NASA Technical Reports Server (NTRS)
Matthews, E.
1984-01-01
A simple method was developed for improved prescription of seasonal surface characteristics and parameterization of land-surface processes in climate models. This method, developed for the Goddard Institute for Space Studies General Circulation Model II (GISS GCM II), maintains the spatial variability of fine-resolution land-cover data while restricting to 8 the number of vegetation types handled in the model. This was achieved by: redefining the large number of vegetation classes in the 1 deg x 1 deg resolution Matthews (1983) vegetation data base as percentages of 8 simple types; deriving roughness length, field capacity, masking depth and seasonal, spectral reflectivity for the 8 types; and aggregating these surface features from the 1 deg x 1 deg resolution to coarser model resolutions, e.g., 8 deg latitude x 10 deg longitude or 4 deg latitude x 5 deg longitude.
Galileo Ultraviolet Spectrometer experiment
NASA Technical Reports Server (NTRS)
Hord, C. W.; Mcclintock, W. E.; Stewart, A. I. F.; Barth, C. A.; Esposito, L. W.; Thomas, G. E.; Sandel, B. R.; Hunten, D. M.; Broadfoot, A. L.; Shemansky, D. E.
1992-01-01
The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113-432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg x 0.1 deg for illuminated disk observations and 1 deg x 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg x 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170-432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.
NASA Technical Reports Server (NTRS)
Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.
2016-01-01
Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.
Retrievals of Jovian Tropospheric Phosphine from Cassini/CIRS
NASA Technical Reports Server (NTRS)
Irwin, P. G. J.; Parrish, P.; Fouchet, T.; Calcutt, S. B.; Taylor, F. W.; Simon-Miller, A. A.; Nixon, C. A.
2004-01-01
On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone on its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10-1400 cm(exp -1) (1000-7 microns) at a programmable spectral resolution of 0.5 to 15 cm(exp -1). The improved spectral resolution of CIRS over previous IR instrument-missions to Jupiter, the extended spectral range, and higher signal-to-noise performance provide significant advantages over previous data sets. CIRS global observations of the mid-infrared spectrum of Jupiter at medium resolution (2.5 cm(exp -1)) have been analysed both with a radiance differencing scheme and an optimal estimation retrieval model to retrieve the spatial variation of phosphine and ammonia fractional scale height in the troposphere between 60 deg S and 60 deg N at a spatial resolution of 6 deg. The ammonia fractional scale height appears to be high over the Equatorial Zone (EZ) but low over the North Equatorial Belt (NEB) and South Equatorial Belt (SEB) indicating rapid uplift or strong vertical mixing in the EZ. The abundance of phosphine shows a similar strong latitudinal variation which generally matches that of the ammonia fractional scale height. However while the ammonia fractional scale height distribution is to a first order symmetric in latitude, the phosphine distribution shows a North/South asymmetry at mid latitudes with higher amounts detected at 40 deg N than 40 deg S. In addition the data show that while the ammonia fractional scale height at this spatial resolution appears to be low over the Great Red Spot (GRS), indicating reduced vertical mixing above the approx. 500 mb level, the abundance of phosphine at deeper levels may be enhanced at the northern edge of the GRS indicating upwelling.
NASA Technical Reports Server (NTRS)
Betts, Bruce H.
1994-01-01
Thermal infrared observations of Mars from spacecraft provide physical information about the upper thermal skin depth of the surface, which is on the order of a few centimeters in depth and thus very significant for lander site selection. The Termoskan instrument onboard the Soviet Phobos '88 spacecraft acquired the highest spatial-resolution thermal infrared data obtained for Mars, ranging in resolution from 300 m to 3 km per pixel. It simultaneously obtained broadband reflected solar flux data. Although the 6 deg N - 30 deg S Termoskan coverage only slightly overlaps the nominal Mars Pathfinder target range, the implications of Termoskan data for that overlap region and the extrapolations that can be made to other regions give important clues for optimal landing site selection.
Spatial filtering velocimeter for vehicle navigation with extended measurement range
NASA Astrophysics Data System (ADS)
He, Xin; Zhou, Jian; Nie, Xiaoming; Long, Xingwu
2015-05-01
The idea of using spatial filtering velocimeter is proposed to provide accurate velocity information for vehicle autonomous navigation system. The presented spatial filtering velocimeter is based on a CMOS linear image sensor. The limited frame rate restricts high speed measurement of the vehicle. To extend measurement range of the velocimeter, a method of frequency shifting is put forward. Theoretical analysis shows that the frequency of output signal can be reduced and the measurement range can be doubled by this method when the shifting direction is set the same with that of image velocity. The approach of fast Fourier transform (FFT) is employed to obtain the power spectra of the spatially filtered signals. Because of limited frequency resolution of FFT, a frequency spectrum correction algorithm, called energy centrobaric correction, is used to improve the frequency resolution. The correction accuracy energy centrobaric correction is analyzed. Experiments are carried out to measure the moving surface of a conveyor belt. The experimental results show that the maximum measurable velocity is about 800deg/s without frequency shifting, 1600deg/s with frequency shifting, when the frame rate of the image is about 8117 Hz. Therefore, the measurement range is doubled by the method of frequency shifting. Furthermore, experiments were carried out to measure the vehicle velocity simultaneously using both the designed SFV and a laser Doppler velocimeter (LDV). The measurement results of the presented SFV are coincident with that of the LDV, but with bigger fluctuation. Therefore, it has the potential of application to vehicular autonomous navigation.
The structure and nature of NGC 2017 IRS. 1: High-resolution radio continuum maps
NASA Technical Reports Server (NTRS)
Smith, Howard A.; Beck, Sara C.
1994-01-01
We have observed the star formation cluster NGC 2071 IRS 1, 2, and 3, with 0.14 sec spatial resolution at 2 cm. The strong source IRS 1 breaks up into a bright peak sitting on a narrow line emission extending over about 400 AU, with three much weaker peaks. This ridge, which has a p.a. = 100 deg, is not aligned with any of the other structures that have previously been seen around IRS 1: its orientation is about 55 deg from the CO outflow direction, and 35 deg from a hypothetical disk direction. The spectral and spatial results, combined with earlier radio and infrared observations, indicate that most likely the radio and infrared emission from the exciting source, IRS 1, is produced by a dense wind hidden by at least 100 visual magnitudes of extinction; the extended ridge of emission comes from an optically thin H II region with characteristic dimensions of approximately AU and which may result from a clumpy distribution of local gas and dust.
1st- and 2nd-order motion and texture resolution in central and peripheral vision
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1995-01-01
STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.
NASA Technical Reports Server (NTRS)
Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Stiles, J. A.; Moore, R. K.; Holtzman, J. C.
1981-01-01
Image simulation techniques were employed to generate synthetic aperture radar images of a 17.7 km x 19.3 km test site located east of Lawrence, Kansas. The simulations were performed for a space SAR at an orbital altitude of 600 km, with the following sensor parameters: frequency = 4.75 GHz, polarization = HH, and angle of incidence range = 7 deg to 22 deg from nadir. Three sets of images were produced corresponding to three different spatial resolutions; 20 m x 20 m with 12 looks, 100 m x 100 m with 23 looks, and 1 km x 1 km with 1000 looks. Each set consisted of images for four different soil moisture distributions across the test site. Results indicate that, for the agricultural portion of the test site, the soil moisture in about 90% of the pixels can be predicted with an accuracy of = + or - 20% of field capacity. Among the three spatial resolutions, the 1 km x 1 km resolution gave the best results for most cases, however, for very dry soil conditions, the 100 m x 100 m resolution was slightly superior.
Intercomparisons of sumultaneous remote and in situ wind measurements
NASA Technical Reports Server (NTRS)
Gonzales, N.; Hauchecorne, A.; Kirkwood, S.; Lubken, F.-J.; Manson, A. H.; Mourier, A.; Schmidlin, F. J.; Schminder, R.; Kurschner, D.; Singer, W.
1994-01-01
A large number of ground based, balloon and rocket borne experiments was performed at various stations during DYnamics Adapted Network for the Atmosphere (DYANA). This allows the comparisons of simultaneous wind profiles determined by different techniques. This paper briefly describes each technique and discusses the comparisons between: (1) foil chaff at Andoya (69 deg N, 16 deg E) and EISCAT winds data at Tromso (70 deg N, 19 deg E); (2) foil chaff or falling sphere at Andoya and MF radar winds data at Tromso; (3) MF radar at Juliusruh (54 deg N, 13 deg E), meteorological radar at Kuehlungsborn (54 deg N, 11 deg E), meteorological rockets at Zingst (54 deg N, 12.5 deg E) and LF drift winds at Collm (51.3 deg N, 13 deg E); (4) falling sphere, balloons and, for the first time, a Rayleigh Doppler Lidar at the Centre d'Essais des Landes (C.E.L. 44 deg N, 1 deg W). These methods have widely varying altitude, spatial and temporal resolutions. Despite these differences, the comparisons show a generally good agreement.
The Spartan-281 Far Ultraviolet Imaging Spectrograph
NASA Technical Reports Server (NTRS)
Carruthers, George R.; Heckathorn, Harry M.; Dufour, Reginald J.; Opal, Chet B.; Raymond, John C.
1988-01-01
The U.S. Naval Research Laboratory's Far Ultraviolet Imaging Spectrograph (FUVIS), currently under development for flight as a Spartan shuttle payload, is designed to perform spectroscopy of diffuse sources in the FUV with very high sensitivity and moderate spatial and spectral resolution. Diffuse nebulae, the general galactic background radiation, and artificially induced radiation associated with the Space Shuttle vehicle are sources of particular interest. The FUVIS instrument will cover the wavelength range of 970-2000 A with selectable resolutions of 5 and 30 A. It is a slit imaging spectrograph having 3 arcmin spatial resolution along its 2.7 deg long slit.
NASA Technical Reports Server (NTRS)
Garcia-Espada, Susana; Haas, Rudiger; Colomer, Francisco
2010-01-01
An important limitation for the precision in the results obtained by space geodetic techniques like VLBI and GPS are tropospheric delays caused by the neutral atmosphere, see e.g. [1]. In recent years numerical weather models (NWM) have been applied to improve mapping functions which are used for tropospheric delay modeling in VLBI and GPS data analyses. In this manuscript we use raytracing to calculate slant delays and apply these to the analysis of Europe VLBI data. The raytracing is performed through the limited area numerical weather prediction (NWP) model HIRLAM. The advantages of this model are high spatial (0.2 deg. x 0.2 deg.) and high temporal resolution (in prediction mode three hours).
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
Grabtchak, Serge; Palmer, Tyler J; Whelan, William M
2011-07-01
Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ∼43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.
NASA Technical Reports Server (NTRS)
Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph
2012-01-01
Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.
NASA Technical Reports Server (NTRS)
1984-01-01
The Nimbus-7 Coastal Zone Color Scanner (CZCS) is the first spacecraft instrument devoted to the measurement of ocean color. Although instruments on other satellites have sensed ocean color, their spectral bands, spatial resolution, and dynamic range were optimized for geographical or meteorological use. In the CZCS, every parameter is optimized for use over water to the exclusion of any other type of sensing. The signal-to-noise ratios in the spectral channels sensing reflected solar radiance are higher than those required in the past. These ratios need to be high because the ocean is such a poor reflecting surface that the majority of the signal seen by the reflected energy channels at spacecraft altitudes is backscattered solar radiation from the atmosphere rather than reflected solar energy from the ocean. The CZCS is a conventional multichannel scanning radiometer utilizing a rotating plane mirror at a 45 deg angle to the optic axis of a Cassegrain telescope. The mirror scans 360 deg; however, only 80 deg of data centered on the spacecraft nadir is collected for ocean color measurements. Spatial resolution at spacecraft nadir is 825x825 m with some degradation at the edges of the scan swath. The useful swath width from a spacecraft altitude of 955 km is 1600 km.
NASA Technical Reports Server (NTRS)
Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis
2017-01-01
Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Holdeman, J. D.
1984-01-01
Tabulations are given of GASP ambient ozone mean, standard deviation, median, 84th percentile, and 98th percentile values, by month, flight level, and geographical region. These data are tabulated to conform to the temporal and spatial resolution required by FAA Advisory Circular 120-38 (monthly by 2000 ft in altitude by 5 deg in latitude) for climatological data used to show compliance with cabin ozone regulations. In addition seasonal x 10 deg latitude tabulations are included which are directly comparable to and supersede the interim GASP ambient ozone tabulations given in appendix B of FAA-EE-80-43 (NASA TM-81528). Selected probability variations are highlighted to illustrate the spatial and temporal variability of ambient ozone and to compare results from the coarse and fine grid analyses.
Flood and Landslide Applications of High Time Resolution Satellite Rain Products
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Hong, Yang; Huffman, George J.
2006-01-01
Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system around the globe.
NASA Astrophysics Data System (ADS)
Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei
2017-10-01
In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.
NASA Technical Reports Server (NTRS)
Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.
2016-01-01
The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.
Reflectance characteristics of the Viking lander camera reference test charts
NASA Technical Reports Server (NTRS)
Wall, S. D.; Burcher, E. E.; Jabson, D. J.
1975-01-01
Reference test charts provide radiometric, colorimetric, and spatial resolution references for the Viking lander cameras on Mars. Reflectance measurements of these references are described, including the absolute bidirectional reflectance of the radiometric references and the relative spectral reflectance of both radiometric and colorimetric references. Results show that the bidirection reflectance of the radiometric references is Lambertian to within + or - 7% for incidence angles between 20 deg and 60 deg, and that their spectral reflectance is constant with wavelength to within + or - 5% over the spectral range of the cameras. Estimated accuracy of the measurements is + or - 0.05 in relative spectral reflectance.
Interplanetary scintillation observations with the Cocoa Cross radio telescope
NASA Technical Reports Server (NTRS)
Cronyn, W. M.; Shawhan, S. D.; Erskine, F. T.; Huneke, A. H.; Mitchell, D. G.
1976-01-01
Physical and electrical parameters for the 34.3-MHz Cocoa Cross radio telescope are given. The telescope is dedicated to the determination of solar-wind characteristics in and out of the ecliptic plane through measurement of electron-density irregularity structure as determined from IPS (interplanetary scintillation) of natural radio sources. The collecting area (72,000 sq m), angular resolution (0.4 deg EW by 0.6 deg NS), and spatial extent (1.3 km EW by 0.8 km NS) make the telescope well suited for measurements of IPS index and frequency scale for hundreds of weak radio sources without serious confusion effects.
Gridded National Inventory of U.S. Methane Emissions
NASA Technical Reports Server (NTRS)
Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.; Turner, Alexander J.; Weitz, Melissa; Wirth, Tom; Hight, Cate; DeFigueiredo, Mark; Desai, Mausami; Schmeltz, Rachel;
2016-01-01
We present a gridded inventory of US anthropogenic methane emissions with 0.1 deg x 0.1 deg spatial resolution, monthly temporal resolution, and detailed scale dependent error characterization. The inventory is designed to be onsistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissionsand Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a widerange of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.
A high resolution soil moisture radiometer
NASA Technical Reports Server (NTRS)
Dod, L. R.
1980-01-01
The design of an L-band high resolution soil moisture radiometer is described. The selected system is a planar slotted waveguide array at L-band frequencies. The square aperture is 74.75 m by 74.75 m subdivided into 8 tilted subarrays. The system has a 290 km circular orbit and provides a spatial resolution of 1 km. The aperture forms 230 simultaneous beams in a cross-track pattern which covers a swath 420 km wide. A revisit time of 6 days is provided for an orbit inclination of 50 deg. The 1 km resolution cell allows an integration time of 1/7 second and sharing this time period sequentially between two orthogonal polarization modes can provide a temperature resolution of 0.7 K.
Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.
Thaung, Jörgen; Knutsson, Per; Popovic, Zoran; Owner-Petersen, Mette
2009-03-16
We present analysis and preliminary laboratory testing of a real-time dual-conjugate adaptive optics (DCAO) instrument for ophthalmology that will enable wide-field high resolution imaging of the retina in vivo. The setup comprises five retinal guide stars (GS) and two deformable mirrors (DM), one conjugate to the pupil and one conjugate to a plane close to the retina. The DCAO instrument has a closed-loop wavefront sensing wavelength of 834 nm and an imaging wavelength of 575 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using one adjustable iris, and images the Hartmann patterns of multiple reference sources on a single detector. Zemax simulations were performed at 834 nm and 575 nm with the Navarro 99 and the Liou- Brennan eye models. Two correction alternatives were evaluated; conventional single conjugate AO (SCAO, using one GS and a pupil DM) and DCAO (using multiple GS and two DM). Zemax simulations at 575 nm based on the Navarro 99 eye model show that the diameter of the corrected field of view for diffraction-limited imaging (Strehl >or= 0.8) increases from 1.5 deg with SCAO to 6.5 deg using DCAO. The increase for the less stringent condition of a wavefront error of 1 rad or less (Strehl >or= 0.37) is from 3 deg with SCAO to approximately 7.4 deg using DCAO. Corresponding results for the Liou-Brennan eye model are 3.1 deg (SCAO) and 8.2 deg (DCAO) for Strehl >or= 0.8, and 4.8 deg (SCAO) and 9.6 deg (DCAO) for Strehl >or= 0.37. Potential gain in corrected field of view with DCAO is confirmed both by laboratory experiments on a model eye and by preliminary in vivo imaging of a human eye. (c) 2009 Optical Society of America
Radio Transients in 1333 deg2 of the VLA Sky Survey Pilot
NASA Astrophysics Data System (ADS)
Dong, Dillon; Hallinan, Gregg; Myers, Steven T.; Mooley, Kunal; VLASS Survey Team, VLASS Survey Science Group (SSG)
2018-01-01
The VLA Sky Survey (VLASS) is an ongoing project by the NRAO to map ~34,000 deg2 of the sky at 3GHz, over 3 epochs spanning 6 years. In preparation for the full survey, a set of fields covering 2480 deg2 was recently observed as the VLASS pilot project. We searched 1333 deg2 of the VLASS pilot for radio transients with characteristic decay timescales between weeks and years, such as the synchrotron afterglows of supernovae, tidal disruption events, and long/short gamma ray bursts. These radio afterglows are thought to be roughly isotropic and extinction-free, allowing us to observe transients that would be missed by optical/high energy surveys due to obscuration or off-axis jetting.Within the searched area, we identified 215 VLASS sources that have no counterpart in the FIRST survey and have a projected distance of < 50kpc from the nearest galaxy by angular distance in the CLU and GWENs galaxy catalogs. By selection, these targets are predominently located near low redshift (z < 0.05) galaxies, allowing us to study their host environments with a sub-kiloparsec spatial resolution. Prioritizing based on visual association with SDSS galaxies, we imaged and/or took spectra of the host environment of 60 targets with the Low Resolution Imaging Spectrometer (LRIS) on Keck 1. In this talk, we present the radio and optical results for the most exciting VLASS transients.
Prototype Global Burnt Area Algorithm Using a Multi-sensor Approach
NASA Astrophysics Data System (ADS)
López Saldaña, G.; Pereira, J.; Aires, F.
2013-05-01
One of the main limitations of products derived from remotely-sensed data is the length of the data records available for climate studies. The Advanced Very High Resolution Radiometer (AVHRR) long-term data record (LTDR) comprises a daily global atmospherically-corrected surface reflectance dataset at 0.05Deg spatial resolution and is available for the 1981-1999 time period. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has been on orbit in the Terra platform since late 1999 and in Aqua since mid 2002; surface reflectance products, MYD09CMG and MOD09CMG, are available at 0.05Deg spatial resolution. Fire is strong cause of land surface change and emissions of greenhouse gases around the globe. A global long-term identification of areas affected by fire is needed to analyze trends and fire-clime relationships. A burnt area algorithm can be seen as a change point detection problem where there is an abrupt change in the surface reflectance due to the biomass burning. Using the AVHRR-LTDR and the aforementioned MODIS products, a time series of bidirectional reflectance distribution function (BRDF) corrected surface reflectance was generated using the daily observations and constraining the BRDF model inversion using a climatology of BRDF parameters derived from 12 years of MODIS data. The identification of the burnt area was performed using a t-test in the pre- and post-fire reflectance values and a change point detection algorithm, then spectral constraints were applied to flag changes caused by natural land processes like vegetation seasonality or flooding. Additional temporal constraints are applied focusing in the persistence of the affected areas. Initial results for years 1998 to 2002, show spatio-temporal coherence but further analysis is required and a formal rigorous validation will be applied using burn scars identified from high-resolution datasets.
NASA Technical Reports Server (NTRS)
Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.
2013-01-01
Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.
Elliptical storm cell modeling of digital radar data
NASA Technical Reports Server (NTRS)
Altman, F. J.
1972-01-01
A model for spatial distributions of reflectivity in storm cells was fitted to digital radar data. The data were taken with a modified WSR-57 weather radar with 2.6-km resolution. The data consisted of modified B-scan records on magnetic tape of storm cells tracked at 0 deg elevation for several hours. The MIT L-band radar with 0.8-km resolution produced cross-section data on several cells at 1/2 deg elevation intervals. The model developed uses ellipses for contours of constant effective-reflectivity factor Z with constant orientation and eccentricity within a horizontal cell cross section at a given time and elevation. The centers of the ellipses are assumed to be uniformly spaced on a straight line, with areas linearly related to log Z. All cross sections are similar at different heights (except for cell tops, bottoms, and splitting cells), especially for the highest reflectivities; wind shear causes some translation and rotation between levels. Goodness-of-fit measures and parameters of interest for 204 ellipses are considered.
Lunar Observer Laser Altimeter observations for lunar base site selection
NASA Technical Reports Server (NTRS)
Garvin, James B.; Bufton, Jack L.
1992-01-01
One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and will allow for direct quantification of critical slopes, heights, and depths of features visible in images of potential lunar base sites.
The GBT Diffuse Ionized Gas Survey (GDIGS)
NASA Astrophysics Data System (ADS)
Luisi, Matteo; Anderson, Loren Dean; Liu, Bin; Bania, Thomas; Balser, Dana; Wenger, Trey; Haffner, Lawrence Matthew
2018-01-01
Diffuse ionized gas in the Galactic mid-plane known as the "Warm Ionized Medium" (WIM) makes up ~20% of the gas mass of the Milky Way and >90% of its ionized gas. It is the last major component of the interstellar medium (ISM) that has not yet been studied at high spatial and spectral resolution, and therefore many of its fundamental properties remain unclear. The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) is a new large survey of the Milky Way disk at C-band (4-8 GHz). The main goals of GDIGS are to investigate the properties of the WIM and to determine the connection between the WIM and high-mass star formation over the Galactic longitude and latitude range of 32 deg > l > -5 deg, |b| < 0.5 deg. We use the new VEGAS spectrometer to simultaneously observe 22 Hn-alpha radio recombination lines, 25 Hn-beta lines, 8 Hn-gamma lines, and 9 molecular lines (namely CH3OH and H2CO), and also continuum at ~60 frequencies. We average the Hn-alpha lines to produce Nyquist-sampled maps on a spatial grid of 1 arcmin, a velocity resolution of 0.5 km/s and rms sensitivities of ~3 mJy per beam. GDIGS observations are currently underway and are expected to be completed by late 2018. These data will allow us to: 1) Study for the first time the inner-Galaxy WIM unaffected by confusion from discrete HII regions, 2) determine the distribution of the inner Galaxy WIM, 3) investigate the ionization state of the WIM, 4) explore the connection between the WIM and HII regions, and 5) analyze the effect of leaked photons from HII regions on ISM dust temperatures.
FLEET Velocimetry Measurements on a Transonic Airfoil
NASA Technical Reports Server (NTRS)
Burns, Ross A.; Danehy, Paul M.
2017-01-01
Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0 deg, 3.5 deg, and 7deg. Measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty in the context of the applied flowfield. Measurement precisions as low as 1 m/s were observed, while overall uncertainties ranged from 4 to 5 percent. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack.
NASA Technical Reports Server (NTRS)
Chelton, Dudley B.; Schlax, Michael G.
1994-01-01
A formalism is presented for determining the wavenumber-frequency transfer function associated with an irregularly sampled multidimensional dataset. This transfer function reveals the filtering characteristics and aliasing patterns inherent in the sample design. In combination with information about the spectral characteristics of the signal, the transfer function can be used to quantify the spatial and temporal resolution capability of the dataset. Application of the method to idealized Geosat altimeter data (i.e., neglecting measurement errors and data dropouts) concludes that the Geosat orbit configuration is capable of resolving scales of about 3 deg in latitude and longitude by about 30 days.
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Phillips, R. J.; Birkeland, P. W.; Wimberly, R. N.
1980-01-01
Doppler radio tracking of the Pioneer Venus orbiter has provided gravity measures over a significant portion of Venus. Feature resolution is approximately 300-1000 km within an area extending from 10 deg S to 40 deg N latitude and from 70 deg W to 130 deg E longitude (approximately equal to 200 deg). Many anomalies were detected, and there is considerable correlation with radar altimetry topography (Pettengill et al., 1980). The amplitudes of the anomalies are relatively mild and similar to those on earth at this resolution. Calculations for isostatic adjustment reveal that significant compensation has occurred.
Modelling of the 10-micrometer natural laser emission from the mesospheres of Mars and Venus
NASA Technical Reports Server (NTRS)
Deming, D.; Mumma, M. J.
1983-01-01
The NLTE radiative transfer problem is solved to obtain the 00 deg 1 vibrational state population. This model successfully reproduces the existing center-to-limb observations, although higher spatial resolution observations are needed for a definitive test. The model also predicts total fluxes which are close to the observed values. The strength of the emission is predicted to be closely related to the instantaneous near-IR solar heating rate.
Modeling of the 10-micron natural laser emission from the mesospheres of Mars and Venus
NASA Technical Reports Server (NTRS)
Deming, D.; Mumma, M. J.
1983-01-01
The NLTE radiative transfer problem is solved to obtain the 00 deg 1 vibrational state population. This model successfully reproduces the existing center-to-limb observations, although higher spatial resolution observations are needed for a definitive test. The model also predicts total fluxes which are close to the observed values. The strength of the emission is predicted to be closely related to the instantaneous near-IR solar heating rate.
NASA Astrophysics Data System (ADS)
Wu, Xiaojun; Wu, Yumei; Wen, Peizhi
2018-03-01
To obtain information on the outer surface of a cylinder object, we propose a catadioptric panoramic imaging system based on the principle of uniform spatial resolution for vertical scenes. First, the influence of the projection-equation coefficients on the spatial resolution and astigmatism of the panoramic system are discussed, respectively. Through parameter optimization, we obtain the appropriate coefficients for the projection equation, and so the imaging quality of the entire imaging system can reach an optimum value. Finally, the system projection equation is calibrated, and an undistorted rectangular panoramic image is obtained using the cylindrical-surface projection expansion method. The proposed 360-deg panoramic-imaging device overcomes the shortcomings of existing surface panoramic-imaging methods, and it has the advantages of low cost, simple structure, high imaging quality, and small distortion, etc. The experimental results show the effectiveness of the proposed method.
VizieR Online Data Catalog: Leiden/Argentine/Bonn (LAB) Survey of Galactic HI (Kalberla+ 2005)
NASA Astrophysics Data System (ADS)
Kalberla, P. M. W.; Burton, W. B.; Hartmann, D.; Arnal, E. M.; Bajaja, E.; Morras, R.; Poeppel, W. G. L.
2005-07-01
The LAB survey contains the final data release of observations of 21-cm emission from Galactic neutral hydrogen over the entire sky, merging the Leiden/Dwingeloo Survey (LDS: Hartmann & Burton 1997, Cat. VIII/54) of the sky north of -30{deg} with the Instituto Argentino de Radioastronomia Survey (IAR: Arnal et al. 2000A&AS..142...35A and Bajaja et al. 2005, Cat. VIII/75) of the sky south of -25{deg}. The angular resolution of the combined material is HPBW ~ 0.6{deg}. The LSR velocity coverage spans the interval -450 km/s to +400 km/s, at a resolution of 1.3km/s. The data were corrected for stray radiation at the Institute for Radioastronomy of the University of Bonn, refining the original correction applied to the LDS. The rms brightness-temperature noise of the merged database is 0.07-0.09 K. Residual errors in the profile wings due to defects in the correction for stray radiation are for most of the data below a level of 20-40 mK. It would be necessary to construct a telescope with a main beam efficiency of {eta}MB>99% to achieve the same accuracy. The merged and refined material entering the LAB Survey of Galactic H I is intended to be a general resource useful to a wide range of studies of the physical and structural characteristices of the Galactic interstellar environment. The LAB Survey is the most sensitive Milky Way H I survey to date, with the most extensive coverage both spatially and kinematically. The Survey is available as 3-D maps, with or without Hanning smoothing, covering the whole +/-458km/s or limited to +/-250km/s range. The resolution of the 3-D maps is 0.5{deg} in galactic longitude and latitude, and up to 1km/s in velocity. The survey exists also as (b,v) maps at longitude intervals stepped by 0.5{deg} -- these files supersedes the FITS files given in the Hartmann and Burton Atlas (Cat. VIII/54) (1 data file).
NASA Astrophysics Data System (ADS)
Pace, Phillip Eric; Tan, Chew Kung; Ong, Chee K.
2018-02-01
Direction finding (DF) systems are fundamental electronic support measures for electronic warfare. A number of DF techniques have been developed over the years; however, these systems are limited in bandwidth and resolution and suffer from a complex design for frequency downconversion. The design of a photonic DF technique for the detection and DF of low probability of intercept (LPI) signals is investigated. Key advantages of this design include a small baseline, wide bandwidth, high resolution, minimal space, weight, and power requirement. A robust postprocessing algorithm that utilizes the minimum Euclidean distance detector provides consistence and accurate estimation of angle of arrival (AoA) for a wide range of LPI waveforms. Experimental tests using frequency modulation continuous wave (FMCW) and P4 modulation signals were conducted in an anechoic chamber to verify the system design. Test results showed that the photonic DF system is capable of measuring the AoA of the LPI signals with 1-deg resolution over a 180 deg field-of-view. For an FMCW signal, the AoA was determined with a RMS error of 0.29 deg at 1-deg resolution. For a P4 coded signal, the RMS error in estimating the AoA is 0.32 deg at 1-deg resolution.
Low--resolution vision in a velvet worm (Onychophora).
Kirwan, John D; Graf, Josefine; Smolka, Jochen; Mayer, Georg; Henze, Miriam J; Nilsson, Dan-Eric
2018-06-04
Onychophorans, also known as velvet worms, possess a pair of simple lateral eyes, and are a key lineage with regard to the evolution of vision. They resemble ancient Cambrian forms, and are closely related to arthropods, which boast an unrivalled diversity of eye designs. Nonetheless, the visual capabilities of onychophorans have not been well explored. Here, we assessed the spatial resolution of the onychophoran Euperipatoides rowelli using behavioural experiments, three-dimensional reconstruction, anatomical and optical examinations, and modelling. Exploiting their spontaneous attraction towards dark objects, we found that E. rowelli can resolve stimuli that have the same average luminance as the background. Depending on the assumed contrast sensitivity of the animals, we estimate the spatial resolution to be in the range 15-40 deg. This results from an arrangement where the cornea and lens project the image largely behind the retina. The peculiar ellipsoid shape of the eye in combination with the asymmetric position and tilted orientation of the lens may improve spatial resolution in the forward direction. Nonetheless, the unordered network of interdigitating photoreceptors, which fills the whole eye chamber, precludes high-acuity vision. Our findings suggest that adult specimens of E. rowelli cannot spot or visually identify prey or conspecifics beyond a few centimetres from the eye, but the coarse spatial resolution that the animals exhibited in our experiments is likely to be sufficient to find shelter and suitable microhabitats from further away. To our knowledge, this is the first evidence of resolving vision in an onychophoran. © 2018. Published by The Company of Biologists Ltd.
NASA Technical Reports Server (NTRS)
Rossow, W. B.; Stubenrauch, C. J.; Briand, V.; Hansen, James E. (Technical Monitor)
2001-01-01
Since the effect of clouds on the earth's radiation balance is often estimated as the difference of net radiative fluxes at the top of the atmosphere between all situations and monthly averaged clear sky situations of the same regions, a reliable identification of clear sky is important for the study of cloud radiative effects. The Scanner for Radiation Balance (ScaRaB) radiometer on board the Russian Meteor-3/7 satellite provided earth radiation budget observations from March 1994 to February 1995 with two ERBE-Re broad-band longwave and shortwave channels. Two narrow-band channels, in the infrared atmospheric window and in the visible band, have been added to the ScaRaB instrument to improve the cloud scene identification. The International Satellite Cloud Climatology Project (ISCCP) method for cloud detection and determination of cloud and surface properties uses the same narrow-band channels as ScaRaB, but is employed to a collection of measurements at a better spatial resolution of about 5 km. By applying the original ISCCP algorithms to the ScaRaB data, the clear sky frequency is about 5% lower than the one over quasi-simultaneous original ISCCP data, an indication that the ISCCP cloud detection is quite stable. However, one would expect an about 10 to 20% smaller clear sky occurrence over the larger ScaRaB pixels. Adapting the ISCCP algorithms to the reduced spatial resolution of 60 km and to the different time sampling of the ScaRaB data leads therefore to a reduction of a residual cloud contamination. A sensitivity study with time-space collocated ScaRaB and original ISCCP data at a spatial resolution of 1deg longitude x 1deg latitude shows that the effect of clear sky identification method plays a higher role on the clear sky frequency and therefore on the statistics than on the zonal mean values of the clear sky fluxes. Nevertheless, the zonal outgoing longwave fluxes corresponding to ERBE clear sky are in general about 2 to 10 W/sq m higher than those obtained from the ScaRaB adapted ISCCP clear sky identifications. The latter are close to (about 1 W/sq m higher) fluxes corresponding to clear sky regions from original ISCCP data, whereas ScaRaB clear sky LW fluxes obtained with the original ISCCP identification lie about 1 to 2 W/sq m below. Especially in the tropics where water vapor abundance is high, the ERBE clear sky LW fluxes seem to be systematically overestimated by about 4 W/sq m, and SW fluxes are lower by about 5 to 10 W/sq m. However, the uncertainty in the analysis of monthly mean zonal cloud radiative effects is also produced by the low frequency of clear sky occurrence, illustrated when averaging over pixels or even over regions of 4deg longitude x 5deg latitude, corresponding to the spatial resolution of General Circulation Models. The systematic bias in the clear sky fluxes is not reflected in the zonal cloud radiative effects, because the clear sky regions selected by the different algorithms can occur in different geographic regions with different cloud properties.
Call sign intelligibility improvement using a spatial auditory display
NASA Technical Reports Server (NTRS)
Begault, Durand R.
1993-01-01
A spatial auditory display was used to convolve speech stimuli, consisting of 130 different call signs used in the communications protocol of NASA's John F. Kennedy Space Center, to different virtual auditory positions. An adaptive staircase method was used to determine intelligibility levels of the signal against diotic speech babble, with spatial positions at 30 deg azimuth increments. Non-individualized, minimum-phase approximations of head-related transfer functions were used. The results showed a maximal intelligibility improvement of about 6 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.
NASA Astrophysics Data System (ADS)
van der Veen, Rob L. P.; Berendschot, Tos T. J. M.; Makridaki, Maria; Hendrikse, Fred; Carden, David; Murray, Ian J.
2009-11-01
A comparison of macular pigment optical density (MPOD) spatial profiles determined by an optical and a psychophysical technique is presented. We measured the right eyes of 19 healthy individuals, using fundus reflectometry at 0, 1, 2, 4, 6, and 8 deg eccentricity; and heterochromatic flicker photometry (HFP) at 0, 0.5, 1, 2, 3, 4, 5, 6, and 7 deg, and a reference point at 8 deg eccentricity. We found a strong correlation between the two techniques. However, the absolute estimates obtained by fundus reflectometry data were higher than by HFP. These differences could partly be explained by the fact that at 8 deg eccentricity the MPOD is not zero, as assumed in HFP. Furthermore, when performing HFP for eccentricities of <1 deg, we had to assume that subjects set flicker thresholds at 0.4 deg horizontal translation when using a 1-deg stimulus. MPOD profiles are very similar for both techniques if, on average, 0.05 DU is added to the HFP data at all eccentricities. An additional correction factor, dependent on the steepness of the MPOD spatial distribution, is required for 0 deg.
Multi-channel spatial auditory display for speech communications
NASA Astrophysics Data System (ADS)
Begault, Durand; Erbe, Tom
1993-10-01
A spatial auditory display for multiple speech communications was developed at NASA-Ames Research Center. Input is spatialized by use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four letter call signs used by launch personnel at NASA, against diotic speech babble. Spatial positions at 30 deg azimuth increments were evaluated. The results from eight subjects showed a maximal intelligibility improvement of about 6 to 7 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.
Multi-channel spatial auditory display for speech communications
NASA Technical Reports Server (NTRS)
Begault, Durand; Erbe, Tom
1993-01-01
A spatial auditory display for multiple speech communications was developed at NASA-Ames Research Center. Input is spatialized by use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for NASA-Kennedy Space Center. An adaptive staircase method was used to determine intelligibility levels of four letter call signs used by launch personnel at NASA, against diotic speech babble. Spatial positions at 30 deg azimuth increments were evaluated. The results from eight subjects showed a maximal intelligibility improvement of about 6 to 7 dB when the signal was spatialized to 60 deg or 90 deg azimuth positions.
Multiphoton autofluorescence lifetime imaging of induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Uchugonova, Aisada
2017-06-01
The multiphoton fluorescence lifetime imaging tomograph MPTflex with its flexible 360-deg scan head, articulated arm, and tunable femtosecond laser source was employed to study induced pluripotent stem cell (iPS) cultures. Autofluorescence (AF) lifetime imaging was performed with 250-ps temporal resolution and submicron spatial resolution using time-correlated single-photon counting. The two-photon excited AF was based on the metabolic coenzymes NAD(P)H and flavin adenine dinucleotide/flavoproteins. iPS cells generated from mouse embryonic fibroblasts (MEFs) and cocultured with growth-arrested MEFs as feeder cells have been studied. Significant differences on AF lifetime signatures were identified between iPS and feeder cells as well as between their differentiating counterparts.
Optical head tracking for functional magnetic resonance imaging using structured light.
Zaremba, Andrei A; MacFarlane, Duncan L; Tseng, Wei-Che; Stark, Andrew J; Briggs, Richard W; Gopinath, Kaundinya S; Cheshkov, Sergey; White, Keith D
2008-07-01
An accurate motion-tracking technique is needed to compensate for subject motion during functional magnetic resonance imaging (fMRI) procedures. Here, a novel approach to motion metrology is discussed. A structured light pattern specifically coded for digital signal processing is positioned onto a fiduciary of the patient. As the patient undergoes spatial transformations in 6 DoF (degrees of freedom), a high-resolution CCD camera captures successive images for analysis on a computing platform. A high-speed image processing algorithm is used to calculate spatial transformations in a time frame commensurate with patient movements (10-100 ms) and with a precision of at least 0.5 microm for translations and 0.1 deg for rotations.
Topography of the Martian Impact Crater Tooting
NASA Technical Reports Server (NTRS)
Mouginis-Mark, P. J.; Garbeil, H.; Boyce, J. M.
2009-01-01
Tooting crater is approx.29 km in diameter, is located at 23.4degN, 207.5degE, and is classified as a multi-layered ejecta crater [1]. Our mapping last year identified several challenges that can now be addressed with HiRISE and CTX images, but specifically the third dimension of units. To address the distribution of ponded sediments, lobate flows, and volatile-bearing units within the crater cavity, we have focused this year on creating digital elevation models (DEMs) for the crater and ejecta blanket from stereo CTX and HiRISE images. These DEMs have a spatial resolution of approx.50 m for CTX data, and 2 m for HiRISE data. Each DEM is referenced to all of the available individual MOLA data points within an image, which number approx.5,000 and 800 respectively for the two data types
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza
Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously publishedmore » design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.« less
NASA Technical Reports Server (NTRS)
Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.
2014-01-01
We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.
Continental-scale river flow in climate models
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.; Caliri, Guilherme
1994-01-01
The hydrologic cycle is a major part of the global climate system. There is an atmospheric flux of water from the ocean surface to the continents. The cycle is closed by return flow in rivers. In this paper a river routing model is developed to use with grid box climate models for the whole earth. The routing model needs an algorithm for the river mass flow and a river direction file, which has been compiled for 4 deg x 5 deg and 2 deg x 2.5 deg resolutions. River basins are defined by the direction files. The river flow leaving each grid box depends on river and lake mass, downstream distance, and an effective flow speed that depends on topography. As input the routing model uses monthly land source runoff from a 5-yr simulation of the NASA/GISS atmospheric climate model (Hansen et al.). The land source runoff from the 4 deg x 5 deg resolution model is quartered onto a 2 deg x 2.5 deg grid, and the effect of grid resolution is examined. Monthly flow at the mouth of the world's major rivers is compared with observations, and a global error function for river flow is used to evaluate the routing model and its sensitivity to physical parameters. Three basinwide parameters are introduced: the river length weighted by source runoff, the turnover rate, and the basinwide speed. Although the values of these parameters depend on the resolution at which the rivers are defined, the values should converge as the grid resolution becomes finer. When the routing scheme described here is coupled with a climate model's source runoff, it provides the basis for closing the hydrologic cycle in coupled atmosphere-ocean models by realistically allowing water to return to the ocean at the correct location and with the proper magnitude and timing.
A cute and highly contrast-sensitive superposition eye - the diurnal owlfly Libelloides macaronius.
Belušič, Gregor; Pirih, Primož; Stavenga, Doekele G
2013-06-01
The owlfly Libelloides macaronius (Insecta: Neuroptera) has large bipartite eyes of the superposition type. The spatial resolution and sensitivity of the photoreceptor array in the dorsofrontal eye part was studied with optical and electrophysiological methods. Using structured illumination microscopy, the interommatidial angle in the central part of the dorsofrontal eye was determined to be Δϕ=1.1 deg. Eye shine measurements with an epi-illumination microscope yielded an effective superposition pupil size of about 300 facets. Intracellular recordings confirmed that all photoreceptors were UV-receptors (λmax=350 nm). The average photoreceptor acceptance angle was 1.8 deg, with a minimum of 1.4 deg. The receptor dynamic range was two log units, and the Hill coefficient of the intensity-response function was n=1.2. The signal-to-noise ratio of the receptor potential was remarkably high and constant across the whole dynamic range (root mean square r.m.s. noise=0.5% Vmax). Quantum bumps could not be observed at any light intensity, indicating low voltage gain. Presumably, the combination of large aperture superposition optics feeding an achromatic array of relatively insensitive receptors with a steep intensity-response function creates a low-noise, high spatial acuity instrument. The sensitivity shift to the UV range reduces the clutter created by clouds within the sky image. These properties of the visual system are optimal for detecting small insect prey as contrasting spots against both clear and cloudy skies.
High-resolution distributed temperature sensing with the multiphoton-timing technique
NASA Astrophysics Data System (ADS)
Höbel, M.; Ricka, J.; Wüthrich, M.; Binkert, Th.
1995-06-01
We report on a multiphoton-timing distributed temperature sensor (DTS) based on the concept of distributed anti-Stokes Raman thermometry. The sensor combines the advantage of very high spatial resolution (40 cm) with moderate measurement times. In 5 min it is possible to determine the temperature of as many as 4000 points along an optical fiber with an accuracy Delta T less than 2 deg C. The new feature of the DTS system is the combination of a fast single-photon avalanche diode with specially designed real-time signal-processing electronics. We discuss various parameters that affect the operation of analog and photon-timing DTS systems. Particular emphasis is put on the consequences of the nonideal behavior of sensor components and the corresponding correction procedures.
Power spectra of geoid undulations. [definition of altimeter design requirements for geoid recovery
NASA Technical Reports Server (NTRS)
Brown, R. D.
1975-01-01
Data from spacecraft altimeters are expected to contribute to an improved determination of the marine geoid. To better define altimeter system design requirements for geoid recovery, amplitudes of geoid undulations at short wavelengths were examined. Models of detailed geoids in selected areas around the earth, developed from a combination of satellite derived spherical harmonics and 1 deg-by-1 deg area mean free-air gravity anomalies, were subjected to a spectral analysis. The resulting undulation power spectra were compared to existing estimates for the magnitude of geoid undulations at short wavelengths. The undulation spectra were found to be consistent with Kaula's rule of thumb, following an inverse third power relationship with spatial frequency for wavelengths at least as small as 300 km. The requirements imposed by this relationship on altimeter accuracy, data rate, and horizontal resolution to meet the goal of a detailed geoid description are discussed.
NASA Technical Reports Server (NTRS)
Massey, G. A.; Lemon, C. J.
1984-01-01
A tunable line-narrowed ArF laser can selectively excite several rotation al lines of the Schumann-Runge band system of O2 in air. The resulting ultraviolet fluorescence can be monitored at 90 deg to the laser beam axis, permitting space and time resolved observation of density and temperature fluctuations in turbulence. Experiments and calculations show that + or - 1 K, + or - 1 percent density, 1 cu mm spatial, and 1 microsecond temporal resolution can be achieved simultaneously under some conditions.
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U. S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
NASA Technical Reports Server (NTRS)
Paige, David A.; Bachman, Jennifer E.; Keegan, Kenneth D.
1994-01-01
We present the first maps of the apparent thermal inertia and albedo of the north polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking orbiters over a 50-day period in 1978 during the Martian early northern summer season. The maps cover the region from 60 deg N to the north pole at a spatial resolution of 1/2 deg of latitude. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmospphere for a wide range of assumptions concerning aerosol optical properties and aerosol optical depths. The results of these calculations show that the effects of the Martian atmosphere on remote determinations of surface thermal inertia are more significant than have been indicated in previous studies. The maps of apparent thermal inertia and albedo show a great deal of spatial structure that is well correlated with surface features.
A simulation for gravity fine structure recovery from high-low GRAVSAT SST data
NASA Technical Reports Server (NTRS)
Estes, R. H.; Lancaster, E. R.
1976-01-01
Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.
NASA Technical Reports Server (NTRS)
Mest, S. C.
2005-01-01
The martian southern highlands contain impact craters that display pristine to degraded morphologies, and preserve a record of degradation that can be attributed to fluvial, eolian, mass wasting, volcanic and impact-related processes. However, the relative degree of modification by these processes and the amounts of material contributed to crater interiors are not well constrained. Impact craters (D>10 km) within Terra Cimmeria (0deg-60degS, 190deg-240degW), Terra Tyrrhena (0deg-30degS, 260deg-310degW) and Noachis Terra (20deg-50degS, 310deg-340degW) are being examined to better understand the degradational history and evolution of highland terrains. The following scientific objectives will be accomplished. 1) Determine the geologic processes that modified impact craters (and surrounding highland terrains). 2) Determine the sources (e.g. fluvial, lacustrine, eolian, mass wasting, volcanic, impact melt) and relative amounts of material composing crater interior deposits. 3) Document the relationships between impact crater degradation and highland fluvial systems. 4) Determine the spatial and temporal relationships between degradational processes on local and regional scales. And 5) develop models of impact crater (and highland) degradation that can be applied to these and other areas of the martian highlands. The results of this study will be used to constrain the geologic, hydrologic and climatic evolution of Mars and identify environments in which subsurface water might be present or evidence for biologic activity might be preserved.
Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Bennett, C. L.; Kogut, A.
1995-01-01
We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.
NASA Technical Reports Server (NTRS)
Stricker, Josef
1989-01-01
Effects of spherical aberrations of the mirror used in the moire system on the angular resolution of the system are investigated. It is shown that the spherical aberrations may reduce significantly the performance of the conventional moire deflectometer. However, due to the heterodyne procedure, this is not the case with the heterodyne moire system. A moire system with a constant speed moving grating is demonstrated. It is shown that the system readout is linear and the system does not need calibration. In addition, the repeatability of the measurements is improved in this system as compared to the sinusoidally moving grating setup. The problem of the photographic plates alignment is solved by using a mechanical system in which the plate is held firmly throughout the experiment and accurately replaced after removing for photographic processing. The effect of a circular detector's aperture size on readout was tested. It is shown that the spatial phase variations, observed when scanning along a straight moire fringe, may considerably be reduced. At present we may say that both the on-line and the deferred heterodyne moire techniques may reliably be used. The errors of phase readings are 1 deg and 5 deg for the on-line and deferred methods. The total error due to subtraction of two readings at each position is, therefore, 1.4 deg and 7 deg, respectively. Further research for improving the deferred system is suggested.
Composition of Rheasilvia Basin on Asteroid Vesta
NASA Technical Reports Server (NTRS)
Ammannito, Eleonora; DeSanctis, Maria Christina; Capaccioni, Fabrizio; Capria, Maria Teresa; Combe, Jean Philippe; Frigeri, Alessandro; Jaumann, Ralf; Longobardo, Andrea; Marchi, Somone; McCord, Thomas B.;
2014-01-01
The focus of the present study is the compositional analysis of small-scale surface features within the Rheasil-Aa basin on asteroid Vesta. We are using data acquired by the Visible and InfraRed mapping Spectrometer (VIR) on the Dawn mission. Nominal spatial resolution of the data set considered in this study is 70m/px. The portion of Rheasil-Aa basin below 65degS has a howarditic composition, with the higher concentration of diogenitic versus eucritic material in the region between 45deg and 225degE-lon. However, there are several locations, such as craters Tarpeia and Severina and Parentatio Rupes, with lithologic characteristics different from the surroundings regions. Tarpeia crater has a eucritic patch in the west side of the crater, the bottom part ofthe wall and part of the floor. Severina, located in a region of Mg-rich pyroxene, has some diogenitic units on the walls of the crater. Also the Parentatio Rupes has an ob-AOUS diogenitic unit. These units extend for 10-20km, and their location, especially in the case of the two craters, suggests they formed before the cratering events and also before the Rheasil-Aa impact event. The origin of these units is still unclear; however, their characteristics and locations suggests heterogeneity in the composition of the ancient Vestan crust in this particular location of the surface.
The soft X-ray diffuse background
NASA Technical Reports Server (NTRS)
Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.
1982-01-01
Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.
Discovery Of A Rossby Wave In Jupiter's South Equatorial Region
NASA Technical Reports Server (NTRS)
Simon-Miller, Amy A.; Choi, D. S.; Rogers, J. H.; Gierasch, P. J.
