Combined Spinal Deformity in Patient with Ollier Disease and Abnormal Vertebrae

    PubMed Central

    Ryabykh, S. О.; Gubin, A. V.; Prudnikova, О. G.; Kobyzev, А. Е.

    2012-01-01

    We report staged treatment of severe combined spinal deformity in an 11-year-old patient with Ollier disease and abnormal cervical vertebra. Combined scoliosis with systemic pathology and abnormal vertebrae is a rare condition and features atypical deformity location and rapid progression rate and frequently involves the rib cage and pelvis, disturbing the function of chest organs and skeleton. Progressive deformity resulted in cachexia and acute respiratory failure. A halo-pelvic distraction device assembled of Ilizarov components was employed for a staged surgical treatment performed for lifesaving indications. After vital functions stabilized, the scoliosis curve of the cervical spine was corrected and fixed with a hybrid system of transpedicular supporting points, connecting rods, and connectors that provided staged distraction during growth. The treatment showed good functional and cosmetic result. PMID:24436859

  4. The Relationship Between Cervical Degeneration and Global Spinal Alignment in Patients With Adult Spinal Deformity.

    PubMed

    Fujimori, Takahito; Le, Hai; Schairer, William; Inoue, Shinichi; Iwasaki, Motoki; Oda, Takenori; Hu, Serena S

    2017-05-01

    To examine the relationship between cervical degeneration and spinal alignment by comparing patients with adult spinal deformity versus the control cohort. The effect of degeneration on cervical alignment has been controversial. Cervical and full-length spine radiographs of 57 patients with adult spinal deformity and 78 patients in the control group were reviewed. Adult spinal deformity was classified into 3 types based on the primary characteristics of the deformity: "Degenerative flatback" group, "Positive sagittal imbalance" group, and "Hyperthoracic kyphosis" group. Cervical degeneration was assessed using the cervical degeneration index scoring system. The "Degenerative flatback" group had significantly higher total cervical degeneration index score (25±7) than the control group (16±8), the "Positive sagittal imbalance" group (18±8), and the "Hyperthoracic kyphosis" group (12±7) (P<0.01). The "Degenerative flatback" group had significantly less cervical lordosis than the other groups. This reduced amount of cervical lordosis was thought to be induced by a compensatory decrease in thoracic kyphosis. In this group, increased cervical degeneration was significantly associated with a decrease in cervical lordosis. Significantly greater compensatory increase in cervical lordosis was noted in the "Positive sagittal imbalance" group (20±15 degrees) and the "Hyperthoracic kyphosis" group (26±9 degrees) compared with the control group (11±12 degrees) (P<0.02). Flat cervical spine coexisted with cervical degeneration when compensatory hypothoracic kyphosis was induced by degenerative flatback. In other situations, cervical lordosis could increase as a compensatory reaction against sagittal imbalance or hyperthoracic kyphosis.

  5. Deformable three-dimensional model architecture for interactive augmented reality in minimally invasive surgery.

    PubMed

    Vemuri, Anant S; Wu, Jungle Chi-Hsiang; Liu, Kai-Che; Wu, Hurng-Sheng

    2012-12-01

    Surgical procedures have undergone considerable advancement during the last few decades. More recently, the availability of some imaging methods intraoperatively has added a new dimension to minimally invasive techniques. Augmented reality in surgery has been a topic of intense interest and research. Augmented reality involves usage of computer vision algorithms on video from endoscopic cameras or cameras mounted in the operating room to provide the surgeon additional information that he or she otherwise would have to recognize intuitively. One of the techniques combines a virtual preoperative model of the patient with the endoscope camera using natural or artificial landmarks to provide an augmented reality view in the operating room. The authors' approach is to provide this with the least number of changes to the operating room. Software architecture is presented to provide interactive adjustment in the registration of a three-dimensional (3D) model and endoscope video. Augmented reality including adrenalectomy, ureteropelvic junction obstruction, and retrocaval ureter and pancreas was used to perform 12 surgeries. The general feedback from the surgeons has been very positive not only in terms of deciding the positions for inserting points but also in knowing the least change in anatomy. The approach involves providing a deformable 3D model architecture and its application to the operating room. A 3D model with a deformable structure is needed to show the shape change of soft tissue during the surgery. The software architecture to provide interactive adjustment in registration of the 3D model and endoscope video with adjustability of every 3D model is presented.

  6. Maintenance of sagittal plane alignment after surgical correction of spinal deformity in patients with cerebral palsy.

    PubMed

    Sink, Ernest L; Newton, Peter O; Mubarak, Scott J; Wenger, Dennis R

    2003-07-01

    A case series of patients with cerebral palsy treated for spinal deformity using Luque-Galveston instrumentation was retrospectively analyzed. To analyze the incidence and risk factors for postoperative loss of sagittal plane correction initially obtained with Luque-Galveston instrumentation in patients with cerebral palsy. The Luque-Galveston instrumentation technique has been widely adopted in the treatment of neuromuscular spinal deformity. Although the results in the coronal plane have been generally satisfactory, problems in maintaining sagittal plane correction have been noted. For this study, 41 patients with spastic quadriplegia who underwent surgical correction of spinal deformity between 1990 and 1998 were reviewed with attention given to the maintenance of sagittal plane correction. Preoperative, initial postoperative, and most recent radiographs were measured to determine the sagittal Cobb angle from T5 to T12, T12 to L2, and L1 to S1. On the basis of the preoperative sagittal alignment, patients were separated into two groups: those with preoperative hyperkyphosis (T5-T12 >or= 50 degrees, T12-L2 >or= 20 degrees, or L1-S1 >or= 0 degrees ) and those with normal or decreased kyphosis. The radiographs were assessed for proximal hardware failure/pullout or junctional kyphosis (>20 degrees ), and for backing out of the Galveston rods distally. Of the 41 patients, 29 underwent correction of their deformity with Luque-Galveston instrumentation alone. In 21 of these patients anterior release-fusion preceded the posterior procedure. Additional anterior lumbar instrumentation was used in 12 patients. Proximal loss of correction or implant failure occurred in 13 patients (32%). In four of these patients junctional kyphosis developed at the cephalad extent of the instrumentation, and nine patients had proximal hardware failure/pullout. Posterior migration of the distal end of the Galveston rods occurred in five patients (12%). Four of these five patients had

  7. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B.; Thomas, M.

    1997-03-18

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  8. Analysis of the relative deformation of lung lobes before and after surgery in patients with NSCLC

    NASA Astrophysics Data System (ADS)

    Siedschlag, Ch; van Loon, J.; van Baardwijk, A.; Rossi, M. M. G.; van Pel, R.; Blaauwgeers, J. L. G.; van Suylen, R. J.; Boersma, L.; Stroom, J.; Gilhuijs, K. G. A.

    2009-09-01

    An accurate assessment of the extent of the tumor is critical for successful local treatment of lung cancer by surgery and/or radiotherapy. Guidelines to establish the extent of treatment margins may be derived from correlation studies between pre-treatment imaging and histopathology. Deformations occur, however, between in-vivo CT imaging and ex-vivo pathology due to the softness of lung tissue and pathology processing. The first aim of this study was to quantify these deformations in tissue around non-small cell lung cancer. The second aim was to explore factors associated with the magnitude of the deformations. The study was performed in 25 patients who underwent lobectomy after preoperative CT. Non-rigid registration was employed to evaluate tissue deformations around the gross tumor volume (GTV), taking into account potential differences in elasticity between tumor and healthy lung tissue. Tissue was found to be compacted by approximately 60% depending on circularity of the tumor and orientation of the specimen on the pathology table during processing. The deformations give rise to potential underestimation of the treatment margins in pathology studies that do not take this aspect into account.

  9. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    SciTech Connect

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique; Tome, Carlos

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  10. Finite Element Surface Layer Inheritable Condition Residual Stresses Model in Surface Plastic Deformation Processes

    NASA Astrophysics Data System (ADS)

    Mahalov, M. S.; Blumenstein, V. Yu

    2016-04-01

    The residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  11. A Model for Estimating Nonlinear Deformation and Damage in Ceramic Matrix Composites (Preprint)

    DTIC Science & Technology

    2011-07-01

    AFRL-RX-WP-TP-2011-4232 A MODEL FOR ESTIMATING NONLINEAR DEFORMATION AND DAMAGE IN CERAMIC MATRIX COMPOSITES (PREPRINT) Unni Santhosh and...5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) Unni Santhosh and Jalees Ahmad 5d. PROJECT...Composite Materials, 2010 A Model for Estimating Nonlinear Deformation and Damage in Ceramic Matrix Composites Unni Santhosh and Jalees Ahmad Research

  12. Numerical modeling of a large deformation thermoforming process

    SciTech Connect

    Schrank, M.G.

    1988-04-01

    A numerical solution, using finite element methods, is presented for the simulation of a blow-molding process used to form a thermoplastic polymer (polyethylene terephthalate). The constitutive relationship employed in the analysis is a modification of the creep power law, allowing both strain hardening and strain rate hardening of the material. Analytical results compare well with experimental data for both rate of deformation during the forming process and strain distribution in the final formed configuration. 15 figs.

  13. Computer Modelling of Cyclic Deformation of High-Temperature Materials

    DTIC Science & Technology

    1993-06-14

    precision. In this case the aim will be at least to eliminate functional empiricism. Restriction of empiricism to the choice of parameters to be input...deformation of dispersion-hardened materials. In the general case this will be done by a literature search. For specific materials, the micromechanisms...cross-slip and/or climb without the generation of appreciable back-stress. Task 112. Anisotropic dispersoids This task covers the case of dispersoids

  14. Early experience with endoscopic foraminotomy in patients with moderate degenerative deformity.

    PubMed

    Madhavan, Karthik; Chieng, Lee Onn; McGrath, Lynn; Hofstetter, Christoph P; Wang, Michael Y

    2016-02-01

    OBJECTIVE Asymmetrical degeneration of the disc is one of the most common causes of primary degenerative scoliosis in adults. Coronal deformity is usually less symptomatic than a sagittal deformity because there is less expenditure of energy and hence less effort to maintain upright posture. However, nerve root compression at the fractional curve or at the concave side of the main curve can give rise to debilitating radiculopathy. METHODS This study was a retrospective analysis of 16 patients with coronal deformity of between 10° and 20°. All patients underwent endoscopic foraminal decompression surgery. The pre- and postoperative Cobb angle, visual analog scale (VAS), 36-Item Short Form Health Survey (SF-36), and Oswestry Disability Index scores were measured. RESULTS The average age of the patients was 70.0 ± 15.5 years (mean ± SD, range 61-86 years), with a mean followup of 7.5 ± 5.3 months (range 2-14 months). The average coronal deformity was 16.8° ± 4.7° (range 10°-41°). In 8 patients the symptomatic foraminal stenosis was at the level of the fractional curve, and in the remaining patients it was at the concave side of the main curve. One of the patients included in the current cohort had to undergo a repeat operation within 1 week for another disc herniation at the adjacent level. One patient had CSF leakage, which was repaired intraoperatively, and no further complications were noted. On average, preoperative VAS and SF-36 scores showed a tendency for improvement, whereas a dramatic reduction of VAS, by 65% (p = 0.003), was observed in radicular leg pain. CONCLUSIONS Patients with mild to moderate spinal deformity are often compensated and have tolerable levels of back pain. However, unilateral radicular pain resulting from foraminal stenosis can be debilitating. In select cases, an endoscopic discectomy or foraminotomy enables the surgeon to decompress the symptomatic foramen with preservation of essential biomechanical structures, delaying the

  15. Construction of a biomechanical head and neck motion model as a guide to evaluation of deformable image registration.

    PubMed

    Teske, Hendrik; Bartelheimer, Kathrin; Meis, Jan; Bendl, Rolf; Stoiber, Eva; Giske, Kristina

    2017-03-28

    The use of deformable image registration methods in the context of adaptive radiotherapy leads to uncertainties in the simulation of the administered dose distributions during the treatment course. Evaluation of these methods is a prerequisite to decide if a plan adaptation will improve the individual treatment. Current approaches using manual references limit the validity of evaluation, especially for low contrast regions. In particular for the head and neck region, the highly flexible anatomy and the low soft tissue contrast in control images pose a challenge to image registration and its evaluation. Biomechanical models promise to overcome this issue by providing anthropomorphic motion modelling of the patient. We introduce a novel biomechanical motion model for generation and sampling of different postures of the head and neck anatomy. Motion propagation behaviour of the individual bones is defined by an underlying kinematic model. This model interconnects the bones by joints and thus is capable to provide a wide range of motion. Triggered by the motion of the individual bones, soft tissue deformation is described by an extended heterogeneous tissue model based on the chainmail approach. This extension, for the first time, allows the propagation of decaying rotations within soft tissue without the necessity of explicit tissue segmentation. Overall motion simulation and sampling of deformed CT scans including a basic noise model is achieved within 30 seconds. The proposed biomechanical motion model for the head and neck site generates displacement vector fields on a voxel basis, approximating arbitrary anthropomorphic postures of the patient. It was developed with the intention to provide input data for the evaluation of deformable image registration.

  16. Construction of a biomechanical head and neck motion model as a guide to evaluation of deformable image registration

    NASA Astrophysics Data System (ADS)

    Teske, Hendrik; Bartelheimer, Kathrin; Meis, Jan; Bendl, Rolf; Stoiber, Eva M.; Giske, Kristina

    2017-06-01

    The use of deformable image registration methods in the context of adaptive radiotherapy leads to uncertainties in the simulation of the administered dose distributions during the treatment course. Evaluation of these methods is a prerequisite to decide if a plan adaptation will improve the individual treatment. Current approaches using manual references limit the validity of evaluation, especially for low-contrast regions. In particular, for the head and neck region, the highly flexible anatomy and low soft tissue contrast in control images pose a challenge to image registration and its evaluation. Biomechanical models promise to overcome this issue by providing anthropomorphic motion modelling of the patient. We introduce a novel biomechanical motion model for the generation and sampling of different postures of the head and neck anatomy. Motion propagation behaviour of the individual bones is defined by an underlying kinematic model. This model interconnects the bones by joints and thus is capable of providing a wide range of motion. Triggered by the motion of the individual bones, soft tissue deformation is described by an extended heterogeneous tissue model based on the chainmail approach. This extension, for the first time, allows the propagation of decaying rotations within soft tissue without the necessity for explicit tissue segmentation. Overall motion simulation and sampling of deformed CT scans including a basic noise model is achieved within 30 s. The proposed biomechanical motion model for the head and neck site generates displacement vector fields on a voxel basis, approximating arbitrary anthropomorphic postures of the patient. It was developed with the intention of providing input data for the evaluation of deformable image registration.

  17. Altered median nerve deformation and transverse displacement during wrist movement in patients with carpal tunnel syndrome.

    PubMed

    Wang, Yuexiang; Filius, Anika; Zhao, Chunfeng; Passe, Sandra M; Thoreson, Andrew R; An, Kai-Nan; Amadio, Peter C

    2014-04-01

    Carpal tunnel syndrome (CTS) is the most common peripheral nerve entrapment syndrome. Strong pinch or grip with wrist flexion has been considered a risk factor for CTS. Studying median nerve displacement during wrist movements may provide useful information about median nerve kinematic changes in patients with CTS. The purpose of this study was to evaluate the deformability and mobility of the median nerve in patients with CTS compared to healthy subjects. Dynamic ultrasound images were obtained in 20 affected wrists of 13 patients with CTS. Results were compared to complementary data obtained from both wrists of 10 healthy subjects reported in a previous study. Shape and position of initial and final median nerve were measured and analyzed for six defined wrist movements. The deformation ratios for each movement were defined as the median nerve area, perimeter, and circularity of the final position normalized by respective values assessed in the initial position. The median nerve displacement vector and magnitude were also calculated. The deformation ratio for circularity was significantly less in patients with CTS compared to healthy subjects during wrist flexion (P < .05). The mean vector of median nerve displacement during wrist flexion was significantly different between patients with CTS and healthy subjects (P < .05). The displacement magnitude of the median nerve was found to be less in patients with CTS compared to healthy subjects during most movements, with the exception of wrist extension with fingers extended. Patients with CTS differ from normal subjects with regard to mobility and deformability of the median nerve. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  18. Altered Median Nerve Deformation and Transverse Displacement during Wrist Movement in Patients with Carpal Tunnel Syndrome

    PubMed Central

    Wang, Yuexiang; Filius, Anika; Zhao, Chunfeng; Passe, Sandra M.; Thoreson, Andrew R.; An, Kai-Nan; Amadio, Peter C.

    2014-01-01

    Rationale and Objectives: Carpal tunnel syndrome (CTS) is the most common peripheral nerve entrapment syndrome. Strong pinch or grip with wrist flexion has been considered a risk factor for CTS. Studying median nerve displacement during wrist movements may provide useful information about median nerve kinematic changes in CTS patients. The purpose of this study was to evaluate the deformability and mobility of the median nerve in CTS patients compared to healthy subjects. Materials and Methods: Dynamic ultrasound images were obtained in 20 affected wrists of 13 patients with CTS. Results were compared to complementary data obtained from both wrists of 10 healthy subjects reported in a previous study. Initial and final median nerve shape and position were measured and analyzed for six defined wrist movements. The deformation ratios for each movement were defined as the median nerve area, perimeter and circularity of the final position normalized by respective values assessed in the initial position. The median nerve displacement vector and magnitude were also calculated. Results: The deformation ratio for circularity was significant less in CTS patients compared to healthy subjects during wrist flexion (P<0.05). The mean vector of median nerve displacement during wrist flexion was significantly different between CTS patients and healthy subjects (P<0.05). The displacement magnitude of the median nerve was found to be less in CTS patients compared to healthy subjects during most movements, with the exception of wrist extension with fingers extended. Conclusions: CTS Patients differ from normal subjects with regard to mobility and deformability of the median nerve. PMID:24594417

  19. Classifying Severity of Abdominal Contour Deformities After Weight Loss to Aid in Patient Counseling: A Review of 1006 Cases

    PubMed Central

    Zammerilla, Lauren L.; Zou, Richard H.; Dong, Zachary M.; Winger, Daniel G.; Rubin, J. Peter; Gusenoff, Jeffrey A.

    2014-01-01

    Background Prior to massive weight loss (MWL), many patients wonder about their future abdominal contour. Abdominal contour deformities after MWL are highly variable, ranging from a mild upper protuberance to multiple rolls. Correction of these deformities is challenging and may require advanced surgical techniques. The incidence of patients presenting with various abdominal deformities and the factors influencing these deformities are not well defined, but could aid patients undergoing weight loss. Methods All MWL patients presenting for abdominal contouring from 2002–2012 were reviewed, and abdomens were graded using a modified Pittsburgh Rating Scale. Data collected for each patient included BMI indices, history of bariatric surgery, and type of abdominal contouring surgery. Results 1006 patients were evaluated with a mean age of 44.2 years ± 10.5 years. The mean MaximumBMI was 51.7 kg/m2±9.6 kg/m2, mean CurrentBMI was 30.0 kg/m2±6.4 kg/m2, and mean DeltaBMI was 21.7 kg/m2±7.0 kg/m2. 64% had a high-grade deformity. Patients with larger DeltaBMIs had higher deformity grades (p < 0.001). Patients with higher deformity grades were more likely to undergo a fleur-de-lis abdominoplasty (p < 0.001). Conclusions Most patients presenting for body contouring after MWL have high-grade abdominal deformities with multiple rolls. DeltaBMI is positively correlated with deformity grade and more aggressive abdominal contouring procedures. Patients interested in MWL should be counseled that, depending on desire for eventual outcomes, more complex procedures may be required to correct the resultant abdominal deformity. Level of Evidence Therapeutic, III. PMID:25415111

  20. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models.

    PubMed

    Chi, Y; Liang, J; Yan, D

    2006-02-01

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationships between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty

  1. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models

    SciTech Connect

    Chi, Y.; Liang, J.; Yan, D.

    2006-02-15

    Model-based deformable organ registration techniques using the finite element method (FEM) have recently been investigated intensively and applied to image-guided adaptive radiotherapy (IGART). These techniques assume that human organs are linearly elastic material, and their mechanical properties are predetermined. Unfortunately, the accurate measurement of the tissue material properties is challenging and the properties usually vary between patients. A common issue is therefore the achievable accuracy of the calculation due to the limited access to tissue elastic material constants. In this study, we performed a systematic investigation on this subject based on tissue biomechanics and computer simulations to establish the relationships between achievable registration accuracy and tissue mechanical and organ geometrical properties. Primarily we focused on image registration for three organs: rectal wall, bladder wall, and prostate. The tissue anisotropy due to orientation preference in tissue fiber alignment is captured by using an orthotropic or a transversely isotropic elastic model. First we developed biomechanical models for the rectal wall, bladder wall, and prostate using simplified geometries and investigated the effect of varying material parameters on the resulting organ deformation. Then computer models based on patient image data were constructed, and image registrations were performed. The sensitivity of registration errors was studied by perturbating the tissue material properties from their mean values while fixing the boundary conditions. The simulation results demonstrated that registration error for a subvolume increases as its distance from the boundary increases. Also, a variable associated with material stability was found to be a dominant factor in registration accuracy in the context of material uncertainty. For hollow thin organs such as rectal walls and bladder walls, the registration errors are limited. Given 30% in material uncertainty

  2. Computational implementation of the multi-mechanism deformation coupled fracture model for salt

    SciTech Connect

    Koteras, J.R.; Munson, D.E.

    1996-05-01

    The Multi-Mechanism Deformation (M-D) model for creep in rock salt has been used in three-dimensional computations for the Waste Isolation Pilot Plant (WIPP), a potential waste, repository. These computational studies are relied upon to make key predictions about long-term behavior of the repository. Recently, the M-D model was extended to include creep-induced damage. The extended model, the Multi-Mechanism Deformation Coupled Fracture (MDCF) model, is considerably more complicated than the M-D model and required a different technology from that of the M-D model for a computational implementation.

  3. S-matrices and quantum group symmetry of k-deformed sigma models

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.; Miramontes, J. Luis; Schmidtt, David M.

    2016-11-01

    Recently, two kinds of integrable deformations of the string world sheet theory in the gauge/gravity correspondence have been constructed (Delduc et al 2014 Phys. Rev. Lett. 112 051601; Hollowood et al 2014 J. Phys. A: Math. Theor. 47 495402). One class of these, the k deformations associated to the more general q deformations but with q={{{e}}}{{i}π /k} a root of unity, has been shown to be related to a particular discrete deformation of the principal chiral models and (semi-)symmetric space sigma models involving a gauged WZW model. We conjecture a form for the exact S-matrices of the bosonic integrable field theories of this type. The S-matrices imply that the theories have a hidden infinite dimensional affine quantum group symmetry. We provide some evidence, via quantum inverse scattering techniques, that the theories do indeed possess the finite-dimensional part of this quantum group symmetry.

  4. Extension of continental lithosphere - A model for two scales of basin and range deformation

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Parmentier, E. M.; Fletcher, R. C.

    1986-01-01

    The development of a model for deformation in an extending continental lithosphere that is stratified in density and strength is described. The lithosphere model demonstrates that the necking instabilities at two wavelengths originate due to a strong upper crust, a mantle layer, and a weak lower crust. It is observed that the dominant wavelengths of necking are controlled by layer thickness and the strength of the layers control the amplitude of the instabilities. The model is applied to the Basin and Range Province of the western U.S. where deformations in ranges and tile domains are detected. The relation between the Bouguer gravity anomaly and the deformations is studied. The data reveal that the horizontal scale of short wavelength necking correlates with the spacings of individual basins and ranges, and the longer wavelength corresponds to the width of tilt domains. The control of the Basin and Range deformation by two scales of extensional instability is proposed.

  5. Extension of continental lithosphere - A model for two scales of basin and range deformation

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Parmentier, E. M.; Fletcher, R. C.

    1986-01-01

    The development of a model for deformation in an extending continental lithosphere that is stratified in density and strength is described. The lithosphere model demonstrates that the necking instabilities at two wavelengths originate due to a strong upper crust, a mantle layer, and a weak lower crust. It is observed that the dominant wavelengths of necking are controlled by layer thickness and the strength of the layers control the amplitude of the instabilities. The model is applied to the Basin and Range Province of the western U.S. where deformations in ranges and tile domains are detected. The relation between the Bouguer gravity anomaly and the deformations is studied. The data reveal that the horizontal scale of short wavelength necking correlates with the spacings of individual basins and ranges, and the longer wavelength corresponds to the width of tilt domains. The control of the Basin and Range deformation by two scales of extensional instability is proposed.

