NASA Technical Reports Server (NTRS)
Stackhouse, P. W., Jr.; Gupta, S. K.; Cox, S. J.; Chiacchio, M.; Mikovitz, J. C.
2004-01-01
The U.S. National Aeronautics and Space Administration (NASA) based Surface Radiation Budget (SRB) Project in association with the World Climate Research Programme Global Energy and Water Cycle Experiment (WCRP/GEWEX) is preparing a new 1 deg x 1 deg horizontal resolution product for distribution scheduled for release in early 2001. The new release contains several significant upgrades from the previous version. This paper summarizes the most significant upgrades and presents validation results as an assessment of the new data set.
Talbot, Christopher M; Marshall, Justin
2010-10-01
Coleoid cephalopods (octopus, cuttlefish and squid) potentially possess polarization sensitivity (PS) based on photoreceptor structure, but this idea has rarely been tested behaviourally. Here, we use a polarized, striped optokinetic stimulus to demonstrate PS in the striped pyjama squid, Sepioloidea lineolata. This species displayed strong, consistent optokinetic nystagmic eye movements in response to a drum with stripes producing e-vectors set to 0 deg, 45 deg, 90 deg and 135 deg that would only be visible to an animal with PS. This is the first behavioural demonstration of a polarized optokinetic response in any species of cephalopod. This species, which typically sits beneath the substrate surface looking upwards for potential predators and prey, possesses a dorsally shifted horizontal pupil slit. Accordingly, it was found to possess a horizontal strip of high-density photoreceptors shifted ventrally in the retina, suggesting modifications such as a change in sensitivity or resolution to the dorsal visual field.
Hexagonal Pixels and Indexing Scheme for Binary Images
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
2004-01-01
A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Fulakeza, Matthew B.
2013-01-01
Five annual climate cycles (1998-2002) are simulated for continental Africa and adjacent oceans by a regional atmospheric model (RM3). RM3 horizontal grid spacing is 0.44deg at 28 vertical levels. Each of 2 simulation ensembles is driven by lateral boundary conditions from each of 2 alternative reanalysis data sets. One simulation downs cales National Center for Environmental Prediction reanalysis 2 (NCPR2) and the other the European Centre for Medium Range Weather Forecasts Interim reanalysis (ERA-I). NCPR2 data are archived at 2.5deg grid spacing, while a recent version of ERA-I provides data at 0.75deg spacing. ERA-I-forced simulations are recomrp. ended by the Coordinated Regional Downscaling Experiment (CORDEX). Comparisons of the 2 sets of simulations with each other and with observational evidence assess the relative performance of each downscaling system. A third simulation also uses ERA-I forcing, but degraded to the same horizontal resolution as NCPR2. RM3-simulated pentad and monthly mean precipitation data are compared to Tropical Rainfall Measuring Mission (TRMM) data, gridded at 0.5deg, and RM3-simulated circulation is compared to both reanalyses. Results suggest that each downscaling system provides advantages and disadvantages relative to the other. The RM3/NCPR2 achieves a more realistic northward advance of summer monsoon rains over West Africa, but RM3/ERA-I creates the more realistic monsoon circulation. Both systems recreate some features of JulySeptember 1999 minus 2002 precipitation differences. Degrading the resolution of ERA-I driving data unrealistically slows the monsoon circulation and considerably diminishes summer rainfall rates over West Africa. The high resolution of ERA-I data, therefore, contributes to the quality of the downscaling, but NCPR2laterai boundary conditions nevertheless produce better simulations of some features.
GEOS-5 Seasonal Forecast System: ENSO Prediction Skill and Bias
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Kovach, Robin; Marshak, Jelena
2018-01-01
The GEOS-5 AOGCM known as S2S-1.0 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The atmospheric component of S2S-1.0 is Fortuna-2.5, the same that was used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA), but with adjusted parameterization of moist processes and turbulence. The ocean component is the Modular Ocean Model version 4 (MOM4). The sea ice component is the Community Ice CodE, version 4 (CICE). The land surface model is a catchment-based hydrological model coupled to the multi-layer snow model. The AGCM uses a Cartesian grid with a 1 deg × 1.25 deg horizontal resolution and 72 hybrid vertical levels with the upper most level at 0.01 hPa. OGCM nominal resolution of the tripolar grid is 1/2 deg, with a meridional equatorial refinement to 1/4 deg. In the coupled model initialization, selected atmospheric variables are constrained with MERRA. The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both ocean state and sea ice initialization. SST, T and S profiles and sea ice concentration were assimilated.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Menees, Gene P.
1959-01-01
Results of an investigation of the static longitudinal stability and control characteristics of an aspect-ratio-3.1, unswept wing configuration equipped with an aspect-ratio-4, unswept horizontal tail are presented without analysis for the Mach number range from 0.70 to 2.22. The hinge line of the all-movable horizontal tail was in the extended wing chord plane, 1.66 wing mean aerodynamic chords behind the reference center of moments. The ratio of the area of the exposed horizontal-tail panels to the total area of the wing was 13.3 percent and the ratio of the total areas was 19.9 percent. Data are presented at angles of attack ranging"from -6 deg to +18 deg for the horizontal tail set at angles ranging from +5 deg to -20 deg and for the tail removed.
Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.
2012-12-01
Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)
Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion
NASA Technical Reports Server (NTRS)
Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.
1996-01-01
1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ.
Atmospheric refraction errors in laser ranging systems
NASA Technical Reports Server (NTRS)
Gardner, C. S.; Rowlett, J. R.
1976-01-01
The effects of horizontal refractivity gradients on the accuracy of laser ranging systems were investigated by ray tracing through three dimensional refractivity profiles. The profiles were generated by performing a multiple regression on measurements from seven or eight radiosondes, using a refractivity model which provided for both linear and quadratic variations in the horizontal direction. The range correction due to horizontal gradients was found to be an approximately sinusoidal function of azimuth having a minimum near 0 deg azimuth and a maximum near 180 deg azimuth. The peak to peak variation was approximately 5 centimeters at 10 deg elevation and decreased to less than 1 millimeter at 80 deg elevation.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Putman, William; Nattala, J.
2014-01-01
This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GEOS-5 Nature Run portal: http://gmao.gsfc.nasa.gov/projects/G5NR. Information on the scientific quality of this simulation will appear in a forthcoming NASA Technical Report Series on Global Modeling and Data Assimilation to be available from http://gmao.gsfc.nasa.gov/pubs/tm/.
A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera
NASA Technical Reports Server (NTRS)
Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.
2015-01-01
We present an improved lunar digital elevation model (DEM) covering latitudes within +/-60 deg, at a horizontal resolution of 512 pixels per degree ( approx.60 m at the equator) and a typical vertical accuracy approx.3 to 4 m. This DEM is constructed from approx.4.5 ×10(exp 9) geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1 deg×1 deg) from the SELENE Terrain Camera (TC) ( approx.10(exp 10) pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of < 5 m compared to approx.50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to < 10 m horizontally and < 1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.
NASA Astrophysics Data System (ADS)
Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin
2018-01-01
The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Parrish, Russell V.; Williams, Steven P.; Lavell, Jeffrey S.
1999-01-01
A flight test was conducted aboard Calspan's Total In-Flight Simulator (TIFS) aircraft by researchers within the External Visibility System (XVS) element of the High-Speed Research program. The purpose was to investigate the effects of inboard horizontal field of view (FOV) display limitations on pilot path control and to learn about the TIFS capabilities and limitations for possible use in future XVS flight tests. The TIFS cockpit windows were masked to represent the front XVS display area and the High-Speed Civil Transport side windows, as viewed by the pilot. Masking limited the forward FOV to 40 deg. horizontal and 50 deg. vertical for the basic flight condition, With an increase of 10 deg. horizontal in the inboard direction for the increased FOV flight condition. Two right-hand approach tasks (base-downwind-final) with a left crosswind on final were performed by three pilots using visual flight rules at Niagara Falls Airport. Each of the two tasks had three replicates for both horizontal FOV conditions, resulting in twelve approaches per test subject. Limited objective data showed that an increase of inboard FOV had no effect (deficiences in objective data measurement capabilities were noted). However, subjective results showed that a 50 deg. FOV was preferred over the 40 deg. FOV.
NASA Technical Reports Server (NTRS)
Barnhart, B.
1982-01-01
The influence of horizontal tail location on the rotational flow aerodynamics is discussed for a 1/6-scale general aviation airplane model. The model was tested using various horizontal tail positions, with both a high and a low-wing location and for each of two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 to 90 deg, and for clockwise and counter-clockwise rotations covering an Omega b/2V range of 0 to 0.9.
Elliptical storm cell modeling of digital radar data
NASA Technical Reports Server (NTRS)
Altman, F. J.
1972-01-01
A model for spatial distributions of reflectivity in storm cells was fitted to digital radar data. The data were taken with a modified WSR-57 weather radar with 2.6-km resolution. The data consisted of modified B-scan records on magnetic tape of storm cells tracked at 0 deg elevation for several hours. The MIT L-band radar with 0.8-km resolution produced cross-section data on several cells at 1/2 deg elevation intervals. The model developed uses ellipses for contours of constant effective-reflectivity factor Z with constant orientation and eccentricity within a horizontal cell cross section at a given time and elevation. The centers of the ellipses are assumed to be uniformly spaced on a straight line, with areas linearly related to log Z. All cross sections are similar at different heights (except for cell tops, bottoms, and splitting cells), especially for the highest reflectivities; wind shear causes some translation and rotation between levels. Goodness-of-fit measures and parameters of interest for 204 ellipses are considered.
The impact of global warming on river runoff
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.
1992-01-01
A global atmospheric model is used to calculate the annual river runoff for 33 of the world's major rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4 x 5 deg, but the runoff from each model grid box is quartered and added to the appropriate river drainage basin on a 2 x 2.5 deg resolution. The computed runoff depends on the model's precipitation, evapotranspiration, and soil moisture storage. For the doubled CO2 climate, the runoff increased for 25 of the 33 rivers, and in most cases the increases coincide with increased rainfall within the drainage basins. There were runoff increases in all rivers in high northern latitudes, with a maximum increase of 47 percent. At low latitudes there were both increases and decreases ranging from a 96 increase to a 43 percent decrease. The effect of the simplified model assumptions of land-atmosphere interactions on the results is discussed.
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Strahan, Susan E.
2017-01-01
Simulations using reanalysis meteorological fields have long been used to understand the causes of atmospheric composition change in the recent past. Using the new MERRA-2 reanalysis, we are conducting chemistry simulations to create products covering 1980-2016 for the atmospheric composition community. These simulations use the Global Modeling Initiative (GMI) chemical mechanism in two different models: the GMI Chemical Transport Model (CTM) and the GEOS-5 model in Replay mode. Replay mode means an integration of the GEOS-5 general circulation model that is incrementally adjusted each time step toward the MERRA-2 reanalysis. The GMI CTM is a 1 deg x 1.25 deg simulation and the MERRA-2 GMI Replay simulation uses the native MERRA-2 grid of approximately 1/2 deg horizontal resolution on the cubed sphere. A specialized set of transport diagnostics is included in both runs to better understand trace gas transport and its variability in the recent past.
3-d Modeling of Comet Borrelly's Nucleus
NASA Astrophysics Data System (ADS)
Giese, B.; Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Ds1 Science Team
During the DS1 encounter with comet Borrelly, the onboard camera MICAS (Minia- ture Integrated Camera and Spectrometer) acquired a series of images with spectac- ular detail [1]. Two of the highest resolution frames (58m/pxl, 47m/pxl) formed an effective stereo pair (8 deg convergence angle), on the basis of which teams at DLR and the USGS derived topographic models. Though different approaches were used in the analysis, the results are in remarkable agreement. The horizontal resolution of the stereo models is approx. 500m, and their vertical precision is expected to be in the range of 100m-150m, but perhaps three times worse in places with low surface texture. The visible area of the elongated nucleus (long axis approx. 8km, short axis approx. 4km) is characterized by a dichotomy. The "upper" end (toward the top of the image, as conventionally displayed) is gently tilted relative to the reference image plane and shows slopes of up to 40 deg towards the limb. The other end is smaller and canted relative to the "upper" end by approx. 35 deg in the direction towards the camera. Slopes towards the limb appear to be as high as 70 deg. The presence of faults and fractures near the boundary between the two ends additionally supports the view of a dichotomy. Perhaps, the nucleus is a contact binary, which formed by a collisional event. [1] Soderblom et al. (2002), submitted to Science.
2nd Generation Airborne Precipitation Radar (APR-2)
NASA Technical Reports Server (NTRS)
Durden, S.; Tanelli, S.; Haddad, Z.; Im, E.
2012-01-01
Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz). Geometry and frequencies chosen to simulate GPM radar. Measures reflectivity at co- and cross-polarizations, and Doppler. Range resolution is approx. 60 m. Horizontal resolution at surface is approx. 1 km. Reflectivity calibration is within 1.5 dB, based on 10 deg sigmaO at Ku-band and Mie scattering calculations in light rain at Ka-band. LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation. Velocity is motion-corrected total Doppler, including particle fall speed. Aliasing can be seen in some places; can usually be dealiased with an algorithm. .
NASA Technical Reports Server (NTRS)
Martin, Andrew; Hunter, Harlo A.
1949-01-01
An investigation was conducted to determine the longitudinal- and lateral-stability characteristics of a 0.5-scale moue1 of the Fairchild Lark missile, The model was tested with 0 deg and with 22.5 deg of roll. Three horizontal wings having NACA 16-009, 16-209, and 64A-209 sections were tested. Pressures were measured on both pointed and blunt noses. The wind-tunnel-test data indicate that rolling the missile 22.5 deg. had no serious effect on the static longitudinal stability. The desired maneuvering acceleration could not be attained with any of the horizontal wings tested, even with the horizontal wing flaps deflected 50 deg. The flaps on the 64A-209 wing (with small trailing-edge angles and flat sides) were effective at all flap deflections, while the flaps on the 16-series wings (with large trailing-edge angles) lost effectiveness at small flap deflections. The data showed that rolling moment existed when the vertical wing flaps were deflected with the model at other than zero angle of attack. A similar rolling moment probably would be found . with the horizontal wing flaps deflected and the model yawed.
Toward a more efficient and scalable checkpoint/restart mechanism in the Community Atmosphere Model
NASA Astrophysics Data System (ADS)
Anantharaj, Valentine
2015-04-01
The number of cores (both CPU as well as accelerator) in large-scale systems has been increasing rapidly over the past several years. In 2008, there were only 5 systems in the Top500 list that had over 100,000 total cores (including accelerator cores) whereas the number of system with such capability has jumped to 31 in Nov 2014. This growth however has also increased the risk of hardware failure rates, necessitating the implementation of fault tolerance mechanism in applications. The checkpoint and restart (C/R) approach is commonly used to save the state of the application and restart at a later time either after failure or to continue execution of experiments. The implementation of an efficient C/R mechanism will make it more affordable to output the necessary C/R files more frequently. The availability of larger systems (more nodes, memory and cores) has also facilitated the scaling of applications. Nowadays, it is more common to conduct coupled global climate simulation experiments at 1 deg horizontal resolution (atmosphere), often requiring about 103 cores. At the same time, a few climate modeling teams that have access to a dedicated cluster and/or large scale systems are involved in modeling experiments at 0.25 deg horizontal resolution (atmosphere) and 0.1 deg resolution for the ocean. These ultrascale configurations require the order of 104 to 105 cores. It is not only necessary for the numerical algorithms to scale efficiently but the input/output (IO) mechanism must also scale accordingly. An ongoing series of ultrascale climate simulations, using the Titan supercomputer at the Oak Ridge Leadership Computing Facility (ORNL), is based on the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), which is a component of the Community Earth System Model and the DOE Accelerated Climate Model for Energy (ACME). The CAM-SE dynamical core for a 0.25 deg configuration has been shown to scale efficiently across 100,000 cpu cores. At this scale, there is an increased risk that the simulation could be terminated due to hardware failures, resulting in a loss that could be as high as 105 - 106 titan core hours. Increasing the frequency of the output of C/R files could mitigate this loss but at the cost of additional C/R overhead. We are testing a more efficient C/R mechanism in CAM-SE. Our early implementation has demonstrated a nearly 3X performance improvement for a 1 deg CAM-SE (with CAM5 physics and MOZART chemistry) configuration using nearly 103 cores. We are in the process of scaling our implementation to 105 cores. This would allow us to run ultra scale simulations with more sophisticated physics and chemistry options while making better utilization of resources.
Calculation of wind-driven surface currents in the North Atlantic Ocean
NASA Technical Reports Server (NTRS)
Rees, T. H.; Turner, R. E.
1976-01-01
Calculations to simulate the wind driven near surface currents of the North Atlantic Ocean are described. The primitive equations were integrated on a finite difference grid with a horizontal resolution of 2.5 deg in longitude and latitude. The model ocean was homogeneous with a uniform depth of 100 m and with five levels in the vertical direction. A form of the rigid-lid approximation was applied. Generally, the computed surface current patterns agreed with observed currents. The development of a subsurface equatorial countercurrent was observed.
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.
2014-01-01
The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.
NASA Technical Reports Server (NTRS)
Matthews, E.
1984-01-01
A simple method was developed for improved prescription of seasonal surface characteristics and parameterization of land-surface processes in climate models. This method, developed for the Goddard Institute for Space Studies General Circulation Model II (GISS GCM II), maintains the spatial variability of fine-resolution land-cover data while restricting to 8 the number of vegetation types handled in the model. This was achieved by: redefining the large number of vegetation classes in the 1 deg x 1 deg resolution Matthews (1983) vegetation data base as percentages of 8 simple types; deriving roughness length, field capacity, masking depth and seasonal, spectral reflectivity for the 8 types; and aggregating these surface features from the 1 deg x 1 deg resolution to coarser model resolutions, e.g., 8 deg latitude x 10 deg longitude or 4 deg latitude x 5 deg longitude.
Power spectra of geoid undulations. [definition of altimeter design requirements for geoid recovery
NASA Technical Reports Server (NTRS)
Brown, R. D.
1975-01-01
Data from spacecraft altimeters are expected to contribute to an improved determination of the marine geoid. To better define altimeter system design requirements for geoid recovery, amplitudes of geoid undulations at short wavelengths were examined. Models of detailed geoids in selected areas around the earth, developed from a combination of satellite derived spherical harmonics and 1 deg-by-1 deg area mean free-air gravity anomalies, were subjected to a spectral analysis. The resulting undulation power spectra were compared to existing estimates for the magnitude of geoid undulations at short wavelengths. The undulation spectra were found to be consistent with Kaula's rule of thumb, following an inverse third power relationship with spatial frequency for wavelengths at least as small as 300 km. The requirements imposed by this relationship on altimeter accuracy, data rate, and horizontal resolution to meet the goal of a detailed geoid description are discussed.
Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design
NASA Technical Reports Server (NTRS)
King, J. L.
1980-01-01
The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.
Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).
Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I
2013-01-01
Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water. Copyright © 2012 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Bielat, Ralph P.; Wiley, Harleth G.
1959-01-01
An investigation was made at transonic speeds to determine some of the dynamic stability derivatives of a 45 deg. sweptback-wing airplane model. The model was sting mounted and was rigidly forced to perform a single-degree-of-freedom angular oscillation in pitch or yaw of +/- 2 deg. The investigation was made for angles of attack alpha, from -4 deg. to 14 deg. throughout most of the transonic speed range for values of reduced-frequency parameter from 0.015 to 0.040 based on wing mean aerodynamic chord and from 0.04 to 0.14 based on wing span. The results show that reduced frequency had only a small effect on the damping-in-pitch derivative and the oscillatory longitudinal stability derivative for all Mach numbers M and angles of attack with the exception of the values of damping coefficient near M = 1.03 and alpha = 8 deg. to 14 deg. In this region, the damping coefficient changed rapidly with reduced frequency and negative values of damping coefficient were measured at low values of reduced frequency. This abrupt variation of pitch damping with reduced frequency was a characteristic of the complete model or wing-body-vertical-tail combination. The damping-in-pitch derivative varied considerably with alpha and M for the horizontal-tail-on and horizontal-tail-off configurations, and the damping was relatively high at angles of attack corresponding to the onset of pitch-up for both configurations. The damping-in-yaw derivative was generally independent of reduced frequency and M at alpha = -4 deg. to 4 deg. At alpha = 8 deg. to 14 deg., the damping derivative increased with an increase in reduced frequency and alpha for the configurations having the wing, whereas the damping derivative was either independent of or decreased with increase in reduced frequency for the configuration without the wing. The oscillatory directional stability derivative for all configurations generally decreased with an increase in the reduced-frequency parameter, and, in some instances, unstable values were measured for the model configuration with the horizontal tail removed.
Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.
2000-01-01
During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.
NASA Technical Reports Server (NTRS)
Esparza, V.
1976-01-01
Separation data were obtained at a Mach number of 0.6 and three incidence angles of 4 deg, 6 deg, and 9 deg. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0 deg, 2 deg, and 4 deg while varying orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 deg and 10 deg and horizontal stabilizer deflections of -1 deg and +5 deg. Photographs of tested configurations are shown.
NASA Technical Reports Server (NTRS)
Wing, David J.
1995-01-01
Distributions of static pressure coefficient over the afterbody and axisymmetric nozzles of a generic, twin-tail twin-engine fighter were obtained in the Langley 16-Foot Transonic Tunnel. The longitudinal positions of the vertical and horizontal tails were varied for a total of six aft-end configurations. Static pressure coefficients were obtained at Mach numbers between 0.6 and 1.2, angles of attack between 0 deg and 8 deg, and nozzle pressure ratios ranging from jet-off to 8. The results of this investigation indicate that the influence of the vertical and horizontal tails extends beyond the vicinity of the tail-afterbody juncture. The pressure distribution affecting the aft-end drag is influenced more by the position of the vertical tails than by the position of the horizontal tails. Transonic tail-interference effects are seen at lower free-stream Mach numbers at positive angles of attack than at an angle of attack of 0 deg.
NASA Astrophysics Data System (ADS)
Gomes, J. L.; Chou, S. C.; Yaguchi, S. M.
2012-04-01
Physics parameterizations and the model vertical and horizontal resolutions, for example, can significantly contribute to the uncertainty in the numerical weather predictions, especially at regions with complex topography. The objective of this study is to assess the influences of model precipitation production schemes and horizontal resolution on the diurnal cycle of precipitation in the Eta Model . The model was run in hydrostatic mode at 3- and 5-km grid sizes, the vertical resolution was set to 50 layers, and the time steps to 6 and 10 s, respectively. The initial and boundary conditions were taken from ERA-Interim reanalysis. Over the sea the 0.25-deg sea surface temperature from NOAA was used. The model was setup to run for each resolution over Angra dos Reis, located in the Southeast region of Brazil, for the rainy period between 18 December 2009 and 01 de January 2010, the model simulation range was 48 hours. In one set of runs the cumulus parameterization was switched off, in this case the model precipitation was fully simulated by cloud microphysics scheme, and in the other set the model was run with weak cumulus convection. The results show that as the model horizontal resolution increases from 5 to 3 km, the spatial pattern of the precipitation hardly changed, although the maximum precipitation core increased in magnitude. Daily data from automatic station data was used to evaluate the runs and shows that the diurnal cycle of temperature and precipitation were better simulated for 3 km when compared against observations. The model configuration results without cumulus convection shows a small contraction in the precipitating area and an increase in the simulated maximum values. The diurnal cycle of precipitation was better simulated with some activity of the cumulus convection scheme. The skill scores for the period and for different forecast ranges are higher at weak and moderate precipitation rates.
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
Tracking by the GRAIL spacecraft has yielded a model of the gravitational field of the Orientale basin at 3-5-km horizontal resolution. The diameter of the basin excavation cavity closely matches that of the Inner Depression. A volume of at least (3.4 +/- 0.2) x10(exp 6) cu km of crustal material was removed and redistributed during basin formation; the outer edges of the zone of uplifted mantle slope downward and outward by 20deg-25deg. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be calculated from the observed structure to be between the diameters of the Inner Depression and Inner Rook ring. The model resolves distinctive structures of Orientale's three rings, including their azimuthal variations, and suggests the presence of faults that penetrate the crust. The crustal structure of Orientale provides constraints in the third dimension on models for the formation of multi-ring basins.
High-Resolution Large-Field-of-View Three-Dimensional Hologram Display System and Method Thereof
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Mintz, Frederick W. (Inventor); Tsou, Peter (Inventor); Bryant, Nevin A. (Inventor)
2001-01-01
A real-time, dynamic, free space-virtual reality, 3-D image display system is enabled by using a unique form of Aerogel as the primary display media. A preferred embodiment of this system comprises a 3-D mosaic topographic map which is displayed by fusing four projected hologram images. In this embodiment, four holographic images are projected from four separate holograms. Each holographic image subtends a quadrant of the 4(pi) solid angle. By fusing these four holographic images, a static 3-D image such as a featured terrain map would be visible for 360 deg in the horizontal plane and 180 deg in the vertical plane. An input, either acquired by 3-D image sensor or generated by computer animation, is first converted into a 2-D computer generated hologram (CGH). This CGH is then downloaded into large liquid crystal (LC) panel. A laser projector illuminates the CGH-filled LC panel and generates and displays a real 3-D image in the Aerogel matrix.
Eye Movement Abnormalities in Joubert Syndrome
Weiss, Avery H.; Doherty, Dan; Parisi, Melissa; Shaw, Dennis; Glass, Ian; Phillips, James O.
2011-01-01
Purpose Joubert syndrome is a genetic disorder characterized by hypoplasia of the midline cerebellum and deficiency of crossed connections between neural structures in the brain stem that control eye movements. The goal of the study was to quantify the eye movement abnormalities that occur in Joubert syndrome. Methods Eye movements were recorded in response to stationary stimuli and stimuli designed to elicit smooth pursuit, saccades, optokinetic nystagmus (OKN), vestibulo-ocular reflex (VOR), and vergence using video-oculography or Skalar search coils in 8 patients with Joubert syndrome. All patients underwent high-resolution magnetic resonance imaging (MRI). Results All patients had the highly characteristic molar tooth sign on brain MRI. Six patients had conjugate pendular (n = 4) or see-saw nystagmus (n = 2); gaze holding was stable in four patients. Smooth-pursuit gains were 0.28 to 1.19, 0.11 to 0.68, and 0.33 to 0.73 at peak stimulus velocities of 10, 20, and 30 deg/s in six patients; smooth pursuit could not be elicited in four patients. Saccade gains in five patients ranged from 0.35 to 0.91 and velocities ranged from 60.9 to 259.5 deg/s. Targeted saccades could not be elicited in five patients. Horizontal OKN gain was uniformly reduced across gratings drifted at velocities of 15, 30, and 45 deg/s. VOR gain was 0.8 or higher and phase appropriate in three of seven subjects; VOR gain was 0.3 or less and phase was indeterminate in four subjects. Conclusions The abnormalities in gaze-holding and eye movements are consistent with the distributed abnormalities of midline cerebellum and brain stem regions associated with Joubert syndrome. PMID:19443711
Reschke, Millard F; Wood, Scott J; Clément, Gilles
2018-01-01
Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.
NASA Technical Reports Server (NTRS)
Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo
2004-01-01
The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.
NASA Technical Reports Server (NTRS)
Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart
2007-01-01
In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.
Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.
NASA Technical Reports Server (NTRS)
Wood, Scott; Clement, Gilles; Denise, Pierre; Reschke, Millard
2005-01-01
Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both horizontal and torsional eye velocity as a function of the varying linear acceleration along the lateral plane. The purpose of this study was to examine whether the modulation of these ocular reflexes would be modified by different head-on-trunk positions. Ten human subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias velocity of the eye movements across multiple cycles for each head-on-trunk position. Consistent with previous studies, the modulation of torsional eye movements was greater at 0.125 Hz while the modulation of horizontal eye movements was greater at 0.5 Hz. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of both torsional and horizontal ocular reflexes, on the other hand, shifted towards alignment with the head. These results are consistent with the modulation of torsional and horizontal ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural head axis.
NASA Technical Reports Server (NTRS)
Henderson, W. P.; Leavitt, L. D.
1981-01-01
The tests were conducted at Mach numbers from 0.40 to 0.90, at angles of attack up to 45 deg for the lower Mach numbers, and at angles of sideslip up to 15 deg. The model variations under study included adding a canard surface and deflecting horizontal tails, ailerons, and rudders.
NASA Astrophysics Data System (ADS)
Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei
2017-10-01
In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.
African Easterly Waves and Their Association with Precipitation
NASA Technical Reports Server (NTRS)
Gu, Guo-Jun; Adler, Robert F.; Huffman, George J.; Curtis, Scott
2003-01-01
Summer tropical synoptic-scale waves over West Africa are quantified by the 850 mb meridional wind component from the NCEP/NCAR reanalysis project. Their relationships with surface precipitation patterns are further explored by applying the data from the Tropical Rainfall Measuring Mission (TRMM) satellite in combination with other satellite observations during 1998-2002. Evident wavelet spectral power peaks are seen within a period of 2.5 - 6 days in both meridional wind and precipitation. The most intense wave signals in meridional wind are concentrated along 15 deg N- 25 deg N. Wave signals in precipitation and corresponding wavelet cross-spectral signals between these two variables, however, are primarily located at 5 deg N- 15 deg N, the latitudes of major summer rain events. There is a tendency for the perturbations in meridional wind component to lag (lead) precipitation signals south (north) of 15 deg N. In some cases, either an in-phase or out-of-phase relationship can even be found between these two variables, suggesting a latitude-dependent horizontal structure for these waves and probably implying two distinct wave-convective coupling mechanisms. Moreover, the lagging relationship (and/or the out-of-phase tendency) is only observed south of 15 deg N during July-September, indicating a strong seasonal preference. This phase relationship is generally consistent with the horizontal wave structures from a composite analysis.
NASA Technical Reports Server (NTRS)
Re, Richard J.; Pendergraft, Odis C., Jr.; Campbell, Richard L.
2006-01-01
A 1/4-scale wind tunnel model of an airplane configuration developed for short duration flight at subsonic speeds in the Martian atmosphere has been tested in the Langley Research Center Transonic Dynamics Tunnel. The tunnel was pumped down to extremely low pressures to represent Martian Mach/Reynolds number conditions. Aerodynamic data were obtained and upper and lower surface wind pressures were measured at one spanwise station on some configurations. Three unswept wings of the same planform but different airfoil sections were tested. Horizontal tail incidence was varied as was the deflection of plain and split trailing-edge flaps. One unswept wing configuration was tested with the lower part of the fuselage removed and the vertical/horizontal tail assembly inverted and mounted from beneath the fuselage. A sweptback wing was also tested. Tests were conducted at Mach numbers from 0.50 to 0.90. Wing chord Reynolds number was varied from 40,000 to 100,000 and angles of attack and sideslip were varied from -10deg to 20deg and -10deg to 10deg, respectively.
NASA Technical Reports Server (NTRS)
Henderson, W. P.; Huffman, J. K.
1974-01-01
An investigation has been conducted to determine the effects of configuration variables on the lateral-directional stability characteristics of a wing-fuselage configuration. The variables under study included variations in the location of a single center-line vertical tail and twin vertical tails, wing height, fuselage strakes, and horizontal tails. The study was conducted in the Langley high-speed 7-by 10-foot tunnel at a Mach number of 0.30, at angles of attack up to 44 deg and at sideslip angles of 0 deg and plus or minus 5 deg.
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Phillips, R. J.; Birkeland, P. W.; Wimberly, R. N.
1980-01-01
Doppler radio tracking of the Pioneer Venus orbiter has provided gravity measures over a significant portion of Venus. Feature resolution is approximately 300-1000 km within an area extending from 10 deg S to 40 deg N latitude and from 70 deg W to 130 deg E longitude (approximately equal to 200 deg). Many anomalies were detected, and there is considerable correlation with radar altimetry topography (Pettengill et al., 1980). The amplitudes of the anomalies are relatively mild and similar to those on earth at this resolution. Calculations for isostatic adjustment reveal that significant compensation has occurred.
Large Scale Ice Water Path and 3-D Ice Water Content
Liu, Guosheng
2008-01-15
Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.
National Centers for Environmental Prediction
resolution at T574 becomes ~ 23 km T382 Spectral truncation equivalent to horizontal resolution ~37 km T254 Spectral truncation equivalent to horizontal resolution ~50-55 km T190 Spectral truncation equivalent to horizontal resolution ~70 km T126 Spectral truncation equivalent to horizontal resolution ~100 km UM Unified
NASA Astrophysics Data System (ADS)
Pace, Phillip Eric; Tan, Chew Kung; Ong, Chee K.
2018-02-01
Direction finding (DF) systems are fundamental electronic support measures for electronic warfare. A number of DF techniques have been developed over the years; however, these systems are limited in bandwidth and resolution and suffer from a complex design for frequency downconversion. The design of a photonic DF technique for the detection and DF of low probability of intercept (LPI) signals is investigated. Key advantages of this design include a small baseline, wide bandwidth, high resolution, minimal space, weight, and power requirement. A robust postprocessing algorithm that utilizes the minimum Euclidean distance detector provides consistence and accurate estimation of angle of arrival (AoA) for a wide range of LPI waveforms. Experimental tests using frequency modulation continuous wave (FMCW) and P4 modulation signals were conducted in an anechoic chamber to verify the system design. Test results showed that the photonic DF system is capable of measuring the AoA of the LPI signals with 1-deg resolution over a 180 deg field-of-view. For an FMCW signal, the AoA was determined with a RMS error of 0.29 deg at 1-deg resolution. For a P4 coded signal, the RMS error in estimating the AoA is 0.32 deg at 1-deg resolution.
Modeling the Gulf Stream System: How Far from Reality?
NASA Technical Reports Server (NTRS)
Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.
1996-01-01
Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.
NASA Technical Reports Server (NTRS)
Duvall, Thomas L.; Hanasoge, Shravan M.
2012-01-01
With large separations (10-24 deg heliocentric), it has proven possible to cleanly separate the horizontal and vertical components of supergranular flow with time-distance helioseismology. These measurements require very broad filters in the k-$\\omega$ power spectrum as apparently supergranulation scatters waves over a large area of the power spectrum. By picking locations of supergranulation as peaks in the horizontal divergence signal derived from f-mode waves, it is possible to simultaneously obtain average properties of supergranules and a high signal/noise ratio by averaging over many cells. By comparing ray-theory forward modeling with HMI measurements, an average supergranule model with a peak upflow of 240 m/s at cell center at a depth of 2.3 Mm and a peak horizontal outflow of 700 m/s at a depth of 1.6 Mm. This upflow is a factor of 20 larger than the measured photospheric upflow. These results may not be consistent with earlier measurements using much shorter separations (<5 deg heliocentric). With a 30 Mm horizontal extent and a few Mm in depth, the cells might be characterized as thick pancakes.
NASA Technical Reports Server (NTRS)
Lockwood, V. E.
1972-01-01
The investigation was made on a 1/18-scale model of a twin-engine light airplane. Static longitudinal, lateral, and directional characteristics were obtained at 0 deg and plus or minus 5 deg sideslip at a Mach number of about 0.2. The angle of attack varied from about 20 deg at a Reynolds number of 0.39 times one million to 13 deg at a Reynolds number of 3.7 times one million, based on the reference chord. The effect of fixed transition, vertical and horizontal tails, and nacelle fillets was studied.
Nystagmus responses in a group of normal humans during earth-horizontal axis rotation
NASA Technical Reports Server (NTRS)
Wall, Conrad, III; Furman, Joseph M. R.
1989-01-01
Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.
Matsuta, Naohiro; Hiryu, Shizuko; Fujioka, Emyo; Yamada, Yasufumi; Riquimaroux, Hiroshi; Watanabe, Yoshiaki
2013-04-01
The echolocation sounds of Japanese CF-FM bats (Rhinolophus ferrumequinum nippon) were measured while the bats pursued a moth (Goniocraspidum pryeri) in a flight chamber. Using a 31-channel microphone array system, we investigated how CF-FM bats adjust pulse direction and beam width according to prey position. During the search and approach phases, the horizontal and vertical beam widths were ±22±5 and ±13±5 deg, respectively. When bats entered the terminal phase approximately 1 m from a moth, distinctive evasive flight by G. pryeri was sometimes observed. Simultaneously, the bats broadened the beam widths of some emissions in both the horizontal (44% of emitted echolocation pulses) and vertical planes (71%). The expanded beam widths were ±36±7 deg (horizontal) and ±30±9 deg (vertical). When moths began evasive flight, the tracking accuracy decreased compared with that during the approach phase. However, in 97% of emissions during the terminal phase, the beam width was wider than the misalignment (the angular difference between the pulse and target directions). These findings indicate that bats actively adjust their beam width to retain the moving target within a spatial echolocation window during the final capture stages.
Crustal Deformation and the Seismic Cycle across the Kodiak Islands, Alaska
NASA Technical Reports Server (NTRS)
Sauber, Jeanne; Carver, Gary; Cohen, Steven; King, Robert
2006-01-01
The Kodiak Islands are located approx.120 to 250 km from the Alaska-Aleutian Trench and are within the southern extent of the 1964 Prince William Sound (M(sub W) = 9.2) earthquake rupture and aftershock zone. Here we report new campaign GPS results (1993-2001) from northeastern Kodiak and reprocessed GPS results (1993-1997) from southwestern Kodiak. The rate and orientation of the horizontal velocities, relative to a fixed North America, range from 29.7 +/- 1.7 mm/yr at N30.3degW +/- 3.3deg, located approx.120 km from the deepest point of the trench, to 8.0 +/- 1.3 mm/yr at N62.4degW +/- 9.3deg, located approx.230 km from the trench. We evaluated alternate models of coseismic and interseismic slip to test the importance of the mechanisms that account for surface deformation rates. Near the Gulf of Alaska coastal region of Kodiak the horizontal velocity can be accounted for primarily by the viscoelastic response to plate motion and a locked main thrust zone (MTZ), down-dip creep, and to a lesser extent, slip in the 1964 earthquake. Further inland the dominant mechanisms that account for post-1964 uplift rates are time-dependent, down-dip creep and a locked MTZ; for the horizontal velocity component southwest translation of western Kodiak may be important as well. Based on the pre-1964 and post-1964 earthquake pattern of interseismic earthquakes, we suggest that between the occurrences of great earthquakes like the 1964 event, more moderate to large earthquakes occur in the southwestern Kodiak region than near northeastern Kodiak .
Stratospheric nitrous oxide distribution in the Southern Hemisphere
NASA Technical Reports Server (NTRS)
Podolske, J. R.; Loewenstein, M.; Strahan, S. E.; Chan, K. R.
1989-01-01
Nitrous oxide measurements were made in the Southern Hemisphere as part of the Airborne Antarctic Ozone Experiment in late winter and early spring 1987, covering the altitude range 14-21 km. This paper reports on N2O measurements made by the airborne tunable laser absorption spectrometer, which was flown onboard the NASA ER-2 aircraft. Average vertical N2O profiles at latitudes 72 deg S, 54 deg S, and 42 deg S are presented and compared, when possible, with equivalent summer profiles. Latitudinal gradients of N2O on isentropic surfaces are presented and discussed in terms of their implications about the inhibition of horizontal mixing near the polar vortex. Finally, a large-scale distribution of N2O for the region 72 deg S to 42 deg S latitude is presented.
Some experiments on Yaw stability of wind turbines with various coning angles
NASA Technical Reports Server (NTRS)
Bundas, D.; Dugundji, J.
1981-01-01
A horizontal axis wind turbine was constructed to study the effect of coning angle on the yawing moments produced. Coning angles of 0 deg, +10 deg and -10 deg were studied in the upwind and downwind cases. Moment and rotational frequency of the blades at each yaw angle setting were taken. It was found that as the coning angle increased from -10 deg to +10 deg in either the upwind or downwind case the stability decreased. The downwind case was slightly more stable for all coning angles than was the upwind case. It is found that all the previous cases were stable for high rotation speeds, but at lower rotation speeds, they were all unstable and could not self start unless held in the wind.
Wing planform effects at supersonic speeds for an advanced fighter configuration
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1984-01-01
Four advanced fighter configurations, which differed in wing planform and airfoil shape, were investigated in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, and 2.16. Supersonic data were obtained on the four uncambered wings, which were each attached to a single fighter fuselage. The fuselage geometry varied in cross-sectional shape and had two side-mounted, flow-through, half-axisymmetric inlets. Twin vertical tails were attached to the fuselage. The four planforms tested were a 65 deg delta wing, a combination of a 20 deg trapezoidal wing and a 45 deg horizontal tail, a 70 deg/30 deg cranked wing, and a 70 deg/66 deg crank wing, where the angle values refer to the leading-edge sweep angle of the lifting-surface planform. Planform effects on a single fuselage representative of an advanced fighter aircraft were studied. Results show that the highly swept cranked wings exceeded the aerodynamic performance levels, at low lift coefficients, of the 65 deg delta wing and the 20 deg trapezoidal wing at trimmed and untrimmed conditions.
South Polar Ar Enhancement as a Tracer for Southern Winter Horizontal Meridional Mixing
NASA Technical Reports Server (NTRS)
Sprague, A. L.; Boynton, W. V.; Kim, K.; Reedy, R.; Kerry, K.; Janes, D.
2004-01-01
Measurements made by the Gamma Ray Spectrometer (GRS) on Mars Odyssey during 2002 and 2003 show an obvious increase in the gamma flux of 1294 keV gamma rays resulting from the decay of (41)Ar. (41)Ar is made by the capture of thermal neutrons by atmospheric (40)Ar. The increase measured above the southern polar region has permitted calculation of the increase in mixing ratio of Ar from L(sub s) 8 to 100 between latitudes 75 S and 90 S. The peak in Ar enhancement occurs about 200 Earth days after CO2 freeze-out has begun, indicating that up to this time equatorward meridional mixing is rapid enough to move enhanced Ar from the polar regions northward. Although the CO2 frost depth continues to increase from L(sub s) 110 deg to 190 deg, the Ar enhancement steadily decreases to its baseline value reached at about L(sub s) 200 deg. Our data permit an estimate of the horizontal eddy mixing coefficient useful for constraining equatorward meridional mixing during southern winter and a characteristic mixing time for the polar southern winter atmosphere. Also, using the drop in excess Ar measured by the GRS from L(sub s) 110 deg to 200 deg, we estimate an eddy coefficient appropriate for meridional mixing of the entire Ar excess back to the baseline value. The horizontal eddy mixing coefficients are derived using Ar as a tracer much as the vertical eddy mixing coefficient for the Earth's troposphere is derived using CH4 as a minor constituent tracer. The estimation of meridional mixing for high latitudes at Mars is important for constraining parameters used in atmospheric modeling and predicting seasonal and daily behavior. The calculations are order of magnitude estimates that should improve as the data set becomes more robust and improves our models.
Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model
NASA Technical Reports Server (NTRS)
Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.
1988-01-01
The global climate effects of time-dependent atmospheric trace gas and aerosol variations are simulated by NASA-Goddard's three-dimensional climate model II, which possesses 8 x 10-deg horizontal resolution, for the cases of a 100-year control run and three different atmospheric composition scenarios in which trace gas growth is respectively a continuation of current exponential trends, a reduced linear growth, and a rapid curtailment of emissions due to which net climate forcing no longer increases after the year 2000. The experiments begin in 1958, run to the present, and encompass measured or estimated changes in CO2, CH4, N2O, chlorofluorocarbons, and stratospheric aerosols. It is shown that the greenhouse warming effect may be clearly identifiable in the 1990s.
Takaki, Yasuhiro; Hayashi, Yuki
2008-07-01
The narrow viewing zone angle is one of the problems associated with electronic holography. We propose a technique that enables the ratio of horizontal and vertical resolutions of a spatial light modulator (SLM) to be altered. This technique increases the horizontal resolution of a SLM several times, so that the horizontal viewing zone angle is also increased several times. A SLM illuminated by a slanted point light source array is imaged by a 4f imaging system in which a horizontal slit is located on the Fourier plane. We show that the horizontal resolution was increased four times and that the horizontal viewing zone angle was increased approximately four times.
Data Images and Other Graphical Displays for Directional Data
NASA Technical Reports Server (NTRS)
Morphet, Bill; Symanzik, Juergen
2005-01-01
Vectors, axes, and periodic phenomena have direction. Directional variation can be expressed as points on a unit circle and is the subject of circular statistics, a relatively new application of statistics. An overview of existing methods for the display of directional data is given. The data image for linear variables is reviewed, then extended to directional variables by displaying direction using a color scale composed of a sequence of four or more color gradients with continuity between sequences and ordered intuitively in a color wheel such that the color of the 0deg angle is the same as the color of the 360deg angle. Cross over, which arose in automating the summarization of historical wind data, and color discontinuity resulting from the use a single color gradient in computational fluid dynamics visualization are eliminated. The new method provides for simultaneous resolution of detail on a small scale and overall structure on a large scale. Example circular data images are given of a global view of average wind direction of El Nino periods, computed rocket motor internal combustion flow, a global view of direction of the horizontal component of earth's main magnetic field on 9/15/2004, and Space Shuttle solid rocket motor nozzle vectoring.
Monthly Representations of Mid-Tropospheric Carbon Dioxide from the Atmospheric Infrared Sounder
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Olsen, Edward T.; Chahine, Moustafa T.; Ruzmaikin, Alexander; Nguyen, Hai; Jiang, Xun
2011-01-01
The Atmospheric Infrared Sounder (AIRS) on NASA's Earth Observing System Aqua spacecraft was launched in May of 2002 and acquires hyperspectral infrared spectra used to generate a wide range of atmospheric products including temperature, water vapor, and trace gas species including carbon dioxide. Here we present monthly representations of global concentrations of mid-tropospheric carbon dioxide produced from 8 years of data obtained by AIRS between the years of 2003 and 2010. We define them as "representations" rather than "climatologies" to reflect that the files are produced over a relatively short time period and represent summaries of the Level 3 data. Finally, they have not yet been independently validated. The representations have a horizontal resolution of 2.0 deg x 2.5 deg (Latitude x Longitude) and faithfully reproduce the original 8 years of monthly L3 CO2 concentrations with a standard deviation of 1.48 ppm and less than 2% outliers. The representations are intended for use in studies of the global general circulation of CO2 and identification of anomalies in CO2 typically associated with atmospheric transport. The seasonal variability and trend found in the AIRS CO2 data are discussed.
Viking High-Resolution Topography and Mars '01 Site Selection: Application to the White Rock Area
NASA Astrophysics Data System (ADS)
Tanaka, K. L.; Kirk, Randolph L.; Mackinnon, D. J.; Howington-Kraus, E.
1999-06-01
Definition of the local topography of the Mars '01 Lander site is crucial for assessment of lander safety and rover trafficability. According to Golombek et al., steep surface slopes may (1) cause retro-rockets to be fired too early or late for a safe landing, (2) the landing site slope needs to be < 1deg to ensure lander stability, and (3) a nearly level site is better for power generation of both the lander and the rover and for rover trafficability. Presently available datasets are largely inadequate to determine surface slope at scales pertinent to landing-site issues. Ideally, a topographic model of the entire landing site at meter-scale resolution would permit the best assessment of the pertinent topographic issues. MOLA data, while providing highly accurate vertical measurements, are inadequate to address slopes along paths of less than several hundred meters, because of along-track data spacings of hundreds of meters and horizontal errors in positioning of 500 to 2000 m. The capability to produce stereotopography from MOC image pairs is not yet in hand, nor can we necessarily expect a suitable number of stereo image pairs to be acquired. However, for a limited number of sites, high-resolution Viking stereo imaging is available at tens of meters horizontal resolution, capable of covering landing-ellipse sized areas. Although we would not necessarily suggest that the chosen Mars '01 Lander site should be located where good Viking stereotopography is available, an assessment of typical surface slopes at these scales for a range of surface types may be quite valuable in landing-site selection. Thus this study has a two-fold application: (1) to support the proposal of White Rock as a candidate Mars '01 Lander site, and (2) to evaluate how Viking high resolution stereotopography may be of value in the overall Mars '01 Lander site selection process.
Do humans show velocity-storage in the vertical rVOR?
Bertolini, G; Bockisch, C J; Straumann, D; Zee, D S; Ramat, S
2008-01-01
To investigate the contribution of the vestibular velocity-storage mechanism (VSM) to the vertical rotational vestibulo-ocular reflex (rVOR) we recorded eye movements evoked by off-vertical axis rotation (OVAR) using whole-body constant-velocity pitch rotations about an earth-horizontal, interaural axis in four healthy human subjects. Subjects were tumbled forward, and backward, at 60 deg/s for over 1 min using a 3D turntable. Slow-phase velocity (SPV) responses were similar to the horizontal responses elicited by OVAR along the body longitudinal axis, ('barbecue' rotation), with exponentially decaying amplitudes and a residual, otolith-driven sinusoidal response with a bias. The time constants of the vertical SPV ranged from 6 to 9 s. These values are closer to those that reflect the dynamic properties of vestibular afferents than the typical 20 s produced by the VSM in the horizontal plane, confirming the relatively smaller contribution of the VSM to these vertical responses. Our preliminary results also agree with the idea that the VSM velocity response aligns with the direction of gravity. The horizontal and torsional eye velocity traces were also sinusoidally modulated by the change in gravity, but showed no exponential decay.
Continental-scale river flow in climate models
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.; Caliri, Guilherme
1994-01-01
The hydrologic cycle is a major part of the global climate system. There is an atmospheric flux of water from the ocean surface to the continents. The cycle is closed by return flow in rivers. In this paper a river routing model is developed to use with grid box climate models for the whole earth. The routing model needs an algorithm for the river mass flow and a river direction file, which has been compiled for 4 deg x 5 deg and 2 deg x 2.5 deg resolutions. River basins are defined by the direction files. The river flow leaving each grid box depends on river and lake mass, downstream distance, and an effective flow speed that depends on topography. As input the routing model uses monthly land source runoff from a 5-yr simulation of the NASA/GISS atmospheric climate model (Hansen et al.). The land source runoff from the 4 deg x 5 deg resolution model is quartered onto a 2 deg x 2.5 deg grid, and the effect of grid resolution is examined. Monthly flow at the mouth of the world's major rivers is compared with observations, and a global error function for river flow is used to evaluate the routing model and its sensitivity to physical parameters. Three basinwide parameters are introduced: the river length weighted by source runoff, the turnover rate, and the basinwide speed. Although the values of these parameters depend on the resolution at which the rivers are defined, the values should converge as the grid resolution becomes finer. When the routing scheme described here is coupled with a climate model's source runoff, it provides the basis for closing the hydrologic cycle in coupled atmosphere-ocean models by realistically allowing water to return to the ocean at the correct location and with the proper magnitude and timing.