2012-01-01
A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 deg S planetographic latitude shows variations in velocity with longitude and time. The chevrons move with velocities near the maximum wind jet velocity of approx.140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 deg N latitude. Their repetitive nature is consistent with an inertia-gravity wave (n = 75-100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a approx.7-day period. This oscillating motion has a wavelength of approx.20 deg and a speed of approx.100 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it, though they are not perfectly in phase. The transient anticyclonic South Equatorial Disturbance (SED) may be a similar wave feature, but moves at slower velocity. All data show chevron latitude variability, but it is unclear if this Rossby wave is present during other epochs, without time series movies that fully delineate it. In the presence of multiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S may be due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.
Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency
NASA Technical Reports Server (NTRS)
Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey
2011-01-01
The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours
Galactic Supernova Remnant Candidates Discovered by THOR
NASA Astrophysics Data System (ADS)
Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team
2018-01-01
There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.
A look at motion in the frequency domain
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.
1983-01-01
A moving image can be specified by a contrast distribution, c(x,y,t), over the dimensions of space x,y, and time t. Alternatively, it can be specified by the distribution C(u,v,w) over spatial frequency u,v and temporal frequency w. The frequency representation of a moving image is shown to have a characteristic form. This permits two useful observations. The first is that the apparent smoothness of time-sampled moving images (apparent motion) can be explained by the filtering action of the human visual system. This leads to the following formula for the required update rate for time-sampled displays. W(c)=W(l)+ru(l) where w(c) is the required update rate in Hz, W(l) is the limit of human temporal resolution in Hz, r is the velocity of the moving image in degrees/sec, and u(l) is the limit of human spatial resolution in cycles/deg. The second observation is that it is possible to construct a linear sensor that responds to images moving in a particular direction. The sensor is derived and its properties are discussed.
NASA Technical Reports Server (NTRS)
Ahumada, Albert J.; Beard, B. L.; Stone, Leland (Technical Monitor)
1997-01-01
We have been developing a simplified spatial-temporal discrimination model similar to our simplified spatial model in that masking is assumed to be a function of the local visible contrast energy. The overall spatial-temporal sensitivity of the model is calibrated to predict the detectability of targets on a uniform background. To calibrate the spatial-temporal integration functions that define local visible contrast energy, spatial-temporal masking data are required. Observer thresholds were measured (2IFC) for the detection of a 12 msec target stimulus in the presence of a 700 msec mask. Targets were 1, 3 or 9 c/deg sine wave gratings. Masks were either one of these gratings or two of them combined. The target was presented in 17 temporal positions with respect to the mask, including positions before, during and after the mask. Peak masking was found near mask onset and offset for 1 and 3 c/deg targets, while masking effects were more nearly uniform during the mask for the 9 c/deg target. As in the purely spatial case, the simplified model can not predict all the details of masking as a function of masking component spatial frequencies, but overall the prediction errors are small.
NASA Technical Reports Server (NTRS)
Miller, Timothy; James, Mark; Roberts, Brent J.; Biswax, Sayak; Uhlhorn, Eric; Black, Peter; Linwood Jones, W.; Johnson, Jimmy; Farrar, Spencer; Sahawneh, Saleem
2012-01-01
Ocean surface emission is affected by: a) Sea surface temperature. b) Wind speed (foam fraction). c) Salinity After production of calibrated Tb fields, geophysical fields wind speed and rain rate (or column) are retrieved. HIRAD utilizes NASA Instrument Incubator Technology: a) Provides unique observations of sea surface wind, temp and rain b) Advances understanding & prediction of hurricane intensity c) Expands Stepped Frequency Microwave Radiometer capabilities d) Uses synthetic thinned array and RFI mitigation technology of Lightweight Rain Radiometer (NASA Instrument Incubator) Passive Microwave C-Band Radiometer with Freq: 4, 5, 6 & 6.6 GHz: a) Version 1: H-pol for ocean wind speed, b) Version 2: dual ]pol for ocean wind vectors. Performance Characteristics: a) Earth Incidence angle: 0deg - 60deg, b) Spatial Resolution: 2-5 km, c) Swath: approx.70 km for 20 km altitude. Observational Goals: WS 10 - >85 m/s RR 5 - > 100 mm/hr.
NASA Technical Reports Server (NTRS)
Janardanan, Rajesh; Maksyutov, Shamil; Oda, Tomohiro; Saito, Makoto; Kaiser, Johannes W.; Ganshin, Alexander; Stohl, Andreas; Matsunaga, Tsuneo; Yoshida, Yukio; Yokota, Tatsuya
2016-01-01
We employed an atmospheric transport model to attribute column-averaged CO2 mixing ratios (XCO2) observed by Greenhouse gases Observing SATellite (GOSAT) to emissions due to large sources such as megacities and power plants. XCO2 enhancements estimated from observations were compared to model simulations implemented at the spatial resolution of the satellite observation footprint (0.1deg × 0.1deg). We found that the simulated XCO2 enhancements agree with the observed over several continental regions across the globe, for example, for North America with an observation to simulation ratio of 1.05 +/- 0.38 (p<0.1), but with a larger ratio over East Asia (1.22 +/- 0.32; p<0.05). The obtained observation-model discrepancy (22%) for East Asia is comparable to the uncertainties in Chinese emission inventories (approx.15%) suggested by recent reports. Our results suggest that by increasing the number of observations around emission sources, satellite instruments like GOSAT can provide a tool for detecting biases in reported emission inventories.
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Gatebe, Charles K.; Schaaf, Crystal B.; Poudyal, Rajesh; Wang, Zhuosen; King, Michael D.
2012-01-01
Over the past decade, the role of multiangle 1 remote sensing has been central to the development of algorithms for the retrieval of global land surface properties including models of the bidirectional reflectance distribution function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical quantities represented by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new retrieval strategy was applied to NASA's Cloud Absorption Radiometer (CAR) data acquired during the 2007 Cloud and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site in Oklahoma, USA. For the case analyzed, we obtained approx.1.6 million individual surface bidirectional reflectance factor (BRF) retrievals, from nadir to 75deg off-nadir, and at spatial resolutions ranging from 3 m - 500 m. This unique dataset was used to examine the interaction of the spatial and angular 18 characteristics of a mixed agricultural landscape; and provided the basis for detailed assessments of: (1) the use of a priori knowledge in kernel-driven BRDF model inversions; (2) the interaction between surface reflectance anisotropy and instrument spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and characteristics of different surface radiative properties related to land/use cover change and vegetation structure.
Clementine High Resolution Camera Mosaicking Project
NASA Technical Reports Server (NTRS)
1998-01-01
This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a side, which spans approximately 2.2 deg. Two mosaics are provided for each pole: one corresponding to data acquired while periapsis was in the south, the other while periapsis was in the north. The CD-ROMs also contain ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files.
Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site
NASA Technical Reports Server (NTRS)
Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong
2014-01-01
The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.
NASA Astrophysics Data System (ADS)
Stopa, Michael
2005-03-01
We calculate the electronic structure of GaAs-AlGaAs two-dimensional electron gas (2DEG) devices, such as quantum dots and quantum point contacts (QPCs) in the presence of a tip of a scanning probe microscope at some distance above the surface. The calculation employs standard density functional theory with exchange and correlation treated in the local density approximation. The position and voltage on the tip are varied and the conditions for depletion of the 2DEG are shown to compare favorably to experiment [1]. We show that the size of the depletion region created (by a negative tip voltage) is unexpectedly small due to focusing of the potential lines by the higher dielectric. We study the interaction of the tip with an isolated quantum dot that contains one or two electrons. The raster pattern of the difference between single particle energies reveals that the tip distorts the shape of the confining potential and suggests that excited state properties, if they can be measured experimentally, can contribute to the resolution of spatial information. [1] M.A. Topinka, R.M. Westervelt, E.J. Heller, ``http://meso.deas.harvard.edu/papers/Topinka, PT 56 12 (2003)'' (Imaging Electron Flow), Physics Today 56, 12 (2003).
Saturns Thermal Emission at 2.2-cm Wavelength as Imaged by the Cassini RADAR Radiometer
NASA Technical Reports Server (NTRS)
Janssen, M. A.; Ingersoll, A. P.; Allison, M. D.; Gulkis, S.; Laraia, A. L.; Baines, K. H.; Edgington, S. G.; Anderson, Y. Z.; Kelleher, K.; Oyafuso, F. A.
2013-01-01
We present well-calibrated, high-resolution maps of Saturn's thermal emission at 2.2-cm wavelength obtained by the Cassini RADAR radiometer through the Prime and Equinox Cassini missions, a period covering approximately 6 years. The absolute brightness temperature calibration of 2% achieved is more than twice better than for all previous microwave observations reported for Saturn, and the spatial resolution and sensitivity achieved each represent nearly an order of magnitude improvement. The brightness temperature of Saturn in the microwave region depends on the distribution of ammonia, which our radiative transfer modeling shows is the only significant source of absorption in Saturn's atmosphere at 2.2-cm wavelength. At this wavelength the thermal emission comes from just below and within the ammonia cloud-forming region, and yields information about atmospheric circulations and ammonia cloud-forming processes. The maps are presented as residuals compared to a fully saturated model atmosphere in hydrostatic equilibrium. Bright regions in these maps are readily interpreted as due to depletion of ammonia vapor in, and, for very bright regions, below the ammonia saturation region. Features seen include the following: a narrow equatorial band near full saturation surrounded by bands out to about 10deg planetographic latitude that demonstrate highly variable ammonia depletion in longitude; narrow bands of depletion at -35deg latitude; occasional large oval features with depleted ammonia around -45deg latitude; and the 2010-2011 storm, with extensive saturated and depleted areas as it stretched halfway around the planet in the northern hemisphere. Comparison of the maps over time indicates a high degree of stability outside a few latitudes that contain active regions.
NASA Technical Reports Server (NTRS)
Malin, Michael; Revine, Michael; Boyce, Joseph M. (Technical Monitor)
1998-01-01
This compact disk (CD) is part of the Malin Space Science Systems (MSSS) effort to mosaic Clementine I high resolution (HiRes) camera lunar images. These mosaics were developed through calibration and semi-automated registration against the recently released geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic, which is available through the PDS, as CD-ROM volumes CL_3001-3015. The HiRes mosaics are compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution observations from the HiRes imaging system onboard the Clementine Spacecraft. These mosaics are spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel. The geometric control is provided by the 100 m/pixel U.S. Geological Survey (USGS) Clementine Basemap Mosaic compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Calibration was achieved by removing the image nonuniformity largely caused by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap that approximately transform the 8-bit HiRes data to photometric units. The mosaics on this CD were compiled from sub-polar data (latitudes 80 degrees South to 80 degrees North; -80 to +80) within the longitude range 0-30 deg E. The mosaics are divided into tiles that cover approximately 1.75 degrees of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. This CD contains ancillary data files that support the HiRes mosaic. These files include browse images with UV/Vis context stored in a Joint Photographic Experts Group (JPEG) format, index files ('imgindx.tab' and 'srcindx.tab') that tabulate the contents of the CD, and documentation files. For more information on the contents and organization of the CD volume set refer to the "FILES, DIRECTORIES AND DISK CONTENTS" section of this document. The image files are organized according to NASA's Planetary Data System (PDS) standards. An image file (tile) is organized as a PDS labeled file containing an "image object".
Spectrometer system for diffuse extreme ultraviolet radiation
NASA Technical Reports Server (NTRS)
Labov, Simon E.
1989-01-01
A unique grazing incidence spectrometer system has been designed to study diffuse line emission between 80 and 650 A with 10-30 A resolution. The minimum detectable emission line strength during a 5-min observation ranges from 100-2000 ph/sq cm sec str. The instrument uses mechanically ruled reflection gratings placed in front of a linear array of mirrors. These mirrors focus the spectral image on microchannel plate detectors located behind thin filters. The field of view is 40 min of arc by 15 deg, and there is no spatial imaging. This instrument has been fabricated, calibrated, and successfully flown on a sounding rocket to observe the astronomical background radiation.
Simulated cosmic microwave background maps at 0.5 deg resolution: Unresolved features
NASA Technical Reports Server (NTRS)
Kogut, A.; Hinshaw, G.; Bennett, C. L.
1995-01-01
High-contrast peaks in the cosmic microwave background (CMB) anisotropy can appear as unresolved sources to observers. We fit simluated CMB maps generated with a cold dark matter model to a set of unresolved features at instrumental resolution 0.5 deg-1.5 deg to derive the integral number density per steradian n (greater than absolute value of T) of features brighter than threshold temperature absolute value of T and compare the results to recent experiments. A typical medium-scale experiment observing 0.001 sr at 0.5 deg resolution would expect to observe one feature brighter than 85 micro-K after convolution with the beam profile, with less than 5% probability to observe a source brighter than 150 micro-K. Increasing the power-law index of primordial density perturbations n from 1 to 1.5 raises these temperature limits absolute value of T by a factor of 2. The MSAM features are in agreement with standard cold dark matter models and are not necessarily evidence for processes beyond the standard model.
Radio Recombination Line Surveys of the inner Galactic Plane: SIGGMA and GDIGS
NASA Astrophysics Data System (ADS)
Liu, Bin; Anderson, Loren Dean; Luisi, Matteo; Balser, Dana; Bania, Thomas; Wenger, Trey; Haffner, Lawrence Matthew; Minchin, Robert; Roshi, Anish; Churchwell, Edward; Terzian, Yervant; McIntyre, Travis; Lebron, Mayra; SIGGMA team, GDIGS team
2018-01-01
Ionized gas is one of the primary components of the interstellar medium (ISM) and plays a crucial role in star formation and galaxy evolution. Radio recombination lines (RRLs) can directly trace ionized gas in HII regions and warm ionized medium (WIM) without being affected by interstellar extinction. Single-dish telescopes like Arecibo Observatory and the Green Bank Telescope (GBT) are sensitive to low surface brightness emission, and are therefore powerful tools for the study of HII regions and the WIM. We report here on two large surveys of RRL emission: The Survey of Ionized Gas in the Galaxy, Made with the Arecibo telescope (SIGGMA) and the GBT Diffuse Ionized Gas Survey (GDIGS). These are the first large-scale fully-sampled RRL surveys, and together cover nearly the entire first quadrant of the Galactic plane at ~arcmin spatial resolution (l = -5 - 32 deg. for GDIGS and l = 32 - 70 deg. for SIGGMA). SIGGMA is performed with the Arecibo L-band Feed Array (ALFA) receiver, whose bandpass covers twelve hydrogen alpha lines from H163α to H174α. By stacking the α-lines and smoothing to 4 km/s velocity resolution, the final SIGGMA spectra have a mean rms level of ~0.65 mJy per beam. The GDIGS data were taken with the GBT C-band receiver and the VEGAS backend and include RRLs from H95α to H117α, and when stacked and smoothed to 5 km/s resolution achieve 1 mJy per beam rms. Here, we report on early analysis of the SIGGMA and GDIGS data, and present first scientific results.
Speech Intelligibility Advantages using an Acoustic Beamformer Display
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Sunder, Kaushik; Godfroy, Martine; Otto, Peter
2015-01-01
A speech intelligibility test conforming to the Modified Rhyme Test of ANSI S3.2 "Method for Measuring the Intelligibility of Speech Over Communication Systems" was conducted using a prototype 12-channel acoustic beamformer system. The target speech material (signal) was identified against speech babble (noise), with calculated signal-noise ratios of 0, 5 and 10 dB. The signal was delivered at a fixed beam orientation of 135 deg (re 90 deg as the frontal direction of the array) and the noise at 135 deg (co-located) and 0 deg (separated). A significant improvement in intelligibility from 57% to 73% was found for spatial separation for the same signal-noise ratio (0 dB). Significant effects for improved intelligibility due to spatial separation were also found for higher signal-noise ratios (5 and 10 dB).
NASA Technical Reports Server (NTRS)
Ricko, Martina; Adler, Robert F.; Huffman, George J.
2016-01-01
Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Cairns, Brian; Mishchenko, Michael I.; Tsigaridis, Kostas; van Noije, Twan
2014-01-01
To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiationtransport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125 deg × 1.125 deg and 2 deg × 3?: the analysis is restricted to 60 deg S-60 deg N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long-term mean absolute monthly difference between all and dark target (DT) pixels was 0.01-0.02 over the ocean and 0.03-0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07-0.12 (30-45% of the global long-term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01-0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun-glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel-wide along-track instruments such as the Aerosol Polarimetry Sensor and the Cloud-Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along-track sensor to be 0.0005-0.0015 (ocean) and 0.0029-0.01 (land) or 0.5-1.2% and 1.1-4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant change in the global mean AOT, suggesting that sampling density is unlikely to limit the use of such instruments for climate applications at least on a global, monthly scale.
Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)
NASA Technical Reports Server (NTRS)
Nelson, D.L.; Garay, M.J.; Kahn, Ralph A.; Dunst, Ben A.
2013-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0deg (nadir) to 70deg off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR's operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.
High contrast sensitivity for visually guided flight control in bumblebees.
Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie
2017-12-01
Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.
High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data
NASA Technical Reports Server (NTRS)
Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2014-01-01
We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.
Super-resolution optics for virtual reality
NASA Astrophysics Data System (ADS)
Grabovičkić, Dejan; Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj; Nikolic, Milena I.; Lopez, Jesus; Gorospe, Jorge; Sanchez, Eduardo; Lastres, Carmen; Mohedano, Ruben
2017-06-01
In present commercial Virtual Reality (VR) headsets the resolution perceived is still limited, since the VR pixel density (typically 10-15 pixels/deg) is well below what the human eye can resolve (60 pixels/deg). We present here novel advanced optical design approaches that dramatically increase the perceived resolution of the VR keeping the large FoV required in VR applications. This approach can be applied to a vast number of optical architectures, including some advanced configurations, as multichannel designs. All this is done at the optical design stage, and no eye tracker is needed in the headset.
Radar systems for the water resources mission. Volume 4: Appendices E-I
NASA Technical Reports Server (NTRS)
Moore, R. K.; Claassen, J. P.; Erickson, R. L.; Fong, R. K. T.; Hanson, B. C.; Komen, M. J.; Mcmillan, S. B.; Parashar, S. K.
1976-01-01
The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts.
NASA Astrophysics Data System (ADS)
Goulding, Andy D.; Greene, Jenny E.; Bezanson, Rachel; Greco, Johnny; Johnson, Sean; Medezinski, Elinor; Strauss, Michael A.; HSC Collaboration
2017-01-01
Collisions and interactions between galaxies are thought to be pivotal stages in their formation and evolution, causing the rapid production of new stars, and may also serve as a mechanism for fueling supermassive black holes (BH). Harnessing the exquisite spatial resolution (0.3—0.7 arcsec) afforded by the new 1400 deg2 Hyper Suprime-Cam (HSC) Survey, we present our new constraints on the importance of major and minor mergers in growing BHs throughout the last ~7 Gyrs. Utilizing the first ~170 deg2 of the HSC Survey, and mid-infrared observations in the WISE All-Sky survey, we have robustly selected active galactic nuclei (AGN), starburst, and mass-matched control galaxy samples, totaling ~120,000 spectroscopically confirmed systems at i<22 mag. We identify galaxy interactions using a novel machine-learning technique, and use these data to map the growth of BHs as a function of interaction-stage, redshift and AGN luminosity, ultimately providing the necessary large-number statistics required to investigate merger—AGN triggering in the context of galaxy evolution out to z~1.
NASA Technical Reports Server (NTRS)
Roos-Serote, M.; Drossart, P.; Encrenaz, TH.; Lellouch, E.; Carlson, R. W.; Baines, K. H.; Taylor, F. W.; Calcutt, S. B.
1995-01-01
An analysis of thermal profiles and dynamics over a wide range of latitudes for the venusian atmosphere between 70 and 90 km is presented based on high spatial resolution infrared spectra of the night side obtained by the near infrared mapping spectrometer (NIMS) experiment during the Galileo-Venus encounter in February 1990. Using the 4.3-micrometer CO2 absorption band, the temperature profile is retrieved in the 75- to 91-km altitude region over a latitudinal range of -59 deg to +64 deg. Compared to earlier observations from the Pioneer Venus mission, the temperature at 91 km is about 10 K higher and between 74 and 83 km about 3.6 K colder. An equator to pole warming at constant pressure levels is found and implications for the zonal wind profiles are drawn under the assumption that the atmosphere is in cyclostrophic balance in the region of 70 to 90 km. The results are in correspondence with direct wind measurements from ground-based observations at 95 km and 105 km altitude.
Design of a new Nd:YAG Thomson scattering system for MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannell, R.; Walsh, M. J.; Carolan, P. G.
2008-10-15
A new infrared Thomson scattering system has been designed for the MAST tokamak. The system will measure at 120 spatial points with {approx_equal}10 mm resolution across the plasma. Eight 30 Hz 1.6 J Nd:YAG lasers will be combined to produce a sampling rate of 240 Hz. The lasers will follow separate parallel beam paths to the MAST vessel. Scattered light will be collected at approximately f/6 over scattering angles ranging from 80 deg. to 120 deg. The laser energy and lens size, relative to an existing 1.2 J f/12 system, greatly increases the number of scattered photons collected per unitmore » length of laser beam. This is the third generation of this polychromator to be built and a number of modifications have been made to facilitate mass production and to improve performance. Detected scattered signals will be digitized at a rate of 1 GS/s by 8 bit analog to digital converters (ADCs.) Data may be read out from the ADCs between laser pulses to allow for real-time analysis.« less
The spatial distribution of two dimensional electron gas at the LaTiO3/KTaO3 interface
NASA Astrophysics Data System (ADS)
Song, Qi; Peng, Rui; Xu, Haichao; Feng, Donglai
2017-08-01
We report the photoemission spectroscopy studies on the newly discovered two dimensional electron gas (2DEG) system LaTiO3/KTaO3, whose interfacial carriers show much higher mobility than that in LaAlO3/SrTiO3 at room temperature, thus raising the application prospect of transition metal oxide-based 2DEG. By measuring the density of states at the Fermi energy (EF), we directly reveal the spatial distribution of the conducting electrons at the interface. The density of states near EF of the topmost LTO reaches the highest when LTO is 2-unit-cell thick, and diminishes at the 5th unit cell of LTO. We discussed the origin of such a spacial distribution of conducting electrons and its relation with 2DEG, and proposed two possible scenarios based on electrostatic relaxations and chemical reconstructions. These results offer experimental clues in understanding the characteristics and origin of the 2DEG, and also shed light on improving the performance of 2DEG.
The spatial distribution of two dimensional electron gas at the LaTiO3/KTaO3 interface.
Song, Qi; Peng, Rui; Xu, Haichao; Feng, Donglai
2017-08-09
We report the photoemission spectroscopy studies on the newly discovered two dimensional electron gas (2DEG) system LaTiO 3 /KTaO 3 , whose interfacial carriers show much higher mobility than that in LaAlO 3 /SrTiO 3 at room temperature, thus raising the application prospect of transition metal oxide-based 2DEG. By measuring the density of states at the Fermi energy (E F ), we directly reveal the spatial distribution of the conducting electrons at the interface. The density of states near E F of the topmost LTO reaches the highest when LTO is 2-unit-cell thick, and diminishes at the 5th unit cell of LTO. We discussed the origin of such a spacial distribution of conducting electrons and its relation with 2DEG, and proposed two possible scenarios based on electrostatic relaxations and chemical reconstructions. These results offer experimental clues in understanding the characteristics and origin of the 2DEG, and also shed light on improving the performance of 2DEG.
Study of a water quality imager for coastal zone missions
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Harrison, E. F.; Wessel, V. W.
1975-01-01
The present work surveys water quality user requirements and then determines the general characteristics of an orbiting imager (the Applications Explorer, or AE) dedicated to the measurement of water quality, which could be used as a low-cost means of testing advanced imager concepts and assessing the ability of imager techniques to meet the goals of a comprehensive water quality monitoring program. The proposed imager has four spectral bands, a spatial resolution of 25 meters, and swath width of 36 km with a pointing capability of 330 km. Silicon photodetector arrays, pointing systems, and several optical features are included. A nominal orbit of 500 km altitude at an inclination of 50 deg is recommended.
NASA Technical Reports Server (NTRS)
Tacina, R.
1976-01-01
A premixing-prevaporizing fuel system to be used with a catalytic combustor was evaluated for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using jet A fuel. Two types of air blast injectors were tested, a splash groove injector and a multiple jet cross stream injector. Air swirlers with vane angles of 15 deg and 30 deg were used to improve the spatial fuel distribution in a 12 cm diameter tubular rig. Distribution and vaporization measurements were made 35.5 cm downstream of the injector. The spatial fuel distribution was nearly uniform with the multiple jet contrastream injector and the splash-groove injector with a 30 deg air swirler. The vaporization was nearly 100 percent at an inlet air temperature of 600 K, and at 800 K inlet air temperature fuel oxidation reactions were observed. The total pressure loss was less than 0.5 percent of the total pressure for the multiple jet cross stream injector and the splash groove injector (without air swirler) and less than 1 percent for the splash groove with a 30 deg air swirler.
Hexagonal Pixels and Indexing Scheme for Binary Images
NASA Technical Reports Server (NTRS)
Johnson, Gordon G.
2004-01-01
A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg, and 120deg to the original horizontal coordinate axis. The net result is that one has checked for line segments at angular intervals of 30deg. For even finer angular resolution, one could, for example, then rotate the rectangular-grid image +/-45deg before sampling to perform checking for line segments at angular intervals of 15deg.
Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu
2011-01-01
Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with the GIF-resolution hypothesis even when the gravito-inertial force vector remains aligned with the body during periodic motion. Perception is also consistent with GIF-resolution in the opposite condition, when the gravito-inertial force vector angle is enhanced by synchronized tilt and translation.
Global Distribution of Dissected Duricrust on Mars
NASA Technical Reports Server (NTRS)
Mustard, J. F.; Cooper, C. D.
2000-01-01
Evidence for dissected duricrust was identified in high resolution MOC images. Analysis of all available images was used to map the global distribution of this terrain. It is apparently restricted to two latitude bands: 30-60 deg. N and 30-60 deg. S.
An Overview of the Topography of Mars from the Mars Orbiter Laser Altimeter (MOLA)
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.
2000-01-01
The Mars Global Surveyor (MGS) spacecraft has now completed more than half of its one-Mars-year mission to globally map Mars. During the MGS elliptical and circular orbit mapping phases, the Mars Orbiter Laser Altimeter (MOLA), an instrument on the MGS payload, has collected over 300 million precise elevation measurements. MOLA measures the range from the MGS spacecraft to the Martian surface and to atmospheric reflections. Range is converted to topography through knowledge of the MGS spacecraft orbit. Ranges from MOLA have resulted in a precise global topographic map of Mars. The instrument has also provided measurements of the width of the backscattered optical pulse and of the 1064 nm reflectivity of the Martian surface and atmosphere. The range resolution of the MOLA instrument is 37.5 cm and the along-track resolution of MOLA ground shots is approx. 300 m; the across-track spacing depends on latitude and time in the mapping orbit. The best current topographic grid has a spatial resolution of approx. 1/16 deg and vertical accuracy of approx. one meter. Additional information is contained in the original extended abstract.
High resolution Fourier interferometer-spectrophotopolarimeter
NASA Technical Reports Server (NTRS)
Fymat, A. L. (Inventor)
1976-01-01
A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.
The Nuclear Astrophysics Explorer
NASA Technical Reports Server (NTRS)
Matteson, J. L.; Teegarden, B. J.; Gehrels, N.; Mahoney, W. A.
1989-01-01
The Nuclear Astrophysics Explorer was proposed in 1986 for NASA's Explorer Concept Study Program by an international collaboration of 25 scientists from nine institutions. The one-year feasibility study began in June 1988. The Nuclear Astrophysics Explorer would obtain high resolution observations of gamma-ray lines, E/Delta E about 1000, at a sensitivity of about 0.000003 ph/sq cm s, in order to study fundamental problems in astrophysics such as nucleosynthesis, supernovae, neutron star and black-hole physics, and particle acceleration and interactions. The instrument would operate from 15 keV to 10 Mev and use a heavily shielded array of nine cooled Ge spectrometers in a very low background configuration. Its 10 deg FWHM field of view would contain a versatile coded mask system which would provide two-dimensional imaging with 4 deg resolution, one-dimensional imaging with 2 deg resolution, and efficiendt measurements of diffuse emission. An unshielded Ge spectrometer would obtain wide-field measurements of transient gamma-ray sources. The earliest possible mission would begin in 1995.
NASA Technical Reports Server (NTRS)
Georgoulias, Aristeidis K.; Alexandri, Georgia; Kourtidis, Konstantinos A.; Lelieveld, Jos; Zanis, Prodromos; Poeschl, Ulrich; Levy, Robert; Amiridis, Vassilis; Marinou, Eleni; Tsikerdekis, Athanasios
2016-01-01
This study characterizes the spatiotemporal variability and relative contribution of different types of aerosols to the aerosol optical depth (AOD) over the Eastern Mediterranean as derived from MODIS (Moderate Resolution Imaging Spectroradiometer) Terra (March 2000-December 2012) and Aqua (July 2002-December 2012) satellite instruments. For this purpose, a 0.1deg × 0.1deg gridded MODIS dataset was compiled and validated against sun photometric observations from the AErosol RObotic NETwork (AERONET). The high spatial resolution and long temporal coverage of the dataset allows for the determination of local hot spots like megacities, medium-sized cities, industrial zones and power plant complexes, seasonal variabilities and decadal averages. The average AOD at 550 nm (AOD550) for the entire region is approx. 0.22 +/- 0.19, with maximum values in summer and seasonal variabilities that can be attributed to precipitation, photochemical production of secondary organic aerosols, transport of pollution and smoke from biomass burning in central and eastern Europe and transport of dust from the Sahara and the Middle East. The MODIS data were analyzed together with data from other satellite sensors, reanalysis projects and a chemistry-aerosol-transport model using an optimized algorithm tailored for the region and capable of estimating the contribution of different aerosol types to the total AOD550. The spatial and temporal variability of anthropogenic, dust and fine-mode natural aerosols over land and anthropogenic, dust and marine aerosols over the sea is examined. The relative contribution of the different aerosol types to the total AOD550 exhibits a low/high seasonal variability over land/sea areas, respectively. Overall, anthropogenic aerosols, dust and fine-mode natural aerosols account for approx. 51, approx. 34 and approx. 15 % of the total AOD550 over land, while, anthropogenic aerosols, dust and marine aerosols account approx. 40, approx. 34 and approx. 26 % of the total AOD550 over the sea, based on MODIS Terra and Aqua observations.
Transport of Biomass Burning Emissions from Southern Africa
NASA Technical Reports Server (NTRS)
Sinha, Parikhit; Jaegle,Lyatt; Hobbs, Peter V.; Liang, Qing
2004-01-01
The transport of biomass burning emissions from southern Africa to the neighboring Atlantic and Indian Oceans during the dry season (May-October) of 2000 is characterized using ground, ozonesonde, and aircraft measurements of carbon monoxide (CO) and ozone (O3) in and around southern Africa, together with the GEOS-CHEM global model of tropospheric chemistry. The model shows a positive bias of approximately 20% for CO and a negative bias of approximately 10-25% for O3 at oceanic sites downwind of fire emissions. Near areas of active fire emissions the model shows a negative bias of approximately 60% and approximately 30% for CO and O3, respectively, likely due to the coarse spatial (2 deg. x 2.5 deg.) and temporal (monthly) resolution of the model compared to that of active fires. On average, from 1994 to 2000, approximately 60 Tg of carbon monoxide (CO) from biomass burning in southern Africa was transported eastward to the Indian Ocean across the latitude band 0 deg. -60 S during the 6 months of the dry season. Over the same time period, approximately 40 Tg of CO from southern African biomass burning was transported westward to the Atlantic Ocean over the latitudes 0 deg. -20 S during the 6-month dry season, but most of that amount was transported back eastward over higher latitudes to the south (21 deg. -60 S). Eastward transport of biomass burning emissions from southern Africa enhances CO concentrations by approximately 4- 13 ppbv per month over the southern subtropical Indian Ocean during the dry season, with peak enhancements in September. Carbon monoxide from southern African and South American biomass burning is seen in the model simulations as far away as Australia, contributing approximately 8 ppbv and approximately 12-15 ppbv CO, respectively, and thus explaining the approximately 20- 25 ppbv observed enhancement of CO over Melbourne in mid-September 2000.
A merged surface reflectance product from the Landsat and Sentinel-2 Missions
NASA Astrophysics Data System (ADS)
Vermote, E.; Claverie, M.; Masek, J. G.; Becker-Reshef, I.; Justice, C. O.
2013-12-01
This project is aimed at producing a merged surface product from the Landsat and Sentinel-2 missions to ultimately achieve high temporal coverage (~2 days repeat cycle) at high spatial resolution (20-60m). The goal is to achieve a seamless/consistent stream of surface reflectance data from the different sensors. The first part of this presentation discusses the basic requirements of such a product and the necessary processing steps: mainly calibration, atmospheric corrections, BRDF effect corrections, spectral band pass adjustments and gridding. We demonstrate the performance of those different corrections by using MODIS and VIIRS (Climate Modeling Grid at 0.05deg) data globally as well as Formosat-2 (8m spatial resolution) data (one crop site in South of France where 105 scenes were acquired during 2006-2010). The consistency of the surface reflectance product from MODIS and Formosat-2 ranges from 6 to 8% relative depending on the spectral bands (Green to NIR) with a bias between 2% (NIR) to 5% (green), which is acceptable given the cumulated limitation in cross-calibration, atmospheric correction and BRDF correction. The second part is devoted to the simulation of the merged Landsat and Sentinel-2 mission by using Landsat-7, LDCM (early) and SPOT-4 Take 5 dataset. SPOT-4 Take 5 dataset is a collection of 42 sites distributed globally and systematically acquired by SPOT-4 HRV every 5 days during the decommissioning phase of the SPOT4 mission (February-May 2013). Finally, the benefits of such a merged surface reflectance at high spatial and temporal resolution are discussed within the context of the agricultural monitoring, in particular in the perspective of the GEOGLAM (Global Earth Observation for Global Land Agriculture Monitoring) project.
NASA Technical Reports Server (NTRS)
Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George J.; Li, Hongyi; Wang, JianJian
2014-01-01
A widely used land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood monitoring parameters for the latitude band 50 deg. N - 50 deg. S at relatively high spatial (approximately 12 km) and temporal (3 hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Evaluation results are slightly better for the research-quality input and significantly better for longer duration events (3 day events versus 1 day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is approximately 0.9 and the false alarm ratio is approximately 0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30 deg. S - 30 deg. N) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.
Aquarius Instrument and Salinity Retrieval
NASA Technical Reports Server (NTRS)
Le Vine, D. M.
2011-01-01
Aquarius has been designed to map the surface salinity field of the global ocean from space a parameter important for understanding ocean circulation and its relationship to climate and the global water cycle. Salinity is measured remotely from space by measuring the thermal emission from the ocean surface. This is done at the low frequency end of the microwave spectrum (e.g. 1.4 GHz) where the emission is sufficiently sensitive to changes in salinity to be detected with sophisticated radiometers. The goal is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean by providing maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. These are challenging requirements that have led to some unique features of the instrument. These include: a) The addition of a co-located scatterometer to help provide a correction for roughness; b) The addition of a polarimetric channel (third Stokes parameter) to the radiometer to help correct for Faraday rotation; c) Asun-synchronous orbit with a 6 pm ascending equatorial crossing to minimize Faraday rotation and with the antennas looking away from the sun toward the nighttime side to minimize contamination by radiation from the sun; and d) An antenna designed to limit side lobes in the direction of rays from the sun. In addition, achieving the accuracy goal of 0.2 psu requires averaging over one month and to do this requires a highly stable radiometer. Aquarius has three separate radiometers that image in pushbroom fashion with the three antenna beams looking across track. The antenna is a 2.5-m diameter, offset parabolic reflector with three feed horns and the three beams are arranged to image with the boresight aligned to look across track, roughly perpendicular to the spacecraft heading and pointing away from the Sun. The three beams point at angles of theta = 25.8 deg., 33.8 deg. and 40.3 deg. with respect to the spacecraft nadir which correspond to local incidence angles at the surface of 28.7 deg., 37.8 deg. and 45.6 deg., respectively. The resolution of the three radiometer beams (axes of the 3dB ellipse) is: 76 x 94 km for the inner beam, 84 x 120 km for the middle beam to 96 x 156 km for the outer beam. Together they cover a swath of about 390 km. Aquarius will map the global ice-free ocean every 7-days from which monthly average composites will be derived. This will provide a snapshot of the mean field, as well as resolving the seasonal to interannual variations over the three-year baseline of the mission.
Fast Plasma Instrument for MMS: Data Compression Simulation Results
NASA Technical Reports Server (NTRS)
Barrie, A.; Adrian, Mark L.; Yeh, P.-S.; Winkert, G. E.; Lobell, J. V.; Vinas, A.F.; Simpson, D. J.; Moore, T. E.
2008-01-01
Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eights (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 deg x 180 deg fields-of-view (FOV) are set 90 deg apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 deg x 180 deg fan about its nominal viewing (0 deg deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the results in the DES complement of a given spacecraft generating 6.5-Mbs(exp -1) of electron data while the DIS generates 1.1-Mbs(exp -1) of ion data yielding an FPI total data rate of 6.6-MBs(exp -1). The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. Currently, the FPI data rate allocation to the CIDP is 1.5-Mbs(exp -1). Consequently, the FPI-IDPU must employ data/image compression to meet this CIDP telemetry allocation. Here, we present simulations of the CCSDS 122.0-B-1 algorithm-based compression of the FPI-DES electron data. Compression analysis is based upon a seed of re-processed Cluster/PEACE electron measurements. Topics to be discussed include: review of compression algorithm; data quality; data formatting/organization; and, implications for data/matrix pruning. To conclude a presentation of the base-lined FPI data compression approach is provided.
Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream
NASA Technical Reports Server (NTRS)
Lee, Tong; Cornillon, Peter
1995-01-01
The path of the Gulf Stream exhibits two modes of variability: wavelike spatial meanders associated with instability processes and large-sale lateral shifts of the path presumably due to atmospheric forcing. The objectives of this study are to examine the temporal variation of the intensity of spatial meandering in the stream, to characterize large-scale lateral oscillations in the stream's path, and to study the correlation betwen these two dynamically distinct modes of variability. The data used for this analysis are path displacemets ofthe Gulf Stream between 75 deg and 60 deg W obtained from AVHRR-derived (Advanced Very High Resolution Radiometer) infrared images for the period April 1982 through December 1989. Meandering intensity, measured by the spatial root-mean-sqaure displacement of the stream path, displays a 9-month dominant periodicity which is persistent through the study period. The 9-month fluctuation in meandering intensity may be related to the interaction of Rosseby waves with the stream. Interannual variation of meandering intensity is also found to be significant, with meandering being mich more intense during 1985 than it was in 1987. Annual variation, however,is weak and not well-defined.The spatially averaged position of the stream, which reflects nonmeandering large-scale lateral oscillations of the stream path, is dominated by an annual cycle. On average, the mean position is farthest north in November and farthest south in April. The first empirical orthogonal function mode of the space-time path displacements represents lateral oscillatins that are in-phase over the space-time domain. Interannual oscillations are also observed and are found to be weaker than the annual oscillation. The eigenvalue of the first mode indicates that about 21.5% of the total space-time variability of the stream path can be attibuted to domain-wide lateral oscillation. The correlation between meandering intensity and domain-wide lateral oscillations is very weak.
North Polar Radiative Flux Variability from 2002 Through 2014
NASA Technical Reports Server (NTRS)
Rutan, David; Rose, Fred; Doelling, David; Kato, Seiji; Smith, Bill, Jr.
2017-01-01
NASA's Clouds and the Earth's Radiant Energy System (CERES) project produces the SYN1Deg data product. SYN1deg provides global, 1deg gridded, hourly estimates of Top of Atmosphere (TOA) (CERES observations and calculations) and atmospheric and surface radiative flux (calculations). Examples of 12 year North Polar averages of some variables are shown to the right. Given recent interest in polar science we focus here on TOA and Surface validation of calculated irradiant fluxes. TOA upward longwave irradiance calculations match the CERES observations well both spatially and temporally with correlations remaining strong through PC 6. Compare SYN1Deg Calculations & Meteorological Teleconnections. TOA reflected shortwave irradiance calculations match the CERES observations well both spatially and temporally with correlations remaining string through PC 7. Comparing SYN1Deg calculations to teleconnection patterns requires expanding the area to 30N for EOF analyses. Correlating the Principal Components of various variables to teleconnection time series indicates which variable is most highly correlated with which teleconnection signal. The tables indicate the Pacific North American Oscillation is most correlated to the OLR EOF 1, and the North American Oscillation is correlated most closely to surface LW flux down EOF 1.
NASA Technical Reports Server (NTRS)
Stackhouse, P. W., Jr.; Gupta, S. K.; Cox, S. J.; Chiacchio, M.; Mikovitz, J. C.
2004-01-01
The U.S. National Aeronautics and Space Administration (NASA) based Surface Radiation Budget (SRB) Project in association with the World Climate Research Programme Global Energy and Water Cycle Experiment (WCRP/GEWEX) is preparing a new 1 deg x 1 deg horizontal resolution product for distribution scheduled for release in early 2001. The new release contains several significant upgrades from the previous version. This paper summarizes the most significant upgrades and presents validation results as an assessment of the new data set.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena
2010-01-01
This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Nina in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5degN - 20degS latitude extending eastward from 150degW - 30 E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Nino, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as we] l as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino anomaly index four months previously. The El Nino index is defined as the SST anomaly averaged over the area 15S to 15N and 160W eastward to 30E. If one excludes the area 5degN - 20degS, 150degW - 30degE from the statistics, the negative area mean tropical OLR trends, as well as OLR trends over the rest of the globe, are substantially
Zhang, Pengfei; Zam, Azhar; Jian, Yifan; Wang, Xinlei; Li, Yuanpei; Lam, Kit S.; Burns, Marie E.; Sarunic, Marinko V.; Pugh, Edward N.; Zawadzki, Robert J.
2015-01-01
Abstract. Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) provide complementary views of the retina, with the former collecting fluorescence data with good lateral but relatively low-axial resolution, and the latter collecting label-free backscattering data with comparable lateral but much higher axial resolution. To take maximal advantage of the information of both modalities in mouse retinal imaging, we have constructed a compact, four-channel, wide-field (∼50 deg) system that simultaneously acquires and automatically coregisters three channels of confocal SLO and Fourier domain OCT data. The scanner control system allows “zoomed” imaging of a region of interest identified in a wide-field image, providing efficient digital sampling and localization of cellular resolution features in longitudinal imaging of individual mice. The SLO is equipped with a “flip-in” spectrometer that enables spectral “fingerprinting” of fluorochromes. Segmentation of retina layers and en face display facilitate spatial comparison of OCT data with SLO fluorescence patterns. We demonstrate that the system can be used to image an individual retinal ganglion cell over many months, to simultaneously image microglia and Müller glia expressing different fluorochromes, to characterize the distinctive spatial distributions and clearance times of circulating fluorochromes with different molecular sizes, and to produce unequivocal images of the heretofore uncharacterized mouse choroidal vasculature. PMID:26677070
NASA Technical Reports Server (NTRS)
Morris, E. C.
1985-01-01
The Viking Lander 1 and 2 cameras acquired many high-resolution pictures of the Chryse Planitia and Utopia Planitia landing sites. Based on computer-processed data of a selected number of these pictures, eight high-resolution mosaics were published by the U.S. Geological Survey as part of the Atlas of Mars, Miscellaneous Investigation Series. The mosaics are composites of the best picture elements (pixels) of all the Lander pictures used. Each complete mosaic extends 342.5 deg in azimuth, from approximately 5 deg above the horizon to 60 deg below, and incorporates approximately 15 million pixels. Each mosaic is shown in a set of five sheets. One sheet contains the full panorama from one camera taken in either morning or evening. The other four sheets show sectors of the panorama at an enlarged scale; when joined together they make a panorama approximately 2' X 9'.
NASA Technical Reports Server (NTRS)
Wolf, Bart J.; Johnson, D. R.
1995-01-01
A kinetic energy (KE) analysis of the forcing of a mesoscale upper-tropospheric jet streak by organized diabatic processes within the simulated convective system (SCS) that was discussed in Part 1 is presented in this study. The relative contributions of the ageostrophic components of motion to the generation of KE of the convectively generated jet streak are compared, along with the KE generation by the rotational (nondivergent) and irrotational (divergent) mass transport. The sensitivity of the numerical simulations of SCS development to resolution is also briefly examined. Analysis within isentropic coordinates provides for an explicit determination of the influence of the diabatic processes on the generation of KE. The upper-level production of specific KE is due predominatly to the inertial advective ageostrophic component (IAD), and as such represents the primary process through which the KE of the convectively generated jet streak is realized. A secondary contribution by the inertial diabatic (IDI) term is observed. Partitioning the KE generation into its rotational and irrotational components reveals that the latter, which is directly linked to the diabatic heating within the SCS through isentropic continuity requirements, is the ultimate source of KE generation as the global area integral of generation by the rotational component vanishes. Comparison with an identical dry simulation reveals that the net generation of KE must be attributed to latent heating. Both the IAD and IDI ageostrophic components play important roles in this regard. Examination of results from simulations conducted at several resolutions supports the previous findings in that the effects of diabatic processes and ageostrophic motion on KE generation remain consistent. Resolution does impact the location and timing of SCS development, a result that has important implications in forecasting the onset of convection that develops from evolution of the large-scale flow and moisture transport. Marked differences are observed in the momentum field aloft subsequent to the life cycle of the SCS in the 1 deg, 30-level base case (MP130) simulation discussed in Part 1 versus its 2 deg counterparts in that the MP130 simulation with higher spatial resolution contains from 14% to 30% more total KE.
VIS: the visible imager for Euclid
NASA Astrophysics Data System (ADS)
Cropper, Mark; Pottinger, S.; Niemi, S.; Azzollini, R.; Denniston, J.; Szafraniec, M.; Awan, S.; Mellier, Y.; Berthe, M.; Martignac, J.; Cara, C.; Di Giorgio, A.-M.; Sciortino, A.; Bozzo, E.; Genolet, L.; Cole, R.; Philippon, A.; Hailey, M.; Hunt, T.; Swindells, I.; Holland, A.; Gow, J.; Murray, N.; Hall, D.; Skottfelt, J.; Amiaux, J.; Laureijs, R.; Racca, G.; Salvignol, J.-C.; Short, A.; Lorenzo Alvarez, J.; Kitching, T.; Hoekstra, H.; Massey, R.; Israel, H.
2016-07-01
Euclid-VIS is the large format visible imager for the ESA Euclid space mission in their Cosmic Vision program, scheduled for launch in 2020. Together with the near infrared imaging within the NISP instrument, it forms the basis of the weak lensing measurements of Euclid. VIS will image in a single r+i+z band from 550-900 nm over a field of view of ~0.5 deg2. By combining 4 exposures with a total of 2260 sec, VIS will reach to deeper than mAB=24.5 (10σ) for sources with extent ~0.3 arcsec. The image sampling is 0.1 arcsec. VIS will provide deep imaging with a tightly controlled and stable point spread function (PSF) over a wide survey area of 15000 deg2 to measure the cosmic shear from nearly 1.5 billion galaxies to high levels of accuracy, from which the cosmological parameters will be measured. In addition, VIS will also provide a legacy dataset with an unprecedented combination of spatial resolution, depth and area covering most of the extra-Galactic sky. Here we will present the results of the study carried out by the Euclid Consortium during the period up to the Critical Design Review.
Spectral photometry of extreme helium stars: Ultraviolet fluxes and effective temperature
NASA Technical Reports Server (NTRS)
Drilling, J. S.; Schoenberner, D.; Heber, U.; Lynas-Gray, A. E.
1982-01-01
Ultraviolet flux distributions are presented for the extremely helium rich stars BD +10 deg 2179, HD 124448, LSS 3378, BD -9 deg 4395, LSE 78, HD 160641, LSIV -1 deg 2, BD 1 deg 3438, HD 168476, MV Sgr, LS IV-14 deg 109 (CD -35 deg 11760), LSII +33 deg 5 and BD +1 deg 4381 (LSIV +2 deg 13) obtained with the International Ultraviolet Explorer (IUE). Broad band photometry and a newly computed grid of line blanketed model atmospheres were used to determine accurate angular diameters and total stellar fluxes. The resultant effective temperatures are in most cases in satisfactory agreement with those based on broad band photometry and/or high resolution spectroscopy in the visible. For two objects, LSII +33 deg 5 and LSE 78, disagreement was found between the IUE observations and broadband photometry: the colors predict temperatures around 20,000 K, whereas the UV spectra indicate much lower photospheric temperatures of 14,000 to 15,000 K. The new temperature scale for extreme helium stars extends to lower effective temperatures than that of Heber and Schoenberner (1981) and covers the range from 8,500 K to 32,000 K.
NASA Astrophysics Data System (ADS)
Ogawa, Masahiko; Shidoji, Kazunori
2011-03-01
High-resolution stereoscopic images are effective for use in virtual reality and teleoperation systems. However, the higher the image resolution, the higher is the cost of computer processing and communication. To reduce this cost, numerous earlier studies have suggested the use of multi-resolution images, which have high resolution in region of interests and low resolution in other areas. However, observers can perceive unpleasant sensations and incorrect depth because they can see low-resolution areas in their field of vision. In this study, we conducted an experiment to research the relationship between the viewing field and the perception of image resolution, and determined respective thresholds of image-resolution perception for various positions of the viewing field. The results showed that participants could not distinguish between the high-resolution stimulus and the decreased stimulus, 63 ppi, at positions more than 8 deg outside the gaze point. Moreover, with positions shifted a further 11 and 13 deg from the gaze point, participants could not distinguish between the high-resolution stimulus and the decreased stimuli whose resolution densities were 42 and 25 ppi. Hence, we will propose the composition of multi-resolution images in which observers do not perceive unpleasant sensations and incorrect depth with data reduction (compression).
NASA Astrophysics Data System (ADS)
Imai, M.; Kouyama, T.; Takahashi, Y.; Watanabe, S.; Yamazaki, A.; Yamada, M.; Nakamura, M.; Satoh, T.; Imamura, T.; Nakaoka, T.; Kawabata, M.; Yamanaka, M.; Kawabata, K. S.