  6. Development of a preoperative predictive model for major complications following adult spinal deformity surgery.

    PubMed

    Scheer, Justin K; Smith, Justin S; Schwab, Frank; Lafage, Virginie; Shaffrey, Christopher I; Bess, Shay; Daniels, Alan H; Hart, Robert A; Protopsaltis, Themistocles S; Mundis, Gregory M; Sciubba, Daniel M; Ailon, Tamir; Burton, Douglas C; Klineberg, Eric; Ames, Christopher P

    2017-03-24

    OBJECTIVE The operative management of patients with adult spinal deformity (ASD) has a high complication rate and it remains unknown whether baseline patient characteristics and surgical variables can predict early complications (intraoperative and perioperative [within 6 weeks]). The development of an accurate preoperative predictive model can aid in patient counseling, shared decision making, and improved surgical planning. The purpose of this study was to develop a model based on baseline demographic, radiographic, and surgical factors that can predict if patients will sustain an intraoperative or perioperative major complication. METHODS This study was a retrospective analysis of a prospective, multicenter ASD database. The inclusion criteria were age ≥ 18 years and the presence of ASD. In total, 45 variables were used in the initial training of the model including demographic data, comorbidities, modifiable surgical variables, baseline health-related quality of life, and coronal and sagittal radiographic parameters. Patients were grouped as either having at least 1 major intraoperative or perioperative complication (COMP group) or not (NOCOMP group). An ensemble of decision trees was constructed utilizing the C5.0 algorithm with 5 different bootstrapped models. Internal validation was accomplished via a 70/30 data split for training and testing each model, respectively. Overall accuracy, the area under the receiver operating characteristic (AUROC) curve, and predictor importance were calculated. RESULTS Five hundred fifty-seven patients were included: 409 (73.4%) in the NOCOMP group, and 148 (26.6%) in the COMP group. The overall model accuracy was 87.6% correct with an AUROC curve of 0.89 indicating a very good model fit. Twenty variables were determined to be the top predictors (importance ≥ 0.90 as determined by the model) and included (in decreasing importance): age, leg pain, Oswestry Disability Index, number of decompression levels, number of

  7. The utility of a multimaterial 3D printed model for surgical planning of complex deformity of the skull base and craniovertebral junction.

    PubMed

    Pacione, Donato; Tanweer, Omar; Berman, Phillip; Harter, David H

    2016-11-01

    Utilizing advanced 3D printing techniques, a multimaterial model was created for the surgical planning of a complex deformity of the skull base and craniovertebral junction. The model contained bone anatomy as well as vasculature and the previously placed occipital cervical instrumentation. Careful evaluation allowed for a unique preoperative perspective of the craniovertebral deformity and instrumentation options. This patient-specific model was invaluable in choosing the most effective approach and correction strategy, which was not readily apparent from standard 2D imaging. Advanced 3D multimaterial printing provides a cost-effective method of presurgical planning, which can also be used for both patient and resident education.

  8. Effects of Host-rock Fracturing on Elastic-deformation Source Models of Volcano Deflation.

    PubMed

    Holohan, Eoghan P; Sudhaus, Henriette; Walter, Thomas R; Schöpfer, Martin P J; Walsh, John J

    2017-09-08

    Volcanoes commonly inflate or deflate during episodes of unrest or eruption. Continuum mechanics models that assume linear elastic deformation of the Earth's crust are routinely used to invert the observed ground motions. The source(s) of deformation in such models are generally interpreted in terms of magma bodies or pathways, and thus form a basis for hazard assessment and mitigation. Using discontinuum mechanics models, we show how host-rock fracturing (i.e. non-elastic deformation) during drainage of a magma body can progressively change the shape and depth of an elastic-deformation source. We argue that this effect explains the marked spatio-temporal changes in source model attributes inferred for the March-April 2007 eruption of Piton de la Fournaise volcano, La Reunion. We find that pronounced deflation-related host-rock fracturing can: (1) yield inclined source model geometries for a horizontal magma body; (2) cause significant upward migration of an elastic-deformation source, leading to underestimation of the true magma body depth and potentially to a misinterpretation of ascending magma; and (3) at least partly explain underestimation by elastic-deformation sources of changes in sub-surface magma volume.

  9. Deformation Prediction and Geometrical Modeling of Head and Neck Cancer Tumor: A Data Mining Approach

    NASA Astrophysics Data System (ADS)

    Azimi, Maryam

    Radiation therapy has been used in the treatment of cancer tumors for several years and many cancer patients receive radiotherapy. It may be used as primary therapy or with a combination of surgery or other kinds of therapy such as chemotherapy, hormone therapy or some mixture of the three. The treatment objective is to destroy cancer cells or shrink the tumor by planning an adequate radiation dose to the desired target without damaging the normal tissues. By using the pre-treatment Computer Tomography (CT) images, most of the radiotherapy planning systems design the target and assume that the size of the tumor will not change throughout the treatment course, which takes 5 to 7 weeks. Based on this assumption, the total amount of radiation is planned and fractionated for the daily dose required to be delivered to the patient's body. However, this assumption is flawed because the patients receiving radiotherapy have marked changes in tumor geometry during the treatment period. Therefore, there is a critical need to understand the changes of the tumor shape and size over time during the course of radiotherapy in order to prevent significant effects of inaccuracy in the planning. In this research, a methodology is proposed in order to monitor and predict daily (fraction day) tumor volume and surface changes of head and neck cancer tumors during the entire treatment period. In the proposed method, geometrical modeling and data mining techniques will be used rather than repetitive CT scans data to predict the tumor deformation for radiation planning. Clinical patient data were obtained from the University of Texas-MD Anderson Cancer Center (MDACC). In the first step, by using CT scan data, the tumor's progressive geometric changes during the treatment period are quantified. The next step relates to using regression analysis in order to develop predictive models for tumor geometry based on the geometric analysis results and the patients' selected attributes (age, weight

  10. The relationship between digital model accuracy and time-dependent deformation of alginate impressions.

    PubMed

    Alcan, Toros; Ceylanoğlu, Cenk; Baysal, Bekir

    2009-01-01

    To investigate the effects of different storage periods of alginate impressions on digital model accuracy. A total of 105 impressions were taken from a master model with three different brands of alginates and were poured into stone models in five different storage periods. In all, 21 stone models were poured and immediately were scanned, and 21 digital models were prepared. The remaining 84 impressions were poured after 1, 2, 3, and 4 days, respectively. Five linear measurements were made by three researchers on the master model, the stone models, and the digital models. Time-dependent deformation of alginate impressions at different storage periods and the accuracy of traditional stone models and digital models were evaluated separately. Both the stone models and the digital models were highly correlated with the master model. Significant deformities in the alginate impressions were noted at different storage periods of 1 to 4 days. Alginate impressions of different brands also showed significant differences between each other on the first, third, and fourth days. Digital orthodontic models are as reliable as traditional stone models and probably will become the standard for orthodontic clinical use. Storing alginate impressions in sealed plastic bags for up to 4 days caused statistically significant deformation of alginate impressions, but the magnitude of these deformations did not appear to be clinically relevant and had no adverse effect on digital modeling.

  11. A robust brain deformation framework based on a finite element model in IGNS.

    PubMed

    Liu, Yixun; Song, Zhijian

    2008-06-01

    Brain deformation plays an important role in causing inaccuracy in image-guided neurosurgery. Three types of approaches have been proposed to solve this problem: intra-operative imaging, deformation atlas and non-rigid registration. By comparing these approaches, we here show that the non-rigid registration approach, based on a linear elastic model, may be the most feasible method during clinical application. Based on the non-rigid registration model, we designed a framework used to correct the brain deformation. A laser range scanner (LRS) was introduced into this framework to obtain the intra-operative brain surface. Using this device, we designed a novel surface-tracking algorithm, which includes space transformation (rigid registration) and surface moving. We first transformed the point set from LRS space into image space by a series of transformations, then simulated the movement of the brain surface using a thin-plate spline. We tested the framework using pigs. In these experiments, we segmented and meshed the pig's brain and transformed the initial surface (from a MRI scan) and deformed surface (from LRS) into the same coordinate system, using rigid registration. Using this method, the surfaces of pigs' brains were tracked accurately and the internal brain deformation was estimated. The pre-operative images can be corrected accordingly. Our animal experiments indicate that this framework can effectively capture the surface deformation and hence estimate the internal deformation of the brain. (c) 2008 John Wiley & Sons, Ltd.

  12. Tissue deformation and shape models in image-guided interventions: a discussion paper.

    PubMed

    Hawkes, D J; Barratt, D; Blackall, J M; Chan, C; Edwards, P J; Rhode, K; Penney, G P; McClelland, J; Hill, D L G

    2005-04-01

    This paper promotes the concept of active models in image-guided interventions. We outline the limitations of the rigid body assumption in image-guided interventions and describe how intraoperative imaging provides a rich source of information on spatial location of anatomical structures and therapy devices, allowing a preoperative plan to be updated during an intervention. Soft tissue deformation and variation from an atlas to a particular individual can both be determined using non-rigid registration. Established methods using free-form deformations have a very large number of degrees of freedom. Three examples of deformable models--motion models, biomechanical models and statistical shape models--are used to illustrate how prior information can be used to restrict the number of degrees of freedom of the registration algorithm and thus provide active models for image-guided interventions. We provide preliminary results from applications for each type of model.

  13. Modelling heat and mass transfer in bread baking with mechanical deformation

    NASA Astrophysics Data System (ADS)

    Nicolas, V.; Salagnac, P.; Glouannec, P.; Ploteau, J.-P.; Jury, V.; Boillereaux, L.

    2012-11-01

    In this paper, the thermo-hydric behaviour of bread during baking is studied. A numerical model has been developed with Comsol Multiphysics© software. The model takes into account the heat and mass transfers in the bread and the phenomenon of swelling. This model predicts the evolution of temperature, moisture, gas pressure and deformation in French "baguette" during baking. Local deformation is included in equations using solid phase conservation and, global deformation is calculated using a viscous mechanic model. Boundary conditions are specified with the sole temperature model and vapour pressure estimation of the oven during baking. The model results are compared with experimental data for a classic baking. Then, the model is analysed according to physical properties of bread and solicitations for a better understanding of the interactions between different mechanisms within the porous matrix.

  14. Influence of 3 months endurance training on red cell deformability in non insulin dependent type 2 diabetes mellitus patients.

    PubMed

    Ahmad, B; Opitz, D; Bloch, W; Brixius, K

    2013-08-01

    The main purpose of the study was to examine if 3 months of bicycle endurance training alters the red cell deformability in non insulin dependent type 2 diabetes mellitus men.The red cell deformability was measured with the Laser assisted optical rotational cell analyzer. The maximal elongation index and the semimaximal shear stress were measured with the Lineweaver Burke model.At the beginning and the end of the intervention the patients passed a bicycle ergometry test. As a reference group, 13 males without diabetes passed the same testing procedure. Blood samplings were taken before testing, immediately after physical exhaustion and after a 30 min recovery phase.After the training period diabetic patients could significantly reduce BMI, fasting glucose and HbA1c. The reference group had significantly higher elongation indices than the diabetes patients independent from training status. After the training period the basal values of the maximal elongation index did not change significantly. However, maximal elongation indices were significantly reduced after physical examination and in resting time.The semimaximal shear stress of diabetes patients did not alter during the training period. In comparison to the reference group semimaximal shear stress was significantly reduced at all measurement times.This pilot study proves that the maximal elongation index is significantly decreased in diabetes mellitus patients. After 3 months endurance training the red cells become more rigid while the semimaximal shear stress remains constant. Further interventions are required to analyze the exact cause of the presented findings.

  15. Medical image-guided surgery planning for breast reconstruction using deformable modeling and surface flattening

    NASA Astrophysics Data System (ADS)

    Huang, Pengfei; Gu, Lixu; Liu, Jie; Zhang, Jingsi; Xu, Hua; Dong, Jiasheng; Chen, Weitao; Pei, Wei; Song, Jiasi; Li, Bowen; Xu, Jianrong

    2007-12-01

    In this paper, a virtual breast plastic surgery planning method is proposed, which reconstructs the breast after excision for certain diseases such as cancer. In order to achieve a rational result, we calculate shape, area, volume and depth of the skin and muscle for the reconstruction, based on the other healthy breast. The steps are as follows: 1) input breast's MRI data of patient; 2) get the healthy breast using balloon segmentation algorithm and get triangle mesh on breast surface; 3) flatten the triangulated skin of breast using deformable model to attain the shape and volume of the flap for breast reconstruction. Other methods such as mesh smoothing and cutting of triangulated surface are also introduced. The doctors validation and evaluation process are also provided to ensure the robust and stable result of virtual surgery planning.

  16. An adaptive patient specific deformable registration for breast images of positron emission tomography and magnetic resonance imaging using finite element approach

    NASA Astrophysics Data System (ADS)

    Xue, Cheng; Tang, Fuk-Hay

    2014-03-01

    A patient specific registration model based on finite element method was investigated in this study. Image registration of Positron Emission Tomography (PET) and Magnetic Resonance imaging (MRI) has been studied a lot. Surface-based registration is extensively applied in medical imaging. We develop and evaluate a registration method combine surface-based registration with biomechanical modeling. .Four sample cases of patients with PET and MRI breast scans performed within 30 days were collected from hospital. K-means clustering algorithm was used to segment images into two parts, which is fat tissue and neoplasm [2]. Instead of placing extrinsic landmarks on patients' body which may be invasive, we proposed a new boundary condition to simulate breast deformation during two screening. Then a three dimensional model with meshes was built. Material properties were assigned to this model according to previous studies. The whole registration was based on a biomechanical finite element model, which could simulate deformation of breast under pressure.

  17. Vitreoretinal interface and foveal deformation in asymptomatic fellow eyes of patients with unilateral macular holes.

    PubMed

    Kumagai, Kazuyuki; Hangai, Masanori; Larson, Eric; Ogino, Nobuchika

    2011-08-01

    To compare the vitreoretinal interface of the asymptomatic fellow eyes of patients with unilateral macular holes (MHs) with that of the asymptomatic fellow eyes of patients with other retinal diseases and with that of healthy eyes. Retrospective, observational cross-sectional study. This study included 137 healthy volunteers and 929 eyes of 929 patients with various unilateral retinal diseases. We reviewed medical charts, fundus photographs, and spectral-domain optical coherence tomographic (SD OCT) images. The incidence of the features of the vitreoretinal interface and foveal structures in the SD OCT images were compared among the asymptomatic fellow eyes of patients with unilateral MHs (n = 242), age-related macular degeneration (n = 129), epiretinal membrane (n = 185), macular pseudohole (n = 48), rhegmatogenous retinal detachment (n = 68), retinal vein occlusion (n = 257), and 1 of the eyes of healthy individuals (n = 137). Findings of slit-lamp biomicroscopy and SD OCT B-scan images. The SD OCT B-scan images showed different types of foveal deformations associated with vitreofoveal adhesions in eyes without a posterior vitreous detachment (PVD) in the macular area. The incidence of the foveal deformations associated with vitreofoveal adhesions was significantly higher (P<0.0001) in the fellow eyes of the unilateral MH group (17%) than that in the other groups (0%-2%), except for the macular pseudohole group (8%). The SD OCT B-scan images also showed residual foveal deformations in eyes with a macular PVD. The incidence of a residual foveal deformation in eyes with a macular PVD was significantly higher (P<0.0001) in the MH group (32%) than that in any other group (0%-9%). The higher incidence of foveal deformations in the fellow eyes of patients with unilateral MHs with and without vitreofoveal adhesions suggests that patients in whom MHs develop have abnormally strong vitreofoveal adhesions sufficient to cause foveal deformation. The author(s) have no

  18. Sex Differences in Patients With CAM Deformities With Femoroacetabular Impingement: 3-Dimensional Computed Tomographic Quantification.

    PubMed

    Yanke, Adam B; Khair, M Michael; Stanley, Robert; Walton, David; Lee, Simon; Bush-Joseph, Charles A; Espinoza Orías, Alejandro; Espinosa Orias, Alejandro A; Inoue, Nozomu; Nho, Shane J

    2015-12-01

    To determine if significant differences exist between male and female CAM deformities using quantitative 3-dimensional (3D) volume and location analysis. Retrospective analysis of preoperative computed tomographic (CT) scans for 138 femurs (69 from male patients and 69 from female patients) diagnosed with impingement from November 2009 to November 2011 was completed. Those patients who presented with hip complaints and had a history, physical examination (limited range of motion, positive impingement signs), plain radiographs (anteroposterior pelvis, 90° Dunn view, false profile view), and magnetic resonance images consistent with femoroacetabular impingement (FAI) and in whom a minimum of 6 months of conservative therapy (oral anti-inflammatory agents, physical therapy, and activity modification) had failed were indicated for arthroscopic surgery and had a preoperative CT scan. Scans were segmented, converted to point cloud data, and analyzed with a custom-written computer program. Analysis included mean CAM height and volume, head radius, and femoral version. Differences were analyzed using an unpaired t test with significance set at P < .05. Female patients had greater femoral anteversion compared with male patients (female patients, 15.5° ± 8.3°; male patients, 11.3° ± 9.0°; P = .06). Male femoral head radii were significantly larger than female femoral heads (female patients, 22.0 ± 1.3 mm; male patients, 25.4 ± 1.3 mm; P < .001). Male CAM height was significantly larger than that in female patients (female patients, 0.66 ± 0.61 mm; male patients, 1.51 ± 0.75 mm; P < .001). Male CAM volume was significantly larger as well (male patients, 433 ± 471 mm(3); female patients, 89 ± 124 mm(3); P < .001). These differences persisted after normalizing height (P < .001) and volume (P < .001) to femoral head radius. Average clock face distribution was from the 1:09 o'clock position ± the 2:51 o'clock position to the 3:28 o'clock position ± the 1:59 o

  19. Modeling of porous scaffold deformation induced by medium perfusion.

    PubMed

    Podichetty, Jagdeep T; Madihally, Sundararajan V

    2014-05-01

    In this study, we tested the possibility of calculating permeability of porous scaffolds utilized in soft tissue engineering using pore size and shape. We validated the results using experimental measured pressure drop and simulations with the inclusion of structural deformation. We prepared Polycaprolactone (PCL) and Chitosan-Gelatin (CG) scaffolds by salt leaching and freeze drying technique, respectively. Micrographs were assessed for pore characteristics and mechanical properties. Porosity for both scaffolds was nearly same but the permeability varied 10-fold. Elastic moduli were 600 and 9 kPa for PCL and CG scaffolds, respectively, while Poisson's ratio was 0.3 for PCL scaffolds and ∼1.0 for CG scaffolds. A flow-through bioreactor accommodating a 10 cm diameter and 0.2 cm thick scaffold was used to determine the pressure-drop at various flow rates. Additionally, computational fluid dynamic (CFD) simulations were performed by coupling fluid flow, described by Brinkman equation, with structural mechanics using a dynamic mesh. The experimentally obtained pressure drop matched the simulation results of PCL scaffolds. Simulations were extended to a broad range of permeabilities (10(-10) m(2) to 10(-14) m(2) ), elastic moduli (10-100,000 kPa) and Poisson's ratio (0.1-0.49). The results showed significant deviation in pressure drop due to scaffold deformation compared to rigid scaffold at permeabilities near healthy tissues. Also, considering the scaffold as a nonrigid structure altered the shear stress profile. In summary, scaffold permeability can be calculated using scaffold pore characteristics and deformation could be predicted using CFD simulation. These relationships could potentially be used in monitoring tissue regeneration noninvasively via pressure drop. Copyright © 2013 Wiley Periodicals, Inc.

  20. A Mechanism-based Model for Deformation Twinning in Polycrystalline FCC Steel

    SciTech Connect

    Wang, Yuan; Sun, Xin; Wang, Y. D.; Hu, Xiaohua; Zbib, Hussein M.

    2014-06-01

    Deformation twinning, a common and important plastic deformation mechanism, is the key contributor to the excellent combination of strength and ductility in twinning-induced plasticity (TWIP) steel. In the open literature, a significant amount of research has been reported on the microstructural characteristics of deformation twinning and its influence on the overall deformation behavior of TWIP steel. In this study, we examine the feasibility of a mechanism-based crystal plasticity model in simulating the microstructural level deformation characteristics of TWIP steel. To this end, a model considering both double-slip and double-twin is developed to investigate the stress-strain behavior and local microstructural features related to the formation and growth of micro-twins in low stacking fault energy (SFE) TWIP steel. The twin systems are described as pseudo-slips that can be activated when their resolved shear stress reaches the corresponding critical value. A hardening law that accounts for the interaction among the slip and twin systems is also developed. Numerical simulations for dDifferent mesh sizes and single crystal patch tests under different loading modes are carried out to verify the modeling procedure. Our simulation results reveal that, despite its simple nature, the double-slip/double-twin model can capture the key deformation features of TWIP steel, including twin volume fraction evolution, continuous strain hardening, and the final fracture in the form of strain localization.

  1. Deformation of the UI-14at%Nb shape memory alloy: experiments and modeling

    SciTech Connect

    Field, Robert D; Tome, Carlos N; Mc Cabe, Rodney J; Clarke, Amy J; Brown, Donald W; Tupper, Catherine N

    2010-12-22

    U-14at%Nb is a shape memory effect (SME) alloy that undergoes deformation by the motion of complex twins and twin related lath boundaries up to the limit of SME deformation ({approx}7%). All of the twins present in the as-transformed martensite and active during SME deformation are derived from those of the orthorhombic alpha-U phase, modified for the monoclinic distortion of the alpha martensite phase. In the SME regime a simple Bain strain model qualitatively predicts variant selection, texture development in polycrystalline samples, and stress-strain behavior as a function of parent phase orientation in single crystal micropillars. In the post-SME regime, unrecoverable deformation occurs by a combination of slip and twinning, with the first few percent of strain in tension apparently governed by a twin species specifically associated with the monoclinic distortion (i.e. not present in the orthorhombic alpha-U phase). The situation in compression is more complicated, with a combination of slip and twinning systems believed responsible for deformation. A review of the Bain strain model for SME deformation will be presented in conjunction with experimental data. In addition, results from modeling of post-SME behavior using the Visco-Plastic Self-Consistent (VPSC) model will be compared to experimental texture measurements.

  2. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    SciTech Connect

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. CASL has endeavored to improve upon this approach by incorporating a microstructurally-based, atomistically-informed, zirconium alloy mechanical deformation analysis capability into the BISON-CASL engineering scale fuel performance code. Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tome´ [2], has been coupled with BISON-CASL to represent the mechanistic material processes controlling the deformation behavior of the cladding. A critical component of VPSC is the representation of the crystallographic orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON-CASL and provides initial results utilizing the coupled functionality.

  3. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients.

    PubMed

    Cunliffe, Alexandra R; Contee, Clay; Armato, Samuel G; White, Bradley; Justusson, Julia; Malik, Renuka; Al-Hallaq, Hania A

    2015-01-01

    To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Eighteen patients who received curative doses (≥ 60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4-75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm ("Fast" and "EMPIRE10"). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (dE) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of dE, dose (D), dose standard deviation (SD(dose)) in an eight-pixel neighborhood, and the registration algorithm used. Over 1400 landmark point pairs were identified, with 58-93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9-10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average dE across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of dE (0.42 Gy/mm), D (0.05 Gy/Gy), SD(dose) (1.4 Gy/Gy), and the algorithm used (≤ 1 Gy). An average error of <4 Gy in radiation dose was introduced when points were mapped between

  4. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    SciTech Connect

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia; Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  5. Outcomes of patients with syringomyelia undergoing spine deformity surgery: do large syrinxes behave differently from small?