Low speed aerodynamic characteristics of a lifting-body hypersonic research aircraft configuration
NASA Technical Reports Server (NTRS)
Penland, J. A.
1975-01-01
An experimental investigation of the low-speed longitudinal, lateral, and directional stability characteristics of a lifting-body hypersonic research airplane concept was conducted in a low-speed tunnel with a 12-foot (3.66-meter) octagonal test section at the Langley Research Center. The model was tested with two sets of horizontal and vertical tip controls having different planform areas, a center vertical tail and two sets of canard controls having trapezoidal and delta planforms, and retracted and deployed engine modules and canopy. This investigation was conducted at a dynamic pressure of 239.4 Pa (5 psf) (Mach number of 0.06) and a Reynolds number of 2 million based on the fuselage length. The tests were conducted through an angle-of-attack range of 0 deg to 30 deg and through horizontal-tail deflections of 10 deg to minus 30 deg. The complete configuration exhibited excessive positive static longitudinal stability about the design center-of-gravity location. However, the configuration was unstable laterally at low angles of attack and unstable directionally throughout the angle-of-attack range. Longitudinal control was insufficient to trim at usable angles of attack. Experiments showed that a rearward shift of the center of gravity and the use of a center-located vertical tail would result in a stable and controllable vehicle.
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.; Bare, E. A.
1982-01-01
An investigation was conducted in the Langley 16 foot transonic tunnel to determine the longitudinal aerodynamic characteristics of twin two dimensional nozzles and twin baseline axisymmetric nozzles installed on a fully metric 0.047 scale model of the F-15 three surface configuration (canards, wing, horizontal tails). The effects on performance of two dimensional nozzle in flight thrust reversing, locations and orientation of the vertical tails, and deflections of the horizontal tails were also determined. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.20 over an angle of attack range from -2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 6.5.
NASA Technical Reports Server (NTRS)
Jackson, Charles M., Jr.; Harris, Roy V., Jr.
1960-01-01
An investigation has been made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.99 to determine the longitudinal stability and control characteristics of a reentry model consisting of a lenticular-shaped body with two fin configurations (horizontal fins with end plates). Effects of deflecting the larger size fins as pitch-control surfaces were also investigated. The results indicate that the body alone was unstable from an angle of attack of 0 deg to about 55 deg where it became stable and remained so to 90 deg. The addition of fins provided positive longitudinal stability throughout the angle-of-attack range and increased the lift-drag ratio of the configuration. Reducing the horizontal-fin area at the inboard trailing edge of the fin had only a small effect on the aerodynamic characteristics of the vehicle for the condition of no fin deflection. Deflecting the fins, appeared to be an effective means of pitch control and had only a small effect on lift-drag ratio.
Peripheral visual response time to colored stimuli imaged on the horizontal meridian
NASA Technical Reports Server (NTRS)
Haines, R. F.; Gross, M. M.; Nylen, D.; Dawson, L. M.
1974-01-01
Two male observers were administered a binocular visual response time task to small (45 min arc), flashed, photopic stimuli at four dominant wavelengths (632 nm red; 583 nm yellow; 526 nm green; 464 nm blue) imaged across the horizontal retinal meridian. The stimuli were imaged at 10 deg arc intervals from 80 deg left to 90 deg right of fixation. Testing followed either prior light adaptation or prior dark adaptation. Results indicated that mean response time (RT) varies with stimulus color. RT is faster to yellow than to blue and green and slowest to red. In general, mean RT was found to increase from fovea to periphery for all four colors, with the curve for red stimuli exhibiting the most rapid positive acceleration with increasing angular eccentricity from the fovea. The shape of the RT distribution across the retina was also found to depend upon the state of light or dark adaptation. The findings are related to previous RT research and are discussed in terms of optimizing the color and position of colored displays on instrument panels.
Wing motion measurement and aerodynamics of hovering true hoverflies.
Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao
2011-09-01
Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.
NASA Technical Reports Server (NTRS)
Alford, William J., Jr.
1958-01-01
An investigation has been made in the Langley high-speed 7- by 10-foot tunnel of some effects of horizontal-tail position on the vertical-tail pressure distributions of a complete model in sideslip at high subsonic speeds. The wing of the model was swept back 28.82 deg at the quarter-chord line and had an aspect ratio of 3.50, a taper ratio of 0.067, and NACA 65A004 airfoil sections parallel to the model plane of symmetry. Tests were made with the horizontal tail off, on the wing-chord plane extended, and in T-tail arrangements in forward and rearward locations. The test Mach numbers ranged from 0.60 to 0.92, which corresponds to a Reynolds number range from approximately 2.93 x 10(exp 6) to 3.69 x 10(exp 6), based on the wing mean aerodynamic chord. The sideslip angles varied from -3.9 deg to 12.7 deg at several selected angles of attack. The results indicated that, for a given angle of sideslip, increases in angle of attack caused reductions in the vertical-tail loads in the vicinity of the root chord and increases at the midspan and tip locations, with rearward movements in the local chordwise centers of pressure for the midspan locations and forward movements near the tip of the vertical tail. At the higher angles of attack all configurations investigated experienced outboard and rearward shifts in the center of pressure of the total vertical-tail load. Location of the horizontal tail on the wing- chord plane extended produced only small effects on the vertical-tail loads and centers of pressure. Locating the horizontal tail at the tip of the vertical tail in the forward position caused increases in the vertical-tail loads; this configuration, however, experienced considerable reduction in loads with increasing Mach number. Location of the horizontal tail at the tip of the vertical tail in the rearward position produced the largest increases in vertical-tail loads per degree sideslip angle; this configuration experienced the smallest variations of loads with Mach number of any of the configurations investigated.
Up-down Asymmetries in Speed Perception
NASA Technical Reports Server (NTRS)
Thompson, Peter; Stone, Leland S.
1997-01-01
We compared speed matches for pairs of stimuli that moved in opposite directions (upward and downward). Stimuli were elliptical patches (2 deg horizontally by 1 deg vertically) of horizontal sinusoidal gratings of spatial. frequency 2 cycles/deg. Two sequential 380 msec reveal presentations were compared. One of each pair of gratings (the standard) moved at 4 Hz (2 deg/sec), the other (the test) moved at a rate determined by a simple up-down staircase. The point of subjectively equal speed was calculated from the average of the last eight reversals. The task was to fixate a central point and to determine which one of the pair appeared to move faster. Eight of 10 observers perceived the upward drifting grating as moving faster than a grating moving downward but otherwise identical. on average (N = 10), when the standard moved downward, it was matched by a test moving upward at 94.7+/-1.7(SE)% of the standard speed, and when the standard moved upward it was matched by a test moving downward at 105.1+/-2.3(SE)% of the standard speed. Extending this paradigm over a range of spatial (1.5 to 13.5 c/d) and temporal (1.5 to 13.5 Hz) frequencies, preliminary results (N = 4) suggest that, under the conditions of our experiment, upward matter is seen as faster than downward for speeds greater than approx.1 deg/sec, but the effect appears to reverse at speeds below approx.1 deg/sec with downward motion perceived as faster. Given that an up-down asymmetry has been observed for the optokinetic response, both perceptual and oculomotor contributions to this phenomenon deserve exploration.
A simulation for gravity fine structure recovery from high-low GRAVSAT SST data
NASA Technical Reports Server (NTRS)
Estes, R. H.; Lancaster, E. R.
1976-01-01
Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.
Effects of horizontal refractivity gradients on the accuracy of laser ranging to satellites
NASA Technical Reports Server (NTRS)
Gardner, C. S.
1976-01-01
Numerous formulas have been developed to partially correct laser ranging data for the effects of atmospheric refraction. All the formulas assume the atmospheric refractivity profile is spherically symmetric. The effects of horizontal refractivity gradients are investigated by ray tracing through spherically symmetric and three-dimensional refractivity profiles. The profiles are constructed from radiosonde data. The results indicate that the horizontal gradients introduce an rms error of approximately 3 cm when the satellite is near 10 deg elevation. The error decreases to a few millimeters near zenith.
Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Bennett, C. L.; Kogut, A.
1995-01-01
We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.
Crustal Deformation and the Seismic Cycle across the Kodiak Islands, Alaska
NASA Technical Reports Server (NTRS)
Sauber, Jeanne; Carver, G.; Cohen, Steven C.; King, Robert
2004-01-01
The Kodiak Islands are located approximately 130 to 250 km from the Alaska-Aleutian Trench where the Pacific plate is underthrusting the North American plate at a rate of about 57 mm/yr. The southern extent of the 1964 Prince William Sound (${M-w}$ = 9.2) earthquake rupture occurred offshore and beneath the eastern portion of the Kodiak Islands. Here we report GPS results (1993-2001) from northern Kodiak Island that span the transition between the 1964 uplift region along the eastern coast and the region of coseismic subsidence further inland. The horizontal velocity vectors range from 22.9 $\\pm$ 2.2 mm/yr at N26.3$\\deg$W $\\pm$ 2.5$\\deg$, about 150 km from the trench, to 5.9 $\\pm$ 1.3 mm/yr at N65.9$\\deg$W $\\pm$ 6.6$\\deg$, about 190 km from the trench. Near the northeastern coast of Kodiak the velocity vector above the shallow, locked main thrust zone is between the orientation of PCFC-NOAM plate motion (N22$/deg$W) and the trench-normal (N3O$\\deg$W). Further west, our geodetic results suggest the accumulation of shear strain that will be released eventually as left-lateral motion on upper plate faults such as the Kodiak Island fault. These results are consistent with the hypothesis that the difference between the Pacific-North American plate motion and the orientation of the down going slab would lead to 4-8 mm/yr of left-lateral slip. Short-term geodetic uplift rates range from 2 - 14 mm/yr, with the maximum uplift located near the axis of maximum subsidence during the 1964 earthquake. We evaluated alternate interseismic models for Kodiak to test the importance of various mechanisms responsible for crustal deformation rates. These models are based on the plate interface slip history inferred from earlier modeling of coseismic and post-seismic geodetic results. The horizontal (trench perpendicular) and vertical deformation rates across Kodiak are consistent with a model that includes the viscoelastic response to : (1) a downgoing Pacific plate interface that is locked at shallow depths,(2) coseismic slip in the 1964 and (3) interseismic creep below the seismogenic zone. The change in orientation of the horizontal velocity vector occurs down-dip from the locked main thrust zone. In southern Kodiak, the coseismic slip in the 1964 earthquake was smaller than in the northern Kodiak region; yet, the horizontal, interseismic velocities as a function of distance from the trench are comparable to those in northern Kodiak. Based on the earthquake history prior to, and following the 1964 earthquake, we hypothesize that the plate interface in southern Kodiak slips in more frequent large earthquakes than in northern Kodiak.
NASA Technical Reports Server (NTRS)
Bailey, R. O.; Brownson, J. J.
1979-01-01
Tests were conducted in the Ames 6 by 6 foot wind tunnel to determine the interaction of reaction jets for roll control on the M2-F2 lifting-body entry vehicle. Moment interactions are presented for a Mach number range of 0.6 to 1.7, a Reynolds number range of 1.2 x 10 to the 6th power to 1.6 x 10 to the 6th power (based on model reference length), an angle-of-attack range of -9 deg to 20 deg, and an angle-of-sideslip range of -6 deg to 6 deg at an angle of attack of 6 deg. The reaction jets produce roll control with small adverse yawing moment, which can be offset by horizontal thrust component of canted jets.
Thresholds for Shifting Visually Perceived Eye Level Due to Incremental Pitches
NASA Technical Reports Server (NTRS)
Scott, Donald M.; Welch, Robert; Cohen, M. M.; Hill, Cyndi
2001-01-01
Visually perceived eye level (VPEL) was judged by subjects as they viewed a luminous grid pattern that was pitched by 2 or 5 deg increments between -20 deg and +20 deg. Subjects were dark adapted for 20 min and indicated--VPEL by directing the beam of a laser pointer to the rear wall of a 1.25 m cubic pitch box that rotated about a horizontal axis midpoint on the rear wall. Data were analyzed by ANOVA and the Tukey HSD procedure. Results showed a 10.0 deg threshold for pitches P(sub i) above the reference pitch P(sub 0), and a -10.3 deg threshold for pitches P(sub i) below-the reference-pitch P(sub 0). Threshold data for pitches P(sub i) < P(sub 0) suggest an asymmetric threshold for VPEL below and above physical eye level.
Saccadic eye movement during spaceflight
NASA Technical Reports Server (NTRS)
Uri, John J.; Linder, Barry J.; Moore, Thomas P.; Pool, Sam L.; Thornton, William E.
1989-01-01
Saccadic eye movements were studied in six subjects during two Space Shuttle missions. Reaction time, peak velocity and accuracy of horizontal, visually-guided saccades were examined preflight, inflight and postflight. Conventional electro-oculography was used to record eye position, with the subjects responding to pseudo-randomly illuminated targets at 0 deg and + or - 10 deg and 20 deg visual angles. In all subjects, preflight measurements were within normal limits. Reaction time was significantly increased inflight, while peak velocity was significantly decreased. A tendency toward a greater proportion of hypometric saccades inflight was also noted. Possible explanations for these changes and possible correlations with space motion sickness are discussed.
NASA Astrophysics Data System (ADS)
Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.
2016-12-01
Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.
Waves in the Martian Atmosphere: Results from MGS Radio Occultations
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Hinson, D. P.; Tyler, G. L.
1999-01-01
Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.
Galileo Ultraviolet Spectrometer experiment
NASA Technical Reports Server (NTRS)
Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.
1992-01-01
The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.
NASA Technical Reports Server (NTRS)
Sarver, D.; Mulkey, T. L.; Lindahl, R. H.
1975-01-01
The performance, stability, and control characteristics of various carrier aircraft configurations are presented. Aerodynamic characteristics of the carrier mated with the Orbiter, carrier alone, and Orbiter alone were investigated. Carrier support system tare and interference effects were determined. Six-component force and moment data were recorded for the carrier and Orbiter. Buffet onset characteristics of the carrier vertical tail and horizontal tail were recorded. Angles of attack from -3 deg through 26 deg and angles of slideslip between +12 deg and -12 deg were investigated at Mach numbers from 0.15 through 0.70. Photographs are included.
NASA Technical Reports Server (NTRS)
Heath, Atwood R., Jr.; Ward, Robert J.
1959-01-01
The effects of wing-lower-surface dive-recovery flaps on the aero- dynamic characteristics of a transonic seaplane model and a transonic transport model having 40 deg swept wings have been investigated in the Langley 16-foot transonic tunnel. The seaplane model had a wing with an aspect ratio of 5.26, a taper ratio of 0.333, and NACA 63A series airfoil sections streamwise. The transport model had a wing with an aspect ratio of 8, a taper ratio of 0.3, and NACA 65A series airfoil sections perpendicular to the quarter-chord line. The effects of flap deflection, flap longitudinal location, and flap sweep were generally investigated for both horizontal-tail-on and horizontal-tail-off configurations. Model force and moment measurements were made for model angles of attack from -5 deg to 14 deg in the Mach number range from 0.70 to 1.075 at Reynolds numbers of 2.95 x 10(exp 6) to 4.35 x 10(exp 6). With proper longitudinal location, wing-lower-surface dive-recovery flaps produced lift and pitching-moment increments that increased with flap deflection. For the transport model a flap located aft on the wing proved to be more effective than one located more forward., both flaps having the same span and approximately the same deflection. For the seaplane model a high horizontal tail provided added effectiveness for the deflected-flap configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito
A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directlymore » led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.« less
NASA Astrophysics Data System (ADS)
van der Veen, Rob L. P.; Berendschot, Tos T. J. M.; Makridaki, Maria; Hendrikse, Fred; Carden, David; Murray, Ian J.
2009-11-01
A comparison of macular pigment optical density (MPOD) spatial profiles determined by an optical and a psychophysical technique is presented. We measured the right eyes of 19 healthy individuals, using fundus reflectometry at 0, 1, 2, 4, 6, and 8 deg eccentricity; and heterochromatic flicker photometry (HFP) at 0, 0.5, 1, 2, 3, 4, 5, 6, and 7 deg, and a reference point at 8 deg eccentricity. We found a strong correlation between the two techniques. However, the absolute estimates obtained by fundus reflectometry data were higher than by HFP. These differences could partly be explained by the fact that at 8 deg eccentricity the MPOD is not zero, as assumed in HFP. Furthermore, when performing HFP for eccentricities of <1 deg, we had to assume that subjects set flicker thresholds at 0.4 deg horizontal translation when using a 1-deg stimulus. MPOD profiles are very similar for both techniques if, on average, 0.05 DU is added to the HFP data at all eccentricities. An additional correction factor, dependent on the steepness of the MPOD spatial distribution, is required for 0 deg.
NASA Astrophysics Data System (ADS)
Wells-Gray, Elaine M.; Choi, Stacey S.; Zawadzki, Robert J.; Finn, Susanna C.; Greiner, Cherry; Werner, John S.; Doble, Nathan
2018-03-01
We have designed and implemented a dual-mode adaptive optics (AO) imaging system that combines spectral domain optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) for in vivo imaging of the human retina. The system simultaneously acquires SLO frames and OCT B-scans at 60 Hz with an OCT volume acquisition time of 4.2 s. Transverse eye motion measured from the SLO is used to register the OCT B-scans to generate three-dimensional (3-D) volumes. Key optical design considerations include: minimizing system aberrations through the use of off-axis relay telescopes, conjugate pupil plane requirements, and the use of dichroic beam splitters to separate and recombine the OCT and SLO beams around the nonshared horizontal scanning mirrors. To demonstrate system performance, AO-OCT-SLO images and measurements are taken from three normal human subjects ranging in retinal eccentricity from the fovea out to 15-deg temporal and 20-deg superior. Also presented are en face OCT projections generated from the registered 3-D volumes. The ability to acquire high-resolution 3-D images of the human retina in the midperiphery and beyond has clinical importance in diseases, such as retinitis pigmentosa and cone-rod dystrophy.
Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
Wu, Jiang Hao; Zhang, Yan Lai; Sun, Mao
2009-10-01
When an insect hovers, the centre of mass of its body oscillates around a point in the air and its body angle oscillates around a mean value, because of the periodically varying aerodynamic and inertial forces of the flapping wings. In the present paper, hover flight including body oscillations is simulated by coupling the equations of motion with the Navier-Stokes equations. The equations are solved numerically; periodical solutions representing the hover flight are obtained by the shooting method. Two model insects are considered, a dronefly and a hawkmoth; the former has relatively high wingbeat frequency (n) and small wing mass to body mass ratio, whilst the latter has relatively low wingbeat frequency and large wing mass to body mass ratio. The main results are as follows. (i) The body mainly has a horizontal oscillation; oscillation in the vertical direction is about 1/6 of that in the horizontal direction and oscillation in pitch angle is relatively small. (ii) For the hawkmoth, the peak-to-peak values of the horizontal velocity, displacement and pitch angle are 0.11 U (U is the mean velocity at the radius of gyration of the wing), 0.22 c=4 mm (c is the mean chord length) and 4 deg., respectively. For the dronefly, the corresponding values are 0.02 U, 0.05 c=0.15 mm and 0.3 deg., much smaller than those of the hawkmoth. (iii) The horizontal motion of the body decreases the relative velocity of the wings by a small amount. As a result, a larger angle of attack of the wing, and hence a larger drag to lift ratio or larger aerodynamic power, is required for hovering, compared with the case of neglecting body oscillations. For the hawkmoth, the angle of attack is about 3.5 deg. larger and the specific power about 9% larger than that in the case of neglecting the body oscillations; for the dronefly, the corresponding values are 0.7 deg. and 2%. (iv) The horizontal oscillation of the body consists of two parts; one (due to wing aerodynamic force) is proportional to 1/cn2 and the other (due to wing inertial force) is proportional to wing mass to body mass ratio. For many insects, the values of 1/cn2 and wing mass to body mass ratio are much smaller than those of the hawkmoth, and the effects of body oscillation would be rather small; thus it is reasonable to neglect the body oscillations in studying their aerodynamics.
NASA Technical Reports Server (NTRS)
Fournier, Paul G.
1959-01-01
Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel to determine the effect of tail dihedral on lateral control effectiveness of a complete-model configuration having differentially deflected horizontal-tail surfaces. Limited tests were made to determine the lateral characteristics as well as the longitudinal characteristics in sideslip. The wing had an aspect ratio of 3, a taper ratio of 0.14, 28.80 deg sweep of the quarter-chord line with zero sweep at the 80-percent-chord line, and NACA 65A004 airfoil sections. The test Mach number range extended from 0.60 to 0.92. There are only small variations in the roll effectiveness parameter C(sub iota delta) with negative tail dihedral angle. The tail size used on the test model, however, is perhaps inadequate for providing the roll rates specified by current military requirements at subsonic speeds. The lateral aerodynamic characteristics were essentially constant throughout the range of sideslip angle from 12 deg to -12 deg. A general increase in yawing moment was noted with increased negative dihedral throughout the Mach number range.
Simulation of the Intraseasonal Variability over the Eastern Pacific ITCZ in Climate Models
NASA Technical Reports Server (NTRS)
Jiang, Xianan; Waliser, Duane E.; Kim, Daehyun; Zhao, Ming; Sperber, Kenneth R.; Stern, W. F.; Schubert, Siegfried D.; Zhang, Guang J.; Wang, Wanqiu; Khairoutdinov, Marat;
2012-01-01
During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode. Further analysis illustrates that the observed 40-day ISV mode over the EPAC is closely linked to the eastward propagating ISV signals from the Indian Ocean/Western Pacific, which is in agreement with the general impression that the 40-day ISV mode over the EPAC could be a local expression of the global Madden-Julian Oscillation (MJO). In contrast, the convective signals associated with the 40-day mode over the EPAC in most of the GCM simulations tend to originate between 150degE and 150degW, suggesting the 40-day ISV mode over the EPAC might be sustained without the forcing by the eastward propagating MJO. Further investigation is warranted towards improved understanding of the origin of the ISV over the EPAC.
NASA Technical Reports Server (NTRS)
Houser, J.; Johnson, L. J.; Oiye, M.; Runciman, W.
1972-01-01
Experimental aerodynamic investigations were made in a transonic wind tunnel on a 1/150-scale model of the Boeing H-32 space shuttle booster configuration. The purpose of the test was: (1) to verify the transonic reentry corridor at high angles of attack; (2) to determine the transonic aerodynamic characteristics; and (3) to determine the subsonic aerodynamic characteristics at low angles of attack. Test variables included configuration buildup, horizontal stabilizer settings of 0 and -20 deg, elevator deflections of 0 and -30 deg, and wing spoiler settings of 60 deg.
Binocular summation and peripheral visual response time
NASA Technical Reports Server (NTRS)
Gilliland, K.; Haines, R. F.
1975-01-01
Six males were administered a peripheral visual response time test to the onset of brief small stimuli imaged in 10-deg arc separation intervals across the dark adapted horizontal retinal meridian under both binocular and monocular viewing conditions. This was done in an attempt to verify the existence of peripheral binocular summation using a response time measure. The results indicated that from 50-deg arc right to 50-deg arc left of the line of sight binocular summation is a reasonable explanation for the significantly faster binocular data. The stimulus position by viewing eye interaction was also significant. A discussion of these and other analyses is presented along with a review of related literature.
Design considerations for a real-time ocular counterroll instrument
NASA Technical Reports Server (NTRS)
Hatamian, M.; Anderson, D. J.
1983-01-01
A real-time algorithm for measuring three-dimensional movement of the human eye, especially torsional movement, is presented. As its input, the system uses images of the eyeball taken at video rate. The amount of horizontal and vertical movement is extracted using a pupil tracking technique. The torsional movement is then measured by computing the discrete cross-correlation function between the circular samples of successive images of the iris patterns and searching for the position of the peak of the function. A local least square interpolation around the peak of the cross-correlation function is used to produce nearly unbiased estimates of torsion angle with accuracy of about 3-4 arcmin. Accuracies of better than 0.03 deg are achievable in torsional measurement with SNR higher than 36 dB. Horizontal and vertical rotations of up to + or - 13 deg can occur simultaneously with torsion without introducing any appreciable error in the counterrolling measurement process.
Performance of an Optimized Eta Model Code on the Cray T3E and a Network of PCs
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Rancic, Miodrag; Geiger, Jim
2000-01-01
In the year 2001, NASA will launch the satellite TRIANA that will be the first Earth observing mission to provide a continuous, full disk view of the sunlit Earth. As a part of the HPCC Program at NASA GSFC, we have started a project whose objectives are to develop and implement a 3D cloud data assimilation system, by combining TRIANA measurements with model simulation, and to produce accurate statistics of global cloud coverage as an important element of the Earth's climate. For simulation of the atmosphere within this project we are using the NCEP/NOAA operational Eta model. In order to compare TRIANA and the Eta model data on approximately the same grid without significant downscaling, the Eta model will be integrated at a resolution of about 15 km. The integration domain (from -70 to +70 deg in latitude and 150 deg in longitude) will cover most of the sunlit Earth disc and will continuously rotate around the globe following TRIANA. The cloud data assimilation is supposed to run and produce 3D clouds on a near real-time basis. Such a numerical setup and integration design is very ambitious and computationally demanding. Thus, though the Eta model code has been very carefully developed and its computational efficiency has been systematically polished during the years of operational implementation at NCEP, the current MPI version may still have problems with memory and efficiency for the TRIANA simulations. Within this work, we optimize a parallel version of the Eta model code on a Cray T3E and a network of PCs (theHIVE) in order to improve its overall efficiency. Our optimization procedure consists of introducing dynamically allocated arrays to reduce the size of static memory, and optimizing on a single processor by splitting loops to limit the number of streams. All the presented results are derived using an integration domain centered at the equator, with a size of 60 x 60 deg, and with horizontal resolutions of 1/2 and 1/3 deg, respectively. In accompanying charts we report the elapsed time, the speedup and the Mflops as a function of the number of processors for the non-optimized version of the code on the T3E and theHIVE. The large amount of communication required for model integration explains its poor performance on theHIVE. Our initial implementation of the dynamic memory allocation has contributed to about 12% reduction of memory but has introduced a 3% overhead in computing time. This overhead was removed by performing loop splitting in some of the high demanding subroutines. When the Eta code is fully optimized in order to meet the memory requirement for TRIANA simulations, a non-negligeable overhead may appear that may seriously affect the efficiency of the code. To alleviate this problem, we are considering implementation of a new algorithm for the horizontal advection that is computationally less expensive, and also a new approach for marching in time.
Behavior of human horizontal vestibulo-ocular reflex in response to high-acceleration stimuli
NASA Technical Reports Server (NTRS)
Maas, E. F.; Huebner, W. P.; Seidman, S. H.; Leigh, R. J.
1989-01-01
The horizontal vestibulo-ocular reflex (VOR) during transient, high-acceleration (1900-7100 deg/sec-squared) head rotations was studied in four human subjects. Such stimuli perturbed the angle of gaze and caused illusory movement of a viewed target (oscillopsia). The disturbance of gaze could be attributed to the latency of the VOR (which ranged from 6-15 ms) and inadequate compensatory eye rotations (median VOR gain ranged from 0.61-0.83).
The Semicircular Canal Microphonic
NASA Technical Reports Server (NTRS)
Rabbitt, R. D.; Boyle, R.; Highstein, S. M.; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
Present experiments were designed to quantify the alternating current (AC) component of the semicircular canal microphonic for angular motion stimulation as a function of stimulus frequency and amplitude. The oyster toadfish, Opsanus tau, was used as the experimental model. Calibrated mechanical indentation of the horizontal canal duct was used as a stimulus to generate hair-cell and afferent responses reproducing those present during head rotation. Sensitivity to polarization of the endolymph DC voltage re: perilymph was also investigated. Modulation of endolymph voltage was recorded using conventional glass electrodes and lock-in amplification over the frequency range 0.2-80 Hz. Access to the endolymph for inserting voltage recording and current passing electrodes was obtained by sectioning the anterior canal at its apex and isolating the cut ends in air. For sinusoidal stimulation below approx.10 Hz, the horizontal semicircular canal AC microphonic was nearly independent of stimulus frequency and equal to approximately 4 microV per micron indent (equivalent to approx. 1 microV per deg/s). A saturating nonlinearity decreasing the microphonic gain was present for stimuli exceeding approx.3 micron indent (approx. 12 deg/s angular velocity). The phase was not sensitive to the saturating nonlinearity. The microphonic exhibited a resonance near 30Hz consistent with basolateral current hair cell resonance observed previously in voltage-clamp records from semicircular canal hair cells. The magnitude and phase of the microphonic exhibited sensitivity to endolymphatic polarization consistent with electro-chemical reversal of hair cell transduction currents.
Effect of Target Location on Dynamic Visual Acuity During Passive Horizontal Rotation
NASA Technical Reports Server (NTRS)
Appelbaum, Meghan; DeDios, Yiri; Kulecz, Walter; Peters, Brian; Wood, Scott
2010-01-01
The vestibulo-ocular reflex (VOR) generates eye rotation to compensate for potential retinal slip in the specific plane of head movement. Dynamic visual acuity (DVA) has been utilized as a functional measure of the VOR. The purpose of this study was to examine changes in accuracy and reaction time when performing a DVA task with targets offset from the plane of rotation, e.g. offset vertically during horizontal rotation. Visual acuity was measured in 12 healthy subjects as they moved a hand-held joystick to indicate the orientation of a computer-generated Landolt C "as quickly and accurately as possible." Acuity thresholds were established with optotypes presented centrally on a wall-mounted LCD screen at 1.3 m distance, first without motion (static condition) and then while oscillating at 0.8 Hz (DVA, peak velocity 60 deg/s). The effect of target location was then measured during horizontal rotation with the optotypes randomly presented in one of nine different locations on the screen (offset up to 10 deg). The optotype size (logMar 0, 0.2 or 0.4, corresponding to Snellen range 20/20 to 20/50) and presentation duration (150, 300 and 450 ms) were counter-balanced across five trials, each utilizing horizontal rotation at 0.8 Hz. Dynamic acuity was reduced relative to static acuity in 7 of 12 subjects by one step size. During the random target trials, both accuracy and reaction time improved proportional to optotype size. Accuracy and reaction time also improved between 150 ms and 300 ms presentation durations. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements when acquiring vertical targets. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of motion. Both reaction time and accuracy are functionally relevant DVA parameters of VOR function.
Tidal estimation in the Atlantic and Indian Oceans, 3 deg x 3 deg solution
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Rao, Desiraju B.; Steenrod, Stephen D.
1987-01-01
An estimation technique was developed to extrapolate tidal amplitudes and phases over entire ocean basins using existing gauge data and the altimetric measurements provided by satellite oceanography. The technique was previously tested. Some results obtained by using a 3 deg by 3 deg grid are presented. The functions used in the interpolation are the eigenfunctions of the velocity (Proudman functions) which are computed numerically from a knowledge of the basin's bottom topography, the horizontal plan form and the necessary boundary conditions. These functions are characteristic of the particular basin. The gravitational normal modes of the basin are computed as part of the investigation; they are used to obtain the theoretical forced solutions for the tidal constituents. The latter can provide the simulated data for the testing of the method and serve as a guide in choosing the most energetic functions for the interpolation.
NASA Technical Reports Server (NTRS)
Fritts, D. C.; Imura, H.; Lieberman, R.; Janches, D.; Singer, W.
2011-01-01
Two meteor radars with enhanced power and sensitivity and located at closely conjugate latitudes (54.6degN and 53.8degS) are employed for inter-hemispheric comparisons of mean winds and planetary wave structures. Our study uses data from June 2008 through May 2010 during which both radars provided nearly continuous wind measurements from approx.80 to 100 km. Monthly mean winds at 53.8degS exhibit a somewhat stronger westward mean zonal jet in spring and early summer at lower altitudes and no westward monthly mean winds at higher altitudes. In contrast, westward mean winds of approx.5-10 m/s at 54.6degN extend to above 96 km during late winter and early spring each year. Equatorward monthly mean winds extend approximately from spring to fall equinox at both latitudes, with amplitudes of approx.5-10 m/s and more rapid decreases in amplitude at 54.6degN at higher altitudes. Meridional mean winds are more variable at both latitudes during fall and winter, with both poleward and equatorward monthly means indicating longer-period variability. Planetary waves seen in the 2-day mean data are episodic and variable at both sites, exhibit dominant periodicities of approx.8-10 and 16-20 days and are more confined to late fall and winter at 54.6degN. At both latitudes, planetary waves in the two period bands coincide closely in time and exhibit similar horizontal velocity covariances that are positive (negative) at 54.6degN (53.8degS) during peak planetary wave responses.
NASA Astrophysics Data System (ADS)
Ansan, V.; Vergely, P.; Masson, P.
1994-03-01
For more than a decade, the mapping of Venus has revealed a surface that has had a complex volcanic and tectonic history, especially in the northern latitudes. Detailed morphostructural analysis and tectonic interpretations of Central Ishtar Terra, based both on Venera 15/16 and Magellan full-resolution radar images, have provided additional insight to the formation and evolution of Venusian terrains. Ishtar Terra, centered at 0 deg E longitude and 62 deg N latitude, consists of a broad high plateau, Lakshmi Planum, partly surrounded by two highlands, Freyja and Maxwell Montes, which have been interpreted as orogenic belts based on Venera 15 and 16 data. Lakshmi Planum, the oldest part of Ishtar Terra, is an extensive and complexly fractured plateau that can be compared to a terrestrial craton. The plateau is partially covered by fluid lava flows similar to the Deccan traps in India, which underwent a late stage of extensional fracturing. After the extensional deformation of Lakshmi Planum, Freyja and Maxwell Montes were created by regional E-W horizontal shortening that produced a series of N-S folds and thrusts. However, this regional arrangement of folds and thrusts is disturbed locally, e.g. the compressive deformation of Freyja Montes was closely controlled by parallel WNW-ESE-trending left-lateral shear zones and the northwestern part of Maxwell Montes seems to be extruded laterally to the southwest, which implies a second oblique thrust front overlapping Lakshmi Planum. These mountain belts also shows evidence of a late volcanic stage and a subsequent period of relaxation that created grabens parallel to the highland trends, especially in Maxwell Montes.
Inertial drives for micro- and nanorobots: two novel mechanisms
NASA Astrophysics Data System (ADS)
Zesch, Wolfgang; Buechi, Roland; Codourey, Alain; Siegwart, Roland Y.
1995-12-01
In micro or nanorobotics, high precision movement in two or more degrees of freedom is one of the main problems. Firstly, the positional precision has to be increased (< 10 nm) as the object sizes decrease. On the other hand, the workspace has to have macroscopic dimensions (1 cm3) to give high maneuverability to the system and to allow suitable handling at the micro/macro-world interface. As basic driving mechanisms for the ETHZ Nanorobot Project, two new piezoelectric devices have been developed. `Abalone' is a 3-dof system that relies on the impact drive principle. The 38 mm X 33 mm X 9 mm slider can be moved to each position and orientation in a horizontal plane within a theoretically infinite workspace. In the stepping mode it achieves a speed of 1 mm/s in translation and 7 deg/s in rotation. Within the actuator's local range of 6 micrometers fine positioning is possible with a resolution better than 10 nm. `NanoCrab' is a bearingless rotational micromotor relying on the stick-slip effect. This 10 mm X 7 mm X 7 mm motor has the advantage of a relatively high torque at low rotational speed and an excellent runout. While the maximum velocity is 60 rpm, it reaches its highest torque of 0.3 mNm at 2 rpm. Another benefit is the powerless holding torque of 0.9 mNm. With a typical step of 0.1 mrad and a local resolution 3 orders of magnitude better than the step angle, NanoCrab can be very precisely adjusted. Design and measurements of the characteristics of these two mechanisms will be presented and compared with the theoretical analysis of inertial drives presented in a companion paper. Finally their integration into the Nanorobot system will be discussed.
Modelling of Black and Organic Carbon Variability in the Northern Hemisphere
NASA Astrophysics Data System (ADS)
Kurganskiy, Alexander; Nuterman, Roman; Mahura, Alexander; Kaas, Eigil; Baklanov, Alexander; Hansen Sass, Bent
2016-04-01
Black and organic carbon as short-lived climate forcers have influence on air quality and climate in Northern Europe and Arctic. Atmospheric dispersion, deposition and transport of these climate forcers from remote sources is especially difficult to model in Arctic regions due to complexity of meteorological and chemical processes and uncertainties of emissions. In our study, the online integrated meteorology-chemistry/aerosols model Enviro-HIRLAM (Environment - High Resolution Limited Area Model) was employed for evaluating spatio-temporal variability of black and organic carbon aerosols in atmospheric composition in the Northern Hemisphere regions. The model setup included horizontal resolution of 0.72 deg, time step of 450 sec, 6 h meteorological surface data assimilation, 1 month spin-up; and model was run for the full year of 2010. Emissions included anthropogenic (ECLIPSE), shipping (AU_RCP&FMI), wildfires (IS4FIRES), and interactive sea salt, dust and DMS. Meteorological (from IFS at 0.75 deg) and chemical (from MACC Reanalysis at 1.125 deg) boundary conditions were obtained from ECMWF. Annual and month-to-month variability of mean concentration, accumulated dry/wet and total deposition fluxes is analyzed for the model domain and selected European and Arctic observation sites. Modelled and observed BC daily mean concentrations during January and July showed fair-good correlation (0.31-0.64) for stations in Germany, UK and Italy; however, for Arctic stations (Tiksi, Russia and Zeppelin, Norway) the correlations were negative in January, but higher correlations and positive (0.2-0.7) in July. For OC, it varied 0.45-0.67 in January and 0.19-0.57 in July. On seasonal scale, during both summer and winter seasons the BC and OC correlations are positive and higher for European stations compared with Arctic. On annual scale, both BC and OC correlations are positive and vary between 0.4-0.6 for European stations, and these are smoothed to negligible values for Arctic stations. Results of simulations showed that in general the model tends to underestimate both black and organic carbon concentrations for the Arctic and European stations.
3-D Perspective View, Kamchatka Peninsula, Russia
NASA Technical Reports Server (NTRS)
2000-01-01
This perspective view shows the western side of the volcanically active Kamchatka Peninsula in eastern Russia. The image was generated using the first data collected during the Shuttle Radar Topography Mission (SRTM). In the foreground is the Sea of Okhotsk. Inland from the coast, vegetated floodplains and low relief hills rise toward snow capped peaks. The topographic effects on snow and vegetation distribution are very clear in this near-horizontal view. Forming the skyline is the Sredinnyy Khrebet, the volcanic mountain range that makes up the spine of the peninsula. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and to understand the hazards posed by future eruptions.
This image was generated using topographic data from SRTM and an enhanced true-color image from the Landsat 7 satellite. This image contains about 2,400 meters (7,880 feet) of total relief. The topographic expression was enhanced by adding artificial shading as calculated from the SRTM elevation model. The Landsat data was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM, launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. To collect the 3-D SRTM data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. SRTM collected three-dimensional measurements of nearly 80 percent of the Earth's surface. SRTM is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, D.C.Size: 33.3 km (20.6 miles) wide x 136 km (84 miles) coast to skyline Location: 58.3 deg. North lat., 160 deg. East long. Orientation: Easterly view, 2 degrees down from horizontal Original Data Resolution: 30 meters (99 feet) Vertical Exaggeration: 3 times Date Acquired: February 12, 2000 (SRTM) August 1, 1999 (Landsat) Image: NASA/JPL/NIMANASA Technical Reports Server (NTRS)
Boyden, R. P.
1974-01-01
The aerodynamic damping in pitch, yaw, and roll and the oscillatory stability in pitch and yaw of a supercritical-wing research airplane model were determined for Mach numbers of 0.25 to 1.20 by using the small-amplitude forced-oscillation technique. The angle-of-attack range was from -2 deg to 20 deg. The effects of the underwing leading-edge vortex generators and the contributions of the wing, vertical tail, and horizontal tail to the appropriate damping and stability were measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fuyu; Collins, William D.; Wehner, Michael F.
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less
Simulated cosmic microwave background maps at 0.5 deg resolution: Unresolved features
NASA Technical Reports Server (NTRS)
Kogut, A.; Hinshaw, G.; Bennett, C. L.
1995-01-01
High-contrast peaks in the cosmic microwave background (CMB) anisotropy can appear as unresolved sources to observers. We fit simluated CMB maps generated with a cold dark matter model to a set of unresolved features at instrumental resolution 0.5 deg-1.5 deg to derive the integral number density per steradian n (greater than absolute value of T) of features brighter than threshold temperature absolute value of T and compare the results to recent experiments. A typical medium-scale experiment observing 0.001 sr at 0.5 deg resolution would expect to observe one feature brighter than 85 micro-K after convolution with the beam profile, with less than 5% probability to observe a source brighter than 150 micro-K. Increasing the power-law index of primordial density perturbations n from 1 to 1.5 raises these temperature limits absolute value of T by a factor of 2. The MSAM features are in agreement with standard cold dark matter models and are not necessarily evidence for processes beyond the standard model.
NASA Technical Reports Server (NTRS)
Hussein, Z.; Rahmat-Samii, Y.; Kellogg, K.
1997-01-01
This paper presents the design and performance evaluation of a lightweight, composite material, elliptical-aperture, parabolic-reflector antenna. The performance characterization is obtained using the cylindrical near-field measurement facility at JPL as shown. The reflector has been designed and calibrated for the SeaWinds spaceborne scatterometer instrument. The instrument operates at Ku-band and is designed to accurately measure wind speed and direction over Earth's ocean surface. The SeaWinds antenna design requires two linearly polarized independent beams pointed at 40 deg.and 46 deg. from nadir as shown. The inner beam, pointed at 40 deg. from nadir, is horizontally polarized with 1.6 in x 1.8 in required beamwidths in the elevation and azimuth planes, respectively. The outer beam, pointed at 46 deg. from nadir, is vertically polarized with 1.4 in x 1.7 in required beamwidths. Noteworthy, the reflector boresight axis is pointed at 43 deg. from nadir. Both beams are required to have the first sidelobe level below -15 dB relative to the peak of the beam.
High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data
NASA Technical Reports Server (NTRS)
Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2014-01-01
We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.
Intercomparisons of sumultaneous remote and in situ wind measurements
NASA Technical Reports Server (NTRS)
Gonzales, N.; Hauchecorne, A.; Kirkwood, S.; Lubken, F.-J.; Manson, A. H.; Mourier, A.; Schmidlin, F. J.; Schminder, R.; Kurschner, D.; Singer, W.
1994-01-01
A large number of ground based, balloon and rocket borne experiments was performed at various stations during DYnamics Adapted Network for the Atmosphere (DYANA). This allows the comparisons of simultaneous wind profiles determined by different techniques. This paper briefly describes each technique and discusses the comparisons between: (1) foil chaff at Andoya (69 deg N, 16 deg E) and EISCAT winds data at Tromso (70 deg N, 19 deg E); (2) foil chaff or falling sphere at Andoya and MF radar winds data at Tromso; (3) MF radar at Juliusruh (54 deg N, 13 deg E), meteorological radar at Kuehlungsborn (54 deg N, 11 deg E), meteorological rockets at Zingst (54 deg N, 12.5 deg E) and LF drift winds at Collm (51.3 deg N, 13 deg E); (4) falling sphere, balloons and, for the first time, a Rayleigh Doppler Lidar at the Centre d'Essais des Landes (C.E.L. 44 deg N, 1 deg W). These methods have widely varying altitude, spatial and temporal resolutions. Despite these differences, the comparisons show a generally good agreement.
Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS
NASA Technical Reports Server (NTRS)
Newell, Reginald E.
1998-01-01
The seasonal changes of the upper tropospheric humidity are studied with the water vapor data from the Microwave Limb Sounder on the NASA Upper Atmosphere Research Satellite, and the winds and vertical velocity data obtained from the European Centre for Medium-Range Weather Forecasts. Using the same algorithm for vertical transport as that used for horizontal transport (Zhu and Newell, 1998), we find that the moisture in the tropical upper troposphere may be increased mainly by intensified local convection in a small portion, less than 10%, of the whole area between 40 deg S to 40 deg N. The contribution of large scale background circulations and divergence of horizontal transport is relatively small in these regions. These dynamic processes cannot be revealed by the traditional analyses of moisture fluxes. The negative feedback suggested by Lindzen (1990) also exists, if enhanced convection is concentrated in the tropics, but is apparently not the dominant process in the moisture budget.
Behavioral responses of trained squirrel and rhesus monkeys during oculomotor tasks
Heiney, Shane A.; Blazquez, Pablo M.
2018-01-01
The oculomotor system is the motor system of choice for many neuroscientists studying motor control and learning because of its simplicity, easy control of inputs (e.g., visual stimulation), and precise control and measurement of motor outputs (eye position). This is especially true in primates, which are easily trained to perform oculomotor tasks. Here we provide the first detailed characterization of the oculomotor performance of trained squirrel monkeys, primates used extensively in oculomotor physiology, during saccade and smooth pursuit tasks, and compare it to that of the rhesus macaque. We found that both primates have similar oculomotor behavior but the rhesus shows a larger oculomotor range, better performance for horizontal saccades above 10 degrees, and better horizontal smooth pursuit gain to target velocities above 15 deg/s. These results are important for interspecies comparisons and necessary when selecting the best stimuli to study motor control and motor learning in the oculomotor systems of these primates. PMID:21656216
NASA Technical Reports Server (NTRS)
Love, Jeffrey J.; Coïsson, Pierdavide; Pulkkinen, Antti
2016-01-01
Analysis is made of the long-term statistics of three different measures of ground level, storm time geomagnetic activity: instantaneous 1 min first differences in horizontal intensity (delta)Bh, the root-mean-square of 10 consecutive 1 min differences S, and the ramp change R over 10 min. Geomagnetic latitude maps of the cumulative exceedances of these three quantities are constructed, giving the threshold(nTmin) for which activity within a 24 h period can be expected to occur once per year, decade, and century. Specifically, at geomagnetic 55deg, we estimate once-per-century (delta)Bh, S, and R exceedances and a site-to-site,proportional, 1 standard deviation range [1(sigma), lower and upper] to be, respectively, 1000, [690, 1450]; 500,[350, 720]; and 200, [140, 280] nTmin. At 40deg, we estimate once-per-century (delta)Bh, S, and R exceedances and1(sigma) values to be 200, [140, 290]; 100, [70, 140]; and 40, [30, 60] nTmin.
Asymmetrical dual tapered fiber Mach-Zehnder interferometer for fiber-optic directional tilt sensor.
Lee, Cheng-Ling; Shih, Wen-Cheng; Hsu, Jui-Ming; Horng, Jing-Shyang
2014-10-06
This work proposes a novel, highly sensitive and directional fiber tilt sensor that is based on an asymmetrical dual tapered fiber Mach-Zehnder interferometer (ADTFMZI). The fiber-optic tilt sensor consists of two abrupt tapers with different tapered waists into which are incorporated a set of iron spheres to generate an asymmetrical strain in the ADTFMZI that is correlated with the tilt angle and the direction of inclination. Owing to the asymmetrical structure of the dual tapers, the proposed sensor can detect the non-horizontal/horizontal state of a structure and whether the test structure is tilted to clockwise or counterclockwise by measuring the spectral responses. Experimental results show that the spectral wavelengths are blue-shifted and red-shifted when the sensor tilts to clockwise (-θ) and counterclockwise ( + θ), respectively. Tilt angle sensitivities of about 335 pm/deg. and 125 pm/deg. are achieved in the -θ and + θ directions, respectively, when the proposed sensing scheme is utilized.
Super-resolution optics for virtual reality
NASA Astrophysics Data System (ADS)
Grabovičkić, Dejan; Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj; Nikolic, Milena I.; Lopez, Jesus; Gorospe, Jorge; Sanchez, Eduardo; Lastres, Carmen; Mohedano, Ruben
2017-06-01
In present commercial Virtual Reality (VR) headsets the resolution perceived is still limited, since the VR pixel density (typically 10-15 pixels/deg) is well below what the human eye can resolve (60 pixels/deg). We present here novel advanced optical design approaches that dramatically increase the perceived resolution of the VR keeping the large FoV required in VR applications. This approach can be applied to a vast number of optical architectures, including some advanced configurations, as multichannel designs. All this is done at the optical design stage, and no eye tracker is needed in the headset.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Allen, Amber L.; Lee, Sukyoung; Miller, Sonya K.; Witte, Jacquelyn C.
2011-01-01
Prior investigations attempted to determine the relative influence of advection and convective processes on ozone and water vapor distributions in the tropical tropopause layer (TTL) through analyses of tracers, related physical parameters (e.g., outgoing long-wave radiation, precipitable water, and temperature), or with models. In this study, stable laminae in Southern Hemisphere Additional Ozonesonde Network (SHADOZ) ozone profIles from 1998 to 2007 are interpreted in terms of gravity waves (GW) or Rossby waves (RW) that are identified with vertical and quasi-horizontal displacements, respectively. Using the method of Pierce and Grant (1998) as applied by Thompson et al. (2007a, 2007b, 2010, 2011), amplitudes and frequencies in ozone laminae are compared among representative SHADOZ sites over Africa and the Pacific, Indian, and Atlantic oceans. GW signals maximize in the TTL and lower stratosphere. Depending on site and season, GW are identified in up to 90% of the soundings. GW are most prevalent over the Pacific and eastern Indian oceans, a distribution consistent with vertically propagating equatorial Kelvin waves. Ozone laminae from RW occur more often below the tropical tropopause and with lower frequency 20%). Gravity wave and Rossby wave indices (GWI, RWI) are formulated to facilitate analysis of interannual variability of wave signatures among sites. GWI is positively correlated with a standard ENSO (El Nino-Southern Oscillation) index over American Samoa (14degS, 171degW) and negatively correlated at Watukosek, Java (7.5degS, 114degE), Kuala Lumpur (3degN, 102degE), and Ascension Island (80degS, 15degW). Generally, the responses of GW and RW to ENSO are consistent with prior studies.