2017-12-01
Venus has a global cloud layer, and the atmosphere rotates with the speed over 100 m/s. The scattering of solar radiance and absorber in clouds cause the strong dark and bright contrast in 365 nm unknown absorption bands. The Japanese Venus orbiter AKATSUKI and the onboard instrument UVI capture 100 km mesoscale cloud features over the entire visible dayside area. In contrast, planetary-scale features are observed when the orbiter is at the moderate distance from Venus and when the Sun-Venus-orbiter phase angle is smaller than 45 deg. Cloud top wind velocity was measured with the mesoscale cloud tracking technique, however, observations of the propagation velocity and its variation of the planetary-scale feature are not well conducted because of the limitation of the observable area. The purpose of the study is measuring the effect of wind acceleration by planetary-scale waves. Each cloud motion can be represented as the wind and phase velocity of the planetary-scale waves, respectively. We conducted simultaneous observations of the zonal motion of both mesoscale and planetary-scale feature using UVI/AKATSUKI and ground-based Pirka and Kanata telescopes in Japan. Our previous ground-based observation revealed the periodicity change of planetary-scale waves with a time scale of a couple of months. For the initial analysis of UVI images, we used the time-consecutive images taken in the orbit #32. During this orbit (from Nov. 13 to 20, 2016), 7 images were obtained with 2 hr time-interval in a day whose spatial resolution ranged from 10-35 km. To investigate the typical mesoscale cloud motion, the Gaussian-filters with sigma = 3 deg. were used to smooth geometrically mapped images with 0.25 deg. resolution. Then the amount of zonal shift for each 5 deg. latitudinal bands between the pairs of two time-consecutive images were estimated by searching the 2D cross-correlation maximum. The final wind velocity (or rotation period) for mesoscale features were determined with a small error about +/- 0.1-day period in equatorial region (Figure 2). The same method will be applied for planetary-scale features captured by UVI, and ground-based observations compensate the discontinuity in UVI data. At the presentation, the variability in winds and wave propagation velocity with the time scale of a couple of months will be shown.
NASA Technical Reports Server (NTRS)
Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron;
2012-01-01
Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find evidence of a positive association between ambient air pollution and asthma prevalence as measured at the community level.
Remote sensing of SST in the coastal ocean and inland seas
NASA Astrophysics Data System (ADS)
Kostianoy, Andrey
Sea Surface Temperature (SST) is the main oceanographic parameter widely used in oceanogra-phy that can be easily obtained from satellite measurements. Oceanic infrared remote sensing, based on the measurement of the thermal radiance emitted by the ocean, allows retrieving the SST corresponding to the temperature of the uppermost thin layer of the ocean. Theoretically the infrared signal only comes from the upper few microns "skin layer", therefore the thermal signatures cannot represent the dynamics of the mixed layer. But wind mixing during the daytime and nighttime convection mix the upper layer, so that SST usually is representative of that of the mixed layer. This is why nighttime passes of satellites are preferred for SST analysis. Since 1978 the Advanced Very High Resolution Radiometer (AVHRR), onboard the meteorolog-ical satellites of the NOAA series are widely used to derive SST maps. The temporal coverage is ensured by two-three NOAA satellites which provide 4-6 images/day over the globe with a swath of about 2800 km, the spatial resolution by a pixel of about 1.1 km, and thermal resolu-tion of about 0.1 deg. C. The typical data processing includes the retrieval of the SST from the combination of NN 3, 4, and 5 infrared channels of AVHRR, the geographical correction and localisation, with a generation of cloud and land masks. SST data can be then composed into daily to monthly (as well as season to yearly) maps/products. Moderate Resolution Imaging Spectroradiometer (MODIS)-Terra (since 2000) and -Aqua (since 2002), among the others, are the most known satellite instruments which increase the flow of the remote sensing SST data. In the regions with almost permanent cloudy conditions passive microwave radiometers are of vital importance for SST measurements, but they have significantly low spatial (25 km) and thermal (0.8 deg. C) resolution. Today, SST images/data are routinely acquired by satellite receiving stations worldwide including research vessels, as well as generated and made available via Internet by numerous world data centers for free. Examples of SST application for analy-sis/study/research/monitoring of SST fields, SST fronts, large-and meso-scale water dynamics and structure (currents, eddies, dipoles, jets, etc.), upwellings, SST seasonal and interannual variability, etc. will be shown. Combined analysis of SST data with optical (ocean color), SAR, altimetry, in-situ oceanographic, drifter and meteorological data was shown to be very successful for many purposes in physical oceanography, environment research and operational monitoring, regional and global climate change study, marine chemistry, marine biology and fishery. The presentation will include examples for different case studies in the Arctic Ocean (the Barents and Kara seas), the Atlantic Ocean (the Canary and Benguela upwellings), the Southern Indian Ocean, the Mediterranean, Black, Caspian, Aral, and Baltic seas.
The GALAH survey: scientific motivation
NASA Astrophysics Data System (ADS)
De Silva, G. M.; Freeman, K. C.; Bland-Hawthorn, J.; Martell, S.; de Boer, E. Wylie; Asplund, M.; Keller, S.; Sharma, S.; Zucker, D. B.; Zwitter, T.; Anguiano, B.; Bacigalupo, C.; Bayliss, D.; Beavis, M. A.; Bergemann, M.; Campbell, S.; Cannon, R.; Carollo, D.; Casagrande, L.; Casey, A. R.; Da Costa, G.; D'Orazi, V.; Dotter, A.; Duong, L.; Heger, A.; Ireland, M. J.; Kafle, P. R.; Kos, J.; Lattanzio, J.; Lewis, G. F.; Lin, J.; Lind, K.; Munari, U.; Nataf, D. M.; O'Toole, S.; Parker, Q.; Reid, W.; Schlesinger, K. J.; Sheinis, A.; Simpson, J. D.; Stello, D.; Ting, Y.-S.; Traven, G.; Watson, F.; Wittenmyer, R.; Yong, D.; Žerjal, M.
2015-05-01
The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ˜ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ˜ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
NASA Technical Reports Server (NTRS)
Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.
2015-01-01
The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.
Disk hologram made from a computer-generated hologram.
Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi
2009-12-01
We have been investigating disk holograms made from a computer-generated hologram (CGH). Since a general flat format hologram has a limited viewable area, we usually cannot see the other side of the reconstructed object. Therefore, we propose a computer-generated cylindrical hologram (CGCH) to obtain a hologram with a 360 deg viewable area. The CGCH has a special shape that is difficult to construct and calculation of such a hologram takes too much time. In contrast, a disk-type hologram is well known as a 360 deg viewable hologram. Since a regular disk hologram is a flat reflective type, the reconstruction setup is easy. However, there are just a few reports about creating a disk hologram by use of a CGH. Because the output device lacks spatial resolution, the hologram cannot provide a large diffraction angle. In addition, the viewing zone depends on the hologram size; the maximum size of the fringe pattern is decided on the basis of the special frequency of the output device. The calculation amount of the proposed hologram is approximately a quarter of that of a CGCH. In a previous study, a disk hologram made from a CGH was achieved. However, since the relation between the vertical viewing zone and reconstructed image size is a trade-off, the size of the reconstructed image and view zone is not enough for practical use. To improve both parameters, we modified a fringe printer to issue a high-resolution fringe pattern for a disk hologram. In addition, we propose a new calculation method for fast calculation.
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros
2004-01-01
The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.
Application of Aura OMI L2G Products Compared with NASA MERRA-2 Assimilation
NASA Technical Reports Server (NTRS)
Zeng, Jian; Shen, Suhung; Wei, Jennifer; Johnson, James E.; Su, Jian; Meyer, David J.
2018-01-01
The Ozone Monitoring Instrument (OMI) is one of the instruments aboard NASA's Aura satellite. It measures ozone total column and vertical profile, aerosols, clouds, and trace gases including NO2, SO2, HCHO, BrO, and OClO using absorption in the ultraviolet electromagnetic spectrum (280 - 400 nm). OMI Level-2G (L2G) products are based on the pixel-level OMI granule satellite measurements stored within global 0.25 deg. X 0.25 deg. grids, therefore they conserve all the Level 2 (L2) spatial and temporal details for 24 hours of scientific data in one file. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis, using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. MERRA-2 includes aerosol data reanalysis and improved representations of stratospheric ozone, compared with its predecessor MERRA, in both instantaneous and time-averaged collections. It is found that simply comparing satellite Level-3 products might cause biases, due to lack of detailed temporal and original retrieval information. It is therefore preferable to inter-compare or implement satellite derived physical quantities directly with/to model assimilation with as high temporal and spatial resolutions as possible. This study will demonstrate utilization of OMI L2G daily aerosol and ozone products by comparing them with MERRA-2 hourly aerosol/ozone simulations, matched in both space and time aspects. Both OMI and MERRA-2 products are accessible online through NASA Goddard Earth Sciences Data Information Services Center (GES DISC, https://disc.gsfc.nasa.gov/).
NASA Technical Reports Server (NTRS)
Teichman, M. A.; Marek, F. L.; Browning, J. J.; Parr, A. K.
1974-01-01
An RF phase interferometer has been integrated into the ATS-F spacecraft attitude control system. Laboratory measurements indicate that the interferometer is capable of determining spacecraft attitude in pitch and roll to an accuracy of 0.18 deg over a field-of-view of plus or minus 12.5 deg about the spacecraft normal axis with an angular resolution of 0.004 deg. The system is completely solid state, weighs 17 pounds, and consumes 12.5 W of DC power.
NASA Astrophysics Data System (ADS)
Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin
2018-01-01
The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.
X-Ray Background Survey Spectrometer (XBSS)
NASA Technical Reports Server (NTRS)
Sanders, W. T. (Principal Investigator); Paulos, R. J.
1996-01-01
The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.
Intercomparison of Satellite-Derived Snow-Cover Maps
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Tait, Andrew B.; Foster, James L.; Chang, Alfred T. C.; Allen, Milan
1999-01-01
In anticipation of the launch of the Earth Observing System (EOS) Terra, and the PM-1 spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study area acquired from different sensors using different snow- mapping algorithms. Four locations are studied: 1) southern Saskatchewan; 2) a part of New England (New Hampshire, Vermont and Massachusetts) and eastern New York; 3) central Idaho and western Montana; and 4) parts of North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm used on Landsat Thematic Mapper (TM) scenes of each study area at 30-m and when the TM data were degraded to 1 -km resolution. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1 -km resolution snow maps were also used, as were snow maps derived from 1/2 deg. x 1/2 deg. resolution Special Sensor Microwave Imager (SSM/1) data. A land-cover map derived from the International Geosphere-Biosphere Program (IGBP) land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g., tree canopies, branches and trunks) are seen in the TM data, but not in the coarser-resolution maps. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30-m resolution TM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Comparisons show that the percent change in amount of snow cover relative to the 3 0-m resolution TM maps is lowest using the TM I -km resolution maps, ranging from 0 to 40%. The highest percent change (less than 100%) is found in the New England study area, probably due to the presence of patchy snow cover. A scene with patchy snow cover is more difficult to map accurately than is a scene with a well-defined snowline such as is found on the North and South Dakota scene where the percent change ranged from 0 to 40%. There are also some important differences in the amount of snow mapped using the two different SSM/I algorithms because they utilize different channels.
Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary
NASA Technical Reports Server (NTRS)
Campbell, G. G.; Vonderhaar, T. H.
1978-01-01
The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.
Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M
2016-01-01
This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.
The ultraviolet dayglow at solar maximum. 1 - Far UV spectroscopy at 3.5 A resolution
NASA Technical Reports Server (NTRS)
Eastes, R. W.; Feldman, P. D.; Gentieu, E. P.; Christensen, A. B.
1985-01-01
The earth's far ultraviolet dayglow (1080-1515 A) was observed at about 3.5 A resolution during a period of high solar activity near solar maximum om June 27, 1980. The observations were made at local noon by rocket-borne spectrometers viewing toward the earth's northern limb at 90 deg zenith angle (ZA) at altitudes between 100 and 245 km, and at 98 deg ZA between 245 and 260 km. The zenith angle was 8.9 deg. These spectra are compared with earlier lower-resolution dayglow data obtained during a period of lower solar activity and with auroral spectra. The brightness ratio of O I 1356 to the N2 Lyman-Birge-Hopfield (LBH) system, an indicator of the O to N2 density ratio, is lower than that previously measured at mid-latitudes and closer to the value found in aurorae. In the LBH system a depletion of the bands originating on the v-prime = 3 vibrational level of the excited state is found. Some weak N2 Birge-Hopfield bands and N I lines only marginally detected previously in the dayglow are confirmed.
GEOS-5 Seasonal Forecast System: ENSO Prediction Skill and Bias
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Kovach, Robin; Marshak, Jelena
2018-01-01
The GEOS-5 AOGCM known as S2S-1.0 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The atmospheric component of S2S-1.0 is Fortuna-2.5, the same that was used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA), but with adjusted parameterization of moist processes and turbulence. The ocean component is the Modular Ocean Model version 4 (MOM4). The sea ice component is the Community Ice CodE, version 4 (CICE). The land surface model is a catchment-based hydrological model coupled to the multi-layer snow model. The AGCM uses a Cartesian grid with a 1 deg × 1.25 deg horizontal resolution and 72 hybrid vertical levels with the upper most level at 0.01 hPa. OGCM nominal resolution of the tripolar grid is 1/2 deg, with a meridional equatorial refinement to 1/4 deg. In the coupled model initialization, selected atmospheric variables are constrained with MERRA. The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both ocean state and sea ice initialization. SST, T and S profiles and sea ice concentration were assimilated.
The effects of temporal variability of mixed layer depth on primary productivity around Bermuda
NASA Technical Reports Server (NTRS)
Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.
1994-01-01
Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.
A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)
2001-01-01
A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5 W/sq m of UWM/COADS, except for some areas in the extratropical oceans, where the differences in wind speed have large impact on the difference in sensible heat flux. The dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models.
Sampling Biases in MODIS and SeaWiFS Ocean Chlorophyll Data
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.
2007-01-01
Although modem ocean color sensors, such as MODIS and SeaWiFS are often considered global missions, in reality it takes many days, even months, to sample the ocean surface enough to provide complete global coverage. The irregular temporal sampling of ocean color sensors can produce biases in monthly and annual mean chlorophyll estimates. We quantified the biases due to sampling using data assimilation to create a "truth field", which we then sub-sampled using the observational patterns of MODIS and SeaWiFS. Monthly and annual mean chlorophyll estimates from these sub-sampled, incomplete daily fields were constructed and compared to monthly and annual means from the complete daily fields of the assimilation model, at a spatial resolution of 1.25deg longitude by 0.67deg latitude. The results showed that global annual mean biases were positive, reaching nearly 8% (MODIS) and >5% (SeaWiFS). For perspective the maximum interannual variability in the SeaWiFS chlorophyll record was about 3%. Annual mean sampling biases were low (<3%) in the midlatitudes (between -40deg and 40deg). Low interannual variability in the global annual mean sampling biases suggested that global scale trend analyses were valid. High latitude biases were much higher than the global annual means, up to 20% as a basin annual mean, and over 80% in some months. This was the result of the high solar zenith angle exclusion in the processing algorithms. Only data where the solar angle is <75deg are permitted, in contrast to the assimilation which samples regularly over the entire area and month. High solar zenith angles do not facilitate phytoplankton photosynthesis and consequently low chlorophyll concentrations occurring here are missed by the data sets. Ocean color sensors selectively sample in locations and times of favorable phytoplankton growth, producing overestimates of chlorophyll. The biases derived from lack of sampling in the high latitudes varied monthly, leading to artifacts in the apparent seasonal cycle from ocean color sensors. A false secondary peak in chlorophyll occurred in May-August, which resulted from lack of sampling in the Antarctic.
NASA Technical Reports Server (NTRS)
Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji;
2015-01-01
Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are investigated. Overall, despite these limitations and uncertainties, using OMI AAOD to constrain BC sources improves model representation of BC distributions, particularly over China.
NASA Technical Reports Server (NTRS)
2002-01-01
This ASTER image shows a 60 km stretch of the Yangtze River in China, including the Xiling Gorge, the eastern of the three gorges. In the left part of the image is the construction site of the Three Gorges Dam, the world's largest.
This image was acquired on July 20, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 60 x 24 km (36 x 15 miles) Location: 30.6 deg. North lat., 111.2 deg. East long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: July 20, 2000NASA Astrophysics Data System (ADS)
Davies, Merton E.; Rogers, Patricia G.; Colvin, Tim R.
1991-08-01
A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.
NASA Technical Reports Server (NTRS)
Moore, J. M.; Horner, V. M.; Greeley, R.
1985-01-01
Rhea was imaged to a resolution of approximately 1 km/lp by the Voyager spacecraft, providing the most detailed view of any Saturnian satellite. A preliminary study of Rhea divided the northern hemisphere into population 1 cratered terrain (between 20 deg and 120 deg) and population 2 cratered terrain (between 300 deg and 360 deg). Population 1 includes craters that are 40 km and were formed before the termination of population 2 bombardment, which formed craters primarily 40 km. Several geomorphic features on Rhea are classified and interpreted including three physiographic provinces, multiringed basins, craters, megascarps, ridges and scarps, and troughs and coalescing pit chains. A generalized chronology for Rhea is constructed from an analysis of the superposition relationships among the landforms and physiographic provinces.
Detection of briefly flashed sine-gratings in dark-adapted vision.
Hofmann, M I; Barnes, C S; Hallett, P E
1990-01-01
Scotopic contrast sensitivity was measured near 20 deg retinal eccentricity for briefly flashed (10 or 20 msec) sine-wave gratings presented in darkness to dark-adapted subjects. For very low spatial frequencies (0.2-0.5 c/deg), curves of contrast sensitivity vs luminous energy show evidence of a low rod plateau and a high scotopic region, with an intervening transition at around -2 to -2.5 log scot td sec. Similar measurements made using long flashed or flickering gratings do not show a plateau. The results suggest that vision in the low rod region is impaired for brief flashes. For the briefly flashed stimuli, curves of contrast sensitivity versus spatial frequency in the low region were best fit by simple Gaussian functions with a variable centre size (sigma c = 0.5----0.25 deg), size decreasing with increasing flash energy. Difference-of-Gaussian functions with constant centre size (sigma c = 0.25 deg) provided the best fit in the high region. Overt input from the cones and grating area artefacts are excluded by appropriate tests. Calculation of photon flux into the receptive field centres suggests that signal compression in P alpha ganglion cells contributes to the low rod plateau.
Orientation tuning of binocular summation: a comparison of colour to achromatic contrast
Gheiratmand, Mina; Cherniawsky, Avital S.; Mullen, Kathy T.
2016-01-01
A key function of the primary visual cortex is to combine the input from the two eyes into a unified binocular percept. At low, near threshold, contrasts a process of summation occurs if the visual inputs from the two eyes are similar. Here we measure the orientation tuning of binocular summation for chromatic and equivalent achromatic contrast. We derive estimates of orientation tuning by measuring binocular summation as a function of the orientation difference between two sinusoidal gratings presented dichoptically to different eyes. We then use a model to estimate the orientation bandwidth of the neural detectors underlying the binocular combination. We find that orientation bandwidths are similar for chromatic and achromatic stimuli at both low (0.375 c/deg) and mid (1.5 c/deg) spatial frequencies, with an overall average of 29 ± 3 degs (HWHH, s.e.m). This effect occurs despite the overall greater binocular summation found for the low spatial frequency chromatic stimuli. These results suggest that similar, oriented processes underlie both chromatic and achromatic binocular contrast combination. The non-oriented detection process found in colour vision at low spatial frequencies under monocular viewing is not evident at the binocular combination stage. PMID:27168119
NASA Astrophysics Data System (ADS)
Shen, S. S.
2015-12-01
This presentation describes the detection of interdecadal climate signals in a newly reconstructed precipitation data from 1850-present. Examples are on precipitation signatures of East Asian Monsoon (EAM), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillations (AMO). The new reconstruction dataset is an enhanced edition of a suite of global precipitation products reconstructed by Spectral Optimal Gridding of Precipitation Version 1.0 (SOGP 1.0). The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). This enhanced version has three different temporal resolutions (5-day, monthly, and annual) and two different spatial resolutions (2.5 deg and 5.0 deg). It also has a friendly Graphical User Interface (GUI). SOGP uses a multivariate regression method using an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1981-20010 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed according to the number of EOF modes used in the reconstruction. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction has been validated by GPCP data after 1979. Our reconstruction successfully displays the 1877 El Nino (see the attached figure), which is considered a validation before 1900. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort of San Diego State University (Sam Shen, Gregori Clarke, Christian Junjinger, Nancy Tafolla, Barbara Sperberg, and Melanie Thorn), UCLA (Yongkang Xue), and University of Maryland (Tom Smith and Phil Arkin) and supported in part by the U.S. National Science Foundation (Awards No. AGS-1419256 and AGS-1015957).
Thermal and visible studies of Mars using the Termoskan data set
NASA Astrophysics Data System (ADS)
Betts, Bruce Harold
1994-01-01
In 1989, the Soviet Phobos '88 Termoskan instrument acquired the highest spatial resolution thermal data ever for Mars, (300 m to 3 km per pixel), and simultaneous broad band visible data. The panoramas cover a large portion of the equatorial region from 30 deg S to 6 deg N. This thesis presents new and unique analyses facilitated by Termoskan and describes the instrument, data, and validation. Ejecta blankets distinct in the thermal infrared (EDITHs), a newly recognized type of feature, show a strong dependence upon Hesperian aged terrains. I postulate that most of the observed EDITHs are due to excavation of thermally distinctive Noachian age material from beneath a relatively thin layer of younger, more consolidated Hesperian volcanic material. EDITHs are excellent targets for future landers and orbiters because of relatively dust free surface exposures of material excavated from depth. Most observed channels have higher inertias than their surroundings. Channel inertia lower bounds range from 8.4 to 12.5 (10-3 cal/sq cm s-1/2/K. Channel floor inertia enhancements are strongly associated with channels showing fretted morphologies such as wide, flat floors. Fretting may have emplaced more blocks on channel floors or caused increased bonding of fines due to increased availability of water. The coupling to morphology of EDITH and channel inertias is unlike most Martian inertia variations. Termoskan observed fine thermal structure at the limit of its spatial resolution, implying there cannot be global scale dust blanketing deeper than about one centimeter. Morning limb brightening in the thermal channel is likely due to a water ice or dust hare that is warmer than the surface at the time of the observations. In the visible channel, scattering is significant to 70 km and localized high altitude stratospheric clouds are observed. Termoskan obtained the first ever thermal images of Phobos' shadow on the surface of Mars. I used the observed cooling to calculate thermal inertias in the upper mm of the Martian surface. Most of the derived inertias on the flanks of Arsia Mons fall within the range 0.9 to 1.4, corresponding to 5 to 10 micron dust particles for a homogeneous surface.
Waves in the Martian Atmosphere: Results from MGS Radio Occultations
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Hinson, D. P.; Tyler, G. L.
1999-01-01
Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.
A filter spectrometer concept for facsimile cameras
NASA Technical Reports Server (NTRS)
Jobson, D. J.; Kelly, W. L., IV; Wall, S. D.
1974-01-01
A concept which utilizes interference filters and photodetector arrays to integrate spectrometry with the basic imagery function of a facsimile camera is described and analyzed. The analysis considers spectral resolution, instantaneous field of view, spectral range, and signal-to-noise ratio. Specific performance predictions for the Martian environment, the Viking facsimile camera design parameters, and a signal-to-noise ratio for each spectral band equal to or greater than 256 indicate the feasibility of obtaining a spectral resolution of 0.01 micrometers with an instantaneous field of view of about 0.1 deg in the 0.425 micrometers to 1.025 micrometers range using silicon photodetectors. A spectral resolution of 0.05 micrometers with an instantaneous field of view of about 0.6 deg in the 1.0 to 2.7 micrometers range using lead sulfide photodetectors is also feasible.
Effect of extending grating length and width on human visually evoked potentials.
Mihaylova, Milena S; Hristov, Ivan; Racheva, Kalina; Totev, Tsvetalin; Mitov, Dimitar
2015-01-01
Visually evoked potentials (VEPs) were elicited by Gabor gratings with different lengths and widths at three spatial frequencies (SFs): low, 1.45 c/deg, medium, 2.9 c/deg and high, 5.8 c/deg and at a contrast 3 times above the detection threshold at each SF. An increase of grating length enhanced N1 amplitude at occipital and parietal positions stronger than the increase of grating width at aspect ratios (length : width) above 4:1. The stronger effect of stimulus length than width was reflected also in the amplitude of the later P1 component at central and parietal positions. The larger effect of stimulus length than width on the VEP amplitude was SF specific: it was stronger at 5.8 c/deg, smaller at 2.9 c/deg and vanished at 1.45 c/deg. The results obtained suggest anisotropy in the physiological mechanisms that underlie grating perception and involve bottom- up processes initiated in the occipital cortex.
NASA Technical Reports Server (NTRS)
Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.
1988-01-01
A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.
Postural stability changes in the elderly with cataract simulation and refractive blur.
Anand, Vijay; Buckley, John G; Scally, Andy; Elliott, David B
2003-11-01
To determine the influence of cataractous and refractive blur on postural stability and limb-load asymmetry (LLA) and to establish how postural stability changes with the spatial frequency and contrast of the visual stimulus. Thirteen elderly subjects (mean age, 70.76 +/- 4.14 [SD] years) with no history of falls and normal vision were recruited. Postural stability was determined as the root mean square [RMS] of the center of pressure (COP) signal in the anterior-posterior (A-P) and medial-lateral directions and LLA was determined as the ratio of the average body weight placed on the more-loaded limb to the less-loaded limb, recorded during a 30-second period. Data were collected under normal standing conditions and with somatosensory system input disrupted. Measurements were repeated with four visual targets with high (8 cyc/deg) or low (2 cyc/deg) spatial frequency and high (Weber contrast, approximately 95%) or low (Weber contrast, approximately 25%) contrast. Postural stability was measured under conditions of binocular refractive blur of 0, 1, 2, 4, and 8 D and with cataract simulation. The data were analyzed in a population-averaged linear model. The cataract simulation caused significant increases in postural instability equivalent to that caused by 8-D blur conditions, and its effect was greater when the input from the somatosensory system was disrupted. High spatial frequency targets increased postural instability. Refractive blur, cataract simulation, or eye closure had no effect on LLA. Findings indicate that cataractous and refractive blur increase postural instability, and show why the elderly, many of whom have poor vision along with musculoskeletal and central nervous system degeneration, are at greater risk of falling. Findings also highlight that changes in contrast sensitivity rather than resolution changes are responsible for increasing postural instability. Providing low spatial frequency information in certain environments may be useful in maintaining postural stability. Correcting visual impairment caused by uncorrected refractive error and cataracts could be a useful intervention strategy to help prevent falls and fall-related injuries in the elderly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoso, A; Song, K; Gardner, S
Purpose: 4D-CBCT facilitates assessment of tumor motion at treatment position. We investigated the effect of gantry speed on 4D-CBCT image quality and dose using the Varian Edge On-Board Imager (OBI). Methods: A thoracic protocol was designed using a 125 kVp spectrum. Image quality parameters were obtained via 4D acquisition using a Catphan phantom with a gating system. A sinusoidal waveform was executed with a five second period and superior-inferior motion. 4D-CBCT scans were sorted into 4 and 10 phases. Image quality metrics included spatial resolution, contrast-to-noise ratio (CNR), uniformity index (UI), Hounsfield unit (HU) sensitivity, and RMS error (RMSE) ofmore » motion amplitude. Dosimetry was accomplished using Gafchromic XR-QA2 films within a CIRS Thorax phantom. This was placed on the gating phantom using the same motion waveform. Results: High contrast resolution decreased linearly from 5.93 to 4.18 lp/cm, 6.54 to 4.18 lp/cm, and 5.19 to 3.91 lp/cm for averaged, 4 phase, and 10 phase 4DCBCT volumes respectively as gantry speed increased from 1.0 to 6.0 degs/sec. CNRs decreased linearly from 4.80 to 1.82 as the gantry speed increased from 1.0 to 6.0 degs/sec, respectively. No significant variations in UIs, HU sensitivities, or RMSEs were observed with variable gantry speed. Ion chamber measurements compared to film yielded small percent differences in plastic water regions (0.1–9.6%), larger percent differences in lung equivalent regions (7.5–34.8%), and significantly larger percent differences in bone equivalent regions (119.1–137.3%). Ion chamber measurements decreased from 17.29 to 2.89 cGy with increasing gantry speed from 1.0 to 6.0 degs/sec. Conclusion: Maintaining technique factors while changing gantry speed changes the number of projections used for reconstruction. Increasing the number of projections by decreasing gantry speed decreases noise, however, dose is increased. The future of 4DCBCT’s clinical utility relies on further investigation of image optimization.« less
Radiometer requirements for Earth-observation systems using large space antennas
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Harrington, R. F.
1983-01-01
Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.
The Unmanned Aerial System SUMO: an alternative measurement tool for polar boundary layer studies
NASA Astrophysics Data System (ADS)
Mayer, S.; Jonassen, M. O.; Reuder, J.
2012-04-01
Numerical weather prediction and climate models face special challenges in particular in the commonly stable conditions in the high-latitude environment. For process studies as well as for model validation purposes in-situ observations in the atmospheric boundary layer are highly required, but difficult to retrieve. We introduce a new measurement system for corresponding observations. The Small Unmanned Meteorological Observer SUMO consists of a small and light-weight auto-piloted model aircraft, equipped with a meteorological sensor package. SUMO has been operated in polar environments, among others during IPY on Spitsbergen in the year 2009 and has proven its capabilities for atmospheric measurements with high spatial and temporal resolution even at temperatures of -30 deg C. A comparison of the SUMO data with radiosondes and tethered balloons shows that SUMO can provide atmospheric profiles with comparable quality to those well-established systems. Its high data quality allowed its utilization for evaluation purposes of high-resolution model runs performed with the Weather Research and Forecasting model WRF and for the detailed investigation of an orographically modified flow during a case study.
Viking 1 Lander on the surface of Mars - Revised location
NASA Technical Reports Server (NTRS)
Morris, E. C.; Jones, K. L.
1980-01-01
The method used to pinpoint the location of the Viking 1 Lander is described. The higher resolution of pictures taken by the Viking Orbiter at a lower periapsis altitude facilitated the correlation of topographical features with the same features in the Lander pictures. The new areographic coordinates of the Lander are 22.483 deg N latitude and 47.968 deg W longitude.
NASA Technical Reports Server (NTRS)
Considine, David B.; Logan, Jennifer A.; Olsen, Mark A.
2008-01-01
The NASA Global Modeling Initiative has developed a combined stratosphere/troposphere chemistry and transport model which fully represents the processes governing atmospheric composition near the tropopause. We evaluate model ozone distributions near the tropopause, using two high vertical resolution monthly mean ozone profile climatologies constructed with ozonesonde data, one by averaging on pressure levels and the other relative to the thermal tropopause. Model ozone is high biased at the SH tropical and NH midlatitude tropopause by approx. 45% in a 4 deg. latitude x 5 deg. longitude model simulation. Increasing the resolution to 2 deg. x 2.5 deg. increases the NH tropopause high bias to approx. 60%, but decreases the tropical tropopause bias to approx. 30%, an effect of a better-resolved residual circulation. The tropopause ozone biases appear not to be due to an overly vigorous residual circulation or excessive stratosphere/troposphere exchange, but are more likely due to insufficient vertical resolution or excessive vertical diffusion near the tropopause. In the upper troposphere and lower stratosphere, model/measurement intercomparisons are strongly affected by the averaging technique. NH and tropical mean model lower stratospheric biases are less than 20%. In the upper troposphere, the 2 deg. x 2.5 deg. simulation exhibits mean high biases of approx. 20% and approx. 35% during April in the tropics and NH midlatitudes, respectively, compared to the pressure averaged climatology. However, relative-to-tropopause averaging produces upper troposphere high biases of approx. 30% and 70% in the tropics and NH midlatitudes. This is because relative-to-tropopause averaging better preserves large cross-tropopause O3 gradients, which are seen in the daily sonde data, but not in daily model profiles. The relative annual cycle of ozone near the tropopause is reproduced very well in the model Northern Hemisphere midlatitudes. In the tropics, the model amplitude of the near tropopause annual cycle is weak. This is likely due to the annual amplitude of mean vertical upwelling near the tropopause, which analysis suggests is approx. 30% weaker than in the real atmosphere.
Optimised robot-based system for the exploration of elastic joint properties.
Frey, M; Burgkart, R; Regenfelder, F; Riener, R
2004-09-01
Numerous publications provide measured biomechanical data relating to synovial joints. However, in general, they do not reflect the non-linear elastic joint properties in detail or do not consider all degrees of freedom (DOF), or the quantity of data is sparse. To perform more comprehensive, extended measurements of elastic joint properties, an optimised robot-based approach was developed. The basis was an industrial, high-precision robot that was capable of applying loads to the joint and measuring the joint displacement in 6 DOF. The system was equipped with novel, custom-made control hardware. In contrast to the commonly used sampling rates that are below 100 Hz, a rate of 4 kHz was realised for each DOF. This made it possible to implement advanced, highly dynamic, quasi-continuous closed-loop controllers. Thus oscillations of the robot were avoided, and measurements were speeded up. The stiffness of the entire system was greater than 44 kNm(-1) and 22 Nm deg(-1), and the maximum difference between two successive measurements was less than 0.5 deg. A sophisticated CT-based referencing routine facilitated the matching of kinematic data with the individual anatomy of the tested joint. The detailed detection of the elastic varus-valgus properties of a human knee joint is described, and the need for high spatial resolution is demonstrated.
A large-scale extinction map of the Galactic Anticentre from 2MASS
NASA Astrophysics Data System (ADS)
Froebrich, D.; Murphy, G. C.; Smith, M. D.; Walsh, J.; Del Burgo, C.
2007-07-01
We present a 127 × 63-deg2 extinction map of the Anticentre of the Galaxy, based on < J - H > and < H - K > colour excess maps from the Two-Micron All-Sky Survey. This 8001-deg2 map with a resolution of 4 arcmin is provided as online material. The colour excess ratio < J - H >/< H - K > is used to determine the power-law index of the reddening law (β) for individual regions contained in the area (e.g. Orion, Perseus, Taurus, Auriga, Monoceros, Camelopardalis, Cassiopeia). On average we find a dominant value of β = 1.8 +/- 0.2 for the individual clouds, in agreement with the canonical value for the interstellar medium. We also show that there is an internal scatter of β values in these regions, and that in some areas more than one dominant β values are present. This indicates large-scale variations in the dust properties. The analysis of the AV values within individual regions shows a change in the slope of the column density distribution with distance. This can be attributed either to a change in the governing physical processes in molecular clouds on spatial scales of about 1pc or to an AV dilution with distance in our map.
Wang, Shuangbao; Bai, Yuhang; Xie, Lin; Li, Chen; Key, Julian D; Wu, Di; Wang, Peng; Pan, Xiaoqing
2018-01-10
Interfacial fine structures of bare LaAlO 3 /SrTiO 3 (LAO/STO) heterostructures are compared with those of LAO/STO heterostructures capped with upward-polarized Pb(Zr 0.1 ,Ti 0.9 )O 3 (PZT up ) or downward-polarized Pb(Zr 0.5 ,Ti 0.5 )O 3 (PZT down ) overlayers by aberration-corrected scanning transmission electron microscopy experiments. By combining the acquired electron energy-loss spectroscopy mapping, we are able to directly observe electron transfer from Ti 4+ to Ti 3+ and ionic displacements at the interface of bare LAO/STO and PZT down /LAO/STO heterostructure unit cell by unit cell. No evidence of Ti 3+ is observed at the interface of the PZT up /LAO/STO samples. Furthermore, the confinement of the two-dimensional electron gas (2DEG) at the interface is determined by atomic-column spatial resolution. Compared with the bare LAO/STO interface, the 2DEG density at the LAO/STO interface is enhanced or depressed by the PZT down or PZT up overlayer, respectively. Our microscopy studies shed light on the mechanism of ferroelectric modulation of interfacial transport at polar/nonpolar oxide heterointerfaces, which may facilitate applications of these materials as nonvolatile memory.
A measurement of the cosmic microwave background from the high Chilean Andes
NASA Astrophysics Data System (ADS)
Miller, Amber Dawn
A measurement of the angular spectrum of the Cosmic Microwave Background (CMB) between l = 50 and l = 400 is described. Data were obtained using HEMT radiometers at 30 and 40 GHz with angular resolutions of ≈1 deg and ≈0.7 deg respectively and with SIS based receivers at 144 GHz with angular resolution of ≈0.2 deg. Observations were made from Cerro Toco in the Chilean altiplano at an altitude of 17,000 feet in the Northern Chilean Andes. We find that the angular spectrum rises from l = 50 to a peak at l ≈ 200 and falls off at higher angular scales. A peak in the angular spectrum with amplitude, deltaTl ≈ 85muK is thus located for the first time with a single instrument at l ≈ 200. In addition, we find that the detected anisotropy has the spectrum of the CMB. Cosmological implications of this result are discussed.
NASA Astrophysics Data System (ADS)
Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.
2013-12-01
In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.
Schmucker, Christine; Schaeffel, Frank
2006-03-01
To find out how spatial vision in mice is affected by wearing of spectacle lenses or diffusers, and by atropine eye drops. This information is necessary to determine which treatments could effectively induce refractive errors in young mice. Whole-body optomotor responses were recorded by automated video analysis in freely ranging mice in a large rotating drum that was covered inside with vertical square-wave gratings with spatial frequencies of 0.03, 0.10 and 0.30 cyc/deg, both at "dim light" (0.10 cd/m(2)), and under photopic conditions (30 cd/m(2)). Contrast thresholds were determined by varying the contrasts of the gratings. Mice wore either no lenses, or binocular plano lenses, or lenses with powers ranging from +25 D to -25 D, or diffusers. In another experiment, contrast thresholds were determined 30 min after binocular installation of one drop of 1% atropine solution which is known to suppress myopia development in other animal models. The range of spatial frequencies, at which the mice still responded to stripes with less than the maximal grating contrast, was rather small. At 0.03 cyc/deg, the mice responded to stripes with low contrast down to 24%. At 0.10 cyc/deg, the minimal contrast was 45%, but at 0.30 cyc/deg, only the maximum contrast elicited a significant response. In dim light, spatial vision was severely impaired and only the lowest spatial frequencies, presented at the highest contrast (91%), were detected. The whole-body optomotor response was largest with spectacle lens powers of plano diopters and +7D lenses. The magnitude of the response decreased symmetrically with increasing lens powers for both signs, providing information on the behavioral depth of field (a second-order fit through the data placed the extreme limits of a response at around +25 D and -25 D lens powers). Finally, atropine improved contrast sensitivity, at least at the lowest spatial frequency tested, a result that was previously obtained also in the chicken and could help to explain the inhibitory effect of atropine on myopia. The study shows that mice have sufficient spatial vision to respond to treatment with powerful spectacle lenses or diffusers. Accordingly, these devices should be effective in inducing refractive errors in this animal model, although primarily under photopic conditions.
Hurricane Wind Field Measurements with Scanning Airborne Doppler Lidar During CAMEX-3
NASA Technical Reports Server (NTRS)
Rothermel, Jeffry; Cutten, D. R.; Howell, J. N.; Darby, L. S.; Hardesty, R. M.; Traff, D. M.; Menzies, R. T.
2000-01-01
During the 1998 Convection and Moisture Experiment (CAMEX-3), the first hurricane wind field measurements with Doppler lidar were achieved. Wind fields were mapped within the eye, along the eyewall, in the central dense overcast, and in the marine boundary layer encompassing the inflow region. Spatial coverage was determined primarily by cloud distribution and opacity. Within optically-thin cirrus slant range of 20- 25 km was achieved, whereas no propagation was obtained during penetration of dense cloud. Measurements were obtained with the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) on the NASA DC-8 research aircraft. MACAWS was developed and operated cooperatively by the atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory. A pseudo-dual Doppler technique ("co-planar scanning") is used to map the horizontal component of the wind at several vertical levels. Pulses from the laser are directed out the left side of the aircraft in the desired directions using computer-controlled rotating prisms. Upon exiting the aircraft, the beam is completely eyesafe. Aircraft attitude and speed are taken into account during real-time signal processing, resulting in determination of the ground-relative wind to an accuracy of about 1 m/s magnitude and about 10 deg direction. Beam pointing angle errors are about 0.1 deg, equivalent to about 17 m at 10 km. Horizontal resolution is about 1 km (along-track) for typical signal processor and scanner settings; vertical resolution varies with range. Results from CAMEX-3 suggest that scanning Doppler wind lidar can complement airborne Doppler radar by providing wind field measurements in regions that are devoid of hydrometeors. At present MACAWS observations are being assimilated into experimental forecast models and satellite Doppler wind lidar simulations to evaluate the relative impact.
Automatic three-dimensional registration of intravascular optical coherence tomography images
NASA Astrophysics Data System (ADS)
Ughi, Giovanni J.; Adriaenssens, Tom; Larsson, Matilda; Dubois, Christophe; Sinnaeve, Peter R.; Coosemans, Mark; Desmet, Walter; D'hooge, Jan
2012-02-01
Intravascular optical coherence tomography (IV-OCT) is a catheter-based high-resolution imaging technique able to visualize the inner wall of the coronary arteries and implanted devices in vivo with an axial resolution below 20 μm. IV-OCT is being used in several clinical trials aiming to quantify the vessel response to stent implantation over time. However, stent analysis is currently performed manually and corresponding images taken at different time points are matched through a very labor-intensive and subjective procedure. We present an automated method for the spatial registration of IV-OCT datasets. Stent struts are segmented through consecutive images and three-dimensional models of the stents are created for both datasets to be registered. The two models are initially roughly registered through an automatic initialization procedure and an iterative closest point algorithm is subsequently applied for a more precise registration. To correct for nonuniform rotational distortions (NURDs) and other potential acquisition artifacts, the registration is consecutively refined on a local level. The algorithm was first validated by using an in vitro experimental setup based on a polyvinyl-alcohol gel tubular phantom. Subsequently, an in vivo validation was obtained by exploiting stable vessel landmarks. The mean registration error in vitro was quantified to be 0.14 mm in the longitudinal axis and 7.3-deg mean rotation error. In vivo validation resulted in 0.23 mm in the longitudinal axis and 10.1-deg rotation error. These results indicate that the proposed methodology can be used for automatic registration of in vivo IV-OCT datasets. Such a tool will be indispensable for larger studies on vessel healing pathophysiology and reaction to stent implantation. As such, it will be valuable in testing the performance of new generations of intracoronary devices and new therapeutic drugs.
Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe
2000-01-01
A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.
NASA Astrophysics Data System (ADS)
Lacki, Brian C.; Kochanek, Christopher S.; Stanek, Krzysztof Z.; Inada, Naohisa; Oguri, Masamune
2009-06-01
Difference imaging provides a new way to discover gravitationally lensed quasars because few nonlensed sources will show spatially extended, time variable flux. We test the method on the fields of lens candidates in the Sloan Digital Sky Survey (SDSS) Supernova Survey region from the SDSS Quasar Lens Search (SQLS) and one serendipitously discovered lensed quasar. Starting from 20,536 sources, including 49 SDSS quasars, 32 candidate lenses/lensed images, and one known lensed quasar, we find that 174 sources including 35 SDSS quasars, 16 candidate lenses/lensed images, and the known lensed quasar are nonperiodic variable sources. We can measure the spatial structure of the variable flux for 119 of these variable sources and identify only eight as candidate extended variables, including the known lensed quasar. Only the known lensed quasar appears as a close pair of sources on the difference images. Inspection of the remaining seven suggests they are false positives, and only two were spectroscopically identified quasars. One of the lens candidates from the SQLS survives our cuts, but only as a single image instead of a pair. This indicates a false positive rate of order ~1/4000 for the method, or given our effective survey area of order 0.82 deg2, ~5 per deg2 in the SDSS Supernova Survey. The fraction of quasars not found to be variable and the false positive rate would both fall if we had analyzed the full, later data releases for the SDSS fields. While application of the method to the SDSS is limited by the resolution, depth, and sampling of the survey, several future surveys such as Pan-STARRS, LSST, and SNAP will significantly improve on these limitations.
Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D
2017-09-11
Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.
Design Data Collection with Skylab Microwave Radiometer-Scatterometer S-193, Volume 1
NASA Technical Reports Server (NTRS)
Moore, R. K.; Ulaby, F. T. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Observations with S-193 have provided radar design information for systems to be flown on spacecraft, but only at 13.9 GHz and for land areas over the United States and Brazil plus a few other areas of the world for which this kind of analysis was not made. Observations only extended out to about 50 deg angle of incidence. The value of a sensor with such a gross resolution for most overland resource and status monitoring systems seems marginal, with the possible exception of monitoring soil moisture and major vegetation variations. The complementary nature of the scatterometer and radiometer systems was demonstrated by the correlation analysis. Although radiometers must have spatial resolutions dictated by antenna size, radars can use synthetic aperture techniques to achieve much finer resolutions. Multiplicity of modes in the S-193 sensors complicated both the system development and its employment. An attempt was made in the design of the S-193 to arrange optimum integration times for each angle and type of measurement. This unnecessarily complicated the design of the instrument, since the gains in precision achieved in this way were marginal. Either a software-controllable integration time or a set of only two or three integration times would have been better.
A novel lightweight Fizeau infrared interferometric imaging system
NASA Astrophysics Data System (ADS)
Hope, Douglas A.; Hart, Michael; Warner, Steve; Durney, Oli; Romeo, Robert
2016-05-01
Aperture synthesis imaging techniques using an interferometer provide a means to achieve imagery with spatial resolution equivalent to a conventional filled aperture telescope at a significantly reduced size, weight and cost, an important implication for air- and space-borne persistent observing platforms. These concepts have been realized in SIRII (Space-based IR-imaging interferometer), a new light-weight, compact SWIR and MWIR imaging interferometer designed for space-based surveillance. The sensor design is configured as a six-element Fizeau interferometer; it is scalable, light-weight, and uses structural components and main optics made of carbon fiber replicated polymer (CFRP) that are easy to fabricate and inexpensive. A three-element prototype of the SIRII imager has been constructed. The optics, detectors, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. SIRII is being designed for technical intelligence from geo-stationary orbit. It has an instantaneous 6 x 6 mrad FOV and the ability to rapidly scan a 6x6 deg FOV, with a minimal SNR. The interferometric design can be scaled to larger equivalent filled aperture, while minimizing weight and costs when compared to a filled aperture telescope with equivalent resolution. This scalability in SIRII allows it address a range of IR-imaging scenarios.
NASA Technical Reports Server (NTRS)
Mest, S. C.; Berman, D. C.; Petro, N. E.
2009-01-01
In this study we use recent images and topographic data to map the geology and geomorphology of the lunar South Pole quadrangle (LQ-30) at 1:2.5M scale [1-4] in accordance with the Lunar Geologic Mapping Program. Mapping of LQ-30 began during Mest's postdoctoral appointment and has continued under the PG&G Program, from which funding became available in February 2009. Preliminary map-ping and analyses have been done using base materials compiled by Mest, but properly mosaicked and spatially registered base materials are being compiled by the USGS and should be received by the end of June 2009. The overall objective of this research is to constrain the geologic evolution of the lunar South Pole (LQ-30: 60deg -90deg S, 0deg - +/-180deg ) with specific emphasis on evaluation of a) the regional effects of basin formation on the structure and composition of the crust and b) the spatial distribution of ejecta, in particular resulting from formation of the South Pole-Aitken (SPA) basin and other large basins. Key scientific objectives include: 1) Constraining the geologic history of the lunar South Pole and examining the spatial and temporal variability of geologic processes within the map area. 2) Constraining the vertical and lateral structure of the lunar regolith and crust, assessing the distribution of impact-generated materials, and determining the timing and effects of major basin-forming impacts on crustal structure and stratigraphy in the map area. And 3) assessing the distribution of resources (e.g., H, Fe, Th) and their relationships with surface materials.
Up-down Asymmetries in Speed Perception
NASA Technical Reports Server (NTRS)
Thompson, Peter; Stone, Leland S.
1997-01-01
We compared speed matches for pairs of stimuli that moved in opposite directions (upward and downward). Stimuli were elliptical patches (2 deg horizontally by 1 deg vertically) of horizontal sinusoidal gratings of spatial. frequency 2 cycles/deg. Two sequential 380 msec reveal presentations were compared. One of each pair of gratings (the standard) moved at 4 Hz (2 deg/sec), the other (the test) moved at a rate determined by a simple up-down staircase. The point of subjectively equal speed was calculated from the average of the last eight reversals. The task was to fixate a central point and to determine which one of the pair appeared to move faster. Eight of 10 observers perceived the upward drifting grating as moving faster than a grating moving downward but otherwise identical. on average (N = 10), when the standard moved downward, it was matched by a test moving upward at 94.7+/-1.7(SE)% of the standard speed, and when the standard moved upward it was matched by a test moving downward at 105.1+/-2.3(SE)% of the standard speed. Extending this paradigm over a range of spatial (1.5 to 13.5 c/d) and temporal (1.5 to 13.5 Hz) frequencies, preliminary results (N = 4) suggest that, under the conditions of our experiment, upward matter is seen as faster than downward for speeds greater than approx.1 deg/sec, but the effect appears to reverse at speeds below approx.1 deg/sec with downward motion perceived as faster. Given that an up-down asymmetry has been observed for the optokinetic response, both perceptual and oculomotor contributions to this phenomenon deserve exploration.
Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging.
Ju, Myeong Jin; Heisler, Morgan; Wahl, Daniel; Jian, Yifan; Sarunic, Marinko V
2017-11-01
We present a multiscale sensorless adaptive optics (SAO) OCT system capable of imaging retinal structure and vasculature with various fields-of-view (FOV) and resolutions. Using a single deformable mirror and exploiting the polarization properties of light, the SAO-OCT-A was implemented in a compact and easy to operate system. With the ability to adjust the beam diameter at the pupil, retinal imaging was demonstrated at two different numerical apertures with the same system. The general morphological structure and retinal vasculature could be observed with a few tens of micrometer-scale lateral resolution with conventional OCT and OCT-A scanning protocols with a 1.7-mm-diameter beam incident at the pupil and a large FOV (15 deg× 15 deg). Changing the system to a higher numerical aperture with a 5.0-mm-diameter beam incident at the pupil and the SAO aberration correction, the FOV was reduced to 3 deg× 3 deg for fine detailed imaging of morphological structure and microvasculature such as the photoreceptor mosaic and capillaries. Multiscale functional SAO-OCT imaging was performed on four healthy subjects, demonstrating its functionality and potential for clinical utility. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard
2013-01-01
Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.