    PubMed

    Samdani, Amer F; Hwang, Steven W; Singla, Anuj; Bennett, James T; Ames, Robert J; Kimball, Jeff S

    2017-10-01

    A paucity of data exists studying outcomes of patients with syringomyelia undergoing spinal deformity correction. The literature does not stratify patients by syrinx size, which is likely a major contributor to outcomes. The study aimed to compare differences in outcomes between patients with large (≥4 mm) and small syrinxes (<4 mm) undergoing spinal deformity correction. This is a retrospective review. The sample included 28 patients (11 with large syrinx [LS, >4 mm] and 17 with small syrinx [SS, <4 mm]). The outcome measures were radiographic, operative, and neurophysiological measures. We retrospectively reviewed 28 patients with syringomyelia who underwent spine deformity surgery with 2-year follow-up. Demographic, surgical, and radiographic data were collected and compared preoperatively and at 2 years. The LS group (11 patients) trended toward more left-sided thoracic curves (36% vs. 18%, p=.38) and was more likely to have had a Chiari decompression (45% vs. 12%, p=.08). The LS patients had larger preoperative major curves (LS=66° vs. SS=57°, p=.05), more thoracic kyphosis (LS=42°, SS=24°, p<.01), and greater rib prominences (LS=16°, SS=13°, p=.04). The LS patients had more levels fused (LS=12.2, SS=11.2, p=.05), higher estimated blood loss (EBL) (LS=1068 cc, SS=832 cc, p=.04), and a trend toward less percent correction of the major curve (LS=57%, SS=65%, p=.18). Four of 11 LS patients (36%) did not have somatosensory evoked potentials, and one of these also did not have motor evoked potentials. Neuromonitoring changes occurred in 3 of 11 (27%) LS patients and in none of the SS patients, with no postoperative deficits. Outcomes of patients with syringomyelia undergoing spine deformity surgery are dependent on the size of the syrinx. Those with large syringomyelia are fused longer with more EBL and less correction. Spine surgeons should be aware that these patients are more likely to have less reliable neuromonitoring, with a higher chance

  6. Modeling of the Deformation of Living Cells Induced by Atomic Force Microscopy

    SciTech Connect

    Rudd, R E; McElfresh, M; Baesu, E; Balhorn, R; Allen, M J; Belak, J

    2001-12-21

    We describe finite element modeling of the deformation of living cells by atomic force microscopy (AFM). Cells are soft systems, susceptible to large deformations in the course of an AFM measurement. Often the local properties, the subject of the measurement, are obscured by the response of the cell as a whole. The Lagrangian finite deformation model we have developed and implemented in finite elements analysis offers a solution to this problem. The effect of the gross deformation of the cell can be subtracted from the experimentally measured data in order to give a reproducible value for local properties. This facilitates concurrent experimental efforts to measure the mechanical properties at specific receptor sites on the membrane of a living cell.

  7. Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation

    SciTech Connect

    Shouchun Deng; Robert Podgorney; Hai Huang

    2011-02-01

    Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be

  8. Soft tissue deformation using a Hierarchical Finite Element Model.

    PubMed

    Faraci, Alessandro; Bello, Fernando; Darzi, Ara

    2004-01-01

    Simulating soft tissue deformation in real-time has become increasingly important in order to provide a realistic virtual environment for training surgical skills. Several methods have been proposed with the aim of rendering in real-time the mechanical and physiological behaviour of human organs, one of the most popular being Finite Element Method (FEM). In this paper we present a new approach to the solution of the FEM problem introducing the concept of parent and child mesh within the development of a hierarchical FEM. The online selection of the child mesh is presented with the purpose to adapt the mesh hierarchy in real-time. This permits further refinement of the child mesh increasing the detail of the deformation without slowing down the simulation and giving the possibility of integrating force feedback. The results presented demonstrate the application of our proposed framework using a desktop virtual reality (VR) system that incorporates stereo vision with integrated haptics co-location via a desktop Phantom force feedback device.

  9. Modeling grain size during hot deformation of IN 718

    SciTech Connect

    Medeiros, S.C.; Prasad, Y.V.R.K.; Frazier, W.G.; Srinivasan, R.

    1999-12-17

    Aerospace gas turbine disks operate in an environment of relatively high stresses caused by centrifugal forces and elevated temperatures. These severe conditions necessitate the need for materials with high temperature strength and good low cycle fatigue resistance. One class of alloys used for this task is the nickel base superalloys, out of which, IN 718 is the most widely used in the aerospace industry. The properties of IN 718 are attributed to the combined effects of the chemistry, heat treatment, and microstructure. The chemistry is tailored not only for solid solution strengthening but also for precipitation hardening developed during heat treatment, which combined with a fine grained microstructure lead to excellent mechanical properties such as low cycle fatigue resistance and elevated temperature strength. The properties of a gas turbine disk are sensitive to the microstructure, in particular the grain size, which is dependent on the processing history. The ability to precisely control the microstructural development during forging is dependent on controlling the process so that the workpiece is deformed within a safe region where no microstructural damage or flow instabilities occur. The microstructural mechanisms during deformation may themselves vary within the age region and it is desirable to determine them within the range of parameters that are commonly used in industrial processing. The objective of this work is to establish a relationship between the grain size and the process control parameters i.e., temperature and strain rate, in the hot working of IN 178.

  10. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping.

    PubMed

    Fereidoonnezhad, B; Naghdabadi, R; Holzapfel, G A

    2016-08-01

    Inelastic phenomena such as stress softening and unrecoverable inelastic deformations induced by supra-physiological loading have been observed experimentally in soft tissues such as arteries. These phenomena need to be accounted for in constitutive models of arterial tissues so that computational models can properly predict the outcome of interventional procedures such as arterial clamping and balloon angioplasty that involve non-physiological tissue loading. Motivated by experimental data, a novel pseudo-elastic damage model is proposed to describe discontinuous softening and permanent deformation in arterial tissues. The model is fitted to experimental data and specific material parameters for 9 abdominal and 14 thoracic aortas are provided. Furthermore, the model was implemented in a finite element code and numerically analyzed with respect to experimental tests, i.e. cyclic uniaxial tension in circumferential and longitudinal directions. Results showed that the model is able to capture specific features including anisotropy, nonlinearity, and damage-induced inelastic phenomena, i.e. stress softening and permanent deformation. Finite element results of a more complex boundary-value problem, i.e. aortic clamping considering the three aortic layers, residual stress, non-symmetric blood pressure after clamping, and patient-specific data are also presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A new cluster-type statistical model for the prediction of deformation textures

    NASA Astrophysics Data System (ADS)

    Van Houtte, P.; Xie, Q.; Van Bael, A.; Sidor, J.; Moerman, J.

    2015-04-01

    An attempt was done to improve the quality of deformation texture predictions by statistical models through the introduction of "clusters" of N grains thus defining a third, intermediate length scale. The interaction between each cluster and the macroscopic length scale is of the Taylor type, whereas inside each cluster a VPSC scheme is used. Predictions of cold rolling deformation textures were quantitatively compared with experimental results for a steel alloy. The results are encouraging.

  12. Differences between the deformed-potential and folding-model descriptions of inelastic nuclear scattering

    SciTech Connect

    Hnizdo, V. )

    1994-08-01

    The differences between the deformed-potential and folding-model descriptions of inelastic nuclear scattering, attention to which has been called recently by Beene, Horen, and Satchler [Phys. Rev. C 48, 3128 (1993)], were pointed out already some time ago by contrasting the rules of equal deformation lengths and equal normalized multipole moments for the optical potential and the underlying nucleon distribution of the excited nucleus.

  13. A kidney deformation model for use in non-rigid registration during image-guided surgery

    NASA Astrophysics Data System (ADS)

    Ong, Rowena E.; Herrell, S. Duke, III; Miga, Michael I.; Galloway, Robert L., Jr.

    2008-03-01

    In order to facilitate the removal of tumors during partial nephrectomies, an image-guided surgery system may be useful. This system would require a registration of the physical kidney to a pre-operative image volume; however, it is unclear whether a rigid registration would be sufficient. One possible source of non-rigid deformation is the clamping of the renal artery during surgery and the subsequent loss of pressure as the kidney is punctured and blood loss occurs. To explore this issue, a model of kidney deformation due to loss of perfusion and pressure was developed based on Biot's consolidation model. The model was tested on two resected porcine kidneys in which the renal artery and vein were clamped. CT image volumes of the kidney were obtained before and after the deformation caused unclamping, and fiducial markers embedded on the kidney surface allowed the deformation to be tracked. The accuracy of the kidney model was accessed by calculating the model error at the fiducial locations and using image similarity measures. Preliminary results indicate that the model may be useful in a non-rigid registration scheme; however, further refinements to the model may be necessary to better simulate the deformation due to loss of perfusion and pressure.

  14. Kinematic evolution of thrusts wedge and erratic line length balancing: insights from deformed sandbox models

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohammad Irfan; Dubey, A. K.; Toscani, Giovanni; Bonini, Lorenzo; Seno, Silvio

    2014-01-01

    Kinematic evolution of fold-thrust structures has been investigated by analogue models that include syntectonic sedimentation. Different decollement dips and basement thicknesses produced different wedge geometries and propagating characteristics. A model with one decollement level was characterized by a closely spaced thrust system during early stages of shortening as compared to the late stages. The frequency of fault nucleation was rapid during the early stages of deformation. Conversely, the frequency of fault nucleation was low and thrust spacing was significantly wider in a model with two decollement levels. Individual faults became locked at steep dips and deformation stepped forward as a new fault nucleated in-sequence in front of the older locked structure. Once the thrust system was established up to 27 % overall shortening, an overlying bed was introduced to simulate syntectonic deformation. Model sand wedge did not grow self similarly but rather its length and height increased episodically with deformation. Restoration of deformed models show that layer parallel shortening accommodated for approximately half of the total model shortening across the multilayers. Calculated error in apparent layer shortening from the restored layers revealed a direct relation with depth of the layers in the models. The experimental results are comparable to a natural example from the Northern Apennines fold-and-thrust belts.

  15. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    PubMed Central

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry

  16. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.

    PubMed

    Bekesi, Nandor; Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0-0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry, suggesting that this is a promising technique

  17. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  18. Surgical correction of ulnar deviation deformity of the wrist in patients with birth brachial plexus palsy sequelae.

    PubMed

    Bhardwaj, Praveen; Parekh, Harshil; Venkatramani, Hari; Raja Sabapathy, S

    2015-01-01

    Ulnar deviation deformity of the wrist in patients with birth brachial plexus palsy is an important cosmetic concern among the patients and their relatives; especially in the patients who have recovered the basic limb functions. Though there is ample literature available regarding the management of the shoulder deformity there is paucity of literature regarding management of wrist ulnar deviation deformity. We report our experience with correction of this deformity in five cases with isolated ulnar deviation deformity without forearm rotational deformity or weakness of the wrist muscles. All the patients underwent extensor carpi ulnaris (ECU) to extensor carpi radialis longus (ECRL) tendon transfer. At a minimum of 18 months follow-up all the patients and their families were satisfied with the cosmetic appearance of the limb. Correction of the deformity improves the appearance of the limb, improves self-confidence of the child, and allows them to integrate well into the society. Interestingly, the patients expressed improvement in their grip strength and overall hand function after this surgery. The notable functions which improved were easy reach of the hand-to-mouth for feeding and easy handling of the things requiring bimanual activities. Although the main aim of this operation was to correct the appearance of the hand it was found to be also functionally useful by the patients and hence we are encouraged to report it for wider use. The results were maintained during the follow-up period of as long as 47 months.

  19. Soft object deformation monitoring and learning for model-based robotic hand manipulation.

    PubMed

    Cretu, Ana-Maria; Payeur, Pierre; Petriu, Emil M

    2012-06-01

    This paper discusses the design and implementation of a framework that automatically extracts and monitors the shape deformations of soft objects from a video sequence and maps them with force measurements with the goal of providing the necessary information to the controller of a robotic hand to ensure safe model-based deformable object manipulation. Measurements corresponding to the interaction force at the level of the fingertips and to the position of the fingertips of a three-finger robotic hand are associated with the contours of a deformed object tracked in a series of images using neural-network approaches. The resulting model captures the behavior of the object and is able to predict its behavior for previously unseen interactions without any assumption on the object's material. The availability of such models can contribute to the improvement of a robotic hand controller, therefore allowing more accurate and stable grasp while providing more elaborate manipulation capabilities for deformable objects. Experiments performed for different objects, made of various materials, reveal that the method accurately captures and predicts the object's shape deformation while the object is submitted to external forces applied by the robot fingers. The proposed method is also fast and insensitive to severe contour deformations, as well as to smooth changes in lighting, contrast, and background.

  20. Orthognathic correction of a craniofacial deformity in a patient with a mutilated dentition: a case report.

    PubMed

    Stamboulieh, Jason N; Neagle, Jack M; Throndson, Roger

    2010-06-01

    Orthognathic surgery is routinely performed for patients with dentofacial deformity and has been conducted for more than 100 years (1). Orthognathic Surgery is a functional and esthetic surgery that affects patients self perception. Patients have noted an improvement in their facial appearance after orthognathic surgery that was associated with improvement in psychosocial adjustments (2). When the decision to move both the maxilla and the mandible is made, there are numerous variables to be considered. Among these variables are the stability of double jaw surgery, improving the masticatory function of the patient and lastly, the esthetic result. Past studies have also looked at patient concerns including temporomandibular joint symptoms, speech difficulties and problems with mastication. In one study by Rivera and colleagues who studied 143 patients pre-operatively found 71 pecent with esthetic concerns (3), 47 percent had functional concerns and 28 percent had temporomandibular joint concerns. Traditional treatment planning for two-jaw surgery uses the condyle as the point of rotation with the mandibular occlusal plane being used as a template for setting the maxillary teeth (4). This approach, which allows clockwise and counterclockwise rotation of the mandible gives stable skeletal results. Recent studies appear to indicate that long term stability is achieved mainly when rigid fixation is employed. Orthognathic surgery is only one part of the process to correct a dentofacial deformity. The process starts with the initial diagnosis, followed by a treatment plan and then patient consent. Treatment generally begins with a dental assessment to correct decay, followed by orthodontic decompensation in preparation for surgical intervention. Orthognathic surgery is followed by postoperative orthodontia to maximize the occlusal relationship. This process underscores the skill and detailed communication between orthodontist and oral surgeon, and emphasizes the crucial

  1. Three-dimensional finite deformation viscoelastic model accounting for damage effects

    SciTech Connect

    Simo, J.C.; Taylor, R.L.

    1985-03-01

    In this paper, a fully three-dimensional finite deformation isotropic viscoelastic model is developed with the following characteristics: (a) Uncoupled bulk response over any range of deformations; (b) Generalization of the classical standard solid of the linearized theory; and (c) Both for relaxation times either extremely small or very large, the model exactly reduces to the classical Mooney-Rivlin model of rubber elasticity. In addition, a damage mechanism is incorporated into the model of the type previously developed by the authors in the context of the linearized theory. This is a three-dimensional isotropic damage mechanism based on the maximum value attained by a scalar function of certain deviatoric Lagrangian strain measure. The resulting 5-parameter finite deformation damage model has been implemented in the finite element computer program FEAP. The coding architecture also is compatible with the NIKE2D codes currently in use at LLNL.

  2. Effect of deformation induced nucleation and phase mixing, a two phase model for the ductile deformation of rocks.

    NASA Astrophysics Data System (ADS)

    Bevillard, Benoit; Richard, Guillaume; Raimbourg, Hugues

    2017-04-01

    Rocks are complex materials and particularly their rheological behavior under geological stresses remains a long-standing question in geodynamics. To test large scale lithosphere dynamics numerical modeling is the main tool but encounter substantial difficulties to account for this complexity. One major unknown is the origin and development of the localization of deformation. This localization is observed within a large range of scales and is commonly characterized by sharp grain size reduction. These considerations argues for a control of the microscopical scale over the largest ones through one predominant variable: the mean grain-size. However, the presence of second phase and broad grain-size distribution may also have a important impact on this phenomenon. To address this question, we built a model for ductile rocks deformation based on the two-phase damage theory of Bercovici & Ricard 2012. We aim to investigate the role of grain-size reduction but also phase mixing on strain localization. Instead of considering a Zener-pining effect on damage evolution, we propose to take into account the effect of the grain-boundary sliding (GBS)-induced nucleation mechanism which is better supported by experimental or natural observations (Precigout et al 2016). This continuum theory allows to represent a two mineral phases aggregate with explicit log-normal grain-size distribution as a reasonable approximation for polymineralic rocks. Quantifying microscopical variables using a statistical approach may allow for calibration at small (experimental) scale. The general set of evolutions equations remains up-scalable provided some conditions on the homogenization scale. Using the interface density as a measure of mixture quality, we assume unlike Bercovici & Ricard 2012 that it may depend for some part on grain-size . The grain-size independent part of it is being represented by a "contact fraction" variable, whose evolution may be constrained by the dominant deformation

  3. Modeling Spatial Correlation of DNA Deformation: DNA Allostery in Protein Binding

    PubMed Central

    Xu, Xinliang; Ge, Hao; Gu, Chan; Gao, Yi Qin; Wang, Siyuan S.; Thio, Beng Joo Reginald; Hynes, James T.; Xie, X. Sunney; Cao, Jianshu

    2013-01-01

    We report a study of DNA deformations using a coarse-grained mechanical model and quantitatively interpret the allosteric effects in protein-DNA binding affinity. A recent single molecule study (Kim et al. (2013) Science, 339, 816) showed that when a DNA molecule is deformed by specific binding of a protein, the binding affinity of a second protein separated from the first protein is altered. Experimental observations together with molecular dynamics simulations suggested that the origin of the DNA allostery is related to the observed deformation of DNA’s structure, in particular the major groove width. In order to unveil and quantify the underlying mechanism for the observed major groove deformation behavior related to the DNA allostery, here we provide a simple but effective analytical model where DNA deformations upon protein binding are analyzed and spatial correlations of local deformations along the DNA are examined. The deformation of the DNA base orientations, which directly affect the major groove width, is found in both an analytical derivation and coarse-grained Monte Carlo simulations. This deformation oscillates with a period of 10 base pairs with an amplitude decaying exponentially from the binding site with a decay length lD~10 base pairs, as a result of the balance between two competing terms in DNA base stacking energy. This length scale is in agreement with that reported from the single molecule experiment. Our model can be reduced to the worm-like chain form at length scales larger than lP but is able to explain DNA’s mechanical properties on shorter length scales, in particular the DNA allostery of protein-DNA interactions. PMID:23795567

  4. Numerical modeling of the motion of deformable ellipsoidal objects in slow viscous flows

    NASA Astrophysics Data System (ADS)

    Jiang, Dazhi

    2007-03-01

    An algorithm for modeling the strain and rotation of deformable ellipsoidal objects in viscous flows based on Eshelby's (1957. Proceedings of the Royal Society of London A241, 376-396) theory is presented and is implemented in a fully graphic mathematics application (Mathcad ®, http://www.mathsoft.com). The algorithm resolves all singular cases encountered in modeling large finite deformations. The orientation of ellipsoidal objects is specified in terms of polar coordinate angles which are easily converted to the trend and plunge angles of the three principal axes rather than the Euler angles. With the Mathcad worksheets presented in the supplementary data associated with this paper, one can model the strain and rotation paths of individual deformable objects and the development of preferred orientation and shape fabrics for a population of deformable objects in any homogeneous viscous flow. The shape and preferred orientation fabrics for a population of deformable objects can be presented in both a three-dimensional form and a two-dimensional form, allowing easy comparison between field data and model predictions. The full graphic interface of Mathcad ® makes using the worksheets as easy as using a spreadsheet. The modeler can interact fully with the computation and customize the type and format of the output data to best fit the purpose of the investigation and to facilitate the comparison of model predictions with geological observations.

  5. CFD-Aided Evaluation of Reynolds Number Scaling Effect Accounting for Static Model Deformation

    NASA Astrophysics Data System (ADS)

    Yasue, Kanako; Sawada, Keisuke

    A static aeroelasticity analysis is accomplished for an ONERA-M5 wind tunnel calibration model. The Reynolds-averaged Navier-Stokes (RANS) solution obtained using the cell-wise relaxation implicit discontinuous Galerkin (DG) computational fluid dynamics (CFD) solver is fed into the structural analysis method to iteratively determine the aerodynamic equilibrium configuration of the wind tunnel model. For the freestream conditions of M=0.84, α=-1.0°, Re=4 × 106, P0=220 kPa and T0=274 K, the aerodynamic equilibrium shape is successfully obtained within three iterations. The maximum deformation of 3.11 mm appears at the wing tip of the wind tunnel model, and the resulting change in aerodynamic force produces a nose-down effect. A detailed examination reveals that the deformation mostly causes pure bending which reduces the effective angle of attack for the present swept wing. Moreover, we attempt to split the change in aerodynamic coefficients into that due to the model deformation effect and that due to the Reynolds (Re) number effect. By comparing the computed results for Re=1 × 106 and Re=4 × 106, it is indicated that an increase in lift coefficient due to the Re number effect is totally offset by the model deformation effect. It is also shown that the amount of drag reduction can be overestimated due to the model deformation effect. In addition, a CFD-aided data correction method utilizing the wind tunnel data is discussed.

  6. 3D geometrical modelling of post-foliation deformations in metamorphic terrains (Syros, Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Philippon, Mélody; Le Carlier de Veslud, Christian; Gueydan, Frédéric; Brun, Jean-Pierre; Caumon, Guillaume

    2015-09-01

    Superposed to ductile syn-metamorphic deformations, post-foliation deformations affect metamorphic units during their exhumation. Understanding the role of such deformations in the structuration of metamorphic units is key for understanding the tectonic evolution of convergence zones. We characterize post-foliations deformations using 3D modelling which is a first-order tool to describe complex geological structures, but a challenging task where based only on surface data. We propose a modelling procedure that combines fast draft models (interpolation of orientation data), with more complex ones where the structural context is better understood (implicit modelling), allowing us to build a 3D geometrical model of Syros Island blueschists (Cyclades), based on field data. With our approach, the 3D model is able to capture the complex present-day geometry of the island, mainly controlled by the superposition of three types of post-metamorphic deformations affecting the original metamorphic pile: i) a top-to-South ramp-flat extensional system that dominates the overall island structure, ii) large-scale folding of the metamorphic units associated with ramp-flat extensional system, and iii) steeply-dipping normal faults trending dominantly NNW-SSE and EW. The 3D surfaces produced by this method match outcrop data, are geologically consistent, and provide reasonable estimates of geological structures in poorly constrained areas.

  7. A statistical model-based technique for accounting for prostate gland deformation in endorectal coil-based MR imaging.

    PubMed

    Tahmasebi, Amir M; Sharifi, Reza; Agarwal, Harsh K; Turkbey, Baris; Bernardo, Marcelino; Choyke, Peter; Pinto, Peter; Wood, Bradford; Kruecker, Jochen

    2012-01-01

    In prostate brachytherapy procedures, combining high-resolution endorectal coil (ERC)-MRI with Computed Tomography (CT) images has shown to improve the diagnostic specificity for malignant tumors. Despite such advantage, there exists a major complication in fusion of the two imaging modalities due to the deformation of the prostate shape in ERC-MRI. Conventionally, nonlinear deformable registration techniques have been utilized to account for such deformation. In this work, we present a model-based technique for accounting for the deformation of the prostate gland in ERC-MR imaging, in which a unique deformation vector is estimated for every point within the prostate gland. Modes of deformation for every point in the prostate are statistically identified using a set of MR-based training set (with and without ERC-MRI). Deformation of the prostate from a deformed (ERC-MRI) to a non-deformed state in a different modality (CT) is then realized by first calculating partial deformation information for a limited number of points (such as surface points or anatomical landmarks) and then utilizing the calculated deformation from a subset of the points to determine the coefficient values for the modes of deformations provided by the statistical deformation model. Using a leave-one-out cross-validation, our results demonstrated a mean estimation error of 1mm for a MR-to-MR registration.

  8. Depression as an independent predictor of postoperative delirium in spine deformity patients undergoing elective spine surgery.