NASA Technical Reports Server (NTRS)
Bare, E. A.; Berrier, B. L.; Capone, F. J.
1981-01-01
Investigations were conducted in the Langley 16-Foot Transonic Tunnel to provide data on a 0.10-scale model of the prototype F-18 airplane and a 0.047-scale model of the F-15 three-surface configuration (canard, wing, and horizontal tails). Test data were obtained at static conditions and at Mach numbers from 0.6 to 1.2 over an angle-of-attack range from 2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 8.0.
Radar systems for the water resources mission. Volume 4: Appendices E-I
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.
Venus - Limited extension and volcanism along zones of lithospheric weakness
NASA Technical Reports Server (NTRS)
Schaber, G. G.
1982-01-01
Three global-scale zones of possible tectonic origin are described as occurring along broad, low rises within the Equatorial Highlands on Venus (lat 50 deg N to 50 deg S, long 60 deg to 310 deg). The two longest of these tectonic zones, the Aphrodite-Beta and Themis-Atla zones, extend for 21,000 and 14,000 km, respectively. Several lines of evidence indicate that Beta and Atla Regiones, located at the only two intersections of the three major tectonic zones, are dynamically supported volcanic terranes associated with currently active volcanism. Rift valleys south of Aphrodite Terra and between Beta and Phoebe Regiones are characterized by 75- to 100-km widths, raised rims, and extensions of only a few tens of kilometers, about the same magnitudes as in continental rifts on the earth. Horizontal extension on Venus was probably restricted by an early choking-off of plate motion by high crustal and upper-mantle temperatures, and the subsequent loss of water and an asthenosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Y.G.; Lee, G.B.; Bang, S.Y.
2006-07-01
Recently, three-dimensional models have been used for aquatic dispersion of radioactive effluents in relation to nuclear power plant siting based on the Notice No. 2003-12 'Guideline for investigating and assessing hydrological and aquatic characteristics of nuclear facility site' of the Ministry of Science and Technology (MOST) in Korea. Several nuclear power plants have been under construction or planed, which are Shin-Kori Unit 1 and 2, Shin-Wolsong Unit 1 and 2, and Shin-Ulchin Unit 1 and 2. For assessing the aquatic dispersion of radionuclides released from the above nuclear power plants, it is necessary to know the coastal currents around sitesmore » which are affected by circulation of East Sea. In this study, a three dimensional hydrodynamic model for the circulation of the East Sea of Korea has been developed as the first phase, which is based on the RIAMOM (Research Institute of Applied Mechanics' Ocean Model, Kyushu University, Japan). The model uses the primitive equation with hydrostatic approximation, and uses Arakawa-B grid system horizontally and Z coordinate vertically. Model domain is 126.5 deg. E to 142.5 deg. E of east longitude and 33 deg. N and 52 deg. N of the north latitude. The space of the horizontal grid was 1/12 deg. to longitude and latitude direction and vertical level was divided to 20. This model uses Generalized Arakawa Scheme, Slant Advection, and Mode-Splitting Method. The input data were from JODC (Japan Oceanographic Data Center), KNFRDI (Korea National Fisheries Research and Development Institute), and ECMWF (European Center for Medium-Range Weather Forecasts). The modeling results are in fairly good agreement with schematic patterns of the surface circulation in the East Sea/Japan Sea. The local current model and aquatic dispersion model of the coastal region will be developed as the second phase. The oceanic dispersion experiments will be also carried out by using ARGO Drifter around a nuclear power plant site. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, K.; Wilson, R.J.; Hemler, R.S.
1999-11-15
The large-scale circulation in the Geophysical Fluid Dynamics Laboratory SKYHI troposphere-stratosphere-mesosphere finite-difference general circulation model is examined as a function of vertical and horizontal resolution. The experiments examined include one with horizontal grid spacing of {approximately}35 km and another with {approximately}100 km horizontal grid spacing but very high vertical resolution (160 levels between the ground and about 85 km). The simulation of the middle-atmospheric zonal-mean winds and temperatures in the extratropics is found to be very sensitive to horizontal resolution. For example, in the early Southern Hemisphere winter the South Pole near 1 mb in the model is colder thanmore » observed, but the bias is reduced with improved horizontal resolution (from {approximately}70 C in a version with {approximately}300 km grid spacing to less than 10 C in the {approximately}35 km version). The extratropical simulation is found to be only slightly affected by enhancements of the vertical resolution. By contrast, the tropical middle-atmospheric simulation is extremely dependent on the vertical resolution employed. With level spacing in the lower stratosphere {approximately}1.5 km, the lower stratospheric zonal-mean zonal winds in the equatorial region are nearly constant in time. When the vertical resolution is doubled, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed QBO in many respects, although the simulated oscillation has a period less than half that of the real QBO.« less
A Study of the Extratropical Tropopause from Observations and Models
NASA Astrophysics Data System (ADS)
Wang, Shu Meir
The extratropical tropopause is a familiar feature in meteorology; however, the understanding of the mechanisms for its existence, formation, maintenance and sharpness is still an active area of research. Son and Povalni (2007) used a simple general circulation model to produce the TIL (Tropopause Inversion Layer), and they found that the extratropical tropopause is more sensitive to the change of the horizontal resolution than to the change of the vertical resolution. The extratropical tropopause is sharper and lower in higher horizontal resolution. They also successfully mimicked the seasonal variation of the extratropical tropopause by changing the Equator-to-Pole temperature difference. They found these features of the extratropical tropopause, but they did not explain why these features were seen in their simplified model. In this research, we try to explain why these features of the extratropical tropopause are seen from both observations and the models. I have shown in my MS thesis that the distance from the jet is more associated with the extratropical tropopause than is the upper tropospheric relative vorticity (Wirth, 2001) from observations. In this research, the reproduction of the work is done from both the idealized and the full model run, and the results are similar to those from the observations, which show that even on synoptic time scales, the distance from the jet is more important in determining the extratropical tropopause height than is the upper tropospheric relative vorticity. It also explains the seasonal variations of the extratropical tropopause since the jet is more poleward in summer than in winter (the Equator-to-Pole temperature difference is smaller in summer than in winter), thus there is larger area at south of the jet which means the extratropical tropopause is sharper and higher at midlatitudes in summer than in winter. We believe that baroclinic mixing of PV is the key factor that sharpens the extratropical tropopause, and adequate horizontal resolution is needed to resolve the baroclinic mixing and the small-scale filamentary structures. We used many methods in this study to show that there is more baroclinic activity seen in higher horizontal resolution. We also compared the correlations of the tropopause height with three variations in different quantities (PV fluxes, the upper tropospheric vorticity, and heat fluxes), and found that the correlations of the tropopause height and PV fluxes are the highest among the three. Thus, we conclude that baroclinic mixing is the most important factor that controls the extratropical tropopause sharpness. This also explains why the extratropical tropopause is sharper at midlatitudes when higher horizontal resolution is used (see figure 2.4 in the thesis and figure 2 in Son and Polvani's (2007)) since there is more baroclinic activity in the higher horizontal resolution models. Since there is more baroclinic activity seen in higher horizontal resolution, the baroclinic eddy drag is larger, which intensifies the thermally direct cell. The stronger thermally direct cell with higher horizontal resolution has greater downward motion in higher latitudes, and thus lowers the extratropical tropopause more in higher horizontal resolution models, which explains why the extratropical tropopause is lower in higher horizontal than in lower horizontal resolution models, as in Son and Polvani's (2007) paper.
Retrievals of Jovian Tropospheric Phosphine from Cassini/CIRS
NASA Technical Reports Server (NTRS)
Irwin, P. G. J.; Parrish, P.; Fouchet, T.; Calcutt, S. B.; Taylor, F. W.; Simon-Miller, A. A.; Nixon, C. A.
2004-01-01
On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone on its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10-1400 cm(exp -1) (1000-7 microns) at a programmable spectral resolution of 0.5 to 15 cm(exp -1). The improved spectral resolution of CIRS over previous IR instrument-missions to Jupiter, the extended spectral range, and higher signal-to-noise performance provide significant advantages over previous data sets. CIRS global observations of the mid-infrared spectrum of Jupiter at medium resolution (2.5 cm(exp -1)) have been analysed both with a radiance differencing scheme and an optimal estimation retrieval model to retrieve the spatial variation of phosphine and ammonia fractional scale height in the troposphere between 60 deg S and 60 deg N at a spatial resolution of 6 deg. The ammonia fractional scale height appears to be high over the Equatorial Zone (EZ) but low over the North Equatorial Belt (NEB) and South Equatorial Belt (SEB) indicating rapid uplift or strong vertical mixing in the EZ. The abundance of phosphine shows a similar strong latitudinal variation which generally matches that of the ammonia fractional scale height. However while the ammonia fractional scale height distribution is to a first order symmetric in latitude, the phosphine distribution shows a North/South asymmetry at mid latitudes with higher amounts detected at 40 deg N than 40 deg S. In addition the data show that while the ammonia fractional scale height at this spatial resolution appears to be low over the Great Red Spot (GRS), indicating reduced vertical mixing above the approx. 500 mb level, the abundance of phosphine at deeper levels may be enhanced at the northern edge of the GRS indicating upwelling.
Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu
2011-01-01
Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with the GIF-resolution hypothesis even when the gravito-inertial force vector remains aligned with the body during periodic motion. Perception is also consistent with GIF-resolution in the opposite condition, when the gravito-inertial force vector angle is enhanced by synchronized tilt and translation.
Global Distribution of Dissected Duricrust on Mars
NASA Technical Reports Server (NTRS)
Mustard, J. F.; Cooper, C. D.
2000-01-01
Evidence for dissected duricrust was identified in high resolution MOC images. Analysis of all available images was used to map the global distribution of this terrain. It is apparently restricted to two latitude bands: 30-60 deg. N and 30-60 deg. S.
Polarized object detection in crabs: a two-channel system.
Basnak, Melanie Ailín; Pérez-Schuster, Verónica; Hermitte, Gabriela; Berón de Astrada, Martín
2018-05-25
Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab . We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection. © 2018. Published by The Company of Biologists Ltd.
Planar microlens with front-face angle: design, fabrication, and characterization
NASA Astrophysics Data System (ADS)
Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee
2016-07-01
This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.
Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Cofield, Richard E.; Kasl, Eldon P.
2011-01-01
The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.
Microvascular responses to body tilt in cutaneous maximus muscle of conscious rats
NASA Technical Reports Server (NTRS)
Puri, Rohit K.; Segal, Steven S.
1994-01-01
We investigated microvascular responses to head-up tilt (HUT) and head-down tilt (HDT) in striated muscle of conscious male rats. To observe the microcirculation in the cutaneous maximus muscle, a transparent polycarbonate chamber was implanted aseptically into a skin fold created between the shoulders. Rats were trained to sit quietly during HUT and HDT while positioned on a horizontal microscope that rotated in the sagittal plane. At 4-5 days after surgery, arteriole and venule diameters were recorded using videomicroscopy while the rat experienced 10 min each (in random order) of HUT or HDT at 20 deg or 40 deg separated by 2-h rest periods. HUT had no affect on microvessel diameter; 20 deg HDT had little affect. In response to 40 deg HDT, 'large' arterioles constricted by 18 +/- 2% and 'small' arterioles dilated by 21 +/- 3%; this difference suggested variation in mechanisms controlling arteriolar responses. Venules exhibited a larger fluctuation in diameter during 40 deg HDT compared with other body positions, suggesting that venomotor activity may be induced with sufficient fluid shift or change in central venous pressure. These observations illustrate a viable model for studying microvascular responses to gravitational stress in conscious rats.
High resolution Fourier interferometer-spectrophotopolarimeter
NASA Technical Reports Server (NTRS)
Fymat, A. L. (Inventor)
1976-01-01
A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.
The Nuclear Astrophysics Explorer
NASA Technical Reports Server (NTRS)
Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.
1989-01-01
The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.
Vertical resolution of baroclinic modes in global ocean models
NASA Astrophysics Data System (ADS)
Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.
2017-05-01
Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Jones, Nicholas B.; Connor, Brian J.; Logan, Jennifer A.; Pougatchev, Nikita; Goldman, Aaron; Murcray, Frank J.; Stephen, Thomas M.; Pine, Alan S.; Zander, Rodolphe;
1998-01-01
Time series of CO and C2H6 measurements have been derived from high resolution infrared solar spectra recorded in Lauder, New Zealand (45.0 deg S, 169.7 deg E, altitude 0.37 km) and at the U. S. National Solar Observatory (31.90 deg N, 111.6 deg W, altitude 2.09 km) on Kitt Peak. Lauder observations were obtained between July 1993 and November 1997 while the Kitt Peak measurements were recorded between May 1977 and December 1997. Both databases were analyzed with spectroscopic parameters that included significant improvements for C2H6 relative to previous studies. Target CO and C2H6 lines were selected to achieve similar vertical samplings based on averaging kernels. These calculations show that partial columns from layers extending from the surface to the mean tropopause and from the mean tropopause to 100 km are nearly independent. Retrievals based on a semiempirical application of the Rodgers optimal estimation technique are reported for the lower layer, which has a broad maximum in sensitivity in the upper troposphere. The Lauder CO and C2H6 partial columns exhibit highly asymmetrical seasonal cycles with minima in austral autumn and sharp peaks in austral spring. The spring maxima are the result of tropical biomass burning emissions followed by deep convective vertical transport to the upper troposphere and long-range horizontal transport. Significant year-to-year variations are observed for both CO and C2H6, but the measured trends, (+0.37 +/- 0.57)%/ yr and (-0.64 +/- 0.79)%/ yr, 1 sigma, respectively, indicate no significant long-term changes. The Kitt Peak data also exhibit CO and C2H6 seasonal variations in the lower layer with trends equal to (-0.27 +/- 0.17)%/ yr and (-1.20 +/- 0.35)%/ yr, 1 sigma, respectively. Hence, a decrease in the Kitt Peak tropospheric C2H6 column has been detected, though the CO trend is not significant. Both measurement sets are compared with previous observations, reported trends, and three-dimensional model calculations.
BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35
NASA Technical Reports Server (NTRS)
Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.
2013-01-01
Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf state. This would explain why it is not surrounded by a planetary nebula. However, the star, ionizes the ambient interstellar matter, mimicking a planetary nebula.
NASA Technical Reports Server (NTRS)
Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.
2016-01-01
Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.
Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope
Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun; ...
2016-07-12
The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less
Emulation of anamorphic imaging on the SHARP extreme ultraviolet mask microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benk, Markus P.; Wojdyla, Antoine; Chao, Weilun
The SHARP high-numerical aperture actinic reticle review project is a synchrotron-based, extreme ultraviolet (EUV) microscope dedicated to photomask research. SHARP emulates the illumination and imaging conditions of current EUV lithography scanners and those several generations into the future. An anamorphic imaging optic with increased mask-side numerical aperture (NA) in the horizontal and increased demagnification in the vertical direction has been proposed in this paper to overcome limitations of current multilayer coatings and extend EUV lithography beyond 0.33 NA. Zoneplate lenses with an anamorphic 4×/8× NA of 0.55 are fabricated and installed in the SHARP microscope to emulate anamorphic imaging. SHARP’smore » Fourier synthesis illuminator with a range of angles exceeding the collected solid angle of the newly designed elliptical zoneplates can produce arbitrary angular source spectra matched to anamorphic imaging. A target with anamorphic dense features down to 50-nm critical dimension is fabricated using 40 nm of nickel as the absorber. In a demonstration experiment, anamorphic imaging at 0.55 4×/8× NA and 6 deg central ray angle (CRA) is compared with conventional imaging at 0.5 4× NA and 8 deg CRA. A significant contrast loss in horizontal features is observed in the conventional images. Finally, the anamorphic images show the same image quality in the horizontal and vertical directions.« less
Global land-surface primary productivity based upon Nimbus-7 37 GHz data
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1988-01-01
Accumulation and renewal of organic matter as quantified through net primary productivity (NPP) is considered a very major function of the biosphere, and its estimation is crucial in understanding the carbon cycle. A physically-based model relating NPP to the difference of vertically and horizontally polarized brightness temperatures (Delta T) observed at 37 GHz frequency of the scanning multichannel microwave radiometer on board the Nimbus-7 satellite is used for fitting areally averaged values of NPP and Delta T for five biomes. The land-surface NPP within 80 deg N to 55 deg S is then calculated using the Delta T data and compared with other estimates.
Parallel alignment of bacteria using near-field optical force array for cell sorting
NASA Astrophysics Data System (ADS)
Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.
2017-08-01
This paper presents a near-field approach to align multiple rod-shaped bacteria based on the interference pattern in silicon nano-waveguide arrays. The bacteria in the optical field will be first trapped by the gradient force and then rotated by the scattering force to the equilibrium position. In the experiment, the Shigella bacteria is rotated 90 deg and aligned to horizontal direction in 9.4 s. Meanwhile, 150 Shigella is trapped on the surface in 5 min and 86% is aligned with angle < 5 deg. This method is a promising toolbox for the research of parallel single-cell biophysical characterization, cell-cell interaction, etc.
NASA Astrophysics Data System (ADS)
Steffen, K.; Zwally, J. H.; Rial, J. A.; Behar, A.; Huff, R.
2006-12-01
The Greenland ice sheet experienced surface melt increase over the past 15 years with record melt years in 1987, 1991, 1998, 2002 and 2005. For the western part of the ice sheet the melt area increased by 30 percent (1979-2005). Monthly mean air temperatures increased in spring and fall by 0.23 deg. C per year since 1990, extending the length of melt and total ablation. Winter air temperatures increased by as much as 0.5 deg. C per year during the past 15 years. The equilibrium line altitude ranged between 400 and 1530 m above sea level at 70 deg. north along the western slope of the ice sheet for the past 15 years, equaling a horizontal distance of 100 km. The ELA has been below the Swiss Camp (1100 m elevation) in the nineties, and since 1997 moved above the Swiss Camp height. An increase in ELA leads to an increase in melt water run-off which has been verified by regional model studies (high-resolution re-analysis). Interannual variability of snow accumulation varies from 0.3 to 2.0 m, whereas snow and ice ablation ranges from 0 to 1.5 m water equivalent at Swiss Camp during 1990-2005. A GPS network (10 stations) monitors ice velocity, acceleration, and surface height change at high temporal resolution throughout the year. The network covers a range of 500 and 1500 m above sea level, close to the Ilulissat Icefjord World Heritage region. The ice sheet continued to accelerate during the height of the melt season with short-term velocity increases up to 100 percent, and vertical uplift rates of 0.5 m. There seems to be a good correlation between the change in ice velocity and total surface melt, suggesting that melt water penetrates to great depth through moulins and cracks, lubricating the bottom of the ice sheet. A new bore-hole video movie will be shown from a 110 m deep moulin close to Swiss Camp. A PASSCAL array of 10 portable, 3-component seismic stations deployed around Swiss Camp from May to August 2006 detected numerous microearthquakes within the ice sheet and possibly at its contact with the underlying bedrock some 60 km to the south of Swiss Camp. The seismic data collected will be discussed.
NASA Technical Reports Server (NTRS)
Vitt, Francis M.; Jackman, Charles H.
1995-01-01
The odd nitrogen source strengths associated with Solar Proton Events (SPEs), Galactic Cosmic Rays (GCRs), and the oxidation of nitrous oxide in the Earth's middle atmosphere from 1974 through 1993 have been compared globally, at middle and lower latitudes (less than 50 deg), and polar regions (greater than 50 deg) with a two-dimensional (2-D) photochemical transport model. As discovered previously, the oxidation of nitrous oxide dominates the global odd nitrogen source while GCRs and SPEs are significant at polar latitudes. The horizontal transport of odd nitrogen, produced by the oxidation of nitrous oxide at latitudes < 50 deg, was found to be the dominant source of odd nitrogen in the polar regions with GCRs contributing substantially during the entire solar cycle. The source of odd nitrogen from SPEs was more sporadic; however, contributions during several years (mostly near solar maximum) were significant in the polar middle atmosphere.
NASA Astrophysics Data System (ADS)
Yeh, E. C.; Li, W. C.; Chiang, T. C.; Lin, W.; Wang, T. T.; Yu, C. W.; Chiao, C. H.; Yang, M. W.
2014-12-01
Scientific study in deep boreholes has paid more attention as the demand of natural resources and waste disposal and risk evaluation of seismic hazard dramatically increases, such as petroleum exploitation, geothermal energy, carbon sequestration, nuclear waste disposal and seismogenic faulting. In the deep borehole geoengineering, knowledge of in-situ stress is essential for the design of drilling-casing plan. Understanding the relationship between fracture and in-situ stress is the key information to evaluate the potential of fracture seal/conduit and fracture reactivity. Also, assessment of in-situ stress can provide crucial information to investigate mechanism of earthquake faulting and stress variationfor earthquake cycles. Formations under the Coastal Plain in Taiwan have evaluated as saline-water formations with gently west-dipping and no distinct fractures endured by regional tectonics of arc-continental collision with N35W compression. The situation is characterized as a suitable place for carbon sequestration. In this study, we will integrate results from different in-situ stress determinations such as anelastic strain recovery (ASR), borehore breakout, hydraulic fracturing from a 3000m borehole of carbon sequestration testing site and further evaluate the seal feasibility and tectonic implication. Results of 30 ASR experiments between the depth of 1500m and 3000m showed the consistent normal faulting stress regime. Stress gradient of vertical stress, horizontal maximum stress and horizontal minimum stress with depth is estimated. Borehole breakout is not existed throughout 1500-3000m. The mean orientation of breakout is about 175deg and mean width of breakout is 84 deg. Based on rock mechanical data, maximum injection pressure of carbon sequestration can be evaulated. Furthermore, normal faulting stress regime is consistent with core observations and image logging, the horizontal maximum stress of 85deg inferred from breakout suggested that this place has been affected by the compression of oblique collision. The comparison of stress magnitudes estimated from ASR, breakout and hydraulic fracturing cab further verified current results.
Cryoplanation terraces of interior and western Alaska
NASA Technical Reports Server (NTRS)
Reger, R. D.
1993-01-01
Cryoplanation terraces are step- or table like residual landforms consisting of a nearly horizontal bedrock surface covered by a thin veneer of rock debris and bounded by ascending or descending scarps or both. Among examples studied, rubble-covered scarps range in height from 3 to 76 m and slope from 9 deg to 32 deg; nearly vertical scarps exist where bedrock is exposed or thinly buried. Simple transverse nivation hollows, which are occupied by large seasonal snow banks, commonly indent the lower surfaces of sharply angular ascending scarps. Terrace treads slope from 1 deg to 10 deg and commonly cut across bedrock structures such as bedding, rock contacts, foliation, joints, faults, and shear zones. Debris on terrace treads is generally 0.8-2.5 m thick. Permafrost table is generally present from 0.5 to 2 m below the tread surface. Permafrost is shallowest in the floors of nivation hollows and deepest in the well-drained margins of terrace treads. Side slopes of cryoplanation terraces are shallowly buried bedrock surfaces that are littered with a variety of mass-movement deposits.
The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations
NASA Technical Reports Server (NTRS)
Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.
2006-01-01
Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint deficiencies in the representation of chemical/dynamical processes.
Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image
NASA Astrophysics Data System (ADS)
Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.
2018-04-01
At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.
NASA Astrophysics Data System (ADS)
Varghese, Saji; Langmann, Baerbel; Ceburnis, Darius; O'Dowd, Colin D.
2011-08-01
Horizontal resolution sensitivity can significantly contribute to the uncertainty in predictions of meteorology and air-quality from a regional climate model. In the study presented here, a state-of-the-art regional scale atmospheric climate-chemistry-aerosol model REMOTE is used to understand the influence of spatial model resolutions of 1.0°, 0.5° and 0.25° on predicted meteorological and aerosol parameters for June 2003 for the European domain comprising North-east Atlantic and Western Europe. Model precipitation appears to improve with resolution while wind speed has shown best results for 0.25° resolution for most of the stations compared with ECAD data. Low root mean square error and spatial bias for surface pressure, precipitation and surface temperature show that the model is very reliable. Spatial and temporal variation in black carbon, primary organic carbon, sea-salt and sulphate concentrations and their burden are presented. In most cases, chemical species concentrations at the surface show no particular trend or improvement with increase in resolution. There has been a pronounced influence of horizontal resolution on the vertical distribution pattern of some aerosol species. Some of these effects are due to the improvement in topographical details, flow characteristics and associated vertical and horizontal dynamic processes. The different sink processes have contributed very differently to the various aerosol species in terms of deposition (wet and dry) and sedimentation which are strongly linked to the meteorological processes. Overall, considering the performance of meteorological parameters and chemical species concentrations, a horizontal model resolution of 0.5° is suggested to achieve reasonable results within the limitations of this model.
Effect of head pitch and roll orientations on magnetically induced vertigo.
Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L
2016-02-15
Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest sinusoidal relationships between head orientation and perception with spatial periods of 180 deg for pitch and 360 deg for roll, which we explain is consistent with the Lorentz force hypothesis. The effects of head pitch on vertigo and previously reported nystagmus are consistent with both effects being driven by a common vestibular signal. To explain all the observed effects, this common signal requires contributions from multiple semicircular canals. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
NASA Technical Reports Server (NTRS)
Morris, E. C.
1985-01-01
The Viking Lander 1 and 2 cameras acquired many high-resolution pictures of the Chryse Planitia and Utopia Planitia landing sites. Based on computer-processed data of a selected number of these pictures, eight high-resolution mosaics were published by the U.S. Geological Survey as part of the Atlas of Mars, Miscellaneous Investigation Series. The mosaics are composites of the best picture elements (pixels) of all the Lander pictures used. Each complete mosaic extends 342.5 deg in azimuth, from approximately 5 deg above the horizon to 60 deg below, and incorporates approximately 15 million pixels. Each mosaic is shown in a set of five sheets. One sheet contains the full panorama from one camera taken in either morning or evening. The other four sheets show sectors of the panorama at an enlarged scale; when joined together they make a panorama approximately 2' X 9'.
NASA Astrophysics Data System (ADS)
Toigo, Anthony D.; Lee, Christopher; Newman, Claire E.; Richardson, Mark I.
2012-09-01
We investigate the sensitivity of the circulation and thermal structure of the martian atmosphere to numerical model resolution in a general circulation model (GCM) using the martian implementation (MarsWRF) of the planetWRF atmospheric model. We provide a description of the MarsWRF GCM and use it to study the global atmosphere at horizontal resolutions from 7.5° × 9° to 0.5° × 0.5°, encompassing the range from standard Mars GCMs to global mesoscale modeling. We find that while most of the gross-scale features of the circulation (the rough location of jets, the qualitative thermal structure, and the major large-scale features of the surface level winds) are insensitive to horizontal resolution over this range, several major features of the circulation are sensitive in detail. The northern winter polar circulation shows the greatest sensitivity, showing a continuous transition from a smooth polar winter jet at low resolution, to a distinct vertically “split” jet as resolution increases. The separation of the lower and middle atmosphere polar jet occurs at roughly 10 Pa, with the split jet structure developing in concert with the intensification of meridional jets at roughly 10 Pa and above 0.1 Pa. These meridional jets appear to represent the separation of lower and middle atmosphere mean overturning circulations (with the former being consistent with the usual concept of the “Hadley cell”). Further, the transition in polar jet structure is more sensitive to changes in zonal than meridional horizontal resolution, suggesting that representation of small-scale wave-mean flow interactions is more important than fine-scale representation of the meridional thermal gradient across the polar front. Increasing the horizontal resolution improves the match between the modeled thermal structure and the Mars Climate Sounder retrievals for northern winter high latitudes. While increased horizontal resolution also improves the simulation of the northern high latitudes at equinox, even the lowest model resolution considered here appears to do a good job for the southern winter and southern equinoctial pole (although in detail some discrepancies remain). These results suggest that studies of the northern winter jet (e.g., transient waves and cyclogenesis) will be more sensitive to global model resolution that those of the south (e.g., the confining dynamics of the southern polar vortex relevant to studies of argon transport). For surface winds, the major effect of increased horizontal resolution is in the superposition of circulations forced by local-scale topography upon the large-scale surface wind patterns. While passive predictions of dust lifting are generally insensitive to model horizontal resolution when no lifting threshold is considered, increasing the stress threshold produces significantly more lifting in higher resolution simulations with the generation of finer-scale, higher-stress winds due primarily to better-resolved topography. Considering the positive feedbacks expected for radiatively active dust lifting, we expect this bias to increase when such feedbacks are permitted.
NASA Astrophysics Data System (ADS)
Oigawa, Masanori; Tsuda, Toshitaka; Seko, Hiromu; Shoji, Yoshinori; Realini, Eugenio
2018-05-01
We studied the assimilation of high-resolution precipitable water vapor (PWV) data derived from a hyper-dense global navigation satellite system network around Uji city, Kyoto, Japan, which had a mean inter-station distance of about 1.7 km. We focused on a heavy rainfall event that occurred on August 13-14, 2012, around Uji city. We employed a local ensemble transform Kalman filter as the data assimilation method. The inhomogeneity of the observed PWV increased on a scale of less than 10 km in advance of the actual rainfall detected by the rain gauge. Zenith wet delay data observed by the Uji network showed that the characteristic length scale of water vapor distribution during the rainfall ranged from 1.9 to 3.5 km. It is suggested that the assimilation of PWV data with high horizontal resolution (a few km) improves the forecast accuracy. We conducted the assimilation experiment of high-resolution PWV data, using both small horizontal localization radii and a conventional horizontal localization radius. We repeated the sensitivity experiment, changing the mean horizontal spacing of the PWV data from 1.7 to 8.0 km. When the horizontal spacing of assimilated PWV data was decreased from 8.0 to 3.5 km, the accuracy of the simulated hourly rainfall amount worsened in the experiment that used the conventional localization radius for the assimilation of PWV. In contrast, the accuracy of hourly rainfall amounts improved when we applied small horizontal localization radii. In the experiment that used the small horizontal localization radii, the accuracy of the hourly rainfall amount was most improved when the horizontal resolution of the assimilated PWV data was 3.5 km. The optimum spatial resolution of PWV data was related to the characteristic length scale of water vapor variability.[Figure not available: see fulltext.
Spectral photometry of extreme helium stars: Ultraviolet fluxes and effective temperature
NASA Technical Reports Server (NTRS)
Drilling, J. S.; Schoenberner, D.; Heber, U.; Lynas-Gray, A. E.
1982-01-01
Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broad band photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broad band photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K.
NASA Astrophysics Data System (ADS)
Ogawa, Masahiko; Shidoji, Kazunori
2011-03-01
High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).
Tilt and Translation Motion Perception during Off Vertical Axis Rotation
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Reschke, Millard F.; Clement, Gilles
2006-01-01
The effect of stimulus frequency on tilt and translation motion perception was studied during constant velocity off-vertical axis rotation (OVAR), and compared to the effect of stimulus frequency on eye movements. Fourteen healthy subjects were rotated in darkness about their longitudinal axis 10deg and 20deg off-vertical at 0.125 Hz, and 20deg offvertical at 0.5 Hz. Oculomotor responses were recorded using videography, and perceived motion was evaluated using verbal reports and a joystick with four degrees of freedom (pitch and roll tilt, mediallateral and anteriorposterior translation). During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. The modulation of both tilt recorded from the joystick and ocular torsion significantly increased as the tilt angle increased from 10deg to 20deg at 0.125 Hz, and then decreased at 0.5 Hz. Both tilt perception and torsion slightly lagged head orientation at 0.125 Hz. The phase lag of torsion increased at 0.5 Hz, while the phase of tilt perception did not change as a function of frequency. The amplitude of both translation perception recorded from the joystick and horizontal eye movements was negligible at 0.125 Hz and increased as a function of stimulus frequency. While the phase lead of horizontal eye movements decreased at 0.5 Hz, the phase of translation perception did not vary with stimulus frequency and was similar to the phase of tilt perception during all conditions. During dynamic linear acceleration in the absence of other sensory input (canal, vision) a change in stimulus frequency alone elicits similar changes in the amplitude of both self motion perception and eye movements. However, in contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. We conclude that the neural processing to distinguish tilt and translation linear acceleration stimuli differs between eye movements and motion perception.
NASA Technical Reports Server (NTRS)
Huffman, J. K.; Fox, C. H., Jr.; Ziegler, H.
1978-01-01
A configuration concept for developing vortex lift, which replaces the physical wing strake with a jet sheet generated fluid strake, was investigated on a general research fighter model. The vertical and horizontal location of the jet sheet with respect to the wing leading edge was studied over a momentum coefficient range from 0 to 0.24 in the Langley 7- by 10-foot high speed tunnel over a Mach number range from 0.3 to 0.8. The angle of attack range studied was from -2 to 30 deg at sideslip angles of 0, -5, and 5 deg. Test data are presented without analysis.
NASA Technical Reports Server (NTRS)
Leavitt, L. D.
1983-01-01
The Langley 16-foot transonic tunnel was used to determine the effects of several empennage and afterbody parameters on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. Model variables were as follows: horizontal tail axial location and incidence, vertical tail axial location and configuration (twin- versus single-tail arrangements), tail booms, and nozzle power setting. Tests were conducted over a Mach number range from 0.6 to 1.2 and over an angle-of-attack from -2 deg to 10 deg. Jet total-pressure ratio was varied from jet off to approximately 10.0.
Simulator evaluation of manually flown curved instrument approaches. M.S. Thesis
NASA Technical Reports Server (NTRS)
Sager, D.
1973-01-01
Pilot performance in flying horizontally curved instrument approaches was analyzed by having nine test subjects fly curved approaches in a fixed-base simulator. Approaches were flown without an autopilot and without a flight director. Evaluations were based on deviation measurements made at a number of points along the curved approach path and on subject questionnaires. Results indicate that pilots can fly curved approaches, though less accurately than straight-in approaches; that a moderate wind does not effect curve flying performance; and that there is no performance difference between 60 deg. and 90 deg. turns. A tradeoff of curve path parameters and a paper analysis of wind compensation were also made.
Results of a zonally truncated three-dimensional model of the Venus middle atmosphere
NASA Technical Reports Server (NTRS)
Newman, M.
1992-01-01
Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.
Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.
2008-01-01
Multichannel Analysis of Surface Waves utilizes a multichannel recording system to estimate near-surface shear (S)-wave velocities from high-frequency Rayleigh waves. A pseudo-2D S-wave velocity (vS) section is constructed by aligning 1D models at the midpoint of each receiver spread and using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. The receiver spread length sets the theoretical lower limit and any vS structure with its lateral dimension smaller than this length will not be properly resolved in the final vS section. A source interval smaller than the spread length will not improve the horizontal resolution because spatial smearing has already been introduced by the receiver spread. In this paper, we first analyze the horizontal resolution of a pair of synthetic traces. Resolution analysis shows that (1) a pair of traces with a smaller receiver spacing achieves higher horizontal resolution of inverted S-wave velocities but results in a larger relative error; (2) the relative error of the phase velocity at a high frequency is smaller than at a low frequency; and (3) a relative error of the inverted S-wave velocity is affected by the signal-to-noise ratio of data. These results provide us with a guideline to balance the trade-off between receiver spacing (horizontal resolution) and accuracy of the inverted S-wave velocity. We then present a scheme to generate a pseudo-2D S-wave velocity section with high horizontal resolution using multichannel records by inverting high-frequency surface-wave dispersion curves calculated through cross-correlation combined with a phase-shift scanning method. This method chooses only a pair of consecutive traces within a shot gather to calculate a dispersion curve. We finally invert surface-wave dispersion curves of synthetic and real-world data. Inversion results of both synthetic and real-world data demonstrate that inverting high-frequency surface-wave dispersion curves - by a pair of traces through cross-correlation with phase-shift scanning method and with the damped least-square method and the singular-value decomposition technique - can feasibly achieve a reliable pseudo-2D S-wave velocity section with relatively high horizontal resolution. ?? 2008 Elsevier B.V. All rights reserved.
Northern Hemisphere Nitrous Oxide Morphology during the 1989 AASE and the 1991-1992 AASE 2 Campaigns
NASA Technical Reports Server (NTRS)
Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan; Chan, K. Roland
1993-01-01
Nitrous oxide vertical profiles and latitudinal distributions for the 1989 AASE and 1992 AASE II northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occurring poleward of the polar jet. The AASE II morphology shows a mid latitude 'surf zone,' characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.
Northern hemisphere nitrous oxide morphology during the 1989 AASE and the 1991-1992 AASE 2 campaigns
NASA Technical Reports Server (NTRS)
Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan E.; Chan, K. Roland
1993-01-01
Nitrous oxide vertical profiles and latitudinal distributions for the 1989 Airborne Antarctic Ozone Experiment (AASE) and 1992 AASE 2 northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occuring poleward of the polar jet. The AASE 2 morphology shows a mid latitude 'surf zone', characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.
2015-01-01
The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.
NASA Astrophysics Data System (ADS)
Bracco, Annalisa; Choi, Jun; Kurian, Jaison; Chang, Ping
2018-02-01
A set of nine regional ocean model simulations at various horizontal (from 1 to 9 km) and vertical (from 25 to 150 layers) resolutions with different vertical mixing parameterizations is carried out to examine the transport and mixing of a passive tracer released near the ocean bottom over the continental slope in the northern Gulf of Mexico. The release location is in proximity to the Deepwater Horizon oil well that ruptured in April 2010. Horizontal and diapycnal diffusivities are calculated and their dependence on the model set-up and on the representation of mesoscale and submesoscale circulations is discussed. Horizontal and vertical resolutions play a comparable role in determining the modeled horizontal diffusivities. Vertical resolution is key to a proper representation of passive tracer propagation and - in the case of the Gulf of Mexico - contributes to both confining the tracer along the continental slope and limiting its vertical spreading. The choice of the tracer advection scheme is also important, with positive definiteness in the tracer concentration being achieved at the price of spurious mixing across density surfaces. In all cases, however, the diapycnal mixing coefficient derived from the model simulations overestimates the observed value, indicating an area where model improvement is needed.
NASA Technical Reports Server (NTRS)
Teichman, M. A.; Marek, F. L.; Browning, J. J.; Parr, A. K.
1974-01-01
An RF phase interferometer has been integrated into the ATS-F spacecraft attitude control system. Laboratory measurements indicate that the interferometer is capable of determining spacecraft attitude in pitch and roll to an accuracy of 0.18 deg over a field-of-view of plus or minus 12.5 deg about the spacecraft normal axis with an angular resolution of 0.004 deg. The system is completely solid state, weighs 17 pounds, and consumes 12.5 W of DC power.
METHOD AND APPARATUS FOR CALCINING SALT SOLUTIONS
Lawroski, S.; Jonke, A.A.; Taecker, R.G.
1961-10-31
A method is given for converting uranyl nitrate solution into solid UO/ sub 3/, The solution is sprayed horizontally into a fluidized bed of UO/sub 3/ particles at 310 to 350 deg C by a nozzle of the coaxial air jet type at about 26 psig, Under these conditions the desired conversion takes place, and caking in the bed is avoided.
Analyzing the Effects of Horizontal Resolution on Long-Term Coupled WRF-CMAQ Simulations
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. To this end, WRF-CMAQ simulations over the co...
NASA Technical Reports Server (NTRS)
Betts, Bruce H.
1994-01-01
Thermal infrared observations of Mars from spacecraft provide physical information about the upper thermal skin depth of the surface, which is on the order of a few centimeters in depth and thus very significant for lander site selection. The Termoskan instrument onboard the Soviet Phobos '88 spacecraft acquired the highest spatial-resolution thermal infrared data obtained for Mars, ranging in resolution from 300 m to 3 km per pixel. It simultaneously obtained broadband reflected solar flux data. Although the 6 deg N - 30 deg S Termoskan coverage only slightly overlaps the nominal Mars Pathfinder target range, the implications of Termoskan data for that overlap region and the extrapolations that can be made to other regions give important clues for optimal landing site selection.
NASA Astrophysics Data System (ADS)
Yang, Le; Sang, Xinzhu; Yu, Xunbo; Liu, Boyang; Liu, Li; Yang, Shenwu; Yan, Binbin; Du, Jingyan; Gao, Chao
2018-05-01
A 54-inch horizontal-parallax only light-field display based on the light-emitting diode (LED) panel and the micro-pinhole unit array (MPUA) is demonstrated. Normally, the perceived 3D effect of the three-dimensional (3D) display with smooth motion parallax and abundant light-field information can be enhanced with increasing the density of viewpoints. However, the density of viewpoints is inversely proportional to the spatial display resolution for the conventional integral imaging. Here, a special MPUA is designed and fabricated, and the displayed 3D scene constructed by the proposed horizontal light-field display is presented. Compared with the conventional integral imaging, both the density of horizontal viewpoints and the spatial display resolution are significantly improved. In the experiment, A 54-inch horizontal light-field display with 42.8° viewing angle based on the LED panel with the resolution of 1280 × 720 and the MPUA is realized, which can provide natural 3D visual effect to observers with high quality.
Analyses and forecasts with LAWS winds
NASA Technical Reports Server (NTRS)
Wang, Muyin; Paegle, Jan
1994-01-01
Horizontal fluxes of atmospheric water vapor are studied for summer months during 1989 and 1992 over North and South America based on analyses from European Center for Medium Range Weather Forecasts, US National Meteorological Center, and United Kingdom Meteorological Office. The calculations are performed over 20 deg by 20 deg box-shaped midlatitude domains located to the east of the Rocky Mountains in North America, and to the east of the Andes Mountains in South America. The fluxes are determined from operational center gridded analyses of wind and moisture. Differences in the monthly mean moisture flux divergence determined from these analyses are as large as 7 cm/month precipitable water equivalent over South America, and 3 cm/month over North America. Gridded analyses at higher spatial and temporal resolution exhibit better agreement in the moisture budget study. However, significant discrepancies of the moisture flux divergence computed from different gridded analyses still exist. The conclusion is more pessimistic than Rasmusson's estimate based on station data. Further analysis reveals that the most significant sources of error result from model surface elevation fields, gaps in the data archive, and uncertainties in the wind and specific humidity analyses. Uncertainties in the wind analyses are the most important problem. The low-level jets, in particular, are substantially different in the different data archives. Part of the reason for this may be due to the way the different analysis models parameterized physical processes affecting low-level jets. The results support the inference that the noise/signal ratio of the moisture budget may be improved more rapidly by providing better wind observations and analyses than by providing better moisture data.
Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary
NASA Technical Reports Server (NTRS)
Campbell, G. G.; Vonderhaar, T. H.
1978-01-01
The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.; Rapacki, H.; Slapa, M.
1961-01-01
A device used for purmfication of inert gases used nkn nuclear detectors such as grid ionization chambers, proportional, and gas scintillation counters is described. Gas to be purifnked cireulates in a svstem containing a column consisting of trays with Ca and Mg shavings, horizontal pipes, valves, and a detector to be filled with a pure gas. The device is designed to work at up to 10 atm. The apparatus ts out-gassed very carefully. lt is filled with argon, which ps cnkrculated for 5 hours and then pumped out. Operation is based on the thermal circulation principle. The process depends onmore » the filter temperature and purification time, which in turn, are function of the gas pressure and the chemical composition of the filter. The best resolution obtained for alpha particles from natural uranium at 4.20 and 4.76 Mev was 6%. Commercial argon at 6 atm was used. Curves obtained show that the filter temperature cannot be lower than 210 deg C and that the one containing calcium mixed with magnesium gives better results than that containing pure calcium only. (L.N.N.)« less
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.
1977-01-01
An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.
NO(y) Correlation with N2O and CH4 in the Midlatitude Stratosphere
NASA Technical Reports Server (NTRS)
Kondo, Y.; Schmidt, U.; Sugita, T.; Engel, A.; Koike, M.; Aimedieu, P.; Gunson, M. R.; Rodriguez, J.
1996-01-01
Total reactive nitrogen (NO(y)), nitrous oxide (NO2), methane (CH4), and ozone (03) were measured on board a balloon launched from Aire sur l'Adour (44 deg N, 0 deg W), France on October 12, 1994. Generally, NO(y) was highly anti-correlated with N2O and CH4 at altitudes between 15 and 32 km. The linear NO(y) - N2O and NO(y) - CH4 relationships obtained by the present observations are very similar to those obtained on board ER-2 and DC-8 aircraft previously at altitude below 20 km in the northern hemisphere. They also agree well with the data obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument at 41 deg N in November 1994. Slight departures from linear correlations occurred around 29 km, where N2O and CH4 mixing ratios were larger than typical midlatitude values, suggesting horizontal transport of tropical airmasses to northern midlatitudes in a confined altitude region.
Scappucci, G; Klesse, W M; Hamilton, A R; Capellini, G; Jaeger, D L; Bischof, M R; Reidy, R F; Gorman, B P; Simmons, M Y
2012-09-12
Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.
A Close Association of Three Carbon Stars in the Direction of M92
NASA Astrophysics Data System (ADS)
Kurtanidze, O. M.; Nikolashvili, M. G.
The discovery of the first faint (V>15.0) high-latitude carbon star (FHLCS) was announced by Sanduleak (1980, PASP, 92, 246).It is located in the direction of the Magellanic Stream.On low-dispersion spectral plates (1250 AA μm at Hγ, 0IIIa--J,F) taken with the 70-cm meniscus telescope for identification of blue horizontal-branch stars in the globular cluster M92, two FHLCS were accidentally discovered (Kurtanidze 1980, Astron.Tsirk., 1109, 3) near the known bright carbon star HD156074 = Ste3795. The surface density of C stars in this region is equal to 30 per sq.deg. although their mean surface density is only about 0.03 C star per sq.deg. at b>30deg. None of these objects shows detectable proper motion except of Ste3795 (MacConnell 1996, private communication). The astrometric and photometric data were obtained from plates taken with 2-m Tautenburg Schmidt (1961-1990) and the 0.7-m Abastumani meniscus telescope (1978-1989).
NASA Technical Reports Server (NTRS)
Chambliss, E. B.
1976-01-01
A low speed wind tunnel test was conducted to determine the effects of 6 canard configurations on the 0.050 scale model of shuttle orbiter 089B. In addition, two horizontal tail configurations were tested at two positions on the model as were two wing configurations. Since this test was restricted to 103 runs, only a limited number of permutations of the configurational changes could be tested. The testing was done in the 15 by 20 foot section of the LSWT and consisted of pitch polars, one yawed polar and several yaw runs. The pitch polars encompassed an alpha range from 0 to 28 deg; the yawed polar was run at beta = +2 degrees and the yaw runs covered a beta range from -6 to +6 deg at angles-of-attack of 0, 4, 10, 16, and 20 deg.
Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.
Thaung, Jörgen; Knutsson, Per; Popovic, Zoran; Owner-Petersen, Mette
2009-03-16
We present analysis and preliminary laboratory testing of a real-time dual-conjugate adaptive optics (DCAO) instrument for ophthalmology that will enable wide-field high resolution imaging of the retina in vivo. The setup comprises five retinal guide stars (GS) and two deformable mirrors (DM), one conjugate to the pupil and one conjugate to a plane close to the retina. The DCAO instrument has a closed-loop wavefront sensing wavelength of 834 nm and an imaging wavelength of 575 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using one adjustable iris, and images the Hartmann patterns of multiple reference sources on a single detector. Zemax simulations were performed at 834 nm and 575 nm with the Navarro 99 and the Liou- Brennan eye models. Two correction alternatives were evaluated; conventional single conjugate AO (SCAO, using one GS and a pupil DM) and DCAO (using multiple GS and two DM). Zemax simulations at 575 nm based on the Navarro 99 eye model show that the diameter of the corrected field of view for diffraction-limited imaging (Strehl >or= 0.8) increases from 1.5 deg with SCAO to 6.5 deg using DCAO. The increase for the less stringent condition of a wavefront error of 1 rad or less (Strehl >or= 0.37) is from 3 deg with SCAO to approximately 7.4 deg using DCAO. Corresponding results for the Liou-Brennan eye model are 3.1 deg (SCAO) and 8.2 deg (DCAO) for Strehl >or= 0.8, and 4.8 deg (SCAO) and 9.6 deg (DCAO) for Strehl >or= 0.37. Potential gain in corrected field of view with DCAO is confirmed both by laboratory experiments on a model eye and by preliminary in vivo imaging of a human eye. (c) 2009 Optical Society of America
NASA Astrophysics Data System (ADS)
Li, Puxi; Zhou, Tianjun; Zou, Liwei
2016-04-01
The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.
Assessment of the effects of horizontal grid resolution on long ...
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment.
The ultraviolet dayglow at solar maximum. 1 - Far UV spectroscopy at 3.5 A resolution
NASA Technical Reports Server (NTRS)
Eastes, R. W.; Feldman, P. D.; Gentieu, E. P.; Christensen, A. B.
1985-01-01
The earth's far ultraviolet dayglow (1080-1515 A) was observed at about 3.5 A resolution during a period of high solar activity near solar maximum om June 27, 1980. The observations were made at local noon by rocket-borne spectrometers viewing toward the earth's northern limb at 90 deg zenith angle (ZA) at altitudes between 100 and 245 km, and at 98 deg ZA between 245 and 260 km. The zenith angle was 8.9 deg. These spectra are compared with earlier lower-resolution dayglow data obtained during a period of lower solar activity and with auroral spectra. The brightness ratio of O I 1356 to the N2 Lyman-Birge-Hopfield (LBH) system, an indicator of the O to N2 density ratio, is lower than that previously measured at mid-latitudes and closer to the value found in aurorae. In the LBH system a depletion of the bands originating on the v-prime = 3 vibrational level of the excited state is found. Some weak N2 Birge-Hopfield bands and N I lines only marginally detected previously in the dayglow are confirmed.
The effects of temporal variability of mixed layer depth on primary productivity around Bermuda
NASA Technical Reports Server (NTRS)
Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.
1994-01-01
Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.
Visually induced self-motion sensation adapts rapidly to left-right reversal of vision
NASA Technical Reports Server (NTRS)
Oman, C. M.; Bock, O. L.