The VUV instrument SPICE for Solar Orbiter: performance ground testing
NASA Astrophysics Data System (ADS)
Caldwell, Martin E.; Morris, Nigel; Griffin, Douglas K.; Eccleston, Paul; Anderson, Mark; Pastor Santos, Carmen; Bruzzi, Davide; Tustain, Samuel; Howe, Chris; Davenne, Jenny; Grundy, Timothy; Speight, Roisin; Sidher, Sunil D.; Giunta, Alessandra; Fludra, Andrzej; Philippon, Anne; Auchere, Frederic; Hassler, Don; Davila, Joseph M.; Thompson, William T.; Schuehle, Udo H.; Meining, Stefan; Walls, Buddy; Phelan, P.; Dunn, Greg; Klein, Roman M.; Reichel, Thomas; Gyo, Manfred; Munro, Grant J.; Holmes, William; Doyle, Peter
2017-08-01
SPICE is an imaging spectrometer operating at vacuum ultraviolet (VUV) wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the Solar Orbiter mission, which carries 10 science instruments in all, to make observations of the Sun's atmosphere and heliosphere, at close proximity to the Sun, i.e to 0.28 A.U. at perihelion. SPICE's role is to make VUV measurements of plasma in the solar atmosphere. SPICE is designed to achieve spectral imaging at spectral resolution >1500, spatial resolution of several arcsec, and two-dimensional FOV of 11 x16arcmins. The many strong constraints on the instrument design imposed by the mission requirements prevent the imaging performance from exceeding those of previous instruments, but by being closer to the sun there is a gain in spatial resolution. The price which is paid is the harsher environment, particularly thermal. This leads to some novel features in the design, which needed to be proven by ground test programs. These include a dichroic solar-transmitting primary mirror to dump the solar heat, a high in-flight temperature (60deg.C) and gradients in the optics box, and a bespoke variable-line-spacing grating to minimise the number of reflective components used. The tests culminate in the systemlevel test of VUV imaging performance and pointing stability. We will describe how our dedicated facility with heritage from previous solar instruments, is used to make these tests, and show the results, firstly on the Engineering Model of the optics unit, and more recently on the Flight Model. For the keywords, select up to 8 key terms for a search on your manuscript's subject.
NASA Astrophysics Data System (ADS)
Condon, J. J.; Broderick, J. J.
1986-05-01
The NRAO 91 m transit telescope and rebuilt four-feed receiver were used to make a 1400 MHz continuum survey with 12.7 arcmin x 11.1 arcmin resolution. New maps covering ascension between 19 h 30 m and 7 h 30 m supplement those in the right ascension range between 7 h 30 m and 19 h 30 m (Condon and Broderick, 1985) to complete the roughly 6.8 sr declination band between -5 deg and +82 deg. Both sets of maps are confusion-limited and contain roughly 3000 sources per sr stronger than 0.15 Jy. They are available on FITS tapes and can be displayed and analyzed with standard AIPS programs. A procedure for making radio 'identifications' automatically from the map tapes is given. A 1400 MHz radio sky atlas of contour plots and coordinate-grid overlays covering declination between -5 deg and +82 deg with a roughly 200 arcsec/mm scale was also produced.
Initial Results Derived from JEM-GLIMS Observations
NASA Astrophysics Data System (ADS)
Sato, M.; Ushio, T.; Morimoto, T.; Kobayashi, N.; Takahashi, Y.; Suzuki, M.; Yamazaki, A.; Inan, U.; Linscott, I.; Hobara, Y.
2012-12-01
In order to identify the spatial distributions and occurrence conditions of TLEs, JEM-GLIMS (Global Lightning and sprIte MeasurementS on JEM-EF) observations from Japanese Experiment Module - Exposed Facility (JEM-EF) at International Space Station (ISS) will start this year. Science instruments of JEM-GLIMS consist of two kinds of optical detectors and two kinds of radio receivers. The optical instruments are two wide FOV CMOS cameras (LSI) and six-channel spectrophotometers (PH). LSI uses a CMOS device with 512x512 pixels as an imaging sensor and uses a CCTV lens with =25 mm/F=1.4 which becomes 28.3x28.3 deg. FOV. LSI-1 equips a wide band optical filter (766-832 nm) and mainly measures lightning emission, while LSI-2 equips a narrowband optical filter (762+/-7 nm) and mainly measures TLE emission. Five of six PH channels employ the optics with 42.7 deg. conical FOV and use photomultiplier tubes (PMTs) as photon detectors. Each channel of these photometers equips an optical band-pass filter to measure N2 1P, 2P, and LBH emissions. One of six photometers employs a wide-FOV optics (86.8 deg.) and wide-band filter to measure N2 1P lightning emission. All these optical instruments are pointed to the nadir direction. In order to detect whistler wave excited by lightning discharges, one VLF receiver (VLFR) is installed. VLFR consists of a 15 cm nadir-directing monopole antenna and an electronics unit recording waveform data with a sampling frequency of 100 kHz with 14-bit resolution. In addition to this, two sets of VHF receivers (VITF) are also installed to measure VHF pulses emitted by lightning discharges. VITF consists of two patch-type antennas separated by 1.5 m and an electronics unit which records pulse data with a sampling frequency of 200 MHz with 8-bit resolution. Thus, the spatial and temporal evolution of lightning and TLEs can be measured by the two optical instruments, while the electrical characteristics of sprite-inducing lightning discharges can be measured by two radio receivers. JEM-GIMS was successfully launched by H-IIB rocket at 02:06:18 UT on July 21, 2012 and transported to ISS by the HTV-3 cargo transfer spaceship. HTV-3 successfully arrived at ISS on July 27 and our JEM-GLIMS instruments will be installed at JEM-EF on August 9. For the period from September 15 to 21 we will carry out the initial checkout operation, and finally we will start continuous TLE observations from the middle of October. At the presentation we will show the test results obtained during the checkout operations and will present the initial results derived from JEM-GLIMS lightning/TLE observations.
The Use of Sun Elevation Angle for Stereogrammetric Boreal Forest Height in Open Canopies
NASA Technical Reports Server (NTRS)
Montesano, Paul M.; Neigh, Christopher; Sun, Guoqing; Duncanson, Laura Innice; Van Den Hoek, Jamon; Ranson, Kenneth Jon
2017-01-01
Stereogrammetry applied to globally available high resolution spaceborne imagery (HRSI; less than 5 m spatial resolution) yields fine-scaled digital surface models (DSMs) of elevation. These DSMs may represent elevations that range from the ground to the vegetation canopy surface, are produced from stereoscopic image pairs (stereo pairs) that have a variety of acquisition characteristics, and have been coupled with lidar data of forest structure and ground surface elevation to examine forest height. This work explores surface elevations from HRSI DSMs derived from two types of acquisitions in open canopy forests. We (1) apply an automated mass-production stereogrammetry workflow to along-track HRSI stereo pairs, (2) identify multiple spatially coincident DSMs whose stereo pairs were acquired under different solar geometry, (3) vertically co-register these DSMs using coincident spaceborne lidar footprints (from ICESat-GLAS) as reference, and(4) examine differences in surface elevations between the reference lidar and the co-registered HRSI DSMs associated with two general types of acquisitions (DSM types) from different sun elevation angles. We find that these DSM types, distinguished by sun elevation angle at the time of stereo pair acquisition, are associated with different surface elevations estimated from automated stereogrammetry in open canopy forests. For DSM values with corresponding reference ground surface elevation from spaceborne lidar footprints in open canopy northern Siberian Larix forests with slopes less than10, our results show that HRSI DSM acquired with sun elevation angles greater than 35deg and less than 25deg (during snow-free conditions) produced characteristic and consistently distinct distributions of elevation differences from reference lidar. The former include DSMs of near-ground surfaces with root mean square errors less than 0.68 m relative to lidar. The latter, particularly those with angles less than 10deg, show distributions with larger differences from lidar that are associated with open canopy forests whose vegetation surface elevations are captured. Terrain aspect did not have a strong effect on the distribution of vegetation surfaces. Using the two DSM types together, the distribution of DSM-differenced heights in forests (6.0 m, sigma = 1.4 m) was consistent with the distribution of plot-level mean tree heights (6.5m, sigma = 1.2 m). We conclude that the variation in sun elevation angle at time of stereo pair acquisition can create illumination conditions conducive for capturing elevations of surfaces either near the ground or associated with vegetation canopy. Knowledge of HRSI acquisition solar geometry and snow cover can be used to understand and combine stereogrammetric surface elevation estimates to co-register rand difference overlapping DSMs, providing a means to map forest height at fine scales, resolving the vertical structure of groups of trees from spaceborne platforms in open canopy forests.
IUE observations of blue halo high luminosity stars
NASA Technical Reports Server (NTRS)
Hack, M.; Franco, M. L.; Stalio, R.
1981-01-01
Two high luminosity population II blue stars of high galactic latitude, BD+33 deg 2642 and HD 137569 were observed at high resolution. The stellar spectra show the effect of mass loss in BD+33 deg 2642 and abnormally weak metallic lines in HD 137569. The interstellar lines in the direction of BD+33 deg 2642, which lies at a height z greater than or equal to 6.2 kpc from the galactic plane, are split into two components. No high ionization stages are found at the low velocity component; nor can they be detected in the higher velocity clouds because of mixing with the corresponding stellar/circumstellar lines.
NASA Technical Reports Server (NTRS)
Deshler, Terry
1997-01-01
Throughout this study we focused on comparisons of CLAES and in situ measurements of ozone and aerosol extinction. Thus the comparison is between satellite data representative of large spatial regions and in situ data representative of nearly point samples. Both instruments provide vertical profiles, but the region of overlap is limited to between approximately 10 and 100 mb. CLAES Version 7 ozone measurements have been compared to electrochemical cell ozonesonde measurements over McMurdo Station, Antarctica (78 deg S, 167 deg E), Dumont d'Urville, Antarctica (66.7 deg S, 140 deg E), Laramie, Wyoming (41 deg N, 106 deg W), and Bear Island, Norway (74.3 deg N, 19 deg E). Comparisons were made between vertical ozone profiles, and between integrated column ozone over the region of overlap of the measurements. Comparisons using CLAES Version 8 data are underway. CLAES Version 8 aerosol extinction measurements at all wavelengths have also been compared to University of Wyoming aerosol extinctions over McMurdo Station, Antarctica, and over Laramie, Wyoming. Coincidences in all cases were determined by minimizing the distance between the CLAES observations and the surface station, and the time separation between the satellite and in situ measurements.
Reschke, Millard F; Wood, Scott J; Clément, Gilles
2018-01-01
Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0.5 m off-center. The chair accelerated at 120 deg/s2 to 120 deg/s, rotated at constant velocity for one minute, and then decelerated to a stop in similar fashion. On Earth, the stimulation primarily generated torsional VOR. During spaceflight, in one subject torsional VOR became horizontal VOR, and then decayed very slowly. In the other subject, torsional VOR was reduced on orbit relative to pre- and post-flight, but the SPV axis did not rotate. We attribute the shift from torsional to horizontal VOR on orbit to a spatial orientation of velocity storage toward alignment with the gravito-inertial force vector, and the inter-individual difference to cognitive factors related to the subjective straight-ahead.
Cassini First Diametric Radio Occultation of Saturn's Rings
NASA Astrophysics Data System (ADS)
Marouf, E.; French, R.; Rappaport, N.; Kliore, A.; Flasar, M.; Nagy, A.; Ambrosini, R.; McGhee, C.; Schinder, P.; Anabtawi, A.; Barbinis, E.; Goltz, G.; Thomson, F.; Wong, K.
2005-05-01
We present preliminary results expected from the first planned Cassini radio occultation observation of Saturn's rings, to be conducted on May 3rd, 2005. The path of Cassini as seen from Earth (the occultation track) has been designed to cross the rings from the west to the east ansa almost diametrically, allowing for occultation of all major ring features at two widely separated longitudes (about 180 deg apart). The duration of the geometric occultation is about 1.5 hours on each side. During the occultation, Cassini transmits through the rings three coherent monochromatic radio signals of wavelength 0.94, 3.6, and 13 cm (Ka-, X-, and S-band respectively), a capability unique to Cassini. The perturbed signals received at the Earth are recorded at the NASA DSN complexes at Goldstone and Canberra. Both direct and forward-scattered components of the signal may be identified in spectrograms of the received signals. The time history of the extinction of the direct signal is expected to yield high-spatial-resolution optical depth and phase shift profiles of ring structure. The timing of the occultation was optimized to allow probing the rings when the ring-opening-angle B (the angle between the line-of-sight and the ring plane) is relatively large (B = 23 deg), hence maximizing chances of measuring for the first time the structure of the relatively optically thick Ring B. In a similar experiment by Voyager in 1980, excessive signal attenuation along the long path within the nearly closed rings (B = 5.9 deg) limited the utility of the observations in relatively thick ring regions, in particular the main Ring B. For the Cassini optimized occultation geometry, a large B, slow radial velocity along the occultation track, and much improved phase stability of the reference ultrastable oscillator (USO) on board Cassini combine to promise achievable radial resolution approaching 100 m over a good fraction of the rings. Measurement of the amplitude and phase of the diffracted signal enables reconstruction of the observations to remove diffraction effects. Reliable high resolution profiling of ring structure at multiple ring longitudes is at the heart of investigating ring kinematics and dynamics, a major scientific objective of this experiment. In addition, observations of the scattered signal combined with measurements of the differential extinction of the three radio signals are expected to yield complementary information about ring physical properties, including particle size distribution and thickness, another major scientific objective.
Angular relation of axes in perceptual space
NASA Technical Reports Server (NTRS)
Bucher, Urs
1992-01-01
The geometry of perceptual space needs to be known to model spatial orientation constancy or to create virtual environments. To examine one main aspect of this geometry, the angular relation between the three spatial axes was measured. Experiments were performed consisting of a perceptual task in which subjects were asked to set independently their apparent vertical and horizontal plane. The visual background provided no other stimuli to serve as optical direction cues. The task was performed in a number of different body tilt positions with pitches and rolls varied in steps of 30 degs. The results clearly show the distortion of orthogonality of the perceptual space for nonupright body positions. Large interindividual differences were found. Deviations from orthogonality up to 25 deg were detected in the pitch as well as in the roll direction. Implications of this nonorthogonality on further studies of spatial perception and on the construction of virtual environments for human interaction is also discussed.
Top of Atmosphere Radiation MVIRI/SEVIRI Data Record within the Climate Monitoring SAF
NASA Astrophysics Data System (ADS)
Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Tornow, Florian; Hollmann, Rainer; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan; Trentmann, Jörg
2017-04-01
The CM SAF Top of Atmosphere (TOA) Radiation MVIRI/SEVIRI Data Record provides a homogeneous satellite-based climatology of the TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in all-sky conditions. The continuous monitoring of these two components of the Earth Radiation Budget is of prime importance to study climate variability and change. The Meteosat Visible and InfraRed Imager (MVIRI - from 1983 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) on board the Meteosat First and Second Generation satellites are combined to generate a long Thematic Climate Data Record (TCDR). Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI Data Record covers a 32 years time period from 1 February 1983 to 30 April 2015. The TOA radiation products are provided as daily mean, monthly mean and monthly averages of the hourly integrated values (diurnal cycle). To ensure consistency with other CM SAF products, the data is provided on a regular grid at a spatial resolution of 0.05 degrees (i.e. about 5.5 km) and covers the region between +/- 70° longitude and +/- 70° latitude. Validation of the MVIRI/SEVIRI Data Record has been performed by intercomparison with several references such as the CERES products (EBAF, SYN1deg-Day and SYN1deg-M3Hour), the HIRS OLR Climate Data Record (Daily and Monthly), the reconstructed ERBS WFOV-CERES (or DEEP-C) dataset and the ISCCP FD products. CERES is considered as the best reference from March 2000 onward. The quality of the early part of the Data Record is verified against the other references. In general, the stability of all the TOA radiation products is estimated to be better than 4 W.m-2 (max-min) and no significant transition or jump between satellites and generations of instruments is observed. Most of the products also fulfill the accuracy requirements that were defined in the CM SAF Product Requirement Document. Finally, a few examples of possible applications of the MVIRI/SEVIRI Data Record will be presented as well as some indicative analysis results (such as trend analysis).
NASA Technical Reports Server (NTRS)
Shen, B.-W.; Atlas, R.; Reale, O.; Chern, J.-D.; Li, S.-J.; Lee, T.; Chang, J.; Henze, C.; Yeh, K.-S.
2006-01-01
It is known that the General Circulation Models (GCMs) have sufficient resolution to accurately simulate hurricane near-eye structure and intensity. To overcome this limitation, the mesoscale-resolving finite-element GCM (fvGCM) has been experimentally deployed on the NASA Columbia supercomputer, and its performance is evaluated choosing hurricane Katrina as an example in this study. On late August 2005 Katrina underwent two stages of rapid intensification and became the sixth most intense hurricane in the Atlantic. Six 5-day simulations of Katrina at both 0.25 deg and 0.125 deg show comparable track forecasts, but the 0,125 deg runs provide much better intensity forecasts, producing center pressure with errors of only +/- 12 hPa. The 0.125 deg simulates better near-eye wind distributions and a more realistic average intensification rate. A convection parameterization (CP) is one of the major limitations in a GCM, the 0.125 deg run with CP disabled produces very encouraging results.
A neutral hydrogen survey of the Hydra 1 cluster
NASA Technical Reports Server (NTRS)
Mcmahon, Pauline; Vangorkom, Jacqueline; Richter, Otto; Ferguson, Henry
1993-01-01
We are undertaking a project to image the entire volume of the Hydra 1 cluster of galaxies in neutral hydrogen using the VLA. This involves making a series of pointings spaced 30 min. (the half power beam width) apart, each observed at three velocity settings in order to span the whole velocity range of the cluster. The purpose of this survey is to determine the true distribution, both in space and velocity, of gas-rich systems and hence, to deduce what effects a dense environment may have on the evolution of these systems. Most surveys of clusters to date have been performed on optically selected samples. However, optically selected samples may provide misleading views of the distribution of gas-rich systems, since many low surface brightness galaxies have an abundance of neutral gas (Bothun et al. 1987, Giovanelli & Haynes 1989). The Hydra project is providing the first unbiased view of the HI distribution in a cluster of galaxies. Our 5 sigma sensitivity is 4.1 x 10(exp 7) solar M/beam, (assuming H(sub 0) = 75 km s(exp -1) Mpc(exp -1)) and our velocity resolution is 42 km s(exp -1). We have a spatial resolution of 45 sec., which means that only the largest galaxies are spatially resolved enough to determine HI disk size. Our coverage is about 50 percent of the central region plus eight other fields centered on bright spirals within about 2 deg. of the center.
The nature of the dense obscuring material in the nucleus of NGC 1068
NASA Technical Reports Server (NTRS)
Tacconi, L. J.; Genzel, R.; Blietz, M.; Cameron, M.; Harris, A. I.; Madden, S.
1994-01-01
High spatial and spectral resolution observations of the distribution, physical parameters, and kinematics of the molecular interstellar medium toward the nucleus of the Seyfert 2 galaxy NGC 1068 are reported. The data consist of 2.4 by 3.4 arcseconds resolution interferometry of the 88.6 GHz HCN J = 1 towards 0 line at 17 km/s spectral resolution, single dish observations of several mm/submm isotopic lines of CO and HCN, and 0.85 arcseconds imaging spectroscopy of the 2.12 micron H2 S(1) line at a velocity resolution of 110 km/s. The central few hundred parsecs of NGC 1068 contain a system of dense (N(H2) approximately 10(exp 5) cm(exp -3)), warm (T greater than or equal to 70 K) molecular cloud cores. The low density molecular envelopes have probably been stripped by the nuclear wind and radiation. The molecular gas layer is located in the plane of NGC 1068's large scale disk (inclination approximately 35 deg) and orbits in elliptical streamlines in response to the central stellar bar. The spatial distribution of the 2 micron H2 emission suggests that gas is shocked at the leading edge of the bar, probably resulting in gas influx into the central 100 pc at a rate of a few solar mass per year. In addition to large scale streaming (with a solid body rotation curve), the HCN velocity field requires the presence of random motions of order 100 km/s. We interpret these large random motions as implying the nuclear gas disk to be very thick (scale height/radius approximately 1), probably as the result of the impact of nuclear radiation and wind on orbiting molecular clouds. Geometry and column density of the molecular cloud layer between approximately 30 pc to 300 pc from the nucleus can plausibly account for the nuclear obscuration and anisotropy of the radiation field in the visible and UV.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Stefanova, Lydia B.; Chan, Steven C.; Schubert, Siegfried D.; OBrien, James J.
2010-01-01
This study assesses the regional-scale summer precipitation produced by the dynamical downscaling of analyzed large-scale fields. The main goal of this study is to investigate how much the regional model adds smaller scale precipitation information that the large-scale fields do not resolve. The modeling region for this study covers the southeastern United States (Florida, Georgia, Alabama, South Carolina, and North Carolina) where the summer climate is subtropical in nature, with a heavy influence of regional-scale convection. The coarse resolution (2.5deg latitude/longitude) large-scale atmospheric variables from the National Center for Environmental Prediction (NCEP)/DOE reanalysis (R2) are downscaled using the NCEP Environmental Climate Prediction Center regional spectral model (RSM) to produce precipitation at 20 km resolution for 16 summer seasons (19902005). The RSM produces realistic details in the regional summer precipitation at 20 km resolution. Compared to R2, the RSM-produced monthly precipitation shows better agreement with observations. There is a reduced wet bias and a more realistic spatial pattern of the precipitation climatology compared with the interpolated R2 values. The root mean square errors of the monthly R2 precipitation are reduced over 93 (1,697) of all the grid points in the five states (1,821). The temporal correlation also improves over 92 (1,675) of all grid points such that the domain-averaged correlation increases from 0.38 (R2) to 0.55 (RSM). The RSM accurately reproduces the first two observed eigenmodes, compared with the R2 product for which the second mode is not properly reproduced. The spatial patterns for wet versus dry summer years are also successfully simulated in RSM. For shorter time scales, the RSM resolves heavy rainfall events and their frequency better than R2. Correlation and categorical classification (above/near/below average) for the monthly frequency of heavy precipitation days is also significantly improved by the RSM.
Angular Resolution of an EAS Array for Gamma Ray Astronomy at Energies Greater Than 5 x 10 (13) Ev
NASA Technical Reports Server (NTRS)
Apte, A. R.; Gopalakrishnan, N. V.; Tonwar, S. C.; Uma, V.
1985-01-01
A 24 detector extensive air shower array is being operated at Ootacamund (2300 m altitude, 11.4 deg N latitude) in southern India for a study of arrival directions of showers of energies greater than 5 x 10 to the 13th power eV. Various configurations of the array of detectors have been used to estimate the accuracy in determination of arrival angle of showers with such an array. These studies show that it is possible to achieve an angular resolution of better than 2 deg with the Ooty array for search for point sources of Cosmic gamma rays at energies above 5 x 10 to the 13th power eV.
Hook, S.J.; Chander, G.; Barsi, J.A.; Alley, R.E.; Abtahi, A.; Palluconi, Frank Don; Markham, B.L.; Richards, R.C.; Schladow, S.G.; Helder, D.L.
2004-01-01
The absolute radiometric accuracy of the thermal infrared band (B6) of the Thematic Mapper (TM) instrument on the Landsat-5 (L5) satellite was assessed over a period of approximately four years using data from the Lake Tahoe automated validation site (California-Nevada). The Lake Tahoe site was established in July 1999, and measurements of the skin and bulk temperature have been made approximately every 2 min from four permanently moored buoys since mid-1999. Assessment involved using a radiative transfer model to propagate surface skin temperature measurements made at the time of the L5 overpass to predict the at-sensor radiance. The predicted radiance was then convolved with the L5B6 system response function to obtain the predicted L5B6 radiance, which was then compared with the radiance measured by L5B6. Twenty-four cloud-free scenes acquired between 1999 and 2003 were used in the analysis with scene temperatures ranging between 4/spl deg/C and 22/spl deg/C. The results indicate L5B6 had a radiance bias of 2.5% (1.6/spl deg/C) in late 1999, which gradually decreased to 0.8% (0.5/spl deg/C) in mid-2002. Since that time, the bias has remained positive (predicted minus measured) and between 0.3% (0.2/spl deg/C) and 1.4% (0.9/spl deg/C). The cause for the cold bias (L5 radiances are lower than expected) is unresolved, but likely related to changes in instrument temperature associated with changes in instrument usage. The in situ data were then used to develop algorithms to recover the skin and bulk temperature of the water by regressing the L5B6 radiance and the National Center for Environmental Prediction (NCEP) total column water data to either the skin or bulk temperature. Use of the NCEP data provides an alternative approach to the split-window approach used with instruments that have two thermal infrared bands. The results indicate the surface skin and bulk temperature can be recovered with a standard error of 0.6/spl deg/C. This error is larger than errors obtained with other instruments due, in part, to the calibration bias. L5 provides the only long-duration high spatial resolution thermal infrared measurements of the land surface. If these data are to be used effectively in studies designed to monitor change, it is essential to continue to monitor instrument performance in-flight and develop quantitative algorithms for recovering surface temperature.
Wilson, Robert H; Crouzet, Christian; Torabzadeh, Mohammad; Bazrafkan, Afsheen; Farahabadi, Maryam H; Jamasian, Babak; Donga, Dishant; Alcocer, Juan; Zaher, Shuhab M; Choi, Bernard; Akbari, Yama; Tromberg, Bruce J
2017-10-01
Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.
Global behavior of the height/seasonal structure of tides between 40 deg and 60 deg latitude
NASA Technical Reports Server (NTRS)
Manson, A. H.; Meek, C. E.; Teitelbaum, H.; Fraser, G. J.; Smith, M. J.; Clark, R. R.; Schminder, R.; Kuerschner, D.
1989-01-01
The radars utilized are meteor (2), medium frequency (2) and the new low frequency (1) systems: analysis techniques were exhaustively studied internally and comparatively and are not thought to affect the results. Emphasis is placed upon the new height-time contours of 24-, 12-h tidal amplitudes and phases, which best display height and seasonal structures; where possible high resolution (10 d) is used (Saskatoon), but all stations provide monthly mean resolution. At these latitudes the diurnal tide is generally smaller than the semidiurnal, and displays more variability. However, there is a tendency for vertical wavelengths and amplitudes to be larger during summer months. On occasions in winter and fall, wavelengths may be less than 50 km. The dominant semidiurnal tide shows significant regular season structure; wavelengths are generally small (about 50 km) in winter, large in summer (equal to or greater than 100 km), and these states are separated by rapid equinoctial transitions. There is some evidence for less regularity toward 40 deg. Coupling with mean winds is apparent. Data from earlier ATMAP campaigns are mentioned, and reasons for their inadequacies presented.
Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning
NASA Astrophysics Data System (ADS)
Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.
NASA Technical Reports Server (NTRS)
Meneghini, Robert; Kim, Hyokyung
2016-01-01
For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.
VizieR Online Data Catalog: UV counterparts in HI clouds using ALFA surveys (Donovan+, 2015)
NASA Astrophysics Data System (ADS)
Donovan Meyer, J.; Peek, J. E. G.; Putman, M.; Grcevich, J.
2017-10-01
GALFA-HI is a survey of Galactic HI conducted with the ALFA seven-beam feed array on the 305 m Arecibo antenna. The survey has both high spatial (FWHM~4') and velocity (0.18 km/s) resolution over 13000 (7520 in DR1) degrees2 of sky between -650 and 650 km/s. Details of the observations and data reduction can be found in Peek et al. (2011ApJS..194...20P). The ALFALFA HI-line survey, now 40% complete, also uses the Arecibo Observatory and its seven-beam feed array to detect potential dwarf galaxies in the vicinity of the Milky Way. The survey, which covers over 7000 (2800 in α.40) deg2 of sky out to 18000 km/s, has the sensitivity to detect 105 Mȯ clouds with 20 km/s linewidths at a distance of 1 Mpc. (2 data files).
A technique for global monitoring of net solar irradiance at the ocean surface. II - Validation
NASA Technical Reports Server (NTRS)
Chertock, Beth; Frouin, Robert; Gautier, Catherine
1992-01-01
The generation and validation of the first satellite-based long-term record of surface solar irradiance over the global oceans are addressed. The record is generated using Nimbus-7 earth radiation budget (ERB) wide-field-of-view plentary-albedo data as input to a numerical algorithm designed and implemented based on radiative transfer theory. The mean monthly values of net surface solar irradiance are computed on a 9-deg latitude-longitude spatial grid for November 1978-October 1985. The new data set is validated in comparisons with short-term, regional, high-resolution, satellite-based records. The ERB-based values of net surface solar irradiance are compared with corresponding values based on radiance measurements taken by the Visible-Infrared Spin Scan Radiometer aboard GOES series satellites. Errors in the new data set are estimated to lie between 10 and 20 W/sq m on monthly time scales.
Fast calculation method for computer-generated cylindrical holograms.
Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi
2008-07-01
Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.
NASA Astrophysics Data System (ADS)
Kobayashi, Hideo; Iyama, Hiromasa; Kagatsume, Takeshi; Watanabe, Tsuyoshi
2012-11-01
Cold-development is well-known for resolution enhancement on ZEP520A. Dipping a wafer in a developer solvent chilled by a freezer, such a typical method had been employed. But, it is obvious that the dip-development method has several inferiorities such as developer temperature instability, temperature inconsistency between developer and a wafer, water-condensation on drying. We then built a single wafer spin-develop tool, and established a process sequence, to solve those difficulties. And, we tried to see their effect down to -10degC over various developers. In specific, we tried to make hole patterns in hexagonal closest packing in 40nm, 35nm, 30nm, 25nm pitch, and examined holes pattern quality and resolution limit by varying setting temperature from room temperature to -10degC in the cold-development, as well as varying developer chemistry from the standard developer ZED N-50 (n-amyl acetate, 100%) to MiBK and IPA mixture which was a rinsing solvent mixture originally. We also examined the other developer (poor solvent mixture) we designed, N-50 and fluorocarbon (FC) mixture, MiBK and FC mixture, and IPA+FC mixture. This paper describes cold-development tool and technique, and its results down to minus (-) 10degC, for ZEP520A resolution enhancement to obtain 1Xnm bits (holes) in 25nm pitch to fabricate an EB master mold for Nano-Imprinting Lithography for 1Tbit/in2 bit patterned media (BPM) in HDD development and production.
A new approach for the construction of gridded emission inventories from satellite data
NASA Astrophysics Data System (ADS)
Kourtidis, Konstantinos; Georgoulias, Aristeidis; Mijling, Bas; van der A, Ronald; Zhang, Qiang; Ding, Jieying
2017-04-01
We present a new method for the derivation of anthropogenic emission estimates for SO2. The method, which we term Enhancement Ratio Method (ERM), uses observed relationships between measured OMI satellite tropospheric columnar levels of SO2 and NOx in each 0.25 deg X 0.25 deg grid box at low wind speeds, and the Daily Emission estimates Constrained by Satellite Observations (DECSO) versions v1 and v3a NOx emission estimates to scale the SO2 emissions. The method is applied over China, and emission estimates for SO2 are derived for different seasons and years (2007-2011), thus allowing an insight into the interannual evolution of the emissions. The inventory shows a large decrease of emissions during 2007-2009 and a modest increase between 2010-2011. The evolution in emission strength over time calculated here is in general agreement with bottom-up inventories, although differences exist, not only between the current inventory and other inventories but also among the bottom up inventories themselves. The gridded emission estimates derived appear to be consistent, both in their spatial distribution and their magnitude, with the Multi-resolution Emission Inventory for China (MEIC). The total emissions correlate very well with most existing inventories. This research has been financed under the FP7 Programme MarcoPolo (Grand Number 606953, Theme SPA.2013.3.2-01).
Precipitation Climatology over Mediterranean Basin from Ten Years of TRMM Measurements
NASA Technical Reports Server (NTRS)
Mehta, Amita V.; Yang, Song
2008-01-01
Climatological features of mesoscale rain activities over the Mediterranean region between 5 W-40 E and 28 N-48 N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25 deg x 0.25 deg spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3-5 mm/day) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (approximately 0.5 mm/day). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November-December. Over the Mediterranean Sea, an average rainrate of approximately 1-2 mm/day is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.
A measurement of the large-scale cosmic microwave background anisotropy at 1.8 millimeter wavelength
NASA Technical Reports Server (NTRS)
Meyer, Stephan S.; Cheng, Edward S.; Page, Lyman A.
1991-01-01
This measurement of the large-scale cosmic microwave background radiation (CMBR) anisotropy places the most stringent constraints to date on fluctuations in the CMBR on angular scales greater than about 4 deg. Using a four-channel bolometric radiometer operating at 1.8, 1.1, 0.63, and 0.44 mm, the diffuse sky brightness over half of the northern hemisphere has been mapped with an angular resolution of 3.8 deg. Analysis of the sky map at the longest wavelength for Galactic latitudes of 15 deg or more yields a 95-percent confidence level upper limit on fluctuations of the CMBR at Delta T/T of 1.6 x 10 to the -5th with a statistical power of 92 percent for Gaussian fluctuations at a correlation angle of 13 deg. Between 3 deg and 22 deg, the upper limit of fluctuations is 4.0 x 10 to the -5th . An anisotropy is detected in the map, but it cannot yet be attributed to primordial sources. The ultimate sensitivity for this experiment is 7 x 10 to the -6th over this angular range for Gaussian fluctuations.
Maps Showing Geology and Shallow Structure of Western Rhode Island Sound, Rhode Island
Needell, Sally W.; O'Hara, Charles J.; Knebel, Harley J.
1983-01-01
This report presents the results of a high-resolution, seismic-reflection, and sidescan-sonar survey conducted in western Rhode Island Sound south of Narragansett Bay (fig. 1 inset) by the U.S. Geological Survey in 1980. The study defines the geologic framework of the Atlantic Inner Continental Shelf between lat. 41 deg 09' and 41 deg 32'N and long. 71 deg 07' and 71 deg 37'W. A total of 580 kilometers (km) of seismic-reflection profiles and 580 km of sidescan sonographs was collected aboard the RV Neecho. Trackline spacing was 1 to 2 km at the mouth of Narragansett Bay, and dip lines were 2 km apart with widely spaced strike lines in Rhode Island Sound (fig. 1). The maps in this report adjoin those for eastern Rhode Island Sound and Vineyard Sound, Massachusetts, of O'Hara and Oldale (1980).
Effects of spatial resolution ratio in image fusion
Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.
2008-01-01
In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.
NASA Technical Reports Server (NTRS)
Goldman, A.; Murcray, F. J.; Murcray, D. G.; Rinsland, C. P.; Coffey, M. T.; Mankin, W. G.
1984-01-01
Quantitative infrared measurements of ethane (C2H6) in the upper troposphere and lower stratosphere are reported. The results have been obtained from the analysis of absorption features of the nu9 band at 12.2 microns, which have been identified in high-resolution balloon-borne and aircraft solar absorption spectra. The balloon-borne spectral data were recorded at sunset with the 0.02/cm resolution University of Denver interferometer system, from a float altitude of 33.5 km near Alamogordo, New Mexico, on March 23, 1981. The aircraft spectra were recorded at sunset in July 1978 with a 0.06/cm resolution interferometer aboard a jet aircraft at 12 km altitude, near 35 deg N, 96 deg W. The balloon analysis indicates the C2H6 mixing ratio decreased from 3.5 ppbv near 8.8 km to 0.91 ppbv near 12.1 km. The results are consistent with the column value obtained from the aircraft data.
Rotational wind indicator enhances control of rotated displays
NASA Technical Reports Server (NTRS)
Cunningham, H. A.; Pavel, Misha
1991-01-01
Rotation by 108 deg of the spatial mapping between a visual display and a manual input device produces large spatial errors in a discrete aiming task. These errors are not easily corrected by voluntary mental effort, but the central nervous system does adapt gradually to the new mapping. Bernotat (1970) showed that adding true hand position to a 90 deg rotated display improved performance of a compensatory tracking task, but tracking error rose again upon removal of the explicit cue. This suggests that the explicit error signal did not induce changes in the neural mapping, but rather allowed the operator to reduce tracking error using a higher mental strategy. In this report, we describe an explicit visual display enhancement applied to a 108 deg rotated discrete aiming task. A 'wind indicator' corresponding to the effect of the mapping rotation is displayed on the operator-controlled cursor. The human operator is instructed to oppose the virtual force represented by the indicator, as one would do if flying an airplane in a crosswind. This enhancement reduces spatial aiming error in the first 10 minutes of practice by an average of 70 percent when compared to a no enhancement control condition. Moreover, it produces adaptation aftereffect, which is evidence of learning by neural adaptation rather than by mental strategy. Finally, aiming error does not rise upon removal of the explicit cue.
Energetic Electrons in Dipolarization Events: Spatial Properties and Anisotropy
NASA Technical Reports Server (NTRS)
Birn, J.; Runov, A.; Hesse, M.
2014-01-01
Using the electromagnetic fields of an MHD simulation of magnetotail reconnection, flow bursts, and dipolarization, we further investigate the acceleration of electrons to suprathermal energies. Particular emphasis is on spatial properties and anisotropies as functions of energy and time. The simulation results are compared with Time History of Events and Macroscale Interactions during Substorms observations. The test particle approach successfully reproduces several observed injection features and puts them into a context of spatial maps of the injection region(s): a dominance of perpendicular anisotropies farther down the tail and closer to the equatorial plane, an increasing importance of parallel anisotropy closer to Earth and at higher latitudes, a drop in energy fluxes at energies below approximately 10 keV, coinciding with the plasma density drop, together with increases at higher energy, a triple peak structure of flux increases near 0 deg, 90 deg, and 180 deg, and a tendency of flux increases to extend to higher energy closer to Earth and at lower latitudes. We identified the plasma sheet boundary layers and adjacent lobes as a main source region for both increased and decreased energetic electron fluxes, related to the different effects of adiabatic acceleration at high and low energies. The simulated anisotropies tend to exceed the observed ones, particularly for perpendicular fluxes at high energies. The most plausible reason is that the MHD simulation lacks the effects of anisotropy-driven microinstabilities and waves, which would reduce anisotropies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eunyoung
Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μMmore » formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR genes includes cystathionine γ-lyase (CTH). • Sub-cytotoxic formaldehyde upregulates cystathionine-β-synthase (CBS) in NHKs. • Cystathionine metabolic enzymes may attenuate formaldehyde-induced inflammation in NHKs. • Cystathionine metabolic enzymes may play a role in the resolution of inflammation in NHKs.« less
Spatial-frequency spectrum of patterns changes the visibility of spatial-phase differences
NASA Technical Reports Server (NTRS)
Lawton, T. B.
1985-01-01
It is shown that spatial-frequency components over a 4-octave range affected the visibility of spatial-phase differences. Contrast thresholds were measured for discrimination between two (+45- and -45-deg) spatial phases of a sinusoidal test grating added to a background grating. The background could contain one or several sinusoidal components, all in 0-deg phase. Phase differences between the test and the background were visible at lower contrasts when test and background frequencies were harmonically related than when they were not, when test and background frequencies were within 1 octave than when they were farther apart, when the fundamental frequency of the background was low than when it was high, and for some discriminations more than for others, after practice. The visibility of phase differences was not affected by additional components in the background if the fundamental and difference frequencies of the background remained unchanged. Observers' reports of their strategies gave information about the types of attentive processing that were used to discriminate phase differences. Attentive processing facilitated phase discrimination for multifrequency gratings spanning a much wider range of spatial frequencies than would be possible by using only local preattentive processing. These results were consistent with the visibility of phase differences being processed by some combination of even- and odd-symmetric simple cells tuned to a wide range of different spatial frequencies.
NASA Technical Reports Server (NTRS)
2002-01-01
On March 26, New York Mayor Michael Bloomberg declared a drought emergency for the city and four upstate counties in response to the worst drought to hit the eastern United States in nearly 70 years. Restrictions on water use will affect more than 8 million residents of New York. The city's reservoirs, located in the Catskill Mountains, are at 52 percent capacity. One of these, Ashokan Reservoir, is seen in this pair of ASTER images acquired on September 18, 2000 and February 3, 2002.
These images were acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 16.5 x 13 km (10.2 x 8.1 miles) Location: 41.9 deg. North lat., 74.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: September 18, 2000 and February 3, 2002Salt Lake City, Utah, Winter 2001
NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.
This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: February 8, 2001NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.
This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 63.5 x 123.3 km (38.1 x 74 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000Salt Lake City, Utah, Perspective View
NASA Technical Reports Server (NTRS)
2001-01-01
The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This 3-D perspective view, in simulated natural colors, presents a late spring view over Salt Lake City towards the snow-capped Wasatch Mountains to the east. The image was created by draping ASTER image data over digital topography data from the US Geological Survey's National Elevation Data.
This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: View width 15 km ( 9.2 miles); view distance 12 km (7.3 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 28, 2000NASA Technical Reports Server (NTRS)
2002-01-01
These images show dramatic change in the water at Dongting Lake in Hunan province, China. A flood crest surged down the Yangtze River in late August of this year, but the embankments made by residents there held. The left image was acquired on September 2, 2002 and shows the extent of the lake. The right image was obtained March 19, 2002 before the flooding began.
These images were acquired on September 2, 2002 and March 19,2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.Size: 39.1 x 119.4 km (22.4 x 74.0 miles)Location: 30.1 deg. North lat., 112.9 deg. East long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 mDates Acquired: September 2 and March 19, 2002Polarized View of Supercooled Liquid Water Clouds
NASA Technical Reports Server (NTRS)
Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas
2016-01-01
Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features varying between glaciated and liquid phases at altitudes as high as 10 km, which correspond to temperatures close to the homogeneous freezing temperature of pure water drops (about -35 C or colder). The multimodal droplet size distributions retrieved from RSP data in these cases are consistent with the multi-layer cloud structure observed by correlative Cloud Physics Lidar (CPL) measurements.
Venus gravity anomalies and their correlations with topography
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.
1983-01-01
This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.
Development of a tunable filter for coronal polarimetry
NASA Astrophysics Data System (ADS)
Tomczyk, S.; Mathew, S. K.; Gallagher, D.
2016-07-01
Measuring magnetic fields in the solar corona is crucial to understanding and predicting the Sun's generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory Large Coronagraph (COSMO LC) is a proposed 1.5 m aperture coronagraph designed to synoptically observe magnetic fields and plasma properties in the large-scale corona to improve our understanding of solar processes that cause space weather. The LC will observe coronal emission lines over the wavelength range from 500 to 1100 nm with a field of view of 1° and a spatial resolution of 2 arcsec. A spectral resolution greater than 8000 over the wavelength range is needed to resolve the polarization signatures of magnetic fields in the emission line profiles. The aperture and field of view of the LC set an étendue requirement of 1.39 m2 deg2 for the postfocus instrumentation. We find that a tunable wide-field birefringent filter using Lithium Niobate crystals can meet the étendue and spectral resolution requirements for the LC spectrometer. We have tested a number of commercially available crystals and verify that crystals of the required size and birefringence uniformity are available. We also evaluate electro-optical tuning of a Lithium Niobate birefringent filter by the application of high voltage. This tunable filter represents a key enabling technology for the COSMO LC.
Measurement of Aerosol and Cloud Particles with PACS and HARP Hyperangular Imaging Polarimeters
NASA Astrophysics Data System (ADS)
Martins, J.; Fernandez-Borda, R.; Remer, L. A.; Sparr, L.; Buczkowski, S.; Munchak, L. A.
2013-12-01
PACS is new hyper-angular imaging polarimeter for aeorosol and cloud measurerents designed to meet the requirements of the proposed ACE decadal survey mission. The full PACS system consists of three wide field of view (110deg cross track) telescopes covering the UV, VNIR, and SWIR spectral ranges with angular coverage between +55 deg forward to -55deg backwards. The angular density can be selected to cover up to 100 different viewing angles at selected wavelengths. PACS_VNIR is a prototype airborne instrument designed to demonstrate PACS capability by deploying just one of the three wavelength modules of the full PACS. With wavelengths at 470, 550, 675, 760 and 875nm, PACS_VNIR flew for the first time during the PODEX experiment in January/February 2013 aboard the NASA ER-2 aircraft. PACS SWIR (1.64, 1.88, 2.1, and 2.25um) is currently under construction and should be operational in the lab by Fall/2013. PACS_ UV has been fully designed, but is not yet under construction. During the PODEX flights PACS_VNIR collected data for aerosol and clouds over variable surface types including, water, vegetation, urban areas, and snow. The data is currently being calibrated, geolocated and prepared for the inversion of geophysical parameters including water cloud size distribution and aerosol microphysical parameters. The large density of angles in PACS allows for the characterization of cloudbow features in relatively high spatial resolution in a pixel to pixel basis. This avoids the need for assumptions of cloud homogeneity over any distance. The hyperangle capability also allows detailed observation of cloud ice particles, surface characterization, and optimum selection of the number of angles desired for aerosol retrievals. The aerosol and cloud retrieval algorithms under development for the retrieval of particle microphysical properties from the PACS data will be discussed in this presentation. As an extension of the PACS concept we are currently developing the HARP (Hyper-Angular Rainbow Polarimeter) Cubesat satellite funded by the NASA/ESTO/InVEST program. HARP will demonstrate the PACS concept from space and will allow for high resolution angular measurements of polarized radiances over different aerosol and cloud scenarios. The HARP concept and strategy will be presented and discussed as part of the general PACS measurement strategy.
The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques
NASA Technical Reports Server (NTRS)
Smith, William L.; Ebert, Elizabeth
1990-01-01
The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than does a global choice of a visible and/or infrared threshold. The classification also prevents erroneous estimates of large fractional cloudiness in areas of cloudfree snow and sea ice. The hybrid histogram-spatial coherence technique and the advantages of first classifying a scene in the polar regions are detailed. The complete Polar Cloud Pilot Data Set was analyzed and the results are presented and discussed.
NASA Astrophysics Data System (ADS)
Hueso, Ricardo; Sanchez-Lavega, Agustin; Perez-Hoyos, Santiago; Rojas, Jose Felix; Iñurrigarro, Peio; Mendikoa, Iñigo; Go, Christopher; PVOL-IOPW Team
2016-10-01
The arrival of Juno to Jupiter provides a unique opportunity to link findings of the inner structure of the planet with astronomical observations of its meteorology at cloud level. Long time base observations of Jupiter's atmosphere before and during the Juno mission are critical in providing context to Junocam observations and may benefit the interpretation of the MWR data on the lower atmosphere structure as well as Juno data on the depth of the zonal winds. We have performed a long campaign of observations in the visible with the PlanetCam lucky imaging instrument in the 2.2m telescope at Calar Alto Observatory in Spain with observations obtained in December 2015 and in March, May, June and July 2016. In observations under good atmospheric seeing, the instrument allows to obtain images with a spatial resolution of 0.05'' in the visible and 0.1'' from 1.0 to 1.7 microns. The later is an interesting range of wavelengths for observing Jupiter because of the existence of several strong and weak methane absorption bands not generally used in high-resolution ground-based observations of the planet. A combination of images using narrow filters centered in methane absorption bands and their adjacent continuum allows studying the vertical structure of the clouds at horizontal spatial scales of 350-1000 km over the planet depending on the atmospheric seeing and filter used. The best images can be further processed showing features at spatial resolutions of about 150 km. We have also monitored the state of the atmosphere with images obtained by amateur astronomers contributing to the Planetary Virtual Observatory Laboratory database (http://pvol.ehu.eus). Based on both datasets we present zonal winds from -70 to +75 deg with an accuracy of 10 m/s in the low latitudes and 25 m/s in subpolar latitudes. Relative altitude maps of features observed in bands J, H and others with different methane absorption will be presented.
On the added value and sensitivity of WRF to driving conditions over CORDEX-Africa domain
NASA Astrophysics Data System (ADS)
Lorente-Plazas, Raquel; García-Díez, Markel; Jimenez-Guerrero, Pedro; Fernández, Jesús; Montavez, Juan Pedro
2014-05-01
The assessment of the climate variability over Africa has recently attracted the interest of the regional climate downscaling research community. The main reasons are not only because Africa is a climate change hot-spot, but also due to the low capacity of this region for the adaptation and mitigation under negative impacts and its direct dependency on its socio-economic sustainability of the climate variability. Therefore, improvements in the understanding of the African climate could help the governments in decision-making. Under this umbrella, regional climate models (RCMs) are promising tools to assess the African regional climate. The main advantage of the RCMs, with respect to global reanalysis datasets, is the higher detail provided by the increased resolution which implies a better representation of land-surface interactions and atmospheric processes. However, the confidence on the RCMs strongly depends on the reduction/bounding of uncertainties. One of these sources of uncertainties is associated with the selection of the boundary conditions for driving the regional models. In this work, two identical CORDEX-compliant simulations have been performed over Africa with the unique difference of being driven by two different reanalyses. The reanalyses used were the European Centre for Medium Range Weather Forecasts Interim reanalysis (ERA-I) and the Japanese 25-year reanalysis (JRA-25) by the Japanese Meteorological Service. Both reanalyses have identical temporal resolution (6-hr) but different spatial grid resolution, 0.75 and 1.25 degrees, respectively. The regional model used was the Weather Research and Forecasting Model (WRF). The numerical experiments encompass the period 1989-2010 covering the Africa-CORDEX domain with a 50 km horizontal spatial resolution and 28 vertical levels up to 50 hPa. The WRF simulations are compared between them and against observations. For the mean and maximum temperature the CRU monthly time series (0.25deg) from Climatic Research Unit of the University of East Anglia are used. The precipitation is compared against the Tropical Rainfall Measuring Mission Project (TRMM) monthly data (0.25deg). The results depict that none of the reanalyses used outperforms the other in representing the African climate, since their performance depends on the variable, season and region assessed. The simulations show a noticeable disagreement for 2-m temperature in north-western Africa, where WRF-JRA tends to underestimate this variable mostly in winter and spring. For the monthly mean daily maximum temperature, WRF-JRA tends to overestimate the temperature in the Sahel in summer and in the border between Angola and Namibia in Winter. When comparing with CRU observations, there is a remarkably better spatial representation for the WRF-EI simulation in the North of Africa. However, the behaviour of WRF-EI and WRF-JRA is similar in the South of Africa. Intra-annual variability is well represented except in Atlas mountains where WRF-JRA underestimates temperature. Regarding precipitation, the main differences appear over the Sahel region in JAS and in the Congo area during JFM. The comparison with the TRMM data shows a better agreement with the WRF-JRA simulation except during summer in the Sahel region. The monthly annual cycle is well captured, except in Ethiopian highlands and Northern West Africa where WRF-JRA (WRF-EI) underestimate (overestimate) the annual cycle.
Performance Evaluation of 98 CZT Sensors for Their Use in Gamma-Ray Imaging
NASA Astrophysics Data System (ADS)
Dedek, Nicolas; Speller, Robert D.; Spendley, Paul; Horrocks, Julie A.