    PubMed

    Elsamadicy, Aladine A; Adogwa, Owoicho; Lydon, Emily; Sergesketter, Amanda; Kaakati, Rayan; Mehta, Ankit I; Vasquez, Raul A; Cheng, Joseph; Bagley, Carlos A; Karikari, Isaac O

    2017-08-01

    OBJECTIVE Depression is the most prevalent affective disorder in the US, and patients with spinal deformity are at increased risk. Postoperative delirium has been associated with inferior surgical outcomes, including morbidity and mortality. The relationship between depression and postoperative delirium in patients undergoing spine surgery is relatively unknown. The aim of this study was to determine if depression is an independent risk factor for the development of postoperative delirium in patients undergoing decompression and fusion for deformity. METHODS The medical records of 923 adult patients (age ≥ 18 years) undergoing elective spine surgery at a single major academic institution from 2005 through 2015 were reviewed. Of these patients, 255 (27.6%) patients had been diagnosed with depression by a board-certified psychiatrist and constituted the Depression group; the remaining 668 patients constituted the No-Depression group. Patient demographics, comorbidities, and intra- and postoperative complication rates were collected for each patient and compared between groups. The primary outcome investigated in this study was rate of postoperative delirium, according to DSM-V criteria, during initial hospital stay after surgery. The association between depression and postoperative delirium rate was assessed via multivariate logistic regression analysis. RESULTS Patient demographics and comorbidities other than depression were similar in the 2 groups. In the Depression group, 85.1% of the patients were taking an antidepressant prior to surgery. There were no significant between-group differences in intraoperative variables and rates of complications other than delirium. Postoperative complication rates were also similar between the cohorts, including rates of urinary tract infection, fever, deep and superficial surgical site infection, pulmonary embolism, deep vein thrombosis, urinary retention, and proportion of patients transferred to the intensive care unit. In

  9. [Total knee arthroplasty in severe valgus deformity in a patient with achondroplasia].

    PubMed

    Koudela, K; Koudela, K; Koudelová, J

    2011-01-01

    The authors present the results of total knee replacement in a 66-year-old woman with achondroplasia. The condition was diagnosed on the basis of clinical and radiographic findings; molecular genetic examination confirmed that the patient was heterozygous for the G1138A mutation responsible for substitution of an arginine for a glycine residue at position 380 (G380R). The patient presented with an unusual finding of severe fixed 20-degree valgus deformity, so far not published, which did not conform with the clinical features of achondroplasia. The authors presumed that the deformity had developed due to asymmetric growth of the distal femoral diaphysis resulting in a hypoplastic lateral femoral condyle and, consequently, valgus deformity. They put emphasis on thorough pre-operative radiography in order to define the size of components according to the templates, and on measurement of the valgus angle and femoral mechanical axis. They also drew attention to the problem of an extra-articular tibial alignment guide and recommended the use of its alternative or computer navigation. The surgery restored the mechanical axis, range of motion and stability of the knee, relieved pain and improved walking, which afforded a better quality of life for the patient.

  10. Are cam and pincer deformities as common as dysplasia in Japanese patients with hip pain?

    PubMed

    Mori, R; Yasunaga, Y; Yamasaki, T; Nakashiro, J; Fujii, J; Terayama, H; Ohshima, S; Ochi, M

    2014-02-01

    In Japan, osteoarthritis (OA) of the hip secondary to acetabular dysplasia is very common, and there are few data concerning the pathogeneses and incidence of femoroacetabular impingement (FAI). We have attempted to clarify the radiological prevalence of painful FAI in a cohort of Japanese patients and to investigate the radiological findings. We identified 176 symptomatic patients (202 hips) with Tönnis grade 0 or 1 osteoarthritis, whom we prospectively studied between August 2011 and July 2012. There were 61 men (65 hips) and 115 women (137 hips) with a mean age of 51.8 years (11 to 83). Radiological analyses included the α-angle, centre-edge angle, cross-over sign, pistol grip deformity and femoral head neck ratio. Of the 202 hips, 79 (39.1%) had acetabular dysplasia, while 80 hips (39.6%) had no known aetiology. We found evidence of FAI in 60 hips (29.7%). Radiological FAI findings associated with cam deformity were the most common. There was a significant relationship between the pistol grip deformity and both the α-angle (p < 0.001) and femoral head-neck ratio (p = 0.024). Radiological evidence of symptomatic FAI was not uncommon in these Japanese patients.

  11. Hallux valgus inheritance: pedigree research in 350 patients with bunion deformity.

    PubMed

    Piqué-Vidal, Carlos; Solé, María T; Antich, Jaume

    2007-01-01

    Our objective was to construct 3-generation pedigree charts from 350 patients with hallux valgus. During a 1-year period, all consecutive patients (n = 1174) with a painful bunion deformity evaluated roentgenographically were asked to complete a detailed 3-generation family history questionnaire. We studied 350 probands (22 men, 328 women; male/female ratio, 1:14.9; mean age, 47.8 years). Juvenile hallux valgus was diagnosed in 15 patients. Three or more affected members were observed in pedigrees from 244 probands, 2 affected members in 71, and 1 affected member in 35 (proband) (affected subjects per pedigree ranged from 1 to 16). Ninety percent of probands had at least 1 family member affected. The hallux valgus penetrance according to pedigrees from all probands was 56%. The female sex predominated with regard to the gender of parents with hallux valgus, affected branch of the family, and gender of relatives with bunion deformity. Severity of hallux valgus was not significantly influenced by gender, the affected branch of the family, or gender of the affected relatives. Family history of bunion deformity was present in 90% of probands, with vertical transmission affecting some family members across 3 generations, which is compatible with autosomal dominant inheritance with incomplete penetrance.

  12. Platelet Reactivity Is Independent of Left Atrial Wall Deformation in Patients with Atrial Fibrillation

    PubMed Central

    Procter, Nathan; Goh, Vincent; Mahadevan, Gnanadevan; Stewart, Simon; Horowitz, John

    2016-01-01

    It has been documented recently that left atrial (LA) deformation in AF patients (while in AF) is predictive of subsequent stroke risk. Additionally, diminished LA deformation during AF correlates with the presence of LA blood stasis. Given that endothelial function is dependent on laminar blood flow, the present study sought to investigate the effect of diminished LA deformation (during AF) on platelet reactivity and inflammation in AF patients. Patients (n = 17) hospitalised with AF underwent echocardiography (while in AF) for determination of peak positive LA strain (LASp). Whole blood impedance aggregometry was used to measure extent of ADP-induced aggregation and subsequent inhibitory response to the nitric oxide (NO) donor, sodium nitroprusside. Platelet thioredoxin-interacting protein (Txnip) content was determined by immunohistochemistry. LASp tended (p = 0.078) to vary inversely with CHA2DS2VASc scores. However, mediators of inflammation (C-reactive protein, Txnip) did not correlate significantly with LASp nor did extent of ADP-induced platelet aggregation or platelet NO response. These results suggest that the thrombogenic risk associated with LA stasis is independent of secondary effects on platelet aggregability or inflammation. PMID:27069318

  13. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.

    PubMed

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-08-08

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction  (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with  but significantly with Ca. Under moderate shear rate (Ca=0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as  increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For  =0.61, the structure maintains layered HCP for Ca=0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on  and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with  but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions. © 2017 IOP Publishing Ltd.

  14. Morphometric evolution of volcanic edifices related to growth and deformation: insights from analogue models

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Yagupsky, Daniel; Winocur, Diego

    2014-05-01

    In order to evaluate the effects of growth and deformation (both separately and jointly) on volcano shape evolution, we performed a set of analogue experiments simulating these processes. The models consist of an initial symmetrical cone of 3 to 6 cm height composed of a mixture of quartz sand and plaster (cohesion of 100 to 300 Pa). Deformation was simulated through the relative motion of two underlying plates, generating a dextral E-W transcurrent fault. Growth was simulated through sedimentation of loads of granular material. For experiments simulating a fixed emission point, sedimentation was done on the same central point, whereas for experiments simulating variable emission points, sedimentation was done at the location of extrusion of corn syrup (pure and water-diluted, viscosities of 2 to 20 Pa.s) injected at the cone base, modeling magma intrusion. The experiments were documented by photographs and topographic scans, from which digital elevation models were constructed and used to calculate morphometric parameters. Five types of experiments were performed: -1. Deformation without growth (the initial cone is deformed by the E-W fault): the edifice elongates ENE-WSW, sub-perpendicular to σ1; a large graben forms at the summit region; the height/width ratio (H/W) strongly decreases. -2. Fixed-location growth without deformation (sedimentation on top of the initial cone): the edifice maintains its symmetrical, circular and regular shape, only size increases. -3. Variable-location growth without deformation (cycles of injection and sedimentation at the extrusion location): location of extrusions are variable, both within and between experiments; edifices are strongly irregular; elongation values and directions vary; H/W is maintained or decreases slightly. -4. Fixed-location growth with deformation (the initial cone is deformed by the fault and sedimentation is done on a central point): as with type (1) models, the cone elongates ENE-WSW and the central graben

  15. Quantitative analogue modelling of the surface deformation associated with cone-sheet and dyke emplacement

    NASA Astrophysics Data System (ADS)

    Guldstrand, Frank; Bjugger, Fanny; Galland, Olivier; Burchardt, Steffi; Hallot, Erwan

    2014-05-01

    Inclined cone-sheets and sub-vertical dykes constitute the two principal types of magmatic sheet intrusions produced by volcanic systems. In active volcanic systems, the emplacement of sheet intrusions causes measurable surface deformation, which is analyzed through geodetic models. Geodetic model output is classically the shape of underlying intrusions causing the surface deformation, however, the results of these models are not testable as the subsurface intrusion is not accessible. Such test would only be doable with a physical system in which both (1) the surface deformation pattern and (2) the 3D shape of the underlying intrusion are known. In addition, established geodetic models only consider static magma intrusions, and do not account for emplacement and propagation processes. This would require combined good time- and space-resolution, which is not achievable with classical geodetic monitoring systems. We present a series of analogue models that may be a way of accurately linking surface deformation to the underlying intrusions and associated emplacement processes. We systematically varied depth of intrusion, the cohesive properties of the silica powder representing the country rock and the velocity of injected magma. The pressure of the intruding vegetable oil was measured through time, and the model surface topography was monitored. The low viscosity magma was simulated by molten vegetable oil, which solidified after intrusion; the solidified intrusion was then excavated and its shape was measured. By linking the development of the surface uplift in height, area, and volume with the pressure data from the onset of intrusion until the time of eruption, we identify characteristic laws of surface deformation. First results indicate that the pattern of uplift over time varies, depending on whether deformation is caused by a dyke- or a cone-sheet-shaped intrusion. The results from all experiments may enable us to distinguish the two intrusion types using

  16. Development of Shear Deformable Laminated Shell Element and Its Application to ANCF Tire Model

    DTIC Science & Technology

    2015-04-24

    Mooney - Rivlin Material Model For modeling incompressible materials such as rubbers , Mooney - Rivlin material model is...for application to the modeling of fiber-reinforced rubber (FRR) structure of the physics-based ANCF tire model. The complex deformation coupling...cornering forces. Since a tire consists of layers of plies and steel belts embedded in rubber , the tire structure needs to be modeled by cord- rubber

  17. Concurrent orthopedic and neurosurgical procedures in pediatric patients with spinal deformity.

    PubMed

    Mooney, James F; Glazier, Stephen S; Barfield, William R

    2012-11-01

    The management of pediatric patients with complex spinal deformity often requires both an orthopedic and a neurosurgical intervention. The reasons for multiple subspecialty involvement include, but are not limited to, the presence of a tethered cord requiring release or a syrinx requiring decompression. It has been common practice to perform these procedures in a staged manner, although there is little evidence in the literature to support separate interventions. We reviewed a series of consecutive patients who underwent spinal deformity correction and a neurosurgical intervention concurrently in an attempt to assess the safety, efficacy, and possible complications associated with such an approach. Eleven patients were reviewed who underwent concurrent orthopedic and neurosurgical procedures. Data were collected for patient demographics, preoperative diagnosis, procedures performed, intraoperative and perioperative complications, as well as any unexpected return to the operating room for any reason. Operative notes and anesthesia records were reviewed to determine estimated blood loss, surgical time, and the use of intraoperative neurological monitoring. Patient diagnoses included myelodysplasia (N=6), congenital scoliosis and/or kyphosis (N=4), and scoliosis associated with Noonan syndrome (N=1). Age at the time of surgery averaged 9 years 2 months (range=14 months to 17 years 2 months). Estimated blood loss averaged 605 ml (range=50-3000 ml). The operative time averaged 313 min (range=157-477 min). There were no intraoperative complications, including incidental dural tears or deterioration in preoperative neurological status. One patient developed a sore associated with postoperative cast immobilization that led to a deep wound infection. It appears that concurrent orthopedic and neurosurgical procedures in pediatric patients with significant spinal deformities can be performed safely and with minimal intraoperative and postoperative complications when utilizing

  18. Combined GPS and InSAR Models of Postseismic Deformation from the Northridge Earthquake

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Parker, J. W.; Peltzer, G.

    Models of combined Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data collected in the region of the Northridge earthquake indicate that significant afterslip on the main fault occurred following the earthquake. Additional shallow deformation occurred to the west of the main rupture plane. Both data sets are consistent with logarithmic time-dependent behavior following the earthquake indicative of afterslip rather than postseismic relaxation. Aftershocks account for only about 10% of the postseismic motion. The two data sets are complimentary in determining the postseismic processes. Fault afterslip and shallow deformation dominate the deformation field in the two years following the earthquake. Lower crustal deformation may play an important role later in the earthquake cycle.

  19. Model-based 3D/2D deformable registration of MR images.

    PubMed

    Marami, Bahram; Sirouspour, Shahin; Capson, David W

    2011-01-01

    A method is proposed for automatic registration of 3D preoperative magnetic resonance images of deformable tissue to a sequence of its 2D intraoperative images. The algorithm employs a dynamic continuum mechanics model of the deformation and similarity (distance) measures such as correlation ratio, mutual information or sum of squared differences for registration. The registration is solely based on information present in the 3D preoperative and 2D intraoperative images and does not require fiducial markers, feature extraction or image segmentation. Results of experiments with a biopsy training breast phantom show that the proposed method can perform well in the presence of large deformations. This is particularly useful for clinical applications such as MR-based breast biopsy where large tissue deformations occur.

  20. Non-proportional/Non-monotonous Deformation Modeling of an Ultra High Strength Automotive Steel Sheet

    NASA Astrophysics Data System (ADS)

    Verma, Rahul K.; Ogihara, Yuki; Kuwabara, Toshihiko; Chung, Kwansoo

    2011-08-01

    In this work, as non-proportional/non-monotonous deformation experiments, two-stage and tension-compression-tension uniaxial tests were performed, respectively, for a cold rolled ultra high strength dual phase steel sheet: DP780. Deformation behaviors under such deformation paths were found different than those of the ultra low carbon single phase steels observed by Verma et al. (Int. J. Plast. 2011, 82-101). To model the newly observed deformation behaviors, the combined type constitutive law previously proposed by Verma et al. (Int. J. Plast. 2011, 82-101) was successfully applied here. Permanent softening observed during reverse loading was properly characterized into the isotropic and kinematic hardening parts of the hardening law using tension-compression-tension test data. The cross effect observed in two-stage tests was also effectively incorporated into the constitutive law.

  1. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.

    2014-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-ofattack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  2. Virtual Deformation Control of the X-56A Model with Simulated Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    Suh, Peter M.; Chin, Alexander Wong

    2013-01-01

    A robust control law design methodology is presented to stabilize the X-56A model and command its wing shape. The X-56A was purposely designed to experience flutter modes in its flight envelope. The methodology introduces three phases: the controller design phase, the modal filter design phase, and the reference signal design phase. A mu-optimal controller is designed and made robust to speed and parameter variations. A conversion technique is presented for generating sensor strain modes from sensor deformation mode shapes. The sensor modes are utilized for modal filtering and simulating fiber optic sensors for feedback to the controller. To generate appropriate virtual deformation reference signals, rigid-body corrections are introduced to the deformation mode shapes. After successful completion of the phases, virtual deformation control is demonstrated. The wing is deformed and it is shown that angle-of-attack changes occur which could potentially be used to an advantage. The X-56A program must demonstrate active flutter suppression. It is shown that the virtual deformation controller can achieve active flutter suppression on the X-56A simulation model.

  3. Nonrigid Medical Image Registration by Finite-Element Deformable Sheet-Curve Models

    PubMed Central

    Wang, Yue; Freedman, Matthew T.; Adali, Tulay; Shields, Peter

    2006-01-01

    Image-based change quantitation has been recognized as a promising tool for accurate assessment of tumor's early response to chemoprevention in cancer research. For example, various changes on breast density and vascularity in glandular tissue are the indicators of early response to treatment. Accurate extraction of glandular tissue from pre- and postcontrast magnetic resonance (MR) images requires a nonrigid registration of sequential MR images embedded with local deformations. This paper reports a newly developed registration method that aligns MR breast images using finite-element deformable sheet-curve models. Specifically, deformable curves are constructed to match the boundaries dynamically, while a deformable sheet of thin-plate splines is designed to model complex local deformations. The experimental results on both digital phantoms and real MR breast images using the new method have been compared to point-based thin-plate-spline (TPS) approach, and have demonstrated a significant and robust improvement in both boundary alignment and local deformation recovery. PMID:23165046

  4. Modeling spatial correlation of DNA deformations: Allosteric effects of DNA protein binding

    NASA Astrophysics Data System (ADS)

    Xu, Xinliang; Cao, Jianshu; Hao Ge Collaboration; X. Sunney Xie Collaboration

    2013-03-01

    We report a study of DNA deformations by a coarse grained mechanical model. Recent single molecule experimental studies show that when DNA molecule is deformed by its binding to a protein, the binding affinity of a second protein at distance L away from the first binding site is altered. To explain this observation, the relaxation of deformation along the DNA chain is examined. Our method predicts a general exponentially decaying behavior for differenct deformation modes. As an example, inter-helical distance deformation is studied in details, and is found to decay at a previously unknown lengthscale of 10 base pairs as a result of the balance between inter and intra DNA strand energy. This lengthscale is in good agreement with the said single molecule experimental observation. This model of local deformation relaxation helps us better understand many important issues in DNA such as the enhanced flexibility of DNA at short lengthscales and DNA repair mechanism inside cells. Biodynamic Optical Imaging Center, Peking University

  5. Thermo-mechanical modeling of dendrite deformation in continuous casting of steel

    NASA Astrophysics Data System (ADS)

    Domitner, J.; Drezet, J.-M.; Wu, M.; Ludwig, A.

    2012-07-01

    In the field of modern steelmaking, continuous casting has become the major manufacturing process to handle a wide range of steel grades. An important criterion characterizing the quality of semi-finished cast products is the macrosegregation forming at the centre of these products during solidification. The deformation induced interdendritic melt flow has been identified as the key mechanism for the formation of centreline segregation. Bulging of the solidified strand shell causes deformation of the solidifying dendrites at the casting's centre. Hence, a fundamental knowledge about the solid phase motion during casting processes is crucial to examine segregation phenomena in detail. To investigate dendritic deformation particularly at the strand centre, a thermo-mechanical Finite Element (FE) simulation model is built in the commercial software package ABAQUS. The complex dendritic shape is approximated with a conical model geometry. Varying this geometry allows considering the influence of different centreline solid fractions on the dendrite deformation. A sinusoidal load profile is used to describe bulging of the solid which deforms the dendrites. Based on the strain rates obtained in the FE simulations the dendrite deformation velocity perpendicular to the casting direction is calculated. The velocity presented for different conditions is used as input parameter for computational fluid dynamics (CFD) simulations to investigate macrosegregation formation inside of a continuous casting strand using the commercial software package FLUENT.

  6. Model-based image coding using deformable 3D model for face-to-face communications

    NASA Astrophysics Data System (ADS)

    Cai, Defu; Liang, Huiying; Wang, Xiangwen

    1994-09-01

    The model-based image coding might be the potential method for very/ultra low bit rate visual communications. However, some problems still remain for video practice, such as a finer wireframe 3-D model, precise rule for facial expressions analyzing, and automatic feature points extraction for real time application, etc. This paper proposes a feasible scheme of model-based image coding based on a deformable model which would be suitable for very/ultra low bit rates transmission. Meanwhile, some key techniques, such as automatic face feature point extraction based on a priori knowledge for real time applications and the method of AUs separation of a face on various expressions, is given.

  7. Modelling multi-scale deformation of amorphous glassy polymers with experimentally motivated evolution of the microstructure

    NASA Astrophysics Data System (ADS)

    Engqvist, Jonas; Wallin, Mathias; Ristinmaa, Matti; Hall, Stephen A.; Plivelic, Tomás S.

    2016-11-01

    Novel experimental data, obtained recently using advanced multi-scale experiments, have been used to develop a micro-mechanically motivated constitutive model for amorphous glassy polymers. Taking advantage of the experiments, the model makes use of a microstructural deformation gradient to incorporate the experimentally obtained deformation of the microstructure, as well as its evolving orientation. By comparing results from the model to experimental data, it is shown that the proposed approach is able to accurately predict glassy polymer deformation over a wide range of length-scales, from the macroscopic response (mm range) down to the deformation of the microstructure (nm range). The proposed model is evaluated by comparing the numerical response to experimental results on multiple scales from an inhomogeneous cold drawing experiment of glassy polycarbonate. Besides the macroscopic force-displacement response, a qualitative comparison of the deformation field at the surface of the specimen is performed. Furthermore, the predicted evolution of the fabric orientation is compared to experimental results obtained from X-ray scattering experiments. The model shows very good agreement with the experimental data over a wide range of length scales.

  8. Localised vs distributed deformation: 3D modelling of the Dead Sea region

    NASA Astrophysics Data System (ADS)

    Devès, M. H.; King, G. C.; Klinger, Y.; Agnon, A.

    2012-12-01

    The lithosphere behaves as strain softening elasto-plastic materials. In the laboratory, such materials are known to deform in a brittle or a ductile manner depending on the applied geometric boundary conditions. In the lithosphere however, the importance of boundary conditions in controlling the deformation style has been largely ignored. Under general boundary conditions, both laboratory and field observations show that only part of the deformation can localise on through going faults while the rest must remain distributed in process zones where spatially varying shear directions inhibit localisation. Conventional modelling methods use rheologies deduced from laboratory experiments that are not constrained as a function of the geometry of the applied boundary conditions. We propose an alternative modelling method based on the use of an appropriate distribution of dislocation sources to create the deformation field. This approach, because it does not rely on integrating differential equations from more or less well-constrained boundary conditions, does not require making assumptions on the parameters controlling the level and distribution of stresses within the lithosphere. It only supposes that strain accumulates linearly away from the dislocation singularities satisfying the compatibility equations. We verify that this model explains important and hitherto unexplained features of the topography of the Dead Sea region. Following the idea that strain can only localise under specific conditions as inferred from laboratory and field scale observations, we use our model of deformation to predict where deformation can localise and where it has to remain distributed. We find that 65% of the deformation in the Dead Sea region can localise on kinematically stable through-going strike-slip faults while the remaining 35% must remain distributed. Observations suggest that distributed deformation occurs at stress levels that can be ten times greater than that associated with

  9. Factor analysis of the SRS-22 outcome assessment instrument in patients with adult spinal deformity.

    PubMed

    Mannion, A F; Elfering, A; Bago, J; Pellise, F; Vila-Casademunt, A; Richner-Wunderlin, S; Domingo-Sàbat, M; Obeid, I; Acaroglu, E; Alanay, A; Pérez-Grueso, F S; Baldus, C R; Carreon, L Y; Bridwell, K H; Glassman, S D; Kleinstück, F

    2017-09-02

    Designed for patients with adolescent idiopathic scoliosis, the SRS-22 is now widely used as an outcome instrument in patients with adult spinal deformity (ASD). No studies have confirmed the four-factor structure (pain, function, self-image, mental health) of the SRS-22 in ASD and under different contexts. Factorial invariance of an instrument over time and in different languages is essential to allow for precise interpretations of treatment success and comparisons across studies. This study sought to evaluate the invariance of the SRS-22 structure across different languages and sub-groups of ASD patients. Confirmatory factor analysis was performed on the 20 non-management items of the SRS-22 with data from 245 American English-, 428 Spanish-, 229 Turkish-, 95 French-, and 195 German-speaking patients. Item loading invariance was compared across languages, age groups, etiologies, treatment groups, and assessment times. A separate sample of SRS-22 data from 772 American surgical patients with ASD was used for cross-validation. The factor structure fitted significantly better to the proposed four-factor solution than to a unifactorial solution. However, items 14 (personal relationships), 15 (financial difficulties), and 17 (days off work) consistently showed weak item loading within their factors across all language versions and in both baseline and follow-up datasets. A trimmed SRS (16 non-management items) that used the four least problematic items in each of the four domains yielded better-fitting models across all languages, but equivalence was still not reached. With this shorter version there was equivalence of item loading with respect to treatment (surgery vs conservative), time of assessment (baseline vs 12 months follow-up), and etiology (degenerative vs idiopathic), but not age (< vs ≥50 years). All findings were confirmed in the cross-validation sample. We recommend removal of the worst-fitting items from each of the four domains of the SRS

  10. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.