1981-01-01
Three experiments were conducted using 15 adult volunteers with no overt oculomotor or vestibular disorders. In all experiments, left-right vision reversal was achieved using prism goggles, which permitted a binocular field of vision subtending approximately 45 deg horizontally and 28 deg vertically. In all experiments, circularvection (CV) was tested before and immediately after a period of exposure to reversed vision. After one to three hours of active movement while wearing vision-reversing goggles, 10 of 15 (stationary) human subjects viewing a moving stripe display experienced a self-rotation illusion in the same direction as seen stripe motion, rather than in the opposite (normal) direction, demonstrating that the central neural pathways that process visual self-rotation cues can undergo rapid adaptive modification.
NASA Technical Reports Server (NTRS)
Nagano, M.; Yoshii, H.; Hara, T.; Kamata, K.; Kawaguchi, S.; Kifune, T.
1985-01-01
Muon energy spectrum above 100 TeV was determined by observing the extensive air showers (EAS) from the horizontal direction (HAS). No definite muon originated shower of sizes above 100,000 and zenith angles above 60 deg was observed. The upper limits of HAS intensity is 5x10/12 m/2 s/1 sn/1 above 100,000. It is indicated that the upper limit of muon flux above 100 TeV is about 1.3x10/8 m/2 s/1 sr/1 and is in agreement with that expected from the primary spectrum with a knee assuming scaling in the fragmentation region and 40% protons in the primary beam. The critical energy at which muon flux from prompt processes take over that from the conventional process is higher than 100 Tev at horizontal direction.
NASA Technical Reports Server (NTRS)
Dickey, D. T.; Billman, G. E.; Teoh, K.; Sandler, H.; Stone, H. L.
1982-01-01
To simulate the weightless condition, eight rhesus monkeys, instrumented with solid-state pressure transducers, were horizontally restrained in body casts for 28 days. Blood volume decreased an average of 13% after 14 days of restraint, due mainly to a drop in plasma volume. Aortic pressure and heart rate responses to norepinephrine and phenylephrine decreased after 14 days of restraint. The monkeys did not show a statistically significant decreased tolerance to a 90 deg sudden upright tilt after horizontal restraint. During the fifth week of casting, four animals were subjected to +Gz acceleration tests on a centrifuge. The acceleration tolerance of the casted monkeys was significantly reduced compared to four similarly instrumented control animals. These findings indicate that the cardiovascular deconditioning associated with simulated weightlessness results from an inability to maintain central blood volume during orthostatic stress.
The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental Uni...
NASA Astrophysics Data System (ADS)
Davies, Merton E.; Rogers, Patricia G.; Colvin, Tim R.
1991-08-01
A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.
NASA Technical Reports Server (NTRS)
Moore, J. M.; Horner, V. M.; Greeley, R.
1985-01-01
Rhea was imaged to a resolution of approximately 1 km/lp by the Voyager spacecraft, providing the most detailed view of any Saturnian satellite. A preliminary study of Rhea divided the northern hemisphere into population 1 cratered terrain (between 20 deg and 120 deg) and population 2 cratered terrain (between 300 deg and 360 deg). Population 1 includes craters that are 40 km and were formed before the termination of population 2 bombardment, which formed craters primarily 40 km. Several geomorphic features on Rhea are classified and interpreted including three physiographic provinces, multiringed basins, craters, megascarps, ridges and scarps, and troughs and coalescing pit chains. A generalized chronology for Rhea is constructed from an analysis of the superposition relationships among the landforms and physiographic provinces.
A filter spectrometer concept for facsimile cameras
NASA Technical Reports Server (NTRS)
Jobson, D. J.; Kelly, W. L., IV; Wall, S. D.
1974-01-01
A concept which utilizes interference filters and photodetector arrays to integrate spectrometry with the basic imagery function of a facsimile camera is described and analyzed. The analysis considers spectral resolution, instantaneous field of view, spectral range, and signal-to-noise ratio. Specific performance predictions for the Martian environment, the Viking facsimile camera design parameters, and a signal-to-noise ratio for each spectral band equal to or greater than 256 indicate the feasibility of obtaining a spectral resolution of 0.01 micrometers with an instantaneous field of view of about 0.1 deg in the 0.425 micrometers to 1.025 micrometers range using silicon photodetectors. A spectral resolution of 0.05 micrometers with an instantaneous field of view of about 0.6 deg in the 1.0 to 2.7 micrometers range using lead sulfide photodetectors is also feasible.
NASA Technical Reports Server (NTRS)
Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.
1988-01-01
A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.
Perspective View with Landsat Overlay, Salt Lake City, Utah
NASA Technical Reports Server (NTRS)
2002-01-01
Most of the population of Utah lives just west of the Wasatch Mountains in the north central part of the state. This broad east-northeastward view shows that region with the cities of Ogden, Salt Lake City, and Provo seen from left to right. The Great Salt Lake (left) and Utah Lake (right) are quite shallow and appear greenish in this enhanced natural color view. Thousands of years ago ancient Lake Bonneville covered all of the lowlands seen here. Its former shoreline is clearly seen as a wave-cut bench and/or light colored 'bathtub ring' at several places along the base of the mountain front - evidence seen from space of our ever-changing planet.This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 5 satellite image mosaic, and a false sky. Topographic expression is exaggerated four times.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: View width 147 kilometers (91 miles), View distance 38 kilometers (24 miles) Location: 40.7 deg. North lat., 112.0 deg. West lon. Orientation: View 19.5 deg North of East, 20 degrees below horizontal Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively. Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 30 meters (98 feet) Date Acquired: February 2000 (SRTM), 1990s (Landsat 5 image mosaic)NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.
Viking 1 Lander on the surface of Mars - Revised location
NASA Technical Reports Server (NTRS)
Morris, E. C.; Jones, K. L.
1980-01-01
The method used to pinpoint the location of the Viking 1 Lander is described. The higher resolution of pictures taken by the Viking Orbiter at a lower periapsis altitude facilitated the correlation of topographical features with the same features in the Lander pictures. The new areographic coordinates of the Lander are 22.483 deg N latitude and 47.968 deg W longitude.
NASA Technical Reports Server (NTRS)
Considine, David B.; Logan, Jennifer A.; Olsen, Mark A.
2008-01-01
The NASA Global Modeling Initiative has developed a combined stratosphere/troposphere chemistry and transport model which fully represents the processes governing atmospheric composition near the tropopause. We evaluate model ozone distributions near the tropopause, using two high vertical resolution monthly mean ozone profile climatologies constructed with ozonesonde data, one by averaging on pressure levels and the other relative to the thermal tropopause. Model ozone is high biased at the SH tropical and NH midlatitude tropopause by approx. 45% in a 4 deg. latitude x 5 deg. longitude model simulation. Increasing the resolution to 2 deg. x 2.5 deg. increases the NH tropopause high bias to approx. 60%, but decreases the tropical tropopause bias to approx. 30%, an effect of a better-resolved residual circulation. The tropopause ozone biases appear not to be due to an overly vigorous residual circulation or excessive stratosphere/troposphere exchange, but are more likely due to insufficient vertical resolution or excessive vertical diffusion near the tropopause. In the upper troposphere and lower stratosphere, model/measurement intercomparisons are strongly affected by the averaging technique. NH and tropical mean model lower stratospheric biases are less than 20%. In the upper troposphere, the 2 deg. x 2.5 deg. simulation exhibits mean high biases of approx. 20% and approx. 35% during April in the tropics and NH midlatitudes, respectively, compared to the pressure averaged climatology. However, relative-to-tropopause averaging produces upper troposphere high biases of approx. 30% and 70% in the tropics and NH midlatitudes. This is because relative-to-tropopause averaging better preserves large cross-tropopause O3 gradients, which are seen in the daily sonde data, but not in daily model profiles. The relative annual cycle of ozone near the tropopause is reproduced very well in the model Northern Hemisphere midlatitudes. In the tropics, the model amplitude of the near tropopause annual cycle is weak. This is likely due to the annual amplitude of mean vertical upwelling near the tropopause, which analysis suggests is approx. 30% weaker than in the real atmosphere.
Landing Characteristics of a Reentry Capsule with a Torus-Shaped Air Bag for Load Alleviation
NASA Technical Reports Server (NTRS)
McGehee, John R.; Hathaway, Melvin E.
1960-01-01
An experimental investigation has been made to determine the landing characteristics of a conical-shaped reentry capsule by using torus-shaped air bags for impact-load alleviation. An impact bag was attached below the large end of the capsule to absorb initial impact loads and a second bag was attached around the canister to absorb loads resulting from impact on the canister when the capsule overturned. A 1/6-scale dynamic model of the configuration was tested for nominal flight paths of 60 deg. and 90 deg. (vertical), a range of contact attitudes from -25 deg. to 30 deg., and a vertical contact velocity of 12.25 feet per second. Accelerations were measured along the X-axis (roll) and Z-axis (yaw) by accelerometers rigidly installed at the center of gravity of the model. Actual flight path, contact attitudes, and motions were determined from high-speed motion pictures. Landings were made on concrete and on water. The peak accelerations along the X-axis for landings on concrete were in the order of 3Og for a 0 deg. contact attitude. A horizontal velocity of 7 feet per second, corresponding to a flight path of 60 deg., had very little effect upon the peak accelerations obtained for landings on concrete. For contact attitudes of -25 deg. and 30 deg. the peak accelerations along the Z-axis were about +/- l5g, respectively. The peak accelerations measured for the water landings were about one-third lower than the peak accelerations measured for the landings on concrete. Assuming a rigid body, computations were made by using Newton's second law of motion and the force-stroke characteristics of the air bag to determine accelerations for a flight path of 90 deg. (vertical) and a contact attitude of 0 deg. The computed and experimental peak accelerations and strokes at peak acceleration were in good agreement for the model. The special scaling appears to be applicable for predicting full-scale time and stroke at peak acceleration for a landing on concrete from a 90 deg. flight path at a 0 deg. It appears that the full-scale approximately the same as those obtained from the model for the range of attitudes and flight paths investigated.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Singh, Upendra N.; Koch, Grady J.; Yu, Jirong; Frehlich, Rod G.
2009-01-01
We present preliminary results of computer simulations of the error in measuring carbon dioxide mixing ratio profiles from earth orbit. The simulated sensor is a pulsed, 2-micron, coherent-detection lidar alternately operating on at least two wavelengths. The simulated geometry is a nadir viewing lidar measuring the column content signal. Atmospheric absorption is modeled using FASCODE3P software with the HITRAN 2004 absorption line data base. Lidar shot accumulation is employed up to the horizontal resolution limit. Horizontal resolutions of 50, 100, and 200 km are shown. Assuming a 400 km spacecraft orbit, the horizontal resolutions correspond to measurement times of about 7, 14, and 28 s. We simulate laser pulse-pair repetition frequencies from 1 Hz to 100 kHz. The range of shot accumulation is 7 to 2.8 million pulse-pairs. The resultant error is shown as a function of horizontal resolution, laser pulse-pair repetition frequency, and laser pulse energy. The effect of different on and off pulse energies is explored. The results are compared to simulation results of others and to demonstrated 2-micron operating points at NASA Langley.
A measurement of the cosmic microwave background from the high Chilean Andes
NASA Astrophysics Data System (ADS)
Miller, Amber Dawn
A measurement of the angular spectrum of the Cosmic Microwave Background (CMB) between l = 50 and l = 400 is described. Data were obtained using HEMT radiometers at 30 and 40 GHz with angular resolutions of ≈1 deg and ≈0.7 deg respectively and with SIS based receivers at 144 GHz with angular resolution of ≈0.2 deg. Observations were made from Cerro Toco in the Chilean altiplano at an altitude of 17,000 feet in the Northern Chilean Andes. We find that the angular spectrum rises from l = 50 to a peak at l ≈ 200 and falls off at higher angular scales. A peak in the angular spectrum with amplitude, deltaTl ≈ 85muK is thus located for the first time with a single instrument at l ≈ 200. In addition, we find that the detected anisotropy has the spectrum of the CMB. Cosmological implications of this result are discussed.
The structure and nature of NGC 2017 IRS. 1: High-resolution radio continuum maps
NASA Technical Reports Server (NTRS)
Smith, Howard A.; Beck, Sara C.
1994-01-01
We have observed the star formation cluster NGC 2071 IRS 1, 2, and 3, with 0.14 sec spatial resolution at 2 cm. The strong source IRS 1 breaks up into a bright peak sitting on a narrow line emission extending over about 400 AU, with three much weaker peaks. This ridge, which has a p.a. = 100 deg, is not aligned with any of the other structures that have previously been seen around IRS 1: its orientation is about 55 deg from the CO outflow direction, and 35 deg from a hypothetical disk direction. The spectral and spatial results, combined with earlier radio and infrared observations, indicate that most likely the radio and infrared emission from the exciting source, IRS 1, is produced by a dense wind hidden by at least 100 visual magnitudes of extinction; the extended ridge of emission comes from an optically thin H II region with characteristic dimensions of approximately AU and which may result from a clumpy distribution of local gas and dust.
Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios
NASA Astrophysics Data System (ADS)
Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.
2017-12-01
Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.
Satellite observed thermodynamics during FGGE
NASA Technical Reports Server (NTRS)
Smith, W. L.
1985-01-01
During the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE), determinations of temperature and moisture were made from TIROS-N and NOAA-6 satellite infrared and microwave sounding radiance measurements. The data were processed by two methods differing principally in their horizontal resolution. At the National Earth Satellite Service (NESS) in Washington, D.C., the data were produced operationally with a horizontal resolution of 250 km for inclusion in the FGGE Level IIb data sets for application to large-scale numerical analysis and prediction models. High horizontal resolution (75 km) sounding data sets were produced using man-machine interactive methods for the special observing periods of FGGE at the NASA/Goddard Space Flight Center and archived as supplementary Level IIb. The procedures used for sounding retrieval and the characteristics and quality of these thermodynamic observations are given.
NASA Technical Reports Server (NTRS)
Putman, William P.
2012-01-01
Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1976-01-01
An experimental investigation was conducted by wind tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat plate wings and a thin tail consisting of horizontal and vertical parts. The wings had aspect ratios of 4 and taper ratios of about 0, 0.25, and 0.5. Two additional wings, which had taper ratios near 0.25 and aspect ratios of about 3 and 5, were also tested in combination with the bodies and tail. All wings had about the same planform area. The exposed area of the horizontal portion of the tail was about 33 to 36 percent of the exposed area of the wings. The exposed area of the vertical tail fin was about 22 to 24 percent of the exposed area of the wings. The elliptic body, with an a/b = 2 cross section, had the same length and axial distribution of cross sectional area as the circular body. The circular body had a cylindrical aftersection of fineness ratio 7, and it was tested with the wings and tail in combination with tangent ogive noses that had fineness ratios of 2.5, 3.0, 3.5, and 5.0. In addition, an ogive nose with a rounded tip and an ogive nose with two different nose strake arrangements were used. Nineteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.5, and 2.0 at angles of attack from 0 to 58 deg. The Reynolds numbers, based on body base diameter, were about 4.3 X 100,000.
NASA Astrophysics Data System (ADS)
Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair
2017-11-01
We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.
NASA Astrophysics Data System (ADS)
Wong, Michael
2015-10-01
A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015. This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for southern dark spot discovered in 2015.Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We have traced oscillations in the longitudinal positions of bright companion clouds of SDS-2015, but a second epoch of HST imaging is needed to measure latitudinal motion of the dark vortex itself.Only HST can image dark vortices on Neptune. Ground-based facilities lack the resolution to detect these low-contrast features at blue optical wavelengths, while infrared observations don't detect the dark spots themselves, only their bright companion features. We propose observations of SDS-2015, in order to measure its size, drift rate, and aerosol structure, and to trace its temporal evolution. The observations will improve our understanding of the life cycle of neptunian vortices, of their influence on the surrounding atmosphere, and of the structure of planetary jets.
NASA Technical Reports Server (NTRS)
Hartfield, Roy
1996-01-01
Raman scattering is a powerful technique for quantitatively probing high temperature and high speed flows. However, this technique has typically been limited to clean hydrogen flames because of the broadband fluorescence interference which occurs in hydrocarbon flames. Fluorescence can also interfere with the Raman signal in clean hydrogen flames when broadband UV lasers are used as the scattering source. A solution to this problem has been demonstrated. The solution to the fluorescence interference lies in the fact that the vibrational Q-branch Raman signal is highly polarized for 90 deg. signal collection and the fluorescence background is essentially unpolarized. Two basic schemes are available for separating the Raman from the background. One scheme involves using a polarized laser and collecting a signal with both horizontal and vertical laser polarizations separately. The signal with the vertical polarization will contain both the Raman and the fluorescence while the signal with the horizontal polarization will contain only the fluorescence. The second scheme involves polarization discrimination on the collection side of the optical setup. For vertical laser polarization, the scattered Q-branch Raman signal will be vertically polarized; hence the two polarizations can be collected separately and the difference between the two is the Raman signal. This approach has been used for the work found herein and has the advantage of allowing the data to be collected from the same laser shot(s). This makes it possible to collect quantitative Raman data with single shot resolution in conditions where interference cannot otherwise be eliminated.
NASA Technical Reports Server (NTRS)
Thornblom, Mark N.; Beverly, Joshua; O'Connell, Joseph J.; Mau, Johnny C.; Duncan, Dwight L.
2014-01-01
The 6 ft. by 6 ft. thermal vacuum chamber (TVAC), housed in Building 1250 at the NASA Langley Research Center (LaRC), and managed by the Systems Integration and Test Branch within the Engineering Directorate, has undergone several significant modifications to increase testing capability, safety, and quality of measurements of articles under environmental test. Significant modifications include: a new nitrogen thermal conditioning unit for controlling shroud temperatures from -150degC to +150degC; two horizontal auxiliary cold plates for independent temperature control from -150degC to +200degC; a suite of contamination monitoring sensors for outgassing measurements and species identification; signal and power feed-throughs; new pressure gauges; and a new data acquisition and control commanding system including safety interlocks. This presentation will provide a general overview of the LaRC 6 ft. by 6 ft. TVAC chamber, an overview of the new technical capabilities, and illustrate each upgrade in detail, in terms of mechanical design and predicted performance. Additionally, an overview of the scope of tests currently being performed in the chamber will be documented, and sensor plots from tests will be provided to show chamber temperature and pressure performance with actual flight hardware under test.
NASA Technical Reports Server (NTRS)
Jekeli, C.; Rapp, R. H.
1980-01-01
Improved knowledge of the Earth's gravity field was obtained from new and improved satellite measurements such as satellite to satellite tracking and gradiometry. This improvement was examined by estimating the accuracy of the determination of mean anomalies and mean undulations in various size blocks based on an assumed mission. In this report the accuracy is considered through a commission error due to measurement noise propagation and a truncation error due to unobservable higher degree terms in the geopotential. To do this the spectrum of the measurement was related to the spectrum of the disturbing potential of the Earth's gravity field. Equations were derived for a low-low (radial or horizontal separation) mission and a gradiometer mission. For a low-low mission of six month's duration, at an altitude of 160 km, with a data noise of plus or minus 1 micrometers sec for a four second integration time, we would expect to determine 1 deg x 1 deg mean anomalies to an accuracy of plus or minus 2.3 mgals and 1 deg x 1 deg mean geoid undulations to plus or minus 4.3 cm. A very fast Fortran program is available to study various mission configurations and block sizes.
NASA Technical Reports Server (NTRS)
Arabian, Donald D.; Schmeer, James W.
1955-01-01
An investigation of the lateral stability and control effectiveness of a 0.0858-scale model of the Lockheed XF-104 airplane has been conducted in the Langley 16-foot transonic tunnel. The model has a low aspect ratio, 3.4-percent-thick wing with negative dihedral. The horizontal tail is located on top of the vertical tail. The investigation was made through a Mach number range of 0.80 to 1.06 at sideslip angles of -5 deg. to 5 deg. and angles of attack from 0 deg. to 16 deg. The control effectiveness of the aileron, rudder, and yaw damper were determined through the Mach number and angle-of-attack range. The results of the investigation indicated that the directional stability derivative was stable and that positive effective dihedral existed throughout the lift-coefficient range and Mach number range tested. The total aileron effectiveness, which in general produced favorable yaw with rolling moment, remained fairly constant for lift coefficients up to about 0.8 for the Mach number range tested. Yawing-moment effectiveness of the rudder changed little through the Mach number range. However, the yaw damper effectiveness decreased about 30 percent at the intermediate test Mach numbers.
The Contrast Sensitivity of the Newborn Human Infant
Brown, Angela M.; Lindsey, Delwin T.; Cammenga, Joanna G.; Giannone, Peter J.; Stenger, Michael R.
2015-01-01
Purpose. To measure the binocular contrast sensitivity (CS) of newborn infants using a fixation-and-following card procedure. Methods. The CS of 119 healthy newborn infants was measured using stimuli printed on cards under the descending method of limits (93 infants) and randomized/masked designs (26 infants). One experienced and one novice adult observer tested the infants using vertical square-wave gratings (0.06 and 0.10 cyc/deg; 20/10,000 and 20/6000 nominal Snellen equivalent); the experienced observer also tested using horizontal gratings (0.10 cyc/deg) and using the Method of Constant Stimuli while being kept unaware of the stimulus values. Results. The CS of the newborn infant was 2.0 (contrast threshold = 0.497; 95% confidence interval: 0.475–0.524) for vertically oriented gratings and 1.74 (threshold = 0.575; 95% confidence interval: 0.523–0.633) for horizontally oriented gratings (P < 0.0006). The standard deviation of infant CS was comparable to that obtained by others on adults using the Pelli-Robson chart. The two observers showed similar practice effects. Randomization of stimulus order and masking of the adult observer had no effect on CS. Conclusions. The CS of individual newborn human infants can be measured using a fixation-and-following card procedure. PMID:25564453
Effect of Spaceflight on Vestibulo-Ocular Reflexes (VORS) During Angular Head Motion
NASA Technical Reports Server (NTRS)
Tomko, David L.; Clifford, James O.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Vestibulo-ocular reflexes (VORs) stabilize the eyes during head motion. During Earth-horizontal (E-H) pitch or roll rotations, canal and otolith stimuli occur together. In Earth-vertical (E-V) pitch or roll rotations, only canal signals occur. In cats and squirrel monkeys, pitch/roll VOR gains during E-H motion have been shown to be larger than during E-V motion, implying that otolith modulation plays a role in producing angular VORs (aVORs). The present experiments replicated this experiment in rhesus monkeys, and examined how spaceflight affected AVOR gain. During yaw, pitch and roll (0.5 - 1.0 Hz, 40-50 deg/s pk) motion, 3-d eye movements were recorded in four Rhesus monkeys using scleral search coils. Mean E-H and E-V pitch VOR gains were 0.85 and 0.71. Torsional VOR gains during E-H and E-V were 0.47 and 0.39. Gains are more compensatory during E-H pitch or roll. Two of the four monkeys flew for 11 days on the COSMOS 2229 Biosatellite. E-H pitch VOR gains were attenuated immediately (72 hrs) post-flight, with similar values to pre-flight E-V pitch gains. Horizontal yaw VOR gains were similar pre- and post-flight.
Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging.
Ju, Myeong Jin; Heisler, Morgan; Wahl, Daniel; Jian, Yifan; Sarunic, Marinko V
2017-11-01
We present a multiscale sensorless adaptive optics (SAO) OCT system capable of imaging retinal structure and vasculature with various fields-of-view (FOV) and resolutions. Using a single deformable mirror and exploiting the polarization properties of light, the SAO-OCT-A was implemented in a compact and easy to operate system. With the ability to adjust the beam diameter at the pupil, retinal imaging was demonstrated at two different numerical apertures with the same system. The general morphological structure and retinal vasculature could be observed with a few tens of micrometer-scale lateral resolution with conventional OCT and OCT-A scanning protocols with a 1.7-mm-diameter beam incident at the pupil and a large FOV (15 deg× 15 deg). Changing the system to a higher numerical aperture with a 5.0-mm-diameter beam incident at the pupil and the SAO aberration correction, the FOV was reduced to 3 deg× 3 deg for fine detailed imaging of morphological structure and microvasculature such as the photoreceptor mosaic and capillaries. Multiscale functional SAO-OCT imaging was performed on four healthy subjects, demonstrating its functionality and potential for clinical utility. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
The importance of vertical resolution in the free troposphere for modeling intercontinental plumes
NASA Astrophysics Data System (ADS)
Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.
2018-05-01
Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.
NASA Astrophysics Data System (ADS)
Li, Y.; McDougall, T. J.
2016-02-01
Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.
NASA Astrophysics Data System (ADS)
Saito, M.; Ito, A.; Maksyutov, S. S.
2013-12-01
This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial vegetation compositions in some grids. These misfits are assumed to derive from simplified representation in the biosphere model without the impact of land use change and dire disturbance and the seasonal variability in the physiological parameters.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
1994-01-01
Simulated data from the UCLA cumulus ensemble model are used to investigate the quasi-universal validity of closure assumptions used in existing cumulus parameterizations. A closure assumption is quasi-universally valid if it is sensitive neither to convective cloud regimes nor to horizontal resolutions of large-scale/mesoscale models. The dependency of three types of closure assumptions, as classified by Arakawa and Chen, on the horizontal resolution is addressed in this study. Type I is the constraint on the coupling of the time tendencies of large-scale temperature and water vapor mixing ratio. Type II is the constraint on the coupling of cumulus heating and cumulus drying. Type III is a direct constraint on the intensity of a cumulus ensemble. The macroscopic behavior of simulated cumulus convection is first compared with the observed behavior in view of Type I and Type II closure assumptions using 'quick-look' and canonical correlation analyses. It is found that they are statistically similar to each other. The three types of closure assumptions are further examined with simulated data averaged over selected subdomain sizes ranging from 64 to 512 km. It is found that the dependency of Type I and Type II closure assumptions on the horizontal resolution is very weak and that Type III closure assumption is somewhat dependent upon the horizontal resolution. The influences of convective and mesoscale processes on the closure assumptions are also addressed by comparing the structures of canonical components with the corresponding vertical profiles in the convective and stratiform regions of cumulus ensembles analyzed directly from simulated data. The implication of these results for cumulus parameterization is discussed.
NASA Astrophysics Data System (ADS)
Condon, J. J.; Broderick, J. J.
1986-05-01
The NRAO 91 m transit telescope and rebuilt four-feed receiver were used to make a 1400 MHz continuum survey with 12.7 arcmin x 11.1 arcmin resolution. New maps covering ascension between 19 h 30 m and 7 h 30 m supplement those in the right ascension range between 7 h 30 m and 19 h 30 m (Condon and Broderick, 1985) to complete the roughly 6.8 sr declination band between -5 deg and +82 deg. Both sets of maps are confusion-limited and contain roughly 3000 sources per sr stronger than 0.15 Jy. They are available on FITS tapes and can be displayed and analyzed with standard AIPS programs. A procedure for making radio 'identifications' automatically from the map tapes is given. A 1400 MHz radio sky atlas of contour plots and coordinate-grid overlays covering declination between -5 deg and +82 deg with a roughly 200 arcsec/mm scale was also produced.
IUE observations of blue halo high luminosity stars
NASA Technical Reports Server (NTRS)
Hack, M.; Franco, M. L.; Stalio, R.
1981-01-01
Two high luminosity population II blue stars of high galactic latitude, BD+33 deg 2642 and HD 137569 were observed at high resolution. The stellar spectra show the effect of mass loss in BD+33 deg 2642 and abnormally weak metallic lines in HD 137569. The interstellar lines in the direction of BD+33 deg 2642, which lies at a height z greater than or equal to 6.2 kpc from the galactic plane, are split into two components. No high ionization stages are found at the low velocity component; nor can they be detected in the higher velocity clouds because of mixing with the corresponding stellar/circumstellar lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molenkamp, C.R.; Grossman, A.
1999-12-20
A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show thatmore » reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.« less
NASA Technical Reports Server (NTRS)
Nelms, W. P.; Durston, D. A.; Lummus, J. R.
1980-01-01
A wind tunnel test was conducted to measure the aerodynamic characteristics of two horizontal attitude takeoff and landing V/STOL fighter/attack aircraft concepts. In one concept, a jet diffuser ejector was used for the vertical lift system; the other used a remote augmentation lift system (RALS). Wind tunnel tests to investigate the aerodynamic uncertainties and to establish a data base for these types of concepts were conducted over a Mach number range from 0.2 to 2.0. The present report covers tests, conducted in the 11 foot transonic wind tunnel, for Mach numbers from 0.4 to 1.4. Detailed effects of varying the angle of attack (up to 27 deg), angle of sideslip (-4 deg to +8 deg), Mach number, Reynolds number, and configuration buildup were investigated. In addition, the effects of wing trailing edge flap deflections, canard incidence, and vertical tail deflections were explored. Variable canard longitudinal location and different shapes of the inboard nacelle body strakes were also investigated.
The dataset represents the data depicted in the Figures and Tables of a Journal Manuscript with the following abstract: The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.This dataset is associated with the following publication
Sound localization in noise in hearing-impaired listeners.
Lorenzi, C; Gatehouse, S; Lever, C
1999-06-01
The present study assesses the ability of four listeners with high-frequency, bilateral symmetrical sensorineural hearing loss to localize and detect a broadband click train in the frontal-horizontal plane, in quiet and in the presence of a white noise. The speaker array and stimuli are identical to those described by Lorenzi et al. (in press). The results show that: (1) localization performance is only slightly poorer in hearing-impaired listeners than in normal-hearing listeners when noise is at 0 deg azimuth, (2) localization performance begins to decrease at higher signal-to-noise ratios for hearing-impaired listeners than for normal-hearing listeners when noise is at +/- 90 deg azimuth, and (3) the performance of hearing-impaired listeners is less consistent when noise is at +/- 90 deg azimuth than at 0 deg azimuth. The effects of a high-frequency hearing loss were also studied by measuring the ability of normal-hearing listeners to localize the low-pass filtered version of the clicks. The data reproduce the effects of noise on three out of the four hearing-impaired listeners when noise is at 0 deg azimuth. They reproduce the effects of noise on only two out of the four hearing-impaired listeners when noise is at +/- 90 deg azimuth. The additional effects of a low-frequency hearing loss were investigated by attenuating the low-pass filtered clicks and the noise by 20 dB. The results show that attenuation does not strongly affect localization accuracy for normal-hearing listeners. Measurements of the clicks' detectability indicate that the hearing-impaired listeners who show the poorest localization accuracy also show the poorest ability to detect the clicks. The inaudibility of high frequencies, "distortions," and reduced detectability of the signal are assumed to have caused the poorer-than-normal localization accuracy for hearing-impaired listeners.
NASA Technical Reports Server (NTRS)
Savage, Howard F.; Edwards, George G.
1959-01-01
A wind-tunnel investigation has been conducted to determine the effects of an unconventional tail arrangement on the subsonic static longitudinal and lateral stability characteristics of a model having a 63 deg sweptback wing of aspect ratio 3.5 and a fuselage. Tail booms, extending rearward from approximately the midsemispan of each wing panel, supported independent tail assemblies well outboard of the usual position at the rear of the fuselage. The horizontal-tail surfaces had the leading edge swept back 45 deg and an aspect ratio of 2.4. The vertical tail surfaces were geometrically similar to one panel of the horizontal tail. For comparative purposes, the wing-body combination was also tested with conventional fuselage-mounted tail surfaces. The wind-tunnel tests were conducted at Mach numbers from 0.25 to 0.95 with a Reynolds number of 2,000,000, at a Mach number of 0.46 with a Reynolds number of 3,500,000, and at a Mach number of 0.20 with a Reynolds number of 7,000,000. The results of the investigation indicate that longitudinal stability existed to considerably higher lift coefficients for the outboard tail configuration than for the configuration with conventional tail. Wing fences were necessary with both configurations for the elimination of sudden changes in longitudinal stability at lift coefficients between 0.3 and 0.5. Sideslip angles up to 15 deg had only small effects upon the pitching-moment characteristics of the outboard tail configuration. There was an increase in the directional stability for the outboard tail configuration at the higher angles of attack as opposed to a decrease for the conventional tail configuration at most of the Mach numbers and Reynolds numbers of this investigation. The dihedral effect increased rapidly with increasing angle of attack for both the outboard and the conventional tail configurations but the increase was greater for the outboard tail configuration. The data indicate that the outboard tail is an effective roll control.
NASA Technical Reports Server (NTRS)
Shen, B.-W.; Atlas, R.; Reale, O.; Chern, J.-D.; Li, S.-J.; Lee, T.; Chang, J.; Henze, C.; Yeh, K.-S.
2006-01-01
It is known that the General Circulation Models (GCMs) have sufficient resolution to accurately simulate hurricane near-eye structure and intensity. To overcome this limitation, the mesoscale-resolving finite-element GCM (fvGCM) has been experimentally deployed on the NASA Columbia supercomputer, and its performance is evaluated choosing hurricane Katrina as an example in this study. On late August 2005 Katrina underwent two stages of rapid intensification and became the sixth most intense hurricane in the Atlantic. Six 5-day simulations of Katrina at both 0.25 deg and 0.125 deg show comparable track forecasts, but the 0,125 deg runs provide much better intensity forecasts, producing center pressure with errors of only +/- 12 hPa. The 0.125 deg simulates better near-eye wind distributions and a more realistic average intensification rate. A convection parameterization (CP) is one of the major limitations in a GCM, the 0.125 deg run with CP disabled produces very encouraging results.
NASA Technical Reports Server (NTRS)
Duvall, Thomas L., Jr.; Hanasoge, S. M.
2012-01-01
As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.
Angular Resolution of an EAS Array for Gamma Ray Astronomy at Energies Greater Than 5 x 10 (13) Ev
NASA Technical Reports Server (NTRS)
Apte, A. R.; Gopalakrishnan, N. V.; Tonwar, S. C.; Uma, V.
1985-01-01
A 24 detector extensive air shower array is being operated at Ootacamund (2300 m altitude, 11.4 deg N latitude) in southern India for a study of arrival directions of showers of energies greater than 5 x 10 to the 13th power eV. Various configurations of the array of detectors have been used to estimate the accuracy in determination of arrival angle of showers with such an array. These studies show that it is possible to achieve an angular resolution of better than 2 deg with the Ooty array for search for point sources of Cosmic gamma rays at energies above 5 x 10 to the 13th power eV.
NASA Technical Reports Server (NTRS)
Garcia-Espada, Susana; Haas, Rudiger; Colomer, Francisco
2010-01-01
An important limitation for the precision in the results obtained by space geodetic techniques like VLBI and GPS are tropospheric delays caused by the neutral atmosphere, see e.g. [1]. In recent years numerical weather models (NWM) have been applied to improve mapping functions which are used for tropospheric delay modeling in VLBI and GPS data analyses. In this manuscript we use raytracing to calculate slant delays and apply these to the analysis of Europe VLBI data. The raytracing is performed through the limited area numerical weather prediction (NWP) model HIRLAM. The advantages of this model are high spatial (0.2 deg. x 0.2 deg.) and high temporal resolution (in prediction mode three hours).
NASA Technical Reports Server (NTRS)
Warner, Thomas T.; Key, Lawrence E.; Lario, Annette M.
1989-01-01
The effects of horizontal and vertical data resolution, data density, data location, different objective analysis algorithms, and measurement error on mesoscale-forecast accuracy are studied with observing-system simulation experiments. Domain-averaged errors are shown to generally decrease with time. It is found that the vertical distribution of error growth depends on the initial vertical distribution of the error itself. Larger gravity-inertia wave noise is produced in forecasts with coarser vertical data resolution. The use of a low vertical resolution observing system with three data levels leads to more forecast errors than moderate and high vertical resolution observing systems with 8 and 14 data levels. Also, with poor vertical resolution in soundings, the initial and forecast errors are not affected by the horizontal data resolution.
A Computer Simulation of the System-Wide Effects of Parallel-Offset Route Maneuvers
NASA Technical Reports Server (NTRS)
Lauderdale, Todd A.; Santiago, Confesor; Pankok, Carl
2010-01-01
Most aircraft managed by air-traffic controllers in the National Airspace System are capable of flying parallel-offset routes. This paper presents the results of two related studies on the effects of increased use of offset routes as a conflict resolution maneuver. The first study analyzes offset routes in the context of all standard resolution types which air-traffic controllers currently use. This study shows that by utilizing parallel-offset route maneuvers, significant system-wide savings in delay due to conflict resolution of up to 30% are possible. It also shows that most offset resolutions replace horizontal-vectoring resolutions. The second study builds on the results of the first and directly compares offset resolutions and standard horizontal-vectoring maneuvers to determine that in-trail conflicts are often more efficiently resolved by offset maneuvers.
Angle Performance on Optima XE
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu
2011-01-07
Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Stiles, J. A.; Moore, R. K.; Holtzman, J. C.
1981-01-01
Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior.
Global behavior of the height/seasonal structure of tides between 40 deg and 60 deg latitude
NASA Technical Reports Server (NTRS)
Manson, A. H.; Meek, C. E.; Teitelbaum, H.; Fraser, G. J.; Smith, M. J.; Clark, R. R.; Schminder, R.; Kuerschner, D.
1989-01-01
The radars utilized are meteor (2), medium frequency (2) and the new low frequency (1) systems: analysis techniques were exhaustively studied internally and comparatively and are not thought to affect the results. Emphasis is placed upon the new height-time contours of 24-, 12-h tidal amplitudes and phases, which best display height and seasonal structures; where possible high resolution (10 d) is used (Saskatoon), but all stations provide monthly mean resolution. At these latitudes the diurnal tide is generally smaller than the semidiurnal, and displays more variability. However, there is a tendency for vertical wavelengths and amplitudes to be larger during summer months. On occasions in winter and fall, wavelengths may be less than 50 km. The dominant semidiurnal tide shows significant regular season structure; wavelengths are generally small (about 50 km) in winter, large in summer (equal to or greater than 100 km), and these states are separated by rapid equinoctial transitions. There is some evidence for less regularity toward 40 deg. Coupling with mean winds is apparent. Data from earlier ATMAP campaigns are mentioned, and reasons for their inadequacies presented.
An active K/Ka-band antenna array for the NASA ACTS mobile terminal
NASA Technical Reports Server (NTRS)
Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.
1993-01-01
An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.
Pattern optimization of compound optical film for uniformity improvement in liquid-crystal displays
NASA Astrophysics Data System (ADS)
Huang, Bing-Le; Lin, Jin-tang; Ye, Yun; Xu, Sheng; Chen, En-guo; Guo, Tai-Liang
2017-12-01
The density dynamic adjustment algorithm (DDAA) is designed to efficiently promote the uniformity of the integrated backlight module (IBLM) by adjusting the microstructures' distribution on the compound optical film (COF), in which the COF is constructed in the SolidWorks and simulated in the TracePro. In order to demonstrate the universality of the proposed algorithm, the initial distribution is allocated by the Bezier curve instead of an empirical value. Simulation results maintains that the uniformity of the IBLM reaches over 90% only after four rounds. Moreover, the vertical and horizontal full width at half maximum of angular intensity are collimated to 24 deg and 14 deg, respectively. Compared with the current industry requirement, the IBLM has an 85% higher luminance uniformity of the emerging light, which demonstrate the feasibility and universality of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Evenick, J. C.; Lee, P.; Deane, B.
2004-01-01
The Flynn Creek impact structure is located in Tennessee, USA (36 deg.17 min.N, 85 deg.40 min.W). The structure was first mapped as a crypto-volcanic by Wilson and Born in 1936 [1]. Although they did not properly identify the stratigraphy within the crater or the causal mechanism, they did correctly define the horizontal extent of the crater. More detailed surface and subsurface research by Roddy (1979) accurately described the crater as being an impact structure with a diameter of 3.8 km. It formed around 360 Ma, which corresponds to the interval between the deposition of the Nashville Group and the Chattanooga Shale. Although there is limited rock outcrop in the area, there are exposed surface faults, folds, and large outcrops of impact breccia within the crater.
NASA Technical Reports Server (NTRS)
Pendergraft, O. C., Jr.; Carson, G. T., Jr.
1984-01-01
Static pressure coefficient distributions on the forebody, afterbody, and nozzles of a 1/12 scale F-15 propulsion model was determined in the 16 foot transonic tunnel for Mach numbers from 0.60 to 1.20, angles of attack from -2 deg to 7 deg and ratio of jet total pressure to free stream static pressure from 1 up to about 7, depending on Mach number. The effects of nozzle geometry and horizontal tail deflection on the pressure distributions were investigated. Boundary layer total pressure profiles were determined at two locations ahead of the nozzles on the top nacelle surface. Reynolds number varied from about 1.0 x 10 to the 7th power per meter, depending on Mach number.
NASA Astrophysics Data System (ADS)
Kobayashi, Hideo; Iyama, Hiromasa; Kagatsume, Takeshi; Watanabe, Tsuyoshi
2012-11-01
Cold-development is well-known for resolution enhancement on ZEP520A. Dipping a wafer in a developer solvent chilled by a freezer, such a typical method had been employed. But, it is obvious that the dip-development method has several inferiorities such as developer temperature instability, temperature inconsistency between developer and a wafer, water-condensation on drying. We then built a single wafer spin-develop tool, and established a process sequence, to solve those difficulties. And, we tried to see their effect down to -10degC over various developers. In specific, we tried to make hole patterns in hexagonal closest packing in 40nm, 35nm, 30nm, 25nm pitch, and examined holes pattern quality and resolution limit by varying setting temperature from room temperature to -10degC in the cold-development, as well as varying developer chemistry from the standard developer ZED N-50 (n-amyl acetate, 100%) to MiBK and IPA mixture which was a rinsing solvent mixture originally. We also examined the other developer (poor solvent mixture) we designed, N-50 and fluorocarbon (FC) mixture, MiBK and FC mixture, and IPA+FC mixture. This paper describes cold-development tool and technique, and its results down to minus (-) 10degC, for ZEP520A resolution enhancement to obtain 1Xnm bits (holes) in 25nm pitch to fabricate an EB master mold for Nano-Imprinting Lithography for 1Tbit/in2 bit patterned media (BPM) in HDD development and production.
Radio Transients in 1333 deg2 of the VLA Sky Survey Pilot
NASA Astrophysics Data System (ADS)
Dong, Dillon; Hallinan, Gregg; Myers, Steven T.; Mooley, Kunal; VLASS Survey Team, VLASS Survey Science Group (SSG)
2018-01-01
The VLA Sky Survey (VLASS) is an ongoing project by the NRAO to map ~34,000 deg2 of the sky at 3GHz, over 3 epochs spanning 6 years. In preparation for the full survey, a set of fields covering 2480 deg2 was recently observed as the VLASS pilot project. We searched 1333 deg2 of the VLASS pilot for radio transients with characteristic decay timescales between weeks and years, such as the synchrotron afterglows of supernovae, tidal disruption events, and long/short gamma ray bursts. These radio afterglows are thought to be roughly isotropic and extinction-free, allowing us to observe transients that would be missed by optical/high energy surveys due to obscuration or off-axis jetting.Within the searched area, we identified 215 VLASS sources that have no counterpart in the FIRST survey and have a projected distance of < 50kpc from the nearest galaxy by angular distance in the CLU and GWENs galaxy catalogs. By selection, these targets are predominently located near low redshift (z < 0.05) galaxies, allowing us to study their host environments with a sub-kiloparsec spatial resolution. Prioritizing based on visual association with SDSS galaxies, we imaged and/or took spectra of the host environment of 60 targets with the Low Resolution Imaging Spectrometer (LRIS) on Keck 1. In this talk, we present the radio and optical results for the most exciting VLASS transients.
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; ...
2014-10-13
We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less
The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials
NASA Astrophysics Data System (ADS)
Martisek, Dalibor; Prochazkova, Jana
2017-12-01
The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.
Wedi, Nils P
2014-06-28
The steady path of doubling the global horizontal resolution approximately every 8 years in numerical weather prediction (NWP) at the European Centre for Medium Range Weather Forecasts may be substantially altered with emerging novel computing architectures. It coincides with the need to appropriately address and determine forecast uncertainty with increasing resolution, in particular, when convective-scale motions start to be resolved. Blunt increases in the model resolution will quickly become unaffordable and may not lead to improved NWP forecasts. Consequently, there is a need to accordingly adjust proven numerical techniques. An informed decision on the modelling strategy for harnessing exascale, massively parallel computing power thus also requires a deeper understanding of the sensitivity to uncertainty--for each part of the model--and ultimately a deeper understanding of multi-scale interactions in the atmosphere and their numerical realization in ultra-high-resolution NWP and climate simulations. This paper explores opportunities for substantial increases in the forecast efficiency by judicious adjustment of the formal accuracy or relative resolution in the spectral and physical space. One path is to reduce the formal accuracy by which the spectral transforms are computed. The other pathway explores the importance of the ratio used for the horizontal resolution in gridpoint space versus wavenumbers in spectral space. This is relevant for both high-resolution simulations as well as ensemble-based uncertainty estimation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho
2014-10-01
The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS schememore » simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.« less
A numerical circulation model with topography for the Martian Southern Hemisphere
NASA Technical Reports Server (NTRS)
Mass, C.; Sagan, C.
1975-01-01
A quasi-geostrophic numerical model, including friction, radiation, and the observed planetary topography, is applied to the general circulation of the Martian atmosphere in the Southern Hemisphere at latitudes south of about 35 deg. Near equilibrium weather systems developed after about 5 model days. To avoid violating the quasi-geostrophic approximation, only 0.8 of the already smoothed relief was employed. Weather systems and velocity fields are strikingly tied to topography. A 2mb middle latitude jet stream is found of remarkably terrestrial aspect. Highest surface velocities, both horizontal and vertical, are predicted in western Hellas Planitia and eastern Argyre Planitia, which are observed to be preferred sites of origin of major Martian dust storms. Mean horizontal velocities and vertical velocities are found just above the surface velocity boundary layer.
Combustion of solid carbon rods in zero and normal gravity. Ph.D. Thesis - Toledo Univ., Ohio
NASA Technical Reports Server (NTRS)
Spuckler, C. M.
1981-01-01
In order to investigate the mechanism of carbon combustion and to assess the importance of gravitational induced convection on the process, zero and normal gravity experiments were conducted in which spectroscopic carbon rods were resistance ignitied and burned in dry oxygen environments. In the zero-gravity drop tower tests, a blue flame surrounded the rod, showing that a gas phase reaction in which carbon monoxide was oxidized to carbon dioxide was taking place. The ratio of flame diameter to rod diameter was obtained as a function of time. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter. In the normal gravity tests, direct mass spectrometric sampling was used to measure gas phase concentrations. The gas sampling probe was positioned near the circumference of a horizontally mounted 0.615 cm diameter carbon rod, either at the top or at angles of 45 deg to 90 deg from the top, and yielded concentration profiles of CO2, CO, and O2 as a function of distance from the surface. The mechanism controlling the combustion process was found to change from chemical process control at the 90 deg and 45 deg probe positions to mass transfer control at the 0 deg probe position at the top of the rod. Under the experimental conditions used, carbon combustion was characterized by two surface reactions, 2C + O2 yields 2CO and CO2 + C yields 2CO, and a gas phase reaction, 2CO + O2 yields 2CO2.
KMC-1: A high resolution and high flux soft x-ray beamline at BESSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefers, F.; Mertin, M.; Gorgoi, M.
2007-12-15
The crystal monochromator beamline KMC-1 at a BESSY II bending magnet covers the energy range from soft (1.7 keV) to hard x-rays (12 keV) employing the (n,-n) double crystal arrangement with constant beam offset. The monochromator is equipped with three sets of crystals, InSb, Si (111), and Si (422) which are exchangeable in situ within a few minutes. Beamline and monochromator have been optimized for high flux and high resolution. This could be achieved by (1) a windowless setup under ultrahigh-vacuum conditions up to the experiment, (2) by the use of only three optical elements to minimize reflection losses, (3)more » by collecting an unusually large horizontal radiation fan (6 mrad) with the toroidal premirror, and (4) the optimization of the crystal optics to the soft x-ray range necessitating quasibackscattering crystal geometry ({theta}{sub Bragg,max}=82 deg.) delivering crystal limited resolution. The multipurpose beamline is in use for a variety of user facilities such as extended x-ray absorption fine structure, ((Bio-)EXAFS) near-edge x-ray absorption fine structure (NEXAFS), absorption and fluorescence spectroscopy. Due to the windowless UHV setup the k edges of the technologically and biologically important elements such as Si, P, and S are accessible. In addition to these experiments this beamline is now extensively used for photoelectron spectroscopy at high kinetic energies. Photon flux in the 10{sup 11}-10{sup 12} photons/s range and beamline resolving powers of more than E/{delta}E{approx_equal}100.000 have been measured at selected energies employing Si (nnn) high order radiation in quasibackscattering geometry, thus photoelectron spectroscopy with a total instrumental resolution of about 150 meV is possible. This article describes the design features of the beamline and reports some experimental results in the above mentioned fields.« less
A measurement of the large-scale cosmic microwave background anisotropy at 1.8 millimeter wavelength
NASA Technical Reports Server (NTRS)
Meyer, Stephan S.; Cheng, Edward S.; Page, Lyman A.
1991-01-01
This measurement of the large-scale cosmic microwave background radiation (CMBR) anisotropy places the most stringent constraints to date on fluctuations in the CMBR on angular scales greater than about 4 deg. Using a four-channel bolometric radiometer operating at 1.8, 1.1, 0.63, and 0.44 mm, the diffuse sky brightness over half of the northern hemisphere has been mapped with an angular resolution of 3.8 deg. Analysis of the sky map at the longest wavelength for Galactic latitudes of 15 deg or more yields a 95-percent confidence level upper limit on fluctuations of the CMBR at Delta T/T of 1.6 x 10 to the -5th with a statistical power of 92 percent for Gaussian fluctuations at a correlation angle of 13 deg. Between 3 deg and 22 deg, the upper limit of fluctuations is 4.0 x 10 to the -5th . An anisotropy is detected in the map, but it cannot yet be attributed to primordial sources. The ultimate sensitivity for this experiment is 7 x 10 to the -6th over this angular range for Gaussian fluctuations.
Maps Showing Geology and Shallow Structure of Western Rhode Island Sound, Rhode Island
Needell, Sally W.; O'Hara, Charles J.; Knebel, Harley J.