2008-10-01
98 SPEAR sensors from eV Products have been evaluated for their use in a portable Compton camera. The sensors have a 5 mm times 5 mm times 5 mm CdZnTe crystal and are provided together with a preamplifier. The energy resolution was studied in detail for all sensors and was found to be 6% on average at 59.5 keV and 3% on average at 662 keV. The standard deviations of the corresponding energy resolution distributions are remarkably small (0.6% at 59.5 keV, 0.7% at 662 keV) and reflect the uniformity of the sensor characteristics. For a possible outside use the temperature dependence of the sensor performances was investigated for temperatures between 15 and 45 deg Celsius. A linear shift in calibration with temperature was observed. The energy resolution at low energies (81 keV) was found to deteriorate exponentially with temperature, while it stayed constant at higher energies (356 keV). A Compton camera built of these sensors was simulated. To obtain realistic energy spectra a suitable detector response function was implemented. To investigate the angular resolution of the camera a 137Cs point source was simulated. Reconstructed images of the point source were compared for perfect and realistic energy and position resolutions. The angular resolution of the camera was found to be better than 10 deg.
ECMWF and SSM/I global surface wind speeds
NASA Technical Reports Server (NTRS)
Halpern, David; Hollingsworth, Anthony; Wentz, Frank
1994-01-01
Monthly mean 2.5 deg x 2.5 deg resolution 10-m height wind speeds from the Special Sensor Microwave/Imager (SSM/I) instrument and the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast-analysis system are compared between 60 deg S and 60 deg N during 1988-91. The SSM/I data were uniformly processed while numerous changes were made to the ECMWF forecast-analysis system. The SSM/I measurements, which were compared with moored-buoy wind observations, were used as a reference dataset to evaluate the influence of the changes made to the ECMWF system upon the ECMWF surface wind speed over the ocean. A demonstrable yearly decrease of the difference between SSM/I and ECMWF wind speeds occurred in the 10 deg S-10 deg N region, including the 5 deg S-5 deg N zone of the Pacific Ocean, where nearly all of the variations occurred in the 160 deg E-160 deg W region. The apparent improvement of the ECMWF wind speed occurred at the same time as the yearly decrease of the equatorial Pacific SSM/I wind speed, which was associated with the natural transition from La Nina to El Nino conditions. In the 10 deg S-10 deg N tropical Atlantic, the ECMWF wind speed had a 4-yr trend, which was not expected nor was it duplicated with the SSM/I data. No yearly trend was found in the difference between SSM/I and ECMWF surface wind speeds in middle latitudes of the Northern and Southern Hemispheres. The magnitude of the differences between SSM/I and ECMWF was 0.4 m/s or 100% larger in the Northern than in the Southern Hemisphere extratropics. In two areas (Arabian Sea and North Atlantic Ocean) where ECMWF and SSM/I wind speeds were compared to ship measurements, the ship data had much better agreement with the ECMWF analyses compared to SSM/I data. In the 10 deg S-10 deg N area the difference between monthly standard deviations of the daily wind speeds dropped significantly from 1988 to 1989 but remained constant at about 30% for the remaining years.
NASA Astrophysics Data System (ADS)
Bhattacharyya, B.; Cooper, S.; Malenta, M.; Roy, J.; Chengalur, J.; Keith, M.; Kudale, S.; McLaughlin, M.; Ransom, S. M.; Ray, P. S.; Stappers, B. W.
2016-02-01
We are conducting a survey for pulsars and transients using the Giant Metrewave Radio Telescope (GMRT). The GMRT High Resolution Southern Sky (GHRSS) survey is an off-Galactic plane (| b| > 5) survey in the declination range -40° to -54° at 322 MHz. With the high time (up to 30.72 μs) and frequency (up to 0.016275 MHz) resolution observing modes, the 5σ detection limit is 0.5 mJy for a 2 ms pulsar with a 10% duty cycle at 322 MHz. The total GHRSS sky coverage of 2866 deg2 will result from 1953 pointings, each covering 1.8 deg2. The 10σ detection limit for a 5 ms transient burst is 1.6 Jy for the GHRSS survey. In addition, the GHRSS survey can reveal transient events like rotating radio transients or fast radio bursts. With 35% of the survey completed (I.e., 1000 deg2), we report the discovery of 10 pulsars, 1 of which is a millisecond pulsar (MSP), which is among the highest pulsar per square degree discovery rates for any off-Galactic plane survey. We re-detected 23 known in-beam pulsars. Utilizing the imaging capability of the GMRT, we also localized four of the GHRSS pulsars (including the MSP) in the gated image plane within ±10″. We demonstrated rapid convergence in pulsar timing with a more precise position than is possible with single-dish discoveries. We also show that we can localize the brightest transient sources with simultaneously obtained lower time resolution imaging data, demonstrating a technique that may have application in the Square Kilometre Array.
High resolution X- and gamma-ray spectroscopy of solar flares
NASA Technical Reports Server (NTRS)
Lin, R. P.
1984-01-01
A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.
Numerical simulation of incidence and sweep effects on delta wing vortex breakdown
NASA Technical Reports Server (NTRS)
Ekaterinaris, J. A.; Schiff, Lewis B.
1994-01-01
The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.
New dust opacity mapping from Viking Infrared Thermal Mapper data
NASA Technical Reports Server (NTRS)
Martin, Terry Z.; Richardson, Mark I.
1993-01-01
Global dust opacity mapping for Mars has been carried forward using the approach described by Martin (1986) for Viking IR Thermal Mapper data. New maps are presented for the period from the beginning of Viking observations, until Ls 210 deg in 1979 (1.36 Mars years). This range includes the second and more extensive planet-encircling dust storm observed by Viking, known as storm 1977b. Improvements in approach result in greater time resolution and smaller noise than in the earlier work. A strong local storm event filled the Hellas basin at Ls 170 deg, prior to the 1977a storm. Dust is retained in equatorial regions following the 1977b storm far longer than in mid-latitudes. Minor dust events appear to raise the opacity in northern high latitudes during northern spring. Additional mapping with high time resolution has been done for the periods of time near the major storm origins in order to search for clues to the mechanism of storm initiation. The first evidence of the start of the 1977b storm is pushed back to Ls 274.2 deg, preceding signs of the storm in images by about 15 hours.
NASA Technical Reports Server (NTRS)
Paciesas, W. S.; Baker, R.; Boclet, D.; Brown, S.; Cline, T.; Costlow, H.; Durouchoux, P.; Ehrmann, C.; Gehrels, N.; Hameury, J. M.
1983-01-01
The Low Energy Gamma ray Spectrometer (LEGS) is designed to perform fine energy resolution measurements of astrophysical sources. The instrument is configured for a particular balloon flight with either of two sets of high purity germanium detectors. In one configuration, the instrument uses an array of three coaxial detectors (effective volume equal to or approximately 230 cubic cm) inside an NaI (T1) shield and collimator (field of view equal to or approximately 16 deg FWHM) and operates in the 80 to 8000 keV energy range. In the other configuration, three planar detectors (effective area equal to or approximately square cm) surrounded by a combination of passive Fe and active NaI for shielding and collimation (field of view equal to or approximately 5 deg x 10 deg FWHM) are optimized for the 20 to 200 keV energy range. In a typical one day balloon flight, LEGS sensitivity limit (3 sigma) for narrow line features is less than or approximately .0008 ph/cm/s square (coaxial array: 80 to 2000 keV) and less than or approximately .0003 ph/square cm/s (planar array: 50 to 150 keV).
NASA Technical Reports Server (NTRS)
Goossens, Sander Johannes; Ishihara, Yoshiaki; Matsumoto, Koji; Sasaki, Sho
2012-01-01
We present a method with which we determined the local lunar gravity field model over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating adjustments to a global lunar gravity field model using SELENE tracking data. Our adjustments are expressed in localized functions concentrated over the SPA region in a spherical cap with a radius of 45deg centered at (191.1 deg E, 53.2 deg S), and the resolution is equivalent to a 150th degree and order spherical harmonics expansion. The new solution over SPA was used in several applications of geophysical analysis. It shows an increased correlation with high-resolution lunar topography in the frequency band l = 40-70, and admittance values are slightly different and more leveled when compared to other, global gravity field models using the same data. The adjustments expressed in free-air anomalies and differences in Bouguer anomalies between the local solution and the a priori global solution correlate with topographic surface features. The Moho structure beneath the SPA basin is slightly modified in our solution, most notably at the southern rim of the Apollo basin and around the Zeeman crater
NASA Astrophysics Data System (ADS)
Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna
2015-04-01
sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of activity, maturity, senescence and end of season) from all 3 data streams. Maps of the transition dates (most of all the start of season) of EVI, SIF and GPP are derived and compared. Further, local comparisons of the annual cycle over several large scale regions and forest types are done. Among other results, we find that in the boreal evergreen needleleaf forests both model GPP and SIF indicate much earlier onset of activity than EVI. This confirms - on a larger scale - findings from tower observations. Moreover, the end of activity occurs later in the case of SIF and GPP, which results in an overall longer growing season. Summer peak values of chlorophyll fluorescence, model GPP and greenness are reached approximately at the time of the annual temperature maximum one month after the illumination peak. In deciduous forests the length of the growing season indicated by the three proxies is very similar, however, SIF and GPP show large intraseasonal variability that cannot be identified using EVI. Also a slight decline in all three proxies can be observed from the end of June until August indicating that greenness and photosynthesis are already reduced to a small extent before autumn senescence starts and before the annual temperature maximum is reached. This might be due to higher sensitivity to illumination than to temperature at that time of year. These and other results show that satellite measurements of chlorophyll fluorescence reliably indicate plant activity and that they might be useful for benchmarking dynamic global vegetation and carbon cycle models.
3-d Modeling of Comet Borrelly's Nucleus
NASA Astrophysics Data System (ADS)
Giese, B.; Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Ds1 Science Team
During the DS1 encounter with comet Borrelly, the onboard camera MICAS (Minia- ture Integrated Camera and Spectrometer) acquired a series of images with spectac- ular detail [1]. Two of the highest resolution frames (58m/pxl, 47m/pxl) formed an effective stereo pair (8 deg convergence angle), on the basis of which teams at DLR and the USGS derived topographic models. Though different approaches were used in the analysis, the results are in remarkable agreement. The horizontal resolution of the stereo models is approx. 500m, and their vertical precision is expected to be in the range of 100m-150m, but perhaps three times worse in places with low surface texture. The visible area of the elongated nucleus (long axis approx. 8km, short axis approx. 4km) is characterized by a dichotomy. The "upper" end (toward the top of the image, as conventionally displayed) is gently tilted relative to the reference image plane and shows slopes of up to 40 deg towards the limb. The other end is smaller and canted relative to the "upper" end by approx. 35 deg in the direction towards the camera. Slopes towards the limb appear to be as high as 70 deg. The presence of faults and fractures near the boundary between the two ends additionally supports the view of a dichotomy. Perhaps, the nucleus is a contact binary, which formed by a collisional event. [1] Soderblom et al. (2002), submitted to Science.
NASA Technical Reports Server (NTRS)
Jasperson, W. H.; Nastrom, G. D.; Holdeman, J. D.
1984-01-01
A climatology of ozone for altitudes from FL190 to FL590 (19,000 to 59,000 ft) is presented. Climatological tables are given in two appendixes: one with d deg latitude resolution on a monthly basis, and one with 10 deg latitude resolution on a seasonal basis. Data were taken from 11,472 balloon-borne ozonesondes launched at 60 stations from 1963 to 1980 and from over 160,000 observations made by the Global Atmospheric Sampling Program on 4417 commercial airliner flights from 1975 to 1979. Case study and statistical comparisons of results from these two data sets showed that they are compatible and can be combined. Several examples of analyses that can be made by using the tabulated data are given and discussed.
NASA Technical Reports Server (NTRS)
Stocker, Erich; Kelley, Owen; Kummerow, Christian; Chou, Joyce; Woltz, Lawrence
2010-01-01
TRMM has three level 3 (space/time averaged) data products that aggregate level 2 TRMM Microwave Imager (TMI) GPROF precipitation retrievals. These three products are TRMM 3A12, which is a monthly accumulation of 2A12 the GPROF swath retrieval product; TRMM 3B31, which is a monthly accumulation of 2A12 and 2B31 the combined retrieval product that uses both Precipitation Radar (PR) and TMI data; and 3G68 and its variants, which provide hourly retrievals for TMI, PR and combined. The 3G68 products are packaged as daily files but provide hourly information at 0.5 deg x 0.5 deg resolution globally, 0.25 deg x 0.25 deg globally, or 0.1 deg x 0.1 deg over Africa, Australia and South America. This paper will present early information of the changes in the v7 TMI GPROF level 2 retrievals that have an impact on the level 3 accumulations. This paper provides an analysis of the effect the 2A12 GPROF changes have on 3G68 products. In addition, it provides a comparison between the TRMM level 3 products that use the TMI GPROF swath retrievals.
Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion.
Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I
2016-10-01
The current MMN study investigates whether brain lateralization during automatic discrimination of sound stimuli moving at different velocities is consistent with one of the three models of asymmetry: the right-hemispheric dominance model, the contralateral dominance model, or the neglect model. Auditory event-related potentials (ERPs) were recorded for three patterns of sound motion produced by linear or abrupt changes of interaural time differences. The slow motion (450deg/s) was used as standard, and the fast motion (620deg/s) and the abrupt sound shift served as deviants in the oddball blocks. All stimuli had the same onset/offset spatial positions. We compared the effects of the recording side (left, right) and of the direction of sound displacement (ipsi- or contralateral with reference to the side of recording) on the ERPs and mismatch negativity (MMN). Our results indicated different patterns of asymmetry for the ERPs and MMN responses. The ERPs showed a velocity-independent right-hemispheric dominance that emerged at the descending limb of N1 wave (at around 120-160ms) and could be related to overall context of the preattentive spatial perception. The MMNs elicited in the left hemisphere (at around 230-270ms) exhibited a contralateral dominance, whereas the right-hemispheric MMNs were insensitive to the direction of sound displacement. These differences in contralaterality between MMN responses produced by the left and the right hemisphere favour the neglect model of the preattentive motion processing indexed by MMN. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of spatial frequency content on classification of face gender and expression.
Aguado, Luis; Serrano-Pedraza, Ignacio; Rodríguez, Sonia; Román, Francisco J
2010-11-01
The role of different spatial frequency bands on face gender and expression categorization was studied in three experiments. Accuracy and reaction time were measured for unfiltered, low-pass (cut-off frequency of 1 cycle/deg) and high-pass (cutoff frequency of 3 cycles/deg) filtered faces. Filtered and unfiltered faces were equated in root-mean-squared contrast. For low-pass filtered faces reaction times were higher than unfiltered and high-pass filtered faces in both categorization tasks. In the expression task, these results were obtained with expressive faces presented in isolation (Experiment 1) and also with neutral-expressive dynamic sequences where each expressive face was preceded by a briefly presented neutral version of the same face (Experiment 2). For high-pass filtered faces different effects were observed on gender and expression categorization. While both speed and accuracy of gender categorization were reduced comparing to unfiltered faces, the efficiency of expression classification remained similar. Finally, we found no differences between expressive and non expressive faces in the effects of spatial frequency filtering on gender categorization (Experiment 3). These results show a common role of information from the high spatial frequency band in the categorization of face gender and expression.
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.; Fulakeza, Matthew B.
2013-01-01
Five annual climate cycles (1998-2002) are simulated for continental Africa and adjacent oceans by a regional atmospheric model (RM3). RM3 horizontal grid spacing is 0.44deg at 28 vertical levels. Each of 2 simulation ensembles is driven by lateral boundary conditions from each of 2 alternative reanalysis data sets. One simulation downs cales National Center for Environmental Prediction reanalysis 2 (NCPR2) and the other the European Centre for Medium Range Weather Forecasts Interim reanalysis (ERA-I). NCPR2 data are archived at 2.5deg grid spacing, while a recent version of ERA-I provides data at 0.75deg spacing. ERA-I-forced simulations are recomrp. ended by the Coordinated Regional Downscaling Experiment (CORDEX). Comparisons of the 2 sets of simulations with each other and with observational evidence assess the relative performance of each downscaling system. A third simulation also uses ERA-I forcing, but degraded to the same horizontal resolution as NCPR2. RM3-simulated pentad and monthly mean precipitation data are compared to Tropical Rainfall Measuring Mission (TRMM) data, gridded at 0.5deg, and RM3-simulated circulation is compared to both reanalyses. Results suggest that each downscaling system provides advantages and disadvantages relative to the other. The RM3/NCPR2 achieves a more realistic northward advance of summer monsoon rains over West Africa, but RM3/ERA-I creates the more realistic monsoon circulation. Both systems recreate some features of JulySeptember 1999 minus 2002 precipitation differences. Degrading the resolution of ERA-I driving data unrealistically slows the monsoon circulation and considerably diminishes summer rainfall rates over West Africa. The high resolution of ERA-I data, therefore, contributes to the quality of the downscaling, but NCPR2laterai boundary conditions nevertheless produce better simulations of some features.
Spatial frequency discrimination learning in normal and developmentally impaired human vision
Astle, Andrew T.; Webb, Ben S.; McGraw, Paul V.
2010-01-01
Perceptual learning effects demonstrate that the adult visual system retains neural plasticity. If perceptual learning holds any value as a treatment tool for amblyopia, trained improvements in performance must generalise. Here we investigate whether spatial frequency discrimination learning generalises within task to other spatial frequencies, and across task to contrast sensitivity. Before and after training, we measured contrast sensitivity and spatial frequency discrimination (at a range of reference frequencies 1, 2, 4, 8, 16 c/deg). During training, normal and amblyopic observers were divided into three groups. Each group trained on a spatial frequency discrimination task at one reference frequency (2, 4, or 8 c/deg). Normal and amblyopic observers who trained at lower frequencies showed a greater rate of within task learning (at their reference frequency) compared to those trained at higher frequencies. Compared to normals, amblyopic observers showed greater within task learning, at the trained reference frequency. Normal and amblyopic observers showed asymmetrical transfer of learning from high to low spatial frequencies. Both normal and amblyopic subjects showed transfer to contrast sensitivity. The direction of transfer for contrast sensitivity measurements was from the trained spatial frequency to higher frequencies, with the bandwidth and magnitude of transfer greater in the amblyopic observers compared to normals. The findings provide further support for the therapeutic efficacy of this approach and establish general principles that may help develop more effective protocols for the treatment of developmental visual deficits. PMID:20832416
Stable water isotope behavior during the last glacial maximum: A general circulation model analysis
NASA Technical Reports Server (NTRS)
Jouzel, Jean; Koster, Randal D.; Suozzo, Robert J.; Russell, Gary L.
1994-01-01
Global water isotope geochemisty during the last glacial maximum (LGM) is simulated with an 8 deg x 10 deg atmospheric general circulation model (GCM). The simulation results suggest that the spatial delta O-18/temperature relationships observed for the present day and LGM climates are very similar. Furthermore, the temporal delta O-18/temperature relationship is similar to the present-day spatial relationship in regions for which the LGM/present-day temperature change is significant. This helps justify the standard practice of applying the latter to the interpretation of paleodata, despite the possible influence of other factors, such as changes in the evaportive sources of precipitation or in the seasonality of precipitation. The model suggests, for example, that temperature shifts inferred from ice core data may differ from the true shifts by only about 30%.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve
2009-01-01
Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong vs band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Mahieu, Emmanuel; Chiou, Linda; Herbin, Herve
2009-01-01
Atmospheric CH3OH (methanol) free tropospheric (2.09-14-km altitude) time series spanning 22 years has been analyzed on the basis of high-spectral resolution infrared solar absorption spectra of the strong n8 band recorded from the U.S. National Solar Observatory on Kitt Peak (latitude 31.9degN, 111.6degW, 2.09-km altitude) with a 1-m Fourier transform spectrometer (FTS). The measurements span October 1981 to December 2003 and are the first long time series of CH3OH measurements obtained from the ground. The results were analyzed with SFIT2 version 3.93 and show a factor of three variations with season, a maximum at the beginning of July, a winter minimum, and no statistically significant long-term trend over the measurement time span.
Talbot, Christopher M; Marshall, Justin
2010-10-01
Coleoid cephalopods (octopus, cuttlefish and squid) potentially possess polarization sensitivity (PS) based on photoreceptor structure, but this idea has rarely been tested behaviourally. Here, we use a polarized, striped optokinetic stimulus to demonstrate PS in the striped pyjama squid, Sepioloidea lineolata. This species displayed strong, consistent optokinetic nystagmic eye movements in response to a drum with stripes producing e-vectors set to 0 deg, 45 deg, 90 deg and 135 deg that would only be visible to an animal with PS. This is the first behavioural demonstration of a polarized optokinetic response in any species of cephalopod. This species, which typically sits beneath the substrate surface looking upwards for potential predators and prey, possesses a dorsally shifted horizontal pupil slit. Accordingly, it was found to possess a horizontal strip of high-density photoreceptors shifted ventrally in the retina, suggesting modifications such as a change in sensitivity or resolution to the dorsal visual field.
IRAS 16293-2422: Evidence for Infall onto a Counter-Rotating Protostellar Accretion Disk
NASA Technical Reports Server (NTRS)
Remijan, Anthony J.; Hollis, J. M.
2005-01-01
We report high spatial resolution VLA observations of the low-mass star-forming region IRAS 16293-2422 using four molecular probes: ethyl cyanide (CH3CH2CN)) methyl formate (CH3OCHO), formic acid (HCOOH), and the ground vibrational state of silicon monoxide (SiO). Ethyl cyanide emission has a spatial scale of approx. 20" and encompasses binary cores A and B as determined by continuum emission peaks. Surrounded by formic acid emission, methyl formate emission has a spatial scale of approx. 6" and is confined to core B. SiO emission shows two velocity components with spatial scales less than 2" that map approx. 2" northeast of the A and B symmetry axis. The redshifted SiO is approx. 2" northwest of blueshifted SiO along a position angle of approx. 135deg which is approximately parallel to the A and B symmetry axis. We interpret the spatial position offset in red and blueshifted SiO emission as due to rotation of a protostellar accretion disk and we derive approx. 1.4 Solar Mass, interior to the SiO emission. In the same vicinity, Mundy et al. (1986) also concluded rotation of a nearly edge-on disk from OVRO observations of much stronger and ubiquitous CO-13 emission but the direction of rotation is opposite to the SiO emission findings. Taken together, SiO and CO-13 data suggest evidence for a counter-rotating disk. Moreover, archival BIMA array CO-12C data show an inverse P Cygni profile with the strongest absorption in close proximity to the SiO emission, indicating unambiguous material infall toward the counter-rotating protostellar disk at a new source location within the IRAS 16293-2422 complex. The details of these observations and our interpretations are discussed.
Fast generation of computer-generated hologram by graphics processing unit
NASA Astrophysics Data System (ADS)
Matsuda, Sho; Fujii, Tomohiko; Yamaguchi, Takeshi; Yoshikawa, Hiroshi
2009-02-01
A cylindrical hologram is well known to be viewable in 360 deg. This hologram depends high pixel resolution.Therefore, Computer-Generated Cylindrical Hologram (CGCH) requires huge calculation amount.In our previous research, we used look-up table method for fast calculation with Intel Pentium4 2.8 GHz.It took 480 hours to calculate high resolution CGCH (504,000 x 63,000 pixels and the average number of object points are 27,000).To improve quality of CGCH reconstructed image, fringe pattern requires higher spatial frequency and resolution.Therefore, to increase the calculation speed, we have to change the calculation method. In this paper, to reduce the calculation time of CGCH (912,000 x 108,000 pixels), we employ Graphics Processing Unit (GPU).It took 4,406 hours to calculate high resolution CGCH on Xeon 3.4 GHz.Since GPU has many streaming processors and a parallel processing structure, GPU works as the high performance parallel processor.In addition, GPU gives max performance to 2 dimensional data and streaming data.Recently, GPU can be utilized for the general purpose (GPGPU).For example, NVIDIA's GeForce7 series became a programmable processor with Cg programming language.Next GeForce8 series have CUDA as software development kit made by NVIDIA.Theoretically, calculation ability of GPU is announced as 500 GFLOPS. From the experimental result, we have achieved that 47 times faster calculation compared with our previous work which used CPU.Therefore, CGCH can be generated in 95 hours.So, total time is 110 hours to calculate and print the CGCH.
NASA Technical Reports Server (NTRS)
Goetz, A. F. H.; Heidebrecht, K. B.; Gutmann, E. D.; Warner, A. S.; Johnson, E. L.; Lestak, L. R.
1999-01-01
Approximately 100,000 sq. km of the High Plains of the central United States are covered by sand dunes and sand sheets deposited during the Holocene. Soil-dating evidence shows that there were at least four periods of dune reactivation during major droughts in the last 10,000 years. The dunes in this region are anchored by vegetation. We have undertaken a study of land-use change in the High Plains from 1985 to the present using Landsat 5 TM and Landsat 7 ETM+ images to map variation in vegetation cover during wet and dry years. Mapping vegetation cover of less than 20% is important in modeling potential surface reactivation since at this level the vegetation no longer sufficiently shields sandy surfaces from movement by wind. Landsat TM data have both the spatial resolution and temporal coverage to facilitate vegetation cover analysis for model development and verification. However, there is still the question of how accurate TM data are for the measurement of both growing and senescent vegetation in and and semi-arid regions. AVIRIS provides both high spectral resolution as well as high signal-to-noise ratio and can be used to test the accuracy of Landsat TM and ETM+ data. We have analyzed data from AVIRIS flown nearly concurrently with a Landsat 7 overpass. The comparison between an AVIRIS image swath of 11 km width subtending a 30 deg. angle and the same area covered by a 0.8 deg. angle from Landsat required accounting for the BRDF. A normalization technique using the ratio of the reflectances from registered AVIRIS and Landsat data proved superior to the techniques of column averaging on AVIRIS data alone published previously by Kennedy et al. This technique can be applied to aircraft data covering a wider swath angle than AVIRIS to develop BRDF responses for a wide variety of surfaces more efficiently than from ground measurements.
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chan, Pui-King; Yan, Michael M.-H.
2000-01-01
The sea-surface shortwave and longwave radiative fluxes have been retrieved from the radiances measured by Japan's Geostationary Meteorological Satellite 5. The surface radiation data set covers the domain 40S-40N and 90E-170W. The temporal resolution is 1 day, and the spatial resolution is 0.5 deg x 0.5 deg latitude-longitude. The retrieved surface radiation have been validated with the radiometric measurements at the Atmospheric Radiation Measuring (ARM) site on Manus island in the equatorial western Pacific for a period of 15 months. It has also been validated with the measurements at the radiation site on Dungsha island in the South China Sea during the South China Sea Monsoon Experiment (SCSMEX) Intensive Observing Period (May and June 1998). The data set is used to study the effect of El Nino and East Asian Summer monsoon on the heating of the ocean in the tropical western Pacific and the South China Sea. Interannual variations of clouds associated with El Nino and the East Asian Summer monsoon have a large impact on the radiative heating of the ocean. It has been found that the magnitude of the interannual variation of the seasonal mean surface radiative heating exceeds 40 W/sq m over large areas. Together with the Clouds and the Earth's Radiant Energy System (CERES) shortwave fluxes at top of the atmosphere and the radiative transfer calculations of clear-sky fluxes, this surface radiation data set is also used to study the impact of clouds on the solar heating of the atmosphere. It is found that clouds enhance the atmospheric solar heating by approx. 20 W/sq m in the tropical western Pacific and the South China Sea. This result is important for evaluating the accuracy of solar flux calculations in clear and cloudy atmospheres.
Aether drift and the isotropy of the universe
NASA Technical Reports Server (NTRS)
Muller, R. A.
1976-01-01
An experiment is proposed which will detect and map the large-angular-scale anisotropies in the 3 deg K primordial black-body radiation with a sensitivity of .0002 deg K and an angular resolution of about 10 deg . It will detect the motion of the earth with respect to the distant matter of the Universe ("Aether Drift"), and will probe the homogeneity and isotropy of the Universe (the "Cosmological Principle"). The experiment will use two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. An upper hatch for the NASA-AMES Earth Survey Aircraft (U-2) is being modified to accept the dual-radiometer system. A few hours of observation should be sufficient to detect an anisotropy.
Chaotic terrain of Mars - A tectonic interpretation from Mariner 6 imagery
NASA Technical Reports Server (NTRS)
Wilson, R. C.; Harp, E. L.; Picard, M. D.; Ward, S. H.
1973-01-01
Sharp et al. (1971) define chaotic terrain as an irregular jumble of topographic forms covering a certain area within Pyrrhae Regio and adjacent regions centered at about 10 deg S., 35 deg W. This area is covered by Mariner 6 television imagery. An analysis of fracture patterns in the Martian surface from high-resolution Mariner 6 imagery suggests that the lineaments observed in both the chaotic terrain and the cratered plateau areas in Pyrrhae Regio are tectonic fractures resulting from stresses within the Martian crust.
NASA Astrophysics Data System (ADS)
Rhzanov, Y.; Beaulieu, S.; Soule, S. A.; Shank, T.; Fornari, D.; Mayer, L. A.
2005-12-01
Many advances in understanding geologic, tectonic, biologic, and sedimentologic processes in the deep ocean are facilitated by direct observation of the seafloor. However, making such observations is both difficult and expensive. Optical systems (e.g., video, still camera, or direct observation) will always be constrained by the severe attenuation of light in the deep ocean, limiting the field of view to distances that are typically less than 10 meters. Acoustic systems can 'see' much larger areas, but at the cost of spatial resolution. Ultimately, scientists want to study and observe deep-sea processes in the same way we do land-based phenomena so that the spatial distribution and juxtaposition of processes and features can be resolved. We have begun development of algorithms that will, in near real-time, generate mosaics from video collected by deep-submergence vehicles. Mosaics consist of >>10 video frames and can cover 100's of square-meters. This work builds on a publicly available still and video mosaicking software package developed by Rzhanov and Mayer. Here we present the results of initial tests of data collection methodologies (e.g., transects across the seafloor and panoramas across features of interest), algorithm application, and GIS integration conducted during a recent cruise to the Eastern Galapagos Spreading Center (0 deg N, 86 deg W). We have developed a GIS database for the region that will act as a means to access and display mosaics within a geospatially-referenced framework. We have constructed numerous mosaics using both video and still imagery and assessed the quality of the mosaics (including registration errors) under different lighting conditions and with different navigation procedures. We have begun to develop algorithms for efficient and timely mosaicking of collected video as well as integration with navigation data for georeferencing the mosaics. Initial results indicate that operators must be properly versed in the control of the video systems as well as maintaining vehicle attitude and altitude in order to achieve the best results possible.
NASA Technical Reports Server (NTRS)
Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui;
2016-01-01
Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5deg by 0.5deg. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 19012012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, risingCO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 x 10(exp 6) km(exp 2) in 1901 to 12.3 x 10(exp 6) kmI(exp 2) in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and inter-annual variability of grassland productivity at global scale well and thus is appropriate for global applications presented here.
Large-scale energy transformations in the high latitudes of the Northern Hemisphere
NASA Technical Reports Server (NTRS)
Kung, E. C.; Masters, S. E.; Corte-Real, J. A. M.
1983-01-01
The kinetic energy balance and kinetic energy sources are studied for high latitudes north of 55 deg N with twice daily upper air observations during a seven-year period from 1973 to 1979. Energy variables are presented for 5 deg latitudinal zones from 55 to 75 deg N and for the polar cap north of 75 deg N. Spatial distributions of important energy variables are also presented. The upper level maximum of the cross-isobaric generation in high latitudes is observed in th lower stratosphere above the tropopause level in the winter and becomes insignificant during the summer. The flux convergence of potential energy from the source in lower latitudes is identified as the single major source for kinetic energy in higher latitudes. The contribution of the baroclinic conversion is minor. Examination during the First GARP Global Experiment winter indicates that the cold air outbreaks of the Asian winter monsoon are associated with noticeable changes in the hemispherical distributions of the fields of vertical motion and energetics in the high latitudes.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.
1983-01-01
The effects of the seasonal variation of illumination over digital processing of LANDSAT images are evaluated. Two sets of LANDSAT data referring to the orbit 150 and row 28 were selected with illumination parameters varying from 43 deg to 64 deg for azimuth and from 30 deg to 36 deg for solar elevation respectively. IMAGE-100 system permitted the digital processing of LANDSAT data. Original images were transformed by means of digital filtering so as to enhance their spatial features. The resulting images were used to obtain an unsupervised classification of relief units. Topographic variables (declivity, altitude, relief range and slope length) were used to identify the true relief units existing on the ground. The LANDSAT over pass data show that digital processing is highly affected by illumination geometry, and there is no correspondence between relief units as defined by spectral features and those resulting from topographic features.
Effects of contrast on smooth pursuit eye movements.
Spering, Miriam; Kerzel, Dirk; Braun, Doris I; Hawken, Michael J; Gegenfurtner, Karl R
2005-05-20
It is well known that moving stimuli can appear to move more slowly when contrast is reduced (P. Thompson, 1982). Here we address the question whether changes in stimulus contrast also affect smooth pursuit eye movements. Subjects were asked to smoothly track a moving Gabor patch. Targets varied in velocity (1, 8, and 15 deg/s), spatial frequency (0.1, 1, 4, and 8 c/deg), and contrast, ranging from just below individual thresholds to maximum contrast. Results show that smooth pursuit eye velocity gain rose significantly with increasing contrast. Below a contrast level of two to three times threshold, pursuit gain, acceleration, latency, and positional accuracy were severely impaired. Therefore, the smooth pursuit motor response shows the same kind of slowing at low contrast that was demonstrated in previous studies on perception.
Restoring the spatial resolution of refocus images on 4D light field
NASA Astrophysics Data System (ADS)
Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok
2010-01-01
This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.
NASA Technical Reports Server (NTRS)
Stammer, Detlef; Wunsch, Carl
1996-01-01
A Green's function method for obtaining an estimate of the ocean circulation using both a general circulation model and altimetric data is demonstrated. The fundamental assumption is that the model is so accurate that the differences between the observations and the model-estimated fields obey a linear dynamics. In the present case, the calculations are demonstrated for model/data differences occurring on very a large scale, where the linearization hypothesis appears to be a good one. A semi-automatic linearization of the Bryan/Cox general circulation model is effected by calculating the model response to a series of isolated (in both space and time) geostrophically balanced vortices. These resulting impulse responses or 'Green's functions' then provide the kernels for a linear inverse problem. The method is first demonstrated with a set of 'twin experiments' and then with real data spanning the entire model domain and a year of TOPEX/POSEIDON observations. Our present focus is on the estimate of the time-mean and annual cycle of the model. Residuals of the inversion/assimilation are largest in the western tropical Pacific, and are believed to reflect primarily geoid error. Vertical resolution diminishes with depth with 1 year of data. The model mean is modified such that the subtropical gyre is weakened by about 1 cm/s and the center of the gyre shifted southward by about 10 deg. Corrections to the flow field at the annual cycle suggest that the dynamical response is weak except in the tropics, where the estimated seasonal cycle of the low-latitude current system is of the order of 2 cm/s. The underestimation of observed fluctuations can be related to the inversion on the coarse spatial grid, which does not permit full resolution of the tropical physics. The methodology is easily extended to higher resolution, to use of spatially correlated errors, and to other data types.
Evaluation of the effects of patient arm attenuation in SPECT cardiac perfusion imaging
NASA Astrophysics Data System (ADS)
Luo, Dershan; King, M. A.; Pan, Tin-Su; Xia, Weishi
1996-12-01
It was hypothesized that the use of attenuation correction could compensate for degradation in the uniformity of apparent localization of imaging agents seen in cardiac walls when patients are imaged with arms at their sides. Noise-free simulations of the digital MCAT phantom were employed to investigate this hypothesis. Four variations in camera size and collimation scheme were investigated. We observed that: 1) without attenuation correction, the arms had little additional influences on the uniformity of the heart for 180/spl deg/ reconstructions and caused a small increase in nonuniformity for 360/spl deg/ reconstructions, where the impact of both arms was included; 2) change in patient size had more of an impact on count uniformity than the presence of the arms, either with or without attenuation correction; 3) for a low number of iterations and large patient size, slightly better uniformity was obtained from parallel emission data than from fan-beam emission data, independent of whether parallel or fan-beam transmission data was used to reconstruct the attenuation maps; and 4) for all camera configurations, uniformity was improved with attenuation correction and, given sufficient number of iterations, it was compatible among different imaging geometry combinations. Thus, iterative algorithms can compensate for the additional attenuation imposed by larger patients or having the arms on the sides. When the arms are at the sides of the patient, however, a larger radius of rotation may be required, resulting in decreased spatial resolution.
Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows
NASA Technical Reports Server (NTRS)
Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.
2016-01-01
Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.
High Spatial Resolution Commercial Satellite Imaging Product Characterization
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas
2005-01-01
NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.
Lunar surface remanent magnetic fields detected by the electron reflection method
NASA Technical Reports Server (NTRS)
Lin, R. P.; Anderson, K. A.; Bush, R.; Mcguire, R. E.; Mccoy, J. E.
1976-01-01
We present maps of the lunar surface remanent magnetic fields detected by the electron reflection method. These maps provide substantial coverage of the latitude band from 30 N southward to 30 S with a resolution of about 40 km and a sensitivity of about 0.2 gamma at the lunar surface. Regions of remanent magnetization are observed ranging in size from the resolution limit of 1.25 deg to above approximately 60 deg. The largest contiguous region fills the Big Backside Basin where it is intersected by the spacecraft orbital tracks. Preliminary analyses of the maps show that the source regions of lunar limb compressions correspond to regions of strong surface magnetism, and that there does not appear to be sharply discontinuous magnetization at the edges of maria. We also analyze the electron reflection observations to obtain information on the direction and distribution of magnetization in the Van de Graaff anomaly region.
NASA Technical Reports Server (NTRS)
Hanson, Bradford C.; Dellwig, Louis F.
1988-01-01
In a study concerning the value of using radar imagery from systems with diverse parameters, X-band images of the Northern Louisiana Salt dome area generated by the airborne Goodyear electronic mapping system (GEMS) are analyzed in conjunction with imagery generated by the satelliteborne Seasat/SAR. The GEMS operated with an incidence angle of 75 to 85 deg and a resolution of 12 m, whereas the Seasat/SAR operated with an incidence angle of 23 deg and a resolution of 25 m. It is found that otherwise unattainable data on land management activities, improved delineation of the drainage net, better definition of surface roughness in cleared areas, and swamp identification, became accessible when adjustments for the time lapse between the two missions were made and supporting ground data concerning the physical and vegetative characteristics of the terrain were acquired.
NASA Technical Reports Server (NTRS)
Vonderhaar, Thomas H.; Randel, David L.; Reinke, Donald L.; Stephens, Graeme L.; Ringerud, Mark A.; Combs, Cynthia L.; Greenwald, Thomas J.; Wittmeyer, Ian L.
1994-01-01
In recent years climate research scientists have recognized the need for increased time and space resolution precipitable and liquid water data sets. This project is designed to meet those needs. Specifically, NASA is funding STC-METSAT to develop a total integrated column and layered precipitable water data set. This is complemented by a total column liquid water data set. These data are global in extent, 1 deg x 1 deg in resolution, with daily grids produced. Precipitable water is measured by a combination of in situ radiosonde observations and satellite derived infrared and microwave retrievals from four satellites. This project combines these data into a coherent merged product for use in global climate research. This report is the Year 2 Annual Report from this NASA-sponsored project and includes progress-to-date on the assigned tasks.
Herranz, Gervasi; Singh, Gyanendra; Bergeal, Nicolas; ...
2015-01-13
We find the discovery of two-dimensional electron gases (2DEGs) at oxide interfaces—involving electrons in narrow d-bands—has broken new ground, enabling the access to correlated states that are unreachable in conventional semiconductors based on s- and p- electrons. There is a growing consensus that emerging properties at these novel quantum wells—such as 2D superconductivity and magnetism—are intimately connected to specific orbital symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By carrying out electrostatic gating experiments in LaAlO 3/SrTiO 3 wells of different crystal orientations, wemore » show that the spatial extension and anisotropy of the 2D superconductivity and the Rashba spin–orbit field can be largely modulated by controlling the 2DEG sub-band filling. Such an orientational tuning expands the possibilities for electronic engineering of 2DEGs at LaAlO 3/SrTiO 3 interfaces.« less
Automated Verification of Spatial Resolution in Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald
2011-01-01
Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data set, enabling the appropriate use of those images in a number of applications.
INCREASING EVIDENCE FOR HEMISPHERICAL POWER ASYMMETRY IN THE FIVE-YEAR WMAP DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoftuft, J.; Eriksen, H. K.; Hansen, F. K.
Motivated by the recent results of Hansen et al. concerning a noticeable hemispherical power asymmetry in the Wilkinson Microwave Anisotropy Probe (WMAP) data on small angular scales, we revisit the dipole-modulated signal model introduced by Gordon et al.. This model assumes that the true cosmic microwave background signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p-hat. Previous analyses of this model have been restricted to very low resolution (i.e., 3.{sup 0}6 pixels, a smoothing scale of 9 deg. FWHM, and l {approx}< 40)more » due to computational cost. In this paper, we double the angular resolution (i.e., 1.{sup 0}8 pixels and 4.{sup 0}5 FWHM smoothing scale), and compute the full corresponding posterior distribution for the five-year WMAP data. The results from our analysis are the following: the best-fit modulation amplitude for l {<=} 64 and the ILC data with the WMAP KQ85 sky cut is A = 0.072 {+-} 0.022, nonzero at 3.3{sigma}, and the preferred direction points toward Galactic coordinates (l, b) = (224 deg., - 22 deg.) {+-} 24 deg. The corresponding results for l {approx}< 40 from earlier analyses were A = 0.11 {+-} 0.04 and (l, b) = (225 deg. - 27 deg.). The statistical significance of a nonzero amplitude thus increases from 2.8{sigma} to 3.3{sigma} when increasing l{sub max} from 40 to 64, and all results are consistent to within 1{sigma}. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from {delta}ln E = 1.8 to {delta}ln E = 2.6, ranking as 'strong evidence' on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from {delta}ln L = 6.1 to {delta}ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the five-year WMAP data set, in agreement with the reports of Hansen et al.« less
Measurements of CO2 Concentration and Wind Profiles with A Scanning 1.6μm DIAL
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.; Nagai, T.; Sakai, T.; Tsukamoto, M.
2012-12-01
Horizontal carbon dioxide (CO2) distribution and wind profiles are important information for understanding of the regional sink and source of CO2. The differential absorption lidar (DIAL) and the Doppler lidar with the range resolution is expected to bring several advantages over passive measurements. We have developed a new scanning 1.6μm DIAL and incoherent Doppler lidar system to perform simultaniously measurements of CO2 concentration and wind speed profiles in the atmosphere. The 1.6μm DIAL and Doppler lidar system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz). The receiving optics include the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode, a fiber Bragg grating (FBG) filter to detct Doppler shift, and a 25 cm telescope[1][2]. Laser beam is transmitted coaxially and motorized scanning mirror system can scan the laser beam and field of view 0-360deg horizontally and 0-52deg vertically. We report the results of vertical CO2 scanning measurenents and vertical wind profiles. The scanning elevation angles were from 12deg to 24deg with angular step of 4deg and CO2 concentration profiles were obtained up to 1 km altitude with 200 m altitude resolution. We also obtained vertical wind vector profiles by measuring line-of-sight wind profiles at two azimuth angles with a fixed elevation angle 52deg. Vertical wind vector profiles were obtained up to 5 km altitude with 1 km altitude rasolution. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References [1] L. B. Vann, et al., "Narrowband fiber-optic phase-shifted Fabry-Perot Bragg grating filters for atmospheric water vapor lidar measurements", Appl. Opt., 44, pp. 7371-7377 (2005). [2] Y. Shibata, et al., "1.5μm incoherent Doppler lidar using a FBG filter", Proceedings of 25th International Laser Radar Conference (ILRC25), pp. 338-340 (2010)
Resolution Enhancement of Hyperion Hyperspectral Data using Ikonos Multispectral Data
2007-09-01
spatial - resolution hyperspectral image to produce a sharpened product. The result is a product that has the spectral properties of the ...multispectral sensors. In this work, we examine the benefits of combining data from high- spatial - resolution , low- spectral - resolution spectral imaging...sensors with data obtained from high- spectral - resolution , low- spatial - resolution spectral imaging sensors.
Thematic and spatial resolutions affect model-based predictions of tree species distribution.
Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.
Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution
Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atac, Hamza
The Coulomb Sum is defined by the quasi-elastic nucleon knock-out process and it is the integration of the longitudinal response function over the energy loss of the incident electron. The Coulomb sum goes to the total charge at large q. The existing measurements of the Coulomb Sum Rule show disagreement with the theoretical calculations for the medium and heavy nuclei. To find the reason behind the disagreement might answer the question of whether the properties of the nucleons are affected by the nuclear medium or not. In order to determine the Coulomb Sum in nuclei, a precision measurement of inclusivemore » electron scattering in the quasi-elastic region was performed at the Thomas Jefferson National Accelerator Facility. Incident electrons with energies ranging from 0.4 GeV to 4 GeV scattered off 4He,12C,56Fe and 208Pb nuclei at four scattering angles (15 deg.; 60 deg.; 90 deg.; 120 deg.) and scattered energies ranging from 0.1 GeV to 4 GeV. The Born cross sections were extracted for the Left High Resolution Spectrometer (LHRS) and the Right High Resolution Spectrometer 56Fe data. The Rosenbluth separation was performed to extract the transverse and longitudinal response functions at 650 MeV three-momentum transfer. The preliminary results of the longitudinal and transverse functions were extracted for 56Fe target at 650 MeV three-momentum transfer.« less
Retrieved Products from Simulated Hyperspectral Observations of a Hurricane
NASA Technical Reports Server (NTRS)
Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John
2015-01-01
Demonstrate via Observing System Simulation Experiments (OSSEs) the potential utility of flying high spatial resolution AIRS class IR sounders on future LEO and GEO missions.The study simulates and analyzes radiances for 3 sounders with AIRS spectral and radiometric properties on different orbits with different spatial resolutions: 1) Control run 13 kilometers AIRS spatial resolution at nadir on LEO in Aqua orbit; 2) 2 kilometer spatial resolution LEO sounder at nadir ARIES; 3) 5 kilometers spatial resolution sounder on a GEO orbit, radiances simulated every 72 minutes.
NASA Technical Reports Server (NTRS)
Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert
1991-01-01
A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.
Development of a Climate-Data Record (CDR) of the Surface Temperature of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Hall, Dorthy K.; Comiso, Josefino C.; Shuman, Christopher A.; DiGirolamo, Nicolo E.; Stock, Larry V.
2010-01-01
Regional "clear sky" surface temperature increases since the early 1980s in the Arctic, measured using Advanced Very High Resolution Radiometer (AVHRR) infrared data, range from 0.57+/-0.02 deg C to 72+/-0.10 deg C per decade. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. An increase in melting of the ice sheet would accelerate sea-level rise, an issue affecting potentially billions of people worldwide. To quantify the ice-surface temperature (IST) of the Greenland Ice Sheet, and to provide an IST dataset of Greenland for modelers that provides uncertainties, we are developing a climate-data record (CDR) of daily "clear-sky" IST of the Greenland Ice Sheet, from 1982 to the present using AVHRR (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. Known issues being addressed in the production of the CDR are: time-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds, time-series of satellite IST do not necessarily correspond with actual surface temperatures. The CDR will be validated by comparing results with automatic-weather station data and with satellite-derived surface-temperature products and biases will be calculated.
Propagation of low energy solar electrons
NASA Technical Reports Server (NTRS)
Anderson, K. A.; Mcfadden, J. P.; Lin, R. P.
1981-01-01
Two events are reported in which 2-10 keV electrons of solar energy have undergone significant adiabatic mirroring and pitch angle scattering in large scale magnetic structures in the interplanetary medium within a distance of about 0.5 AU from the earth. Electrons of 3 keV, typical of the energies measured, have a speed of about one-tenth of the speed of light, so that their travel time from the sun at 0 deg pitch angle would be about 100 minutes. Their cyclotron radius is about 20 km for a pitch angle of 30 deg, and a field of magnitude of 5 nT, and the cyclotron period is about 7.1 milliseconds. The electrons are scattered by spatial variations in the interplanetary magnetic field. When the spatial variations are convected past a stationary spacecraft by a 500 km/sec solar wind, they are seen as temporal fluctuations at a frequency of about 3 Hz.
Concentric crater fill on Mars - An aeolian alternative to ice-rich mass wasting
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.; Clifford, S. M.; Williams, S. H.
1989-01-01
Concentric crater fill, a distinctive martian landform represented by a concentric pattern of surface undulations confined within a crater rim, has been interpreted as an example of ice-enhanced regolith creep at midlatitudes (e.g., Squyres and Carr, 1986). Theoretical constraints on the stability and mobility of ground ice limit the applicability of an ice-rich soil in effectively mobilizing downslope movement at latitudes poleward of + or - 30 deg, where concentric crater fill is observed. High-resolution images of concentric crater fill material in the Utopia Planitia region (45 deg N, 271 deg W) show it to be an eroded, multiple-layer deposit. Layering should not be preserved if the crater fill material moved by slow deformation throughout its thickness, as envisioned in the ice-enhanced creep model. Multiple layers are also exposed in the plains material surrounding the craters, indicating a recurrent depositional process that was at least regional in extent. Mantling layers are observed in high-resolution images of many other locations around Mars, suggesting that deposition occurred on a global scale and was not limited to the Utopia Planitia region. It is suggested that an aeolian interpretation for the origin and modification of concentric crater fill material is most consistent with morphologic and theoretical constraints.
Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K
NASA Technical Reports Server (NTRS)
Mule, Peter; Hill, Michael D.; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
NASA Technical Reports Server (NTRS)
Mule, Peter; Hill, Michael D.; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
Optical design of ultrashort throw liquid crystal on silicon projection system
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2017-05-01
An ultrashort throw liquid crystal on silicon (LCoS) projector for home cinema, virtual reality, and automobile heads-up display has been designed and fabricated. To achieve the best performance and highest-quality image, this study aimed to design wide-angle projection optics and optimize the illumination for LCoS. Based on the telecentric lens projection system and optimized Koehler illumination, the optical parameters were calculated. The projector's optical system consisted of a conic aspheric mirror and image optics using either symmetric double Gauss or a large-angle eyepiece to achieve a full projection angle larger than 155 deg. By applying Koehler illumination, image resolution was enhanced and the modulation transfer function of the image in high spatial frequency was increased to form a high-quality illuminated image. The partial coherence analysis verified that the design was capable of 2.5 lps/mm within a 2 m×1.5 m projected image. The throw ratio was less than 0.25 in HD format.