    PubMed

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-10-01

    Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.

  11. Modeling a MEMS deformable mirror using non-parametric estimation techniques.

    PubMed

    Guzmán, Dani; Juez, Francisco Javier de Cos; Myers, Richard; Guesalaga, Andrés; Lasheras, Fernando Sánchez

    2010-09-27

    Using non-parametric estimation techniques, we have modeled an area of 126 actuators of a micro-electro-mechanical deformable mirror with 1024 actuators. These techniques produce models applicable to open-loop adaptive optics, where the turbulent wavefront is measured before it hits the deformable mirror. The model's input is the wavefront correction to apply to the mirror and its output is the set of voltages to shape the mirror. Our experiments have achieved positioning errors of 3.1% rms of the peak-to-peak wavefront excursion.

  12. A theoretical model to predict tensile deformation behavior of balloon catheter.

    PubMed

    Todo, Mitsugu; Yoshiya, Keiji; Matsumoto, Takuya

    2016-09-01

    In this technical note, a simple theoretical model was proposed to express the tensile deformation and fracture of balloon catheter tested by the ISO standard using piece-wise linear force-displacement relations. The model was then validated by comparing with the tensile force-displacement behaviors of two types of typical balloon catheters clinically used worldwide. It was shown that the proposed model can effectively be used to express the tensile deformation behavior and easily be handled by physicians who are not familiar with mechanics of materials.

  13. Deformable known component model-based reconstruction for coronary CT angiography

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Tilley, S.; Xu, S.; Mathews, A.; McVeigh, E. R.; Stayman, J. W.

    2017-03-01

    Purpose: Atherosclerosis detection remains challenging in coronary CT angiography for patients with cardiac implants. Pacing electrodes of a pacemaker or lead components of a defibrillator can create substantial blooming and streak artifacts in the heart region, severely hindering the visualization of a plaque of interest. We present a novel reconstruction method that incorporates a deformable model for metal leads to eliminate metal artifacts and improve anatomy visualization even near the boundary of the component. Methods: The proposed reconstruction method, referred as STF-dKCR, includes a novel parameterization of the component that integrates deformation, a 3D-2D preregistration process that estimates component shape and position, and a polyenergetic forward model for x-ray propagation through the component where the spectral properties are jointly estimated. The methodology was tested on physical data of a cardiac phantom acquired on a CBCT testbench. The phantom included a simulated vessel, a metal wire emulating a pacing lead, and a small Teflon sphere attached to the vessel wall, mimicking a calcified plaque. The proposed method was also compared to the traditional FBP reconstruction and an interpolation-based metal correction method (FBP-MAR). Results: Metal artifacts presented in standard FBP reconstruction were significantly reduced in both FBP-MAR and STF- dKCR, yet only the STF-dKCR approach significantly improved the visibility of the small Teflon target (within 2 mm of the metal wire). The attenuation of the Teflon bead improved to 0.0481 mm-1 with STF-dKCR from 0.0166 mm-1 with FBP and from 0.0301 mm-1 with FBP-MAR - much closer to the expected 0.0414 mm-1. Conclusion: The proposed method has the potential to improve plaque visualization in coronary CT angiography in the presence of wire-shaped metal components.

  14. Corrections of diverse forms of lower limb deformities in patients with mucopolysaccharidosis type IVA (Morquio syndrome)

    PubMed Central

    Al Kaissi, Ali; Kenis, Vladimir; Melchenko, Eugeniy; Ghachem, Maher Ben; Csepan, Robert; Grill, Franz; Ganger, Rudolf

    2016-01-01

    Background: Thoracolumbar kyphosis has been considered as the first presenting deformity and is often a key diagnostic clue noted in children with mucopolysaccharidosis (MPS) type IV (Morquio's syndrome). However, we observed that the progressive irregularities of the epiphyses of the long bones were the most prominent skeletal pathology, causing effectively the development of diverse forms of lower limbs deformities with extreme variation in age of onset. Materials and Methods: Ten patients (seven children and three adults) with an average age of 15 years have been enrolled in this study. Age of diagnosis of MPS IVA has a variable age of onset and a MISLEADING rate of severity. Hip dislocations, genu valgum, protrusio acetabuli and osteoarthritis were the most common lower limbs deformities in these patients. Clinical and radiographic phenotypes were the baseline tools of documentation. Urinary screening and genotypic characterizations have been applied accordingly. Results: Combined pelvic and femoral procedures for hip dislocation, epiphysiodeses and supracondylar osteotomy for genu valgum and hip arthroplasty for protrusio acetabuli have been performed. All patients manifested insufficient activity of N-acetylgalactosamine-6-sulphate sulphatase, an enzyme that degrades keratin sulphate and chondroitin-6 sulphate. Conclusion: The extensive clinical heterogeneity contributed significantly in the delay in establishing the diagnosis particularly in adult patients with MPS IV. The epiphyseal irregularities of the long bones and the progressive flattening pathology of MPS IV A were the reason to falsely diagnose some patients as spondyloepiphyseal dysplasia congenital and/or tarda. Proximal femoral osteotomy, realignment osteotomy and total hip arthroplasty have been performed for coxa vara, genu valgum and protrusio acetabuli, respectively, in children and adult group of patients. The importance of early diagnosis on MPS IV A is to receive enzyme replacement therapy

  15. Analysis of masseter deformation patterns during a maximum exertion clenching in patients with unilateral chewing

    PubMed Central

    BUSATO, A.; BALCONI, G.; VISMARA, V.; BERTELÈ, L.; GARO, G.; DE GREGORIO, D.

    2016-01-01

    SUMMARY Purpose The aim of the following study is to examine both masseter muscles (left/right) in a group of patients suffering from unilateral chewing during a maximum exertion isometric contraction using the deformation pattern analysis of ultrasound videos and compare them with the results obtained by studying patients with alternate bilateral chewing patterns. Materials and methods This study has been conducted by use of an ultrasound machine and a linear probe which allowed us to record a video (DCM) comprised of 45 frames per second (MicrUs ext-1H Telemed Medical Systems Milano) and a linear probe (L12-5l40S-3 5–12 MHz 40 mm). The probe was fixed to a brace and the patients were asked to clench their teeth as hard as possible, obtain the muscle’s maximum exertion, for 5 seconds three times, with 30 seconds intervals in between. Both right and left masseter muscles were analyzed. We applied to the ultrasound video a dedicated software (Mudy 1.7.7.2 AMID Sulmona Italy) for the analysis of muscle deformation patterns. The total number of patients for this study is 150. Out of this number, 50 belong to Group A, mono lateral chewing on the left side arch, and 50 to Group B, mono lateral chewing on the right side arch. The remains patients belong to Group C, bilateral alternate chewing. The deformation pattern analysis of the skeletal muscles on ultrasound videos allows us to highlight with ease the clear difference in the clenching capabilities and strain management between the dominant masseter and the subordinate masseter in a unilaterally chewing patient. Results In the sample investigated both in Group A and Group B the unilateral chewing is associated with a series of parameters (number, shape, volume, position and orientation of the teeth) and is also associated with the extension of the cutting surface really available. PMID:28280533

  16. Early Patient-Reported Outcomes Predict 3-Year Outcomes in Operatively Treated Patients with Adult Spinal Deformity.

    PubMed

    Jain, Amit; Kebaish, Khaled M; Sciubba, Daniel M; Hassanzadeh, Hamid; Scheer, Justin K; Neuman, Brian J; Lafage, Virginie; Bess, Shay; Protopsaltis, Themistocles S; Burton, Douglas C; Smith, Justin S; Shaffrey, Christopher I; Hostin, Richard A; Ames, Christopher P

    2017-06-01

    For patients with adult spinal deformity (ASD), surgical treatment may improve their health-related quality of life. This study investigates when the greatest improvement in outcomes occurs and whether incremental improvements in patient-reported outcomes during the first postoperative year predict outcomes at 3 years. Using a multicenter registry, we identified 84 adults with ASD treated surgically from 2008 to 2012 with complete 3-year follow-up. Pairwise t tests and multivariate regression were used for analysis. Significance was set at P < 0.01. Mean Oswestry Disability Index (ODI) and Scoliosis Research Society-22r total (SRS-22r) scores improved by 13 and 0.8 points, respectively, from preoperatively to 3 years (both P < 0.001). From preoperatively to 6 weeks postoperatively, ODI scores worsened by 5 points (P = 0.049) and SRS-22r scores improved by 0.3 points (P < 0.001). Between 6 weeks and 1 year, ODI and SRS-22r scores improved by 19 and 0.5 points, respectively (both P < 0.001). Incremental improvements during the first postoperative year predicted 3-year outcomes in ODI and SRS-22r scores (adjusted R(2) = 0.52 and 0.42, respectively). There were no significant differences in the measured or predicted 3-year ODI (P = 0.991) or SRS-22r scores (P = 0.986). In surgically treated patients with ASD, the greatest improvements in outcomes occurred between 6 weeks and 1 year postoperatively. A model with incremental improvements from baseline to 6 weeks and from 6 weeks to 1 year can be used to predict ODI and SRS-22r scores at 3 years. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Memory effects in schematic models of glasses subjected to oscillatory deformation

    NASA Astrophysics Data System (ADS)

    Fiocco, Davide; Foffi, Giuseppe; Sastry, Srikanth

    2015-05-01

    We consider two schematic models of glasses subjected to oscillatory shear deformation, motivated by the observations, in computer simulations of a model glass, of a nonequilibrium transition from a localized to a diffusive regime as the shear amplitude is increased, and of persistent memory effects in the localized regime. The first of these schematic models is the NK model, a spin model with disordered multi-spin interactions previously studied as a model for sheared amorphous solids. The second model, a transition matrix model, is an abstract formulation of the manner in which occupancy of local energy minima evolves under oscillatory deformation cycles. In both of these models, we find a behavior similar to that of an atomic model glass studied earlier. We discuss possible further extensions of the approaches outlined.

  18. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    NASA Astrophysics Data System (ADS)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  19. Localised and distributed deformation in the lithosphere: Modelling the Dead Sea region in 3 dimensions

    NASA Astrophysics Data System (ADS)

    Devès, Maud; King, Geoffrey C. P.; Klinger, Yann; Agnon, Amotz

    2011-08-01

    The Earth's lithosphere behaves as a strain softening elasto-plastic material. In the laboratory, such materials are known to deform in a brittle or a ductile manner depending on the applied geometric boundary conditions. In the lithosphere however, the importance of boundary conditions in controlling the deformation style has been largely ignored. Under general boundary conditions, both laboratory and field scale observations show that only part of the deformation can localise on through going faults while the rest must remain distributed in 'process zones' where spatially varying shear directions inhibit localisation. Conventional modelling methods (finite difference, finite or discrete elements) use rheologies deduced from laboratory experiments that are not constrained as a function of the geometry of the applied boundary conditions. In this paper, we propose an alternative modelling method that is based on the use of an appropriate distribution of dislocation sources to create the deformation field. This approach, because it does not rely on integrating differential equations from more or less well-constrained boundary conditions, does not require making assumptions on the parameters controlling the level and distribution of stresses within the lithosphere. It only supposes that strain accumulates linearly away from the dislocation singularities satisfying the compatibility equations. We verify that this model explains important and hitherto unexplained features of the topography of the Dead Sea region. Following the idea that strain can only localise under specific conditions as inferred from laboratory and field scale observations, we use our model of deformation to predict where deformation can localise and where it has to remain distributed. We find that ~ 65% of the deformation in the Dead Sea region can localise on kinematically stable through-going strike-slip faults while the remaining ~ 35% has to remain distributed. Observations suggest that

  20. Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers.

    PubMed

    Xiao, Rui; Ghazaryan, Gagik; Tervoort, Theo A; Nguyen, Thao D

    2017-06-01

    The enthalpic response of amorphous polymers depends strongly on their thermal and deformation history. Annealing just below the glass transition temperature (T_{g}) causes a large endothermic overshoot of the isobaric heat capacity at T_{g} as measured by differential scanning calorimetry, while plastic deformation (cold work) can erase this overshoot and create an exothermic undershoot. This indicates that a strong coupling exists between the polymer structure, thermal response, and mechanical deformation. In this work, we apply a recently developed thermomechanical model for glassy polymers that couples structural evolution and viscoplastic deformation to investigate the effect of annealing and plastic deformation on the accumulation of stored energy during cold work and calorimetry measurements of heat flow. The thermomechanical model introduces the effective temperature as an additional state variable in a nonequilibrium thermodynamics setting to describe the structural evolution of the material. The results show that the model accurately describes the stress and enthalpy response of quenched and annealed polymers with different plastic predeformations. The model also shows that at 30% strain in uniaxial compression, 45% of the applied work is converted into stored energy, which is consistent with experimental data from literature.

  1. Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    SciTech Connect

    Burnley, Pamela C

    2015-07-01

    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includes kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.

  2. Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    DOE PAGES

    Burnley, Pamela C

    2015-07-01

    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includesmore » kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.« less

  3. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  4. Why is the tube model inapplicable for entangled polymer dynamics at large deformation

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Wang, Yangyang

    2011-03-01

    Accumulating experimental revelation of the phenomenology governing dynamics of entangled linear polymers at large deformations has caused us to question the legitimacy of the tube model as an acceptable theoretical description of nonlinear polymer rheology. Upon an explicit investigation of its premise, we have come to realize that the tube model did not overcome the difficulty confronted by other theories and did not contain the basic physics required to explain why and how the entanglement network must break down during large deformations. It considered an unrealistic situation where a load-bearing chain relaxed fast in an affinely deformed tube so that only the chain segment orientation produced the shear stress for applied rates lower than the Rouse rate. A non-monotonic relation between the resulting shear stress and imposed strain for startup shear and step deformations arose from excessive chain orientation not collapse of the entanglement network. In the tube model, the nature of the overshoot is not yielding (transition from elastic deformation to flow), but an elastic instability. Accumulating experimental observations contradict this picture. This presentation will elucidate how the emerging physical picture differs from that of the unrealistic tube model.

  5. Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Ghazaryan, Gagik; Tervoort, Theo A.; Nguyen, Thao D.

    2017-06-01

    The enthalpic response of amorphous polymers depends strongly on their thermal and deformation history. Annealing just below the glass transition temperature (Tg) causes a large endothermic overshoot of the isobaric heat capacity at Tg as measured by differential scanning calorimetry, while plastic deformation (cold work) can erase this overshoot and create an exothermic undershoot. This indicates that a strong coupling exists between the polymer structure, thermal response, and mechanical deformation. In this work, we apply a recently developed thermomechanical model for glassy polymers that couples structural evolution and viscoplastic deformation to investigate the effect of annealing and plastic deformation on the accumulation of stored energy during cold work and calorimetry measurements of heat flow. The thermomechanical model introduces the effective temperature as an additional state variable in a nonequilibrium thermodynamics setting to describe the structural evolution of the material. The results show that the model accurately describes the stress and enthalpy response of quenched and annealed polymers with different plastic predeformations. The model also shows that at 30% strain in uniaxial compression, 45% of the applied work is converted into stored energy, which is consistent with experimental data from literature.

  6. Rheological model analysis on depth of toppling deformation in the anti-dip rock slope

    NASA Astrophysics Data System (ADS)

    Zheng, Da

    2017-04-01

    The failure of the toppling deformation occurred in the layered rock mass, it is a kind of mode of deformation and failure, which is bent towards free direction and gradually develops into the slope under the combined forces of in-situ stress, gravity, and groundwater dynamic (hydrostatic) pressure and so on. The most common toppling deformation is the toppling of ductile bending. Obtaining the developmental depth of bending deformation is of great significance for judging the development scale of the plasmodium and the stability of the slope. At present, the developmental depth of toppling deformation mainly depends on the survey and statistic of the exploration adit, or the simulation of the deformation and failure process through the numerical simulation method, there is little research on the developmental depth of toppling deformation from mechanics point of view. In this paper, with the consideration of the time-sensitive characteristics of developmental process of the toppling deformation, the anti-dip layered slope can be considered as a multi-layer superposition cantilever with fixed end and free end, bending under self-weight and inter-layer stress. Under the premise of the initial stage of rheology of the rock slopes, which is considered to be the limit position of the toppling deformation and development, the Kelvin rheological model, which is usually used to describe the decay creep, is chosen to describe the time-sensitive process of rock slopes. The stress-strain analysis calculation is used to obtain the time-varying expression of a certain point on the rock beam. Furthermore, taking the time to infinity, the depth of the layered rock slopes is calculated as x=4Ccosβ/[2γcosαcosβ - γ2(cos (α + β)+2sin(α + β)tanφ)*((1+n) /2+(1-n) cos2α/ 2)] , which is obtained by using the strain reaches zero as the criterion of the depth at toppling deformation development limit position, combining the time-varying expression of a certain point on the beam

  7. Flows in forward deformable roll coating gaps: Comparison between spring and plane-strain models of roll cover

    SciTech Connect

    Carvalho, M.S.; Scriven, L.E.

    1997-12-01

    In this report the flow between rigid and a deformable rotating rolls fully submerged in a liquid pool is studied. The deformation of compliant roll cover is described by two different models (1) independent, radially oriented springs that deform in response to the traction force applied at the extremity of each or one-dimensional model, and (2) a plane-strain deformation of an incompressible Mooney-Rivlin material or non-linear elastic model. Based on the flow rate predictions of both models, an empirical relation between the spring constant of the one dimensional model and the roll cover thickness and elastic modulus is proposed.

  8. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.

    PubMed

    Hodgson, John A; Chi, Sheng-Wei; Yang, Judy P; Chen, Jiun-Shyan; Edgerton, Victor R; Sinha, Shantanu

    2012-05-01

    The pattern of deformation of different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. The maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in the optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo

  9. Increasing lumbar lordosis of adult spinal deformity patients via intraoperative prone positioning.

    PubMed

    Harimaya, Katsumi; Lenke, Lawrence G; Mishiro, Takuya; Bridwell, Keith H; Koester, Linda A; Sides, Brenda A

    2009-10-15

    A retrospective evaluation. To evaluate the change in lumbar lordosis in spinal deformity patients who underwent an instrumented posterior spinal fusion on the Orthopedic Systems Inc. (OSI) "Jackson" frame. Intraoperative prone positioning with hip extension may posturally increase lumbar lordosis during adult spinal deformity reconstructive surgery, as has been shown in adult lumbar degenerative surgery. Radiographs of 44 operative spinal deformity patients (43 females/1 male; mean age, 57.4 years) were analyzed. Diagnoses included idiopathic scoliosis (29), degenerative lumbar scoliosis (9), and other (6). Total lumbar lordosis (T12-S1), segmental disc angles, and C7 plumbline were measured on preoperative upright and supine, intraoperative prone, and postoperative upright lateral radiographs. All patients were positioned intraoperatively with hip extension on the OSI frame. Average preoperative upright and supine, intraoperative prone, and postoperative upright lumbar lordosis (T12-SAC) measurements were -38.1 degrees, -46.0 degrees, -46.2 degrees, and -51.8 degrees, respectively (P < 0.05 for preoperative upright to all other comparisons). Two groups were noted: those with increased lumbar lordosis (>5 degrees) during intraoperative prone positioning (n = 25, increased lordosis group) as compared to the preoperative measurement versus those with minimal to no change in lordosis (< or =5 degrees) during intraoperative prone positioning (n = 19, unchanged lordosis group). The corresponding lumbar lordosis measurements for the increased lordosis group were -25.9 degrees, -40.0 degrees, -43.1 degrees, and -48.9 degrees (P < 0.05 for preoperative upright to all other comparisons). The corresponding lumbar lordosis measurements for the unchanged lordosis group were -54.2 degrees, -53.8 degrees, -50.3 degrees, and -55.7 degrees (no significant differences). Preoperative upright lumbar lordosis in the unchanged lordosis group was substantially higher than increased

  10. Videogrammetric Model Deformation Measurement Software Package: Reference Manual for MDef.exe

    NASA Technical Reports Server (NTRS)

    Cate, Kenneth H.

    2001-01-01

    The program MDef.exe was created to take images in wind tunnels of models under test, identify targets, compute the targets centroids, compute the target's real-world X-Y-Z coordinates and the model's deformation (vertical displacement and wing twist).

  11. Aeroelastic Deformation Measurements of Flap, Gap, and Overhang on a Semispan Model

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tianshu; Garg, Sanjay; Ghee, Terence A.; Taylor, Nigel J.

    2000-01-01

    Single-camera, single-view videogrammetry has been used to determine static aeroelastic deformation of a slotted flap configuration on a semispan model at the National Transonic Facility (NTF). Deformation was determined by comparing wind-off to wind-on spatial data from targets placed on the main element, shroud, and flap of the model. Digitized video images from a camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. The videogrammetric technique has been established at NASA facilities as the technique of choice when high-volume static aeroelastic data with minimum impact on data taking is required. The primary measurement at the NTF with this technique in the past has been the measurement of static aeroelastic wing twist on full span models. The first results using the videogrammetric technique for the measurement of component deformation during semispan testing at the NTF are presented.

  12. Percutaneous nephrolithotomy in ectopically located kidneys and in patients with musculoskeletal deformities.

    PubMed

    Srivastava, A; Gupta, P; Chaturvedi, S; Singh, P; Kapoor, R; Dubey, D; Kumar, A

    2010-01-01

    To assess the feasibility, safety and results of percutaneous nephrolithotomy (PNL) in ectopically located kidneys and in patients with musculoskeletal deformities. Thirteen such patients underwent PNL between June 2005 and May 2008. Mean stone size was 27.4 mm (16-37 mm). Six patients had severe kyphoscoliosis, 2 patients each had achondroplasia, cross-fused ectopia and pelvic ectopic kidney, and 1 patient had thoracic kidney. All had a preoperative CT scan of the abdomen. Preoperative ultrasound- or CT-guided percutaneous nephrostomy (PCN) was done in 10 patients. Three patients underwent laparoscopic-assisted PNL. All underwent standard PNL. The stone-free rate, complication rate and need for secondary intervention were evaluated. PNL was successfully completed in all. A second ultrasound-guided intraoperative puncture was required in 2 patients. Re-look PNL was required in 1 patient and the same patient later required shock wave lithotripsy for complete stone clearance. The remaining 12 patients (92.3%) were rendered stone-free in a single sitting. PNL is a feasible and effective modality in anomalous kidneys. Preoperative planning with CT and image-guided PCN is helpful in these situations. Laparoscopic-assisted PNL can be safely performed in patients where access to a renal collecting system by fluoroscopy or image-guided assistance (ultrasound or CT scan) is not possible. Copyright (c) 2010 S. Karger AG, Basel.

  13. Myocardial deformation parameters predict outcome in patients with repaired tetralogy of Fallot.

    PubMed

    Orwat, Stefan; Diller, Gerhard-Paul; Kempny, Aleksander; Radke, Robert; Peters, Brigitte; Kühne, Titus; Boethig, Dietmar; Gutberlet, Matthias; Dubowy, Karl-Otto; Beerbaum, Philipp; Sarikouch, Samir; Baumgartner, Helmut

    2016-02-01

    Parameters of myocardial deformation have been suggested to be superior to conventional measures of ventricular function and to predict outcome in repaired tetralogy of Fallot (ToF). We aimed to test the hypothesis that parameters of myocardial deformation on cardiac MRI (CMR) relate to symptoms and provide prognostic information in patients with repaired ToF. We included 372 patients with ToF (median age 16 years; 55% male), recruited within a nationwide, prospective study. Longitudinal (LS), circumferential (CS) and radial global strain (RS) were analysed by CMR-based feature tracking (FT). A combined endpoint of death, successful resuscitation or documented ventricular tachycardia was employed. Parameters of global strain were associated with New York Heart Association (NYHA) class and symptomatic deterioration. During a median follow-up of 7.4 years, 20 events occurred. Left ventricular (LV) CS and right ventricular (RV) LS emerged as predictors of outcome, independent of QRS duration, LV/RV ejection fraction and volumes, NYHA class and peak oxygen uptake. In combination, these parameters also identified a subgroup of patients at significantly increased risk of adverse of outcomes (HR 3.3, p=0.002). Furthermore, LV LS, RS, CS and RV LS were related to the risk of death and nearly missed death (p<0.05 for all). FT-CMR provides myocardial deformation parameters, easily derived from standard CMR studies. They relate to symptoms and clinical deterioration in patients with ToF. More importantly, they predict adverse outcome independent of established risk markers, and should be considered as a useful adjunct to established outcome predictors, especially in younger patients with ToF. http://www.clinicaltrials.gov: NCT00266188; Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Combination joint-preserving surgery for forefoot deformity in patients with rheumatoid arthritis.