1983-01-01
This report presents the results of a high-resolution, seismic-reflection, and sidescan-sonar survey conducted in western Rhode Island Sound south of Narragansett Bay (fig. 1 inset) by the U.S. Geological Survey in 1980. The study defines the geologic framework of the Atlantic Inner Continental Shelf between lat. 41 deg 09' and 41 deg 32'N and long. 71 deg 07' and 71 deg 37'W. A total of 580 kilometers (km) of seismic-reflection profiles and 580 km of sidescan sonographs was collected aboard the RV Neecho. Trackline spacing was 1 to 2 km at the mouth of Narragansett Bay, and dip lines were 2 km apart with widely spaced strike lines in Rhode Island Sound (fig. 1). The maps in this report adjoin those for eastern Rhode Island Sound and Vineyard Sound, Massachusetts, of O'Hara and Oldale (1980).
Kaufman, Denise R; Puckett, Mallory J; Smith, Mitchell J; Wilson, Kyle S; Cheema, Rebecca; Landers, Merrill R
2014-08-01
The purpose of this study was to establish reliability and responsiveness of the dynamic visual acuity test (DVAT) at head speeds of 150-200 degrees per second (deg/s) and the gaze stabilization test (GST) in high school and college football players. Reliability design. Fifty high school and college football athletes completed the DVAT and GST in both the yaw (horizontal) and pitch (vertical) planes twice within two weeks. Test-retest reliability for the DVAT was good in yaw, Intraclass Correlation Coefficient (ICC) = 0.770, and moderate/good in pitch, ICC = 0.725. Minimal detectable change (MDC) was 0.16 logMAR for yaw and 0.21 logMAR for pitch. GST reliability was moderate in yaw, ICC = 0.634, and poor in pitch, ICC = 0.411. MDCs were 73.4 deg/s (yaw) and 81.2 deg/s (pitch). The DVAT is reliable at high head speeds in high school and college football athletes in both yaw and pitch. GST head speeds were higher than previously reported in the literature, but reliability of this tool for this population was poor to moderate. From a clinical perspective, DVAT may be reliably used in the assessment of high school and college football athletes; however, GST requires further evaluation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rousson, Johanna; Haar, Jérémy; Santal, Sarah; Kumcu, Asli; Platiša, Ljiljana; Piepers, Bastian; Kimpe, Tom; Philips, Wilfried
2016-03-01
While three-dimensional (3-D) imaging systems are entering hospitals, no study to date has explored the luminance calibration needs of 3-D stereoscopic diagnostic displays and if they differ from two-dimensional (2-D) displays. Since medical display calibration incorporates the human contrast sensitivity function (CSF), we first assessed the 2-D CSF for benchmarking and then examined the impact of two image parameters on the 3-D stereoscopic CSF: (1) five depth plane (DP) positions (between DP: -171 and DP: 2853 mm), and (2) three 3-D inclinations (0 deg, 45 deg, and 60 deg around the horizontal axis of a DP). Stimuli were stereoscopic images of a vertically oriented 2-D Gabor patch at one of seven frequencies ranging from 0.4 to 10 cycles/deg. CSFs were measured for seven to nine human observers with a staircase procedure. The results indicate that the 2-D CSF model remains valid for a 3-D stereoscopic display regardless of the amount of disparity between the stereo images. We also found that the 3-D CSF at DP≠0 does not differ from the 3-D CSF at DP=0 for DPs and disparities which allow effortless binocular fusion. Therefore, the existing 2-D medical luminance calibration algorithm remains an appropriate tool for calibrating polarized stereoscopic medical displays.
Resolution dependence of precipitation statistical fidelity in hindcast simulations
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik; ...
2016-06-19
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Resolution dependence of precipitation statistical fidelity in hindcast simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Performance of European chemistry transport models as function of horizontal resolution
NASA Astrophysics Data System (ADS)
Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.
2015-07-01
Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation procedures at high spatial and temporal resolution are a crucial factor for further model resolution improvements.
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...
2016-01-01
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
NASA Technical Reports Server (NTRS)
Axelson, J. A.
1977-01-01
The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.
NASA Technical Reports Server (NTRS)
Graves, E. B.
1972-01-01
A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.
NASA Technical Reports Server (NTRS)
Goldman, A.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.; Coffey, M. T.; Mankin, W. G.
1984-01-01
Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the nu9 band at 12.2 microns, which have been identified in high-resolution balloon-borne and aircraft solar absorption spectra. The balloon-borne spectral data were recorded at sunset with the 0.02/cm resolution University of Denver interferometer system, from a float altitude of 33.5 km near Alamogordo, New Mexico, on March 23, 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06/cm resolution interferometer aboard a jet aircraft at 12 km altitude, near 35 deg N, 96 deg W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the column value obtained from the aircraft data.
VizieR Online Data Catalog: Leiden/Argentine/Bonn (LAB) Survey of Galactic HI (Kalberla+ 2005)
NASA Astrophysics Data System (ADS)
Kalberla, P. M. W.; Burton, W. B.; Hartmann, D.; Arnal, E. M.; Bajaja, E.; Morras, R.; Poeppel, W. G. L.
2005-07-01
The LAB survey contains the final data release of observations of 21-cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Cat. VIII/54) of the sky north of -30{deg} with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000A&AS..142...35A and Bajaja et al. 2005, Cat. VIII/75) of the sky south of -25{deg}. The angular resolution of the combined material is HPBW ~ 0.6{deg}. The LSR velocity coverage spans the interval -450 km/s to +400 km/s, at a resolution of 1.3km/s. The data were corrected for stray radiation at the Institute for Radioastronomy of the University of Bonn, refining the original correction applied to the LDS. The rms brightness-temperature noise of the merged database is 0.07-0.09 K. Residual errors in the profile wings due to defects in the correction for stray radiation are for most of the data below a level of 20-40 mK. It would be necessary to construct a telescope with a main beam efficiency of {eta}MB>99% to achieve the same accuracy. The merged and refined material entering the LAB Survey of Galactic H I is intended to be a general resource useful to a wide range of studies of the physical and structural characteristices of the Galactic interstellar environment. The LAB Survey is the most sensitive Milky Way H I survey to date, with the most extensive coverage both spatially and kinematically. The Survey is available as 3-D maps, with or without Hanning smoothing, covering the whole +/-458km/s or limited to +/-250km/s range. The resolution of the 3-D maps is 0.5{deg} in galactic longitude and latitude, and up to 1km/s in velocity. The survey exists also as (b,v) maps at longitude intervals stepped by 0.5{deg} -- these files supersedes the FITS files given in the Hartmann and Burton Atlas (Cat. VIII/54) (1 data file).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eunyoung
Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μMmore » formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR genes includes cystathionine γ-lyase (CTH). • Sub-cytotoxic formaldehyde upregulates cystathionine-β-synthase (CBS) in NHKs. • Cystathionine metabolic enzymes may attenuate formaldehyde-induced inflammation in NHKs. • Cystathionine metabolic enzymes may play a role in the resolution of inflammation in NHKs.« less
Numerical simulations of significant orographic precipitation in Madeira island
NASA Astrophysics Data System (ADS)
Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João
2016-03-01
High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.
Venus gravity anomalies and their correlations with topography
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.
1983-01-01
This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.
NASA Astrophysics Data System (ADS)
Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten
2013-04-01
The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2014-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2013-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
NASA Astrophysics Data System (ADS)
Griffiths, Andrew; Coates, Andrew; Muller, Jan-Peter; Jaumann, Ralf; Josset, Jean-Luc; Paar, Gerhard; Barnes, David
2010-05-01
The ExoMars mission has evolved into a joint European-US mission to deliver a trace gas orbiter and a pair of rovers to Mars in 2016 and 2018 respectively. The European rover will carry the Pasteur exobiology payload including the 1.56 kg Panoramic Camera. PanCam will provide multispectral stereo images with 34 deg horizontal field-of-view (580 microrad/pixel) Wide-Angle Cameras (WAC) and (83 microrad/pixel) colour monoscopic "zoom" images with 5 deg horizontal field-of-view High Resolution Camera (HRC). The stereo Wide Angle Cameras (WAC) are based on Beagle 2 Stereo Camera System heritage [1]. Integrated with the WACs and HRC into the PanCam optical bench (which helps the instrument meet its planetary protection requirements) is the PanCam interface unit (PIU); which provides image storage, a Spacewire interface to the rover and DC-DC power conversion. The Panoramic Camera instrument is designed to fulfil the digital terrain mapping requirements of the mission [2] as well as providing multispectral geological imaging, colour and stereo panoramic images and solar images for water vapour abundance and dust optical depth measurements. The High Resolution Camera (HRC) can be used for high resolution imaging of interesting targets detected in the WAC panoramas and of inaccessible locations on crater or valley walls. Additionally HRC will be used to observe retrieved subsurface samples before ingestion into the rest of the Pasteur payload. In short, PanCam provides the overview and context for the ExoMars experiment locations, required to enable the exobiology aims of the mission. In addition to these baseline capabilities further enhancements are possible to PanCam to enhance it's effectiveness for astrobiology and planetary exploration: 1. Rover Inspection Mirror (RIM) 2. Organics Detection by Fluorescence Excitation (ODFE) LEDs [3-6] 3. UVIS broadband UV Flux and Opacity Determination (UVFOD) photodiode This paper will discuss the scientific objectives and resource impacts of these enhancements. References: 1. Griffiths, A.D., Coates, A.J., Josset, J.-L., Paar, G., Hofmann, B., Pullan, D., Ruffer, P., Sims, M.R., Pillinger, C.T., The Beagle 2 stereo camera system, Planet. Space Sci. 53, 1466-1488, 2005. 2. Paar, G., Oberst, J., Barnes, D.P., Griffiths, A.D., Jaumann, R., Coates, A.J., Muller, J.P., Gao, Y., Li, R., 2007, Requirements and Solutions for ExoMars Rover Panoramic Camera 3d Vision Processing, abstract submitted to EGU meeting, Vienna, 2007. 3. Storrie-Lombardi, M.C., Hug, W.F., McDonald, G.D., Tsapin, A.I., and Nealson, K.H. 2001. Hollow cathode ion lasers for deep ultraviolet Raman spectroscopy and fluorescence imaging. Rev. Sci. Ins., 72 (12), 4452-4459. 4. Nealson, K.H., Tsapin, A., and Storrie-Lombardi, M. 2002. Searching for life in the universe: unconventional methods for an unconventional problem. International Microbiology, 5, 223-230. 5. Mormile, M.R. and Storrie-Lombardi, M.C. 2005. The use of ultraviolet excitation of native fluorescence for identifying biomarkers in halite crystals. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 246-253. 6. Storrie-Lombardi, M.C. 2005. Post-Bayesian strategies to optimize astrobiology instrument suites: lessons from Antarctica and the Pilbara. Astrobiology and Planetary Missions (R. B. Hoover, G. V. Levin and A. Y. Rozanov, Eds.), Proc. SPIE, 5906, 288-301.
Response time to colored stimuli in the full visual field
NASA Technical Reports Server (NTRS)
Haines, R. F.; Dawson, L. M.; Galvan, T.; Reid, L. M.
1975-01-01
Peripheral visual response time was measured in seven dark adapted subjects to the onset of small (45' arc diam), brief (50 msec), colored (blue, yellow, green, red) and white stimuli imaged at 72 locations within their binocular field of view. The blue, yellow, and green stimuli were matched for brightness at about 2.6 sub log 10 units above their absolute light threshold, and they appeared at an unexpected time and location. These data were obtained to provide response time and no-response data for use in various design disciplines involving instrument panel layout. The results indicated that the retina possesses relatively concentric regions within each of which mean response time can be expected to be of approximately the same duration. These regions are centered near the fovea and extend farther horizontally than vertically. Mean foveal response time was fastest for yellow and slowest for blue. Three and one-half percent of the total 56,410 trials presented resulted in no-responses. Regardless of stimulus color, the lowest percentage of no-responses occurred within 30 deg arc from the fovea and the highest within 40 deg to 80 deg arc below the fovea.
Overflow Simulations using MPAS-Ocean in Idealized and Realistic Domains
NASA Astrophysics Data System (ADS)
Reckinger, S.; Petersen, M. R.; Reckinger, S. J.
2016-02-01
MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Also, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates. Additionally, preliminary measurements of overflow diagnostics on global simulations using a realistic oceanic domain are presented.
Practical design and evaluation methods of omnidirectional vision sensors
NASA Astrophysics Data System (ADS)
Ohte, Akira; Tsuzuki, Osamu
2012-01-01
A practical omnidirectional vision sensor, consisting of a curved mirror, a mirror-supporting structure, and a megapixel digital imaging system, can view a field of 360 deg horizontally and 135 deg vertically. The authors theoretically analyzed and evaluated several curved mirrors, namely, a spherical mirror, an equidistant mirror, and a single viewpoint mirror (hyperboloidal mirror). The focus of their study was mainly on the image-forming characteristics, position of the virtual images, and size of blur spot images. The authors propose here a practical design method that satisfies the required characteristics. They developed image-processing software for converting circular images to images of the desired characteristics in real time. They also developed several prototype vision sensors using spherical mirrors. Reports dealing with virtual images and blur-spot size of curved mirrors are few; therefore, this paper will be very useful for the development of omnidirectional vision sensors.
The Upper Atmosphere Research Satellite (UARS) mission
NASA Technical Reports Server (NTRS)
Reber, Carl A.; Trevathan, Charles E.; Mcneal, Robert J.; Luther, Michael R.
1993-01-01
The Upper Atmosphere Research Satellite (UARS) is a NASA program aimed at improving our knowledge of the physical and chemical processes controlling the stratosphere, mesosphere, and lower thermosphere, emphasizing those levels that are known to be particularly susceptible to change by human activities. The spacecraft was launched by the Space Shuttle Discovery on September 12, 1991 into a near-circular orbit at 585 km altitude and 57 deg inclination. Measurements include vertical profiles of temperature, many trace gases, and horizontal wind velocities, as well as solar energy inputs. Many of the limb-scanning instruments can measure to as high as 80 deg latitude, providing near-global coverage. The mission is supported by a large international correlative measurement program, yielding data both for validation of the UARS measurements and for complementary scientific studies. A dedicated data system provides rapid processing to geophysical quantities and makes these data available to UARS scientists.
NASA Technical Reports Server (NTRS)
Eckert, W. T.; Maki, R. L.
1973-01-01
The low-speed characteristics of a large-scale model of the U. S. Navy/Grumman F-14A aircraft were studied in tests conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel. The primary purpose of the program was the determination of lift and stability levels and landing approach attitude of the aircraft in its high-lift configuration. Tests were conducted at wing angles of attack between minus 2 deg and 30 deg with zero yaw. Data were taken at Reynolds numbers ranging from 3.48 million to 9.64 million based on a wing mean aerodynamic chord of 7.36 ft. The model configuration was changed as required to show the effects of glove slat, wing slat leading-edge radius, cold flow ducting, flap deflection, direct lift control (spoilers), horizontal tail, speed brake, landing gear and missiles.
Angular relation of axes in perceptual space
NASA Technical Reports Server (NTRS)
Bucher, Urs
1992-01-01
The geometry of perceptual space needs to be known to model spatial orientation constancy or to create virtual environments. To examine one main aspect of this geometry, the angular relation between the three spatial axes was measured. Experiments were performed consisting of a perceptual task in which subjects were asked to set independently their apparent vertical and horizontal plane. The visual background provided no other stimuli to serve as optical direction cues. The task was performed in a number of different body tilt positions with pitches and rolls varied in steps of 30 degs. The results clearly show the distortion of orthogonality of the perceptual space for nonupright body positions. Large interindividual differences were found. Deviations from orthogonality up to 25 deg were detected in the pitch as well as in the roll direction. Implications of this nonorthogonality on further studies of spatial perception and on the construction of virtual environments for human interaction is also discussed.
Dei, Devis; Mecatti, Daniele; Pieraccini, Massimiliano
2013-01-01
Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. In this paper, the static testing of a bridge is reported. It was an 8-span bridge, 297 m long, named "Ponte degli Alpini," crossing the valley of the Ardo River. The radar has been used for testing a lateral span and a central span. The obtained results present elements of novelty not previously reported in the literature. In fact, some displacement measurements of the lateral span have been affected by a horizontal shift that has to be taken into account for a correct interpretation of the measured data. Furthermore, the measurements of the central span have been carried out with the radar positioned transversally with respect to the bridge deck; this unusual arrangement has allowed for obtaining displacement maps less geometrically distorted with respect to other cases reported in the literature.
Planar ion trap (retarding potential analyzer) experiment for atmosphere explorer
NASA Technical Reports Server (NTRS)
Hanson, W. B.; Sanatani, S.; Lippincott, C. R.; Zuccaro, D. R.
1982-01-01
The retarding potential analyzer and drift meter were carried aboard all three Atmosphere Explorer spacecraft. These instruments measure the total thermal ion concentration and temperature, the bulk thermal ion velocity vector and some limited properties of the relative abundance of H(+), He(+), O(+) and molecular ions. These instruments functioned with no internal failures on all the spacecraft. On AE-E there existed some evidence for external surface contamination that damaged the integrity of the RPA sweep grids. This led to some difficulties in data reduction and interpretation that did not prove to be a disastrous problem. The AE-D spacecraft functioned for only a few months before it re-entered. During this time the satellite suffered from a nutation about the spin axis of about + or - 2 deg. This 2 deg modulation was superimposed upon the ion drift meter horizontal ion arrival angle output requiring the employment of filtering techniques to retrieve the real data.
Es structure using an HF radar
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
Using an HF radar which produces a steerable beam about 4 deg wide and measures angle of arrival and Doppler shift of radio echoes, the structure of various types of midlatitude sporadic E (Es) has been determined. Totally reflecting Es is a very smooth layer, tilted less than 1 deg from the horizontal. Partially reflecting Es consists of clouds of ionization. These clouds vary in size from a few kilometers to 25 km in the direction of movement and larger in the transverse direction. Echoes often disappear rapidly: the clouds either disappear quickly or have sharp edges. Spread Es has a curious structure of small clouds each of which reflects only for a few seconds, but each cloud moves with the same velocity, typically 100 m/s, even though the heights of the clouds vary up to 10 km. It is difficult to reconcile this finding with the presence of wind shears.
HIGH-RESOLUTION DATASET OF URBAN CANOPY PARAMETERS FOR HOUSTON, TEXAS
Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...
NASA Astrophysics Data System (ADS)
Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.
2017-07-01
Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.
Performance Evaluation of 98 CZT Sensors for Their Use in Gamma-Ray Imaging
NASA Astrophysics Data System (ADS)
Dedek, Nicolas; Speller, Robert D.; Spendley, Paul; Horrocks, Julie A.
2008-10-01
98 SPEAR sensors from eV Products have been evaluated for their use in a portable Compton camera. The sensors have a 5 mm times 5 mm times 5 mm CdZnTe crystal and are provided together with a preamplifier. The energy resolution was studied in detail for all sensors and was found to be 6% on average at 59.5 keV and 3% on average at 662 keV. The standard deviations of the corresponding energy resolution distributions are remarkably small (0.6% at 59.5 keV, 0.7% at 662 keV) and reflect the uniformity of the sensor characteristics. For a possible outside use the temperature dependence of the sensor performances was investigated for temperatures between 15 and 45 deg Celsius. A linear shift in calibration with temperature was observed. The energy resolution at low energies (81 keV) was found to deteriorate exponentially with temperature, while it stayed constant at higher energies (356 keV). A Compton camera built of these sensors was simulated. To obtain realistic energy spectra a suitable detector response function was implemented. To investigate the angular resolution of the camera a 137Cs point source was simulated. Reconstructed images of the point source were compared for perfect and realistic energy and position resolutions. The angular resolution of the camera was found to be better than 10 deg.
ECMWF and SSM/I global surface wind speeds
NASA Technical Reports Server (NTRS)
Halpern, David; Hollingsworth, Anthony; Wentz, Frank
1994-01-01
Monthly mean 2.5 deg x 2.5 deg resolution 10-m height wind speeds from the Special Sensor Microwave/Imager (SSM/I) instrument and the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast-analysis system are compared between 60 deg S and 60 deg N during 1988-91. The SSM/I data were uniformly processed while numerous changes were made to the ECMWF forecast-analysis system. The SSM/I measurements, which were compared with moored-buoy wind observations, were used as a reference dataset to evaluate the influence of the changes made to the ECMWF system upon the ECMWF surface wind speed over the ocean. A demonstrable yearly decrease of the difference between SSM/I and ECMWF wind speeds occurred in the 10 deg S-10 deg N region, including the 5 deg S-5 deg N zone of the Pacific Ocean, where nearly all of the variations occurred in the 160 deg E-160 deg W region. The apparent improvement of the ECMWF wind speed occurred at the same time as the yearly decrease of the equatorial Pacific SSM/I wind speed, which was associated with the natural transition from La Nina to El Nino conditions. In the 10 deg S-10 deg N tropical Atlantic, the ECMWF wind speed had a 4-yr trend, which was not expected nor was it duplicated with the SSM/I data. No yearly trend was found in the difference between SSM/I and ECMWF surface wind speeds in middle latitudes of the Northern and Southern Hemispheres. The magnitude of the differences between SSM/I and ECMWF was 0.4 m/s or 100% larger in the Northern than in the Southern Hemisphere extratropics. In two areas (Arabian Sea and North Atlantic Ocean) where ECMWF and SSM/I wind speeds were compared to ship measurements, the ship data had much better agreement with the ECMWF analyses compared to SSM/I data. In the 10 deg S-10 deg N area the difference between monthly standard deviations of the daily wind speeds dropped significantly from 1988 to 1989 but remained constant at about 30% for the remaining years.
Challenge toward the prediction of typhoon behaviour and down pour
NASA Astrophysics Data System (ADS)
Takahashi, K.; Onishi, R.; Baba, Y.; Kida, S.; Matsuda, K.; Goto, K.; Fuchigami, H.
2013-08-01
Mechanisms of interactions among different scale phenomena play important roles for forecasting of weather and climate. Multi-scale Simulator for the Geoenvironment (MSSG), which deals with multi-scale multi-physics phenomena, is a coupled non-hydrostatic atmosphere-ocean model designed to be run efficiently on the Earth Simulator. We present simulation results with the world-highest 1.9km horizontal resolution for the entire globe and regional heavy rain with 1km horizontal resolution and 5m horizontal/vertical resolution for urban area simulation. To gain high performance by exploiting the system capabilities, we propose novel performance evaluation metrics introduced in previous studies that incorporate the effects of the data caching mechanism between CPU and memory. With a useful code optimization guideline based on such metrics, we demonstrate that MSSG can achieve an excellent peak performance ratio of 32.2% on the Earth Simulator with the single-core performance found to be a key to a reduced time-to-solution.
NASA Astrophysics Data System (ADS)
Bhattacharyya, B.; Cooper, S.; Malenta, M.; Roy, J.; Chengalur, J.; Keith, M.; Kudale, S.; McLaughlin, M.; Ransom, S. M.; Ray, P. S.; Stappers, B. W.
2016-02-01
We are conducting a survey for pulsars and transients using the Giant Metrewave Radio Telescope (GMRT). The GMRT High Resolution Southern Sky (GHRSS) survey is an off-Galactic plane (| b| > 5) survey in the declination range -40° to -54° at 322 MHz. With the high time (up to 30.72 μs) and frequency (up to 0.016275 MHz) resolution observing modes, the 5σ detection limit is 0.5 mJy for a 2 ms pulsar with a 10% duty cycle at 322 MHz. The total GHRSS sky coverage of 2866 deg2 will result from 1953 pointings, each covering 1.8 deg2. The 10σ detection limit for a 5 ms transient burst is 1.6 Jy for the GHRSS survey. In addition, the GHRSS survey can reveal transient events like rotating radio transients or fast radio bursts. With 35% of the survey completed (I.e., 1000 deg2), we report the discovery of 10 pulsars, 1 of which is a millisecond pulsar (MSP), which is among the highest pulsar per square degree discovery rates for any off-Galactic plane survey. We re-detected 23 known in-beam pulsars. Utilizing the imaging capability of the GMRT, we also localized four of the GHRSS pulsars (including the MSP) in the gated image plane within ±10″. We demonstrated rapid convergence in pulsar timing with a more precise position than is possible with single-dish discoveries. We also show that we can localize the brightest transient sources with simultaneously obtained lower time resolution imaging data, demonstrating a technique that may have application in the Square Kilometre Array.
Performance evaluation of low-cost airglow cameras for mesospheric gravity wave measurements
NASA Astrophysics Data System (ADS)
Suzuki, S.; Shiokawa, K.
2016-12-01
Atmospheric gravity waves significantly contribute to the wind/thermal balances in the mesosphere and lower thermosphere (MLT) through their vertical transport of horizontal momentum. It has been reported that the gravity wave momentum flux preferentially associated with the scale of the waves; the momentum fluxes of the waves with a horizontal scale of 10-100 km are particularly significant. Airglow imaging is a useful technique to observe two-dimensional structure of small-scale (<100 km) gravity waves in the MLT region and has been used to investigate global behaviour of the waves. Recent studies with simultaneous/multiple airglow cameras have derived spatial extent of the MLT waves. Such network imaging observations are advantageous to ever better understanding of coupling between the lower and upper atmosphere via gravity waves. In this study, we newly developed low-cost airglow cameras to enlarge the airglow imaging network. Each of the cameras has a fish-eye lens with a 185-deg field-of-view and equipped with a CCD video camera (WATEC WAT-910HX) ; the camera is small (W35.5 x H36.0 x D63.5 mm) and inexpensive, much more than the airglow camera used for the existing ground-based network (Optical Mesosphere Thermosphere Imagers (OMTI) operated by Solar-Terrestrial Environmental Laboratory, Nagoya University), and has a CCD sensor with 768 x 494 pixels that is highly sensitive enough to detect the mesospheric OH airglow emission perturbations. In this presentation, we will report some results of performance evaluation of this camera made at Shigaraki (35-deg N, 136-deg E), Japan, where is one of the OMTI station. By summing 15-images (i.e., 1-min composition of the images) we recognised clear gravity wave patterns in the images with comparable quality to the OMTI's image. Outreach and educational activities based on this research will be also reported.
Effects of Vestibular Loss on Orthostatic Responses to Tilts in the Pitch Plane
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Serrador, Jorge M.; Black, F. Owen; Rupert,Angus H.; Schlegel, Todd T.
2004-01-01
The purpose of this study was to determine the extent to which vestibular loss might impair orthostatic responses to passive tilts in the pitch plane in human subjects. Data were obtained from six subjects having chronic bilateral vestibular loss and six healthy individuals matched for age, gender, and body mass index. Vestibular loss was assessed with a comprehensive battery including dynamic posturography, vestibulo-ocular and optokinetic reflexes, vestibular evoked myogenic potentials, and ocular counterrolling. Head up tilt tests were conducted using a motorized two-axis table that allowed subjects to be tilted in the pitch plane from either a supine or prone body orientation at a slow rate (8 deg/s). The sessions consisted of three tilts, each consisting of20 min rest in a horizontal position, tilt to 80 deg upright for 10 min, and then return to the horizontal position for 5 min. The tilts were performed in darkness (supine and prone) or in light (supine only). Background music was used to mask auditory orientation cues. Autonomic measurements included beat-to-beat recordings of blood pressure (Finapres), heart rate (ECG), cerebral blood flow velocity in the middle cerebral artery (transcranial Doppler), end tidal CO2, respiratory rate and volume (Respritrace), and stroke volume (impedance cardiography). For both patients and control subjects, cerebral blood flow appeared to exhibit the most rapid adjustment following transient changes in posture. Outside of a greater cerebral hypoperfusion in patients during the later stages of tilt, responses did not differ dramatically between the vestibular loss and control subjects, or between tilts performed in light and dark room conditions. Thus, with the 'exception of cerebrovascular regulation, we conclude that orthostatic responses during slow postural tilts are not substantially impaired in humans following chronic loss of vestibular function, a result that might reflect compensation by nonvisual graviceptor inputs (e.g., somatosensory) or other circulatory reflex mechanisms.
High resolution X- and gamma-ray spectroscopy of solar flares
NASA Technical Reports Server (NTRS)
Lin, R. P.
1984-01-01
A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.
Numerical simulation of incidence and sweep effects on delta wing vortex breakdown
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.; Schiff, Lewis B.
1994-01-01
The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.
New dust opacity mapping from Viking Infrared Thermal Mapper data
NASA Technical Reports Server (NTRS)
Martin, Terry Z.; Richardson, Mark I.
1993-01-01
Global dust opacity mapping for Mars has been carried forward using the approach described by Martin (1986) for Viking IR Thermal Mapper data. New maps are presented for the period from the beginning of Viking observations, until Ls 210 deg in 1979 (1.36 Mars years). This range includes the second and more extensive planet-encircling dust storm observed by Viking, known as storm 1977b. Improvements in approach result in greater time resolution and smaller noise than in the earlier work. A strong local storm event filled the Hellas basin at Ls 170 deg, prior to the 1977a storm. Dust is retained in equatorial regions following the 1977b storm far longer than in mid-latitudes. Minor dust events appear to raise the opacity in northern high latitudes during northern spring. Additional mapping with high time resolution has been done for the periods of time near the major storm origins in order to search for clues to the mechanism of storm initiation. The first evidence of the start of the 1977b storm is pushed back to Ls 274.2 deg, preceding signs of the storm in images by about 15 hours.
NASA Technical Reports Server (NTRS)
Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.
1983-01-01
The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).
NASA Technical Reports Server (NTRS)
Goossens, Sander Johannes; Ishihara, Yoshiaki; Matsumoto, Koji; Sasaki, Sho
2012-01-01
We present a method with which we determined the local lunar gravity field model over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating adjustments to a global lunar gravity field model using SELENE tracking data. Our adjustments are expressed in localized functions concentrated over the SPA region in a spherical cap with a radius of 45deg centered at (191.1 deg E, 53.2 deg S), and the resolution is equivalent to a 150th degree and order spherical harmonics expansion. The new solution over SPA was used in several applications of geophysical analysis. It shows an increased correlation with high-resolution lunar topography in the frequency band l = 40-70, and admittance values are slightly different and more leveled when compared to other, global gravity field models using the same data. The adjustments expressed in free-air anomalies and differences in Bouguer anomalies between the local solution and the a priori global solution correlate with topographic surface features. The Moho structure beneath the SPA basin is slightly modified in our solution, most notably at the southern rim of the Apollo basin and around the Zeeman crater
Flight Tests of A 1/8-Scale Model of the Bell D-188A Jet VTOL Airplane
NASA Technical Reports Server (NTRS)
Smith, Charles C., Jr.
1959-01-01
The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.
NASA Technical Reports Server (NTRS)
1982-01-01
A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.
1950-03-13
order to correct for refraction in the stage glass. The negative is canted about a vertical axis through its front surface by the hand wheel on the side...1 __ I_-- -_- • RNEGTFMO PHOTOGRONq Fig. 31. DiagraM of geometrica relations of modfied Bauch an Lam rectifier. 24i determination of settings such...Neither the nomograms nor the slide rule will give the de- sired accuracy where precise, geometrically correct , rectifications are to be made; however
Non-Normal Projectile Penetration in Soil and Rock: User’s Guide for Computer Code PENC02D.
1982-09-01
the path traveled , with projec- tile orientation shown every FREQI projectile lengths. In this run, FREQI was input as 2.5. The horizontal lines...must be a closed surface in the direction of travel ; the bluntness of the nose requires a near 90-deg element for closure. Sheet 3 shows the beginning...plots for this problem. Sheets 1 and 2 automatically verify the projectile shape and path traveled . Sheets 3, 4, and 5 show the axial deceleration
Spatial filtering velocimeter for vehicle navigation with extended measurement range
NASA Astrophysics Data System (ADS)
He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu
2015-05-01
The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.
NASA Technical Reports Server (NTRS)
1978-01-01
The adequate modeling of physiological reactions inherent to the state of weightlessness has become a matter of particular urgency in space medicine. This modeling is necessary for studying the phenomenology and degree of disorders, prognostication of the crew's health, and developing the various preventive measures employed in space flights. A comparison is made of the physiological effects brought about by bed rest in a horizontal and antiorthostatic body position. A study is done of the influence of brief antiorthostatic hypokinesia, simulating the acute period of adaptation to weightlessness, on circulation and on a number of involved analytical systems. The basic model accepted is antiorthostatic hypokinesia with a body position declination angle of 4 deg (head lower than feet). The experiment's duration is dictated by the objectives of the research.
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Parker, Donald E.
1987-01-01
Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.
EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS
While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...
NASA Technical Reports Server (NTRS)
Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.
1995-01-01
Ground-based Fabry-Perot interferometers located at Thule, Greenland (76.5 deg. N, 69.0 deg. W, lambda = 86 deg.) and at Sondre Stromfjord, Greenland (67.0 deg. N, 50.9 deg. W, lambda = 74 deg.) have monitored the upper thermospheric (approx. 240-km altitude) neutral wind and temperature over the northern hemisphere geomagnetic polar cap since 1983 and 1985, respectively. The thermospheric observations are obtained by determining the Doppler characteristics of the (OI) 15,867-K (630.0-nm) emission of atomic oxygen. The instruments operate on a routine, automatic, (mostly) untended basis during the winter observing seasons, with data coverage limited only by cloud cover and (occasional) instrument failures. This unique database of geomagnetic polar cap measurements now extends over the complete range of solar activity. We present an analysis of the measurements made between 1985 (near solar minimum) and 1991 (near solar maximum), as part of a long-term study of geomagnetic polar cap thermospheric climatology. The measurements from a total of 902 nights of observations are compared with the predictions of two semiempirical models: the Vector Spherical Harmonic (VSH) model of Killeen et al. (1987) and the Horizontal Wind Model (HWM) of Hedin et al. (1991). The results are also analyzed using calculations of thermospheric momentum forcing terms from the Thermosphere-ionosphere General Circulation Model TGCM) of the National Center for Atmospheric Research (NCAR). The experimental results show that upper thermospheric winds in the geomagnetic polar cap have a fundamental diurnal character, with typical wind speeds of about 200 m/s at solar minimum, rising to up to about 800 m/s at solar maximum, depending on geomagnetic activity level. These winds generally blow in the antisunward direction, but are interrupted by episodes of modified wind velocity and altered direction often associated with changes in the orientation of the Interplanetary Magnetic Field (IMF). The central polar cap (greater than approx. 80 magnetic latitude) antisunward wind speed is found to be a strong function of both solar and geomagnetic activity. The polar cap temperatures show variations in both solar and geomagnetic activity, with temperatures near 800 K for low K(sub p) and F(sub 10.7) and greater than about 2000 K for high K(sub p) and F(sub 10.7). The observed temperatures are significantly greater than those predicted by the mass spectrometer/incoherent scatter model for high activity conditions. Theoretical analysis based on the NCAR TIGCM indicates that the antisunward upper thermospheric winds, driven by upstream ion drag, basically 'coast' across the polar cap. The relatively small changes in wind velocity and direction within the polar cap are induced by a combination of forcing terms of commensurate magnitude, including the nonlinear advection term, the Coriolis term, and the pressure gradient force term. The polar cap thennospheric thermal balance is dominated by horizontal advection, and adiabatic and thermal conduction terms.
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Nastrom, G. D.; Holdeman, J. D.
1984-01-01
A climatology of ozone for altitudes from FL190 to FL590 (19,000 to 59,000 ft) is presented. Climatological tables are given in two appendixes: one with d deg latitude resolution on a monthly basis, and one with 10 deg latitude resolution on a seasonal basis. Data were taken from 11,472 balloon-borne ozonesondes launched at 60 stations from 1963 to 1980 and from over 160,000 observations made by the Global Atmospheric Sampling Program on 4417 commercial airliner flights from 1975 to 1979. Case study and statistical comparisons of results from these two data sets showed that they are compatible and can be combined. Several examples of analyses that can be made by using the tabulated data are given and discussed.
NASA Technical Reports Server (NTRS)
Stocker, Erich; Kelley, Owen; Kummerow, Christian; Chou, Joyce; Woltz, Lawrence
2010-01-01
TRMM has three level 3 (space/time averaged) data products that aggregate level 2 TRMM Microwave Imager (TMI) GPROF precipitation retrievals. These three products are TRMM 3A12, which is a monthly accumulation of 2A12 the GPROF swath retrieval product; TRMM 3B31, which is a monthly accumulation of 2A12 and 2B31 the combined retrieval product that uses both Precipitation Radar (PR) and TMI data; and 3G68 and its variants, which provide hourly retrievals for TMI, PR and combined. The 3G68 products are packaged as daily files but provide hourly information at 0.5 deg x 0.5 deg resolution globally, 0.25 deg x 0.25 deg globally, or 0.1 deg x 0.1 deg over Africa, Australia and South America. This paper will present early information of the changes in the v7 TMI GPROF level 2 retrievals that have an impact on the level 3 accumulations. This paper provides an analysis of the effect the 2A12 GPROF changes have on 3G68 products. In addition, it provides a comparison between the TRMM level 3 products that use the TMI GPROF swath retrievals.
NASA Astrophysics Data System (ADS)
Wang, Shu Meir; Geller, Marvin A.
2016-09-01
Previous works have shown that a dry, idealized general circulation model could produce many features of the extratropical Tropopause Inversion Layer (TIL). In particular, the following have been shown, but no explanations were given for these results. (1) A sharper extratropical TIL resulted more from increased horizontal resolution than from increased vertical resolution. (2) If the Equator-to-Pole temperature gradient was varied, the annual variation of the extratropical TIL found in observations could be reproduced. (3) The extratropical TIL altitude showed excellent correlation with the upper tropospheric relative vorticity, as had been previously proposed. (4) Increased horizontal model resolutions led to extratropical TILs that were at lower altitudes. We show that these conclusions follow from baroclinic mixing of high stratospheric potential vorticity into the troposphere being the principal sharpening mechanism for the extratropical TIL and the increased baroclinic activity occurring in higher horizontal resolution models. We furthermore suggest that the distance from the jet exerts a greater influence on the height and sharpness of the extratropical TIL than does the upper tropospheric relative vorticity, and this accounts for the annual behavior of the extratropical TIL found in observations and reproduced with a dry, mechanistic, global model.
NASA Astrophysics Data System (ADS)
Collier, J. C.; Zhang, G. J.
2006-05-01
Simulation of the North American monsoon system by the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM3) is evaluated in its sensitivity to increasing horizontal resolution. For two resolutions, T42 and T85, rainfall is compared to TRMM satellite-derived and surface gauge-based rainfall rates over the U.S. and northern Mexico as well as rainfall accumulations in gauges of the North American Monsoon Experiment (NAME) Enhanced Rain Gauge Network (NERN) in the Sierra Madre Occidental mountains. Simulated upper-tropospheric mass and wind fields are compared to those from NCEP-NCAR reanalyses. The comparison presented herein demonstrates that tropospheric motions associated with the North American monsoon system are sensitive to increasing the horizontal resolution of the model. An increase in resolution from T42 to T85 results in changes to a region of large-scale mid-tropospheric descent found north and east of the monsoon anticyclone. Relative to its simulation at T42, this region extends farther south and west at T85. Additionally, at T85, the subsidence is stronger. Consistent with the differences in large-scale descent, the T85 simulation of CAM3 is anomalously dry over Texas and northeastern Mexico during the peak monsoon months. Meanwhile, the geographic distribution of rainfall over the Sierra Madre Occidental region of Mexico is more satisfactorily simulated at T85 than at T42 for July and August. Moisture import into this region is greater at T85 than at T42 during these months. A focused study of the Sierra Madre Occidental region in particular shows that, in the regional average sense, the timing of the peak of the monsoon is relatively insensitive to the horizontal resolution of the model, while a phase bias in the diurnal cycle of monsoon-season precipitation is somewhat reduced in the higher-resolution run. At both resolutions, CAM3 poorly simulates the month-to-month evolution of monsoon rainfall over extreme northwestern Mexico and Arizona, though biases are considerably improved at T85.
NASA Astrophysics Data System (ADS)
Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier
2015-04-01
At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve
2009-01-01
Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve
2009-01-01
Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong n8 band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.
On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model
NASA Astrophysics Data System (ADS)
Xu, Jingwei; Koldunov, Nikolay; Remedio, Armelle Reca C.; Sein, Dmitry V.; Zhi, Xiefei; Jiang, Xi; Xu, Min; Zhu, Xiuhua; Fraedrich, Klaus; Jacob, Daniela
2018-02-01
A number of studies have shown that added value is obtained by increasing the horizontal resolution of a regional climate model to capture additional fine-scale weather processes. However, the mechanisms leading to this added value are different over areas with complicated orographic features, such as the Tibetan Plateau (TP). To determine the role that horizontal resolution plays over the TP, a detailed comparison was made between the results from the REMO regional climate model at resolutions of 25 and 50 km for the period 1980-2007. The model was driven at the lateral boundaries by the European Centre for Medium-Range Weather Forecasts Interim Reanalysis data. The experiments differ only in representation of topography, all other land parameters (e.g., vegetation characteristics, soil texture) are the same. The results show that the high-resolution topography affects the regional air circulation near the ground surface around the edge of the TP, which leads to a redistribution of the transport of atmospheric water vapor, especially over the Brahmaputra and Irrawaddy valleys—the main water vapor paths for the southern TP—increasing the amount of atmospheric water vapor transported onto the TP by about 5%. This, in turn, significantly decreases the temperature at 2 m by > 1.5 °C in winter in the high-resolution simulation of the southern TP. The impact of topography on the 2 m temperature over the TP is therefore by influencing the transport of atmospheric water vapor in the main water vapor paths.
A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity
NASA Astrophysics Data System (ADS)
Reckinger, Shanon M.; Petersen, Mark R.; Reckinger, Scott J.
2015-12-01
MPAS-Ocean is used to simulate an idealized, density-driven overflow using the dynamics of overflow mixing and entrainment (DOME) setup. Numerical simulations are carried out using three of the vertical coordinate types available in MPAS-Ocean, including z-star with partial bottom cells, z-star with full cells, and sigma coordinates. The results are first benchmarked against other models, including the MITgcm's z-coordinate model and HIM's isopycnal coordinate model, which are used to set the base case used for this work. A full parameter study is presented that looks at how sensitive overflow simulations are to vertical grid type, resolution, and viscosity. Horizontal resolutions with 50 km grid cells are under-resolved and produce poor results, regardless of other parameter settings. Vertical grids ranging in thickness from 15 m to 120 m were tested. A horizontal resolution of 10 km and a vertical resolution of 60 m are sufficient to resolve the mesoscale dynamics of the DOME configuration, which mimics real-world overflow parameters. Mixing and final buoyancy are least sensitive to horizontal viscosity, but strongly sensitive to vertical viscosity. This suggests that vertical viscosity could be adjusted in overflow water formation regions to influence mixing and product water characteristics. Lastly, the study shows that sigma coordinates produce much less mixing than z-type coordinates, resulting in heavier plumes that go further down slope. Sigma coordinates are less sensitive to changes in resolution but as sensitive to vertical viscosity compared to z-coordinates.
NASA Technical Reports Server (NTRS)
Austin, J.
1986-01-01
Midstratospheric trajectories for February and March 1979 are calculated using geopotential analyses derived from limb infrared monitor of the stratosphere data. These trajectories are compared with the corresponding results using stratospheric sounding unit data. The trajectories are quasi-isentropic in that a radiation scheme is used to simply cross-isentrope flow. The results show that in disturbed conditions, quantitative agreement the trajectories, that is, within 25 great circle degrees (GCD) (one GCD about 110 km) may be valid for only 3 or 4 days, whereas during quiescent periods, quantitative agreement may last up to 10 days. By comparing trajectories calculated with different data some insight can be gained as to errors due to vertical resolution and horizontal resolution (due to infrequent sampling) in the analyzed geopotential height fields. For the disturbed trajectories described in this paper the horizontal resolution of the data was more important than vertical resolution; however, for the quiescent trajectories, which could be calculated accurately for a longer duration because of the absence of appreciable transients, the vertical resolution of the data was found to be more important than the horizontal resolution. It is speculated that these characteristics are also applicable to trajectories calculated during disturbed and quiescent periods in general. A review of some recently published trajectories shows that the qualitative conclusions of such works remains unaffected when the calculations are repeated using different data.
Aether drift and the isotropy of the universe
NASA Technical Reports Server (NTRS)
Muller, R. A.
1976-01-01
An experiment is proposed which will detect and map the large-angular-scale anisotropies in the 3 deg K primordial black-body radiation with a sensitivity of .0002 deg K and an angular resolution of about 10 deg . It will detect the motion of the earth with respect to the distant matter of the Universe ("Aether Drift"), and will probe the homogeneity and isotropy of the Universe (the "Cosmological Principle"). The experiment will use two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. An upper hatch for the NASA-AMES Earth Survey Aircraft (U-2) is being modified to accept the dual-radiometer system. A few hours of observation should be sufficient to detect an anisotropy.
Chaotic terrain of Mars - A tectonic interpretation from Mariner 6 imagery
NASA Technical Reports Server (NTRS)
Wilson, R. C.; Harp, E. L.; Picard, M. D.; Ward, S. H.
1973-01-01
Sharp et al. (1971) define chaotic terrain as an irregular jumble of topographic forms covering a certain area within Pyrrhae Regio and adjacent regions centered at about 10 deg S., 35 deg W. This area is covered by Mariner 6 television imagery. An analysis of fracture patterns in the Martian surface from high-resolution Mariner 6 imagery suggests that the lineaments observed in both the chaotic terrain and the cratered plateau areas in Pyrrhae Regio are tectonic fractures resulting from stresses within the Martian crust.
Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM
NASA Astrophysics Data System (ADS)
Yu, Y.; Liu, H.; Lin, P.
2017-12-01
The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.
Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance.
Telford, L; Seidman, S H; Paige, G D
1997-10-01
Horizontal, vertical, and torsional eye movements were recorded using the magnetic search-coil technique during linear accelerations along the interaural (IA) and dorsoventral (DV) head axes. Four squirrel monkeys were translated sinusoidally over a range of frequencies (0.5-4.0 Hz) and amplitudes (0.1-0.7 g peak acceleration). The linear vestibuloocular reflex (LVOR) was recorded in darkness after brief presentations of visual targets at various distances from the subject. With subjects positioned upright or nose-up relative to gravity, IA translations generated conjugate horizontal (IA horizontal) eye movements, whereas DV translations with the head nose-up or right-side down generated conjugate vertical (DV vertical) responses. Both were compensatory for linear head motion and are thus translational LVOR responses. In concert with geometric requirements, both IA-horizontal and DV-vertical response sensitivities (in deg eye rotation/cm head translation) were related linearly to reciprocal fixation distance as measured by vergence (in m-1, or meter-angles, MA). The relationship was characterized by linear regressions, yielding sensitivity slopes (in deg.cm-1.MA-1) and intercepts (sensitivity at 0 vergence). Sensitivity slopes were greatest at 4.0 Hz, but were only slightly more than half the ideal required to maintain fixation. Slopes declined with decreasing frequency, becoming negligible at 0.5 Hz. Small responses were observed when vergence was zero (intercept), although no response is required. Like sensitivity slope, the intercept was largest at 4.0 Hz and declined with decreasing frequency. Phase lead was near zero (compensatory) at 4.0 Hz, but increased as frequency declined. Changes in head orientation, motion axis (IA vs. DV), and acceleration amplitude produced slight and sporadic changes in LVOR parameters. Translational LVOR response characteristics are consistent with high-pass filtering within LVOR pathways. Along with horizontal eye movements, IA translation generated small torsional responses. In contrast to the translational LVORs, IA-torsional responses were not systematically modulated by vergence angle. The IA-torsional LVOR is not compensatory for translation because it cannot maintain image stability. Rather, it likely compensates for the effective head tilt simulated by translation. When analyzed in terms of effective head tilt, torsional responses were greatest at the lowest frequency and declined as frequency increased, consistent with low-pass filtering of otolith input. It is unlikely that IA-torsional responses compensate for actual head tilt, however, because they were similar for both upright and nose-up head orientations. The IA-torsional and -horizontal LVORs seem to respond only to linear acceleration along the IA head axis, and the DV-vertical LVOR to acceleration along the head's DV axis, regardless of gravity.
DVA as a Diagnostic Test for Vestibulo-Ocular Reflex Function
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Appelbaum, Meghan
2010-01-01
The vestibulo-ocular reflex (VOR) stabilizes vision on earth-fixed targets by eliciting eyes movements in response to changes in head position. How well the eyes perform this task can be functionally measured by the dynamic visual acuity (DVA) test. We designed a passive, horizontal DVA test to specifically study the acuity and reaction time when looking in different target locations. Visual acuity was compared among 12 subjects using a standard Landolt C wall chart, a computerized static (no rotation) acuity test and dynamic acuity test while oscillating at 0.8 Hz (+/-60 deg/s). In addition, five trials with yaw oscillation randomly presented a visual target in one of nine different locations with the size and presentation duration of the visual target varying across trials. The results showed a significant difference between the static and dynamic threshold acuities as well as a significant difference between the visual targets presented in the horizontal plane versus those in the vertical plane when comparing accuracy of vision and reaction time of the response. Visual acuity increased proportional to the size of the visual target and increased between 150 and 300 msec duration. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of rotation. This DVA test could be used as a functional diagnostic test for visual-vestibular and neuro-cognitive impairments by assessing both accuracy and reaction time to acquire visual targets.
NASA Astrophysics Data System (ADS)
Federico, S.; Avolio, E.; Bellecci, C.; Colacino, M.; Walko, R. L.