NASA Technical Reports Server (NTRS)
Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.
2011-01-01
A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.
Analysis of CrIS/ATMS using AIRS Version-7 Retrieval and QC Methodology
NASA Astrophysics Data System (ADS)
Susskind, J.; Kouvaris, L. C.; Blaisdell, J. M.; Iredell, L. F.
2017-12-01
The objective of the proposed research is to develop, implement, test, and refine a CrIS/ATMS retrieval algorithm which will produce monthly mean data products that are compatible with those of the soon to be operational AIRS V7 retrieval algorithm. This is a necessary condition for CrIS/ATMS on NPP and future missions to serve as adequate follow-ons to AIRS for the monitoring of climate variability and trends. Of particular importance toward this end is achieving agreement of monthly mean fields of CrIS and AIRS geophysical parameters on a 1 deg by 1 deg spatial scale, and, more significantly, agreement of their interannual differences. Indications are that the best way to achieve this is to use scientific retrieval and Quality Control (QC) methodology for CrIS/ATMS which is analogous to that which will be used in AIRS V7. We refer to the current scientific candidate for AIRS V7 as AIRS Sounder Research Team (SRT) V6.42, which currently runs at JPL on the AIRS Team Leader Scientific Facility (TLSCF). We ported CrIS SRT V6.42 Level 2 (L2) retrieval code and QC methodology to run at the Sounder SIPS at JPL. The months of January and July 2015 were both processed at JPL using AIRS and CrIS at the TLSCF and SIPS respectively. This paper shows excellent agreement of AIRS and CrIS single day and monthly mean products on a 1 deg lat by 1 deg long spatial grid with each other and with the other satellites measures of the same products.
Detector motion method to increase spatial resolution in photon-counting detectors
NASA Astrophysics Data System (ADS)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong
2017-03-01
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites
1990-12-01
THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION IN MONITORING U.S. ARMY...Multispectral Scanner with 6.5 meter spatial resolution provided the most effective digital data set for enhancing tank trails. However, this Airborne Scanner...primary objective of this research was to determine the capabilities and limitations of remote sensor systems having different spatial resolutions to
Age effects on visual-perceptual processing and confrontation naming.
Gutherie, Audrey H; Seely, Peter W; Beacham, Lauren A; Schuchard, Ronald A; De l'Aune, William A; Moore, Anna Bacon
2010-03-01
The impact of age-related changes in visual-perceptual processing on naming ability has not been reported. The present study investigated the effects of 6 levels of spatial frequency and 6 levels of contrast on accuracy and latency to name objects in 14 young and 13 older neurologically normal adults with intact lexical-semantic functioning. Spatial frequency and contrast manipulations were made independently. Consistent with the hypotheses, variations in these two visual parameters impact naming ability in young and older subjects differently. The results from the spatial frequency-manipulations revealed that, in general, young vs. older subjects are faster and more accurate to name. However, this age-related difference is dependent on the spatial frequency on the image; differences were only seen for images presented at low (e.g., 0.25-1 c/deg) or high (e.g., 8-16 c/deg) spatial frequencies. Contrary to predictions, the results from the contrast manipulations revealed that overall older vs. young adults are more accurate to name. Again, however, differences were only seen for images presented at the lower levels of contrast (i.e., 1.25%). Both age groups had shorter latencies on the second exposure of the contrast-manipulated images, but this possible advantage of exposure was not seen for spatial frequency. Category analyses conducted on the data from this study indicate that older vs. young adults exhibit a stronger nonliving-object advantage for naming spatial frequency-manipulated images. Moreover, the findings suggest that bottom-up visual-perceptual variables integrate with top-down category information in different ways. Potential implications on the aging and naming (and recognition) literature are discussed.
The effects of transient attention on spatial resolution and the size of the attentional cue.
Yeshurun, Yaffa; Carrasco, Marisa
2008-01-01
It has been shown that transient attention enhances spatial resolution, but is the effect of transient attention on spatial resolution modulated by the size of the attentional cue? Would a gradual increase in the size of the cue lead to a gradual decrement in spatial resolution? To test these hypotheses, we used a texture segmentation task in which performance depends on spatial resolution, and systematically manipulated the size of the attentional cue: A bar of different lengths (Experiment 1) or a frame of different sizes (Experiments 2-3) indicated the target region in a texture segmentation display. Observers indicated whether a target patch region (oriented line elements in a background of an orthogonal orientation), appearing at a range of eccentricities, was present in the first or the second interval. We replicated the attentional enhancement of spatial resolution found with small cues; attention improved performance at peripheral locations but impaired performance at central locations. However, there was no evidence of gradual resolution decrement with large cues. Transient attention enhanced spatial resolution at the attended location when it was attracted to that location by a small cue but did not affect resolution when it was attracted by a large cue. These results indicate that transient attention cannot adapt its operation on spatial resolution on the basis of the size of the attentional cue.
Selecting a spatial resolution for estimation of per-field green leaf area index
NASA Technical Reports Server (NTRS)
Curran, Paul J.; Williamson, H. Dawn
1988-01-01
For any application of multispectral scanner (MSS) data, a user is faced with a number of choices concerning the characteristics of the data; one of these is their spatial resolution. A pilot study was undertaken to determine the spatial resolution that would be optimal for the per-field estimation of green leaf area index (GLAI) in grassland. By reference to empirically-derived data from three areas of grassland, the suitable spatial resolution was hypothesized to lie in the lower portion of a 2-18 m range. To estimate per-field GLAI, airborne MSS data were collected at spatial resolutions of 2 m, 5 m and 10 m. The highest accuracies of per-field GLAI estimation were achieved using MSS data with spatial resolutions of 2 m and 5 m.
NASA Technical Reports Server (NTRS)
Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.
1976-01-01
The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.
Aurally aided visual search performance in a dynamic environment
NASA Astrophysics Data System (ADS)
McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.
2008-04-01
Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.
Cideciyan, Artur V; Roman, Alejandro J; Jacobson, Samuel G; Yan, Boyuan; Pascolini, Michele; Charng, Jason; Pajaro, Simone; Nirenberg, Sheila
2016-06-01
To present stimuli with varied sizes, colors, and patterns over a large range of luminance. The filter bar used in scotopic MP1 was replaced with a custom slide-in tray that introduces light from an external projector driven by an additional computer. MP1 software was modified to provide retinal tracking information to the computer driving the projector. Retinal tracking performance was evaluated by imaging the system input and the output simultaneously with a high-speed video system. Spatial resolution was measured with achromatic and chromatic grating/background combinations over scotopic and photopic ranges. The range of retinal illuminance achievable by the modification was up to 6.8 log photopic Trolands (phot-Td); however, in the current work, only a lower range over -4 to +3 log phot-Td was tested in human subjects. Optical magnification was optimized for low-vision testing with gratings from 4.5 to 0.2 cyc/deg. In normal subjects, spatial resolution driven by rods, short wavelength-sensitive (S-) cones, and long/middle wavelength-sensitive (L/M-) cones was obtained by the choice of adapting conditions and wavelengths of grating and background. Data from a patient with blue cone monochromacy was used to confirm mediation. The modified MP1 can be developed into an outcome measure for treatments in patients with severe retinal degeneration, very low vision, and abnormal eye movements such as those for whom treatment with optogenetics is planned, as well as for patients with cone disorders such as blue cone monochromacy for whom treatment with gene therapy is planned to improve L/M-cone function above a normal complement of rod and S-cone function.
Cideciyan, Artur V.; Roman, Alejandro J.; Jacobson, Samuel G.; Yan, Boyuan; Pascolini, Michele; Charng, Jason; Pajaro, Simone; Nirenberg, Sheila
2016-01-01
Purpose To present stimuli with varied sizes, colors, and patterns over a large range of luminance. Methods The filter bar used in scotopic MP1 was replaced with a custom slide-in tray that introduces light from an external projector driven by an additional computer. MP1 software was modified to provide retinal tracking information to the computer driving the projector. Retinal tracking performance was evaluated by imaging the system input and the output simultaneously with a high-speed video system. Spatial resolution was measured with achromatic and chromatic grating/background combinations over scotopic and photopic ranges. Results The range of retinal illuminance achievable by the modification was up to 6.8 log photopic Trolands (phot-Td); however, in the current work, only a lower range over −4 to +3 log phot-Td was tested in human subjects. Optical magnification was optimized for low-vision testing with gratings from 4.5 to 0.2 cyc/deg. In normal subjects, spatial resolution driven by rods, short wavelength-sensitive (S-) cones, and long/middle wavelength-sensitive (L/M-) cones was obtained by the choice of adapting conditions and wavelengths of grating and background. Data from a patient with blue cone monochromacy was used to confirm mediation. Conclusions The modified MP1 can be developed into an outcome measure for treatments in patients with severe retinal degeneration, very low vision, and abnormal eye movements such as those for whom treatment with optogenetics is planned, as well as for patients with cone disorders such as blue cone monochromacy for whom treatment with gene therapy is planned to improve L/M-cone function above a normal complement of rod and S-cone function. PMID:27309625
2007-03-01
time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT
Dorji, Passang; Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.
Fearns, Peter
2017-01-01
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
NASA Technical Reports Server (NTRS)
Abrams, M.
1982-01-01
Studies of the effects of spatial resolution on extraction of geologic information are woefully lacking but spatial resolution effects can be examined as they influence two general categories: detection of spatial features per se; and the effects of IFOV on the definition of spectral signatures and on general mapping abilities.
Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation
NASA Astrophysics Data System (ADS)
Song, Huihui
Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat-MODIS image pairs, we build the corresponding relationship between the difference images of MODIS and ETM+ by training a low- and high-resolution dictionary pair from the given prior image pairs. In the second scenario, i.e., only one Landsat- MODIS image pair being available, we directly correlate MODIS and ETM+ data through an image degradation model. Then, the fusion stage is achieved by super-resolving the MODIS image combining the high-pass modulation in a two-layer fusion framework. Remarkably, the proposed spatial-temporal fusion methods form a unified framework for blending remote sensing images with phenology change or land-cover-type change. Based on the proposed spatial-temporal fusion models, we propose to monitor the land use/land cover changes in Shenzhen, China. As a fast-growing city, Shenzhen faces the problem of detecting the rapid changes for both rational city planning and sustainable development. However, the cloudy and rainy weather in region Shenzhen located makes the capturing circle of high-quality satellite images longer than their normal revisit periods. Spatial-temporal fusion methods are capable to tackle this problem by improving the spatial resolution of images with coarse spatial resolution but frequent temporal coverage, thereby making the detection of rapid changes possible. On two Landsat-MODIS datasets with annual and monthly changes, respectively, we apply the proposed spatial-temporal fusion methods to the task of multiple change detection. Afterward, we propose a novel spatial and spectral fusion method for satellite multispectral and hyperspectral (or high-spectral) images based on dictionary-pair learning and sparse non-negative matrix factorization. By combining the spectral information from hyperspectral image, which is characterized by low spatial resolution but high spectral resolution and abbreviated as LSHS, and the spatial information from multispectral image, which is featured by high spatial resolution but low spectral resolution and abbreviated as HSLS, this method aims to generate the fused data with both high spatial and high spectral resolutions. Motivated by the observation that each hyperspectral pixel can be represented by a linear combination of a few endmembers, this method first extracts the spectral bases of LSHS and HSLS images by making full use of the rich spectral information in LSHS data. The spectral bases of these two categories data then formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data and HSLS data, respectively. Subsequently, the LSHS image is spatially unmixed by representing the HSLS image with respect to the corresponding learned dictionary to derive its representation coefficients. Combining the spectral bases of LSHS data and the representation coefficients of HSLS data, we finally derive the fused data characterized by the spectral resolution of LSHS data and the spatial resolution of HSLS data.
Analysis of Fault Lengths Across Valles Marineris, Mars
NASA Astrophysics Data System (ADS)
Fori, A. N.; Schultz, R. A.
1996-03-01
Summary. As part of a larger project to determine the history of stress and strain across Valles Marineris, Mars, graben lengths located within the Valley are measured using a two-dimensional window-sampling method to investigate depth of faulting and accuracy of measurement. The resulting degree of uncertainty in measuring lengths (+19 km - 80% accuracy) is independent of the resolution at which the faults are measured, so data sets and resultant statistical analysis from different scales or map areas can be compared. The cumulative length frequency plots show that the geometry of Valley faults display no evidence of a frictional stability transition at depth in the lithosphere if mechanical interaction between individual faults (an unphysical situation) is not considered. If strongly interacting faults are linked and the composite lengths used to re-create the cumulative lengths plots, a significant change in slope is apparent suggesting the existence of a transition at about 35-65 km below the surface (assuming faults are dipping from 50deg to 70deg This suggests the thermal gradient to the associated 300-400degC isotherm is 53C/km to 12degC/km.
23 Years of Cloud Statistics Using HIRS Over Australia
NASA Astrophysics Data System (ADS)
Chedzey, H. C.; Menzel, W. P.; Lynch, M. J.; McGann, B. T.
2004-05-01
Clouds are an integral factor in the Earth's water and radiation budgets. Observations and improvements to the accuracy of measurements of cloud properties are crucial in supporting global climate change studies. Regional studies are also of interest and analysis of regional climate variability provides an insight into local weather systems. HIRS is the High-Resolution Infrared Radiation Sounder aboard polar orbiting satellites operated by NOAA (National Oceanographic and Atmospheric Administration). An archive of HIRS data obtained between 1979 (NOAA-5) through to 2001 (NOAA-16) was made available by CIMSS (Cooperative Institute for Meteorological Satellite Studies) at the University of Wisconsin-Madison. The data is obtained from near nadir and frequencies of observations are converted into percentages based on total number of observations for each 1 by 1 degree cell. An assessment of cloud frequency percentages for a region including areas of the Indian Ocean and Australia (0\\deg - 60\\deg S; 80\\deg E - 170\\deg E) will be presented. Climate variability and possible associations with future work to be conducted into cloud frequency and rainfall of North West Cloud Bands using MODIS data will also be covered.
Spatial distribution of polarization over the disks of Venus, Jupiter, Saturn, and the moon
NASA Technical Reports Server (NTRS)
Fountain, J. W.
1974-01-01
The method of photographic subtraction, which superposes positive and negative photographs taken with the analyzer rotated through 90 deg, is used to analyze polarization photographs of Venus, Jupiter, Saturn, and the moon. For Venus, near 90 deg phase angle, variation in polarization in ultraviolet light appears to correspond generally with the position of the cloud markings. The northern hemisphere of Saturn shows higher polarization in blue light than does the rest of the planet. The polarization of the moon is shown to deviate significantly from Umov's law for reciprocity of polarization and reflectivity in certain regions.
Hover Acoustic Characteristics of the XV-15 with Advanced Technology Blades
NASA Technical Reports Server (NTRS)
Conner, David A.; Wellman, J. Brent
1993-01-01
An experiment has been performed to investigate the far-field hover acoustic characteristics of the XV-15 aircraft with advanced technology blades (ATB). An extensive, high-quality, far-field acoustics data base was obtained for a rotor tip speed range of 645-771 ft/s. A 12-microphone, 500-ft radius semicircular array combined with two aircraft headings provided acoustic data over the full 360-deg azimuth about the aircraft with a resolution of 15 deg. Altitude variations provided data from near in-plane to 45 deg below the rotor tip path plane. Acoustic directivity characteristics in the lower hemisphere are explored through pressure time histories, narrow-band spectra, and contour plots. Directivity patterns were found to vary greatly with azimuth angle, especially in the forward quadrants. Sharp positive pressure pulses typical of blade-vortex interactions were found to propagate aft of the aircraft and were most intense at 45 deg below the rotor plane. Modest overall sound pressure levels were measured near in-plane indicating that thickness noise is not a major problem for this aircraft when operating in the hover mode with ATB. Rotor tip speed reductions reduced the average overall sound pressure level (dB (0.0002 dyne/cm(exp 2)) by nearly 8 dB in-plane, and 12.6 deg below the rotor plane.
Results of the spatial resolution simulation for multispectral data (resolution brochures)
NASA Technical Reports Server (NTRS)
1982-01-01
The variable information content of Earth Resource products at different levels of spatial resolution and in different spectral bands is addressed. A low-cost brochure that scientists and laymen could use to visualize the effects of increasing the spatial resolution of multispectral scanner images was produced.
NASA Technical Reports Server (NTRS)
2002-01-01
The junctions of the Amazon and the Rio Negro Rivers at Manaus, Brazil. The Rio Negro flows 2300 km from Columbia, and is the dark current forming the north side of the river. It gets its color from the high tannin content in the water. The Amazon is sediment laden, appearing brown in this simulated natural color image. Manaus is the capital of Amazonas state, and has a population in excess of one million. The ASTER image covers an area of 60 x 45 km. This image was acquired on July 16, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 60 x 45 km (37 x 27 miles) Location: 3.1 deg. South lat., 60.0 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: July 16, 2000NASA Technical Reports Server (NTRS)
2002-01-01
In this ASTER image the features that look like folded material are carbonate sand dunes in the shallow waters of Tarpum Bay, southwest of Eleuthera Island in the Bahamas. The sand making up the dunes comes from the erosion of limestone coral reefs, and has been shaped into dunes by ocean currents.
This image was acquired on May 12, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 30.7 x 46.1 km (19.0 x 28.2 miles) Location: 25.1 deg. North lat., 76.4 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: May 12, 2002Image sharpening for mixed spatial and spectral resolution satellite systems
NASA Technical Reports Server (NTRS)
Hallada, W. A.; Cox, S.
1983-01-01
Two methods of image sharpening (reconstruction) are compared. The first, a spatial filtering technique, extrapolates edge information from a high spatial resolution panchromatic band at 10 meters and adds it to the low spatial resolution narrow spectral bands. The second method, a color normalizing technique, is based on the ability to separate image hue and brightness components in spectral data. Using both techniques, multispectral images are sharpened from 30, 50, 70, and 90 meter resolutions. Error rates are calculated for the two methods and all sharpened resolutions. The results indicate that the color normalizing method is superior to the spatial filtering technique.
Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation
Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong
2017-01-01
Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175
Airborne lidar measurements of El Chichon stratospheric aerosols, October 1982 to November 1982
NASA Technical Reports Server (NTRS)
Mccormick, M. P.; Osborn, M. T.
1985-01-01
A coordinated flight mission to determine the spatial distribution and aerosol characteristics of the El Chichon produced stratospheric aerosol was flown in October to November 1982. The mission covered 46 deg N to 46 deg S and included rendezvous between balloon-, airplane-, and satellite-borne sensors. The lidar data from the flight mission are presented. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering functions versus altitude are supplied for each profile. The bulk of the material produced by the El Chichon eruptions of late March 10 to early April 1982 resided between latitudes from 5 to 7 deg S to 35 to 37 deg N and was concentrated above 21 km in a layer that peaked at 23 to 25 km. In this latitude region, peak scattering ratios at a wavelength of 0.6943 micron were approximately 24. The results of this mission are presented in a ready-to-use format for atmospheric and climatic studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.
Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes themore » spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.« less
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A.; Zaidi, Qasim; Alonso, Jose-Manuel
2015-01-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. PMID:25416722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Lechuga, M.; Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid; Fuentes, L. M.
2014-10-07
We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed tomore » resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.« less
HST STIS Spectroscopy of the Bubble Nebula, NGC 7635
NASA Astrophysics Data System (ADS)
Buckalew, B.; Dufour, R.; Ghavamian, P.; Hartigan, P.; Walter, D.; Hester, J.; Scowen, P.
1999-05-01
We report the results of longslit spectroscopy of the wind-blown bubble and photoevaporating knots around the O6.5iiif star BD+ 60(deg) 2522 made with the Space Telescope Imaging Spectrograph. The Of star is the primary ionizing source for the H ii region NGC 7635, located in the Perseus Arm. The spectra were taken through a 0.2'' x 52'' slit with low and medium resolution gratings covering the wavelength range 2900-6870 Angstroms. Observations with two slit orientations were made; one across the line of embedded knots to the west of the Of star and the second running from the Of star across the bubble to the NE. The 2D STIS spectra permit us to subtract the surrounding H ii region's diffuse emission from that of the knots and the bubble, and to study the spatial variations in various emission lines in these features to a resolution of ~ 0.1'', an order of magnitude improvement over the best ground-based spectra of this object in the literature. We present high spatial resolution emission line and line ratio profiles across the bubble and knots, and compare them with the predicted variations from photoionization, photoevaporation, and wind-shock models. We also present an analysis of temperatures, densities, and abundances in the features from higher S/N spectra extracted over selected lengths of the slit. From our analysis, we find that our measured abundances for nitrogen and oxygen are what we would expect for an H ii region at this galactocentric distance. However, the rim helium and carbon abundances show an enhancement which may be caused by contamination from the stellar wind. From our spatial scan studies of the knots and rim, we conclude that the knots are composed of photoevaporating knots surrounded by an ionization front, confirming the results of the imagery which indicate that the knots are like the EGGs of M16 seen face on. The rim appears to be the edge of a slightly supersonic shell of ionized gas that is being snowplowed through the surrounding H ii region by the star's supersonic wind. Acknowledgements. This research was supported in part by AURA/STScI grant GO-7515 and NASA-Ames grant NGT 2-52252.
NASA Technical Reports Server (NTRS)
Bennett, C. L.; Kogut, A.; Hinshaw, G.; Banday, A. J.; Wright, E. L.; Gorski, K. M.; Wilkinson, D. T.; Weiss, R.; Smoot, G. F.; Meyer, S. S.
1994-01-01
The first two years of Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (delta-T)(sub rms) (7 deg) = 44 +/- 7 micro-K and (delta-T)(sub rms) (10 deg) = 30.5 +/- 2.7 micro-K at 7 deg and 10 deg angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)(sup 1/2) = 36 +/- 5 micro-K (68% CL) for the unsmoothed (7 deg resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to R(exp n). The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.01, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31+/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 14.3(sup + 5.2 sub -3.3) micro-K (12.8(sup + 5.2 sub -3.3) micro-K0 with a spectral index n = 1.42(sup + 0.49 sub -0.55)(n = 1.53(sup + 0.49 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.2 +/- 11.5 micro-K (17.4 +/- 1.5 micro-K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 17.4(sup + 7.5 sub -5.2) micro-K (15.8(sup + 7.5 sub -5.2) micro-K) with a spectral index n = 1.11(sup + 0.60 sub -0.55) (n = 1.22(sup + 0.60 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.6 +/- 1.6 micro-K (18.2 +/- 1.6 micro-K). The marginal likelihood of n is 1.11 +/- 0.40 (1.22 +/- 0.40). Our best estimate of the dipole from the 2 yr DMR data is 3.363 +/- 0.024 mK toward Galactic coordinates (l, b) = (264.4 deg +/- 0.2 deg, 48.1 deg +/- 0.4 deg), and our best estimate of the rms quadrupole amplitude in our sky is 6 +/- 3 micro-K (68% CL).
Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi
2015-01-01
Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy system were applied in the imaging experiment respectively. The relative THz-power loss imaging of samples were use in this article. This method generally delivers the best signal to noise ratio in loss images, dispersion effects are cancelled. Terahertz imaging results show that the sample's boundary was more distinct after inserting the pinhole in front of, sample. The results also conform that inserting pinhole in front of sample can improve the imaging spatial resolution effectively. The theoretical analyses of the method which improve the spatial resolution by inserting a pinhole in front of sample were given in this article. The analyses also indicate that the smaller the pinhole size, the longer spatial coherence length of the system, the better spatial resolution of the system. At the same time the terahertz signal will be reduced accordingly. All the experimental results and theoretical analyses indicate that the method of inserting a pinhole in front of sample can improve the spatial resolution of traditional terahertz time domain spectroscopy system effectively, and it will further expand the application of terahertz imaging technology.
Stokes parameters modulator for birefringent filters
NASA Technical Reports Server (NTRS)
Dollfus, A.
1985-01-01
The Solar Birefringent Filter (Filter Polarisiant Solaire Selectif FPSS) of Meudon Observatory is presently located at the focus of a solar refractor with a 28 cm lens directly pointed at the Sun. It produces a diffraction limited image without instrumental polarization and with a spectral resolution of 46,000 in a field of 6 arc min. diameter. The instrument is calibrated for absolute Doppler velocity measurements and is presently used for quantitative imagery of the radial velocity motions in the photosphere. The short period oscillations are recorded. Work of adapting the instrument for the imagery of the solar surface in the Stokes parameters is discussed. The first polarizer of the birefringent filter, with a reference position angle 0 deg, is associated with a fixed quarter wave plate at +45 deg. A rotating quarter wave plate is set at 0 deg and can be turned by incremented steps of exactly +45 deg. Another quarter wave plate also initially set at 0 deg is simultaneously incremented by -45 deg but only on each even step of the first plate. A complete cycle of increments produces images for each of the 6 parameters I + or - Q, I + or - U and I + or - V. These images are then subtracted by pairs to produce a full image in the three Stokes parameters Q, U and V. With proper retardation tolerance and positioning accuracy of the quarter wave plates, the cross talk between the Stokes parameters was calculated and checked to be minimal.
Directional measurement of short ocean waves with stereophotography
NASA Technical Reports Server (NTRS)
Shemdin, Omar H.; Tran, H. Minh; Wu, S. C.
1988-01-01
Stereophotographs of the sea surface, acquired during the Tower Ocean Wave and Radar Dependence experiment are analyzed to yield directional wave height spectra of short surface waves in the 6-80-cm range. The omnidirectional wave height spectra are found to deviate from the k exp -4 distribution, where k is the wave number. The stereo data processing errors are found to be within + or - 5 percent. The omnidirectional spectra yield 514 deg of freedom for 30-cm-long waves. The directional distribution of short waves is processed with a directional resolution of 30 deg, so as to yield 72 deg of freedom for 30-cm-long waves. The directional distributions show peaks that are aligned with the wind and swell directions. It is found that dynamically relevant measurements can be obtained with stereophotography, after removal of the mean surface associated with long waves.
Moonshine Versus Earthshine: Physics Makes a Difference
NASA Technical Reports Server (NTRS)
Wilson, T. L.
2005-01-01
Introduction: Recently released, high-resolution images from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) reveal a myriad of intriguing landforms banked along the northern edge of Terby Crater located on the northern rim of Hellas (approx.28degS, 287degW). Landforms within this crater include north-trending troughs and ridges, a remarkable 2.5 km-thick sequence of exposed layers, mantled ramps that extend across and between layered sequences, fan-like structures, sinuous channels, collapse pits, a massive landslide and viscous flow features. The suite of diverse landforms in Terby and its immediate surroundings attest to a diversity of rock types and geologic processes, making this locality ideal for studying landform-climate relationships on Mars. In order to decipher the complicated geologic history of Terby Crater and the nature of the layered deposits, a generalized geomorphic map was created and the slope of the layered deposits was examined.
The evaluation of partial binocular overlap on car maneuverability: A pilot study
NASA Technical Reports Server (NTRS)
Tsou, Brian H.; Rogers-Adams, Beth M.; Goodyear, Charles D.
1992-01-01
An engineering approach to enlarge the helmet mounted display (HMD) field of view (FOV) and maintain resolution and weight by partially overlapping the binocular FOV has received renewed interest among human factors scientists. It is evident, based on the brief literature review, that any panoramic display with a binocular overlap, less than a minimum amount, annoys the viewer, degrades performance, and elicits undesirable behavior. The major finding is that across the 60 deg conditions, subjects moved their heads a greater distance (by about 5 degs on each side) than in the 180 deg condition, presumably to compensate for the lack of FOV. It is quite clear that the study, based on simple car maneuverability and two subjects, reveals differences in FOV, but nothing significant between binocular overlap levels and configurations. This tentatively indicates that some tradeoffs of binocular vision for a larger overall display FOV are acceptable.
NASA Technical Reports Server (NTRS)
Sadowski, F. E.; Sarno, J. E.
1976-01-01
First, an analysis of forest feature signatures was used to help explain the large variation in classification accuracy that can occur among individual forest features for any one case of spatial resolution and the inconsistent changes in classification accuracy that were demonstrated among features as spatial resolution was degraded. Second, the classification rejection threshold was varied in an effort to reduce the large proportion of unclassified resolution elements that previously appeared in the processing of coarse resolution data when a constant rejection threshold was used for all cases of spatial resolution. For the signature analysis, two-channel ellipse plots showing the feature signature distributions for several cases of spatial resolution indicated that the capability of signatures to correctly identify their respective features is dependent on the amount of statistical overlap among signatures. Reductions in signature variance that occur in data of degraded spatial resolution may not necessarily decrease the amount of statistical overlap among signatures having large variance and small mean separations. Features classified by such signatures may thus continue to have similar amounts of misclassified elements in coarser resolution data, and thus, not necessarily improve in classification accuracy.
Piqueras, Sara; Bedia, Carmen; Beleites, Claudia; Krafft, Christoph; Popp, Jürgen; Maeder, Marcel; Tauler, Romà; de Juan, Anna
2018-06-05
Data fusion of different imaging techniques allows a comprehensive description of chemical and biological systems. Yet, joining images acquired with different spectroscopic platforms is complex because of the different sample orientation and image spatial resolution. Whereas matching sample orientation is often solved by performing suitable affine transformations of rotation, translation, and scaling among images, the main difficulty in image fusion is preserving the spatial detail of the highest spatial resolution image during multitechnique image analysis. In this work, a special variant of the unmixing algorithm Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) for incomplete multisets is proposed to provide a solution for this kind of problem. This algorithm allows analyzing simultaneously images collected with different spectroscopic platforms without losing spatial resolution and ensuring spatial coherence among the images treated. The incomplete multiset structure concatenates images of the two platforms at the lowest spatial resolution with the image acquired with the highest spatial resolution. As a result, the constituents of the sample analyzed are defined by a single set of distribution maps, common to all platforms used and with the highest spatial resolution, and their related extended spectral signatures, covering the signals provided by each of the fused techniques. We demonstrate the potential of the new variant of MCR-ALS for multitechnique analysis on three case studies: (i) a model example of MIR and Raman images of pharmaceutical mixture, (ii) FT-IR and Raman images of palatine tonsil tissue, and (iii) mass spectrometry and Raman images of bean tissue.
Variability in daily, zonal mean lower-stratospheric temperatures
NASA Technical Reports Server (NTRS)
Christy, John R.; Drouilhet, S. James, Jr.
1994-01-01
Satellite data from the microwave sounding unit (MSU) channel 4, when carefully merged, provide daily zonal anomalies of lower-stratosphere temperature with a level of precision between 0.01 and 0.08 C per 2.5 deg latitude band. Global averages of these daily zonal anomalies reveal the prominent warming events due to volcanic aerosol in 1982 (El Chichon) and 1991 (Mt. Pinatubo), which are on the order of 1 C. The quasibiennial oscillation (QBO) may be extracted from these zonal data by applying a spatial filter between 15 deg N and 15 deg S latitude, which resembles the meridional curvature. Previously published relationships between the QBO and the north polar stratospheric temperatures during northern winter are examined but were not found to be reproduced in the MSU4 data. Sudden stratospheric warmings in the north polar region are represented in the MSU4 data for latitudes poleward of 70 deg N. In the Southern Hemisphere, there appears to be a moderate relationship between total ozone concentration and MSU4 temperatures, though it has been less apparent in 1991 and 1992. In terms of empirical modes of variability, the authors find a strong tendency in EOF 1 (39.2% of the variance) for anomalies in the Northern Hemisphere polar regions to be counterbalanced by anomalies equatorward of 40 deg N and 40 deg S latitudes. In addition, most of the modes revealed significant power in the 15-20 day period band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yuxing; Fan, Jiwen; Xiao, Heng
Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less
Parafoveal Target Detectability Reversal Predicted by Local Luminance and Contrast Gain Control
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Beard, Bettina L.; Null, Cynthia H. (Technical Monitor)
1996-01-01
This project is part of a program to develop image discrimination models for the prediction of the detectability of objects in a range of backgrounds. We wanted to see if the models could predict parafoveal object detection as well as they predict detection in foveal vision. We also wanted to make our simplified models more general by local computation of luminance and contrast gain control. A signal image (0.78 x 0.17 deg) was made by subtracting a simulated airport runway scene background image (2.7 deg square) from the same scene containing an obstructing aircraft. Signal visibility contrast thresholds were measured in a fully crossed factorial design with three factors: eccentricity (0 deg or 4 deg), background (uniform or runway scene background), and fixed-pattern white noise contrast (0%, 5%, or 10%). Three experienced observers responded to three repetitions of 60 2IFC trials in each condition and thresholds were estimated by maximum likelihood probit analysis. In the fovea the average detection contrast threshold was 4 dB lower for the runway background than for the uniform background, but in the parafovea, the average threshold was 6 dB higher for the runway background than for the uniform background. This interaction was similar across the different noise levels and for all three observers. A likely reason for the runway background giving a lower threshold in the fovea is the low luminance near the signal in that scene. In our model, the local luminance computation is controlled by a spatial spread parameter. When this parameter and a corresponding parameter for the spatial spread of contrast gain were increased for the parafoveal predictions, the model predicts the interaction of background with eccentricity.
NASA Astrophysics Data System (ADS)
Wiggins, B. B.; deSouza, Z. O.; Vadas, J.; Alexander, A.; Hudan, S.; deSouza, R. T.
2017-11-01
A second generation position-sensitive microchannel plate detector using the induced signal approach has been realized. This detector is presently capable of measuring the incident position of electrons, photons, or ions. To assess the spatial resolution, the masked detector was illuminated by electrons. The initial, measured spatial resolution of 276 μm FWHM was improved by requiring a minimum signal amplitude on the anode and by employing digital signal processing techniques. The resulting measured spatial resolution of 119 μm FWHM corresponds to an intrinsic resolution of 98 μm FWHM when the effect of the finite slit width is de-convoluted. This measurement is a substantial improvement from the last reported spatial resolution of 466 μm FWHM using the induced signal approach. To understand the factors that limit the measured resolution, the performance of the detector is simulated.
Kabara, J F; Bonds, A B
2001-12-01
Responses of cat striate cortical cells to a drifting sinusoidal grating were modified by the superimposition of a second, perturbing grating (PG) that did not excite the cell when presented alone. One consequence of the presence of a PG was a shift in the tuning curves. The orientation tuning of all 41 cells exposed to a PG and the spatial frequency tuning of 83% of the 23 cells exposed to a PG showed statistically significant dislocations of both the response function peak and center of mass from their single grating values. As found in earlier reports, the presence of PGs suppressed responsiveness. However, reductions measured at the single grating optimum orientation or spatial frequency were on average 1.3 times greater than the suppression found at the peak of the response function modified by the presence of the PG. Much of the loss in response seen at the single grating optimum is thus a result of a shift in the tuning function rather than outright suppression. On average orientation shifts were repulsive and proportional (approximately 0.10 deg/deg) to the angle between the perturbing stimulus and the optimum single grating orientation. Shifts in the spatial frequency response function were both attractive and repulsive, resulting in an overall average of zero. For both simple and complex cells, PGs generally broadened orientation response function bandwidths. Similarly, complex cell spatial frequency response function bandwidths broadened. Simple cell spatial frequency response functions usually did not change, and those that did broadened only 4% on average. These data support the hypothesis that additional sinusoidal components in compound stimuli retune cells' response functions for orientation and spatial frequency.
NASA Technical Reports Server (NTRS)
Tacina, R. R.
1977-01-01
Experiments were performed to evolve and evaluate a premixing-prevaporizing fuel system to be used with a catalytic combustor for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using Jet A fuel. Three types of air blast injectors, an air assist nozzle and a simplex pressure atomizer were tested. Air swirlers with vane angles up to 30 deg were used to improve the spatial fuel distribution. The work was done in a 12-cm (4.75-in.) diameter tubular rig. Test conditions were: a pressure of 0.3 and 0.5 MPa (3 and 5 atm), inlet air temperatures up to 800 K (980 F), velocity of 20 m/sec (66 ft/sec) and fuel-air ratios of 0.01 and 0.025. Uniform spatial fuel distributions that were within plus or minus 10 percent of the mean were obtained. Complete vaporization of the fuel was achieved with air blast configurations at inlet air temperatures of 550 K (530 F) and higher. The total pressure loss was less than 0.5 percent for configurations without air swirlers and less than 1 percent for configurations with a 30 deg vane angle air swirler.
Li, Ke; Garrett, John; Ge, Yongshuai; Chen, Guang-Hong
2014-07-01
Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDIvol =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo(®), GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d'. (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) Thez resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are significant, the optimal use of this method in clinical practice demands a thorough understanding of its unique physical characteristics.
Analyses and forecasts with LAWS winds
NASA Technical Reports Server (NTRS)
Wang, Muyin; Paegle, Jan
1994-01-01
Horizontal fluxes of atmospheric water vapor are studied for summer months during 1989 and 1992 over North and South America based on analyses from European Center for Medium Range Weather Forecasts, US National Meteorological Center, and United Kingdom Meteorological Office. The calculations are performed over 20 deg by 20 deg box-shaped midlatitude domains located to the east of the Rocky Mountains in North America, and to the east of the Andes Mountains in South America. The fluxes are determined from operational center gridded analyses of wind and moisture. Differences in the monthly mean moisture flux divergence determined from these analyses are as large as 7 cm/month precipitable water equivalent over South America, and 3 cm/month over North America. Gridded analyses at higher spatial and temporal resolution exhibit better agreement in the moisture budget study. However, significant discrepancies of the moisture flux divergence computed from different gridded analyses still exist. The conclusion is more pessimistic than Rasmusson's estimate based on station data. Further analysis reveals that the most significant sources of error result from model surface elevation fields, gaps in the data archive, and uncertainties in the wind and specific humidity analyses. Uncertainties in the wind analyses are the most important problem. The low-level jets, in particular, are substantially different in the different data archives. Part of the reason for this may be due to the way the different analysis models parameterized physical processes affecting low-level jets. The results support the inference that the noise/signal ratio of the moisture budget may be improved more rapidly by providing better wind observations and analyses than by providing better moisture data.
Effect of head pitch and roll orientations on magnetically induced vertigo.
Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L
2016-02-15
Lying supine in a strong magnetic field, such as in magnetic resonance imaging scanners, can induce a perception of whole-body rotation. The leading hypothesis to explain this invokes a Lorentz force mechanism acting on vestibular endolymph that acts to stimulate semicircular canals. The hypothesis predicts that the perception of whole-body rotation will depend on head orientation in the field. Results showed that the direction and magnitude of apparent whole-body rotation while stationary in a 7 T magnetic field is influenced by head orientation. The data are compatible with the Lorentz force hypothesis of magnetic vestibular stimulation and furthermore demonstrate the operation of a spatial transformation process from head-referenced vestibular signals to Earth-referenced body motion. High strength static magnetic fields are known to induce vertigo, believed to be via stimulation of the vestibular system. The leading hypothesis (Lorentz forces) predicts that the induced vertigo should depend on the orientation of the magnetic field relative to the head. In this study we examined the effect of static head pitch (-80 to +40 deg; 12 participants) and roll (-40 to +40 deg; 11 participants) on qualitative and quantitative aspects of vertigo experienced in the dark by healthy humans when exposed to the static uniform magnetic field inside a 7 T MRI scanner. Three participants were additionally examined at 180 deg pitch and roll orientations. The effect of roll orientation on horizontal and vertical nystagmus was also measured and was found to affect only the vertical component. Vertigo was most discomforting when head pitch was around 60 deg extension and was mildest when it was around 20 deg flexion. Quantitative analysis of vertigo focused on the induced perception of horizontal-plane rotation reported online with the aid of hand-held switches. Head orientation had effects on both the magnitude and the direction of this perceived rotation. The data suggest sinusoidal relationships between head orientation and perception with spatial periods of 180 deg for pitch and 360 deg for roll, which we explain is consistent with the Lorentz force hypothesis. The effects of head pitch on vertigo and previously reported nystagmus are consistent with both effects being driven by a common vestibular signal. To explain all the observed effects, this common signal requires contributions from multiple semicircular canals. © 2015 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Lee, H-P; Perozek, J; Rosario, L D; Bayram, C
2016-11-21
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {Al x Ga 1-x N}/AlN, (b) Thin-GaN/3 × {Al x Ga 1-x N}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm 2 /V∙s) and 2DEG carrier concentration (>1.0 × 10 13 cm -2 ) on Si(111) substrates.
Lee, H.-P.; Perozek, J.; Rosario, L. D.; Bayram, C.
2016-01-01
AlGaN/GaN high electron mobility transistor (HEMT) structures are grown on 200-mm diameter Si(111) substrates by using three different buffer layer configurations: (a) Thick-GaN/3 × {AlxGa1−xN}/AlN, (b) Thin-GaN/3 × {AlxGa1−xN}/AlN, and (c) Thin-GaN/AlN, so as to have crack-free and low-bow (<50 μm) wafer. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high resolution-cross section transmission electron microscopy, optical microscopy, atomic-force microscopy, cathodoluminescence, Raman spectroscopy, X-ray diffraction (ω/2θ scan and symmetric/asymmetric ω scan (rocking curve scan), reciprocal space mapping) and Hall effect measurements are employed to study the structural, optical, and electrical properties of these AlGaN/GaN HEMT structures. The effects of buffer layer stacks (i.e. thickness and content) on defectivity, stress, and two-dimensional electron gas (2DEG) mobility and 2DEG concentration are reported. It is shown that 2DEG characteristics are heavily affected by the employed buffer layers between AlGaN/GaN HEMT structures and Si(111) substrates. Particularly, we report that in-plane stress in the GaN layer affects the 2DEG mobility and 2DEG carrier concentration significantly. Buffer layer engineering is shown to be essential for achieving high 2DEG mobility (>1800 cm2/V∙s) and 2DEG carrier concentration (>1.0 × 1013 cm−2) on Si(111) substrates. PMID:27869222
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Oleg P.; Semin, Ilya A.; Potapov, Victor N.
Gamma-ray imaging is the most important way to identify unknown gamma-ray emitting objects in decommissioning, security, overcoming accidents. Over the past two decades a system for producing of gamma images in these conditions became more or less portable devices. But in recent years these systems have become the hand-held devices. This is very important, especially in emergency situations, and measurements for safety reasons. We describe the first integrated hand-held instrument for emergency and security applications. The device is based on the coded aperture image formation, position sensitive gamma-ray (X-ray) detector Medipix2 (detectors produces by X-ray Imaging Europe) and tablet computer.more » The development was aimed at creating a very low weight system with high angular resolution. We present some sample gamma-ray images by camera. Main estimated parameters of the system are the following. The field of view video channel ∼ 490 deg. The field of view gamma channel ∼ 300 deg. The sensitivity of the system with a hexagonal mask for the source of Cs-137 (Eg = 662 keV), is in units of dose D ∼ 100 mR. This option is less then order of magnitude worse than for the heavy, non-hand-held systems (e.g., gamma-camera Cartogam, by Canberra.) The angular resolution of the gamma channel for the sources of Cs-137 (Eg = 662 keV) is about 1.20 deg. (authors)« less
a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data
NASA Astrophysics Data System (ADS)
Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.
2017-09-01
The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.
The impact of global warming on river runoff
NASA Technical Reports Server (NTRS)
Miller, James R.; Russell, Gary L.
1992-01-01
A global atmospheric model is used to calculate the annual river runoff for 33 of the world's major rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4 x 5 deg, but the runoff from each model grid box is quartered and added to the appropriate river drainage basin on a 2 x 2.5 deg resolution. The computed runoff depends on the model's precipitation, evapotranspiration, and soil moisture storage. For the doubled CO2 climate, the runoff increased for 25 of the 33 rivers, and in most cases the increases coincide with increased rainfall within the drainage basins. There were runoff increases in all rivers in high northern latitudes, with a maximum increase of 47 percent. At low latitudes there were both increases and decreases ranging from a 96 increase to a 43 percent decrease. The effect of the simplified model assumptions of land-atmosphere interactions on the results is discussed.
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel
2015-10-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.
The spatial resolution of silicon-based electron detectors in beta-autoradiography.
Cabello, Jorge; Wells, Kevin
2010-03-21
Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Belcher, Marcus A.; Ghose, Sayata; Connell, John W.
2008-01-01
Topographically rich surfaces were generated by spray-coating organic solutions of a polyhedral oligomeric silsesquioxane, octakis (dimethylsilyloxy) silsesquioxane (POSS), on Kapton HN films and exposing them to radio frequency generated oxygen plasma. Changes in both surface chemistry and topography were observed. High-resolution scanning electron microscopy indicated substantial modification of the POSS-coated polyimide surface topographies as a result of oxygen plasma exposure. Water contact angles varied from 104 deg for unexposed POSS-coated surfaces to approximately 5 deg, for samples exposed for 5 h. Modulation of the dispersive and polar contributions to the surface energy was determined using van Oss Good Chaudhury theory.
NASA Technical Reports Server (NTRS)
Greeley, R.; Theilig, E.; Guest, J. E.; Carr, M. H.; Masursky, H.; Cutts, J. A.
1977-01-01
Chryse Planitia, the site of the first successful landing on Mars by Viking 1, is an asymmetrical basin, centered at 45 deg W and 24 deg N, about 2000 km northeast of Valles Marineris. High-resolution Viking orbiter images show Chryse Planitia to be much more complex than had been suspected from Mariner 9 images. On the basis of a study of the Viking pictures it is concluded that the geological history of Chryse Planitia involves a complex sequence of impact cratering, mantling by extensive deposits of unknown origin, redistribution of mantling and crater materials by erosion and deposition with concurrent eruptions of flood-type basalts, and aeolian activity.
Comparative climatology of four marine stratocumulus regimes
NASA Technical Reports Server (NTRS)
Hanson, Howard P.
1990-01-01
The climatology of marine stratocumulus (MSc) cloud regimes off the west coasts of California, Peru, Morocco, and Angola are examined. Long-term, annual averages are presented for several quantities of interest in the four MSc regimes. The climatologies were constructed using the Comprehensive Ocean-Atmosphere Data Set (COADS). A 40 year time series of observations was extracted for 32 x 32 deg analysis domains. The data were taken from the monthly-averaged, 2 deg product. The resolution of the analysis is therefore limited to scales of greater than 200 km with submonthly variability not resolved. The averages of total cloud cover, sea surface temperature, and surface pressure are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaduto, DA; Hu, Y-H; Zhao, W
Purpose: Spatial resolution in digital breast tomosynthesis (DBT) is affected by inherent/binned detector resolution, oblique entry of x-rays, and focal spot size/motion; the limited angular range further limits spatial resolution in the depth-direction. While DBT is being widely adopted clinically, imaging performance metrics and quality control protocols have not been standardized. AAPM Task Group 245 on Tomosynthesis Quality Control has been formed to address this deficiency. Methods: Methods of measuring spatial resolution are evaluated using two prototype quality control phantoms for DBT. Spatial resolution in the detector plane is measured in projection and reconstruction domains using edge-spread function (ESF), point-spreadmore » function (PSF) and modulation transfer function (MTF). Spatial resolution in the depth-direction and effective slice thickness are measured in the reconstruction domain using slice sensitivity profile (SSP) and artifact spread function (ASF). An oversampled PSF in the depth-direction is measured using a 50 µm angulated tungsten wire, from which the MTF is computed. Object-dependent PSF is derived and compared with ASF. Sensitivity of these measurements to phantom positioning, imaging conditions and reconstruction algorithms is evaluated. Results are compared from systems of varying acquisition geometry (9–25 projections over 15–60°). Dependence of measurements on feature size is investigated. Results: Measurements of spatial resolution using PSF and LSF are shown to depend on feature size; depth-direction spatial resolution measurements are shown to similarly depend on feature size for ASF, though deconvolution with an object function removes feature size-dependence. A slanted wire may be used to measure oversampled PSFs, from which MTFs may be computed for both in-plane and depth-direction resolution. Conclusion: Spatial resolution measured using PSF is object-independent with sufficiently small object; MTF is object-independent. Depth-direction spatial resolution may be measured directly using MTF or indirectly using ASF or SSP as surrogate measurements. While MTF is object-independent, it is invalid for nonlinear reconstructions.« less
Spatial and temporal remote sensing data fusion for vegetation monitoring
USDA-ARS?s Scientific Manuscript database
The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...
Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography
NASA Astrophysics Data System (ADS)
Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.
2016-11-01
We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.
2012-01-01
We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.
High-resolution Earth-based lunar radar studies: Applications to lunar resource assessment
NASA Technical Reports Server (NTRS)
Stacy, N. J. S.; Campbell, D. B.
1992-01-01
The lunar regolith will most likely be a primary raw material for lunar base construction and resource extraction. High-resolution radar observations of the Moon provide maps of radar backscatter that have intensity variations generally controlled by the local slope, material, and structural properties of the regolith. The properties that can be measured by the radar system include the dielectric constant, density, loss tangent, and wavelength scale roughness. The radar systems currently in operation at several astronomical observatories provide the ability to image the lunar surface at spatial resolutions approaching 30 m at 3.8 cm and 12.6 cm wavelengths and approximately 500 m at 70 cm wavelength. The radar signal penetrates the lunar regolith to a depth of 10-20 wavelengths so the measured backscatter contains contributions from the vacuum-regolith interface and from wavelength-scale heterogeneities in the electrical properties of the subsurface material. The three wavelengths, which are sensitive to different scale structures and scattering volumes, provide complementary information on the regolith properties. Aims of the previous and future observations include (1) analysis of the scattering properties associated with fresh impact craters, impact crater rays, and mantled deposits; (2) analysis of high-incidence-angle observations of the lunar mare to investigate measurement of the regolith dielectric constant and hence porosity; (3) investigation of interferometric techniques using two time-delayed observations of the same site, observations that require a difference in viewing geometry less than 0.05 deg and, hence, fortuitous alignment of the Earth-Moon system when visible from Arecibo Observatory.
Some effects of finite spatial resolution on skin friction measurements in turbulent boundary layers
NASA Technical Reports Server (NTRS)
Westphal, Russell V.
1988-01-01
The effects of finite spatial resolution often cause serious errors in measurements in turbulent boundary layers, with particularly large effects for measurements of fluctuating skin friction and velocities within the sublayer. However, classical analyses of finite spatial resolution effects have generally not accounted for the substantial inhomogeneity and anisotropy of near-wall turbulence. The present study has made use of results from recent computational simulations of wall-bounded turbulent flows to examine spatial resolution effects for measurements made at a wall using both single-sensor probes and those employing two sensing volumes in a V shape. Results are presented to show the effects of finite spatial resolution on a variety of quantitites deduced from the skin friction field.