    PubMed

    Niki, H; Hirano, T; Okada, H; Beppu, M

    2010-03-01

    Proximal osteotomies for forefoot deformity in patients with rheumatoid arthritis have hitherto not been described. We evaluated combination joint-preserving surgery involving three different proximal osteotomies for such deformities. A total of 30 patients (39 feet) with a mean age of 55.6 years (45 to 67) underwent combined first tarsometatarsal fusion and distal realignment, shortening oblique osteotomies of the bases of the second to fourth metatarsals and a fifth-ray osteotomy. The mean follow-up was 36 months (24 to 68). The mean foot function index scores for pain, disability and activity subscales were 18, 23, and 16 respectively. The mean Japanese Society for Surgery of the Foot score improved significantly from 52.2 (41 to 68) to 89.6 (78 to 97). Post-operatively, 14 patients had forefoot stiffness, but had no disability. Most patients reported highly satisfactory walking ability. Residual deformity and callosities were absent. The mean hallux valgus and intermetatarsal angles decreased from 47.0 degrees (20 degrees to 67 degrees) to 9.0 degrees (2 degrees to 23 degrees) and from 14.1 degrees (9 degrees to 20 degrees) to 4.6 degrees (1 degree to 10 degrees), respectively. Four patients had further surgery including removal of hardware in three and a fifth-ray osteotomy in one. With good peri-operative medical management of rheumatoid arthritis, surgical repositioning of the metatarsophalangeal joint by metatarsal shortening and consequent relaxing of surrounding soft tissues can be successful. In early to intermediate stages of the disease, it can be performed in preference to joint-sacrificing procedures.

  15. A novel technique for fabricating an ear prosthesis in a patient with congenital ear deformity.

    PubMed

    Mardani, Mohammad Ali; Aminian, Gholamreza; Tabatabaian, Farhad; Arazpour, Mokhtar; Hutchins, Stephen W; Head, John S

    2013-08-01

    Microtia is one of the forms of ear loss and deformity. A prosthesis that is simple to apply, and which has adequate suspension and acceptable aesthetics, can be useful in the rehabilitation of patients with this deficit and can improve the social and psychological effects of patients with ear amputation. The aim of this article was to describe a novel technique for fabricating ear prosthesis in a patient with congenital ear deformity. This method involves a novel method to produce an ear prosthesis using clips that were located within the layers of the final silicone ear. This study demonstrated ease of use and acceptance by the patient. Design and fabrication of silicone ear prosthesis via this new method of suspension could also be suitable for provision to children with ear microtia who are not yet suitable for surgery or would not be suited to other methods of suspension. The new method of suspension demonstrated that this approach could be used to provide low cost and acceptable silicone ear prosthesis for patients with microtia and partial ear amputation.

  16. Localised and distributed deformation in the lithosphere: Modelling the Dead Sea region in 3 dimensions

    NASA Astrophysics Data System (ADS)

    Devès, M.; King, G. C. P.; Klinger, Y.; Agnon, A.

    2012-04-01

    The Earth's lithosphere behaves as a strain softening elasto-plastic material. In the laboratory, such materials are known to deform in a brittle or a ductile manner depending on the applied geometric boundary conditions. In the lithosphere however, the importance of boundary conditions in controlling the deformation style has been largely ignored. Under general boundary conditions, both laboratory and field scale observations show that only part of the deformation can localise on through going faults while the rest must remain distributed in 'process zones' where spatially varying shear directions inhibit localisation. Conventional modelling methods (finite difference, finite or discrete elements) use rheologies deduced from laboratory experiments that are not constrained as a function of the geometry of the applied boundary conditions. In this paper, we propose an alternative modelling method that is based on the use of an appropriate distribution of dislocation sources to create the deformation field. This approach, because it does not rely on integrating differential equations from more or less well-constrained boundary conditions, does not require making assumptions on the parameters controlling the level and distribution of stresses within the lithosphere. It only supposes that strain accumulates linearly away from the dislocation singularities satisfying the compatibility equations. We verify that thismodel explains important and hitherto unexplained features of the topography of the Dead Sea region. Following the idea that strain can only localise under specific conditions as inferred from laboratory and field scale observations, we use our model of deformation to predict where deformation can localise and where it has to remain distributed. We find that ~65% of the deformation in the Dead Sea region can localise on kinematically stable through-going strike-slip faults while the remaining ~35% has to remain distributed. Observations suggest that distributed

  17. Dosimetric treatment course simulation based on a statistical model of deformable organ motion.

    PubMed

    Söhn, M; Sobotta, B; Alber, M

    2012-06-21

    We present a method of modeling dosimetric consequences of organ deformation and correlated motion of adjacent organ structures in radiotherapy. Based on a few organ geometry samples and the respective deformation fields as determined by deformable registration, principal component analysis (PCA) is used to create a low-dimensional parametric statistical organ deformation model (Söhn et al 2005 Phys. Med. Biol. 50 5893-908). PCA determines the most important geometric variability in terms of eigenmodes, which represent 3D vector fields of correlated organ deformations around the mean geometry. Weighted sums of a few dominating eigenmodes can be used to simulate synthetic geometries, which are statistically meaningful inter- and extrapolations of the input geometries, and predict their probability of occurrence. We present the use of PCA as a versatile treatment simulation tool, which allows comprehensive dosimetric assessment of the detrimental effects that deformable geometric uncertainties can have on a planned dose distribution. For this, a set of random synthetic geometries is generated by a PCA model for each simulated treatment course, and the dose of a given treatment plan is accumulated in the moving tissue elements via dose warping. This enables the calculation of average voxel doses, local dose variability, dose-volume histogram uncertainties, marginal as well as joint probability distributions of organ equivalent uniform doses and thus of TCP and NTCP, and other dosimetric and biologic endpoints. The method is applied to the example of deformable motion of prostate/bladder/rectum in prostate IMRT. Applications include dosimetric assessment of the adequacy of margin recipes, adaptation schemes, etc, as well as prospective 'virtual' evaluation of the possible benefits of new radiotherapy schemes.

  18. Effect of elliptical deformation on molecular polarizabilities of model carbon nanotubes from atomic increments.

    PubMed

    Torrens, Francisco

    2003-08-01

    The interacting induced dipole polarization model implemented in our program POLAR is used for the calculation of the dipole-dipole polarizability alpha. The method is tested with single-wall carbon nanotube models as a function of nanotube radius and elliptical deformation. The results for polarizability follow the same trend as reference calculations performed with our version of the program PAPID. For the zigzag tubes, the polarizability is found to follow a remarkably simple law, that is, it varies as the inverse of the radius. A dramatic effect is also found with elliptical deformation. It is found that the polarizability and related properties can be modified continuously and reversibly by the external radial deformation. These results suggest an interesting technology in which mechanical deformation can control chemical properties of the carbon nanotubes. POLAR calculations differentiate more effectively than PAPID computations among single-wall nanotube models with increasing radial deformation. Different effective polarizabilities are calculated for the atoms at the highest and lowest curvature sites. POLAR calculations discriminate more efficiently than PAPID computations between the effective polarizabilities of the highest and lowest curvature sites. This remarkable and significant tunable polarizability can have important implications for metal coverage of metals on nanotubes and selective adsorption and desorption of foreign atoms and molecules on nanotubes and can lead to a wide variety of technological applications, such as catalysts, hydrogen storage, magnetic tubes, etc.

  19. Parameterization of shrubby riparian vegetation for mechanically based modelling of plant deformation in flowing water

    NASA Astrophysics Data System (ADS)

    Waygand, Magdalena; Klösch, Mario; Buchinger, Matthias; Tritthart, Michael; Baur, Pamela; Egger, Gregory; Pfemeter, Martin; Sindelar, Christine; Habersack, Helmut

    2017-04-01

    During higher discharges, riparian vegetation becomes partially or fully submerged and interacts with the flow and sediment transport by acting as a roughness element to the flow. The geometry of flexible vegetation such as willows adjusts to the drag forces exerted by the flow, resulting in a strong variation of the flow resistance depending on the flow characteristics. So far, the deformation of submerged shrubby plants through bending and streamlining was considered in friction factors based on empirical data on plant deformation. We attempt to develop a mechanically based streamlining model for shrubby vegetation by considering the bending of stem and branches as well as the torsion acting onto the bases of the branches as a consequence of drag forces of the flow. For that purpose, we investigated several plants of Salix viminalis, which were coppiced to obtain multiple branches for a more natural, shrubby growth, to be further used in a research channel which offers free flowing discharges up to 10 m3 s-1. We determined the three-dimensional geometries of several plants by performing a photogrammetric analysis, and systematically measured branch and stem thicknesses at several locations. The obtained geometries and data on elastic modulus and shear modulus served for the development of a generic representation of the plant geometry and properties, which is used for the development of the mechanically based model of plant deformation. Preliminary results showed a significant contribution of torsion to plant deformation, emphasising the need of its consideration in physically based deformation models.

  20. Improving the finite element forward model of the human head by warping using elastic deformation.

    PubMed

    Tizzard, A; Bayford, R H

    2007-07-01

    As the use of realistic geometry in the forward model of electrical impedance tomography (EIT) of brain function appears to improve image reconstruction, the generation of patient-specific finite element meshes has been the subject of much recent work. This paper presents a more rapid method of generating more geometrically accurate finite element meshes of the human head by warping existing meshes such that the surface boundary beneath the electrodes closely matches that of the subject with minimal degradation to the quality of the mesh. Pre-existing meshes of spheres and adult head models incorporating key internal anatomical features are warped, using elastic deformation, to match a phantom latex tank incorporating a real skull. The algorithm is described and tests are carried out to optimize the key parameters to ensure minimal degradation of mesh quality and distortion of internal features. Results show that the algorithm operating with the optimum parameters produces meshes of sound quality and could represent an important step in the timely and productive creation of forward models in clinical applications.

  1. Application of a macroscopic model to predict the band segregation induced by shear deformation of semisolid

    NASA Astrophysics Data System (ADS)

    Morita, S.; Yasuda, H.; Nagira, T.; Gourlay, C. M.; Morishita, K.; Yoshiya, M.; Sugiyama, A.

    2015-06-01

    Semisolid deformation during solicitation can cause some casting defects such as the band segregation. Since the defect formation originates in nature of semisolid, it is of interest to build a model including the nature and to predict the defect formation. In-situ and time- resolve X-ray imaging has proved that rearrangement of solid grains in semisolid dominantly controls deformation and localization of shear strain leads to the band segregation. On the basis of the observations, a macroscopic model, which explicitly includes the rearrangement, is proposed. The model uses two-phase flow model and introduces hydrostatic stresses to express the rearrangement. The model was applied to simple shear of semisolid to confirm instability against shear. Fluctuation of solid fraction gradually increased and consequently shear deformation was localized. The model is also applied to pseudo 2D deformation in a shear cell, of which dimension was the same as that used in the X-ray imaging. The calculation result qualitatively agreed with the experimental results. It was concluded that the model has a potential to simulate the localization of shear and the band segregation. For further improvement, to measure some physical properties, which are closely related to the rearrangement, is required.

  2. Effects of ethanol and acetaldehyde load on erythrocyte deformability in healthy subjects and patients with liver cirrhosis.

    PubMed

    Shiraishi, Koichi; Tsuruya, Kota; Anzai, Kazuya; Arase, Yoshitaka; Hirose, Shunji; Kagawa, Tatehiro; Mine, Tetsuya; Matsuzaki, Shohei

    2015-02-01

    Alcohol intake leads to the distribution of alcohol and its metabolite, acetaldehyde throughout the blood and organs. Hepatic cirrhosis is associated with abnormal red blood cell morphology and function, particularly impaired red blood cell deformability. To investigate the effect of drinking on red blood cells in patients with hepatic cirrhosis, erythrocyte deformability was evaluated in response to alcohol and acetaldehyde tolerance. Erythrocyte deformability in 10 healthy and 15 cirrhotic subjects was examined by filterability of the red blood cells. Erythrocyte deformability decreased markedly in the cirrhosis group compared with the healthy group (p < 0.05). No significant change in erythrocyte deformability was observed in healthy or cirrhotic subjects due to ethanol 100 mM tolerance. Acetaldehyde tolerance elicited a significant decrease in erythrocyte deformability at 2 mM in the cirrhosis group (p < 0.05). Alcohol consumption in cirrhotic patients was suggested to worsen erythrocyte deformability and red blood cell function. Decreased erythrocyte deformability worsens microcirculation in the liver, resulting in more severe hepatic dysfunction.

  3. Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model.

    PubMed

    Weichert, Frank; Schröder, Andreas; Landes, Constantin; Shamaa, Ali; Awad, Said Kamel; Walczak, Lars; Müller, Heinrich; Wagner, Mathias

    2010-06-01

    In this article, we present a new method for the generation of surface meshes of biological soft tissue. The method is based on the deformable surface model technique and is extended to histological data sets. It relies on an iterative adjustment towards polygonal segments describing the histological structures of the soft tissue. The generated surface meshes allow for the construction of volumetric meshes through a standard constrained Delaunay approach and, thus, for the application in finite element methods. The geometric properties of volumetric meshes have an immediate influence on the numerical conditioning and, therewith, on the stability of the finite element method and the convergence of iterative solvers. In this article, the influence of the surface meshes on the quality of the volumetric meshes is analysed in terms of the spectral condition number of the stiffness matrices, which are assembled within Newton's method. The non-linear material behavior of biological soft tissue is modeled by the Mooney-Rivlin material law. The subject is motivated by the requirements of virtual surgery.

  4. On the choice of boundary conditions in continuum models of continental deformation

    NASA Technical Reports Server (NTRS)

    Wdowinski, Shimon; O'Connell, Richard J.

    1990-01-01

    Recent studies of continental deformation have treated the lithosphere as a viscous medium and investigated the time evolution of the deformation caused by tectonic and buoyancy forces. This paper examines the differences between (1) continuum models that keep velocity boundary conditions constant with time and (2) models that keep stress boundary conditions constant with time. These differences are demonstrated by using a simple example of a continental lithosphere that is subjected to horizontal compression. The results show that in (2) the indentation velocity decreases with time, while in (1) the indentation velocity remains constant with time.

  5. On the choice of boundary conditions in continuum models of continental deformation

    NASA Technical Reports Server (NTRS)

    Wdowinski, Shimon; O'Connell, Richard J.

    1990-01-01

    Recent studies of continental deformation have treated the lithosphere as a viscous medium and investigated the time evolution of the deformation caused by tectonic and buoyancy forces. This paper examines the differences between (1) continuum models that keep velocity boundary conditions constant with time and (2) models that keep stress boundary conditions constant with time. These differences are demonstrated by using a simple example of a continental lithosphere that is subjected to horizontal compression. The results show that in (2) the indentation velocity decreases with time, while in (1) the indentation velocity remains constant with time.

  6. A Full-Body Layered Deformable Model for Automatic Model-Based Gait Recognition

    NASA Astrophysics Data System (ADS)

    Lu, Haiping; Plataniotis, Konstantinos N.; Venetsanopoulos, Anastasios N.

    2007-12-01

    This paper proposes a full-body layered deformable model (LDM) inspired by manually labeled silhouettes for automatic model-based gait recognition from part-level gait dynamics in monocular video sequences. The LDM is defined for the fronto-parallel gait with 22 parameters describing the human body part shapes (widths and lengths) and dynamics (positions and orientations). There are four layers in the LDM and the limbs are deformable. Algorithms for LDM-based human body pose recovery are then developed to estimate the LDM parameters from both manually labeled and automatically extracted silhouettes, where the automatic silhouette extraction is through a coarse-to-fine localization and extraction procedure. The estimated LDM parameters are used for model-based gait recognition by employing the dynamic time warping for matching and adopting the combination scheme in AdaBoost.M2. While the existing model-based gait recognition approaches focus primarily on the lower limbs, the estimated LDM parameters enable us to study full-body model-based gait recognition by utilizing the dynamics of the upper limbs, the shoulders and the head as well. In the experiments, the LDM-based gait recognition is tested on gait sequences with differences in shoe-type, surface, carrying condition and time. The results demonstrate that the recognition performance benefits from not only the lower limb dynamics, but also the dynamics of the upper limbs, the shoulders and the head. In addition, the LDM can serve as an analysis tool for studying factors affecting the gait under various conditions.

  7. Secondary correction of nasal deformities in cleft lip and palate patients: surgical technique and outcome evaluation.

    PubMed

    Vass, Gabor; Mohos, Gabor; Bere, Zsofia; Ivan, Laszlo; Varga, Janos; Piffko, Jozsef; Rovo, Laszlo

    2016-12-01

    Nasal deformity associated with cleft lip and palate is a highly challenging reconstructive problem in rhinoplasty. In the literature, several operative solutions and evaluation methods have been described, however these do not offer a standard procedure for the surgeon. Our aim was to standardize our surgical technique-as much as the uniqueness of each case allowed it-based on the most frequent deformities we had faced; and to evaluate our results via a postoperative patient satisfaction questionnaire. Between 2012 and 2014 12 consecutive patients with combined cleft lip and palate deformities underwent secondary nasal and septal correction surgery with the same method by the same surgeon. The indications of surgery were, on one hand, difficult nasal breathing and altered nasal function (tendency for chronic rhinosinusitis) and on the other hand the aesthetic look of the nose. No exclusion criteria were stated. In our follow-up study we evaluated our results by using a modified Rhinoplasty Outcome Evaluation (ROE) questionnaire: patients answered the same four questions pre- and postoperatively. Data were statistically analyzed by t-test. Based on the questionnaire, all patients experienced improvement of nasal breathing function, improved appearance of the nose and less stigmatization from the society. According to the t-test, all scores of the four questions improved significantly in the postoperative 4-6 months, compared with the preoperative scores. In our opinion with our standardized surgical steps satisfactory aesthetic and functional results can be achieved. We think the modified ROE questionnaire is an adequate and simple method for the evaluation of our surgical results.

  8. Viscoelastic-cycle model of interseismic deformation in the northwestern United States

    USGS Publications Warehouse

    Pollitz, F.F.; McCrory, Patricia; Wilson, Doug; Svarc, Jerry; Puskas, Christine; Smith, Robert B.

    2010-01-01

    We apply a viscoelastic cycle model to a compilation of GPS velocity fields in order to address the kinematics of deformation in the northwestern United States. A viscoelastic cycle model accounts for time-dependent deformation following large crustal earthquakes and is an alternative to block models for explaining the interseismic crustal velocity field. Building on the approach taken in Pollitz et al., we construct a deformation model for the entire western United States-based on combined fault slip and distributed deformation-and focus on the implications for the Mendocino triple junction (MTJ), Cascadia megathrust, and western Washington. We find significant partitioning between strike-slip and dip-slip motion near the MTJ as the tectonic environment shifts from northwest-directed shear along the San Andreas fault system to east-west convergence along the Juan de Fuca Plate. By better accounting for the budget of aseismic and seismic slip along the Cascadia subduction interface in conjunction with an assumed rheology, we revise a previous model of slip for the M~ 9 1700 Cascadia earthquake. In western Washington, we infer slip rates on a number of strike-slip and dip-slip faults that accommodate northward convergence of the Oregon Coast block and northwestward convergence of the Juan de Fuca Plate. Lateral variations in first order mechanical properties (e.g. mantle viscosity, vertically averaged rigidity) explain, to a large extent, crustal strain that cannot be rationalized with cyclic deformation on a laterally homogeneous viscoelastic structure. Our analysis also shows that present crustal deformation measurements, particularly with the addition of the Plate Boundary Observatory, can constrain such lateral variations.

  9. [Posterior osteotomy and decompression for spinal deformity in patients with achondroplasia].

    PubMed

    Sun, Wu; Zhang, Jian-Guo; Qiu, Gui-Xing; Li, Shu-Gang

    2010-11-23

    to evaluate the outcome of surgical treatment for spinal deformity in patients with achondroplasia. six consecutive cases of 3 males and 3 females were recruited. The average age at surgery was 18.5 years old with a range of 12 to 36 years old. All patients suffered thoracolumbar kyphosis and lumbar stenosis. Four patients had neurological deficits due to severe spinal deformity. Posterior osteotomy and decompression were performed in all cases. Long cassette supine radiographs were taken before and after surgery and at the final follow-up. Correction of kyphosis, neurological outcomes (JOA (Japanese Orthopedic Association) scores) and operative complications were recorded and analyzed. the average follow-up was 10.2 months with a range of 5 to 24 months. The average operative duration was 320 min with a mean 1300 ml of blood loss. The average number of fusion segments was 8 with a range of 5 to 10 segments. Kyphosis was corrected from 53.3° to 13.3° with a 75.0% correction rate. The average preoperative JOA score was 4.5 points and improved to 8.5 points at the final follow-up. posterior osteotomy and decompression is a preferred surgical regiment for thoracolumbar kyphosis and lumbar stenosis in patients with achondroplasia.

  10. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    SciTech Connect

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  11. Use of multiscale zirconium alloy deformation models in nuclear fuel behavior analysis

    NASA Astrophysics Data System (ADS)

    Montgomery, Robert; Tomé, Carlos; Liu, Wenfeng; Alankar, Alankar; Subramanian, Gopinath; Stanek, Christopher

    2017-01-01

    Accurate prediction of cladding mechanical behavior is a key aspect of modeling nuclear fuel behavior, especially for conditions of pellet-cladding interaction (PCI), reactivity-initiated accidents (RIA), and loss of coolant accidents (LOCA). Current approaches to fuel performance modeling rely on empirical constitutive models for cladding creep, growth and plastic deformation, which are limited to the materials and conditions for which the models were developed. To improve upon this approach, a microstructurally-based zirconium alloy mechanical deformation analysis capability is being developed within the United States Department of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL). Specifically, the viscoplastic self-consistent (VPSC) polycrystal plasticity modeling approach, developed by Lebensohn and Tomé [1], has been coupled with the BISON engineering scale fuel performance code to represent the mechanistic material processes controlling the deformation behavior of light water reactor (LWR) cladding. A critical component of VPSC is the representation of the crystallographic nature (defect and dislocation movement) and orientation of the grains within the matrix material and the ability to account for the role of texture on deformation. A future goal is for VPSC to obtain information on reaction rate kinetics from atomistic calculations to inform the defect and dislocation behavior models described in VPSC. The multiscale modeling of cladding deformation mechanisms allowed by VPSC far exceed the functionality of typical semi-empirical constitutive models employed in nuclear fuel behavior codes to model irradiation growth and creep, thermal creep, or plasticity. This paper describes the implementation of an interface between VPSC and BISON and provides initial results utilizing the coupled functionality.

  12. Load response of the tarsal bones in patients with flatfoot deformity: in vivo 3D study.

    PubMed

    Kido, Masamitsu; Ikoma, Kazuya; Imai, Kan; Maki, Masahiro; Takatori, Ryota; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu

    2011-11-01

    The objective of this study was to evaluate the bone rotation of each joint in the hindfoot and compare the load response in healthy feet with that in flatfeet by analyzing the reconstructive three-dimensional (3D) CT image data during weightbearing. CT scans of 21 healthy feet and 21 feet with flatfoot deformity were taken in non-load condition followed by full-body weightbearing load condition. The images of the hindfoot bones were reconstructed into 3D models. The volume merge method in three planes was used to calculate the position of the talus relative to the tibia in the tibiotalar joint, the navicular relative to the talus in talonavicular joint, and the calcaneus relative to the talus in the talocalcaneal joint. The talar position difference to the load response relative to the tibia in the tibiotalar joint in a flatfoot was 1.7 degrees more plantarflexed in comparison to that in a healthy foot (p = 0.031). The navicular position difference to the load response relative to the talus in the talonavicular joint was 2.3 degrees more everted (p = 0.0034). The calcaneal position difference to the load response relative to the talus in the talocalcaneal joint was 1.1 degrees more dorsiflexed (p = 0.0060) and 1.7 degrees more everted (p = 0.0018). Referring to previous cadaver study, regarding not only the cadaveric foot, but also the live foot, joint instability occurred in the hindfoot with load in patients with flatfoot. The method used in this study might be applied to clinical analysis of foot diseases such as the staging of flatfoot and to biomechanical analysis to evaluate the effects of foot surgery in the future.