2006-03-01
This paper reports preliminary results for a Limited area model Ensemble Prediction System (LEPS), based on RAMS (Regional Atmospheric Modelling System), for eight case studies of moderate-intense precipitation over Calabria, the southernmost tip of the Italian peninsula. LEPS aims to transfer the benefits of a probabilistic forecast from global to regional scales in countries where local orographic forcing is a key factor to force convection. To accomplish this task and to limit computational time in an operational implementation of LEPS, we perform a cluster analysis of ECMWF-EPS runs. Starting from the 51 members that form the ECMWF-EPS we generate five clusters. For each cluster a representative member is selected and used to provide initial and dynamic boundary conditions to RAMS, whose integrations generate LEPS. RAMS runs have 12-km horizontal resolution. To analyze the impact of enhanced horizontal resolution on quantitative precipitation forecasts, LEPS forecasts are compared to a full Brute Force (BF) ensemble. This ensemble is based on RAMS, has 36 km horizontal resolution and is generated by 51 members, nested in each ECMWF-EPS member. LEPS and BF results are compared subjectively and by objective scores. Subjective analysis is based on precipitation and probability maps of case studies whereas objective analysis is made by deterministic and probabilistic scores. Scores and maps are calculated by comparing ensemble precipitation forecasts against reports from the Calabria regional raingauge network. Results show that LEPS provided better rainfall predictions than BF for all case studies selected. This strongly suggests the importance of the enhanced horizontal resolution, compared to ensemble population, for Calabria for these cases. To further explore the impact of local physiographic features on QPF (Quantitative Precipitation Forecasting), LEPS results are also compared with a 6-km horizontal resolution deterministic forecast. Due to local and mesoscale forcing, the high resolution forecast (Hi-Res) has better performance compared to the ensemble mean for rainfall thresholds larger than 10mm but it tends to overestimate precipitation for lower amounts. This yields larger false alarms that have a detrimental effect on objective scores for lower thresholds. To exploit the advantages of a probabilistic forecast compared to a deterministic one, the relation between the ECMWF-EPS 700 hPa geopotential height spread and LEPS performance is analyzed. Results are promising even if additional studies are required.
Effect of Conflict Resolution Maneuver Execution Delay on Losses of Separation
NASA Technical Reports Server (NTRS)
Cone, Andrew C.
2010-01-01
This paper examines uncertainty in the maneuver execution delay for data linked conflict resolution maneuvers. This uncertainty could cause the previously cleared primary conflict to reoccur or a secondary conflict to appear. Results show that the likelihood of a primary conflict reoccurring during a horizontal conflict resolution maneuver increases with larger initial turn-out angles and with shorter times until loss of separation. There is also a significant increase in the probability of a primary conflict reoccurring when the time until loss falls under three minutes. Increasing horizontal separation by an additional 1.5 nmi lowers the risk, but does not completely eliminate it. Secondary conflicts were shown to have a small probability of occurring in all tested configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carisle; Griffin, John Clark
2015-01-01
The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenariosmore » are presented with calculations showing the application of such a metric.« less
Lunar surface remanent magnetic fields detected by the electron reflection method
NASA Technical Reports Server (NTRS)
Lin, R. P.; Anderson, K. A.; Bush, R.; Mcguire, R. E.; Mccoy, J. E.
1976-01-01
We present maps of the lunar surface remanent magnetic fields detected by the electron reflection method. These maps provide substantial coverage of the latitude band from 30 N southward to 30 S with a resolution of about 40 km and a sensitivity of about 0.2 gamma at the lunar surface. Regions of remanent magnetization are observed ranging in size from the resolution limit of 1.25 deg to above approximately 60 deg. The largest contiguous region fills the Big Backside Basin where it is intersected by the spacecraft orbital tracks. Preliminary analyses of the maps show that the source regions of lunar limb compressions correspond to regions of strong surface magnetism, and that there does not appear to be sharply discontinuous magnetization at the edges of maria. We also analyze the electron reflection observations to obtain information on the direction and distribution of magnetization in the Van de Graaff anomaly region.
NASA Technical Reports Server (NTRS)
Hanson, Bradford C.; Dellwig, Louis F.
1988-01-01
In a study concerning the value of using radar imagery from systems with diverse parameters, X-band images of the Northern Louisiana Salt dome area generated by the airborne Goodyear electronic mapping system (GEMS) are analyzed in conjunction with imagery generated by the satelliteborne Seasat/SAR. The GEMS operated with an incidence angle of 75 to 85 deg and a resolution of 12 m, whereas the Seasat/SAR operated with an incidence angle of 23 deg and a resolution of 25 m. It is found that otherwise unattainable data on land management activities, improved delineation of the drainage net, better definition of surface roughness in cleared areas, and swamp identification, became accessible when adjustments for the time lapse between the two missions were made and supporting ground data concerning the physical and vegetative characteristics of the terrain were acquired.
NASA Technical Reports Server (NTRS)
Vonderhaar, Thomas H.; Randel, David L.; Reinke, Donald L.; Stephens, Graeme L.; Ringerud, Mark A.; Combs, Cynthia L.; Greenwald, Thomas J.; Wittmeyer, Ian L.
1994-01-01
In recent years climate research scientists have recognized the need for increased time and space resolution precipitable and liquid water data sets. This project is designed to meet those needs. Specifically, NASA is funding STC-METSAT to develop a total integrated column and layered precipitable water data set. This is complemented by a total column liquid water data set. These data are global in extent, 1 deg x 1 deg in resolution, with daily grids produced. Precipitable water is measured by a combination of in situ radiosonde observations and satellite derived infrared and microwave retrievals from four satellites. This project combines these data into a coherent merged product for use in global climate research. This report is the Year 2 Annual Report from this NASA-sponsored project and includes progress-to-date on the assigned tasks.
The OMPS Limb Profiler instrument
NASA Astrophysics Data System (ADS)
Rault, D. F.; Xu, P.
2011-12-01
The Ozone Mapping and Profiler Suite (OMPS) will continue the monitoring of the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. OMPS is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in October 2011. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance, from which ozone profile will be retrieved from the upper tropopause uo to 60km. End-to-end studies of the sensor and retrieval algorithm indicate the following expected performance for ozone: accuracy of 5% or better from the tropopause up to 50 km, precision of about 3-5% from 18 to 50 km, and vertical resolution of 1.5-2 km with vertical sampling of 1 km and along-track horizontal sampling of 1 deg latitude. The paper will describe the mission, discuss the retrieval algorithm, and summarize the expected performance. If available, the paper will also present early on-orbit data.
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
INCREASING EVIDENCE FOR HEMISPHERICAL POWER ASYMMETRY IN THE FIVE-YEAR WMAP DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoftuft, J.; Eriksen, H. K.; Hansen, F. K.
Motivated by the recent results of Hansen et al. concerning a noticeable hemispherical power asymmetry in the Wilkinson Microwave Anisotropy Probe (WMAP) data on small angular scales, we revisit the dipole-modulated signal model introduced by Gordon et al.. This model assumes that the true cosmic microwave background signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p-hat. Previous analyses of this model have been restricted to very low resolution (i.e., 3.{sup 0}6 pixels, a smoothing scale of 9 deg. FWHM, and l {approx}< 40)more » due to computational cost. In this paper, we double the angular resolution (i.e., 1.{sup 0}8 pixels and 4.{sup 0}5 FWHM smoothing scale), and compute the full corresponding posterior distribution for the five-year WMAP data. The results from our analysis are the following: the best-fit modulation amplitude for l {<=} 64 and the ILC data with the WMAP KQ85 sky cut is A = 0.072 {+-} 0.022, nonzero at 3.3{sigma}, and the preferred direction points toward Galactic coordinates (l, b) = (224 deg., - 22 deg.) {+-} 24 deg. The corresponding results for l {approx}< 40 from earlier analyses were A = 0.11 {+-} 0.04 and (l, b) = (225 deg. - 27 deg.). The statistical significance of a nonzero amplitude thus increases from 2.8{sigma} to 3.3{sigma} when increasing l{sub max} from 40 to 64, and all results are consistent to within 1{sigma}. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from {delta}ln E = 1.8 to {delta}ln E = 2.6, ranking as 'strong evidence' on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from {delta}ln L = 6.1 to {delta}ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the five-year WMAP data set, in agreement with the reports of Hansen et al.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atac, Hamza
The Coulomb Sum is defined by the quasi-elastic nucleon knock-out process and it is the integration of the longitudinal response function over the energy loss of the incident electron. The Coulomb sum goes to the total charge at large q. The existing measurements of the Coulomb Sum Rule show disagreement with the theoretical calculations for the medium and heavy nuclei. To find the reason behind the disagreement might answer the question of whether the properties of the nucleons are affected by the nuclear medium or not. In order to determine the Coulomb Sum in nuclei, a precision measurement of inclusivemore » electron scattering in the quasi-elastic region was performed at the Thomas Jefferson National Accelerator Facility. Incident electrons with energies ranging from 0.4 GeV to 4 GeV scattered off 4He,12C,56Fe and 208Pb nuclei at four scattering angles (15 deg.; 60 deg.; 90 deg.; 120 deg.) and scattered energies ranging from 0.1 GeV to 4 GeV. The Born cross sections were extracted for the Left High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer 56Fe data. The Rosenbluth separation was performed to extract the transverse and longitudinal response functions at 650 MeV three-momentum transfer. The preliminary results of the longitudinal and transverse functions were extracted for 56Fe target at 650 MeV three-momentum transfer.« less
Venusian tectonics: Convective coupling to the lithosphere?
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1987-01-01
The relationship between the dominant global heat loss mechanism and planetary size has motivated the search for tectonic style on Venus. Prior to the American and Soviet mapping missions of the past eight years, it was thought that terrestrial style plate tectonics was operative on Venus because this planet is approximately the size of the Earth and is conjectured to have about the same heat source content per unit mass. However, surface topography mapped by the altimeter of the Pioneer Venus spacecraft did not show any physiographic expression of terrestrial style spreading ridges, trenches, volcanic arcs or transform faults, although the horizontal resolution was questionable for detection of at least some of these features. The Venera 15 and 16 radar missions mapped the northern latitudes of Venus at 1 to 2 km resolution and showed that there are significant geographic areas of deformation seemingly created by large horizontal stresses. These same high resolution images show no evidence for plate tectonic features. Thus a fundamental problem for venusian tectonics is the origin of large horizontal stresses near the surface in the apparent absence of plate tectonics.
Impact of Resolution on the Representation of Precipitation Variability Associated With the ITCZ
NASA Astrophysics Data System (ADS)
De Benedetti, Marc; Moore, G. W. K.
2017-12-01
The Intertropical Convergence Zone (ITCZ) is responsible for most of the weather and climate in equatorial regions along with many tropical-midlatitude interactions. It is therefore important to understand how models represent its structure and variability. Most ITCZ-associated precipitation is convective, making it unclear how horizontal resolution impacts its representation. To assess this, we introduce a novel technique that involves calculation of the precipitation field's decorrelation length scale (DCLS) using model data sets that share a common lineage with horizontal resolutions from 16 to 160 km. All resolutions captured the ITCZ's mean structure; however, imprints of topography, such as Hawaii and sea surface temperature, including the variability associated with upwelling cold water off the coast of South America, are more clearly represented at higher resolutions. The DCLS analysis indicates that there are changes in the spatial variability of the ITCZ's precipitation that are not reflected in its mean structure, thus confirming its utility as a diagnostic.
Recommended aquifer grid resolution for E-Area PA revision transport simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.
This memorandum addresses portions of Section 3.5.2 of SRNL (2016) by recommending horizontal and vertical grid resolution for aquifer transport, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision.
Relationship between large horizontal electric fields and auroral arc elements
NASA Astrophysics Data System (ADS)
Lanchester, B. S.; Kailá, K.; McCrea, I. W.
1996-03-01
High time resolution optical measurements in the magnetic zenith are compared with European Incoherent Scatter (EISCAT) field-aligned measurements of electron density at 0.2-s resolution and with horizontal electric field measurements made at 278 km with resolution of 9 s. In one event, 20 min after a spectacular auroral breakup, a system of narrow and active arc elements moved southward into the magnetic zenith, where it remained for several minutes. During a 30-s interval of activity in a narrow arc element very close to the radar beam, the electric field vectors at 3-s resolution were found to be extremely large (up to 400 mVm-1) and to point toward the bright optical features in the arc, which moved along its length. It is proposed that the large electric fields are short-lived and are directly associated with the particle precipitation that causes the bright features in auroral arc elements.
Design for and efficient dynamic climate model with realistic geography
NASA Technical Reports Server (NTRS)
Suarez, M. J.; Abeles, J.
1984-01-01
The long term climate sensitivity which include realistic atmospheric dynamics are severely restricted by the expense of integrating atmospheric general circulation models are discussed. Taking as an example models used at GSFC for this dynamic model is an alternative which is of much lower horizontal or vertical resolution. The model of Heid and Suarez uses only two levels in the vertical and, although it has conventional grid resolution in the meridional direction, horizontal resolution is reduced by keeping only a few degrees of freedom in the zonal wavenumber spectrum. Without zonally asymmetric forcing this model simulates a day in roughly 1/2 second on a CRAY. The model under discussion is a fully finite differenced, zonally asymmetric version of the Heid-Suarez model. It is anticipated that speeds can be obtained a few seconds a day roughly 50 times faster than moderate resolution, multilayer GCM's.
Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Hall, Dorthy K.; Comiso, Josefino C.; Shuman, Christopher A.; DiGirolamo, Nicolo E.; Stock, Larry V.
2010-01-01
Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated.
Flight investigation of the effect of tail boom strakes on helicopter directional control
NASA Technical Reports Server (NTRS)
Kelly, Henry L.; Crowell, Cynthia A.; Yenni, Kenneth R.; Lance, Michael B.
1993-01-01
A joint U.S. Army/NASA flight investigation was conducted utilizing a single-rotor helicopter to determine the effectiveness of horizontally mounted tail boom strakes on directional controllability and tail rotor power during low-speed, crosswind operating conditions. Three configurations were investigated: (1) baseline (strakes off), (2) single strake (strake at upper shoulder on port side of boom), and (3) double strake (upper strake plus a lower strake on same side of boom). The strakes were employed as a means to separate airflow over the tail boom and change fuselage yawing moments in a direction to improve the yaw control margin and reduce tail rotor power. Crosswind data were obtained in 5-knot increments of airspeed from 0 to 35 knots and in 30 deg increments of wind azimuth from 0 deg to 330 deg. At the most critical wind azimuth and airspeed in terms of tail rotor power, the strakes improved the pedal margin by 6 percent of total travel and reduced tail rotor power required by 17 percent. The increase in yaw control and reduction in tail rotor power offered by the strakes can expand the helicopter operating envelope in terms of gross weight and altitude capability. The strakes did not affect the flying qualities of the vehicle at airspeeds between 35 and 100 knots.
Tadano, Shigeru; Takeda, Ryo; Miyagawa, Hiroaki
2013-01-01
This paper proposes a method for three dimensional gait analysis using wearable sensors and quaternion calculations. Seven sensor units consisting of a tri-axial acceleration and gyro sensors, were fixed to the lower limbs. The acceleration and angular velocity data of each sensor unit were measured during level walking. The initial orientations of the sensor units were estimated using acceleration data during upright standing position and the angular displacements were estimated afterwards using angular velocity data during gait. Here, an algorithm based on quaternion calculation was implemented for orientation estimation of the sensor units. The orientations of the sensor units were converted to the orientations of the body segments by a rotation matrix obtained from a calibration trial. Body segment orientations were then used for constructing a three dimensional wire frame animation of the volunteers during the gait. Gait analysis was conducted on five volunteers, and results were compared with those from a camera-based motion analysis system. Comparisons were made for the joint trajectory in the horizontal and sagittal plane. The average RMSE and correlation coefficient (CC) were 10.14 deg and 0.98, 7.88 deg and 0.97, 9.75 deg and 0.78 for the hip, knee and ankle flexion angles, respectively. PMID:23877128
Concentric crater fill on Mars - An aeolian alternative to ice-rich mass wasting
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.; Clifford, S. M.; Williams, S. H.
1989-01-01
Concentric crater fill, a distinctive martian landform represented by a concentric pattern of surface undulations confined within a crater rim, has been interpreted as an example of ice-enhanced regolith creep at midlatitudes (e.g., Squyres and Carr, 1986). Theoretical constraints on the stability and mobility of ground ice limit the applicability of an ice-rich soil in effectively mobilizing downslope movement at latitudes poleward of + or - 30 deg, where concentric crater fill is observed. High-resolution images of concentric crater fill material in the Utopia Planitia region (45 deg N, 271 deg W) show it to be an eroded, multiple-layer deposit. Layering should not be preserved if the crater fill material moved by slow deformation throughout its thickness, as envisioned in the ice-enhanced creep model. Multiple layers are also exposed in the plains material surrounding the craters, indicating a recurrent depositional process that was at least regional in extent. Mantling layers are observed in high-resolution images of many other locations around Mars, suggesting that deposition occurred on a global scale and was not limited to the Utopia Planitia region. It is suggested that an aeolian interpretation for the origin and modification of concentric crater fill material is most consistent with morphologic and theoretical constraints.
Improving Forecast Skill by Assimilation of AIRS Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste
2010-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best on the average from the perspective of improving Global 7 day forecast skill.
Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon
Campbell, Patrick; Zhang, Yang; Wang, Kai; ...
2017-09-08
The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32°N and 42°N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. In conclusion, results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less
NASA Astrophysics Data System (ADS)
Harlaß, Jan; Latif, Mojib; Park, Wonsun
2018-04-01
We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.
An Overview of Numerical Weather Prediction on Various Scales
NASA Astrophysics Data System (ADS)
Bao, J.-W.
2009-04-01
The increasing public need for detailed weather forecasts, along with the advances in computer technology, has motivated many research institutes and national weather forecasting centers to develop and run global as well as regional numerical weather prediction (NWP) models at high resolutions (i.e., with horizontal resolutions of ~10 km or higher for global models and 1 km or higher for regional models, and with ~60 vertical levels or higher). The need for running NWP models at high horizontal and vertical resolutions requires the implementation of non-hydrostatic dynamic core with a choice of horizontal grid configurations and vertical coordinates that are appropriate for high resolutions. Development of advanced numerics will also be needed for high resolution global and regional models, in particular, when the models are applied to transport problems and air quality applications. In addition to the challenges in numerics, the NWP community is also facing the challenges of developing physics parameterizations that are well suited for high-resolution NWP models. For example, when NWP models are run at resolutions of ~5 km or higher, the use of much more detailed microphysics parameterizations than those currently used in NWP model will become important. Another example is that regional NWP models at ~1 km or higher only partially resolve convective energy containing eddies in the lower troposphere. Parameterizations to account for the subgrid diffusion associated with unresolved turbulence still need to be developed. Further, physically sound parameterizations for air-sea interaction will be a critical component for tropical NWP models, particularly for hurricane predictions models. In this review presentation, the above issues will be elaborated on and the approaches to address them will be discussed.
Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Patrick; Zhang, Yang; Wang, Kai
The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32N and 42N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. Results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less
Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Patrick; Zhang, Yang; Wang, Kai
The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32°N and 42°N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. In conclusion, results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less
Fabrication and characterization of tapered graphite/epoxy box beams
NASA Astrophysics Data System (ADS)
Yen, S.-C.; Gopal, P.; Dharani, L. R.
1993-04-01
Graphite/epoxy (T300/934) prepreg is used to fabricate tapered box beams with a taper angle of 2 deg between the top and bottom walls. The prepreg is cured on a segmented steel core using a hot-press. A screw arrangement is used to apply curing pressure in the horizontal direction, while the platens of the hot-press apply pressure in the vertical direction. The inplane bending stiffness of the beam is determined by 3-point bend test and is found to be in agreement with theory.
Visual response time to colored stimuli in peripheral retina - Evidence for binocular summation
NASA Technical Reports Server (NTRS)
Haines, R. F.
1977-01-01
Simple onset response time (RT) experiments, previously shown to exhibit binocular summation effects for white stimuli along the horizontal meridian, were performed for red and green stimuli along 5 oblique meridians. Binocular RT was significantly shorter than monocular RT for a 45-min-diameter spot of red, green, or white light within eccentricities of about 50 deg from the fovea. Relatively large meridian differences were noted that appear to be due to the degree to which the images fall on corresponding retinal areas.
NASA Astrophysics Data System (ADS)
Kuik, Friderike; Lauer, Axel; Churkina, Galina; Denier van der Gon, Hugo A. C.; Fenner, Daniel; Mar, Kathleen A.; Butler, Tim M.
2016-12-01
Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin-Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin-Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15, 3 and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km × 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2 m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run with the settings described above. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily 8 h mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols. NOx (NO + NO2) concentrations are simulated reasonably well on average, but nighttime concentrations are overestimated due to the model's underestimation of the mixing layer height, and urban daytime concentrations are underestimated. The daytime underestimation is improved when using downscaled, and thus locally higher emissions, suggesting that part of this bias is due to deficiencies in the emission input data and their resolution. The results further demonstrate that a horizontal resolution of 3 km improves the results and spatial representativeness of the model compared to a horizontal resolution of 15 km. With the input data (land use classes, emissions) at the level of detail of the base run of this study, we find that a horizontal resolution of 1 km does not improve the results compared to a resolution of 3 km. However, our results suggest that a 1 km horizontal model resolution could enable a detailed simulation of local pollution patterns in the Berlin-Brandenburg region if the urban land use classes, together with the respective input parameters to the urban canopy model, are specified with a higher level of detail and if urban emissions of higher spatial resolution are used.
NASA Astrophysics Data System (ADS)
Di Filippo, Michele; Di Nezza, Maria
2016-04-01
Several factors were taken into consideration in order to appropriately tailor the geophysical explorations at the cultural heritage. Given the fact that each site has been neglected for a long time and in recent times used as an illegal dumping area, we thoroughly evaluated for this investigation the advantages and limitations of each specific technique, and the general conditions and history of the site. We took into account the extension of the areas to be investigated and the need for rapid data acquisition and processing. Furthermore, the survey required instrumentation with sensitivity to small background contrasts and as little as possible affected by background noise sources. In order to ascertain the existence and location of underground buried walls, a magnetic gradiometer survey (MAG) was planned. The map of the magnetic anomalies is not computed to reduction at the pole (RTP), but with a magnetic horizontal gradient operator (MHGO). The magnetic horizontal gradient operator (MHGO) generates from a grid of vertical gradient a grid of steepest slopes (i.e. the magnitude of the gradient) at any point on the surface. The MHGO is reported as a number (rise over run) rather than degrees, and the direction is opposite to that of the slope. The MHGO is zero for a horizontal surface, and approaches infinity as the slope approaches the vertical. The gradient data are especially useful for detecting objects buried at shallow depth. The map reveals some details of the anomalies of the geomagnetic field. Magnetic anomalies due to walls are more evident than in the total intensity map, whereas anomalies due to concentrations of debris are very weak. In this work we describe the results of an investigation obtained with magnetometry investigation for two archaeological sites: "Villa degli Antonini" (Genzano, Rome) and Rota Ria (Mugnano in Teverina, Viterbo). Since the main goal of the investigation was to understand the nature of magnetic anomalies with cost-effective method, we have also detection and location of underground buried structures using different instruments and techniques geophysical were carried out (EMI, GPR and microgravity) and so far excavated only in a targeted sector of the area of the anomaly labeled in order to test the validity of the geophysical survey.
NASA Technical Reports Server (NTRS)
Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis
2017-01-01
Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.
Development of the WTS-4 wind turbine design
NASA Astrophysics Data System (ADS)
Hasbrouck, T. M.; Divalentin, E.
Design features, developmental aspects, and financial projections for the WTS-4 4 MW wind turbine are presented. The WTS-4 is a horizontal axis, downwind, two-bladed, variable pitch machine. Start-up is at 7 m/s, rated power is reached at 15 m/s, and shut-down is set at 27 m/s, with all controls operating in a stand-alone mode by means of microprocessors. Each blade is 125 ft long, constructed of filament wound fiberglass reinforced epoxy, and attached at the root to a teetered steel alloy hub, which compensates for the shear caused by the tower shadow. Pitch is controlled by an electrohydraulic mechanism, and can be effected at a rate of 5 deg/s. Details of the nacelle components and costruction are provided, together with features of the system controller and design trade-offs. Cost comparisons with utility scale coal and oil baseload generation plants indicate that wind turbines will become cost competitive by 1985 and are favored thereafter.
Mesoscale air-sea interactions related to tropical and extratropical storms in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Lewis, James K.; Hsu, S. A.
1992-01-01
Observations of the lower atmosphere of the northwestern Gulf of Mexico from November 1982 to mid-February 1983 were studied in which seven significant cyclones were generated in the northwestern gulf. It was found that all seven storms occurred when the vorticity correlate of the horizontal air temperature difference was about 3-5 C above the climatological mean difference. It is shown that a maximum in the frequency of tropical storms within the Gulf of Mexico exists some 275 km south of the Mississippi delta at 27 deg N, 90 deg W. This maximum is a result of only those storms which originate within the gulf. Two plausible effects of the Loop Current and its rings on tropical storms are discussed. One is that these ocean features are large and consolidated heat and moisture sources from which a nearby slowly moving atmospheric disturbance can extract energy. The second is that of the cyclonic vorticity that can be generated in the lower atmosphere by such oceanographic features.
GHOST balloons around Antarctica
NASA Technical Reports Server (NTRS)
Stearns, Charles R.
1988-01-01
The GHOST balloon position as a function of time data shows that the atmospheric circulation around the Antarctic Continent at the 100 mb and 200 mb levels is complex. The GHOST balloons supposedly follow the horizontal trajectory of the air at the balloon level. The position of GHOST balloon 98Q for a three month period in 1968 is shown. The balloon moved to within 2 deg of the South Pole on 1 October 1968 and then by 9 December 1968 was 35 deg from the South Pole and close to its position on 1 September 1968. The balloon generally moved from west to east but on two occasions moved in the opposite direction for a few days. The latitude of GHOST balloons 98Q and 149Z which was at 200 mb is given. Both balloons tended to get closer to the South Pole in September and October. Other GHOST balloons at the same pressure and time period may not indicate similar behavior.
Nuclear reactor power for a space-based radar. SP-100 project
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin
1986-01-01
A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.
High-resolution dust modelling over complex terrains in West Asia
NASA Astrophysics Data System (ADS)
Basart, S.; Vendrell, L.; Baldasano, J. M.
2016-12-01
The present work demonstrates the impact of model resolution in dust propagation in a complex terrain region such as West Asia. For this purpose, two simulations using the NMMB/BSC-Dust model are performed and analysed, one with a high horizontal resolution (at 0.03° × 0.03°) and one with a lower horizontal resolution (at 0.33° × 0.33°). Both model experiments cover two intense dust storms that occurred on 17-20 March 2012 as a consequence of strong northwesterly Shamal winds that spanned over thousands of kilometres in West Asia. The comparison with ground-based (surface weather stations and sunphotometers) and satellite aerosol observations (Aqua/MODIS and MSG/SEVIRI) shows that despite differences in the magnitude of the simulated dust concentrations, the model is able to reproduce these two dust outbreaks. Differences between both simulations on the dust spread rise on regional dust transport areas in south-western Saudi Arabia, Yemen and Oman. The complex orography in south-western Saudi Arabia, Yemen and Oman (with peaks higher than 3000 m) has an impact on the transported dust concentration fields over mountain regions. Differences between both model configurations are mainly associated to the channelization of the dust flow through valleys and the differences in the modelled altitude of the mountains that alters the meteorology and blocks the dust fronts limiting the dust transport. These results demonstrate how the dust prediction in the vicinity of complex terrains improves using high-horizontal resolution simulations.
Analysis of Fault Lengths Across Valles Marineris, Mars
NASA Astrophysics Data System (ADS)
Fori, A. N.; Schultz, R. A.
1996-03-01
Summary. As part of a larger project to determine the history of stress and strain across Valles Marineris, Mars, graben lengths located within the Valley are measured using a two-dimensional window-sampling method to investigate depth of faulting and accuracy of measurement. The resulting degree of uncertainty in measuring lengths (+19 km - 80% accuracy) is independent of the resolution at which the faults are measured, so data sets and resultant statistical analysis from different scales or map areas can be compared. The cumulative length frequency plots show that the geometry of Valley faults display no evidence of a frictional stability transition at depth in the lithosphere if mechanical interaction between individual faults (an unphysical situation) is not considered. If strongly interacting faults are linked and the composite lengths used to re-create the cumulative lengths plots, a significant change in slope is apparent suggesting the existence of a transition at about 35-65 km below the surface (assuming faults are dipping from 50deg to 70deg This suggests the thermal gradient to the associated 300-400degC isotherm is 53C/km to 12degC/km.
23 Years of Cloud Statistics Using HIRS Over Australia
NASA Astrophysics Data System (ADS)
Chedzey, H. C.; Menzel, W. P.; Lynch, M. J.; McGann, B. T.
2004-05-01
Clouds are an integral factor in the Earth's water and radiation budgets. Observations and improvements to the accuracy of measurements of cloud properties are crucial in supporting global climate change studies. Regional studies are also of interest and analysis of regional climate variability provides an insight into local weather systems. HIRS is the High-Resolution Infrared Radiation Sounder aboard polar orbiting satellites operated by NOAA (National Oceanographic and Atmospheric Administration). An archive of HIRS data obtained between 1979 (NOAA-5) through to 2001 (NOAA-16) was made available by CIMSS (Cooperative Institute for Meteorological Satellite Studies) at the University of Wisconsin-Madison. The data is obtained from near nadir and frequencies of observations are converted into percentages based on total number of observations for each 1 by 1 degree cell. An assessment of cloud frequency percentages for a region including areas of the Indian Ocean and Australia (0\\deg - 60\\deg S; 80\\deg E - 170\\deg E) will be presented. Climate variability and possible associations with future work to be conducted into cloud frequency and rainfall of North West Cloud Bands using MODIS data will also be covered.
Color-binding errors during rivalrous suppression of form.
Hong, Sang Wook; Shevell, Steven K
2009-09-01
How does a physical stimulus determine a conscious percept? Binocular rivalry provides useful insights into this question because constant physical stimulation during rivalry causes different visual experiences. For example, presentation of vertical stripes to one eye and horizontal stripes to the other eye results in a percept that alternates between horizontal and vertical stripes. Presentation of a different color to each eye (color rivalry) produces alternating percepts of the two colors or, in some cases, a color mixture. The experiments reported here reveal a novel and instructive resolution of rivalry for stimuli that differ in both form and color: perceptual alternation between the rivalrous forms (e.g., horizontal or vertical stripes), with both eyes' colors seen simultaneously in separate parts of the currently perceived form. Thus, the colors presented to the two eyes (a) maintain their distinct neural representations despite resolution of form rivalry and (b) can bind separately to distinct parts of the perceived form.
Hover Acoustic Characteristics of the XV-15 with Advanced Technology Blades
NASA Technical Reports Server (NTRS)
Conner, David A.; Wellman, J. Brent
1993-01-01
An experiment has been performed to investigate the far-field hover acoustic characteristics of the XV-15 aircraft with advanced technology blades (ATB). An extensive, high-quality, far-field acoustics data base was obtained for a rotor tip speed range of 645-771 ft/s. A 12-microphone, 500-ft radius semicircular array combined with two aircraft headings provided acoustic data over the full 360-deg azimuth about the aircraft with a resolution of 15 deg. Altitude variations provided data from near in-plane to 45 deg below the rotor tip path plane. Acoustic directivity characteristics in the lower hemisphere are explored through pressure time histories, narrow-band spectra, and contour plots. Directivity patterns were found to vary greatly with azimuth angle, especially in the forward quadrants. Sharp positive pressure pulses typical of blade-vortex interactions were found to propagate aft of the aircraft and were most intense at 45 deg below the rotor plane. Modest overall sound pressure levels were measured near in-plane indicating that thickness noise is not a major problem for this aircraft when operating in the hover mode with ATB. Rotor tip speed reductions reduced the average overall sound pressure level (dB (0.0002 dyne/cm(exp 2)) by nearly 8 dB in-plane, and 12.6 deg below the rotor plane.
Smagorinsky-type diffusion in a high-resolution GCM
NASA Astrophysics Data System (ADS)
Schaefer-Rolffs, Urs; Becker, Erich
2013-04-01
The parametrization of the (horizontal) momentum diffusion is a paramount component of a Global Circulation Model (GCM). Aside from friction in the boundary layer, a relevant fraction of kinetic energy is dissipated in the free atmosphere, and it is known that a linear harmonic turbulence model is not sufficient to obtain a reasonable simulation of the kinetic energy spectrum. Therefore, often empirical hyper-diffusion schemes are employed, regardless of disadvantages like the violation of energy conservation and the second law of thermodynamics. At IAP we have developed an improved parametrization of the horizontal diffusion that is based on Smagorinsky's nonlinear and energy conservation formulation. This approach is extended by the dynamic Smagorinsky model (DSM) of M. Germano. In this new scheme, the mixing length is no longer a prescribed parameter but calculated dynamically from the resolved flow such as to preserve scale invariance for the horizontal energy cascade. The so-called Germano identity is solved by a tensor norm ansatz which yields a positive definite frictional heating. We present results from an investigation using the DSM as a parametrization of horizontal diffusion in a high-resolution version of the Kühlungborn Mechanistic general Circulation Model (KMCM) with spectral truncation at horizontal wavenumber 330. The DSM calculates the Smagorinsky parameter cS independent from the resolution scale. We find that this method yields an energy spectrum that exhibits a pronounced transition from a synoptic -3 to a mesoscale -5-3 slope at wavenumbers around 50. At the highest wavenumber end, a behaviour similar to that often obtained by tuning the hyper-diffusion is achieved self-consistently. This result is very sensitive to the explicit choice of the test filter in the DSM.
NASA Astrophysics Data System (ADS)
Fauchez, T.; Platnick, S. E.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F.
2017-12-01
Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels.
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Technical Reports Server (NTRS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-01-01
Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
3D reconstruction of the final PHILAE landing site: Abydos
NASA Astrophysics Data System (ADS)
Capanna, Claire; Jorda, Laurent; Lamy, Philippe; Gesquière, Gilles; Delmas, Cédric; Durand, Joëlle; Gaudon, Philippe; Jurado, Eric
2015-11-01
The Abydos region is the region of the final landing site of the PHILAE lander. The landing site has been potentially identified on images of this region acquired by the OSIRIS imaging system aboard the orbiter before (Oct 22, 2014) and after (Dec 6-13, 2014) the landing of PHILAE (Lamy et al., in prep.). Assuming that this identification is correct, we reconstructed the topography of Abydos in 3D using a method called ``multiresolution photoclinometry by deformation'' (MPCD, Capanna et al., The Visual Computer, 29(6-8): 825-835, 2013). The method works in two steps: (a) a DTM of this region is extracted from the global MPCD shape model, (b) the resulting triangular mesh is progressively deformed at increasing spatial resolution in order to match a set of 14 images of Abydos at pixel resolutions between 1 and 8 m. The method used to perform the image matching is the L-BFGS-b non-linear optimization (Morales et al., ACM Trans. Math. Softw., 38(1): 1-4, 2011).In spite of the very unfavourable illumination conditions, we achieve a vertical accuracy of about 3 m, while the horizontal sampling is 0.5 m. The accuracy is limited by high incidence angles on the images (about 60 deg on average) combined with a complex topography including numerous cliffs and a few overhangs. We also check the compatibility of the local DTM with the images obtained by the CIVA-P instrument aboard PHILAE. If the Lamy et al. identification is correct, our DTM shows that PHILAE landed in a cavity at the bottom of a small cliff of 8 m height.
NASA Technical Reports Server (NTRS)
Bennett, C. L.; Kogut, A.; Hinshaw, G.; Banday, A. J.; Wright, E. L.; Gorski, K. M.; Wilkinson, D. T.; Weiss, R.; Smoot, G. F.; Meyer, S. S.
1994-01-01
The first two years of Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (delta-T)(sub rms) (7 deg) = 44 +/- 7 micro-K and (delta-T)(sub rms) (10 deg) = 30.5 +/- 2.7 micro-K at 7 deg and 10 deg angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)(sup 1/2) = 36 +/- 5 micro-K (68% CL) for the unsmoothed (7 deg resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to R(exp n). The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.01, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31+/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 14.3(sup + 5.2 sub -3.3) micro-K (12.8(sup + 5.2 sub -3.3) micro-K0 with a spectral index n = 1.42(sup + 0.49 sub -0.55)(n = 1.53(sup + 0.49 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.2 +/- 11.5 micro-K (17.4 +/- 1.5 micro-K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 17.4(sup + 7.5 sub -5.2) micro-K (15.8(sup + 7.5 sub -5.2) micro-K) with a spectral index n = 1.11(sup + 0.60 sub -0.55) (n = 1.22(sup + 0.60 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.6 +/- 1.6 micro-K (18.2 +/- 1.6 micro-K). The marginal likelihood of n is 1.11 +/- 0.40 (1.22 +/- 0.40). Our best estimate of the dipole from the 2 yr DMR data is 3.363 +/- 0.024 mK toward Galactic coordinates (l, b) = (264.4 deg +/- 0.2 deg, 48.1 deg +/- 0.4 deg), and our best estimate of the rms quadrupole amplitude in our sky is 6 +/- 3 micro-K (68% CL).
Implementation of a Single-Stage-To-Orbit (SSTO) model for stability and control analysis
NASA Astrophysics Data System (ADS)
Ingalls, Stephen A.
1995-07-01
Three NASA centers: Marshall Space Flight Center (MSFC), Langley Research Center (LaRC), and Johnson Space Center (JSC) are currently involved in studying a family of single-stage- and two-stage-to-orbit (SSTO/TSTO) vehicles to serve as the next generation space transportation system (STS). A rocketed winged-body is the current focus. The configuration (WB001) is a vertically-launched, horizontally-landing system with circular cross-section. Preliminary aerodynamic data was generated by LaRC and is a combination of wind-tunnel data, empirical methods, and Aerodynamic Preliminary Analysis System-(APAS) generated values. JSC's efforts involve descent trajectory design, stability analysis, and flight control system synthesis. Analysis of WB001's static stability indicates instability in 'tuck' (C(sub mu) less than 0: Mach = 0.30, alpha greater than 3.25 deg; Mach = 0.60, alpha greater than 8.04), an unstable dihedral effects (C(sub l(beta)) greater than 0: Mach = 30,alpha less than 12 deg.; Mach = 0.60, alpha less than 10.00 deg.), and, most significantly, an unstable weathercock stability derivative, C(sub n(beta)), at all angles of attack and subsonic Mach numbers. Longitudinal trim solutions for Mach = 0.30 and 0.60 indicate flight path angle possibilities ranging from around 12 (M = 0.30) to slightly over 20 degrees at Mach = 0.60. Trim angles of attack increase from 6.24 at Mach 0.60 and 10,000 feet to 17.7 deg. at Mach 0.30, sea-level. Lateral trim was attempted for a design cross-wind of 25.0 knots. The current vehicle aerodynamic and geometric characteristics will only yield a lateral trim solution at impractical tip-fin deflections (approximately equal to 43 deg.) and bank angles (21 deg.). A study of the lateral control surfaces, tip-fin controllers for WB001, indicate increased surface area would help address these instabilities, particularly the deficiency in C(sub n(beta)), but obviously at the expense of increased vehicle weight. Growth factors of approximately 7 were determined using a design C(sub n(beta)) of 0.100/radian (approximate subsonic values for the orbiter).
Implementation of a Single-Stage-To-Orbit (SSTO) model for stability and control analysis
NASA Technical Reports Server (NTRS)
Ingalls, Stephen A.
1995-01-01
Three NASA centers: Marshall Space Flight Center (MSFC), Langley Research Center (LaRC), and Johnson Space Center (JSC) are currently involved in studying a family of single-stage- and two-stage-to-orbit (SSTO/TSTO) vehicles to serve as the next generation space transportation system (STS). A rocketed winged-body is the current focus. The configuration (WB001) is a vertically-launched, horizontally-landing system with circular cross-section. Preliminary aerodynamic data was generated by LaRC and is a combination of wind-tunnel data, empirical methods, and Aerodynamic Preliminary Analysis System-(APAS) generated values. JSC's efforts involve descent trajectory design, stability analysis, and flight control system synthesis. Analysis of WB001's static stability indicates instability in 'tuck' (C(sub mu) less than 0: Mach = 0.30, alpha greater than 3.25 deg; Mach = 0.60, alpha greater than 8.04), an unstable dihedral effects (C(sub l(beta)) greater than 0: Mach = 30,alpha less than 12 deg.; Mach = 0.60, alpha less than 10.00 deg.), and, most significantly, an unstable weathercock stability derivative, C(sub n(beta)), at all angles of attack and subsonic Mach numbers. Longitudinal trim solutions for Mach = 0.30 and 0.60 indicate flight path angle possibilities ranging from around 12 (M = 0.30) to slightly over 20 degrees at Mach = 0.60. Trim angles of attack increase from 6.24 at Mach 0.60 and 10,000 feet to 17.7 deg. at Mach 0.30, sea-level. Lateral trim was attempted for a design cross-wind of 25.0 knots. The current vehicle aerodynamic and geometric characteristics will only yield a lateral trim solution at impractical tip-fin deflections (approximately equal to 43 deg.) and bank angles (21 deg.). A study of the lateral control surfaces, tip-fin controllers for WB001, indicate increased surface area would help address these instabilities, particularly the deficiency in C(sub n(beta)), but obviously at the expense of increased vehicle weight. Growth factors of approximately 7 were determined using a design C(sub n(beta)) of 0.100/radian (approximate subsonic values for the orbiter).
Stokes parameters modulator for birefringent filters
NASA Technical Reports Server (NTRS)
Dollfus, A.
1985-01-01
The Solar Birefringent Filter (Filter Polarisiant Solaire Selectif FPSS) of Meudon Observatory is presently located at the focus of a solar refractor with a 28 cm lens directly pointed at the Sun. It produces a diffraction limited image without instrumental polarization and with a spectral resolution of 46,000 in a field of 6 arc min. diameter. The instrument is calibrated for absolute Doppler velocity measurements and is presently used for quantitative imagery of the radial velocity motions in the photosphere. The short period oscillations are recorded. Work of adapting the instrument for the imagery of the solar surface in the Stokes parameters is discussed. The first polarizer of the birefringent filter, with a reference position angle 0 deg, is associated with a fixed quarter wave plate at +45 deg. A rotating quarter wave plate is set at 0 deg and can be turned by incremented steps of exactly +45 deg. Another quarter wave plate also initially set at 0 deg is simultaneously incremented by -45 deg but only on each even step of the first plate. A complete cycle of increments produces images for each of the 6 parameters I + or - Q, I + or - U and I + or - V. These images are then subtracted by pairs to produce a full image in the three Stokes parameters Q, U and V. With proper retardation tolerance and positioning accuracy of the quarter wave plates, the cross talk between the Stokes parameters was calculated and checked to be minimal.
Directional measurement of short ocean waves with stereophotography
NASA Technical Reports Server (NTRS)
Shemdin, Omar H.; Tran, H. Minh; Wu, S. C.
1988-01-01
Stereophotographs of the sea surface, acquired during the Tower Ocean Wave and Radar Dependence experiment are analyzed to yield directional wave height spectra of short surface waves in the 6-80-cm range. The omnidirectional wave height spectra are found to deviate from the k exp -4 distribution, where k is the wave number. The stereo data processing errors are found to be within + or - 5 percent. The omnidirectional spectra yield 514 deg of freedom for 30-cm-long waves. The directional distribution of short waves is processed with a directional resolution of 30 deg, so as to yield 72 deg of freedom for 30-cm-long waves. The directional distributions show peaks that are aligned with the wind and swell directions. It is found that dynamically relevant measurements can be obtained with stereophotography, after removal of the mean surface associated with long waves.
Moonshine Versus Earthshine: Physics Makes a Difference
NASA Technical Reports Server (NTRS)
Wilson, T. L.
2005-01-01
Introduction: Recently released, high-resolution images from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) reveal a myriad of intriguing landforms banked along the northern edge of Terby Crater located on the northern rim of Hellas (approx.28degS, 287degW). Landforms within this crater include north-trending troughs and ridges, a remarkable 2.5 km-thick sequence of exposed layers, mantled ramps that extend across and between layered sequences, fan-like structures, sinuous channels, collapse pits, a massive landslide and viscous flow features. The suite of diverse landforms in Terby and its immediate surroundings attest to a diversity of rock types and geologic processes, making this locality ideal for studying landform-climate relationships on Mars. In order to decipher the complicated geologic history of Terby Crater and the nature of the layered deposits, a generalized geomorphic map was created and the slope of the layered deposits was examined.
The evaluation of partial binocular overlap on car maneuverability: A pilot study
NASA Technical Reports Server (NTRS)
Tsou, Brian H.; Rogers-Adams, Beth M.; Goodyear, Charles D.
1992-01-01
An engineering approach to enlarge the helmet mounted display (HMD) field of view (FOV) and maintain resolution and weight by partially overlapping the binocular FOV has received renewed interest among human factors scientists. It is evident, based on the brief literature review, that any panoramic display with a binocular overlap, less than a minimum amount, annoys the viewer, degrades performance, and elicits undesirable behavior. The major finding is that across the 60 deg conditions, subjects moved their heads a greater distance (by about 5 degs on each side) than in the 180 deg condition, presumably to compensate for the lack of FOV. It is quite clear that the study, based on simple car maneuverability and two subjects, reveals differences in FOV, but nothing significant between binocular overlap levels and configurations. This tentatively indicates that some tradeoffs of binocular vision for a larger overall display FOV are acceptable.
4-aminopyridine restores vertical and horizontal neural integrator function in downbeat nystagmus.
Kalla, Roger; Glasauer, Stefan; Büttner, Ulrich; Brandt, Thomas; Strupp, Michael
2007-09-01
Downbeat nystagmus (DBN), the most common form of acquired fixation nystagmus, is often caused by cerebellar degeneration, especially if the vestibulo-cerebellum is involved. The upward ocular drift in DBN has a spontaneous and a vertical gaze-evoked component. Since cerebellar involvement is suspected to be the underlying pathomechanism of DBN, we tested in 15 patients with DBN whether the application of the potassium-channel blocker 4-aminopyridine (4-AP), which increases the excitability of cerebellar Purkinje cells as shown in animal experiments, reduces the vertical ocular drift leading to nystagmus. Fifteen age-matched healthy subjects served as the control group. 4-AP may affect spontaneous drift or gaze-evoked drift by either enhancing visual fixation ability or restoring vision-independent gaze holding. We therefore recorded 3D slow-phase eye movements using search coils during attempted fixation in nine different eye positions and with or without a continuously visible target before and 45 min after ingestion of 10mg 4-AP. Since the effect of 4-AP may depend on the associated etiology, we divided our patients into three groups (cerebellar atrophy, n = 4; idiopathic DBN, n = 5; other etiology, n = 6). 4-AP decreased DBN during gaze straight ahead in 12 of 15 patients. Statistical analysis showed that improvement occurred predominantly in patients with cerebellar atrophy, in whom the drift was reduced from -4.99 +/- 1.07 deg/s (mean +/- SE) before treatment to -0.60 +/- 0.82 deg/s afterwards. Regression analysis of slow-phase velocity (SPV) in different eye positions revealed that vertical and horizontal gaze-evoked drift was significantly reduced independently of the patient group and caused perfect gaze holding on the average. Since the observed improvements were independent of target visibility, 4-AP improved fixation by restoring gaze-holding ability. All in all, the present study demonstrates that 4-AP has a differential effect on DBN: drift with gaze straight ahead was predominantly reduced in patients with cerebellar atrophy, but less so in the remaining patients; 4-AP on the average improved neural integrator function, i.e. gaze-evoked drift, regardless of etiology. Our results thus show that 4-AP was a successful treatment option in the majority of DBN patients, possibly by increasing Purkinje cell excitability in the cerebellar flocculi. It may work best when DBN is associated with cerebellar atrophy. Furthermore, 4-AP may be a promising treatment option for patients with a dominant gaze-evoked component of nystagmus, regardless of its etiology.
Yamada, T; Suzuki, D A; Yee, R D
1996-11-01
1. Smooth pursuitlike eye movements were evoked with low current microstimulation delivered to rostral portions of the nucleus reticularis tegmenti pontis (rNRTP) in alert macaques. Microstimulation sites were selected by the observation of modulations in single-cell firing rates that were correlated with periodic smoothpursuit eye movements. Current intensities ranged from 10 to 120 microA and were routinely < 40 microA. Microstimulation was delivered either in the dark with no fixation, 100 ms after a fixation target was extinguished, or during maintained fixation of a stationary or moving target. Evoked eye movements also were studied under open-loop conditions with the target image stabilized on the retina. 2. Eye movements evoked in the absence of a target rapidly accelerated to a constant velocity that was maintained for the duration of the microstimulation. Evoked eye speeds ranged from 3.7 to 23 deg/s and averaged 11 deg/s. Evoked eye speed appeared to be linearly related to initial eye position with a sensitivity to initial eye position that averaged 0.23 deg.s-1.deg-1. While some horizontal and oblique smooth eye movements were elicited, microstimulation resulted in upward eye movements in 89% of the sites. 3. Evoked eye speed was found to be dependent on microstimulation pulse frequency and current intensity. Within limits, evoked eye speed increased with increases in stimulation frequency or current intensity. For stimulation frequencies < 300-400 Hz, only smooth pursuit-like eye movements were evoked. At higher stimulation frequencies, accompanying saccades consistently were elicited. 4. Feedback of retinal image motion interacted with the evoked eye movements to decrease eye speed if the visual motion was in the opposite direction as the evoked, pursuit-like eye movements. 5. The results implicate rNRTP as part of the neuronal substrate that controls smooth-pursuit eye movements. NRTP appears to be divided functionally into a rostral, pursuit-related portion and a caudal, saccade-related area. rNRTP is a component of a corticopontocerebellar circuit that presumably involves the pursuit area of the frontal eye field and that parallels the middle and medial superior temporal cerebral cortical/dorsalateral pontine nucleus (MT/MST-DLPN-cerebellum) pathway known to be involved also with regulating smooth-pursuit eye movements.
Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations
NASA Astrophysics Data System (ADS)
Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan
2018-01-01
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.
NASA Astrophysics Data System (ADS)
Zhang, T.; Stackhouse, P. W., Jr.; Westberg, D. J.