Isolating contour information from arbitrary images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1989-01-01
Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.
Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
2016-11-14
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
NASA Astrophysics Data System (ADS)
Sun, D.; Zheng, J. H.; Ma, T.; Chen, J. J.; Li, X.
2018-04-01
The rodent disaster is one of the main biological disasters in grassland in northern Xinjiang. The eating and digging behaviors will cause the destruction of ground vegetation, which seriously affected the development of animal husbandry and grassland ecological security. UAV low altitude remote sensing, as an emerging technique with high spatial resolution, can effectively recognize the burrows. However, how to select the appropriate spatial resolution to monitor the calamity of the rodent disaster is the first problem we need to pay attention to. The purpose of this study is to explore the optimal spatial scale on identification of the burrows by evaluating the impact of different spatial resolution for the burrows identification accuracy. In this study, we shoot burrows from different flight heights to obtain visible images of different spatial resolution. Then an object-oriented method is used to identify the caves, and we also evaluate the accuracy of the classification. We found that the highest classification accuracy of holes, the average has reached more than 80 %. At the altitude of 24 m and the spatial resolution of 1cm, the accuracy of the classification is the highest We have created a unique and effective way to identify burrows by using UAVs visible images. We draw the following conclusion: the best spatial resolution of burrows recognition is 1 cm using DJI PHANTOM-3 UAV, and the improvement of spatial resolution does not necessarily lead to the improvement of classification accuracy. This study lays the foundation for future research and can be extended to similar studies elsewhere.
NASA Technical Reports Server (NTRS)
Botez, D.; Connolly, J. C.
1982-01-01
A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.
The luminosity function for the CfA redshift survey slices
NASA Technical Reports Server (NTRS)
De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.
1989-01-01
The luminosity function for two complete slices of the extension of the CfA redshift survey is calculated. The nonparametric technique of Lynden-Bell (1971) and Turner (1979) is used to determine the shape for the luminosity function of the 12 deg slice of the redshift survey. The amplitude of the luminosity function is determined, taking large-scale inhomogeneities into account. The effects of the Malmquist bias on a magnitude-limited redshift survey are examined, showing that the random errors in the magnitudes for the 12 deg slice affect both the determination of the luminosity function and the spatial density constrast of large scale structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch; Zaidi, Habib; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva
2014-06-15
Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailedmore » investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image representation error to a minimum, is feasible, with the parameter combination range depending upon the scanner's intrinsic resolution characteristics. Conclusions: Using the printed point source array as a MR compatible methodology for experimentally measuring the scanner's PSF, the system's spatially variant resolution properties were successfully evaluated in image space. Overall the PET subsystem exhibits excellent resolution characteristics mainly due to the fact that the raw data are not under-sampled/rebinned, enabling the spatial resolution to be dictated by the scanner's intrinsic resolution and the image reconstruction parameters. Due to the impact of these parameters on the resolution properties of the reconstructed images, the image space PSF varies both under spatial transformations and due to basis function parameter selection. Nonetheless, for a range of basis function parameters, the image space PSF remains unaffected, with the range depending on the scanner's intrinsic resolution properties.« less
An evaluation of spatial resolution of a prototype proton CT scanner.
Plautz, Tia E; Bashkirov, V; Giacometti, V; Hurley, R F; Johnson, R P; Piersimoni, P; Sadrozinski, H F-W; Schulte, R W; Zatserklyaniy, A
2016-12-01
To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF 10% ) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u - , at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between 6.31 ± 0.36 lp/cm for W = 197 mm i.e., close to the center of the phantom, and 13.79 ± 0.36 lp/cm for W = 97 mm, near the periphery of the phantom. The azimuthal spatial resolution ranged from 6.99 ± 0.23 lp/cm at u - = 75 mm (near the center) to 11.20 ± 0.26 lp/cm at u - = 20 mm (near the periphery). Multiple Coulomb scattering limits the radial spatial resolution for path lengths greater than approximately 130 mm, and the azimuthal spatial resolution for positions of evaluation greater than approximately 40 mm for W = 199 mm. The radial spatial resolution of the image reconstructed from data from the 4° stepped experimental scan ranged from 5.11 ± 0.61 lp/cm for W = 197 mm to 8.58 ± 0.50 lp/cm for W = 97 mm. In the azimuthal direction, the spatial resolution ranged from 5.37 ± 0.40 lp/cm at u - = 75 mm to 7.27 ± 0.39 lp/cm at u - = 20 mm. The continuous scan achieved the same spatial resolution as that of the stepped scan. Multiple Coulomb scattering in the phantom is the limiting physical factor of the achievable spatial resolution of proton CT; additional loss of spatial resolution in the prototype system is associated with scattering in the proton tracking system and inadequacies of the proton path estimate used in the iterative reconstruction algorithm. Improvement in spatial resolution may be achievable by improving the most likely path estimate by incorporating information about high and low density materials, and by minimizing multiple Coulomb scattering in the proton tracking system.
An evaluation of spatial resolution of a prototype proton CT scanner
Plautz, Tia E.; Bashkirov, V.; Giacometti, V.; Hurley, R. F.; Piersimoni, P.; Sadrozinski, H. F.-W.; Schulte, R. W.; Zatserklyaniy, A.
2016-01-01
Purpose: To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. Methods: A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF10%) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. Results: The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u−, at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between 6.31 ± 0.36 lp/cm for W = 197 mm i.e., close to the center of the phantom, and 13.79 ± 0.36 lp/cm for W = 97 mm, near the periphery of the phantom. The azimuthal spatial resolution ranged from 6.99 ± 0.23 lp/cm at u− = 75 mm (near the center) to 11.20 ± 0.26 lp/cm at u− = 20 mm (near the periphery). Multiple Coulomb scattering limits the radial spatial resolution for path lengths greater than approximately 130 mm, and the azimuthal spatial resolution for positions of evaluation greater than approximately 40 mm for W = 199 mm. The radial spatial resolution of the image reconstructed from data from the 4° stepped experimental scan ranged from 5.11 ± 0.61 lp/cm for W = 197 mm to 8.58 ± 0.50 lp/cm for W = 97 mm. In the azimuthal direction, the spatial resolution ranged from 5.37 ± 0.40 lp/cm at u− = 75 mm to 7.27 ± 0.39 lp/cm at u− = 20 mm. The continuous scan achieved the same spatial resolution as that of the stepped scan. Conclusions: Multiple Coulomb scattering in the phantom is the limiting physical factor of the achievable spatial resolution of proton CT; additional loss of spatial resolution in the prototype system is associated with scattering in the proton tracking system and inadequacies of the proton path estimate used in the iterative reconstruction algorithm. Improvement in spatial resolution may be achievable by improving the most likely path estimate by incorporating information about high and low density materials, and by minimizing multiple Coulomb scattering in the proton tracking system. PMID:27908179
NASA Astrophysics Data System (ADS)
Gomes, J. L.; Chou, S. C.; Yaguchi, S. M.
2012-04-01
Physics parameterizations and the model vertical and horizontal resolutions, for example, can significantly contribute to the uncertainty in the numerical weather predictions, especially at regions with complex topography. The objective of this study is to assess the influences of model precipitation production schemes and horizontal resolution on the diurnal cycle of precipitation in the Eta Model . The model was run in hydrostatic mode at 3- and 5-km grid sizes, the vertical resolution was set to 50 layers, and the time steps to 6 and 10 s, respectively. The initial and boundary conditions were taken from ERA-Interim reanalysis. Over the sea the 0.25-deg sea surface temperature from NOAA was used. The model was setup to run for each resolution over Angra dos Reis, located in the Southeast region of Brazil, for the rainy period between 18 December 2009 and 01 de January 2010, the model simulation range was 48 hours. In one set of runs the cumulus parameterization was switched off, in this case the model precipitation was fully simulated by cloud microphysics scheme, and in the other set the model was run with weak cumulus convection. The results show that as the model horizontal resolution increases from 5 to 3 km, the spatial pattern of the precipitation hardly changed, although the maximum precipitation core increased in magnitude. Daily data from automatic station data was used to evaluate the runs and shows that the diurnal cycle of temperature and precipitation were better simulated for 3 km when compared against observations. The model configuration results without cumulus convection shows a small contraction in the precipitating area and an increase in the simulated maximum values. The diurnal cycle of precipitation was better simulated with some activity of the cumulus convection scheme. The skill scores for the period and for different forecast ranges are higher at weak and moderate precipitation rates.
NASA Technical Reports Server (NTRS)
Wang, Zhuosen; Schaaf, Crystal B.; Chopping, Mark J.; Strahler, Alan H.; Wang, Jindi; Roman, Miguel O.; Rocha, Adrian V.; Woodcock, Curtis E.; Shuai, Yanmin
2012-01-01
This study assesses the MODIS standard Bidirectional Reflectance Distribution Function (BRDF)/Albedo product, and the daily Direct Broadcast BRDF/Albedo algorithm at tundra locations under large solar zenith angles and high anisotropic diffuse illumination and multiple scattering conditions. These products generally agree with ground-based albedo measurements during the snow cover period when the Solar Zenith Angle (SZA) is less than 70deg. An integrated validation strategy, including analysis of the representativeness of the surface heterogeneity, is performed to decide whether direct comparisons between field measurements and 500- m satellite products were appropriate or if the scaling of finer spatial resolution airborne or spaceborne data was necessary. Results indicate that the Root Mean Square Errors (RMSEs) are less than 0.047 during the snow covered periods for all MCD43 albedo products at several Alaskan tundra areas. The MCD43 1- day daily albedo product is particularly well suited to capture the rapidly changing surface conditions during the spring snow melt. Results also show that a full expression of the blue sky albedo is necessary at these large SZA snow covered areas because of the effects of anisotropic diffuse illumination and multiple scattering. In tundra locations with dark residue as a result of fire, the MODIS albedo values are lower than those at the unburned site from the start of snowmelt.
Beam-centroid tracking instrument for ion thrusters
NASA Astrophysics Data System (ADS)
Pollard, J. E.
1995-03-01
Thrust vector stability for an electrostatic ion engine can be measured with improved sensitivity and time resolution by the method described here. Four double-wire Langmuir probes, aligned in the form of a cross, are placed in the exhaust plume and are translated by a motorized positioning system to balance the currents collected along two orthogonal axes. The thrust vector position is thereby measured with an angular resolution of less than 0.01 deg and a response time of less than 5 sec.
Sukumar, Subash; Waugh, Sarah J
2007-03-01
We estimated spatial summation areas for the detection of luminance-modulated (LM) and contrast-modulated (CM) blobs at the fovea, 2.5, 5 and 10 deg eccentrically. Gaussian profiles were added or multiplied to binary white noise to create LM and CM blob stimuli and these were used to psychophysically estimate detection thresholds and spatial summation areas. The results reveal significantly larger summation areas for detecting CM than LM blobs across eccentricity. These differences are comparable to receptive field size estimates made in V1 and V2. They support the notion that separate spatial processing occurs for the detection of LM and CM stimuli.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, X.; Ju, W.
2013-03-01
Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, X.; Ju, W.
2013-07-01
Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu; Garrett, John
Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIRmore » (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than FBP (and vice versa); the value of this transitional contrast highly depended on the dose level. (3) The PSFs of MBIR could be approximated as Gaussian functions with reasonably good accuracy. (4) Thez resolution of MBIR showed similar contrast and dose dependence. (5) Noise standard deviation assessed on the edges of objects demonstrated a trade-off with spatial resolution in MBIR. (5) When both spatial resolution and image noise were considered using the CHO analysis, MBIR led to significant improvement in the overall CT image quality for both high and low contrast detection tasks at both standard and low dose levels. Conclusions: Due to the intrinsic nonlinearity of the MBIR method, many well-known CT spatial resolution and noise properties have been modified. In particular, dose dependence and contrast dependence have been introduced to the spatial resolution of CT images by MBIR. The method has also introduced some novel noise-resolution trade-off not seen in traditional CT images. While the benefits of MBIR regarding the overall image quality, as demonstrated in this work, are significant, the optimal use of this method in clinical practice demands a thorough understanding of its unique physical characteristics.« less
High-resolution scanning precession electron diffraction: Alignment and spatial resolution.
Barnard, Jonathan S; Johnstone, Duncan N; Midgley, Paul A
2017-03-01
Methods are presented for aligning the pivot point of a precessing electron probe in the scanning transmission electron microscope (STEM) and for assessing the spatial resolution in scanning precession electron diffraction (SPED) experiments. The alignment procedure is performed entirely in diffraction mode, minimising probe wander within the bright-field (BF) convergent beam electron diffraction (CBED) disk and is used to obtain high spatial resolution SPED maps. Through analysis of the power spectra of virtual bright-field images extracted from the SPED data, the precession-induced blur was measured as a function of precession angle. At low precession angles, SPED spatial resolution was limited by electronic noise in the scan coils; whereas at high precession angles SPED spatial resolution was limited by tilt-induced two-fold astigmatism caused by the positive spherical aberration of the probe-forming lens. Copyright © 2016 Elsevier B.V. All rights reserved.
Al-Gharabli, Samer; Hamad, Eyad; Saket, Munib; Abu El-Rub, Ziad; Arafat, Hassan; Kujawski, Wojciech; Kujawa, Joanna
2018-05-07
Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs) were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE)), mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM), single-area electron diffraction (SAED) analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs) changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20) and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20) and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.
Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao
2015-01-01
Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H2TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected. PMID:25784161
Spatial resolution properties of motion-compensated tomographic image reconstruction methods.
Chun, Se Young; Fessler, Jeffrey A
2012-07-01
Many motion-compensated image reconstruction (MCIR) methods have been proposed to correct for subject motion in medical imaging. MCIR methods incorporate motion models to improve image quality by reducing motion artifacts and noise. This paper analyzes the spatial resolution properties of MCIR methods and shows that nonrigid local motion can lead to nonuniform and anisotropic spatial resolution for conventional quadratic regularizers. This undesirable property is akin to the known effects of interactions between heteroscedastic log-likelihoods (e.g., Poisson likelihood) and quadratic regularizers. This effect may lead to quantification errors in small or narrow structures (such as small lesions or rings) of reconstructed images. This paper proposes novel spatial regularization design methods for three different MCIR methods that account for known nonrigid motion. We develop MCIR regularization designs that provide approximately uniform and isotropic spatial resolution and that match a user-specified target spatial resolution. Two-dimensional PET simulations demonstrate the performance and benefits of the proposed spatial regularization design methods.
NASA Astrophysics Data System (ADS)
Bindhu, V. M.; Narasimhan, B.
2015-03-01
Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.
How Attention Affects Spatial Resolution
Carrasco, Marisa; Barbot, Antoine
2015-01-01
We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640
Super-resolution optical microscopy for studying membrane structure and dynamics.
Sezgin, Erdinc
2017-07-12
Investigation of cell membrane structure and dynamics requires high spatial and temporal resolution. The spatial resolution of conventional light microscopy is limited due to the diffraction of light. However, recent developments in microscopy enabled us to access the nano-scale regime spatially, thus to elucidate the nanoscopic structures in the cellular membranes. In this review, we will explain the resolution limit, address the working principles of the most commonly used super-resolution microscopy techniques and summarise their recent applications in the biomembrane field.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.
1999-01-01
Successful operation of the Mars Global Surveyor spacecraft beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosch, M.J.; Nielsen, E.
The Scandinavian Twin Auroral Radar Experiment (STARE) and Sweden and Britain Radar Experiment (SABRE) bistatic coherent radar systems have been employed to estimate the spatial and temporal variation of the ionospheric Joule heating in the combined geographic latitude range 63.8 deg - 72.6 deg (corrected geomagnetic latitude 61.5 deg - 69.3 deg) over Scandinavia. The 173 days of good observations with all four radars have been analyzed during the period 1982 to 1986 to estimate the average ionospheric electric field versus time and latitude. The AE dependent empirical model of ionospheric Pedersen conductivity of Spiro et al. (1982) has beenmore » used to calculate the Joule heating. The latitudinal and diurnal variation of Joule heating as well as the estimated mean hemispherical heating of 1.7 x 10(exp 11) W are in good agreement with earlier results. Average Joule heating was found to vary linearly with the AE, AU, and AL indices and as a second-order power law with Kp. The average Joule heating was also examined as a function of the direction and magnitude of the interplanetary magnetic field. It has been shown for the first time that the ionospheric electric field magnitude as well as the Joule heating increase with increasingly negative (southward) Bz.« less
NASA Technical Reports Server (NTRS)
Gatebe, Charles K.; King, M. D.; Arnold, G. T.; Li, J. Y.; Lau, William K. M. (Technical Monitor)
2001-01-01
The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF measurements were obtained over different natural surfaces and ecosystem in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 deg S, 31.5 deg E) and Mongu tower, Zambia (15.4 deg S, 23.3 deg E). Additional sites are also considered and include, Maun tower, Botswana (20.0 deg S, 23.5 deg E), Sowa Pan, Botswana (20.6 deg S, 26.2 deg E) and Etosha Pan, Namibia (19.0 deg S, 16.0 deg E). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micrometers), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micrometers). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of approximately 20 degrees and fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and with a 1 deg IFOV, the pixel resolution is about 10 m at nadir and about 270 m at an 80 deg viewing angle from the CAR.
Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert
2013-01-01
We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts resulting from analyses using the AIRS T(p) assimilation system were superior to those from the Radiance assimilation system, both with regard to global 7 day forecast skill and also the ability to predict storm tracks and intensity.
Turner, D.P.; Dodson, R.; Marks, D.
1996-01-01
Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the study of the potential impacts of climate change.
The fusion of satellite and UAV data: simulation of high spatial resolution band
NASA Astrophysics Data System (ADS)
Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata
2017-10-01
Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.
NASA Astrophysics Data System (ADS)
Li, J.
2017-12-01
Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.
Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.
2014-01-01
Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei; ...
2017-05-11
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Tamin; Kertesz, Vilmos; Lin, Ming -Wei
As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This study describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging.
High density event-related potential data acquisition in cognitive neuroscience.
Slotnick, Scott D
2010-04-16
Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.
Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui
2015-01-19
Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.
An infrared polarimetric study of sunspots
NASA Astrophysics Data System (ADS)
Hewagama, Tilak
A polarimetric study of the extremely Zeeman sensitive 12.32 microns neutral magnesium (Mg I) emission line from sunspots is discussed. A single blocked impurity band (BIB) detector in a cryogenic grating postdisperser was used to limit the McMath Fourier transform spectrometer (FTS) bandpass and obtain high signal/noise spectra at 0.005 cm-1 spectral resolution with 4.5 sec spatial resolution. A polarization analyzer preceded the FTS and consisted of an anti-reflection coated CdS 1/4 waveplate and a thin film Ge linear polarizer. A second 1/4 waveplate was mounted at 45 deg to the linear polarizer to eliminate dependence on the polarization properties of the FTS optics and postdisperser grating. The instrument polarization introduced by the McMath telescope is shown to be negligible for the purpose of 12 microns polarimetry, and theoretical arguments are presented to show that the 12 microns observations are not corrupted by magneto-optical effects. Stokes I,Q,U, and V profiles were generated by subtracting successive interferograms. The time resolution of a set of Stokes parameters was 12 minutes. Within the sunspot the Zeeman triplet was fully resolved. Since the line is optically thin, it was possible to derive vector fields by non-linear least squares fits of the Seares formulae to the observed Stokes profiles. The observations of a visually symmetric sunspot (23-28 Oct. 1989) show that the 12 microns emission is completely polarized. This implies that the sunspot magnetic field at the 12 microns altitude is not filamentary in the sense of containing field-free regions nor is there cancellation of field, over any spatial scale, in the beam area. The sunspot field strength varied from 2050 G in the umbra to 650 G at the outer penumbral edge, and the magnetic structure extended well beyond the photometric edge of the sunspot. Vector magnetograms obtained for the same spot by the Haleakala Stokes polarimeter, operating at 6302.5 A, show an umbral field strength which is larger by 400 G. On this basis the altitude of formation for the Mg I line is estimated to be approximately 600 km above tau approximately 1 for the 6302.5 A line.
NASA Astrophysics Data System (ADS)
Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.
2017-02-01
Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.
A fine resolution multifrequency polarimetric FM radar
NASA Technical Reports Server (NTRS)
Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.
1988-01-01
A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.
NASA Technical Reports Server (NTRS)
Paige, David A.; Keegan, Kenneth D.
1994-01-01
We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an absence of surface water ice deposits, which is consistent with Viking Mars atmospheric water detector (MAWD) measurements which show low atmospheric water vapor abundances throughout the summer season.
2007-09-27
the spatial and spectral resolution ...variety of geological and vegetation mapping efforts, the Hymap sensor offered the best available combination of spectral and spatial resolution , signal... The limitations of the technology currently relate to spatial and spectral resolution and geo- correction accuracy. Secondly, HSI datasets
The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness
NASA Technical Reports Server (NTRS)
Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.
1992-01-01
High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.
Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications
Gao, Lan; Hill, K. W.; Bitter, M.; ...
2016-08-23
Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less
Emotional cues enhance the attentional effects on spatial and temporal resolution.
Bocanegra, Bruno R; Zeelenberg, René
2011-12-01
In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.
HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models
NASA Astrophysics Data System (ADS)
Melsen, Lieke A.; Teuling, Adriaan J.; Torfs, Paul J. J. F.; Uijlenhoet, Remko; Mizukami, Naoki; Clark, Martyn P.
2016-03-01
A meta-analysis on 192 peer-reviewed articles reporting on applications of the variable infiltration capacity (VIC) model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution. We identified six time concepts in hydrological models, which all impact the model results and conclusions. Process-based model evaluation is particularly relevant when models are applied at hyper-resolution, where stakeholders expect credible results both at a high spatial and temporal resolution.
HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models
NASA Astrophysics Data System (ADS)
Melsen, L. A.; Teuling, A. J.; Torfs, P. J. J. F.; Uijlenhoet, R.; Mizukami, N.; Clark, M. P.
2015-12-01
A meta-analysis on 192 peer-reviewed articles reporting applications of the Variable Infiltration Capacity (VIC) model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution. We identified six time concepts in hydrological models, which all impact the model results and conclusions. Process-based model evaluation is particularly relevant when models are applied at hyper-resolution, where stakeholders expect credible results both at a high spatial and temporal resolution.
Optimization of the open-loop liquid crystal adaptive optics retinal imaging system
NASA Astrophysics Data System (ADS)
Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li
2012-02-01
An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.
Temperature Map of the Perseus Cluster of Galaxies Observed with ASCA
NASA Technical Reports Server (NTRS)
Furusho, T.; Yamasaki, N. Y.; Ohashi, T.; Shibata, R.; Ezawa, H.; White, Nicholas E. (Technical Monitor)
2000-01-01
We present two-dimensional temperature map of the Perseus cluster based on multi-pointing observations with the Advanced Spacecraft for Cosmology Astrophysics (ASCA) Gas Imaging Spectrometer (GIS), covering a region with a diameter of approximately 2 deg. By correcting for the effect of the X-ray telescope response, the temperatures were estimated from hardness ratios and the complete temperature structure of the cluster with a spatial resolution of about 100 kpc was obtained for the first time. There is an extended cool region with a diameter of approximately 20 arcmin and kT approx. 5 keV at about 20 arcmin east from the cluster center. This region also shows higher surface brightness and is surrounded by a large ring-like hot region with kT approx. > 7 keV, and likely to be a remnant of a merger with a poor cluster. Another extended cool region is extending outward from the IC 310 subcluster. These features and the presence of several other hot and cool blobs suggest that this rich cluster has been formed as a result of a repetition of many subcluster mergers.
[Eccentricity-dependent influence of amodal completion on visual search].
Shirama, Aya; Ishiguchi, Akira
2009-06-01
Does amodal completion occur homogeneously across the visual field? Rensink and Enns (1998) found that visual search for efficiently-detected fragments became inefficient when observers perceived the fragments as a partially-occluded version of a distractor due to a rapid completion process. We examined the effect of target eccentricity in Rensink and Enns's tasks and a few additional tasks by magnifying the stimuli in the peripheral visual field to compensate for the loss of spatial resolution (M-scaling; Rovamo & Virsu, 1979). We found that amodal completion disrupted the efficient search for the salient fragments (i.e., target) even when the target was presented at high eccentricity (within 17 deg). In addition, the configuration effect of the fragments, which produced amodal completion, increased with eccentricity while the same target was detected efficiently at the lowest eccentricity. This eccentricity effect is different from a previously-reported eccentricity effect where M-scaling was effective (Carrasco & Frieder, 1997). These findings indicate that the visual system has a basis for rapid completion across the visual field, but the stimulus representations constructed through amodal completion have eccentricity-dependent properties.
A real-time electronic imaging system for solar X-ray observations from sounding rockets
NASA Technical Reports Server (NTRS)
Davis, J. M.; Ting, J. W.; Gerassimenko, M.
1979-01-01
A real-time imaging system for displaying the solar coronal soft X-ray emission, focussed by a grazing incidence telescope, is described. The design parameters of the system, which is to be used primarily as part of a real-time control system for a sounding rocket experiment, are identified. Their achievement with a system consisting of a microchannel plate, for the conversion of X-rays into visible light, and a slow-scan vidicon, for recording and transmission of the integrated images, is described in detail. The system has a quantum efficiency better than 8 deg above 8 A, a dynamic range of 1000 coupled with a sensitivity to single photoelectrons, and provides a spatial resolution of 15 arc seconds over a field of view of 40 x 40 square arc minutes. The incident radiation is filtered to eliminate wavelengths longer than 100 A. Each image contains 3.93 x 10 to the 5th bits of information and is transmitted to the ground where it is processed by a mini-computer and displayed in real-time on a standard TV monitor.
NASA Astrophysics Data System (ADS)
Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley
2015-01-01
This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.
Spatial resolution limits for the isotropic-3D PET detector X’tal cube
NASA Astrophysics Data System (ADS)
Yoshida, Eiji; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga
2013-11-01
Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm3 uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm)3 to (2 mm)3 in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm)3 to (9 mm)3. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm)3 even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm)3 cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial resolution with 0.5×0.5×1.0 mm3 crystals was improved 39% relative to the (1 mm)3 cubic crystals. On the other hand, spatial resolution with (0.5 mm)3 cubic crystals was improved 47% relative to the (1 mm)3 cubic crystals. The X’tal cube promises better spatial resolution for the 3D crystal block with isotropic resolution.
Hard X-ray imaging from Explorer
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Murray, S. S.
1981-01-01
Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.
A free-trailing vane flow direction indicator employing a linear output Hall effect transducer
NASA Technical Reports Server (NTRS)
Zell, Peter T.; Mcmahon, Robert D.
1988-01-01
The Hall effect vane (HEV) was developed to measure flow angularity in the NASA 40-by-80-foot and 80-by-120-foot wind tunnels. This indicator is capable of sensing flow direction at air speeds from 5 to 300 knots and over a + or - 40 deg angle range with a resolution of 0.1 deg. A free-trailing vane configuration employing a linear output Hall effect transducer as a shaft angle resolver was used. The current configuration of the HEV is designed primarily for wind tunnel calibration testing; however, other potential applications include atmospheric, flight or ground research testing. The HEV met initial design requirements.
Hypersonic Shock Interactions About a 25 deg/65 deg Sharp Double Cone
NASA Technical Reports Server (NTRS)
Moss, James N.; LeBeau, Gerald J.; Glass, Christopher E.
2002-01-01
This paper presents the results of a numerical study of shock interactions resulting from Mach 10 air flow about a sharp double cone. Computations are made with the direct simulation Monte Carlo (DSMC) method by using two different codes: the G2 code of Bird and the DAC (DSMC Analysis Code) code of LeBeau. The flow conditions are the pretest nominal free-stream conditions specified for the ONERA R5Ch low-density wind tunnel. The focus is on the sensitivity of the interactions to grid resolution while providing information concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.
NASA Technical Reports Server (NTRS)
Anderson, K. A.
1972-01-01
Design studies for an X-ray experiment using solid state detectors and for an experiment using a proportional counter for investigating Jovian and Saturnian magnetospheres are reported. Background counting rates through the forward aperture and leakage fluxes are discussed for each design. It is concluded that the best choice of instrument appears to have following the characteristics: (1) two separate multiwire proportional counters for redundancy; (2) passive collimation to restrict the field to about 5 deg, wiregrid modulation collimation to about 0.1 deg angular resolution; (3) no active shielding system around the counter body; and (4) light passive shielding around any portion of the counter body exposed to space to absorb most of the cosmic X-ray background.
Observations of the 5-day wave in the mesosphere and lower thermosphere
NASA Technical Reports Server (NTRS)
Wu, D. L.; Hays, P. B.; Skinner, W. R.
1994-01-01
The 5-day planetary wave has been detected in the winds measured by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) in the mesosphere and lower thermosphere (50-110 km). The appearances of the 5-day wave are transient, with a lifetime of 10-20 days in the two-year data set. The structures of selected 5-day wave events are in generally good agreement with the (1,1) Rossby normal mode for both zonal and meridional components. A climatology of the 5-day wave is presented for an altitude of 95 km and latitudes mainly between 40 deg S and 40 deg N.
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Strahan, Susan E.
2017-01-01
Simulations using reanalysis meteorological fields have long been used to understand the causes of atmospheric composition change in the recent past. Using the new MERRA-2 reanalysis, we are conducting chemistry simulations to create products covering 1980-2016 for the atmospheric composition community. These simulations use the Global Modeling Initiative (GMI) chemical mechanism in two different models: the GMI Chemical Transport Model (CTM) and the GEOS-5 model in Replay mode. Replay mode means an integration of the GEOS-5 general circulation model that is incrementally adjusted each time step toward the MERRA-2 reanalysis. The GMI CTM is a 1 deg x 1.25 deg simulation and the MERRA-2 GMI Replay simulation uses the native MERRA-2 grid of approximately 1/2 deg horizontal resolution on the cubed sphere. A specialized set of transport diagnostics is included in both runs to better understand trace gas transport and its variability in the recent past.
MAGSAT investigation of crustal magnetic anomalies in the eastern Indian Ocean
NASA Technical Reports Server (NTRS)
Sailor, R. V.; Lazarewicz, A. R.
1983-01-01
Crustal magnetic anomalies in a region of the eastern Indian Ocean were studied using data from NASA's MAGSAT mission. The investigation region (0 deg to 50 deg South, 75 to 125 deg East) contains several important tectonic features, including the Broken Ridge, Java Trench, Ninetyeast Ridge, and Southeast Indian Ridge. A large positive magnetic anomaly is associated with the Broken Ridge and smaller positive anomalies correlate with the Ninetyeast Ridge and western Australia. Individual profiles of scalar data (computed from vector components) were considered to determine the overall data quality and resolution capability. A set of MAGSAT ""Quiet-Time'' data was used to compute an equivalent source crustal magnetic anomaly map of the study region. Maps of crustal magnetization and magnetic susceptibility were computed from the equivalent source dipoles. Gravity data were used to help interpretation, and a map of the ratio of magnetization to density contrasts was computed using Poisson's relation. The results are consistent with the hypothesis of induced magnetization of a crustal layer having varying thickness and composition.
NASA Technical Reports Server (NTRS)
DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.
2017-01-01
The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.
NASA Technical Reports Server (NTRS)
Vaysberg, O. L.; Dyachkov, A. V.; Smirnov, V. N.; Tsyrkin, K. B.; Isaeva, R. A.
1980-01-01
Four electrostatic analyzers with channel electron multipliers as detectors were used to measure solar wind ionic flow. The axes of the fields of vision of two of these analyzers were directed along the axis of the automatic interplanetary station, oriented towards the Sun, while the other two were turned in one plane at angles of +15 deg and -15 deg. The full hemisphere of the angular diagram of each analyzer was approximately 5 deg. The energetic resolution was approximately 6%, and the geometric energy was 0.002 sq cm ave. keV. Each analyzer covered an energetic range of approximately 10 in eight energetic intervals. Spectral distributions were processed in order to obtain the velocity and temperature of the protons. Tabular data show the hour interval (universal time) and the average solar wind velocity in kilometers per second.
NASA Astrophysics Data System (ADS)
Deo, R. K.; Domke, G. M.; Russell, M.; Woodall, C. W.
2017-12-01
Landsat data have been widely used to support strategic forest inventory and management decisions despite the limited success of passive optical remote sensing for accurate estimation of aboveground biomass (AGB). The archive of publicly available Landsat data, available at 30-m spatial resolutions since 1984, has been a valuable resource for cost-effective large-area estimation of AGB to inform national requirements such as for the US national greenhouse gas inventory (NGHGI). In addition, other optical satellite data such as MODIS imagery of wider spatial coverage and higher temporal resolution are enriching the domain of spatial predictors for regional scale mapping of AGB. Because NGHGIs require national scale AGB information and there are tradeoffs in the prediction accuracy versus operational efficiency of Landsat, this study evaluated the impact of various resolutions of Landsat predictors on the accuracy of regional AGB models across three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We used recent national forest inventory (NFI) data with numerous Landsat-derived predictors at ten different spatial resolutions ranging from 30 to 1000 m to understand the optimal spatial resolution of the optical data for enhanced spatial inventory of AGB for NGHGI reporting. Ten generic spatial models at different spatial resolutions were developed for all sites and large-area estimates were evaluated (i) at the county-level against the independent designed-based estimates via the US NFI Evalidator tool and (ii) within a large number of strips ( 1 km wide) predicted via LiDAR metrics at a high spatial resolution. The county-level estimates by the Evalidator and Landsat models were statistically equivalent and produced coefficients of determination (R2) above 0.85 that varied with sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of decreasing resolutions. The Landsat-based total AGB estimates within the strips against the total AGB obtained using LiDAR metrics did not differ significantly and were within ±15 Mg/ha for each of the sites. We conclude that the optical satellite data at resolutions up to 1000 m provide acceptable accuracy for the US' NGHGI.
Spatial resolution limitation of liquid crystal spatial light modulator
NASA Astrophysics Data System (ADS)
Wang, Xinghua; Wang, Bin; McManamon, Paul F., III; Pouch, John J.; Miranda, Felix A.; Anderson, James E.; Bos, Philip J.
2004-10-01
The effect of fringing electric fields in a liquid crystal (LC) Optical Phased Array (OPA), also referred to as a spatial light modulator (SLM), is a governing factor that determines the diffraction efficiency (DE) of the LC OPA for high resolution spatial phase modulation. In this article, the fringing field effect in a high resolution LC OPA is studied by accurate modeling the DE of the LC blazed gratings by LC director simulation and Finite Difference Time Domain (FDTD) simulation. Influence factors that contribute significantly to the DE are discussed. Such results provide fundamental understanding for high resolution LC devices.
Far-IR Measurements at Cerro Toco, Chile: FIRST, REFIR, and AERI
NASA Technical Reports Server (NTRS)
Cageao, Richard P.; Alford, J. Ashley; Johnson, David G.; Kratz, David P.; Mlynczak, Martin G.
2010-01-01
In mid-2009, the Radiative Heating in the Underexplored Bands Campaign II (RHUBC-II) was conducted from Cerro Toco, Chile, a high, dry, remote mountain plateau, 23degS , 67.8degW at 5.4km, in the Atacama Desert of Northern Chile. From this site, dominant IR water vapor absorption bands and continuum, saturated when viewed from the surface at lower altitudes, or in less dry locales, were investigated in detail, elucidating IR absorption and emission in the atmosphere. Three FTIR instruments were at the site, the Far-Infrared Spectroscopy of the Troposphere (FIRST), the Radiation Explorer in the Far Infrared (REFIR), and the Atmospheric Emitted Radiance Interferometer (AERI). In a side-by-side comparison, these measured atmospheric downwelling radiation, with overlapping spectral coverage from 5 to100um (2000 to 100/cm), and instrument spectral resolutions from 0.5 to 0.64/cm, unapodized. In addition to the FTIR and other ground-based IR and microwave instrumentation, pressure/temperature/relative humidity measuring sondes, for atmospheric profiles to 18km, were launched from the site several times a day. The derived water vapor profiles, determined at times matching the FTIR measurement times, were used to model atmospheric radiative transfer. Comparison of instrument data, all at the same spectral resolution, and model calculations, are presented along with a technique for determining adjustments to line-by-line calculation continuum models. This was a major objective of the campaign.
NASA Technical Reports Server (NTRS)
Sonneborn, George; Andre, Martial; Oliveira, Cristina; Hebrard, Guillaume; Howk, J. Christopher; Tripp, Todd M.; Chayer, Pierre; Friedman, Scott D.; Kruk, Jeffery W.; Jenkins, Edward B.;
2002-01-01
High resolution far-ultraviolet spectra of the O-type subdwarf BD+28(deg)4211 were obtained with the Far Ultraviolet Spectroscopic Explorer to measure the interstellar deuterium, nitrogen, and oxygen abundances in this direction. The interstellar D(I) transitions are analyzed down to Ly(ioat) at 920.7 A. The star was observed several times at different target offsets in the direction of spectral dispersion. The aligned and coedited spectra have high signal-to-noise ratios (S/N=50-100). D(I), N(I), and O(I) transitions were analyzed with curve-of-growth and profile fitting techniques. A model of interstellar molecular hydrogen on the line of sight was derived from H(II) lines in the FUSE spectra and used to help analyze some features where blending with H(II) was significant. The H(I) column density was determined from high resolution HST/STIS spectra of Ly(alpha) to be log N(H(I))= 19.846+/-0.035(2sigma), which is higher than is typical for sight lines in the local ISM studied for D/H. We found that D/H=(1.39+/-0.21)x 10(exp -5)(2sigma) and O/H=(2.37+/-0.55)x10(exp -4)(2sigma). O/H toward BD+28(deg)4211 appears to be significantly below the mean O/H ratio for the ISM and the Local Bubble.
NASA Astrophysics Data System (ADS)
Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan
2017-10-01
Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.
NASA Technical Reports Server (NTRS)
Robinson, Wayne D.; Kummerrow, Christian; Olson, William S.
1992-01-01
A correction technique is presented for matching the resolution of all the frequencies of the satelliteborne Special Sensor Microwave/Imager (SSM/I) to the about-25-km spatial resolution of the 37-GHz channel. This entails, on the one hand, the enhancement of the spatial resolution of the 19- and 22-GHz channels, and on the other, the degrading of that of the 85-GHz channel. The Backus and Gilbert (1970) approach is found to yield sufficient spatial resolution to render such a correction worthwhile.
Masoudi, Ali; Newson, Trevor P
2017-01-15
A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.
NASA Astrophysics Data System (ADS)
Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.
2014-10-01
The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.
Development of a low energy electron spectrometer for SCOPE
NASA Astrophysics Data System (ADS)
Tominaga, Yuu; Saito, Yoshifumi; Yokota, Shoichiro
We are newly developing a low-energy charged particle analyzer for the future satellite mission SCOPE (cross Scale COupling in the Plasma universE). The main purpose of the mission is to understand the cross scale coupling between macroscopic MHD scale phenomena and microscopic ion and electron-scale phenomena. In order to under-stand the dynamics of plasma in small scales, we need to observe the plasma with an analyzer which has high time resolution. For ion-scale phenomena, the time resolution must be as high as ion cyclotron frequency (-10 sec) in Earth's magnetosphere. However, for electron-scale phe-nomena, the time resolution must be as high as electron cyclotron frequency (-1 msec). The GEOTAIL satellite that observes Earth's magnetosphere has the analyzer whose time resolution is 12 sec, so the satellite can observe ion-scale phenomena. However in the SCOPE mission, we will go further to observe electron-scale phenomena. Then we need analyzers that have at least several msec time resolution. Besides, we need to make the analyzer as small as possible for the volume and weight restrictions of the satellite. The diameter of the top-hat analyzer must be smaller than 20 cm. In this study, we are developing an electrostatic analyzer that meets such requirements using numerical simulations. The electrostatic analyzer is a spherical/toroidal top-hat electrostatic analyzer with three nested spherical/toroidal deflectors. Using these deflectors, the analyzer measures charged particles simultaneously in two different energy ranges. Therefore time res-olution of the analyzer can be doubled. With the analyzer, we will measure energies from 10 eV to 22.5 keV. In order to obtain three-dimensional distribution functions of low energy parti-cles, the analyzer must have 4-pi str field of view. Conventional electrostatic analyzers use the spacecraft spin to have 4-pi field of view. So the time resolution of the analyzer depends on the spin frequency of the spacecraft. However, we cannot secure the several msec time resolution by using the spacecraft spin. In the SCOPE mission, we set 8 pairs of two nested electrostatic analyzers on each side of the spacecraft, which enable us to secure 4-pi field of view altogether. Then the time resolution of the analyzer does not depend on the spacecraft spin. Given that the sampling time of the analyzer is 0.5 msec, the time resolution of the analyzer can be 8 msec. In order to secure the time resolution as high as 10 msec, the geometric factor of the analyzer has to be as high as 8*10-3 (cm2 str eV/eV/22.5deg). Higher geometric factor requires bigger instrument. However, we have to reduce the volume and weight of the instrument to set it on the satellite. Under these restrictions, we have realized the analyzer which has the geometric factors of 7.5*10-3 (cm2 str eV/eV/22.5deg) (inner sphere) and 10.0*10-3 (cm2 str eV/eV/22.5deg) (outer sphere) with diameter of 17.4 cm.
Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.
2015-01-01
There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621
BRDF of Salt Pan Regolith Samples
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.
2008-01-01
Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported.
NASA Technical Reports Server (NTRS)
Mooley, K. P.; Hallinan, G.; Bourke, S.; Horesh, A.; Myers, S. T.; Frail, D. A.; Kulkarni, S. R.; Levitan, D. B.; Kasliwal, M. M.; Cenko, S. B.;
2016-01-01
We have commenced a multiyear program, the Caltech-NRAO Stripe 82 Survey (CNSS), to search for radio transients with the Jansky VLA in the Sloan Digital Sky Survey Stripe 82 region. The CNSS will deliver five epochs over the entire approx. 270 deg.(exp. 2) of Stripe 82, an eventual deep combined map with an rms noise of approx. 40 proper motion epoch y and catalogs at a frequency of 3 GHz, and having a spatial resolution of 3 inches. This first paper presents the results from an initial pilot survey of a 50 deg.(exp. 2) region of Stripe 82, involving four epochs spanning logarithmic timescales between 1 week and 1.5 yr, with the combined map having a median rms noise of 35 proper motion epoch y. This pilot survey enabled the development of the hardware and software for rapid data processing, as well as transient detection and follow-up, necessary for the full 270 deg.(exp. 2) survey. Data editing, calibration, imaging, source extraction, cataloging, and transient identification were completed in a semi-automated fashion within 6 hr of completion of each epoch of observations, using dedicated computational hardware at the NRAO in Socorro and custom-developed data reduction and transient detection pipelines. Classification of variable and transient sources relied heavily on the wealth of multiwavelength legacy survey data in the Stripe 82 region, supplemented by repeated mapping of the region by the Palomar Transient Factory. A total of 3.9(+0.5%/-0.9%) of the few thousand detected point sources werefound to vary by greater than 30%, consistent with similar studies at 1.4 and 5 GHz. Multiwavelength photometric data and light curves suggest that the variability is mostly due to shock-induced flaring in the jets of active galactic nuclei (AGNs). Although this was only a pilot survey, we detected two bona fide transients, associated with an RS CVn binary and a dKe star. Comparison with existing legacy survey data (FIRST, VLA-Stripe 82) revealed additional highly variable and transient sources on timescales between 5 and 20 yr, largely associated with renewed AGN activity. The rates of such AGNs possibly imply episodes of enhanced accretion and jet activity occurring once every approx. 40,000 yr in these galaxies. We compile the revised radio transient rates and make recommendations for future transient surveys and joint radio-optical experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Melanie; Miller, Stuart; Tang, Katherine
Purpose: MANTIS is a Monte Carlo code developed for the detailed simulation of columnar CsI scintillator screens in x-ray imaging systems. Validation of this code is needed to provide a reliable and valuable tool for system optimization and accurate reconstructions for a variety of x-ray applications. Whereas previous validation efforts have focused on matching of summary statistics, in this work the authors examine the complete point response function (PRF) of the detector system in addition to relative light output values. Methods: Relative light output values and high-resolution PRFs have been experimentally measured with a custom setup. A corresponding set ofmore » simulated light output values and PRFs have also been produced, where detailed knowledge of the experimental setup and CsI:Tl screen structures are accounted for in the simulations. Four different screens were investigated with different thicknesses, column tilt angles, and substrate types. A quantitative comparison between the experimental and simulated PRFs was performed for four different incidence angles (0 deg., 15 deg., 30 deg., and 45 deg.) and two different x-ray spectra (40 and 70 kVp). The figure of merit (FOM) used measures the normalized differences between the simulated and experimental data averaged over a region of interest. Results: Experimental relative light output values ranged from 1.456 to 1.650 and were in approximate agreement for aluminum substrates, but poor agreement for graphite substrates. The FOMs for all screen types, incidence angles, and energies ranged from 0.1929 to 0.4775. To put these FOMs in context, the same FOM was computed for 2D symmetric Gaussians fit to the same experimental data. These FOMs ranged from 0.2068 to 0.8029. Our analysis demonstrates that MANTIS reproduces experimental PRFs with higher accuracy than a symmetric 2D Gaussian fit to the experimental data in the majority of cases. Examination of the spatial distribution of differences between the PRFs shows that the main reason for errors between MANTIS and the experimental data is that MANTIS-generated PRFs are sharper than the experimental PRFs. Conclusions: The experimental validation of MANTIS performed in this study demonstrates that MANTIS is able to reliably predict experimental PRFs, especially for thinner screens, and can reproduce the highly asymmetric shape seen in the experimental data. As a result, optimizations and reconstructions carried out using MANTIS should yield results indicative of actual detector performance. Better characterization of screen properties is necessary to reconcile the simulated light output values with experimental data.« less
Change of spatial information under rescaling: A case study using multi-resolution image series
NASA Astrophysics Data System (ADS)
Chen, Weirong; Henebry, Geoffrey M.
Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features portrayed by pixels are equally weighted regardless of the shape and extent of the underlying scene objects, the rescaled image retains more of the original spatial information than would occur through direct observation at a coarser sensor spatial resolution. In contrast, for the observed images, due to the effect of the modulation transfer function (MTF) of the imaging system, high frequency features like edges are blurred or lost as the pixel size increases, resulting in greater variation in spatial structure. Successive applications of a low-pass spatial convolution filter are shown to mimic a MTF. Accordingly, it is recommended that such a procedure be applied prior to rescaling by simple block averaging, if insufficient image metadata exist to replicate the net MTF of the imaging system, as might be expected in land cover change analysis studies using historical imagery.
Satellite image fusion based on principal component analysis and high-pass filtering.
Metwalli, Mohamed R; Nasr, Ayman H; Allah, Osama S Farag; El-Rabaie, S; Abd El-Samie, Fathi E
2010-06-01
This paper presents an integrated method for the fusion of satellite images. Several commercial earth observation satellites carry dual-resolution sensors, which provide high spatial resolution or simply high-resolution (HR) panchromatic (pan) images and low-resolution (LR) multi-spectral (MS) images. Image fusion methods are therefore required to integrate a high-spectral-resolution MS image with a high-spatial-resolution pan image to produce a pan-sharpened image with high spectral and spatial resolutions. Some image fusion methods such as the intensity, hue, and saturation (IHS) method, the principal component analysis (PCA) method, and the Brovey transform (BT) method provide HR MS images, but with low spectral quality. Another family of image fusion methods, such as the high-pass-filtering (HPF) method, operates on the basis of the injection of high frequency components from the HR pan image into the MS image. This family of methods provides less spectral distortion. In this paper, we propose the integration of the PCA method and the HPF method to provide a pan-sharpened MS image with superior spatial resolution and less spectral distortion. The experimental results show that the proposed fusion method retains the spectral characteristics of the MS image and, at the same time, improves the spatial resolution of the pan-sharpened image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Ji Hyun; Song, Zhihong; Liu, Zhenjiu
High-spatial resolution and high-mass resolution techniques are developed and adopted for the mass spectrometric imaging of epicuticular lipids on the surface of Arabidopsis thaliana. Single cell level spatial resolution of {approx}12 {micro}m was achieved by reducing the laser beam size by using an optical fiber with 25 {micro}m core diameter in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer and improved matrix application using an oscillating capillary nebulizer. Fine chemical images of a whole flower were visualized in this high spatial resolution showing substructure of an anther and single pollen grains at the stigma and anthers. Themore » LTQ-Orbitrap with a MALDI ion source was adopted to achieve MS imaging in high mass resolution. Specifically, isobaric silver ion adducts of C29 alkane (m/z 515.3741) and C28 aldehyde (m/z 515.3377), indistinguishable in low-resolution LTQ, can now be clearly distinguished and their chemical images could be separately constructed. In the application to roots, the high spatial resolution allowed molecular MS imaging of secondary roots and the high mass resolution allowed direct identification of lipid metabolites on root surfaces.« less
The spatial resolution of a rotating gamma camera tomographic facility.
Webb, S; Flower, M A; Ott, R J; Leach, M O; Inamdar, R
1983-12-01
An important feature determining the spatial resolution in transverse sections reconstructed by convolution and back-projection is the frequency filter corresponding to the convolution kernel. Equations have been derived giving the theoretical spatial resolution, for a perfect detector and noise-free data, using four filter functions. Experiments have shown that physical constraints will always limit the resolution that can be achieved with a given system. The experiments indicate that the region of the frequency spectrum between KN/2 and KN where KN is the Nyquist frequency does not contribute significantly to resolution. In order to investigate the physical effect of these filter functions, the spatial resolution of reconstructed images obtained with a GE 400T rotating gamma camera has been measured. The results obtained serve as an aid to choosing appropriate reconstruction filters for use with a rotating gamma camera system.
A high time and spatial resolution MRPC designed for muon tomography
NASA Astrophysics Data System (ADS)
Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.
2014-12-01
A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.