  13. Modeling of Macro-deformation Behavior of Thin-Walled Aluminum Foam by Gas Injection Method

    NASA Astrophysics Data System (ADS)

    Xiang, Chen; Ningzhen, Wang; Jianyu, Yuan; Yanxiang, Li; Huawei, Zhang; Yuan, Liu

    2017-07-01

    The favorable energy absorption characteristics of foam structures originate from their layer-by-layer deformation behavior. In this paper, the effects of cell morphology on the compressive performance of thin-walled aluminum foams were studied by a finite element method using a three-dimensional, thin-shell Kelvin tetrakaidecahedron model. Models with varying cell structure parameters were established so that the effects of relative density, cell size, cell wall thickness, and cell anisotropy on the plateau stress and energy absorption capacity of the foams could be investigated. Both the numerical deformation behavior and stress-strain curves of aluminum foams are found to have good agreement with the experimental results under quasi-static compressive loading. Moreover, the deformation behaviors of those foams with a certain anisotropy ratio are compared for different loading directions. The cell shape is a key factor affecting the plateau stress as well as the relative density.

  14. A multilayer model of time dependent deformation following an earthquake on a strike-slip fault

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1981-01-01

    A multilayer model of the Earth to calculate finite element of time dependent deformation and stress following an earthquake on a strike slip fault is discussed. The model involves shear properties of an elastic upper lithosphere, a standard viscoelastic linear solid lower lithosphere, a Maxwell viscoelastic asthenosphere and an elastic mesosphere. Systematic variations of fault and layer depths and comparisons with simpler elastic lithosphere over viscoelastic asthenosphere calculations are analyzed. Both the creep of the lower lithosphere and astenosphere contribute to the postseismic deformation. The magnitude of the deformation is enhanced by a short distance between the bottom of the fault (slip zone) and the top of the creep region but is less sensitive to the thickness of the creeping layer. Postseismic restressing is increased as the lower lithosphere becomes more viscoelastic, but the tendency for the width of the restressed zone to growth with time is retarded.

  15. Modeling of Plastic Deformation of Dispersion-Hardened Materials with L12 Superstructure Particles

    NASA Astrophysics Data System (ADS)

    Daneyko, O. I.; Kovalevskaya, T. A.; Kulaeva, N. A.

    2017-07-01

    The paper presents a mathematical model of plastic deformation in FCC materials strengthened with particles having L12 superstructure. The model is based on balance equations for various deformation defects with regard to their transformation during plastic deformation. Research results show that the size and distance between particles of the strengthening phase affect the thermal strengthening, strain hardening and the evolution of the dislocation subsystem of the FCC alloy strengthened with coherent particles with L12 superstructure. The temperature anomaly is detected for strength properties of materials having different volume fractions of the strengthening phase. It is shown that the incoherent strengthening phase increases the flow stress of the material and suppresses the temperature anomaly of its strength properties.

  16. In situ, time-resolved tomography for validating models of deformation in semi-solid alloys

    NASA Astrophysics Data System (ADS)

    Kareh, K. M.; Lee, P. D.; Gourlay, C. M.

    2012-07-01

    The development and validation of physically-based models of semi-solid alloy deformation requires experimental data on the microstructural response to load. In this work we present three-dimensional in situ synchrotron results of the indirect extrusion of semi-solid aluminium-copper alloys. Globular Al-15wt.% Cu specimens were deformed at solid fractions of approximately 0.7 during time-resolved x-ray tomography. Key phenomena of the response to load were observed and quantified, with a focus on particle translations and rotations, and the resulting displacement field. This example shows that crystal displacements can be quantified during semi-solid deformation of bulk specimens, allowing for datasets to be produced suitable for validating models of complex phenomena during semi-solid flow.

  17. A dislocation density based constitutive model for cyclic deformation

    SciTech Connect

    Estrin, Y.; Braasch, H.; Brechet, Y.

    1996-10-01

    A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.

  18. Numerical model for the shear rheology of two-dimensional wet foams with deformable bubbles.

    PubMed

    Kähärä, T; Tallinen, T; Timonen, J

    2014-09-01

    Shearing of two-dimensional wet foam is simulated using an introduced numerical model, and results are compared to those of experiments. This model features realistically deformable bubbles, which distinguishes it from previously used models for wet foam. The internal bubble dynamics and their contact interactions are also separated in the model, making it possible to investigate the effects of the related microscale properties of the model on the macroscale phenomena. Validity of model assumptions was proved here by agreement between the simulated and measured Herschel-Bulkley rheology, and shear-induced relaxation times. This model also suggests a relationship between the shear stress and normal stress as well as between the average degree of bubble deformation and applied shear stress. It can also be used to analyze suspensions of bubbles and solid particles, an extension not considered in this work.

  19. Dike propagation energy balance from deformation modeling and seismic release

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Alessandro; Aoki, Yosuke; Rivalta, Eleonora