2017-12-01
The NASA Prediction of Worldwide Energy Resource (POWER) Surface meteorology and Solar Energy (SSE) provides solar direct normal irradiance (DNI) data as well as a variety of other solar parameters. The currently available DNIs are monthly means on a quasi-equal-area grid system with grid boxes roughly equivalent to 1 degree longitude by 1 degree latitude around the equator from July 1983 to June 2005, and the data were derived from the GEWEX Surface Radiation Budget (SRB) monthly mean global horizontal irradiance (GHI, Release 3) and regression analysis of the Baseline Surface Radiation Network (BSRN) data. To improve the quality of the DNI data and push the temporal coverage of the data to near present, we have applied a modified version of the DIRINDEX global-to-beam model to the GEWEX SRB (Release 3) all-sky and clear-sky 3-hourly GHI data and derived their DNI counterparts for the period from July 1983 to December 2007. The results have been validated against the BSRN data. To further expand the data in time to near present, we are now applying the DIRINDEX model to the Clouds and the Earth's Radiant Energy System (CERES) data. The CERES SYN1deg (Edition 4A) offers hourly all-sky and clear-sky GHIs on a 1 degree longitude by 1 degree latitude grid system from March 2000 to October 2016 as of this writing. Comparisons of the GHIs with their BSRN counterparts show remarkable agreements. Besides the GHIs, the inputs will also include the atmospheric water vapor and surface pressure from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and the aerosol optical depth from the Max-Planck Institute Climatology (MAC-v1). Based on the performance of the DIRINDEX model with the GEWEX SRB GHI data, we expect at least equally good or even better results. In this paper, we will show the derived hourly, daily, and monthly mean DNIs from the CERES SYN1deg hourly GHIs from March 2000 to October 2016 and how they compare with the BSRN data.
Resolution characteristics of optical coherence tomography for dental use.
Watanabe, Hiroshi; Kuribayashi, Ami; Sumi, Yasunori; Kurabayashi, Tohru
2017-03-01
The purpose of this study was to clarify the resolution characteristics of optical coherence tomography (OCT) for dental use. Two types of swept-source optical coherence tomography machines were employed in this study. To clarify their resolution characteristics, we newly developed a glass chart device with a ladder pattern of wavelengths, which ranged from 4 × 2 μm to 1024 × 2 μm, as well as a star-target pattern, a grid pattern and a spatial frequency response pattern. The resolving powers and characteristics of the OCTs were subjectively evaluated. The Santec OCT-2000 ™ (Santec Co., Komaki, Japan) had a resolving power of 64 μm in both the horizontal X and vertical Y directions, while the OCT from Yoshida had a resolving power of 64 μm in the horizontal X direction and 128 µm in the vertical Y direction. The resolving power of the depth Z direction could not be obtained from this study. With the Yoshida OCT, the star-target pattern seemed to be non-symmetrical, owing to an edge enhancement effect, which was revealed when the ladder patterns were placed in a horizontal direction. This study successfully clarified the resolution characteristics of two types of OCTs. The obtained data may be useful for diagnostic purposes, and the glass chart device used in this study may be useful for OCT quality assurance programmes.
NASA Astrophysics Data System (ADS)
Marson, Avishai; Stern, Adrian
2015-05-01
One of the main limitations of horizontal parallax autostereoscopic displays is the horizontal resolution loss due the need to repartition the pixels of the display panel among the multiple views. Recently we have shown that this problem can be alleviated by applying a color sub-pixel rendering technique1. Interpolated views are generated by down-sampling the panel pixels at sub-pixel level, thus increasing the number of views. The method takes advantage of lower acuity of the human eye to chromatic resolution. Here we supply further support of the technique by analyzing the spectra of the subsampled images.
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation
NASA Astrophysics Data System (ADS)
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-01
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ˜550m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection.
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Reed, K. A.
2018-02-01
A set of idealized experiments are developed using the Community Atmosphere Model (CAM) to understand the vertical velocity response to reductions in forcing scale that is known to occur when the horizontal resolution of the model is increased. The test consists of a set of rising bubble experiments, in which the horizontal radius of the bubble and the model grid spacing are simultaneously reduced. The test is performed with moisture, through incorporating moist physics routines of varying complexity, although convection schemes are not considered. Results confirm that the vertical velocity in CAM is to first-order, proportional to the inverse of the horizontal forcing scale, which is consistent with a scale analysis of the dry equations of motion. In contrast, experiments in which the coupling time step between the moist physics routines and the dynamical core (i.e., the "physics" time step) are relaxed back to more conventional values results in severely damped vertical motion at high resolution, degrading the scaling. A set of aqua-planet simulations using different physics time steps are found to be consistent with the results of the idealized experiments.
NASA Astrophysics Data System (ADS)
Bressan, Lidia; Valentini, Andrea; Paccagnella, Tiziana; Montani, Andrea; Marsigli, Chiara; Stefania Tesini, Maria
2017-04-01
At the Hydro-meteo-climate service of the Regional environmental agency of Emilia-Romagna, Italy (Arpae-SIMC), the oceanographic numerical model AdriaROMS is used in the operational forecasting suite to compute sea level, temperature, salinity and 3-D current fields of the Adriatic Sea (northern Mediterranean Sea). In order to evaluate the performance of the sea-level forecast and to study different configurations of the ROMS model, two marine storms occurred on the Emilia Romagna coast during the winter 2015-2016 are investigated. The main focus of this study is to analyse the sensitivity of the model to the horizontal resolution and to the meteorological forcing. To this end, the model is run with two different configurations and with two horizontal grids at 1 and 2 km resolution. To study the influence of the meteorological forcing, the two storms have been reproduced by running ROMS in ensemble mode, forced by the 16-members of the meteorological ensemble COSMO-LEPS system. Possible optimizations of the model set-up are deduced by the comparison of the different run outputs.
A high resolution soil moisture radiometer
NASA Technical Reports Server (NTRS)
Dod, L. R.
1980-01-01
The design of an L-band high resolution soil moisture radiometer is described. The selected system is a planar slotted waveguide array at L-band frequencies. The square aperture is 74.75 m by 74.75 m subdivided into 8 tilted subarrays. The system has a 290 km circular orbit and provides a spatial resolution of 1 km. The aperture forms 230 simultaneous beams in a cross-track pattern which covers a swath 420 km wide. A revisit time of 6 days is provided for an orbit inclination of 50 deg. The 1 km resolution cell allows an integration time of 1/7 second and sharing this time period sequentially between two orthogonal polarization modes can provide a temperature resolution of 0.7 K.
1st- and 2nd-order motion and texture resolution in central and peripheral vision
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1995-01-01
STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.
The Spartan-281 Far Ultraviolet Imaging Spectrograph
NASA Technical Reports Server (NTRS)
Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.
1988-01-01
The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.
NASA Astrophysics Data System (ADS)
King, Kristien C.
In order to further assess the wind energy potential for Nevada, the accuracy of a computational meteorological model, the Operational Multi-scale Environment model with Grid Adaptivity (OMEGA), was evaluated by comparing simulation results with data collected from a wind monitoring tower near Tonopah, NV. The state of Nevada is characterized by high mountains and low-lying valleys, therefore, in order to determine the wind potential for the state, meteorological models that predict the wind must be able to accurately represent and account for terrain features and simulate topographic forcing with accuracy. Topographic forcing has a dominant role in the development and modification of mesoscale flows in regions of complex terrain, like Tonopah, especially at the level of wind turbine blade heights (~80 m). Additionally, model factors such as horizontal resolution, terrain database resolution, model physics, time of model initialization, stability regime, and source of initial conditions may each affect the ability of a mesoscale model to forecast winds correctly. The observational tower used for comparison was located at Stone Cabin, Nevada. The tower had both sonic anemometers and cup anemometers installed at heights of 40 m, 60 m, and 80 m above the surface. During a previous experiment, tower data were collected for the period February 9 through March 10, 2007 and compared to model simulations using the MM5 and WRF models at a number of varying horizontal resolutions. In this previous research, neither the MM5 nor the WRF showed a significant improvement in ability to forecast wind speed with increasing horizontal grid resolution. The present research evaluated the ability of OMEGA to reproduce point winds as compared to the observational data from the Stone Cabin Tower at heights of 40 m, 60 m, and 80 m. Unlike other mesoscale atmospheric models, OMEGA incorporates an unstructured triangular adaptive grid which allows for increased flexibility and accuracy in characterizing areas of complex terrain. Model sensitivity to horizontal grid resolution, initial conditions, and time of initialization were tested. OMEGA was run over three different horizontal grid resolutions with minimum horizontal edge lengths of: 18 km, 6 km, and 2 km. For each resolution, the model was initialized using both the Global Forecasting System (GFS) and North American Regional Reanalysis (NARR) to determine model sensitivity to initial conditions. For both the NARR and GFS initializations, the model was started at both 0000 UTC and 1200 UTC to determine the effect of start time and stability regime on the performance of the model. An additional intensive study into the model's performance was also conducted by a detailed evaluation of model results during two separate 24-hour periods, the first a period where the model performed well and the second a period where the model performed poorly, to determine which atmospheric factors most affect the predictive ability of the OMEGA model. The statistical results were then compared with the results from the MM5 and WRF simulations to determine the most appropriate model for wind energy potential studies in complex terrain.
Modification of Eye Movements and Motion Perception during Off-Vertical Axis Rotation
NASA Technical Reports Server (NTRS)
Wood, S. J.; Reschke, M. F.; Denise, P.; CLement, G.
2006-01-01
Constant velocity Off-Vertical Axis Rotation (OVAR) imposes a continuously varying orientation of the head and body relative to gravity. The ensuing ocular reflexes include modulation of both torsional and horizontal eye movements as a function of the varying linear acceleration along the lateral plane, and modulation of vertical and vergence eye movements as a function of the varying linear acceleration along the sagittal plane. Previous studies have demonstrated that tilt and translation otolith-ocular responses, as well as motion perception, vary as a function of stimulus frequency during OVAR. The purpose of this study is to examine normative OVAR responses in healthy human subjects, and examine adaptive changes in astronauts following short duration space flight at low (0.125 Hz) and high (0.5 Hz) frequencies. Data was obtained on 24 normative subjects (14 M, 10 F) and 14 (13 M, 1F) astronaut subjects. To date, astronauts have participated in 3 preflight sessions (n=14) and on R+0/1 (n=7), R+2 (n= 13) and R+4 (n= 13) days after landing. Subjects were rotated in darkness about their longitudinal axis 20 deg off-vertical at constant rates of 45 and 180 deg/s, corresponding to 0.125 and 0.5 Hz. Binocular responses were obtained with video-oculography. Perceived motion was evaluated using verbal reports and a two-axis joystick (pitch and roll tilt) mounted on top of a two-axis linear stage (anterior-posterior and medial-lateral translation). Eye responses were obtained in ten of the normative subjects with the head and trunk aligned, and then with the head turned relative to the trunk 40 deg to the right or left of center. Sinusoidal curve fits were used to derive amplitude, phase and bias of the responses over several cycles at each stimulus frequency. Eye responses during 0.125 Hz OVAR were dominated by modulation of torsional and vertical eye position, compensatory for tilt relative to gravity. While there is a bias horizontal slow phase velocity (SPV), the modulation of horizontal and vergence SPV is negligible at this lower stimulus frequency. Eye responses during 0.5 Hz OVAR; however, are characterized by modulation of horizontal and vergence SPV, compensatory for translation in the lateral and sagittal planes, respectively. Neither amplitude nor bias velocities were significantly altered by head-on-trunk position. The phases of the ocular reflexes, on the other hand, shifted towards alignment with the head. During the lower frequency OVAR, subjects reported the perception of progressing along the edge of a cone. During higher frequency OVAR, subjects reported the perception of progressing along the edge of an upright cylinder. In contrast to the eye movements, the phase of both perceived tilt and translation motion is not altered by stimulus frequency. Preliminary results from astronaut data suggest that the ocular responses are not substantially altered by short-duration spaceflight. However, compared to preflight averages, astronauts reported greater amplitude of both perceived tilt and translation at low and high frequency, respectively, during early post-flight testing. We conclude that the neural processing to distinguish tilt and translation linear acceleration stimuli differs between eye movements and motion perception. The results from modifying head-on-trunk position are consistent with the modulation of ocular reflexes during OVAR being primarily mediated by the otoliths in response to the sinusoidally varying linear acceleration along the interaural and naso-occipital head axis. While the tilt and translation ocular reflexes appear to operate in an independent fashion, the timing of perceived tilt and translation influence each other. We conclude that the perceived motion path during linear acceleration in darkness results from a composite representation of tilt and translation inputs from both vestibular and somatosensory systems.
Lee, H-P; Perozek, J; Rosario, L D; Bayram, C
2016-11-21
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13 cm -2 ) on Si(111) substrates.
Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.
2016-01-01
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Oleg P.; Semin, Ilya A.; Potapov, Victor N.
Gamma-ray imaging is the most important way to identify unknown gamma-ray emitting objects in decommissioning, security, overcoming accidents. Over the past two decades a system for producing of gamma images in these conditions became more or less portable devices. But in recent years these systems have become the hand-held devices. This is very important, especially in emergency situations, and measurements for safety reasons. We describe the first integrated hand-held instrument for emergency and security applications. The device is based on the coded aperture image formation, position sensitive gamma-ray (X-ray) detector Medipix2 (detectors produces by X-ray Imaging Europe) and tablet computer.more » The development was aimed at creating a very low weight system with high angular resolution. We present some sample gamma-ray images by camera. Main estimated parameters of the system are the following. The field of view video channel ∼ 490 deg. The field of view gamma channel ∼ 300 deg. The sensitivity of the system with a hexagonal mask for the source of Cs-137 (Eg = 662 keV), is in units of dose D ∼ 100 mR. This option is less then order of magnitude worse than for the heavy, non-hand-held systems (e.g., gamma-camera Cartogam, by Canberra.) The angular resolution of the gamma channel for the sources of Cs-137 (Eg = 662 keV) is about 1.20 deg. (authors)« less
NASA Technical Reports Server (NTRS)
1984-01-01
The Nimbus-7 Coastal Zone Color Scanner (CZCS) is the first spacecraft instrument devoted to the measurement of ocean color. Although instruments on other satellites have sensed ocean color, their spectral bands, spatial resolution, and dynamic range were optimized for geographical or meteorological use. In the CZCS, every parameter is optimized for use over water to the exclusion of any other type of sensing. The signal-to-noise ratios in the spectral channels sensing reflected solar radiance are higher than those required in the past. These ratios need to be high because the ocean is such a poor reflecting surface that the majority of the signal seen by the reflected energy channels at spacecraft altitudes is backscattered solar radiation from the atmosphere rather than reflected solar energy from the ocean. The CZCS is a conventional multichannel scanning radiometer utilizing a rotating plane mirror at a 45 deg angle to the optic axis of a Cassegrain telescope. The mirror scans 360 deg; however, only 80 deg of data centered on the spacecraft nadir is collected for ocean color measurements. Spatial resolution at spacecraft nadir is 825x825 m with some degradation at the edges of the scan swath. The useful swath width from a spacecraft altitude of 955 km is 1600 km.
Horizontal Temperature Variability in the Stratosphere: Global Variations Inferred from CRISTA Data
NASA Technical Reports Server (NTRS)
Eidmann, G.; Offermann, D.; Jarisch, M.; Preusse, P.; Eckermann, S. D.; Schmidlin, F. J.
2001-01-01
In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.
NASA Technical Reports Server (NTRS)
Meek, C. E.; Manson, A. H.; Smith, M. J.
1983-01-01
Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Belcher, Marcus A.; Ghose, Sayata; Connell, John W.
2008-01-01
Topographically rich surfaces were generated by spray-coating organic solutions of a polyhedral oligomeric silsesquioxane, octakis (dimethylsilyloxy) silsesquioxane (POSS), on Kapton HN films and exposing them to radio frequency generated oxygen plasma. Changes in both surface chemistry and topography were observed. High-resolution scanning electron microscopy indicated substantial modification of the POSS-coated polyimide surface topographies as a result of oxygen plasma exposure. Water contact angles varied from 104 deg for unexposed POSS-coated surfaces to approximately 5 deg, for samples exposed for 5 h. Modulation of the dispersive and polar contributions to the surface energy was determined using van Oss Good Chaudhury theory.
Reflectance characteristics of the Viking lander camera reference test charts
NASA Technical Reports Server (NTRS)
Wall, S. D.; Burcher, E. E.; Jabson, D. J.
1975-01-01
Reference test charts provide radiometric, colorimetric, and spatial resolution references for the Viking lander cameras on Mars. Reflectance measurements of these references are described, including the absolute bidirectional reflectance of the radiometric references and the relative spectral reflectance of both radiometric and colorimetric references. Results show that the bidirection reflectance of the radiometric references is Lambertian to within + or - 7% for incidence angles between 20 deg and 60 deg, and that their spectral reflectance is constant with wavelength to within + or - 5% over the spectral range of the cameras. Estimated accuracy of the measurements is + or - 0.05 in relative spectral reflectance.
NASA Technical Reports Server (NTRS)
Greeley, R.; Theilig, E.; Guest, J. E.; Carr, M. H.; Masursky, H.; Cutts, J. A.
1977-01-01
Chryse Planitia, the site of the first successful landing on Mars by Viking 1, is an asymmetrical basin, centered at 45 deg W and 24 deg N, about 2000 km northeast of Valles Marineris. High-resolution Viking orbiter images show Chryse Planitia to be much more complex than had been suspected from Mariner 9 images. On the basis of a study of the Viking pictures it is concluded that the geological history of Chryse Planitia involves a complex sequence of impact cratering, mantling by extensive deposits of unknown origin, redistribution of mantling and crater materials by erosion and deposition with concurrent eruptions of flood-type basalts, and aeolian activity.
Interplanetary scintillation observations with the Cocoa Cross radio telescope
NASA Technical Reports Server (NTRS)
Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.
1976-01-01
Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.
Comparative climatology of four marine stratocumulus regimes
NASA Technical Reports Server (NTRS)
Hanson, Howard P.
1990-01-01
The climatology of marine stratocumulus (MSc) cloud regimes off the west coasts of California, Peru, Morocco, and Angola are examined. Long-term, annual averages are presented for several quantities of interest in the four MSc regimes. The climatologies were constructed using the Comprehensive Ocean-Atmosphere Data Set (COADS). A 40 year time series of observations was extracted for 32 x 32 deg analysis domains. The data were taken from the monthly-averaged, 2 deg product. The resolution of the analysis is therefore limited to scales of greater than 200 km with submonthly variability not resolved. The averages of total cloud cover, sea surface temperature, and surface pressure are presented.
NASA Technical Reports Server (NTRS)
Pribble, J. Raymond; Walsh, John J.; Dieterle, Dwight A.; Mueller-Karger, Frank E.
1994-01-01
Eddy-induced upwelling occurs along the western edge of the Gulf Stream between Cape Canaveral, Florida, and Cape Hatteras, North Carolina, in the South Atlantic Bight (SAB). Coastal zone color scanner images of 1-km resolution spanning the period April 13-21, 1979, were processed to examine these eddy features in relation to concurrent shipboard and current/temperature measurements at moored arrays. A quasi-one-dimensional (z), time dependent biological model, using only nitrate as a nutrient source, has been combined with a three-dimensional physical model in an attempt to replicate the observed phytoplankton field at the northward edge of an eddy. The model is applicable only to the SAB south of the Charleston Bump, at approximately 31.5 deg N, since no feature analogous to the bump exists in the model bathymetry. The modeled chlorophyll, nitrate, and primary production fields of the euphotic zone are very similar to those obtained from the satellite and shipboard data at the leading edges of the observed eddies south of the Charleston Bump. The horizontal and vertical simulated fluxes of nitrate and chlorophyll show that only approximately 10% of the upwelled nitrate is utilized by the phytoplankton of the modeled grid box on the northern edge of the cyclone, while approximately 75% is lost horizontally, with the remainder still in the euphotic zone after the 10-day period of the model. Loss of chlorophyll due to sinking is very small in this strong upwelling region of the cyclone. The model is relatively insensitive to variations in the sinking parameterization and the external nitrate and chlorophyll fields but is very sensitive to a reduction of the maximum potential growth rate to half that measured. Given the success of this model in simulating the new production of the selcted upwelling region, other upwelling regions for which measurements or successful models of physical and biological quantities and rates exist could be modeled similarly.
Large-scale horizontal flows from SOUP observations of solar granulation
NASA Astrophysics Data System (ADS)
November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.
1987-09-01
Using high-resolution time-sequence photographs of solar granulation from the SOUP experiment on Spacelab 2 the authors observed large-scale horizontal flows in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into the surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.
NASA Technical Reports Server (NTRS)
Leavitt, L. D.; Burley, J. R., II
1985-01-01
An investigation has been conducted at wind-off conditions in the stati-test facility of the Langley 16-Foot Transonic Tunnel. The tests were conducted on a single-engine reverser configuration with partial and full reverse-thrust modulation capabilities. The reverser design had four ports with equal areas. These ports were angled outboard 30 deg from the vertical impart of a splay angle to the reverse exhaust flow. This splaying of reverser flow was intended to prevent impingement of exhaust flow on empennage surfaces and to help avoid inlet reingestion of exhaust gas when the reverser is integrated into an actual airplane configuration. External vane boxes were located directly over each of the four ports to provide variation of reverser efflux angle from 140 deg to 26 deg (measured forward from the horizontal reference axis). The reverser model was tested with both a butterfly-type inner door and an internal slider door to provide area control for each individual port. In addition, main nozzle throat area and vector angle were varied to examine various methods of modulating thrust levels. Other model variables included vane box configuration (four or six vanes per box), orientation of external vane boxes with respect to internal port walls (splay angle shims), and vane box sideplates. Nozzle pressure ratio was varied from 2.0 approximately 7.0.
Preliminary Results of Stability and Control Investigation of the Bell X-5 Research Airplane
NASA Technical Reports Server (NTRS)
Finch, Thomas W; Briggs, Donald W
1953-01-01
During the acceptance tests of the Bell X-5 airplane, measurements of the static stability and control characteristics and horizontal-tail loads were obtained by the NACA High-Speed Flight Research Station. The results of the stability and control measurements are presented in this paper. A change in sweep angle between 20 deg and 59 deg had a minor effect on the longitudinal trim, with a maximum change of about 2.5 deg in elevator deflection being required at a Mach number near 0.85; however, sweeping the wings produced a total stick-force change of about 40 pounds. At low Mach numbers there was a rapid increase in stability at high normal-force coefficients for both 20 0 and 1100 sweepback, whereas a condition of neutral stability existed for 58 0 sweepback at high normal-force coefficients. At Mach numbers near 0.8 there was an instability at normal-force coefficients above 0.5 for all sweep angles tested. In the low normal-force-coefficient range a high degree of stability resulted in high stick forces which limited the maximum load factors attainable in the demonstration flights to values under 5g for all sweep angles at a Mach number near 0.8 and an altitude of 12,000 feet. The aileron effectiveness at 200 sweepback was found to be low over the Mach number range tested.
Ultra-Parameterized CAM: Progress Towards Low-Cloud Permitting Superparameterization
NASA Astrophysics Data System (ADS)
Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Khairoutdinov, M.; Wyant, M. C.; Singh, B.
2016-12-01
A leading source of uncertainty in climate feedback arises from the representation of low clouds, which are not resolved but depend on small-scale physical processes (e.g. entrainment, boundary layer turbulence) that are heavily parameterized. We show results from recent attempts to achieve an explicit representation of low clouds by pushing the computational limits of cloud superparameterization to resolve boundary-layer eddy scales relevant to marine stratocumulus (250m horizontal and 20m vertical length scales). This extreme configuration is called "ultraparameterization". Effects of varying horizontal vs. vertical resolution are analyzed in the context of altered constraints on the turbulent kinetic energy statistics of the marine boundary layer. We show that 250m embedded horizontal resolution leads to a more realistic boundary layer vertical structure, but also to an unrealistic cloud pulsation that cannibalizes time mean LWP. We explore the hypothesis that feedbacks involving horizontal advection (not typically encountered in offline LES that neglect this degree of freedom) may conspire to produce such effects and present strategies to compensate. The results are relevant to understanding the emergent behavior of quasi-resolved low cloud decks in a multi-scale modeling framework within a previously unencountered grey zone of better resolved boundary-layer turbulence.
Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang
2013-01-01
Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline. PMID:25187253
Sensory factors limiting horizontal and vertical visual span for letter recognition
Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.
2014-01-01
Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline.
Pathfinder Atomic Power Plant Nozzle Galling Test, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1961-12-29
Galling tests of 304, 17-4PH, and chrome-plated 304 stainless-steel nozzles with 304 stainless-steel sleeves were conducted at Pathflnder reactor conditions of 480 deg F, 600 psig. A horizontal force was imposed on the sleeve with the nozzle inserted; and the nozzle was moved axially to determine galling tendencies. Galling was produced on both the 304 and 17-4PH stainless-steel nozzles. The chrome-plated 304-stainless-steel nozzles were cycled numerous times without galling. On the basis of these tests, chrome-plated 304-stainless- steel is the material selected for the Pathfinder boiler fuel-element nozzle.
Autoregulation of cerebral blood circulation under orthostatic tests
NASA Technical Reports Server (NTRS)
Gayevyy, M. D.; Maltsev, V. G.; Pogorelyy, V. E.
1980-01-01
Autoregulation of cerebral blood flow (ACBF) under orthostatic tests (OT) was estimated in acute experiments on rabbits and cats under local anesthesia according to changes of perfusion pressure (PP) in carotid arteries, cerebral blood flow, pressure in the venous system of the brain, and resistance of cerebral vessels. The OT were conducted by turning a special table with the animal fastened to it from a horizontal to a vertical (head up or head down) position at 40 to 80 deg. In most experiments ACBF correlated with the changes of PP. Different variations of ACBF and its possible mechanisms are discussed.
Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Lee, Sam; Shah, Gautam H.; Murphy, Patrick C.
2012-01-01
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5 percent scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from alpha = -5deg to 85deg and beta = -45 deg to 45 deg at a Reynolds number of 0.24 x10(exp 6) and Mach number of 0.06. The 3.5 percent scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5 percent scale GTM. The addition of the large, glaze-horn type ice shapes did result in an increase in airplane drag coefficient but had little effect on the lift and pitching moment. The lateral-directional characteristics showed mixed results with a small effect of the ice shapes observed in some cases. The flow visualization images revealed the presence and evolution of a spanwise-running vortex on the wing that was the dominant feature of the flowfield for both clean and iced configurations. The lack of ice-induced performance and flowfield effects observed in this effort was likely due to Reynolds number effects for the clean configuration. Estimates of full-scale baseline performance were included in this analysis to illustrate the potential icing effects.
NASA Technical Reports Server (NTRS)
Stickle, Joseph W.; Silsby, Norman S.
1960-01-01
An investigation has been made by the NASA to obtain statistical measurements of landing-contact conditions for a large turbojet transport in commercial airline operations. The investigation was conducted at the Los Angeles International Airport in Los Angeles, California. Measurements were taken photographically during routine daylight operations. The quantities determined were vertical velocity, horizontal velocity, rolling velocity, bank angle, and distance from runway threshold, just prior to ground contact. The results indicated that the mean vertical velocity for the turbojet-transport landings was 1.62 feet per second and that 1 landing out of 100 would be expected to equal or exceed about 4.0 feet per second. The mean airspeed at contact was 132.0 knots, with 1 landing in 100 likely to equal or exceed about 153.0 knots. The mean rolling velocity was about 1.6 deg per second. One lending in 100 would probably equal or exceed a rolling velocity of about 4.0 deg. per second in the direction of the first wheel to touch. The mean bank angle for the turbojet transports was 1.04 deg, and right and left angles of bank were about evenly divided. One lending in 100 would be likely to equal or exceed a bank angle of about 3.5 deg. The mean value of distance to touchdown from the runway threshold was 1,560 feet. One lending in 100 would be expected to touchdown at or beyond about 2,700 feet from the runway threshold. The mean values for vertical velocity, airspeed, and distance t o touch-down for the turbojet transports were somewhat higher than those found previously for piston-engine transports. No significant differences were found for values of rolling velocity and bank angle.
Clementine High Resolution Camera Mosaicking Project
NASA Technical Reports Server (NTRS)
1998-01-01
This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a side, which spans approximately 2.2 deg. Two mosaics are provided for each pole: one corresponding to data acquired while periapsis was in the south, the other while periapsis was in the north. The CD-ROMs also contain ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files.
Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results
NASA Astrophysics Data System (ADS)
Walpersdorf, A.; Bock, O.; Doerflinger, E.; Masson, F.; van Baelen, J.; Somieski, A.; Bürki, B.
The experiment GPS/H 2O involving 17 GPS receivers has been operated for two weeks in June 2001 in a dense network around Marseille. This project was integrated into the ESCOMPTE campaign. This paper will focus on the GPS analysis in preparation of the tomographic inversion of GPS slant delays. As first results, GPS tropospheric parameters zenith delays and horizontal gradients have been extracted. For a first visualization of the humidity field overlying the network, zenith delays have been transformed into precipitable water. Successive humidity fields are presented for a period of sudden drop in humidity, indicating some spatial resolution in the small network. The time series of horizontal gradients evaluated at individual sites are compared to correlated zenith delay variations over the whole network (horizontal gradient of zenith delays), showing that in the small size network horizontal atmospheric structure is reflected by both types of parameters. To compare these two quantities, scaling of zenith delays due to different station altitudes was necessary. In this way, a GPS internal validation of the individual gradients by comparison with the horizontal gradient of zenith delays has been established. Differential features along transects across the network indicate a good spatial resolution of tropospheric phenomena, encouraging for the further tomographic exploitation of the data. Moreover, individual and zenith delay gradients weight differently atmospheric horizontal gradients occurring at different heights. This different sensitivity has been used for a first identification of a vertical atmospheric structure from GPS tropospheric delays, by observing an inclined frontal zone crossing the network.
The Sensitivity of Numerical Simulations of Cloud-Topped Boundary Layers to Cross-Grid Flow
NASA Astrophysics Data System (ADS)
Wyant, Matthew C.; Bretherton, Christopher S.; Blossey, Peter N.
2018-02-01
In mesoscale and global atmospheric simulations with large horizontal domains, strong horizontal flow across the grid is often unavoidable, but its effects on cloud-topped boundary layers have received comparatively little study. Here the effects of cross-grid flow on large-eddy simulations of stratocumulus and trade-cumulus marine boundary layers are studied across a range of grid resolutions (horizontal × vertical) between 500 m × 20 m and 35 m × 5 m. Three cases are simulated: DYCOMS nocturnal stratocumulus, BOMEX trade cumulus, and a GCSS stratocumulus-to-trade cumulus case. Simulations are performed with a stationary grid (with 4-8 m s-1 horizontal winds blowing through the cyclic domain) and a moving grid (equivalent to subtracting off a fixed vertically uniform horizontal wind) approximately matching the mean boundary-layer wind speed. For stratocumulus clouds, cross-grid flow produces two primary effects on stratocumulus clouds: a filtering of fine-scale resolved turbulent eddies, which reduces stratocumulus cloud-top entrainment, and a vertical broadening of the stratocumulus-top inversion which enhances cloud-top entrainment. With a coarse (20 m) vertical grid, the former effect dominates and leads to strong increases in cloud cover and LWP, especially as horizontal resolution is coarsened. With a finer (5 m) vertical grid, the latter effect is stronger and leads to small reductions in cloud cover and LWP. For the BOMEX trade cumulus case, cross-grid flow tends to produce fewer and larger clouds with higher LWP, especially for coarser vertical grid spacing. The results presented are robust to choice of scalar advection scheme and Courant number.
Beam-centroid tracking instrument for ion thrusters
NASA Astrophysics Data System (ADS)
Pollard, J. E.
1995-03-01
Thrust vector stability for an electrostatic ion engine can be measured with improved sensitivity and time resolution by the method described here. Four double-wire Langmuir probes, aligned in the form of a cross, are placed in the exhaust plume and are translated by a motorized positioning system to balance the currents collected along two orthogonal axes. The thrust vector position is thereby measured with an angular resolution of less than 0.01 deg and a response time of less than 5 sec.
Augmentation of maneuver performance by spanwise blowing
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Campbell, J. F.
1977-01-01
A generalized wind tunnel model was tested to investigate new component concepts utilizing spanwise blowing to provide improved maneuver characteristics for advanced fighter aircraft. Primary emphasis was placed on high angle of attack performance, stability, and control at subsonic speeds. Spanwise blowing on a 44 deg swept trapezoidal wing resulted in leading edge vortex enhancement with subsequent large vortex-induced lift increments and drag polar improvements at the higher angles of attack. Small deflections of a leading edge flap delayed these lift and drag benefits to higher angles of attack. In addition, blowing was more effective at higher Mach numbers. Spanwise blowing in conjunction with a deflected trailing edge flap resulted in lift and drag benefits that exceeded the summation of the effects of each high lift device acting alone. Asymmetric blowing was an effective lateral control device at the higher angles of attack. Spanwise blowing on the wing reduced horizontal tail loading and improved the lateral-directional stability characteristics of a wing-horizontal tail-vertical tail configuration.
NASA Astrophysics Data System (ADS)
Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon
2017-11-01
The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.
A 4 Tesla Superconducting Magnet Developed for a 6 Circle Huber Diffractometer at the XMaS Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, P. B. J.; Brown, S. D.; Bouchenoire, L.
2007-01-19
We report here on the development and testing of a 4 Tesla cryogen free superconducting magnet designed to fit within the Euler cradle of a 6 circle Huber diffractometer, allowing scattering in both the vertical and horizontal planes. The geometry of this magnet allows the field to be applied in three orientations. The first being along the beam direction, the second with the field transverse to the beam direction a horizontal plane and finally the field can be applied vertically with respect to the beam. The magnet has a warm bore and an open geometry of 180 deg. , allowingmore » large access to reciprocal space. A variable temperature insert has been developed, which is capable of working down to a temperature of 1.7 K and operating over a wide range of angles whilst maintaining a temperature stability of a few mK. Initial ferromagnetic diffraction measurements have been carried out on single crystal Tb and Dy samples.« less
Visual and visually mediated haptic illusions with Titchener's ⊥.
Landwehr, Klaus
2014-05-01
For a replication and expansion of a previous experiment of mine, 14 newly recruited participants provided haptic and verbal estimates of the lengths of the two lines that make up Titchener's ⊥. The stimulus was presented at two different orientations (frontoparallel vs. horizontal) and rotated in steps of 45 deg around 2π. Haptically, the divided line of the ⊥ was generally underestimated, especially at a horizontal orientation. Verbal judgments also differed according to presentation condition and to which line was the target, with the overestimation of the undivided line ranging between 6.2 % and 15.3 %. The results are discussed with reference to the two-visual-systems theory of perception and action, neuroscientific accounts, and also recent historical developments (the use of handheld touchscreens, in particular), because the previously reported "haptic induction effect" (the scaling of haptic responses to the divided line of the ⊥, depending on the length of the undivided one) did not replicate.
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
Grabtchak, Serge; Palmer, Tyler J; Whelan, William M
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ∼43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
Al-Gharabli, Samer; Hamad, Eyad; Saket, Munib; Abu El-Rub, Ziad; Arafat, Hassan; Kujawski, Wojciech; Kujawa, Joanna
2018-05-07
Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs) were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE)), mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM), single-area electron diffraction (SAED) analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs) changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20) and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20) and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.
NASA Technical Reports Server (NTRS)
Pierson, W. J., Jr.; Sylvester, W. B.; Salfi, R. E.
1984-01-01
Conventional data obtained in 1983 are contrasted with SEASAT-A scatterometer and scanning multichannel microwave radiometer (SMMR) data to show how observations at a single station can be extended to an area of about 150,000 square km by means of remotely sensed data obtained in nine minutes. Superobservations at a one degree resolution for the vector winds were estimated along with their standard deviations. From these superobservations, the horizontal divergence, vector wind stress, and the curl of the wind stress can be found. Weather forecasting theory is discussed and meteorological charts of the North Pacific Ocean are presented. Synoptic meteorology as a technique is examined.
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation.
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-15
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ∼550 m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection. © 2011 Optical Society of America
NASA Technical Reports Server (NTRS)
Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.
2016-01-01
The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.
One leg lateral jumps - a new test for team players evaluation.
Taboga, P; Sepulcri, L; Lazzer, S; De Conti, D; Di Prampero, P E
2013-10-01
We assessed the subject's capacity to accelerate himself laterally in monopodalic support, a crucial ability in several team sports, on 22 athletes, during series of 10 subsequent jumps, between two force platforms at predetermined distance. Vertical and horizontal accelerations of the Centre of Mass (CM), contact and flight times were measured by means of force platforms and the Optojump-System®. Individual mean horizontal and vertical powers and their sum (total power) ranged between 7 and 14.5 W/kg. "Push angle", i.e., the angle with the horizontal along which the vectorial sum of all forces is aligned, was calculated from the ratio between vertical and horizontal accelerations: it varied between 38.7 and 49.4 deg and was taken to express the subject technical ability. The horizontal acceleration of CM, indirectly estimated as a function of subject's mass, contact and flight times, was essentially equal to that obtained from force platforms data. Since the vertical displacement can be easily obtained from flight and contact times, this allowed us to assess the Push angle from Optojump data only. The power developed during a standard vertical jump was rather highly correlated with that developed during the lateral jumps for right (R=0.80, N.=12) and left limb (R=0.72, N.=12), but not with the push angle for right (R=0.31, N.=12) and left limb (R=-0.43, N.=12). Hence standard tests cannot be utilised to assess technical ability. Lateral jumps test allows the coach to evaluate separately maximal muscular power and technical ability of the athlete, thus appropriately directing the training program: the optimum, for a team-sport player being high power and low push-angle, that is: being "powerful" and "efficient".
The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source
NASA Astrophysics Data System (ADS)
Gomez, A.; Dina, G.; Kycia, S.
2018-06-01
The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.
NASA Astrophysics Data System (ADS)
Jiménez-Esteve, B.; Udina, M.; Soler, M. R.; Pepin, N.; Miró, J. R.
2018-04-01
Different types of land use (LU) have different physical properties which can change local energy balance and hence vertical fluxes of moisture, heat and momentum. This in turn leads to changes in near-surface temperature and moisture fields. Simulating atmospheric flow over complex terrain requires accurate local-scale energy balance and therefore model grid spacing must be sufficient to represent both topography and land-use. In this study we use both the Corine Land Cover (CLC) and United States Geological Survey (USGS) land use databases for use with the Weather Research and Forecasting (WRF) model and evaluate the importance of both land-use classification and horizontal resolution in contributing to successful modelling of surface temperatures and humidities observed from a network of 39 sensors over a 9 day period in summer 2013. We examine case studies of the effects of thermal inertia and soil moisture availability at individual locations. The scale at which the LU classification is observed influences the success of the model in reproducing observed patterns of temperature and moisture. Statistical validation of model output demonstrates model sensitivity to both the choice of LU database used and the horizontal resolution. In general, results show that on average, by a) using CLC instead of USGS and/or b) increasing horizontal resolution, model performance is improved. We also show that the sensitivity to these changes in the model performance shows a daily cycle.
NASA Technical Reports Server (NTRS)
Gatebe, Charles K.; King, M. D.; Arnold, G. T.; Li, J. Y.; Lau, William K. M. (Technical Monitor)
2001-01-01
The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF measurements were obtained over different natural surfaces and ecosystem in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 deg S, 31.5 deg E) and Mongu tower, Zambia (15.4 deg S, 23.3 deg E). Additional sites are also considered and include, Maun tower, Botswana (20.0 deg S, 23.5 deg E), Sowa Pan, Botswana (20.6 deg S, 26.2 deg E) and Etosha Pan, Namibia (19.0 deg S, 16.0 deg E). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micrometers), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micrometers). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of approximately 20 degrees and fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and with a 1 deg IFOV, the pixel resolution is about 10 m at nadir and about 270 m at an 80 deg viewing angle from the CAR.
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.; Gettelman, A.; Callaghan, P.
2017-12-01
Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.
Algorithm for automatic analysis of electro-oculographic data
2013-01-01
Background Large amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets. Methods The auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks. Results The algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate. Conclusion The developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics. PMID:24160372
Algorithm for automatic analysis of electro-oculographic data.
Pettersson, Kati; Jagadeesan, Sharman; Lukander, Kristian; Henelius, Andreas; Haeggström, Edward; Müller, Kiti
2013-10-25
Large amounts of electro-oculographic (EOG) data, recorded during electroencephalographic (EEG) measurements, go underutilized. We present an automatic, auto-calibrating algorithm that allows efficient analysis of such data sets. The auto-calibration is based on automatic threshold value estimation. Amplitude threshold values for saccades and blinks are determined based on features in the recorded signal. The performance of the developed algorithm was tested by analyzing 4854 saccades and 213 blinks recorded in two different conditions: a task where the eye movements were controlled (saccade task) and a task with free viewing (multitask). The results were compared with results from a video-oculography (VOG) device and manually scored blinks. The algorithm achieved 93% detection sensitivity for blinks with 4% false positive rate. The detection sensitivity for horizontal saccades was between 98% and 100%, and for oblique saccades between 95% and 100%. The classification sensitivity for horizontal and large oblique saccades (10 deg) was larger than 89%, and for vertical saccades larger than 82%. The duration and peak velocities of the detected horizontal saccades were similar to those in the literature. In the multitask measurement the detection sensitivity for saccades was 97% with a 6% false positive rate. The developed algorithm enables reliable analysis of EOG data recorded both during EEG and as a separate metrics.
Joint US/USSR study: Comparison of effects of horizontal and head-down bed rest
NASA Technical Reports Server (NTRS)
Sandler, Harold; Grigoriev, Anatoli I.
1990-01-01
An account is given of the results of the first joint U.S./U.S.S.R. bed rest study. The study was accomplished in two parts: A soviet part (May to June 1979) and an American part (July to August 1979). Both studies were conducted under identical conditions and provided a basis for comparison of physiologic reactions and standardizing procedures and methods. Each experiment consisted of three periods: 14 days of pre-bed rest control, 7 days of bed rest, and a 10 to 14 day recovery period. Ten males participated in each study, with five subjects experiencing horizontal bed rest and five subjects a -6 deg head-down body position. Biochemical and hormonal measurements were made of blood and urine, with particular attention to electrolyte metabolism and kidney function; cardio-pulmonary changes at rest and exercise; influence of Lower Body Negative Pressure (LBNP); and incremental exercise using a bicyle ergometer while supine and sitting. Expected moderate changes were noted to occur for various physiologic parameters. Clinical evidence pointed to the fact that head-down bed rest when compared to horizontal conditions more closely matched the conditions seen after manned spaceflight. For the most part, statistically significant differences between the two body positions were not observed.
Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A
2016-08-01
This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guosheng
2013-03-15
Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term ofmore » condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.« less
A fine resolution multifrequency polarimetric FM radar
NASA Technical Reports Server (NTRS)
Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.
1988-01-01
A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.
Optical and neural anisotropy in peripheral vision
Zheleznyak, Len; Barbot, Antoine; Ghosh, Atanu; Yoon, Geunyoung
2016-01-01
Optical blur in the peripheral retina is known to be highly anisotropic due to nonrotationally symmetric wavefront aberrations such as astigmatism and coma. At the neural level, the visual system exhibits anisotropies in orientation sensitivity across the visual field. In the fovea, the visual system shows higher sensitivity for cardinal over diagonal orientations, which is referred to as the oblique effect. However, in the peripheral retina, the neural visual system becomes more sensitive to radially-oriented signals, a phenomenon known as the meridional effect. Here, we examined the relative contributions of optics and neural processing to the meridional effect in 10 participants at 0°, 10°, and 20° in the temporal retina. Optical anisotropy was quantified by measuring the eye's habitual wavefront aberrations. Alternatively, neural anisotropy was evaluated by measuring contrast sensitivity (at 2 and 4 cyc/deg) while correcting the eye's aberrations with an adaptive optics vision simulator, thus bypassing any optical factors. As eccentricity increased, optical and neural anisotropy increased in magnitude. The average ratio of horizontal to vertical optical MTF (at 2 and 4 cyc/deg) at 0°, 10°, and 20° was 0.96 ± 0.14, 1.41 ± 0.54 and 2.15 ± 1.38, respectively. Similarly, the average ratio of horizontal to vertical contrast sensitivity with full optical correction at 0°, 10°, and 20° was 0.99 ± 0.15, 1.28 ± 0.28 and 1.75 ± 0.80, respectively. These results indicate that the neural system's orientation sensitivity coincides with habitual blur orientation. These findings support the neural origin of the meridional effect and raise important questions regarding the role of peripheral anisotropic optical quality in developing the meridional effect and emmetropization. PMID:26928220
NASA Technical Reports Server (NTRS)
Hieser, Gerald; Reid, Charles F.
1954-01-01
The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.
NASA Technical Reports Server (NTRS)
Newsom, William A., Jr.; Tosti, Louis P.
1959-01-01
A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.
Development of a two-dimensional dual pendulum thrust stand for Hall thrusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagao, N.; Yokota, S.; Komurasaki, K.
A two-dimensional dual pendulum thrust stand was developed to measure thrust vectors (axial and horizontal (transverse) direction thrusts) of a Hall thruster. A thruster with a steering mechanism is mounted on the inner pendulum, and thrust is measured from the displacement between inner and outer pendulums, by which a thermal drift effect is canceled out. Two crossover knife-edges support each pendulum arm: one is set on the other at a right angle. They enable the pendulums to swing in two directions. Thrust calibration using a pulley and weight system showed that the measurement errors were less than 0.25 mN (1.4%)more » in the main thrust direction and 0.09 mN (1.4%) in its transverse direction. The thrust angle of the thrust vector was measured with the stand using the thruster. Consequently, a vector deviation from the main thrust direction of {+-}2.3 deg. was measured with the error of {+-}0.2 deg. under the typical operating conditions for the thruster.« less
NASA Technical Reports Server (NTRS)
Eppel, J. C.; Shovlin, M. D.; Jaynes, D. N.; Englar, R. J.; Nichols, J. H., Jr.
1982-01-01
Full scale static investigations were conducted on the Quiet Short Haul Research Aircraft (QSRA) to determine the thrust deflecting capabilities of the circulation control wing/upper surface blowing (CCW/USB) concept. This scheme, which combines favorable characteristics of both the A-6/CCW and QSRA, employs the flow entrainment properties of CCW to pneumatically deflect engine thrust in lieu of the mechanical USB flap system. Results show that the no moving parts blown system produced static thrust deflections in the range of 40 deg to 97 deg (depending on thrust level) with a CCW pressure of 208,900 Pa (30.3 psig). In addition, the ability to vary horizontal forces from thrust to drag while maintaining a constant vertical (or lift) value was demonstrated by varying the blowing pressure. The versatility of the CCW/USB system, if applied to a STOL aircraft, was confirmed, where rapid conversion from a high drag approach mode to a thrust recovering waveoff or takeoff configuration could be achieved by nearly instantaneous blowing pressure variation.
NASA Technical Reports Server (NTRS)
Signorini, S.; McClain, C.; Christian, J.; Wong, C. S.
2000-01-01
In this Technical Publication, we describe the model functionality and analyze its application to the seasonal and interannual variations of phytoplankton, nutrients, pCO2 and CO2 concentrations in the eastern subarctic Pacific at Ocean Weather Station P (OWSP, 50 deg. N 145 deg. W). We use a verified one-dimensional ecosystem model, coupled with newly incorporated carbon flux and carbon chemistry components, to simulate 22 years (1958-1980) of pCO2 and CO2 variability at Ocean Weather Station P (OWS P). This relatively long period of simulation verifies and extends the findings of previous studies using an explicit approach for the biological component and realistic coupling with the carbon flux dynamics. The slow currents and the horizontally homogeneous ocean in the subarctic Pacific make OWS P one of the best available candidates for modeling the chemistry of the upper ocean in one dimension. The chlorophyll and ocean currents composite for 1998 illustrates this premise. The chlorophyll concentration map was derived from SeaWiFS data and the currents are from an OGCM simulation (from R. Murtugudde).
NASA Technical Reports Server (NTRS)
Palazzo, Edward B.; Spearman, M. Leroy
1954-01-01
An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.41 to determine the static stability and control and drag characteristics of a l/l5-scale model of the Grunman F9F-9 airplane. The effects of alternate fuselage shapes, wing camber, wing fences, and fuselage dive brakes on the aerodynamic characteristics were also investigated. These tests were made at a Reynolds number of 1.96 x l0 (exp 6) based on the wing mean aerodynamic chord of 0.545 foot. The basic configuration had a static margin of stability of 38.4 percent of the mean aerodynamic chord and a minimum drag coefficient of 0.049. For the maximum horizontal tail deflection investigated (-l0 deg), the maximum trim lift coefficient was 0.338. The basic configuration had positive static lateral stability at zero angle of attack and positive directional control throughout the angle-of-attack range investigated up to ll deg.
Geologic map of the Bell Regio Quadrangle (V-9), Venus
Campbell, Bruce A.; Campbell, Patricia G.
2002-01-01
The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.
Geologic/geomorphic map of the Galindo Quadrangle (V-40), Venus
Chapman, Mary G.
2000-01-01
The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.
Geologic map of the Carson Quadrangle (V-43), Venus
Bender, Kelly C.; Senske, David A.; Greeley, Ronald
2000-01-01
The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20° to 45°. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75° by 75° harmonic field.
Geological map of the Kaiwan Fluctus Quadrangle (V-44), Venus
Bridges, Nathan T.; McGill, George E.
2002-01-01
Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphereon October 12, 1994. Magellan had the objectives of: (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September of 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbit-circularization in mid-1993. These data exist as a 75? by 75? harmonic field.
Geologic map of the Pandrosos Dorsa Quadrangle (V-5), Venus
Rosenberg, Elizabeth; McGill, George E.
2001-01-01
Introduction The Magellan spacecraft orbited Venus from August 10, 1990, until it plunged into the Venusian atmosphere on October 12, 1994. Magellan had the objectives of (1) improving knowledge of the geologic processes, surface properties, and geologic history of Venus by analysis of surface radar characteristics, topography, and morphology and (2) improving knowledge of the geophysics of Venus by analysis of Venusian gravity. The Magellan spacecraft carried a 12.6-cm radar system to map the surface of Venus. The transmitter and receiver systems were used to collect three datasets: synthetic aperture radar (SAR) images of the surface, passive microwave thermal emission observations, and measurements of the backscattered power at small angles of incidence, which were processed to yield altimetric data. Radar imaging and altimetric and radiometric mapping of the Venusian surface were done in mission cycles 1, 2, and 3, from September 1990 until September 1992. Ninety-eight percent of the surface was mapped with radar resolution of approximately 120 meters. The SAR observations were projected to a 75-m nominal horizontal resolution; these full-resolution data compose the image base used in geologic mapping. The primary polarization mode was horizontal-transmit, horizontal-receive (HH), but additional data for selected areas were collected for the vertical polarization sense. Incidence angles varied from about 20? to 45?. High-resolution Doppler tracking of the spacecraft was done from September 1992 through October 1994 (mission cycles 4, 5, 6). High-resolution gravity observations from about 950 orbits were obtained between September 1992 and May 1993, while Magellan was in an elliptical orbit with a periapsis near 175 kilometers and an apoapsis near 8,000 kilometers. Observations from an additional 1,500 orbits were obtained following orbitcircularization in mid-1993. These data exist as a 75? by 75? harmonic field.
NASA Technical Reports Server (NTRS)
Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis
1993-01-01
Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.
Hard X-ray imaging from Explorer
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Murray, S. S.
1981-01-01
Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.
A free-trailing vane flow direction indicator employing a linear output Hall effect transducer
NASA Technical Reports Server (NTRS)
Zell, Peter T.; Mcmahon, Robert D.
1988-01-01
The Hall effect vane (HEV) was developed to measure flow angularity in the NASA 40-by-80-foot and 80-by-120-foot wind tunnels. This indicator is capable of sensing flow direction at air speeds from 5 to 300 knots and over a + or - 40 deg angle range with a resolution of 0.1 deg. A free-trailing vane configuration employing a linear output Hall effect transducer as a shaft angle resolver was used. The current configuration of the HEV is designed primarily for wind tunnel calibration testing; however, other potential applications include atmospheric, flight or ground research testing. The HEV met initial design requirements.
Hypersonic Shock Interactions About a 25 deg/65 deg Sharp Double Cone
NASA Technical Reports Server (NTRS)
Moss, James N.; LeBeau, Gerald J.; Glass, Christopher E.
2002-01-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 air flow about a sharp double cone. Computations are made with the direct simulation Monte Carlo (DSMC) method by using two different codes: the G2 code of Bird and the DAC (DSMC Analysis Code) code of LeBeau. The flow conditions are the pretest nominal free-stream conditions specified for the ONERA R5Ch low-density wind tunnel. The focus is on the sensitivity of the interactions to grid resolution while providing information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
NASA Technical Reports Server (NTRS)
Anderson, K. A.
1972-01-01
Design studies for an X-ray experiment using solid state detectors and for an experiment using a proportional counter for investigating Jovian and Saturnian magnetospheres are reported. Background counting rates through the forward aperture and leakage fluxes are discussed for each design. It is concluded that the best choice of instrument appears to have following the characteristics: (1) two separate multiwire proportional counters for redundancy; (2) passive collimation to restrict the field to about 5 deg, wiregrid modulation collimation to about 0.1 deg angular resolution; (3) no active shielding system around the counter body; and (4) light passive shielding around any portion of the counter body exposed to space to absorb most of the cosmic X-ray background.
Observations of the 5-day wave in the mesosphere and lower thermosphere
NASA Technical Reports Server (NTRS)
Wu, D. L.; Hays, P. B.; Skinner, W. R.
1994-01-01
The 5-day planetary wave has been detected in the winds measured by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) in the mesosphere and lower thermosphere (50-110 km). The appearances of the 5-day wave are transient, with a lifetime of 10-20 days in the two-year data set. The structures of selected 5-day wave events are in generally good agreement with the (1,1) Rossby normal mode for both zonal and meridional components. A climatology of the 5-day wave is presented for an altitude of 95 km and latitudes mainly between 40 deg S and 40 deg N.
FLEET Velocimetry Measurements on a Transonic Airfoil
NASA Technical Reports Server (NTRS)
Burns, Ross A.; Danehy, Paul M.
2017-01-01
Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.
MAGSAT investigation of crustal magnetic anomalies in the eastern Indian Ocean
NASA Technical Reports Server (NTRS)
Sailor, R. V.; Lazarewicz, A. R.
1983-01-01
Crustal magnetic anomalies in a region of the eastern Indian Ocean were studied using data from NASA's MAGSAT mission. The investigation region (0 deg to 50 deg South, 75 to 125 deg East) contains several important tectonic features, including the Broken Ridge, Java Trench, Ninetyeast Ridge, and Southeast Indian Ridge. A large positive magnetic anomaly is associated with the Broken Ridge and smaller positive anomalies correlate with the Ninetyeast Ridge and western Australia. Individual profiles of scalar data (computed from vector components) were considered to determine the overall data quality and resolution capability. A set of MAGSAT ""Quiet-Time'' data was used to compute an equivalent source crustal magnetic anomaly map of the study region. Maps of crustal magnetization and magnetic susceptibility were computed from the equivalent source dipoles. Gravity data were used to help interpretation, and a map of the ratio of magnetization to density contrasts was computed using Poisson's relation. The results are consistent with the hypothesis of induced magnetization of a crustal layer having varying thickness and composition.
NASA Technical Reports Server (NTRS)
DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.
2017-01-01
The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.
NASA Technical Reports Server (NTRS)
Vaysberg, O. L.; Dyachkov, A. V.; Smirnov, V. N.; Tsyrkin, K. B.; Isaeva, R. A.
1980-01-01
Four electrostatic analyzers with channel electron multipliers as detectors were used to measure solar wind ionic flow. The axes of the fields of vision of two of these analyzers were directed along the axis of the automatic interplanetary station, oriented towards the Sun, while the other two were turned in one plane at angles of +15 deg and -15 deg. The full hemisphere of the angular diagram of each analyzer was approximately 5 deg. The energetic resolution was approximately 6%, and the geometric energy was 0.002 sq cm ave. keV. Each analyzer covered an energetic range of approximately 10 in eight energetic intervals. Spectral distributions were processed in order to obtain the velocity and temperature of the protons. Tabular data show the hour interval (universal time) and the average solar wind velocity in kilometers per second.
Far-IR Measurements at Cerro Toco, Chile: FIRST, REFIR, and AERI
NASA Technical Reports Server (NTRS)
Cageao, Richard P.; Alford, J. Ashley; Johnson, David G.; Kratz, David P.; Mlynczak, Martin G.
2010-01-01
In mid-2009, the Radiative Heating in the Underexplored Bands Campaign II (RHUBC-II) was conducted from Cerro Toco, Chile, a high, dry, remote mountain plateau, 23degS , 67.8degW at 5.4km, in the Atacama Desert of Northern Chile. From this site, dominant IR water vapor absorption bands and continuum, saturated when viewed from the surface at lower altitudes, or in less dry locales, were investigated in detail, elucidating IR absorption and emission in the atmosphere. Three FTIR instruments were at the site, the Far-Infrared Spectroscopy of the Troposphere (FIRST), the Radiation Explorer in the Far Infrared (REFIR), and the Atmospheric Emitted Radiance Interferometer (AERI). In a side-by-side comparison, these measured atmospheric downwelling radiation, with overlapping spectral coverage from 5 to100um (2000 to 100/cm), and instrument spectral resolutions from 0.5 to 0.64/cm, unapodized. In addition to the FTIR and other ground-based IR and microwave instrumentation, pressure/temperature/relative humidity measuring sondes, for atmospheric profiles to 18km, were launched from the site several times a day. The derived water vapor profiles, determined at times matching the FTIR measurement times, were used to model atmospheric radiative transfer. Comparison of instrument data, all at the same spectral resolution, and model calculations, are presented along with a technique for determining adjustments to line-by-line calculation continuum models. This was a major objective of the campaign.
NASA Technical Reports Server (NTRS)
Sonneborn, George; Andre, Martial; Oliveira, Cristina; Hebrard, Guillaume; Howk, J. Christopher; Tripp, Todd M.; Chayer, Pierre; Friedman, Scott D.; Kruk, Jeffery W.; Jenkins, Edward B.;
2002-01-01
High resolution far-ultraviolet spectra of the O-type subdwarf BD+28(deg)4211 were obtained with the Far Ultraviolet Spectroscopic Explorer to measure the interstellar deuterium, nitrogen, and oxygen abundances in this direction. The interstellar D(I) transitions are analyzed down to Ly(ioat) at 920.7 A. The star was observed several times at different target offsets in the direction of spectral dispersion. The aligned and coedited spectra have high signal-to-noise ratios (S/N=50-100). D(I), N(I), and O(I) transitions were analyzed with curve-of-growth and profile fitting techniques. A model of interstellar molecular hydrogen on the line of sight was derived from H(II) lines in the FUSE spectra and used to help analyze some features where blending with H(II) was significant. The H(I) column density was determined from high resolution HST/STIS spectra of Ly(alpha) to be log N(H(I))= 19.846+/-0.035(2sigma), which is higher than is typical for sight lines in the local ISM studied for D/H. We found that D/H=(1.39+/-0.21)x 10(exp -5)(2sigma) and O/H=(2.37+/-0.55)x10(exp -4)(2sigma). O/H toward BD+28(deg)4211 appears to be significantly below the mean O/H ratio for the ISM and the Local Bubble.
Dynamical downscaling techniques have previously been developed by the U.S. Environmental Protection Agency (EPA) using a nested WRF at 108- and 36-km. Subsequent work extended one-way nesting down to 12-km resolution. Recently, the EPA Office of Research and Development used com...
NASA Astrophysics Data System (ADS)
Skamarock, W. C.
2017-12-01
We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.
Zhan, Huili; Zhang, Huibo; Bai, Rongjie; Qian, Zhanhua; Liu, Yue; Zhang, Heng; Yin, Yuming
2017-12-01
To investigate if using high-resolution 3-T MRI can identify additional injuries of the triangular fibrocartilage complex (TFCC) beyond the Palmer classification. Eighty-six patients with surgically proven TFCC injury were included in this study. All patients underwent high-resolution 3-T MRI of the injured wrist. The MR imaging features of TFCC were analyzed according to the Palmer classification. According to the Palmer classification, 69 patients could be classified as having Palmer injuries (52 had traumatic tears and 17 had degenerative tears). There were 17 patients whose injuries could not be classified according to the Palmer classification: 13 had volar or dorsal capsular TFC detachment and 4 had a horizontal tear of the articular disk. Using high-resolution 3-T MRI, we have not only found all the TFCC injuries described in the Palmer classification, additional injury types were found in this study, including horizontal tear of the TFC and capsular TFC detachment. We propose the modified Palmer classification and add the injury types that were not included in the original Palmer classification.
Ma, Po-Lun; Rasch, Philip J.; Wang, Minghuai; ...
2015-06-23
We report the Community Atmosphere Model Version 5 is run at horizontal grid spacing of 2, 1, 0.5, and 0.25°, with the meteorology nudged toward the Year Of Tropical Convection analysis, and cloud simulators and the collocated A-Train satellite observations are used to explore the resolution dependence of aerosol-cloud interactions. The higher-resolution model produces results that agree better with observations, showing an increase of susceptibility of cloud droplet size, indicating a stronger first aerosol indirect forcing (AIF), and a decrease of susceptibility of precipitation probability, suggesting a weaker second AIF. The resolution sensitivities of AIF are attributed to those ofmore » droplet nucleation and precipitation parameterizations. Finally, the annual average AIF in the Northern Hemisphere midlatitudes (where most anthropogenic emissions occur) in the 0.25° model is reduced by about 1 W m -2 (-30%) compared to the 2° model, leading to a 0.26 W m -2 reduction (-15%) in the global annual average AIF.« less
Development of a low energy electron spectrometer for SCOPE
NASA Astrophysics Data System (ADS)
Tominaga, Yuu; Saito, Yoshifumi; Yokota, Shoichiro
We are newly developing a low-energy charged particle analyzer for the future satellite mission SCOPE (cross Scale COupling in the Plasma universE). The main purpose of the mission is to understand the cross scale coupling between macroscopic MHD scale phenomena and microscopic ion and electron-scale phenomena. In order to under-stand the dynamics of plasma in small scales, we need to observe the plasma with an analyzer which has high time resolution. For ion-scale phenomena, the time resolution must be as high as ion cyclotron frequency (-10 sec) in Earth's magnetosphere. However, for electron-scale phe-nomena, the time resolution must be as high as electron cyclotron frequency (-1 msec). The GEOTAIL satellite that observes Earth's magnetosphere has the analyzer whose time resolution is 12 sec, so the satellite can observe ion-scale phenomena. However in the SCOPE mission, we will go further to observe electron-scale phenomena. Then we need analyzers that have at least several msec time resolution. Besides, we need to make the analyzer as small as possible for the volume and weight restrictions of the satellite. The diameter of the top-hat analyzer must be smaller than 20 cm. In this study, we are developing an electrostatic analyzer that meets such requirements using numerical simulations. The electrostatic analyzer is a spherical/toroidal top-hat electrostatic analyzer with three nested spherical/toroidal deflectors. Using these deflectors, the analyzer measures charged particles simultaneously in two different energy ranges. Therefore time res-olution of the analyzer can be doubled. With the analyzer, we will measure energies from 10 eV to 22.5 keV. In order to obtain three-dimensional distribution functions of low energy parti-cles, the analyzer must have 4-pi str field of view. Conventional electrostatic analyzers use the spacecraft spin to have 4-pi field of view. So the time resolution of the analyzer depends on the spin frequency of the spacecraft. However, we cannot secure the several msec time resolution by using the spacecraft spin. In the SCOPE mission, we set 8 pairs of two nested electrostatic analyzers on each side of the spacecraft, which enable us to secure 4-pi field of view altogether. Then the time resolution of the analyzer does not depend on the spacecraft spin. Given that the sampling time of the analyzer is 0.5 msec, the time resolution of the analyzer can be 8 msec. In order to secure the time resolution as high as 10 msec, the geometric factor of the analyzer has to be as high as 8*10-3 (cm2 str eV/eV/22.5deg). Higher geometric factor requires bigger instrument. However, we have to reduce the volume and weight of the instrument to set it on the satellite. Under these restrictions, we have realized the analyzer which has the geometric factors of 7.5*10-3 (cm2 str eV/eV/22.5deg) (inner sphere) and 10.0*10-3 (cm2 str eV/eV/22.5deg) (outer sphere) with diameter of 17.4 cm.
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
Perspective View with Landsat Overlay, Salt Lake City Olympics Venues, Utah
NASA Technical Reports Server (NTRS)
2002-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This computer generated perspective image provides a northward looking 'view from space' that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling, and the nearby Snow Basin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City area ski resorts host the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.
This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and a Landsat 5 satellite image mosaic. Topographic expression is exaggerated four times.For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site] Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter(approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D.C.Size: View width 48.8 kilometers (30.2 miles), View distance 177 kilometers (110 miles) Location: 41 deg. North lat., 112.0 deg. West lon. Orientation: View North, 20 degrees below horizontal Image Data: Landsat Bands 3, 2, 1 as red, green, blue, respectively. Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 30 meters (98 feet) Date Acquired: February 2000 (SRTM), 1990s (Landsat 5 image mosaic)NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph
2012-01-01
Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.
Molecular clouds in the Carina arm
NASA Technical Reports Server (NTRS)
Grabelsky, D. A.
1986-01-01
Results from the first large-scale survey in the CO(J = 1 to 0) line of the Vela-Carina-Centaurus region of the Southern Milky Way are reported. The observations, made with the Columbia University 1.2 m millimeter-wave telescope at Cerro Tololo, were spaced every beamwidth (0.125 deg) in the range 270 deg is less than or = l is less than or = 300 deg and -1 deg less than or = b less then or = 1 deg, with latitude extensions to cover all Carina arm emission beyond absolute b = 1 deg. In a concurrent survey made with the same telescope, every half-degree in latitude and longitude was sampled. Both surveys had a spectral coverage of 330 km/s with a resolution of 1.3 km/s. The Carina arm is the dominant feature in the data. Its abrupt tangent at l is approx. = 280 deg and characteristic loop in the l,v diagram are unmistakable evidence for CO spiral structure. When the emission is integrated over velocity and latitude, the height of the step seen in the tangent direction suggests that the arm-interarm contrast is at least 13:1. Comparison of the CO and H I data shows close agreement between these two species in a segment of the arm lying outside the solar circle. The distribution of the molecular layer about the galactic plane in the outer Galaxy is determined. Between R = 10.5 and 12.5 kpc, the average CO midplane dips from z = -48 to -167 pc below the b = 0 deg plane, following a similar well-known warping of the H I layer. In the same range of radii the half-thickness of the CO layer increases from 112 to 182 pc. Between l = 270 deg and 300 deg, 27 molecular clouds are identified and cataloged along with heliocentric distances and masses. An additional 16 clouds beyond 300 deg are cataloged from an adjoining CO survey made with the same telescope. The average mass for the Carina arm clouds is 1.4x 10(6)M (solar), and the average intercloud spacing along the arm is 700 pc. Comparison of the distribution of the Carina arm clouds with that of similarly massive molecular clouds in the first and second quadrants strongly suggests that the Carina and Sagittarius arms form a single spiral arm approx. 40 kpc long wrapping two-thirds of the way around the Galaxy.
Global Variations in Regolith Properties on Asteroid Vesta from Dawn's Low-Altitude Mapping Orbit
NASA Technical Reports Server (NTRS)
Denevi, Brett W.; Beck, Andrew W.; Coman, Ecaterina; Thomson, Bradley J.; Ammannito, Eleonora; Blewett, David T.; Sunshine, Jessica M.; De Sanctis, Maria Cristina; Li, Jian-Yang; Marchi, Simone;
2016-01-01
We investigate the depth, variability, and history of regolith on asteroid Vesta using data from the Dawn spacecraft. High-resolution (15-20 m pixel(sup -1)) Framing Cameraimages are used to assess the presence of morphologic indicators of a shallow regolith,including the presence of blocks in crater ejecta, spur-and-gully-type features in crater walls,and the retention of small (less than 300 m) impact craters. Such features reveal that the broad,regional heterogeneities observed on Vesta in terms of albedo and surface composition extend to the physical properties of the upper approx. 1 km of the surface. Regions of thin regolithare found within the Rheasilvia basin and at equatorial latitudes from approx. 0-90 deg. E and approx.260-360 deg. E. Craters in these areas that appear to excavate material from beneath the regolithhave more diogenitic (Rheasilvia, 090 deg. E) and cumulate eucrite (260-360 deg. E) compositions.A region of especially thick regolith, where depths generally exceed 1 km, is found from approx.100-240 deg. E and corresponds to heavily cratered, low-albedo surface with a basaltic eucritecomposition enriched in carbonaceous chondrite material. The presence of a thick regolithin this area supports the idea that this is an ancient terrain that has accumulated a larger component of exogenic debris. We find evidence for the gardening of crater ejecta towardmore howarditic compositions, consistent with regolith mixing being the dominant form of "weathering" on Vesta.
Search for Jovian auroral hot spots
NASA Technical Reports Server (NTRS)
Atreya, S. K.; Barker, E. S.; Yung, Y. L.; Donahue, T. M.
1977-01-01
Auroral emission originating at the foot of the Io-associated flux tube at Jupiter has been detected with a high-resolution spectrometer/telescope on board the Orbiting Astronomical Observatory Copernicus. The emission intensity at Ly-alpha is found to be greater than 100 kR, and the emission is located at zenographic latitudes greater than 65 deg.
NASA Astrophysics Data System (ADS)
Smith, W.; Weisz, E.; McNabb, J. M. C.
2017-12-01
A technique is described which enables the combination of high vertical resolution (1 to 2-km) JPSS hyper-spectral soundings (i.e., from AIRS, CrIS, and IASI) with high horizontal (2-km) and temporal (15-min) resolution GOES multi-spectral imagery (i.e., provided by ABI) to produce low latency sounding products with the highest possible spatial and temporal resolution afforded by the instruments.
NASA Technical Reports Server (NTRS)
Arbic, R. G.
1955-01-01
Results are presented of a free-flight investigation between Mach numbers of 0.7 to 1.3 and Reynolds numbers of 3.1 x 10(exp 6) to 7.0 x 10(exp 6) to determine the longitudinal aerodynamic characteristics of the Northrop MX-775A missile. This missile has a weng, body, and vertical tail, but has no horizontal tail. The basic wing plan form has an aspect ratio of 5.5, 45 deg of sweepback of the 0.406 streamwise chord line, and a taper ratio of 0.4. A 1/10-scale steel-wing model of the missile was flown with modifications to the basic wing plan form consisting of leading-edge chord-extensions deflected 7 deg downward together with the forward 15 percent of the wing chord, and inboard trailing-edge flaps deflected 5 deg downward. In addition, the model had a static-pressure tube mounted at the tip of the vertical tail for position-error measurements and had a speed brake also mounted on the vertical tail to trim the model to positive lift coefficients and to permit determination of the trim and drag effectiveness of the brake. The data are uncorrected for the effects of wing elasticity, but experimental wing influence coefficients are presented.
Late Holocene Environmental Changes from NY-NJ Estuaries
NASA Technical Reports Server (NTRS)
Peteet, Dorothy M.
2000-01-01
High-resolution records of environmental change in the lower Hudson estuary are quite rare. We present preliminary data from several marshes in the New York- New Jersey region in order to understand the late Holocene environmental history of this region. Our project includes salt marsh cores from Hackensack, Piermont, Staten Island, and Jamaica Bay. Our preliminary research has focused on a 11.15 m sediment core from Piermont Marsh, New York (40 deg N, 74 deg W) in an attempt to document the Holocene environmental history of the region. Lithology, loss -on -ignition (LOI), pollen, plant macrofossils, charcoal, and foraminifera were analyzed. Core lithology consists of peat, silts, and clays that vary in color and texture. The base of the core is AMS C-14 dated to 4190 yr BP. Preliminary low-resolution analysis of the core to date includes sampling at the 1-meter interval throughout the core. LOI of the sediments ranges from 1% to 85%. Average rate of deposition is about .26 cm/yr. Major changes in pollen percentages are visible throughout the core.
Calibration and performance of the UCR double Compton gamma ray telescope
NASA Technical Reports Server (NTRS)
Ait-Ouamer, Farid; Kerrick, Alan D.; Sarmouk, Abderrezak; O'Neill, Terrence J.; Sweeney, William E.
1990-01-01
Results of the field calibration and performance of the UCR double Compton gamma-ray telescope are presented. The telescope is a balloon-borne instrument with an upper array of 16 plastic scintillator bars and a lower one of 16 NaI(Tl) bars. The telescope is sensitive to celestial gamma rays from 1 to 30 MeV. The data were collected on February 14, 1988 prior to launch in Alice Springs, Australia to observe SN 1987A. Radioactive sources were used to calibrate the energy deposits in the scintillators. Each bar was analyzed laterally using pulse height or timing to obtain the positions of the gamma ray interactions. Double scatter events from an Na-24 source simulating a celestial source were studied to obtain the general performance of the telescope and to develop imaging techniques, later used with the flight data. An angular resolution of 11 deg FWHM and energy resolutions of 13 and 10 percent FWHM at 1.37 and 2.75 MeV, respectively, were found. The efficiency of the telescope is 0.0035 at 1.37 MeV and zenith angle 31 deg.
LOFAR 150-MHz observations of the Boötes field: catalogue and source counts
NASA Astrophysics Data System (ADS)
Williams, W. L.; van Weeren, R. J.; Röttgering, H. J. A.; Best, P.; Dijkema, T. J.; de Gasperin, F.; Hardcastle, M. J.; Heald, G.; Prandoni, I.; Sabater, J.; Shimwell, T. W.; Tasse, C.; van Bemmel, I. M.; Brüggen, M.; Brunetti, G.; Conway, J. E.; Enßlin, T.; Engels, D.; Falcke, H.; Ferrari, C.; Haverkorn, M.; Jackson, N.; Jarvis, M. J.; Kapińska, A. D.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Morganti, R.; Orrú, E.; Retana-Montenegro, E.; Sridhar, S. S.; Toribio, M. C.; White, G. J.; Wise, M. W.; Zwart, J. T. L.
2016-08-01
We present the first wide area (19 deg2), deep (≈120-150 μJy beam-1), high-resolution (5.6 × 7.4 arcsec) LOFAR High Band Antenna image of the Boötes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6 276 sources detected over an area of 19 deg2, with a peak flux density threshold of 5σ. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150-MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.
NASA Astrophysics Data System (ADS)
Shimamoto, Atsushi; Tanaka, Kohichi
1995-09-01
An optical fiber bundle displacement sensor with subnanometer order resolution and low thermal drift is proposed. The setup is based on a carrier amplifier system and involves techniques to eliminate fluctuation in the light power of the source. The achieved noise level of the sensor was 0.03 nm/ \\radical Hz \\end-radical . The stability was estimated by comparing the outputs of two different sensors from the same target for 4 ks (67 min). The relative displacements between the fiber bundle ends of the two sensors and the target surface varied in the area of 400 nm depending on the ambient temperature variation at 2 deg C. However, the difference in output between the two sensor systems is within 2 nm for more than 1 hour of measurement. It is expected that it would be reduced to within the area of 0.1 nm if the ambient temperature were controlled to within +/-0.1 deg C. It is concluded that the stability of the sensors is sufficiently good to be used with nanotechnological instruments.
High resolution paleoceanography of the central Gulf of California during the past 15,000 years
NASA Astrophysics Data System (ADS)
Barron, J. A.; Bukry, D.; Dean, W. E.
2004-12-01
A high resolution paleoceanographic history of the central Gulf of California during the past 15,000 years has been assembled using microfossil (diatom and silicoflagellate) and geochemical proxy data from a composite section of gravity core GGC55 and giant piston core JPC56 in the western Guaymas Basin (27.5 deg. N, 112.1 deg. W, water depth 818 m) and from DSDP Site 480 (27.9 deg. N, 111.7 deg. W, 655 m water depth) in the eastern Guaymas Basin. These data argue for abrupt, basin-wide changes during the Bolling-Allerod, Younger Dryas, and earliest part of the Holocene that mirror changes documented in cores from the Pacific margins of both Baja and Alta California. Between about 10 ka and 6 ka, these central Gulf of California records became more regionally distinctive, as surface and intermediate waters resembling those of the modern-day northern Gulf became dominant and virtually no calcium carbonate or tropical microfossils were preserved in the underlying sediments. Beginning at about 6 ka, tropical microfossils returned to the central Gulf, possibly signaling enhanced El Nino-like conditions. Proxy data suggest that late winter-early spring coastal upwelling was abruptly strengthened on the mainland (eastern) side at about 5.4 ka and again at about 3.0 ka, whereas sediments from the western side of the central Gulf became increasingly diatom poor and calcium carbonate rich. An intensification of northwest winds during the late winter to early spring likely occurred in the central Gulf at about 5.4 ka. Interestingly, this proposed wind shift in the Gulf of California coincides with an abrupt 5.4 ka change to drier conditions in the Cariaco Basin off Venezuela that has been proposed to reflect a southward shift in the mean position of the Intertropical Convergence Zone in response to increasing El Nino-like conditions.
Galactic Supernova Remnant Candidates Discovered by THOR
NASA Astrophysics Data System (ADS)
Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team
2018-01-01
There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric
2002-01-01
Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the 20-year data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the 20 year period. Monthly anomalies of precipitation are related to ENS0 variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 deg. latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is discussed. Finally, a TRMM-based 3-hr analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map. This TRMM standard product will be available for the entire TRMM period (January 1998-present). A real-time version of this merged product is being produced and is available at 0.25 deg. latitude-longitude resolution over the latitude range from 5O deg. N-50 deg. S. Examples are shown, including its use in monitoring flood conditions.
The Wide Field X-ray Telescope Mission
NASA Astrophysics Data System (ADS)
Murray, Stephen S.; WFXT Team
2010-01-01
To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, T.; Zimoch, D.
The operation of an APPLE II based undulator beamline with all its polarization states (linear horizontal and vertical, circular and elliptical, and continous variation of the linear vector) requires an effective description allowing an automated calculation of gap and shift parameter as function of energy and operation mode. The extension of the linear polarization range from 0 to 180 deg. requires 4 shiftable magnet arrrays, permitting use of the APU (adjustable phase undulator) concept. Studies for a pure fixed gap APPLE II for the SLS revealed surprising symmetries between circular and linear polarization modes allowing for simplified operation. A semi-analyticalmore » model covering all types of APPLE II and its implementation will be presented.« less
NASA Technical Reports Server (NTRS)
Stone, David G.
1947-01-01
Flight tests were conducted at the Flight Test Station of the Pilotless Aircraft Research Division at Wallop Island, Va., to determine the longitudinal control and stability characteristics of 0.5-scale models of the Fairchild Lark pilotless aircraft with the tail in line with the wings a d with the horizontal wing flaps deflected 60 deg. The data were obtained by the use of a telemeter and by radar tracking.
Shower disc sampling and the angular resolution of gamma-ray shower detectors
NASA Technical Reports Server (NTRS)
Lambert, A.; Lloyd-Evans, J.
1985-01-01
As part of the design study for the new UHE gamma ray detector being constsructed at Haverah Park, a series of experiments using scintillators operated side-by-side in 10 to the 15th power eV air showers are undertaken. Investigation of the rms sampling fluctuations in the shower disc arrival time yields an upper limit to the intrinsic sampling uncertainty, sigma sub rms = (1.1 + or - 0.1)ns, implying an angular resolution capability 1 deg for an inter-detector spacing of approximately 25 m.
Prototype Global Burnt Area Algorithm Using a Multi-sensor Approach
NASA Astrophysics Data System (ADS)
López Saldaña, G.; Pereira, J.; Aires, F.
2013-05-01
One of the main limitations of products derived from remotely-sensed data is the length of the data records available for climate studies. The Advanced Very High Resolution Radiometer (AVHRR) long-term data record (LTDR) comprises a daily global atmospherically-corrected surface reflectance dataset at 0.05Deg spatial resolution and is available for the 1981-1999 time period. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has been on orbit in the Terra platform since late 1999 and in Aqua since mid 2002; surface reflectance products, MYD09CMG and MOD09CMG, are available at 0.05Deg spatial resolution. Fire is strong cause of land surface change and emissions of greenhouse gases around the globe. A global long-term identification of areas affected by fire is needed to analyze trends and fire-clime relationships. A burnt area algorithm can be seen as a change point detection problem where there is an abrupt change in the surface reflectance due to the biomass burning. Using the AVHRR-LTDR and the aforementioned MODIS products, a time series of bidirectional reflectance distribution function (BRDF) corrected surface reflectance was generated using the daily observations and constraining the BRDF model inversion using a climatology of BRDF parameters derived from 12 years of MODIS data. The identification of the burnt area was performed using a t-test in the pre- and post-fire reflectance values and a change point detection algorithm, then spectral constraints were applied to flag changes caused by natural land processes like vegetation seasonality or flooding. Additional temporal constraints are applied focusing in the persistence of the affected areas. Initial results for years 1998 to 2002, show spatio-temporal coherence but further analysis is required and a formal rigorous validation will be applied using burn scars identified from high-resolution datasets.
Day, I N; Humphries, S E
1994-11-01
Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis.
NASA Astrophysics Data System (ADS)
Xu, Z.; Rhoades, A.; Johansen, H.; Ullrich, P. A.; Collins, W. D.
2017-12-01
Dynamical downscaling is widely used to properly characterize regional surface heterogeneities that shape the local hydroclimatology. However, the factors in dynamical downscaling, including the refinement of model horizontal resolution, large-scale forcing datasets and dynamical cores, have not been fully evaluated. Two cutting-edge global-to-regional downscaling methods are used to assess these, specifically the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research & Forecasting (WRF) regional climate model, under different horizontal resolutions (28, 14, and 7 km). Two groups of WRF simulations are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM outputs (WRF_VRCESM) to evaluate the effects of the large-scale forcing datasets. The impacts of dynamical core are assessed by comparing the VR-CESM simulations to the coupled WRF_VRCESM simulations with the same physical parameterizations and similar grid domains. The simulated hydroclimatology (i.e., total precipitation, snow cover, snow water equivalent and surface temperature) are compared with the reference datasets. The large-scale forcing datasets are critical to the WRF simulations in more accurately simulating total precipitation, SWE and snow cover, but not surface temperature. Both the WRF and VR-CESM results highlight that no significant benefit is found in the simulated hydroclimatology by just increasing horizontal resolution refinement from 28 to 7 km. Simulated surface temperature is sensitive to the choice of dynamical core. WRF generally simulates higher temperatures than VR-CESM, alleviates the systematic cold bias of DJF temperatures over the California mountain region, but overestimates the JJA temperature in California's Central Valley.
Why do Models Overestimate Surface Ozone in the Southeastern United States?
NASA Technical Reports Server (NTRS)
Travis, Katherine R.; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Zhu, Lei; Yu, Karen; Miller, Christopher C.; Yantosca, Robert M.; Sulprizio, Melissa P.;
2016-01-01
Ozone pollution in the Southeast US involves complex chemistry driven by emissions of anthropogenic nitrogen oxide radicals (NOx = NO + NO2) and biogenic isoprene. Model estimates of surface ozone concentrations tend to be biased high in the region and this is of concern for designing effective emission control strategies to meet air quality standards. We use detailed chemical observations from the SEAC4RS aircraft campaign in August and September 2013, interpreted with the GEOS-Chem chemical transport model at 0.25 deg. x 0.3125 deg. horizontal resolution, to better understand the factors controlling surface ozone in the Southeast US. We find that the National Emission Inventory (NEI) for NOx from the US Environmental Protection Agency (EPA) is too high. This finding is based on SEAC4RS observations of NOx and its oxidation products, surface network observations of nitrate wet deposition fluxes, and OMI satellite observations of tropospheric NO2 columns. Our results indicate that NEI NOx emissions from mobile and industrial sources must be reduced by 30-60%, dependent on the assumption of the contribution by soil NOx emissions. Upper tropospheric NO2 from lightning makes a large contribution to satellite observations of tropospheric NO2 that must be accounted for when using these data to estimate surface NOx emissions. We find that only half of isoprene oxidation proceeds by the high-NOx pathway to produce ozone; this fraction is only moderately sensitive to changes in NOx emissions because isoprene and NOx emissions are spatially segregated. GEOS-Chem with reduced NOx emissions provides an unbiased simulation of ozone observations from the aircraft, and reproduces the observed ozone production efficiency in the boundary layer as derived from a 15 regression of ozone and NOx oxidation products. However, the model is still biased high by 8 +/- 13 ppb relative to observed surface ozone in the Southeast US. Ozonesondes launched during midday hours show a 7 ppb ozone decrease from 1.5 km to the surface that GEOS-Chem does not capture. This bias may reflect a combination of excessive vertical mixing and net ozone production in the model boundary layer.
O'Hara, Charles J.; Oldale, Robert N.
1980-01-01
This report presents results of marine studies conducted by the U.S. Geological Survey (USGS) during the summers of 1975 and 1976 in eastern Rhode Island Sound and Vineyard Sound (fig. 1) located off the southeastern coast of Massachusetts. The study was made in cooperation with the Massachusetts Department of Public Works and the New England Division of the U.S. Army Corps of Engineers. It covered an area of the Atlantic Inner Continental Shelf between latitude 41 deg 12' and 41 deg 33'N, and between longitude 70 deg 37' and 71 deg 15'W (see index map). Major objectives included assessment of sand and gravel resources, environmental impact evaluation both of offshore mining of these resources and of offshore disposal of solid waste and dredge spoil material, identification and mapping of the offshore geology, and determination of the geologic history of this part of the Inner Shelf. A total of 670 kilometers (km) of closely spaced high-resolution seismic-reflection profiles, 224 km of side-scan sonar data, and 16 cores totaling 90 meters (m) of recovered sediment, were collected during the investigation. This report is companion to geologic maps published for Cape Cod Bay (Oldale and O'Hara, 1975) and Buzzards Bay, Mass. (Robb and Oldale, 1977).
A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Wu, D.; Shinagawa, H.
1990-01-01
The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.
A Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Hall, D. K.; Comiso, J. C.; Digirolamo, N. E.; Stock, L. V.; Riggs, G. A.; Shuman, C. A.
2009-01-01
We are developing a climate-data record (CDR of daily "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. The CDR will be continued in the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite era. Two algorithms remain under consideration. One algorithm under consideration is based on the split-window technique used in the Polar Pathfinder dataset (Fowler et al., 2000 & 21007). Another algorithm under consideration, developed by Comiso (2006), uses a single channel of AVHRR data (channel 4) in conjunction with meteorological-station data to account for atmospheric effects and drift between AVHRR instruments. Known issues being addressed in the production of the CDR are: tune-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds (Stroeve & Steffen, 1998; Wang and Key, 2005; Hall et al., 2008 and Koenig and Hall, submitted), time-series of satellite 1S'1" do not necessarily correspond to actual surface temperatures. The CDR will be validated by comparing results with automatic-,",eather station (AWS) data and with satellite-derived surface-temperature products. Regional "clear-sky" surface temperature increases in the Arctic, measured from AVHRR infrared data, range from 0.57+/-0.02 deg C (Wang and Key, 2005) to 0.72+/-0.10 deg C (Comiso, 2006) per decade since the early 1980s. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. References
A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)
Glen E. Liston; Kelly Elder
2006-01-01
An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Sanchez-Lavega, Agustin; Perez-Hoyos, Santiago; Rojas, Jose Felix; Iñurrigarro, Peio; Mendikoa, Iñigo; Go, Christopher; PVOL-IOPW Team
2016-10-01
The arrival of Juno to Jupiter provides a unique opportunity to link findings of the inner structure of the planet with astronomical observations of its meteorology at cloud level. Long time base observations of Jupiter's atmosphere before and during the Juno mission are critical in providing context to Junocam observations and may benefit the interpretation of the MWR data on the lower atmosphere structure as well as Juno data on the depth of the zonal winds. We have performed a long campaign of observations in the visible with the PlanetCam lucky imaging instrument in the 2.2m telescope at Calar Alto Observatory in Spain with observations obtained in December 2015 and in March, May, June and July 2016. In observations under good atmospheric seeing, the instrument allows to obtain images with a spatial resolution of 0.05'' in the visible and 0.1'' from 1.0 to 1.7 microns. The later is an interesting range of wavelengths for observing Jupiter because of the existence of several strong and weak methane absorption bands not generally used in high-resolution ground-based observations of the planet. A combination of images using narrow filters centered in methane absorption bands and their adjacent continuum allows studying the vertical structure of the clouds at horizontal spatial scales of 350-1000 km over the planet depending on the atmospheric seeing and filter used. The best images can be further processed showing features at spatial resolutions of about 150 km. We have also monitored the state of the atmosphere with images obtained by amateur astronomers contributing to the Planetary Virtual Observatory Laboratory database (http://pvol.ehu.eus). Based on both datasets we present zonal winds from -70 to +75 deg with an accuracy of 10 m/s in the low latitudes and 25 m/s in subpolar latitudes. Relative altitude maps of features observed in bands J, H and others with different methane absorption will be presented.
High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
NASA Astrophysics Data System (ADS)
Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song
2016-11-01
Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.
Optical analysis of a compound quasi-microscope for planetary landers
NASA Technical Reports Server (NTRS)
Wall, S. D.; Burcher, E. E.; Huck, F. O.
1974-01-01
A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.
NASA Astrophysics Data System (ADS)
Moore, Kent; Renfrew, Ian; Bromwich, David; Wilson, Aaron; Vage, Kjetil; Bai, Lesheng
2017-04-01
Open ocean convection, where a loss of surface buoyancy leads to an overturning of the water column, occurs in four distinct regions of the North Atlantic and is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). The overturning typically occurs during cold air outbreaks characterized by large surface turbulent heat fluxes and convective roll cloud development. Here we compare the statistics of the air-sea interaction over these convection sites as represented in three reanalyses with horizontal grid sizes ranging from 80km to 15km. We show that increasing the resolution increases the magnitude and frequency of the most extreme total turbulent heat fluxes, as well as displacing the maxima downstream away from the ice edges. We argue that these changes are a result of the higher resolution reanalysis being better able to represent mesoscale processes that occur within the atmospheric boundary layer during cold air outbreaks.
Toward 10-km mesh global climate simulations
NASA Astrophysics Data System (ADS)
Ohfuchi, W.; Enomoto, T.; Takaya, K.; Yoshioka, M. K.
2002-12-01
An atmospheric general circulation model (AGCM) that runs very efficiently on the Earth Simulator (ES) was developed. The ES is a gigantic vector-parallel computer with the peak performance of 40 Tflops. The AGCM, named AFES (AGCM for ES), was based on the version 5.4.02 of an AGCM developed jointly by the Center for Climate System Research, the University of Tokyo and the Japanese National Institute for Environmental Sciences. The AFES was, however, totally rewritten in FORTRAN90 and MPI while the original AGCM was written in FORTRAN77 and not capable of parallel computing. The AFES achieved 26 Tflops (about 65 % of the peak performance of the ES) at resolution of T1279L96 (10-km horizontal resolution and 500-m vertical resolution in middle troposphere to lower stratosphere). Some results of 10- to 20-day global simulations will be presented. At this moment, only short-term simulations are possible due to data storage limitation. As ten tera flops computing is achieved, peta byte data storage are necessary to conduct climate-type simulations at this super-high resolution global simulations. Some possibilities for future research topics in global super-high resolution climate simulations will be discussed. Some target topics are mesoscale structures and self-organization of the Baiu-Meiyu front over Japan, cyclogenecsis over the North Pacific and typhoons around the Japan area. Also improvement in local precipitation with increasing horizontal resolution will be demonstrated.
A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.
2000-01-01
The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.
1994-01-01
Stratospheric volume mixing ratio profiles of chlorine nitrate (ClONO2) have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded at latitudes between 14 deg N and 54 deg S by the atmospheric trace molecule spectroscopy Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 1 shuttle mission (March 24 to April 2, 1992). The results were obtained from nonlinear least squares fittings of the ClONO2 nu(sub 4) band Q branch at 780.21/cm with improved spectroscopic parameters generated on the basis of recent laboratory work. The individual profiles, which have an accuracy of about +/- 20%, are compared with previous observations and model calculations.
Design of a global soil moisture initialization procedure for the simple biosphere model
NASA Technical Reports Server (NTRS)
Liston, G. E.; Sud, Y. C.; Walker, G. K.
1993-01-01
Global soil moisture and land-surface evapotranspiration fields are computed using an analysis scheme based on the Simple Biosphere (SiB) soil-vegetation-atmosphere interaction model. The scheme is driven with observed precipitation, and potential evapotranspiration, where the potential evapotranspiration is computed following the surface air temperature-potential evapotranspiration regression of Thomthwaite (1948). The observed surface air temperature is corrected to reflect potential (zero soil moisture stress) conditions by letting the ratio of actual transpiration to potential transpiration be a function of normalized difference vegetation index (NDVI). Soil moisture, evapotranspiration, and runoff data are generated on a daily basis for a 10-year period, January 1979 through December 1988, using observed precipitation gridded at a 4 deg by 5 deg resolution.
Modelling Precipitation and Temperature Extremes: The Importance of Horizontal Resolution
NASA Astrophysics Data System (ADS)
Shields, C. A.; Kiehl, J. T.; Meehl, G. A.
2013-12-01
Understanding Earth's water cycle on a warming planet is of critical importance in society's ability to adapt to climate change. Extreme weather events, such as floods, heat waves, and drought will likely change with the water cycle as greenhouse gases continue to rise. Location, duration, and intensity of extreme events can be studied using complex earth system models. Here, we employ the fully coupled Community Earth System Model (CESM1.0) to evaluate extreme event impacts for different possible future forcing scenarios. Simulations applying the Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5 were chosen to bracket the range of model responses. Because extreme weather events happen on a regional scale, there is a tendency to favor using higher resolution models, i.e. models that can represent regional features with greater accuracy. Within the CESM1.0 framework, we evaluate both the standard 1 degree resolution (1 degree atmosphere/land coupled to 1 degree ocean/sea ice), and the higher 0.5 degree resolution version (0.5 degree atmosphere/land coupled to 1 degree ocean/sea ice), focusing on extreme precipitation events, heat waves, and droughts. We analyze a variety of geographical regions, but generally find that benefits from increased horizontal resolution are most significant on the regional scale.
Challenges in the development of very high resolution Earth System Models for climate science
NASA Astrophysics Data System (ADS)
Rasch, Philip J.; Xie, Shaocheng; Ma, Po-Lun; Lin, Wuyin; Wan, Hui; Qian, Yun
2017-04-01
The authors represent the 20+ members of the ACME atmosphere development team. The US Department of Energy (DOE) has, like many other organizations around the world, identified the need for an Earth System Model capable of rapid completion of decade to century length simulations at very high (vertical and horizontal) resolution with good climate fidelity. Two years ago DOE initiated a multi-institution effort called ACME (Accelerated Climate Modeling for Energy) to meet this an extraordinary challenge, targeting a model eventually capable of running at 10-25km horizontal and 20-400m vertical resolution through the troposphere on exascale computational platforms at speeds sufficient to complete 5+ simulated years per day. I will outline the challenges our team has encountered in development of the atmosphere component of this model, and the strategies we have been using for tuning and debugging a model that we can barely afford to run on today's computational platforms. These strategies include: 1) evaluation at lower resolutions; 2) ensembles of short simulations to explore parameter space, and perform rough tuning and evaluation; 3) use of regionally refined versions of the model for probing high resolution model behavior at less expense; 4) use of "auto-tuning" methodologies for model tuning; and 5) brute force long climate simulations.
Scale dependency of regional climate modeling of current and future climate extremes in Germany
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver
2017-11-01
A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.
What model resolution is required in climatological downscaling over complex terrain?
NASA Astrophysics Data System (ADS)
El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem
2018-05-01
This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited < 10% bias with respect to observational data. The errors in minimum and maximum temperatures were reduced by the downscaling, along with a high-quality delineation of temperature variability and extremes for both the 1 and 3 km resolution runs. Wind speeds, on the other hand, are generally overestimated for all model resolutions, in comparison with observational data, particularly on the coast (up to 50%) compared to inland stations (up to 40%). The findings therefore indicate that a 3 km resolution is sufficient for the downscaling, especially that it would allow more years and scenarios to be investigated compared to the higher 1 km resolution at the same computational effort. In addition, the results provide a quantitative measure of the potential errors for various hydrometeorological variables.
NASA Technical Reports Server (NTRS)
Goetz, A. F. H. (Principal Investigator); Abrams, M. J.; Gillespie, A. R.; Siegal, B. S.; Elston, D. P.; Lucchitta, I.; Wu, S. S. C.; Sanchez, A.; Dipaola, W. D.; Schafer, F. J.
1976-01-01
The author has identified the following significant results. It was found that based on resolution, the Skylab S190A products were superior to LANDSAT images. Based on measurements of shoreline features in Lake Mead S190A images had 1.5 - 3 times greater resolution than LANDSAT. In general, the higher resolution of the Skylab data yielded better discrimination among rock units, but in the case of structural features, lower sun angle LANDSAT images (50 deg) were superior to higher sun angle Skylab images (77 deg). The most valuable advantage of the Skylab over the LANDSAT image products is the capability of producing stereo images. Field spectral reflectance measurements on the Coconino Plateau were made in an effort to determine the best spectral band for discrimination of the six geologic units in question, and these bands were 1.3, 1.2, 1.0, and 0.5 microns. The EREP multispectral scanner yielded data with a low signal to noise ratio which limited its usefulness for image enhancement work. Sites that were studied in Arizona were Shivwits Plateau, Verde Valley, Coconino Plateau, and Red Lake. Thematic maps produced by the three classification algorithms analyzed were not as accurate as the maps produced by photointerpretation of composites of enhanced images.
Effects of vertical shear in modelling horizontal oceanic dispersion
NASA Astrophysics Data System (ADS)
Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.
2016-02-01
The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.
NASA Astrophysics Data System (ADS)
Guerra, J. E.; Ullrich, P. A.
2015-12-01
Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.
GUSTO: Gal/Xgal U/LDB Spectroscopic-Stratospheric TeraHertz Observatory
NASA Astrophysics Data System (ADS)
Kidd Walker, Christopher; Kulesa, Craig; Goldsmith, Paul; Groppi, Christopher; Helmich, Frank; Hollenbach, David; Kawamura, Jonathan; Langer, William; Melnick, Gary; Neufeld, David; Pineda, Jorge; Stacey, Gordon; Stark, Antony; Tielens, Alexander; Wolfire, Mark; Yorke, Harold; Young, Erick
2018-01-01
GUSTO is a recently selected NASA Explorer mission that will map in unprecedented detail the structure, dynamics, energy balance, and evolution of the interstellar medium within the Milky Way and Large Magellanic Cloud. GUSTO is a balloon-borne, 0.85-m on-axis telescope that will observe in three important interstellar lines: [CII], [OI], and [NII] at 158, 63, and 205 microns, respectively. With its 60" angular resolution, high-velocity resolution, and efficient “On-The-Fly” mapping strategy, GUSTO will address key unanswered questions about the stellar life cycle and provide new insights into the birth and evolution of stars and galaxies. From its Ultra-Long-Duration Balloon (ULDB) platform at an altitude of 33 km, GUSTO will survey ~100 deg2 of the Milky Way and 24 deg2 of the LMC at 60" angular resolution using three 8-pixel heterodyne array receivers. The GUSTO receivers provide sub-km/s velocity resolution and bandwidths sufficiently wide to track all clouds orbiting in the Milky Way and LMC. GUSTO will detect and locate in three dimensions every important interstellar cloud (AV > 0.5–1) in the surveyed regions. The baseline mission of 100 days can be completed in one ULDB Antarctic balloon flight, and an extended mission of up to 169 days is possible. GUSTO’s observing campaign comprises three distinct surveys: GPS: A Galactic Plane Survey (42 days); LMCS: An LMC Survey (36 days); TDS: Targeted Deep Surveys of selected regions in the Galaxy and LMC (18 days). In our presentation we will discuss both the science goals of GUSTO and the mission implementation.
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Cairns, Brian; Mishchenko, Michael I.; Tsigaridis, Kostas; van Noije, Twan
2014-01-01
To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiationtransport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125 deg × 1.125 deg and 2 deg × 3?: the analysis is restricted to 60 deg S-60 deg N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long-term mean absolute monthly difference between all and dark target (DT) pixels was 0.01-0.02 over the ocean and 0.03-0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07-0.12 (30-45% of the global long-term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01-0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun-glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel-wide along-track instruments such as the Aerosol Polarimetry Sensor and the Cloud-Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along-track sensor to be 0.0005-0.0015 (ocean) and 0.0029-0.01 (land) or 0.5-1.2% and 1.1-4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant change in the global mean AOT, suggesting that sampling density is unlikely to limit the use of such instruments for climate applications at least on a global, monthly scale.