    2017-06-01

    Magma is transported in the crust mainly by dike intrusions. In volcanic areas, dikes can ascend toward the free surface and also move by lateral propagation, eventually feeding flank eruptions. Understanding dike mechanics is a key to forecasting the expected propagation and associated hazard. Several studies have been conducted on dike mechanisms and propagation; however, a less in-depth investigated aspect is the relation between measured dike-induced deformation and the seismicity released during its propagation. We individuated a simple x that can be used as a proxy of the expected mechanical energy released by a propagating dike and is related to its average thickness. For several intrusions around the world (Afar, Japan, and Mount Etna), we correlate such mechanical energy to the seismic moment released by the induced earthquakes. We obtain an empirical law that quantifies the expected seismic energy released before arrest. The proposed approach may be helpful to predict the total seismic moment that will be released by an intrusion and thus to control the energy status during its propagation and the time of dike arrest.Plain Language SummaryDike propagation is a dominant mechanism for magma ascent, transport, and eruptions. Besides being an intriguing physical process, it has critical hazard implications. After the magma intrusion starts, it is difficult to predict when and where a specific horizontal dike is going to halt and what its final length will be. In our study, we singled an equation that can be used as a proxy of the expected mechanical energy to be released by the opening dike. We related this expected energy to the seismic moment of several eruptive intrusions around the world (Afar region, Japanese volcanoes, and Mount Etna). The proposed novel approach is helpful to estimate the total seismic moment to be released, therefore allowing potentially predicting when the dike will end its propagation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12374316','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12374316"><span>Estimation of 3-D left ventricular <span class="hlt">deformation</span> from medical images using biomechanical <span class="hlt">models</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Papademetris, Xenophon; Sinusas, Albert J; Dione, Donald P; Constable, R Todd; Duncan, James S</p> <p>2002-07-01</p> <p>The quantitative estimation of regional cardiac <span class="hlt">deformation</span> from three-dimensional (3-D) image sequences has important clinical implications for the assessment of viability in the heart wall. We present here a generic methodology for estimating soft tissue <span class="hlt">deformation</span> which integrates image-derived information with biomechanical <span class="hlt">models</span>, and apply it to the problem of cardiac <span class="hlt">deformation</span> estimation. The method is image modality independent. The images are segmented interactively and then initial correspondence is established using a shape-tracking approach. A dense motion field is then estimated using a transversely isotropic, linear-elastic <span class="hlt">model</span>, which accounts for the muscle fiber directions in the left ventricle. The dense motion field is in turn used to calculate the <span class="hlt">deformation</span> of the heart wall in terms of strain in cardiac specific directions. The strains obtained using this approach in open-chest dogs before and after coronary occlusion, exhibit a high correlation with strains produced in the same animals using implanted markers. Further, they show good agreement with previously published results in the literature. This proposed method provides quantitative regional 3-D estimates of heart <span class="hlt">deformation</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JOpt...17g5403S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JOpt...17g5403S"><span>Numerical <span class="hlt">model</span> for the <span class="hlt">deformation</span> of nucleated cells by optical stretchers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sraj, Ihab; Francois, Joshua; Marr, David W. M.; Eggleton, Charles D.</p> <p>2015-07-01</p> <p>In this paper, we seek to numerically study the <span class="hlt">deformation</span> of nucleated cells by single diode-laser bar optical stretchers. We employ a recently developed computational <span class="hlt">model</span>, the dynamic ray-tracing method, to determine the force distribution induced by optical stretchers on a cell encapsulating a nucleus of different optical properties. These optical forces are shape dependent and can <span class="hlt">deform</span> real non-rigid objects; thus resulting in dynamically changing distributions with cell and nucleus <span class="hlt">deformation</span>. A Chinese hamster ovary (CHO) cell is a common biological cell that is of interest to the biomedical community because of its use in recombinant protein therapeutics and is an example of a nucleated cell. To this end, we <span class="hlt">model</span> CHO cells as two concentric three-dimensional elastic capsules immersed in a fluid where the hydrodynamic forces are calculated using the immersed boundary method. We vary the inner capsule size to simulate different nucleus sizes. Our results show that the presence of a nucleus has a major effect on the force distribution on the cell surface and consequently on its net <span class="hlt">deformation</span>. Scattering and gradient forces are reported for different nucleus sizes and the effect of nucleus size on the cell <span class="hlt">deformation</span> is discussed quantitatively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RuPhJ..60..609L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RuPhJ..60..609L"><span><span class="hlt">Modeling</span> of High-Temperature Plastic <span class="hlt">Deformation</span> of Layered Composites Based on Alloys with L12 Superstructure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lipatnikova, Ya. D.; Solov'eva, Yu. V.; Solov'ev, A. N.; Valuiskaya, L. A.</p> <p>2017-08-01</p> <p>Method of mathematical <span class="hlt">modeling</span> is used to investigate macrolocalization of plastic <span class="hlt">deformation</span> and, in particular, the possibility of forming superlocalization bands in layered composites exposed to hightemperature uniaxial <span class="hlt">deformation</span>. <span class="hlt">Modeling</span> is based on a combination of continuum mechanics methods and dislocation kinetics of alloys with L12 superstructure. Numerical <span class="hlt">modeling</span> is performed by the finite elements method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8316E..0GO','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8316E..0GO"><span>Evaluation of <span class="hlt">deformation</span> accuracy of a virtual pneumoperitoneum method based on clinical trials for <span class="hlt">patient</span>-specific laparoscopic surgery simulator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oda, Masahiro; Qu, Jia Di; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku</p> <p>2012-02-01</p> <p>This paper evaluates <span class="hlt">deformation</span> accuracy of a virtual pneumoperitoneum method by utilizing measurement data of real <span class="hlt">deformations</span> of <span class="hlt">patient</span> bodies. Laparoscopic surgery is an option of surgical operations that is less invasive technique as compared with traditional surgical operations. In laparoscopic surgery, the pneumoperitoneum process is performed to create a viewing and working space. Although a virtual pneumoperitoneum method based on 3D CT image <span class="hlt">deformation</span> has been proposed for <span class="hlt">patient</span>-specific laparoscopy simulators, quantitative evaluation based on measurements obtained in real surgery has not been performed. In this paper, we evaluate <span class="hlt">deformation</span> accuracy of the virtual pneumoperitoneum method based on real <span class="hlt">deformation</span> data of the abdominal wall measured in operating rooms (ORs.) The evaluation results are used to find optimal <span class="hlt">deformation</span> parameters of the virtual pneumoperitoneum method. We measure landmark positions on the abdominal wall on a 3D CT image taken before performing a pneumoperitoneum process. The landmark positions are defined based on anatomical structure of a <span class="hlt">patient</span> body. We also measure the landmark positions on a 3D CT image <span class="hlt">deformed</span> by the virtual pneumoperitoneum method. To measure real <span class="hlt">deformations</span> of the abdominal wall, we measure the landmark positions on the abdominal wall of a <span class="hlt">patient</span> before and after the pneumoperitoneum process in the OR. We transform the landmark positions measured in the OR from the tracker coordinate system to the CT coordinate system. A positional error of the virtual pneumoperitoneum method is calculated based on positional differences between the landmark positions on the 3D CT image and the transformed landmark positions. Experimental results based on eight cases of surgeries showed that the minimal positional error was 13.8 mm. The positional error can be decreased from the previous method by calculating optimal <span class="hlt">deformation</span> parameters of the virtual pneumoperitoneum method from the experimental</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15350624','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15350624"><span>An efficient and scalable <span class="hlt">deformable</span> <span class="hlt">model</span> for virtual reality-based medical applications.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann</p> <p>2004-09-01</p> <p><span class="hlt">Modeling</span> of tissue <span class="hlt">deformation</span> is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively <span class="hlt">deformable</span> virtual tissues. In this paper, an efficient and scalable <span class="hlt">deformable</span> <span class="hlt">model</span> is presented for virtual-reality-based medical applications. It considers <span class="hlt">deformation</span> as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the <span class="hlt">model</span> parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the <span class="hlt">model</span> have been evaluated. The <span class="hlt">model</span> has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/133697','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/133697"><span>FISH analysis of a subtle familial Xp deletion in a female <span class="hlt">patient</span> with Madelung <span class="hlt">deformity</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Hsu, T.Y.; Gibson, L.H.; Pober, B.R.</p> <p>1994-09-01</p> <p>A subtle deletion of Xp [del(X)(p22.32)]was identified by high-resolution chromosome analysis in a twelve-year-old female with short stature (<2 percentile) and Madelung <span class="hlt">deformity</span> suggestive of Turner syndrome. The proband`s mother, who has short stature (<2 percentile) and demyelinating disorder, also showed this deletion. The maternal grandmother is of normal height and carries two normal X chromosomes. Both the <span class="hlt">patient</span> and her mother have no other physical abnormalities and are of normal intelligence. To confirm and delineate this Xp deletion, fluorescence in situ hybridization (FISH) was performed on metaphases from the <span class="hlt">patient</span> and her mother using probes of DXYS20 (a pseudoautosomal locus), DXS232A, and a newly isolated Xp YAC clone, YHX2, whose relative map position is unknown. Hybridization signals of DXS232A were detected on both X chromosomes, and DXYS20 and YHX2 were missing from one of the X`s of both the <span class="hlt">patient</span> and her mother. YHX2 was thus placed distal to DXS232A (tel-DXYS20-YHX2-S232A-cen). This familial deletion with a breakpoint distal to DXS232A, which is located at -900 Kb telomeric to STS locus, appears to be the smallest Xp deletion reported thus far. Short stature is consistently associated with females carrying Xp deletions. Madelung <span class="hlt">deformity</span> has been found in some <span class="hlt">patients</span> with Turner syndrome or Dyschondrosteosis but it has not been reported in <span class="hlt">patients</span> with Xp deletion. Our results suggest that the phenotype of our <span class="hlt">patient</span> is associated with her chromosome abnormality. Due to the subtlety of the deletion identified in our <span class="hlt">patient</span> and her mother, females presenting with short stature warrant careful clinical and cytogenetic evaluation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992PEPI...70...64B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992PEPI...70...64B"><span>Experimental <span class="hlt">deformation</span> of two-component IRM in magnetite-bearing limestone: a <span class="hlt">model</span> for the behaviour of NRM during natural <span class="hlt">deformation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borradaile, Graham J.</p> <p>1992-02-01</p> <p>Experimental, room temperature, triaxial <span class="hlt">deformation</span> at 200 MPa (2 kbar) and at a controlled strain rate of 10 -5 s -1 is performed on three limestones with magnetic behaviour dominated by single-domain magnetite. Permanent <span class="hlt">deformation</span> is achieved mainly by twinning of calcite. Isothermal remanent magnetisation (IRM) in the samples is reduced in magnitude, especially when parallel to compressive stress. The decrease in magnitude correlates slightly better with peak stress than with strain, in accord with previous work in uniaxial tests, indicating the role of stress in <span class="hlt">deformational</span> 'demagnetisation'. Remanences have their vector plots condensed after <span class="hlt">deformation</span>, particularly in the range 0-30 mT. A two-component IRM is used as a simple <span class="hlt">model</span> of a multi-component natural remanent magnetisation (NRM). The resultant vector is deflected by the action of stress towards whichever components are least reduced by <span class="hlt">deformation</span>; in the case of magnetite-bearing rocks this appears to be the most coercive components. In the case of a natural <span class="hlt">deformation</span>, it is predicted that the effects of stress at any stage should be to remove progressively any low-coercivity components added to an NRM by remagnetisation during tectonism, especially those parallel to compressive stress.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840004594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840004594"><span>Crustal <span class="hlt">deformation</span>, the earthquake cycle, and <span class="hlt">models</span> of viscoelastic flow in the asthenosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cohen, S. C.; Kramer, M. J.</p> <p>1983-01-01</p> <p>The crustal <span class="hlt">deformation</span> patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the <span class="hlt">deformation</span> pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic <span class="hlt">models</span> with a common finite element computational technique. The <span class="hlt">models</span> involve strike-slip faulting and include a thin channel asthenosphere <span class="hlt">model</span>, a <span class="hlt">model</span> with a varying thickness lithosphere, and a <span class="hlt">model</span> with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface <span class="hlt">deformation</span> pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface <span class="hlt">deformation</span> pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface <span class="hlt">deformation</span> pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various <span class="hlt">models</span> is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the <span class="hlt">model</span> differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840064026&hterms=earthquake+description&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearthquake%2Bdescription','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840064026&hterms=earthquake+description&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dearthquake%2Bdescription"><span>Crustal <span class="hlt">deformation</span>, the earthquake cycle, and <span class="hlt">models</span> of viscoelastic flow in the asthenosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cohen, S. C.; Kramer, M. J.</p> <p>1984-01-01</p> <p>The crustal <span class="hlt">deformation</span> patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the <span class="hlt">deformation</span> pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic <span class="hlt">models</span> with a common finite element computational technique. The <span class="hlt">models</span> involve strike-slip faulting and include a thin channel asthenosphere <span class="hlt">model</span>, a <span class="hlt">model</span> with a varying thickness lithosphere, and a <span class="hlt">model</span> with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface <span class="hlt">deformation</span> pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface <span class="hlt">deformation</span> pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface <span class="hlt">deformation</span> pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various <span class="hlt">models</span> is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the <span class="hlt">model</span> differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130000321','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130000321"><span>Droplet <span class="hlt">Deformation</span> Prediction with the Droplet Deormation and Break Up <span class="hlt">Model</span> (DDB)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vargas, Mario</p> <p>2012-01-01</p> <p>The Droplet <span class="hlt">Deformation</span> and Breakup <span class="hlt">Model</span> was used to predict <span class="hlt">deformation</span> of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady <span class="hlt">model</span> was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the <span class="hlt">model</span>. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the <span class="hlt">model</span> which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The <span class="hlt">model</span> predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the <span class="hlt">model</span> predictions did not agree with the experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EPJA...20..119P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EPJA...20..119P"><span>Spherical shell <span class="hlt">model</span> description of <span class="hlt">deformation</span> and superdeformation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poves, A.; Caurier, E.; Nowacki, F.; Zuker, A.</p> <p>2003-04-01</p> <p>Large-scale shell <span class="hlt">model</span> calculations give at present a very accurate and comprehensive description of light and medium-light nuclei, specially when 0hbar ω spaces are adequate. The full pf-shell calculations have made it possible to describe many collective features in an spherical shell <span class="hlt">model</span> context. Calculations including two major oscillator shells have proven able to describe also superdeformed bands.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030112671','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030112671"><span>Analytical <span class="hlt">Modeling</span> of the High Strain Rate <span class="hlt">Deformation</span> of Polymer Matrix Composites</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos</p> <p>2003-01-01</p> <p>The results presented here are part of an ongoing research program to develop strain rate dependent <span class="hlt">deformation</span> and failure <span class="hlt">models</span> for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to <span class="hlt">model</span> the nonlinear, strain rate dependent <span class="hlt">deformation</span> of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile <span class="hlt">deformation</span> of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical <span class="hlt">model</span> correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent <span class="hlt">deformation</span> of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective <span class="hlt">deformation</span> of the unit cell. The composite mechanics are verified by analyzing the <span class="hlt">deformation</span> of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMIN11B1299K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMIN11B1299K"><span>Low Latency Sensor Web Integration of Seismic Tomography, InSAR, and <span class="hlt">Deformation</span> <span class="hlt">Models</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kedar, S.; Masterlark, T.; Lees, J. M.; Lundgren, P.; Song, W.</p> <p>2011-12-01</p> <p>In the volcanic environment, seismometers are sensitive to high-frequency, brittle failure earthquakes (tectonic-shear and dike intrusion events) and volcanic tremor. Real-time seismic analysis provides epicenter location, fault parameters, and, given enough data, the geometry of magmatic intrusion with short latency. Due to the limits of the seismic frequency response, however, seismic data analysis can only infer magma movement and volume change through their manifestation on changes in the elastic properties of the volcano obtained from tomography, and when possible from tracking earthquake hypocenters. Geodetic measurements (GPS, leveling, InSAR) on the other hand, measure volume changes and surface strain more directly by tracking surface <span class="hlt">deformation</span>. Geodetic observations, however, lack the sensitivity to distinguish between various sources of surface <span class="hlt">deformation</span>. In particular, the separation of <span class="hlt">deformation</span> due to magma migration from all other extraneous sources is a key limitation of geodetic data inversion. We will present a framework in which high-resolution, real-time seismic tomography, calculated by a distributed network of seismic sensor nodes, can be coupled with low-latency InSAR acquisition and processing to constrain three-dimensional(3D) finite element <span class="hlt">model</span> (FEM) solutions for the volcano <span class="hlt">deformation</span> sources. The FEM simulates pressurized magma chambers (a <span class="hlt">deformation</span> source) embedded in domains having a distribution of material properties, determined from seismic tomography <span class="hlt">models</span>, and the irregular relief of a volcano, according to available digital elevation <span class="hlt">models</span> (DEMs). The mass and volume estimates thus calculated, are then re-incorporated into the next iteration of the seismic tomography. This is done by first delineating subsurface regions where magma injection is required by the <span class="hlt">deformation</span> <span class="hlt">models</span>. <span class="hlt">Model</span> parameters within these 3D structures are constrained by restricting the range of velocity (or Q) those voxels (<span class="hlt">model</span> elemets) can</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMDI31A1940N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMDI31A1940N"><span>Preliminary <span class="hlt">models</span> of normal fault development in subduction zones: lithospheric strength and outer rise <span class="hlt">deformation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naliboff, J. B.; Billen, M. I.</p> <p>2010-12-01</p> <p>A characteristic feature of global subduction zones is normal faulting in the outer rise region, which reflects flexure of the downgoing plate in response to the slab pull force. Variations in the patterns of outer rise normal faulting between different subduction zones likely reflects both the magnitude of flexural induced topography and the strength of the downgoing plate. In particular, the rheology of the uppermost oceanic lithosphere is likely to strongly control the faulting patterns, which have been well documented recently in both the Middle and South American trenches. These recent observations of outer rise faulting provide a unique opportunity to test different rheological <span class="hlt">models</span> of the oceanic lithosphere using geodynamic numerical experiments. Here, we develop a new approach for <span class="hlt">modeling</span> <span class="hlt">deformation</span> in the outer rise and trench regions of downgoing slabs, and discuss preliminary 2-D numerical <span class="hlt">models</span> examining the relationship between faulting patterns and the rheology of the oceanic lithosphere. To <span class="hlt">model</span> viscous and brittle <span class="hlt">deformation</span> within the oceanic lithosphere we use the CIG (Computational Infrastructure for Geodynamics) finite element code Gale, which is designed to solve long-term tectonic problems. In order to resolve <span class="hlt">deformation</span> features on geologically realistic scales (< 1 km), we <span class="hlt">model</span> only the portion of the subduction system seaward of the trench. Horizontal and vertical stress boundary conditions on the side walls drive subduction and reflect, respectively, the ridge-push and slab-pull plate-driving forces. The initial viscosity structure of the oceanic lithosphere and underlying asthenosphere follow a composite viscosity law that takes into account both Newtonian and non-Newtonian <span class="hlt">deformation</span>. The viscosity structure is consequently governed primarily by the strain rate and thermal structure, which follows a half-space cooling <span class="hlt">model</span>. Modification of the viscosity structure and development of discrete shear zones occurs during yielding</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3767R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3767R"><span>SDEM <span class="hlt">modelling</span> of <span class="hlt">deformation</span> associated with a listric fault system and associated fluid flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasmussen, Marie L.; Clausen, Ole R.; Egholm, David L.; Andresen, Katrine J.</p> <p>2016-04-01</p> <p>Numerical <span class="hlt">modelling</span> of geological structures using FEM, DEM and SDEM methods as well as analogue <span class="hlt">modelling</span> are widely used in order to achieve a better understanding of the kinematics and dynamics during <span class="hlt">deformation</span>. The methods are furthermore the ultimate source for mapping (observing) the true geometry of geological structures as well as subsurface fluid flow phenomena in 3D seismic data developed for hydrocarbon exploration. Here we use 3D seismic data and SDEM <span class="hlt">modelling</span> to suggest a dynamic-kinematic evolution of the <span class="hlt">deformation</span> in the hangingwall of a listric fault overlying an active salt roller. We use the results to obtain a better understanding of the fluid flow in a complex <span class="hlt">deformed</span> hangingwall. The case study is focused at the D-1 fault trend in the western part of the Norwegian Danish Basin, at the northern slope of the Ringkøbing-Fyn High. The D-1 main fault detaches along the northern flank of a Zechstein salt roller which was active during the Cenozoic. The seismic analysis shows a system of secondary normal antithetic and synthetic faults dipping approximately 50-60dg within the hangingwall. Shallow gas is trapped in the hangingwall and the secondary faults often confine the accumulations i.e. indicating that the secondary faults are sealing. The <span class="hlt">modelling</span> confirms that the geometry of the secondary faults is highly controlled by the rheology of different layers in the hangingwall but also on the intensity of the salt movement. The <span class="hlt">modelling</span> also suggests the presence of vertical <span class="hlt">deformation</span> zones; structures which are not directly observed on the seismic data. The vertical <span class="hlt">deformation</span> zones are related to the differential vertical movement of the strata due to salt migration. A neural network trained chimney probability cube shows high probabilities for the presence of minor vertical gas chimneys below the gas accumulations suggesting that vertical fluid migration in the hangingwall occurred in areas with significant vertical salt movements. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/1083399','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/1083399"><span>A Lattice Boltzmann Fictitious Domain Method for <span class="hlt">Modeling</span> Red Blood Cell <span class="hlt">Deformation</span> and Multiple-Cell Hydrodynamic Interactions in Flow</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Shi, Xing; Lin, Guang; Zou, Jianfeng; Fedosov, Dmitry A.</p> <p>2013-07-20</p> <p>To <span class="hlt">model</span> red blood cell (RBC) <span class="hlt">deformation</span> in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network <span class="hlt">model</span> for simulations of red blood cell <span class="hlt">deformation</span>. The flow is simulated by the lattice Boltzmann method with an external force, while the network <span class="hlt">model</span> is used for <span class="hlt">modeling</span> red blood cell <span class="hlt">deformation</span> and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network <span class="hlt">model</span>, sThe stretching numerical tests on both coarse and fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network <span class="hlt">model</span>. In addition, RBC <span class="hlt">deformation</span> in pipe flow and in shear flow is simulated, revealing the capacity of the current method for <span class="hlt">modeling</span> RBC <span class="hlt">deformation</span> in various flows.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23147624','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23147624"><span>Rate of correction after asymmetrical physeal suppression in valgus <span class="hlt">deformity</span>: analysis using a linear mixed <span class="hlt">model</span> application.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sung, Ki Hyuk; Ahn, Soyeon; Chung, Chin Youb; Lee, Kyoung Min; Kim, Tae Won; Han, Ho Sung; Kim, Dae Ha; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Park, Moon Seok</p> <p>2012-12-01</p> <p>This study was performed to estimate the rate of angular correction after asymmetrical physeal suppression and analyze the factors that influence the rate of correction by using a linear mixed <span class="hlt">model</span> application. A total of 175 physes (72 distal femoral, 70 proximal tibial, and 33 distal tibial) from 78 consecutive <span class="hlt">patients</span> with valgus angular <span class="hlt">deformity</span> of the lower limb who underwent asymmetrical physeal suppression were included. The anatomic lateral distal femoral angle, the anatomic lateral proximal tibial angle, and the anatomic lateral distal tibial angle were measured from the teleroentgenograms of the <span class="hlt">patients</span>' preoperative visit and periodic follow-ups. The rate of angular correction was adjusted by multiple factors by using a linear mixed <span class="hlt">model</span> with age, sex, and surgical method as the fixed effects and each subject as the random effect. The final <span class="hlt">model</span> included the age-specific and surgical method-specific rate and sex-specific and surgical method-specific intercept. Multivariate analysis was performed for this <span class="hlt">model</span>. In younger children (boys 14 y or younger and girls 12 y or younger), the rate of correction of valgus <span class="hlt">deformity</span> at the distal femur, proximal tibia, and distal tibia was 0.71 degrees/month (8.5 degrees/y), 0.40 degrees/month (4.8 degrees/y), and 0.48 degrees/month (5.8 degrees/y), respectively. In older children, the rate of correction of valgus <span class="hlt">deformity</span> at the distal femur, proximal tibia, and distal tibia was 0.39 degrees/month (4.7 degrees/y), 0.29 degrees/month (3.5 degrees/y), and 0.48 degrees/month (5.8 degrees/y), respectively. The rate of correction at the distal femur was significantly lower in older children (P = 0.025). The rate of angular correction at the proximal tibia was significantly faster in the screw group than in the staple group (P = 0.046). Asymmetrical physeal suppression with staples, percutaneous transphyseal screws, and permanent method all are effective methods for treating valgus <span class="hlt">deformity</span> in growing children</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3786010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3786010"><span>Spinal <span class="hlt">deformity</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bunnell, W P</p> <p>1986-12-01</p> <p>Spinal <span class="hlt">deformity</span> is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage <span class="hlt">patients</span>. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the <span class="hlt">deformity</span>. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MPLA...3050141B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MPLA...3050141B"><span>Extended sigma-<span class="hlt">model</span> in nontrivially <span class="hlt">deformed</span> field-antifield formalism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batalin, Igor A.; Lavrov, Peter M.</p> <p>2015-08-01</p> <p>We propose an action for the extended sigma-<span class="hlt">models</span> in the most general setting of the kinetic term allowed in the nontrivially <span class="hlt">deformed</span> field-antifield formalism. We show that the classical motion equations do naturally take their desired canonical form.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA499496','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA499496"><span>Finite <span class="hlt">Deformation</span> by Elasticity, Slip, and Twinning: Atomistic Considerations, Continuum <span class="hlt">Modeling</span>, and Application to Ceramic Crystals</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-03-01</p> <p>finite shear strains associated with slip and <span class="hlt">deformation</span> twinning and improper lattice rotations across twin boundaries . Nonlinear anisotropic...of (2) results from gradients in twin fractions, e.g. interface dislocations at tapered twin boundaries . Disclination <span class="hlt">models</span> of twins (Clayton et</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhBio..12a6005C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhBio..12a6005C"><span>Cell resolved, multiparticle <span class="hlt">model</span> of plastic tissue <span class="hlt">deformations</span> and morphogenesis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Czirok, Andras; Isai, Dona Greta</p> <p>2015-02-01</p> <p>We propose a three-dimensional mechanical <span class="hlt">model</span> of embryonic tissue dynamics. Mechanically coupled adherent cells are represented as particles interconnected with elastic beams which can exert non-central forces and torques. Tissue plasticity is <span class="hlt">modeled</span> by a stochastic process consisting of a connectivity change (addition or removal of a single link) followed by a complete relaxation to mechanical equilibrium. In particular, we assume that (i) two non-connected, but adjacent particles can form a new link; and (ii) the lifetime of links is reduced by tensile forces. We demonstrate that the proposed <span class="hlt">model</span> yields a realistic macroscopic elasto-plastic behavior and we establish how microscopic <span class="hlt">model</span> parameters determine material properties at the macroscopic scale. Based on these results, microscopic parameter values can be inferred from tissue thickness, macroscopic elastic modulus and the magnitude and dynamics of intercellular adhesion forces. In addition to their mechanical role, <span class="hlt">model</span> particles can also act as simulation agents and actively modulate their connectivity according to specific rules. As an example, anisotropic link insertion and removal probabilities can give rise to local cell intercalation and large scale convergent extension movements. The proposed stochastic simulation of cell activities yields fluctuating tissue movements which exhibit the same autocorrelation properties as empirical data from avian embryos.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhSS...59..132G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhSS...59..132G"><span>Elastic properties of compressed rare-gas crystals in a <span class="hlt">model</span> of <span class="hlt">deformable</span> atoms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorbenko, Ie. Ie.; Troitskaya, E. P.; Pilipenko, E. A.</p> <p>2017-01-01</p> <p>The elastic properties of compressed Ne, Ar, Kr, and Xe rare-gas crystals were studied in a <span class="hlt">model</span> of <span class="hlt">deformable</span> and polarizable atoms. The second-order Fuchs elasticity moduli, their pressure derivatives, and the Zener elastic anisotropy ratio were calculated with allowance for three-body interaction and quadrupole <span class="hlt">deformation</span> in electron shells within a wide pressure range. Comparison with the experiment and results of other authors was performed. In xenon at a compression of 0.6, the shear modulus B 44 was observed to become zero, thus corresponding to the FCC-HCP transition at 75 GPa.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/577570','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/577570"><span><span class="hlt">Modelling</span> the effect of reinforcement <span class="hlt">deformation</span> on the filling phase during liquid composite moulding</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Long, A.C.; Rudd, C.D.; Blanchard, P.J.; Smith, P.; Chan, A.W.</p> <p>1997-12-31</p> <p>In recent years a number of researchers have developed simulations of the filling phase during liquid composite moulding (LCM). These rely on an accurate knowledge of the reinforcement permeability, which is usually determined experimentally using a simple flow experiment based on roll-stock reinforcement samples. However this neglects the effects of reinforcement <span class="hlt">deformation</span>, which may result in a highly nonuniform distribution of fibre orientations and volume fractions. This paper attempts to account for these variations by integrating fabric drape <span class="hlt">modelling</span> and LCM flow simulation software packages. Using this approach, the effects of reinforcement <span class="hlt">deformation</span> on the filling phase are demonstrated on a generic component geometry using alternative injection strategies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JNR....18...42L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JNR....18...42L"><span><span class="hlt">Modeling</span> the <span class="hlt">deformation</span> behavior of nanocrystalline alloy with hierarchical microstructures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Hongxi; Zhou, Jianqiu; Zhao, Yonghao</p> <p>2016-02-01</p> <p>A mechanism-based plasticity <span class="hlt">model</span> based on dislocation theory is developed to describe the mechanical behavior of the hierarchical nanocrystalline alloys. The stress-strain relationship is derived by invoking the impeding effect of the intra-granular solute clusters and the inter-granular nanostructures on the dislocation movements along the sliding path. We found that the interaction between dislocations and the hierarchical microstructures contributes to the strain hardening property and greatly influence the ductility of nanocrystalline metals. The analysis indicates that the proposed <span class="hlt">model</span> can successfully describe the enhanced strength of the nanocrystalline hierarchical alloy. Moreover, the strain hardening rate is sensitive to the volume fraction of the hierarchical microstructures. The present <span class="hlt">model</span> provides a new perspective to design the microstructures for optimizing the mechanical properties in nanostructural metals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910605G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910605G"><span><span class="hlt">Modelling</span> and visualizing distributed compressional plate <span class="hlt">deformation</span> using GPlates2.0: The Arctic Eurekan Orogeny</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gion, Austin; Williams, Simon; Müller, Dietmar</p> <p>2017-04-01</p> <p>Present-day distributed plate <span class="hlt">deformation</span> is being mapped and simulated in great detail, largely based on satellite observations. In contrast, the <span class="hlt">modelling</span> of and data assimilation into <span class="hlt">deforming</span> plate <span class="hlt">models</span> for the geological past is still in its infancy. The recently released GPLates2.0 (www.gplates.org) software provides a framework for building plate <span class="hlt">models</span> including diffuse <span class="hlt">deformation</span>. Here we present an application example for the Eurekan orogeny, a Paleogene tectonic event driven by sea floor spreading in the Labrador Sea and Baffin Bay, resulting in compression between NW Greenland and the Canadian Arctic. The complexity of the region has prompted the development of countless tectonic <span class="hlt">models</span> over the last 100 years. Our new tectonic <span class="hlt">model</span> incorporates a variety of geological field and geophysical observations to <span class="hlt">model</span> rigid and diffuse plate <span class="hlt">deformation</span> in this region. Compression driven by Greenland's northward motion contemporaneous with sea floor spreading in the Labrador Sea, shortens Ellesmere Island in a "fan" like pattern, creating a series of thrust faults. Our <span class="hlt">model</span> incorporates two phases of tectonic events during the orogeny from 63-35 Ma. Phase one from 63 to 55 Ma incorporates 85 km of Paleocene extension between Ellesmere Island and Devon Island with extension of 20 km between Axel Heiberg Island and Ellesmere Island and 85 km of left-lateral strike-slip along the Nares Strait/Judge Daly Fault System, matching a range of 50-100 km indicated by the offset of marker beds, facies contacts, and platform margins between the conjugate Greenland and Ellesmere Island margins. Phase two from 55 to 35 Ma captures 30 km of east-west shortening and 200 km of north-south shortening from Ellesmere Island to the Canadian Arctic Island margins. Our <span class="hlt">model</span> extends the boundaries of the Eurekan Orogeny northward, considering its effect on the Lomonosov Ridge, Morris Jessup Rise, and the Yermak Plateau , favouring a <span class="hlt">model</span> in which the Lomonosov Ridge moves</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7261E..3AO','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7261E..3AO"><span>A <span class="hlt">deformation</span> <span class="hlt">model</span> for non-rigid registration of the kidney</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ong, Rowena E.; Glisson, Courtenay L.; Herrell, S. Duke; Miga, Michael I.; Galloway, Robert</p> <p>2009-02-01</p> <p>The development of an image-guided renal surgery system may aid tumor resection during partial nephrectomies. This system would require the registration of pre-operative kidney CT or MR scans to the physical kidney; however, the amount of non-rigid <span class="hlt">deformation</span> occurring during surgery and whether it can be corrected for in an image-guided system is unknown. One possible source of non-rigid <span class="hlt">deformation</span> is a change in pressure within the kidney: during surgery, clamping of the renal artery and vein results in a loss of perfusion, such that the subsequent cutting of the kidney and fluid outflow may cause a decrease in intrarenal pressure. In this work, we attempt to characterize the <span class="hlt">deformation</span> due to cutting of the kidney and subsequent changes in intrarenal pressure. To accomplish this, we perfused a resected porcine kidney at a physiologically realistic pressure, clamped the renal vessels, and cut the kidney using a tracked scalpel. The resulting <span class="hlt">deformation</span> was tracked in a CT scanner using 15-20 glass bead fiducials attached to the kidney surface. A modified form of Biot's consolidation <span class="hlt">model</span> was used to simulate the <span class="hlt">deformation</span>, and the accuracy was assessed by calculating the target registration error and image similarity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28696307','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28696307"><span><span class="hlt">Modeling</span> adsorption properties of structurally <span class="hlt">deformed</span> metal-organic frameworks using structure-property map.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jeong, WooSeok; Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan</p> <p>2017-07-25</p> <p>Structural <span class="hlt">deformation</span> and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to <span class="hlt">model</span> these amorphous materials using conventional computational methods. In this work, we show that a structure-property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally <span class="hlt">deformed</span> MOFs. The structure-property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of <span class="hlt">deformed</span> SNU-200, MOF-5, and Ni-MOF-74 onto this structure-property map, we show that the experimentally <span class="hlt">deformed</span> MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a <span class="hlt">deformed</span> MOF are selected from a structure-property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.er.usgs.gov/publication/70019033','USGSPUBS'); return false;" href="http://pubs.er.usgs.gov/publication/70019033"><span>Three-dimensional <span class="hlt">models</span> of <span class="hlt">deformation</span> near strike-slip faults</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>ten Brink, U.S.; Katzman, Rafael; Lin, J.</p> <p>1996-01-01</p> <p>We use three-dimensional elastic <span class="hlt">models</span> to help guide the kinematic interpretation of crustal <span class="hlt">deformation</span> associated with strike-slip faults. <span class="hlt">Deformation</span> of the brittle upper crust in the vicinity of strike-slip fault systems is <span class="hlt">modeled</span> with the assumption that upper crustal <span class="hlt">deformation</span> is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in <span class="hlt">deformation</span> due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In <span class="hlt">models</span> with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal <span class="hlt">deformation</span> and on the amount of rotation around horizontal and vertical axes. Strong fault <span class="hlt">models</span> have more localized <span class="hlt">deformation</span> at the tip of the faults, and the <span class="hlt">deformation</span> is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit <span class="hlt">models</span> with weak faults better than <span class="hlt">models</span> with strong faults. Our <span class="hlt">models</span> also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21632054','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21632054"><span>Wave propagation in protein microtubules <span class="hlt">modeled</span> as orthotropic elastic shells including transverse shear <span class="hlt">deformations</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Daneshmand, Farhang; Ghavanloo, Esmaeal; Amabili, Marco</p> <p>2011-07-07</p> <p>Wave propagation along the microtubules is one of the issues of major concern in various microtubule cellular functions. In this study, the general wave propagation behavior in protein microtubules is investigated based on a first-order shear <span class="hlt">deformation</span> shell theory for orthotropic materials, with particular emphasis on the role of strongly anisotropic elastic properties of microtubules. According to experimental observation, the first-order shear <span class="hlt">deformation</span> theory is used for the <span class="hlt">modeling</span> of microtubule walls. A general displacement representation is introduced and a type of coupled polynomial eigenvalue problem is developed. Numerical examples describe the effects of shear <span class="hlt">deformation</span> and rotary inertia on wave velocities in orthotropic microtubules. Finally, the influences of the microtubule shear modulus, axial external force, effective thickness and material temperature dependency on wave velocities along the microtubule protofilaments, helical pathway and radial directions are elucidated. Most results presented in the present investigation have been absent from the literature for the wave propagation in microtubules.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17762086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17762086"><span>A <span class="hlt">deformable</span> lung tumor tracking method in fluoroscopic video using active shape <span class="hlt">models</span>: a feasibility study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Qianyi; Hamilton, Russell J; Schowengerdt, Robert A; Jiang, Steve B</p> <p>2007-09-07</p> <p>A dynamic multi-leaf collimator (DMLC) can be used to track a moving target during radiotherapy. One of the major benefits for DMLC tumor tracking is that, in addition to the compensation for tumor translational motion, DMLC can also change the aperture shape to conform to a <span class="hlt">deforming</span> tumor projection in the beam's eye view. This paper presents a method that can track a <span class="hlt">deforming</span> lung tumor in fluoroscopic video using active shape <span class="hlt">models</span> (ASM) (Cootes et al 1995 Comput. Vis. Image Underst. 61 38-59). The method was evaluated by comparing tracking results against tumor projection contours manually edited by an expert observer. The evaluation shows the feasibility of using this method for precise tracking of lung tumors with <span class="hlt">deformation</span>, which is important for DMLC-based real-time tumor tracking.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JOM....67e.966K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JOM....67e.966K"><span><span class="hlt">Modeling</span> the Hot Ductility of AA6061 Aluminum Alloy After Severe Plastic <span class="hlt">Deformation</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khamei, A. A.; Dehghani, K.; Mahmudi, R.</p> <p>2015-05-01</p> <p>Solutionized AA6061 aluminum alloy was processed by equal-channel angular pressing followed by cold rolling. The hot ductility of the material was studied after severe plastic <span class="hlt">deformation</span>. The hot tensile tests were carried out in the temperature range of 300-500°C and at the strain rates of 0.0005-0.01 s-1. Depending on the temperature and strain rate, the applied strain level exhibited significant effects on the hot ductility, strain-rate sensitivity, and activation energy. It can be suggested that the possible mechanism dominated the hot <span class="hlt">deformation</span> during tensile testing is dynamic recovery and dislocation creep. Constitutive equations were developed to <span class="hlt">model</span> the hot ductility of the severe plastic <span class="hlt">deformed</span> AA6061 alloy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25226930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25226930"><span>Thermal-mechanical <span class="hlt">deformation</span> <span class="hlt">modelling</span> of soft tissues for thermal ablation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xin; Zhong, Yongmin; Jazar, Reza; Subic, Aleksandar</p> <p>2014-01-01</p> <p><span class="hlt">Modeling</span> of thermal-induced mechanical behaviors of soft tissues is of great importance for thermal ablation. This paper presents a method by integrating the heating process with thermal-induced mechanical <span class="hlt">deformations</span> of soft tissues for simulation and analysis of the thermal ablation process. This method combines bio-heat transfer theories, constitutive elastic material law under thermal loads as well as non-rigid motion dynamics to predict and analyze thermal-mechanical <span class="hlt">deformations</span> of soft tissues. The 3D governing equations of thermal-mechanical soft tissue <span class="hlt">deformation</span> are discretized by using the finite difference scheme and are subsequently solved by numerical algorithms. Experimental results show that the proposed method can effectively predict the thermal-induced mechanical behaviors of soft tissues, and can be used for the thermal ablation therapy to effectively control the delivered heat energy for cancer treatment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22306210','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22306210"><span>A <span class="hlt">deformation</span> of quantum affine algebra in squashed Wess-Zumino-Novikov-Witten <span class="hlt">models</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Kawaguchi, Io; Yoshida, Kentaroh</p> <p>2014-06-01</p> <p>We proceed to study infinite-dimensional symmetries in two-dimensional squashed Wess-Zumino-Novikov-Witten <span class="hlt">models</span> at the classical level. The target space is given by squashed S³ and the isometry is SU(2){sub L}×U(1){sub R}. It is known that SU(2){sub L} is enhanced to a couple of Yangians. We reveal here that an infinite-dimensional extension of U(1){sub R} is a <span class="hlt">deformation</span> of quantum affine algebra, where a new <span class="hlt">deformation</span> parameter is provided with the coefficient of the Wess-Zumino term. Then we consider the relation between the <span class="hlt">deformed</span> quantum affine algebra and the pair of Yangians from the viewpoint of the left-right duality of monodromy matrices. The integrable structure is also discussed by computing the r/s-matrices that satisfy the extended classical Yang-Baxter equation. Finally, two degenerate limits are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhSS...55..389T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhSS...55..389T"><span>Elastic properties of compressed crystalline Ne in the <span class="hlt">model</span> of <span class="hlt">deformable</span> atoms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troitskaya, E. P.; Chabanenko, V. V.; Zhikharev, I. V.; Gorbenko, Ie. Ie.; Pilipenko, E. A.</p> <p>2013-02-01</p> <p>An ab initio version of the <span class="hlt">model</span> with <span class="hlt">deformable</span> atoms has been constructed to investigate the elastic properties of compressed crystalline neon. Approximations for the calculating parameters of quadrupole <span class="hlt">deformation</span> of atomic electron shells have been discussed. It has been shown that the pressure dependence of the deviation from the Cauchy relation δ is the result of two competitive interactions, namely, the many-body and electron-phonon interactions, which manifests itself in the <span class="hlt">deformation</span> of atomic electron shells during the shift of nuclei. In the case of Ne, contributions of these interactions are compensated to a large degree, which provides a weakly pressure-dependent positive value for δ. The agreement of calculated elastic moduli and deviations from the Cauchy relation for Ne with the experiment is good.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23232215','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23232215"><span>Proximal junctional kyphosis results in inferior SRS pain subscores in adult <span class="hlt">deformity</span> <span class="hlt">patients</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Han Jo; Bridwell, Keith H; Lenke, Lawrence G; Park, Moon Soo; Ahmad, Azeem; Song, Kwang-Sup; Piyaskulkaew, Chaiwat; Hershman, Stuart; Fogelson, Jeremy; Mesfin, Addisu</p> <p>2013-05-15</p> <p>Retrospective comparative study. We aimed to examine the difference in clinical outcomes in proximal junctional kyphosis (PJK). To date, PJK has been primarily a radiographical finding. Inferior outcomes associated with PJK have not been reported. We performed an analysis of PJK in adult <span class="hlt">deformity</span> <span class="hlt">patients</span> to identify risk factors and to evaluate clinical outcomes. A total of 364 <span class="hlt">patients</span> at a single institution from 2002 to 2007 with adult scoliosis, with an average 3.5 years' follow-up were analyzed. Inclusion criteria were age more than 18 years and fusion greater than 5 levels from any thoracic upper instrumented vertebrae to any lower instrumented vertebrae. Cobb measurements in the coronal and sagittal plane in addition to measurements of the PJK angle at posto