Leng, Shuai; Rajendran, Kishore; Gong, Hao; Zhou, Wei; Halaweish, Ahmed F; Henning, Andre; Kappler, Steffen; Baer, Matthias; Fletcher, Joel G; McCollough, Cynthia H
2018-05-28
The aims of this study were to quantitatively assess two new scan modes on a photon-counting detector computed tomography system, each designed to maximize spatial resolution, and to qualitatively demonstrate potential clinical impact using patient data. This Health Insurance Portability Act-compliant study was approved by our institutional review board. Two high-spatial-resolution scan modes (Sharp and UHR) were evaluated using phantoms to quantify spatial resolution and image noise, and results were compared with the standard mode (Macro). Patients were scanned using a conventional energy-integrating detector scanner and the photon-counting detector scanner using the same radiation dose. In first patient images, anatomic details were qualitatively evaluated to demonstrate potential clinical impact. Sharp and UHR modes had a 69% and 87% improvement in in-plane spatial resolution, respectively, compared with Macro mode (10% modulation-translation-function values of 16.05, 17.69, and 9.48 lp/cm, respectively). The cutoff spatial frequency of the UHR mode (32.4 lp/cm) corresponded to a limiting spatial resolution of 150 μm. The full-width-at-half-maximum values of the section sensitivity profiles were 0.41, 0.44, and 0.67 mm for the thinnest image thickness for each mode (0.25, 0.25, and 0.5 mm, respectively). At the same in-plane spatial resolution, Sharp and UHR images had up to 15% lower noise than Macro images. Patient images acquired in Sharp mode demonstrated better delineation of fine anatomic structures compared with Macro mode images. Phantom studies demonstrated superior resolution and noise properties for the Sharp and UHR modes relative to the standard Macro mode and patient images demonstrated the potential benefit of these scan modes for clinical practice.
The Analytical Limits of Modeling Short Diffusion Timescales
NASA Astrophysics Data System (ADS)
Bradshaw, R. W.; Kent, A. J.
2016-12-01
Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Gul, M. Shahzeb Khan; Gunturk, Bahadir K.
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.
Gul, M Shahzeb Khan; Gunturk, Bahadir K
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Toward a more efficient and scalable checkpoint/restart mechanism in the Community Atmosphere Model
NASA Astrophysics Data System (ADS)
Anantharaj, Valentine
2015-04-01
The number of cores (both CPU as well as accelerator) in large-scale systems has been increasing rapidly over the past several years. In 2008, there were only 5 systems in the Top500 list that had over 100,000 total cores (including accelerator cores) whereas the number of system with such capability has jumped to 31 in Nov 2014. This growth however has also increased the risk of hardware failure rates, necessitating the implementation of fault tolerance mechanism in applications. The checkpoint and restart (C/R) approach is commonly used to save the state of the application and restart at a later time either after failure or to continue execution of experiments. The implementation of an efficient C/R mechanism will make it more affordable to output the necessary C/R files more frequently. The availability of larger systems (more nodes, memory and cores) has also facilitated the scaling of applications. Nowadays, it is more common to conduct coupled global climate simulation experiments at 1 deg horizontal resolution (atmosphere), often requiring about 103 cores. At the same time, a few climate modeling teams that have access to a dedicated cluster and/or large scale systems are involved in modeling experiments at 0.25 deg horizontal resolution (atmosphere) and 0.1 deg resolution for the ocean. These ultrascale configurations require the order of 104 to 105 cores. It is not only necessary for the numerical algorithms to scale efficiently but the input/output (IO) mechanism must also scale accordingly. An ongoing series of ultrascale climate simulations, using the Titan supercomputer at the Oak Ridge Leadership Computing Facility (ORNL), is based on the spectral element dynamical core of the Community Atmosphere Model (CAM-SE), which is a component of the Community Earth System Model and the DOE Accelerated Climate Model for Energy (ACME). The CAM-SE dynamical core for a 0.25 deg configuration has been shown to scale efficiently across 100,000 cpu cores. At this scale, there is an increased risk that the simulation could be terminated due to hardware failures, resulting in a loss that could be as high as 105 - 106 titan core hours. Increasing the frequency of the output of C/R files could mitigate this loss but at the cost of additional C/R overhead. We are testing a more efficient C/R mechanism in CAM-SE. Our early implementation has demonstrated a nearly 3X performance improvement for a 1 deg CAM-SE (with CAM5 physics and MOZART chemistry) configuration using nearly 103 cores. We are in the process of scaling our implementation to 105 cores. This would allow us to run ultra scale simulations with more sophisticated physics and chemistry options while making better utilization of resources.
Multi-Resolution Analysis of MODIS and ASTER Satellite Data for Water Classification
2006-09-01
spectral bands, but also with different pixel resolutions . The overall goal... the total water surface. Due to the constraint that high spatial resolution satellite images are low temporal resolution , one needs a reliable method...at 15 m resolution , were processed. We used MODIS reflectance data from MOD02 Level 1B data. Even the spatial resolution of the 1240 nm
Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils
NASA Technical Reports Server (NTRS)
Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.
1992-01-01
The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Venkat; Cole, Wesley
Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less
Molecular clouds in the Carina arm
NASA Technical Reports Server (NTRS)
Grabelsky, D. A.
1986-01-01
Results from the first large-scale survey in the CO(J = 1 to 0) line of the Vela-Carina-Centaurus region of the Southern Milky Way are reported. The observations, made with the Columbia University 1.2 m millimeter-wave telescope at Cerro Tololo, were spaced every beamwidth (0.125 deg) in the range 270 deg is less than or = l is less than or = 300 deg and -1 deg less than or = b less then or = 1 deg, with latitude extensions to cover all Carina arm emission beyond absolute b = 1 deg. In a concurrent survey made with the same telescope, every half-degree in latitude and longitude was sampled. Both surveys had a spectral coverage of 330 km/s with a resolution of 1.3 km/s. The Carina arm is the dominant feature in the data. Its abrupt tangent at l is approx. = 280 deg and characteristic loop in the l,v diagram are unmistakable evidence for CO spiral structure. When the emission is integrated over velocity and latitude, the height of the step seen in the tangent direction suggests that the arm-interarm contrast is at least 13:1. Comparison of the CO and H I data shows close agreement between these two species in a segment of the arm lying outside the solar circle. The distribution of the molecular layer about the galactic plane in the outer Galaxy is determined. Between R = 10.5 and 12.5 kpc, the average CO midplane dips from z = -48 to -167 pc below the b = 0 deg plane, following a similar well-known warping of the H I layer. In the same range of radii the half-thickness of the CO layer increases from 112 to 182 pc. Between l = 270 deg and 300 deg, 27 molecular clouds are identified and cataloged along with heliocentric distances and masses. An additional 16 clouds beyond 300 deg are cataloged from an adjoining CO survey made with the same telescope. The average mass for the Carina arm clouds is 1.4x 10(6)M (solar), and the average intercloud spacing along the arm is 700 pc. Comparison of the distribution of the Carina arm clouds with that of similarly massive molecular clouds in the first and second quadrants strongly suggests that the Carina and Sagittarius arms form a single spiral arm approx. 40 kpc long wrapping two-thirds of the way around the Galaxy.
Eye Movement Abnormalities in Joubert Syndrome
Weiss, Avery H.; Doherty, Dan; Parisi, Melissa; Shaw, Dennis; Glass, Ian; Phillips, James O.
2011-01-01
Purpose Joubert syndrome is a genetic disorder characterized by hypoplasia of the midline cerebellum and deficiency of crossed connections between neural structures in the brain stem that control eye movements. The goal of the study was to quantify the eye movement abnormalities that occur in Joubert syndrome. Methods Eye movements were recorded in response to stationary stimuli and stimuli designed to elicit smooth pursuit, saccades, optokinetic nystagmus (OKN), vestibulo-ocular reflex (VOR), and vergence using video-oculography or Skalar search coils in 8 patients with Joubert syndrome. All patients underwent high-resolution magnetic resonance imaging (MRI). Results All patients had the highly characteristic molar tooth sign on brain MRI. Six patients had conjugate pendular (n = 4) or see-saw nystagmus (n = 2); gaze holding was stable in four patients. Smooth-pursuit gains were 0.28 to 1.19, 0.11 to 0.68, and 0.33 to 0.73 at peak stimulus velocities of 10, 20, and 30 deg/s in six patients; smooth pursuit could not be elicited in four patients. Saccade gains in five patients ranged from 0.35 to 0.91 and velocities ranged from 60.9 to 259.5 deg/s. Targeted saccades could not be elicited in five patients. Horizontal OKN gain was uniformly reduced across gratings drifted at velocities of 15, 30, and 45 deg/s. VOR gain was 0.8 or higher and phase appropriate in three of seven subjects; VOR gain was 0.3 or less and phase was indeterminate in four subjects. Conclusions The abnormalities in gaze-holding and eye movements are consistent with the distributed abnormalities of midline cerebellum and brain stem regions associated with Joubert syndrome. PMID:19443711
Global Variations in Regolith Properties on Asteroid Vesta from Dawn's Low-Altitude Mapping Orbit
NASA Technical Reports Server (NTRS)
Denevi, Brett W.; Beck, Andrew W.; Coman, Ecaterina; Thomson, Bradley J.; Ammannito, Eleonora; Blewett, David T.; Sunshine, Jessica M.; De Sanctis, Maria Cristina; Li, Jian-Yang; Marchi, Simone;
2016-01-01
We investigate the depth, variability, and history of regolith on asteroid Vesta using data from the Dawn spacecraft. High-resolution (15-20 m pixel(sup -1)) Framing Cameraimages are used to assess the presence of morphologic indicators of a shallow regolith,including the presence of blocks in crater ejecta, spur-and-gully-type features in crater walls,and the retention of small (less than 300 m) impact craters. Such features reveal that the broad,regional heterogeneities observed on Vesta in terms of albedo and surface composition extend to the physical properties of the upper approx. 1 km of the surface. Regions of thin regolithare found within the Rheasilvia basin and at equatorial latitudes from approx. 0-90 deg. E and approx.260-360 deg. E. Craters in these areas that appear to excavate material from beneath the regolithhave more diogenitic (Rheasilvia, 090 deg. E) and cumulate eucrite (260-360 deg. E) compositions.A region of especially thick regolith, where depths generally exceed 1 km, is found from approx.100-240 deg. E and corresponds to heavily cratered, low-albedo surface with a basaltic eucritecomposition enriched in carbonaceous chondrite material. The presence of a thick regolithin this area supports the idea that this is an ancient terrain that has accumulated a larger component of exogenic debris. We find evidence for the gardening of crater ejecta towardmore howarditic compositions, consistent with regolith mixing being the dominant form of "weathering" on Vesta.
ON THE CLUSTERING OF SUBMILLIMETER GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Christina C.; Giavalisco, Mauro; Yun, Min S.
2011-06-01
We measure the angular two-point correlation function of submillimeter galaxies (SMGs) from 1.1 mm imaging of the COSMOS field with the AzTEC camera and ASTE 10 m telescope. These data yield one of the largest contiguous samples of SMGs to date, covering an area of 0.72 deg{sup 2} down to a 1.26 mJy beam{sup -1} (1{sigma}) limit, including 189 (328) sources with S/N {>=}3.5 (3). We can only set upper limits to the correlation length r{sub 0}, modeling the correlation function as a power law with pre-assigned slope. Assuming existing redshift distributions, we derive 68.3% confidence level upper limits ofmore » r{sub 0} {approx}< 6-8h{sup -1} Mpc at 3.7 mJy and r{sub 0} {approx}< 11-12 h{sup -1} Mpc at 4.2 mJy. Although consistent with most previous estimates, these upper limits imply that the real r{sub 0} is likely smaller. This casts doubts on the robustness of claims that SMGs are characterized by significantly stronger spatial clustering (and thus larger mass) than differently selected galaxies at high redshift. Using Monte Carlo simulations we show that even strongly clustered distributions of galaxies can appear unclustered when sampled with limited sensitivity and coarse angular resolution common to current submillimeter surveys. The simulations, however, also show that unclustered distributions can appear strongly clustered under these circumstances. From the simulations, we predict that at our survey depth, a mapped area of 2 deg{sup 2} is needed to reconstruct the correlation function, assuming smaller beam sizes of future surveys (e.g., the Large Millimeter Telescope's 6'' beam size). At present, robust measures of the clustering strength of bright SMGs appear to be below the reach of most observations.« less
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Gaddis, L. R.; Hagerty, J. J.
2010-01-01
The first systematic lunar geologic maps were completed at 1:1M scale for the lunar near side during the 1960s using telescopic and Lunar Orbiter (LO) photographs [1-3]. The program under which these maps were completed established precedents for map base, scale, projection, and boundaries in order to avoid widely discrepant products. A variety of geologic maps were subsequently produced for various purposes, including 1:5M scale global maps [4-9] and large scale maps of high scientific interest (including the Apollo landing sites) [10]. Since that time, lunar science has benefitted from an abundance of surface information, including high resolution images and diverse compositional data sets, which have yielded a host of topical planetary investigations. The existing suite of lunar geologic maps and topical studies provide exceptional context in which to unravel the geologic history of the Moon. However, there has been no systematic approach to lunar geologic mapping since the flight of post-Apollo scientific orbiters. Geologic maps provide a spatial and temporal framework wherein observations can be reliably benchmarked and compared. As such, a lack of a systematic mapping program means that modern (post- Apollo) data sets, their scientific ramifications, and the lunar scientists who investigate these data, are all marginalized in regard to geologic mapping. Marginalization weakens the overall understanding of the geologic evolution of the Moon and unnecessarily partitions lunar research. To bridge these deficiencies, we began a pilot geologic mapping project in 2005 as a means to assess the interest, relevance, and technical methods required for a renewed lunar geologic mapping program [11]. Herein, we provide a summary of the pilot geologic mapping project, which focused on the geologic materials and stratigraphic relationships within the Copernicus quadrangle (0-30degN, 0-45degW).
Decomposition of Sources of Errors in Seasonal Streamflow Forecasting over the U.S. Sunbelt
NASA Technical Reports Server (NTRS)
Mazrooei, Amirhossein; Sinah, Tusshar; Sankarasubramanian, A.; Kumar, Sujay V.; Peters-Lidard, Christa D.
2015-01-01
Seasonal streamflow forecasts, contingent on climate information, can be utilized to ensure water supply for multiple uses including municipal demands, hydroelectric power generation, and for planning agricultural operations. However, uncertainties in the streamflow forecasts pose significant challenges in their utilization in real-time operations. In this study, we systematically decompose various sources of errors in developing seasonal streamflow forecasts from two Land Surface Models (LSMs) (Noah3.2 and CLM2), which are forced with downscaled and disaggregated climate forecasts. In particular, the study quantifies the relative contributions of the sources of errors from LSMs, climate forecasts, and downscaling/disaggregation techniques in developing seasonal streamflow forecast. For this purpose, three month ahead seasonal precipitation forecasts from the ECHAM4.5 general circulation model (GCM) were statistically downscaled from 2.8deg to 1/8deg spatial resolution using principal component regression (PCR) and then temporally disaggregated from monthly to daily time step using kernel-nearest neighbor (K-NN) approach. For other climatic forcings, excluding precipitation, we considered the North American Land Data Assimilation System version 2 (NLDAS-2) hourly climatology over the years 1979 to 2010. Then the selected LSMs were forced with precipitation forecasts and NLDAS-2 hourly climatology to develop retrospective seasonal streamflow forecasts over a period of 20 years (1991-2010). Finally, the performance of LSMs in forecasting streamflow under different schemes was analyzed to quantify the relative contribution of various sources of errors in developing seasonal streamflow forecast. Our results indicate that the most dominant source of errors during winter and fall seasons is the errors due to ECHAM4.5 precipitation forecasts, while temporal disaggregation scheme contributes to maximum errors during summer season.
Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet
NASA Technical Reports Server (NTRS)
Simon-Miller, Amy A.; Choi, David; Rogers, John H.; Gierasch, Peter J.; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg
2012-01-01
A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and accelerations over distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of approx 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75 to 100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 +/- 0.7-day period. This oscillating motion has a wavelength of approx 20 and a speed of 101 +/- 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of mUltiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.
Easy way to determine quantitative spatial resolution distribution for a general inverse problem
NASA Astrophysics Data System (ADS)
An, M.; Feng, M.
2013-12-01
The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.
Search for Jovian auroral hot spots
NASA Technical Reports Server (NTRS)
Atreya, S. K.; Barker, E. S.; Yung, Y. L.; Donahue, T. M.
1977-01-01
Auroral emission originating at the foot of the Io-associated flux tube at Jupiter has been detected with a high-resolution spectrometer/telescope on board the Orbiting Astronomical Observatory Copernicus. The emission intensity at Ly-alpha is found to be greater than 100 kR, and the emission is located at zenographic latitudes greater than 65 deg.
NASA Astrophysics Data System (ADS)
Petrou, Zisis I.; Xian, Yang; Tian, YingLi
2018-04-01
Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.
Use of UAS remote sensing data to estimate crop ET at high spatial resolution
USDA-ARS?s Scientific Manuscript database
Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. However, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the spatial resolution to capture...
Late Holocene Environmental Changes from NY-NJ Estuaries
NASA Technical Reports Server (NTRS)
Peteet, Dorothy M.
2000-01-01
High-resolution records of environmental change in the lower Hudson estuary are quite rare. We present preliminary data from several marshes in the New York- New Jersey region in order to understand the late Holocene environmental history of this region. Our project includes salt marsh cores from Hackensack, Piermont, Staten Island, and Jamaica Bay. Our preliminary research has focused on a 11.15 m sediment core from Piermont Marsh, New York (40 deg N, 74 deg W) in an attempt to document the Holocene environmental history of the region. Lithology, loss -on -ignition (LOI), pollen, plant macrofossils, charcoal, and foraminifera were analyzed. Core lithology consists of peat, silts, and clays that vary in color and texture. The base of the core is AMS C-14 dated to 4190 yr BP. Preliminary low-resolution analysis of the core to date includes sampling at the 1-meter interval throughout the core. LOI of the sediments ranges from 1% to 85%. Average rate of deposition is about .26 cm/yr. Major changes in pollen percentages are visible throughout the core.
Calibration and performance of the UCR double Compton gamma ray telescope
NASA Technical Reports Server (NTRS)
Ait-Ouamer, Farid; Kerrick, Alan D.; Sarmouk, Abderrezak; O'Neill, Terrence J.; Sweeney, William E.
1990-01-01
Results of the field calibration and performance of the UCR double Compton gamma-ray telescope are presented. The telescope is a balloon-borne instrument with an upper array of 16 plastic scintillator bars and a lower one of 16 NaI(Tl) bars. The telescope is sensitive to celestial gamma rays from 1 to 30 MeV. The data were collected on February 14, 1988 prior to launch in Alice Springs, Australia to observe SN 1987A. Radioactive sources were used to calibrate the energy deposits in the scintillators. Each bar was analyzed laterally using pulse height or timing to obtain the positions of the gamma ray interactions. Double scatter events from an Na-24 source simulating a celestial source were studied to obtain the general performance of the telescope and to develop imaging techniques, later used with the flight data. An angular resolution of 11 deg FWHM and energy resolutions of 13 and 10 percent FWHM at 1.37 and 2.75 MeV, respectively, were found. The efficiency of the telescope is 0.0035 at 1.37 MeV and zenith angle 31 deg.
LOFAR 150-MHz observations of the Boötes field: catalogue and source counts
NASA Astrophysics Data System (ADS)
Williams, W. L.; van Weeren, R. J.; Röttgering, H. J. A.; Best, P.; Dijkema, T. J.; de Gasperin, F.; Hardcastle, M. J.; Heald, G.; Prandoni, I.; Sabater, J.; Shimwell, T. W.; Tasse, C.; van Bemmel, I. M.; Brüggen, M.; Brunetti, G.; Conway, J. E.; Enßlin, T.; Engels, D.; Falcke, H.; Ferrari, C.; Haverkorn, M.; Jackson, N.; Jarvis, M. J.; Kapińska, A. D.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Morganti, R.; Orrú, E.; Retana-Montenegro, E.; Sridhar, S. S.; Toribio, M. C.; White, G. J.; Wise, M. W.; Zwart, J. T. L.
2016-08-01
We present the first wide area (19 deg2), deep (≈120-150 μJy beam-1), high-resolution (5.6 × 7.4 arcsec) LOFAR High Band Antenna image of the Boötes field made at 130-169 MHz. This image is at least an order of magnitude deeper and 3-5 times higher in angular resolution than previously achieved for this field at low frequencies. The observations and data reduction, which includes full direction-dependent calibration, are described here. We present a radio source catalogue containing 6 276 sources detected over an area of 19 deg2, with a peak flux density threshold of 5σ. As the first thorough test of the facet calibration strategy, introduced by van Weeren et al., we investigate the flux and positional accuracy of the catalogue. We present differential source counts that reach an order of magnitude deeper in flux density than previously achieved at these low frequencies, and show flattening at 150-MHz flux densities below 10 mJy associated with the rise of the low flux density star-forming galaxies and radio-quiet AGN.
NASA Astrophysics Data System (ADS)
Shimamoto, Atsushi; Tanaka, Kohichi
1995-09-01
An optical fiber bundle displacement sensor with subnanometer order resolution and low thermal drift is proposed. The setup is based on a carrier amplifier system and involves techniques to eliminate fluctuation in the light power of the source. The achieved noise level of the sensor was 0.03 nm/ \\radical Hz \\end-radical . The stability was estimated by comparing the outputs of two different sensors from the same target for 4 ks (67 min). The relative displacements between the fiber bundle ends of the two sensors and the target surface varied in the area of 400 nm depending on the ambient temperature variation at 2 deg C. However, the difference in output between the two sensor systems is within 2 nm for more than 1 hour of measurement. It is expected that it would be reduced to within the area of 0.1 nm if the ambient temperature were controlled to within +/-0.1 deg C. It is concluded that the stability of the sensors is sufficiently good to be used with nanotechnological instruments.
Marcinkowski, Radosław; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan
2016-03-07
The mouse model is widely used in a vast range of biomedical and preclinical studies. Thanks to the ability to detect and quantify biological processes at the molecular level in vivo, PET has become a well-established tool in these investigations. However, the need to visualize and quantify radiopharmaceuticals in anatomic structures of millimetre or less requires good spatial resolution and sensitivity from small-animal PET imaging systems.In previous work we have presented a proof-of-concept of a dedicated high-resolution small-animal PET scanner based on thin monolithic scintillator crystals and Digital Photon Counter photosensor. The combination of thin monolithic crystals and MLE positioning algorithm resulted in an excellent spatial resolution of 0.7 mm uniform in the entire field of view (FOV). However, the limitation of the scanner was its low sensitivity due to small thickness of the lutetium-yttrium oxyorthosilicate (LYSO) crystals (2 mm).Here we present an improved detector design for a small-animal PET system that simultaneously achieves higher sensitivity and sustains a sub-millimetre spatial resolution. The proposed detector consists of a 5 mm thick monolithic LYSO crystal optically coupled to a Digital Photon Counter. Mean nearest neighbour (MNN) positioning combined with depth of interaction (DOI) decoding was employed to achieve sub-millimetre spatial resolution. To evaluate detector performance the intrinsic spatial resolution, energy resolution and coincidence resolving time (CRT) were measured. The average intrinsic spatial resolution of the detector was 0.60 mm full-width-at-half-maximum (FWHM). A DOI resolution of 1.66 mm was achieved. The energy resolution was 23% FWHM at 511 keV and CRT of 529 ps were measured. The improved detector design overcomes the sensitivity limitation of the previous design by increasing the nominal sensitivity of the detector block and retains an excellent intrinsic spatial resolution.
Lee, D K; Song, Y K; Park, B W; Cho, H P; Yeom, J S; Cho, G; Cho, H
2018-04-15
To evaluate the robustness of MR transverse relaxation times of trabecular bone from spin-echo and gradient-echo acquisitions at multiple spatial resolutions of 7 T. The effects of MRI resolutions to T 2 and T2* of trabecular bone were numerically evaluated by Monte Carlo simulations. T 2 , T2*, and trabecular structural indices from multislice multi-echo and UTE acquisitions were measured in defatted human distal femoral condyles on a 7 T scanner. Reference structural indices were extracted from high-resolution microcomputed tomography images. For bovine knee trabecular samples with intact bone marrow, T 2 and T2* were measured by degrading spatial resolutions on a 7 T system. In the defatted trabecular experiment, both T 2 and T2* values showed strong ( |r| > 0.80) correlations with trabecular spacing and number, at a high spatial resolution of 125 µm 3 . The correlations for MR image-segmentation-derived structural indices were significantly degraded ( |r| < 0.50) at spatial resolutions of 250 and 500 µm 3 . The correlations for T2* rapidly dropped ( |r| < 0.50) at a spatial resolution of 500 µm 3 , whereas those for T 2 remained consistently high ( |r| > 0.85). In the bovine trabecular experiments with intact marrow, low-resolution (approximately 1 mm 3 , 2 minutes) T 2 values did not shorten ( |r| > 0.95 with respect to approximately 0.4 mm 3 , 11 minutes) and maintained consistent correlations ( |r| > 0.70) with respect to trabecular spacing (turbo spin echo, 22.5 minutes). T 2 measurements of trabeculae at 7 T are robust with degrading spatial resolution and may be preferable in assessing trabecular spacing index with reduced scan time, when high-resolution 3D micro-MRI is difficult to obtain. © 2018 International Society for Magnetic Resonance in Medicine.
On the assessment of spatial resolution of PET systems with iterative image reconstruction
NASA Astrophysics Data System (ADS)
Gong, Kuang; Cherry, Simon R.; Qi, Jinyi
2016-03-01
Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.
Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, G.; Lin, T.
2013-12-01
Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the potential assist in the NWP model.
Ultra high spatial and temporal resolution breast imaging at 7T.
van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J
2013-04-01
There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.
High Efficiency Multi-shot Interleaved Spiral-In/Out Acquisition for High Resolution BOLD fMRI
Jung, Youngkyoo; Samsonov, Alexey A.; Liu, Thomas T.; Buracas, Giedrius T.
2012-01-01
Growing demand for high spatial resolution BOLD functional MRI faces a challenge of the spatial resolution vs. coverage or temporal resolution tradeoff, which can be addressed by methods that afford increased acquisition efficiency. Spiral acquisition trajectories have been shown to be superior to currently prevalent echo-planar imaging in terms of acquisition efficiency, and high spatial resolution can be achieved by employing multiple-shot spiral acquisition. The interleaved spiral in-out trajectory is preferred over spiral-in due to increased BOLD signal CNR and higher acquisition efficiency than that of spiral-out or non-interleaved spiral in/out trajectories (1), but to date applicability of the multi-shot interleaved spiral in-out for high spatial resolution imaging has not been studied. Herein we propose multi-shot interleaved spiral in-out acquisition and investigate its applicability for high spatial resolution BOLD fMRI. Images reconstructed from interleaved spiral-in and -out trajectories possess artifacts caused by differences in T2* decay, off-resonance and k-space errors associated with the two trajectories. We analyze the associated errors and demonstrate that application of conjugate phase reconstruction and spectral filtering can substantially mitigate these image artifacts. After applying these processing steps, the multishot interleaved spiral in-out pulse sequence yields high BOLD CNR images at in-plane resolution below 1x1 mm while preserving acceptable temporal resolution (4 s) and brain coverage (15 slices of 2 mm thickness). Moreover, this method yields sufficient BOLD CNR at 1.5 mm isotropic resolution for detection of activation in hippocampus associated with cognitive tasks (Stern memory task). The multi-shot interleaved spiral in-out acquisition is a promising technique for high spatial resolution BOLD fMRI applications. PMID:23023395
High resolution paleoceanography of the central Gulf of California during the past 15,000 years
NASA Astrophysics Data System (ADS)
Barron, J. A.; Bukry, D.; Dean, W. E.
2004-12-01
A high resolution paleoceanographic history of the central Gulf of California during the past 15,000 years has been assembled using microfossil (diatom and silicoflagellate) and geochemical proxy data from a composite section of gravity core GGC55 and giant piston core JPC56 in the western Guaymas Basin (27.5 deg. N, 112.1 deg. W, water depth 818 m) and from DSDP Site 480 (27.9 deg. N, 111.7 deg. W, 655 m water depth) in the eastern Guaymas Basin. These data argue for abrupt, basin-wide changes during the Bolling-Allerod, Younger Dryas, and earliest part of the Holocene that mirror changes documented in cores from the Pacific margins of both Baja and Alta California. Between about 10 ka and 6 ka, these central Gulf of California records became more regionally distinctive, as surface and intermediate waters resembling those of the modern-day northern Gulf became dominant and virtually no calcium carbonate or tropical microfossils were preserved in the underlying sediments. Beginning at about 6 ka, tropical microfossils returned to the central Gulf, possibly signaling enhanced El Nino-like conditions. Proxy data suggest that late winter-early spring coastal upwelling was abruptly strengthened on the mainland (eastern) side at about 5.4 ka and again at about 3.0 ka, whereas sediments from the western side of the central Gulf became increasingly diatom poor and calcium carbonate rich. An intensification of northwest winds during the late winter to early spring likely occurred in the central Gulf at about 5.4 ka. Interestingly, this proposed wind shift in the Gulf of California coincides with an abrupt 5.4 ka change to drier conditions in the Cariaco Basin off Venezuela that has been proposed to reflect a southward shift in the mean position of the Intertropical Convergence Zone in response to increasing El Nino-like conditions.
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric
2002-01-01
Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the 20-year data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the 20 year period. Monthly anomalies of precipitation are related to ENS0 variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 deg. latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is discussed. Finally, a TRMM-based 3-hr analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous IR observations and merges the various calibrated observations into a final, 3-hr resolution map. This TRMM standard product will be available for the entire TRMM period (January 1998-present). A real-time version of this merged product is being produced and is available at 0.25 deg. latitude-longitude resolution over the latitude range from 5O deg. N-50 deg. S. Examples are shown, including its use in monitoring flood conditions.
The Wide Field X-ray Telescope Mission
NASA Astrophysics Data System (ADS)
Murray, Stephen S.; WFXT Team
2010-01-01
To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.
The Coupled Roles of Dust and Clouds in the Mars Climate
NASA Technical Reports Server (NTRS)
Clancy, R. Todd
2000-01-01
During the period October 1997 to September 1999 we obtained and analyzed over 100 millimeter-wave observations of Mars atmospheric CO line absorption for atmospheric temperature profiles. These measurements extend through one full Mars year (solar longitudes L(sub S) of 190 deg in 1997 to 180 deg in 1999) and coincide with atmospheric temperature profile and dust column measurements front the Thermal Emission Spectrometer (TES) experiment on board the Mars Global Surveyor (MGS) spacecraft. A comparison of Mars atmospheric temperatures retrieved by these distinct methods provides the first opportunity to place the long-term (1982-1999) millimeter retrievals of Mars atmospheric temperatures within the context of contemporaneous, spatially mapped spacecraft, observations. Profile comparisons of 0-30 km altitude atmospheric temperatures retrieved with the two techniques agree typically to within the 5 K calibration accuracy of the millimeter observations. At the 0.5 mbar pressure level (approximately 25 km altitude) the 30N/30S average for TES infrared temperatures and the disk-averaged millimeter temperatures are also well correlated in their seasonal and dust-storm-related variations over the 1997-1999 period. This period includes the Noachis Terra regional dust storm, which led to very abrupt heating (approximately 15 K at 0.5 mbar) of the global Mars atmosphere at L(sub S)=224 deg in 1997 [Christensen et al., 1998; Conrath et al., this issue; Smith et al., this issue]. Much colder (10-20 K) global atmospheric temperatures were observed during the 1997 versus 1977 perihelion periods (L(sub S)=200 deg-330 deg), consistent with the much (2 to 8 times) lower global dust loading of the atmosphere during the 1997 perihelion dust storm season versus the Viking period of the 1977a,b storms. The 1998-1999 Mars atmosphere revealed by both the millimeter and TES observations is also 10-15 K colder than presented by the Viking climatology during the aphelion season (L(sub S)=0 deg-180 deg, northern spring/summer) of Mars. We reassess the observational basis of the Viking dusty-warm climatology for this season to conclude that the global aphelion atmosphere of Mars is colder, less dusty, and cloudier than indicated by the established Viking climatology even for the Viking period. We also conclude that Mars atmospheric temperatures exhibit their most significant interannual variations during the perihelion dust storm season (10-20 K for L(sub S)=200 deg-340 deg) and during the post-aphelion northern summer season (5-10 K for L(sub S)=100 deg-200 deg).
High-Resolution Characterization of Intertidal Geomorphology by TLS
NASA Astrophysics Data System (ADS)
Guarnieri, A.; Vettore, A.; Marani, M.
2007-12-01
Observational fluvial geomorphology has greatly benefited in the last decades from the wide availability of digital terrain data obtained by orthophotos and by means of accurate airborne laser scanner data (LiDAR). On the contrary, the spatially-distributed study of the geomorphology of intertidal areas, such as tidal flats and marshes, remains problematic owing to the small relief characterizing such environments, often of the order of a few tens of centimetres, i.e. comparable to the accuracy of state-of-the-art LiDAR data. Here we present the results of Terrestrial Laser Scanner (TLS) acquisitions performed within a tidal marsh in the Venice lagoon. The survey was performed using a Leica HDS 3000 TLS, characterized by a large Field of View (360 deg H x 270 deg V), a low beam divergence (< 6 mm at 50 m) and a nominal accuracy of 6 mm at 50 m. The acquisition was performed at low tide to avoid interferences due to water on the marsh surface and, to minimize shadowing effects due to the tilting of the laser beam (especially in the channel network), the scanner was mounted on a custom-built tripod 3 m above the marsh surface. The area of the marsh, about 100m x 150m, was fully surveyed by just 2 scans. A total amount of about 3 million points was acquired, with an average measurement density of 200 points/m2. In order to reconstruct the geometry of the marsh, the two scans were co-registered using 8 reflective targets as matching points. Such targets were placed within the area of interest and surveyed with high accuracy (2 mm), while their position in the Italian national grid was determined with a double-frequency GPS receiver, in order to georeference the point clouds within an absolute framework. Post-processing of the very high resolution data obtained shows that the laser returns coming from the low vegetation present (about 0.5-1.0 m high) can be satisfactorily separated from those coming from the marsh surface, allowing the construction of a DSM and a DTM. This is important e.g. in eco-geomorphic studies of intertidal environments, where conventional LiDAR technologies cannot easily separate first and last laser returns (because of the low vegetation height) and thus provide models of the surface as well as of the terrain. Furthermore, the DTM is shown to provide unprecedented characterizations of marsh morphology, e.g. regarding the cross-sectional properties of small-scale tidal creeks (widths of the order of 10 cm), previously observable only through conventional topographic surveys, thus not allowing a fully spatially-distributed description of their morphology.
Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M
2014-02-01
Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.
Mapping Chinese tallow with color-infrared photography
Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Seeger, E.B.; Martella, K.D.
2002-01-01
Airborne color-infrared photography (CIR) (1:12,000 scale) was used to map localized occurrences of the widespread and aggressive Chinese tallow (Sapium sebiferum), an invasive species. Photography was collected during senescence when Chinese tallow's bright red leaves presented a high spectral contrast within the native bottomland hardwood and upland forests and marsh land-cover types. Mapped occurrences were conservative because not all senescing tallow leaves are bright red simultaneously. To simulate low spectral but high spatial resolution satellite/airborne image and digital video data, the CIR photography was transformed into raster images at spatial resolutions approximating 0.5 in and 1.0 m. The image data were then spectrally classified for the occurrence of bright red leaves associated with senescing Chinese tallow. Classification accuracies were greater than 95 percent at both spatial resolutions. There was no significant difference in either forest in the detection of tallow or inclusion of non-tallow trees associated with the two spatial resolutions. In marshes, slightly more tallow occurrences were mapped with the lower spatial resolution, but there were also more misclassifications of native land covers as tallow. Combining all land covers, there was no difference at detecting tallow occurrences (equal omission errors) between the two resolutions, but the higher spatial resolution was associated with less inclusion of non-tallow land covers as tallow (lower commission error). Overall, these results confirm that high spatial (???1 m) but low spectral resolution remote sensing data can be used for mapping Chinese tallow trees in dominant environments found in coastal and adjacent upland landscapes.
NASA Astrophysics Data System (ADS)
Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.
2007-01-01
We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.
NASA Technical Reports Server (NTRS)
Rigney, Matt; Jedlovec, Gary; LaFontaine, Frank; Shafer, Jaclyn
2010-01-01
Heat and moisture exchange between ocean surface and atmosphere plays an integral role in short-term, regional NWP. Current SST products lack both spatial and temporal resolution to accurately capture small-scale features that affect heat and moisture flux. NASA satellite is used to produce high spatial and temporal resolution SST analysis using an OI technique.
Shower disc sampling and the angular resolution of gamma-ray shower detectors
NASA Technical Reports Server (NTRS)
Lambert, A.; Lloyd-Evans, J.
1985-01-01
As part of the design study for the new UHE gamma ray detector being constsructed at Haverah Park, a series of experiments using scintillators operated side-by-side in 10 to the 15th power eV air showers are undertaken. Investigation of the rms sampling fluctuations in the shower disc arrival time yields an upper limit to the intrinsic sampling uncertainty, sigma sub rms = (1.1 + or - 0.1)ns, implying an angular resolution capability 1 deg for an inter-detector spacing of approximately 25 m.
Instrumentation in molecular imaging.
Wells, R Glenn
2016-12-01
In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.
Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.
Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo
2010-07-05
A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.
Raman spectroscopy-based detection of chemical contaminants in food powders
NASA Astrophysics Data System (ADS)
Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Kim, Moon; Bae, Abigail
2016-05-01
Raman spectroscopy technique has proven to be a reliable method for qualitative detection of chemical contaminants in food ingredients and products. For quantitative imaging-based detection, each contaminant particle in a food sample must be detected and it is important to determine the necessary spatial resolution needed to effectively detect the contaminant particles. This study examined the effective spatial resolution required for detection of maleic acid in tapioca starch and benzoyl peroxide in wheat flour. Each chemical contaminant was mixed into its corresponding food powder at a concentration of 1% (w/w). Raman spectral images were collected for each sample, leveled across a 45 mm x 45 mm area, using different spatial resolutions. Based on analysis of these images, a spatial resolution of 0.5mm was selected as effective spatial resolution for detection of maleic acid in starch and benzoyl peroxide in flour. An experiment was then conducted using the 0.5mm spatial resolution to demonstrate Raman imaging-based quantitative detection of these contaminants for samples prepared at 0.1%, 0.3%, and 0.5% (w/w) concentrations. The results showed a linear correlation between the detected numbers of contaminant pixels and the actual concentrations of contaminant.
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Impaired temporal, not just spatial, resolution in amblyopia.
Spang, Karoline; Fahle, Manfred
2009-11-01
In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.
NASA Technical Reports Server (NTRS)
2002-01-01
The Hayman forest fire, started on June 8, is continuing to burn in the Pike National Forest, 57 km (35 miles) south-southwest of Denver. According to the U.S. Forest Service, the fire has consumed more than 90,000 acres and has become Colorado's worst fire ever. In this ASTER image, acquired Sunday, June 16, 2002 at 10:30 am MST, the dark blue area is burned vegetation and the green areas are healthy vegetation. Red areas are active fires, and the blue cloud at the top center is smoke. Meteorological clouds are white. The image covers an area of 32.2 x 35.2 km (20.0 x 21.8 miles), and displays ASTER bands 8-3-2 in red, green and blue.
This image was acquired on June 16, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Size: 32.2 x 35.2 km (20.0 x 21.8 miles) Location: 39.2 deg. North lat., 105.3 deg. West long. Orientation: North at top Image Data: ASTER bands 8, 3, and 2. Original Data Resolution: 15 m Date Acquired: June 16, 2002NASA Technical Reports Server (NTRS)
2002-01-01
Four hundred bridges cross the labyrinth of canals that form the 120 islands of Venice, situated in a saltwater lagoon between the mouths of the Po and Piave rivers in northeast Italy. All traffic in the city moves by boat. Venice is connected to the mainland, 4 kilometers (2.5 miles) away, by ferries as well as a causeway for road and rail traffic. The Grand Canal winds through the city for about 3 kilometers (about 2 miles), dividing it into two nearly equal sections. According to tradition, Venice was founded in 452, when the inhabitants of Aquileia, Padua, and several other northern Italian cities took refuge on the islands of the lagoon from the Teutonic tribes invading Italy at that time.
This image was acquired on December 9, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.Size: 38.6 x 34.5 km (23.9 x 21.4 miles) Location: 45.4 deg. North lat., 12.3 deg. East long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: December 9, 2001NASA Technical Reports Server (NTRS)
2002-01-01
In this ASTER image of Soufriere Hills Volcano on Montserrat in the Caribbean, continued eruptive activity is evident by the extensive smoke and ash plume streaming towards the west-southwest. Significant eruptive activity began in 1995, forcing the authorities to evacuate more than 7,000 of the island's original population of 11,000. The primary risk now is to the northern part of the island and to the airport. Small rockfalls and pyroclastic flows (ash, rock and hot gases) are common at this time due to continued growth of the dome at the volcano's summit.
This image was acquired on October 29, 2002 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 40.5 x 40.5 km (25.1 x 25.1 miles) Location: 16.7 deg. North lat., 62.2 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: October 29, 2002NASA Technical Reports Server (NTRS)
2002-01-01
The Isle of Jersey (officially called the Bailiwick of Jersey) is the largest Channel Island, positioned in the Bay of Mont St Michel off the north-west coast of France. The island has a population of about 90,000, and covers about 90 square kilometers. The economy is based largely on international financial services, agriculture, and tourism. Called Caesaria in Roman times, Jersey became part of the Duchy of Normandy in 912. When William the Conqueror invaded and took the throne of England in 1066, the fortunes of Jersey then became linked to those in England, although the island manages its internal affairs through its own parliament, the States of Jersey. This image was acquired on September 23, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 16.5 x 21 km (10.2 x 13 miles) Location: 40.7 deg. North lat., 111.9 deg. West long. Orientation: North at top Image Data: ASTER bands 1,2, and 3. Original Data Resolution: 15 m Date Acquired: September 23, 2000Simulation of the Intraseasonal Variability over the Eastern Pacific ITCZ in Climate Models
NASA Technical Reports Server (NTRS)
Jiang, Xianan; Waliser, Duane E.; Kim, Daehyun; Zhao, Ming; Sperber, Kenneth R.; Stern, W. F.; Schubert, Siegfried D.; Zhang, Guang J.; Wang, Wanqiu; Khairoutdinov, Marat;
2012-01-01
During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode. Further analysis illustrates that the observed 40-day ISV mode over the EPAC is closely linked to the eastward propagating ISV signals from the Indian Ocean/Western Pacific, which is in agreement with the general impression that the 40-day ISV mode over the EPAC could be a local expression of the global Madden-Julian Oscillation (MJO). In contrast, the convective signals associated with the 40-day mode over the EPAC in most of the GCM simulations tend to originate between 150degE and 150degW, suggesting the 40-day ISV mode over the EPAC might be sustained without the forcing by the eastward propagating MJO. Further investigation is warranted towards improved understanding of the origin of the ISV over the EPAC.
Triggs, G. J.; Fischer, M.; Stellinga, D.; Scullion, M. G.; Evans, G. J. O.; Krauss, T. F.
2015-01-01
By depositing a resolution test pattern on top of a Si3N4 photonic crystal resonant surface, we have measured the dependence of spatial resolution on refractive index contrast Δn. Our experimental results and finite-difference time-domain (FDTD) simulations at different refractive index contrasts show that the spatial resolution of our device reduces with reduced contrast, which is an important consideration in biosensing, where the contrast may be of order 10−2. We also compare 1-D and 2-D gratings, taking into account different incidence polarizations, leading to a better understanding of the excitation and propagation of the resonant modes in these structures, as well as how this contributes to the spatial resolution. At Δn = 0.077, we observe resolutions of 2 and 6 μm parallel to and perpendicular to the grooves of a 1-D grating, respectively, and show that for polarized illumination of a 2-D grating, resolution remains asymmetrical. Illumination of a 2-D grating at 45° results in symmetric resolution. At very low index contrast, the resolution worsens dramatically, particularly for Δn < 0.01, where we observe a resolution exceeding 10 μm for our device. In addition, we measure a reduction in the resonance linewidth as the index contrast becomes lower, corresponding to a longer resonant mode propagation length in the structure and contributing to the change in spatial resolution. PMID:26356353
O'Hara, Charles J.; Oldale, Robert N.
1980-01-01
This report presents results of marine studies conducted by the U.S. Geological Survey (USGS) during the summers of 1975 and 1976 in eastern Rhode Island Sound and Vineyard Sound (fig. 1) located off the southeastern coast of Massachusetts. The study was made in cooperation with the Massachusetts Department of Public Works and the New England Division of the U.S. Army Corps of Engineers. It covered an area of the Atlantic Inner Continental Shelf between latitude 41 deg 12' and 41 deg 33'N, and between longitude 70 deg 37' and 71 deg 15'W (see index map). Major objectives included assessment of sand and gravel resources, environmental impact evaluation both of offshore mining of these resources and of offshore disposal of solid waste and dredge spoil material, identification and mapping of the offshore geology, and determination of the geologic history of this part of the Inner Shelf. A total of 670 kilometers (km) of closely spaced high-resolution seismic-reflection profiles, 224 km of side-scan sonar data, and 16 cores totaling 90 meters (m) of recovered sediment, were collected during the investigation. This report is companion to geologic maps published for Cape Cod Bay (Oldale and O'Hara, 1975) and Buzzards Bay, Mass. (Robb and Oldale, 1977).
High spatial resolution compressed sensing (HSPARSE) functional MRI.
Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung
2016-08-01
To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
MVIRI/SEVIRI TOA Radiation Datasets within the Climate Monitoring SAF
NASA Astrophysics Data System (ADS)
Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan
2016-04-01
Within CM SAF, Interim Climate Data Records (ICDR) of Top-Of-Atmosphere (TOA) radiation products from the Geostationary Earth Radiation Budget (GERB) instruments on the Meteosat Second Generation (MSG) satellites have been released in 2013. These datasets (referred to as CM-113 and CM-115, resp. for shortwave (SW) and longwave (LW) radiation) are based on the instantaneous TOA fluxes from the GERB Edition-1 dataset. They cover the time period 2004-2011. Extending these datasets backward in the past is not possible as no GERB instruments were available on the Meteosat First Generation (MFG) satellites. As an alternative, it is proposed to rely on the Meteosat Visible and InfraRed Imager (MVIRI - from 1982 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) to generate a long Thematic Climate Data Record (TCDR) from Meteosat instruments. Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI datasets (referred to as CM-23311 and CM-23341, resp. for SW and LW radiation) will provide daily and monthly averaged TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in "all-sky" conditions (no clear-sky conditions for this first version of the datasets), as well as monthly averaged of the hourly integrated values. The SEVIRI Solar Channels Calibration (SSCC) and the operational calibration have been used resp. for the SW and LW channels. For MFG, it is foreseen to replace the latter by the EUMETSAT/GSICS recalibration of MVIRI using HIRS. The CERES TRMM angular dependency models have been used to compute TRS fluxes while theoretical models have been used for TET fluxes. The CM-23311 and CM-23341 datasets will cover a 32 years time period, from 1st February 1982 to 31st January 2014. TRS and TET fluxes will be provided on a regular latitude-longitude grid at a spatial resolution of 0.05° (i.e. about 5.5 km) to ensure consistency with other CM SAF products. Validation will be performed at lower resolution (e.g. 1° x 1°) by intercomparison with several other datasets (CERES EBAF, CERES SYN 1deg-day, HIRS OLR, ISCCP-FD, NCDC daily OLR, etc.).
A Climate-Data Record of the "Clear-Sky" Surface Temperature of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Hall, D. K.; Comiso, J. C.; Digirolamo, N. E.; Stock, L. V.; Riggs, G. A.; Shuman, C. A.
2009-01-01
We are developing a climate-data record (CDR of daily "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. The CDR will be continued in the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite era. Two algorithms remain under consideration. One algorithm under consideration is based on the split-window technique used in the Polar Pathfinder dataset (Fowler et al., 2000 & 21007). Another algorithm under consideration, developed by Comiso (2006), uses a single channel of AVHRR data (channel 4) in conjunction with meteorological-station data to account for atmospheric effects and drift between AVHRR instruments. Known issues being addressed in the production of the CDR are: tune-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds (Stroeve & Steffen, 1998; Wang and Key, 2005; Hall et al., 2008 and Koenig and Hall, submitted), time-series of satellite 1S'1" do not necessarily correspond to actual surface temperatures. The CDR will be validated by comparing results with automatic-,",eather station (AWS) data and with satellite-derived surface-temperature products. Regional "clear-sky" surface temperature increases in the Arctic, measured from AVHRR infrared data, range from 0.57+/-0.02 deg C (Wang and Key, 2005) to 0.72+/-0.10 deg C (Comiso, 2006) per decade since the early 1980s. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. References
Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants
NASA Astrophysics Data System (ADS)
Wilke, R. G. H.; Khalili Moghadam, G.; Lovell, N. H.; Suaning, G. J.; Dokos, S.
2011-08-01
Active multi-electrode arrays are used in vision prostheses, including optic nerve cuffs and cortical and retinal implants for stimulation of neural tissue. For retinal implants, arrays with up to 1500 electrodes are used in clinical trials. The ability to convey information with high spatial resolution is critical for these applications. To assess the extent to which spatial resolution is impaired by electric crosstalk, finite-element simulation of electric field distribution in a simplified passive tissue model of the retina is performed. The effects of electrode size, electrode spacing, distance to target cells, and electrode return configuration (monopolar, tripolar, hexagonal) on spatial resolution is investigated in the form of a mathematical model of electric field distribution. Results show that spatial resolution is impaired with increased distance from the electrode array to the target cells. This effect can be partly compensated by non-monopolar electrode configurations and larger electrode diameters, albeit at the expense of lower pixel densities due to larger covering areas by each stimulation electrode. In applications where multi-electrode arrays can be brought into close proximity to target cells, as presumably with epiretinal implants, smaller electrodes in monopolar configuration can provide the highest spatial resolution. However, if the implantation site is further from the target cells, as is the case in suprachoroidal approaches, hexagonally guarded electrode return configurations can convey higher spatial resolution. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.
NASA GLDAS Evapotranspiration Data and Climatology
NASA Technical Reports Server (NTRS)
Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew
2012-01-01
Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.
NASA Technical Reports Server (NTRS)
Donahue, T. M.; Wasser, B.
1977-01-01
Analysis of OGO-6 OI green line photometer results was carried out for 8 cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. Results show a variation on a scale of 6 deg to 8 deg in latitude between regions where the emission rate increases rapidly between 90 and 95 km and regions where it increases slowly from 80 km to 95 km. Latitude-altitude maps of iso-emissivity contours and iso-density contours for oxygen concentration are presented. The latter are computed under 3 assumptions concerning excitation mechanisms. Comparisons of the spatial variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate on a scale of about 1000 km with regions of weak transport near 90 km. In the first case conversion of O to O3 at night appears to be overwhelmed by downward transport of O.
Effect of glare on reaction time for peripheral vision at mesopic adaptation.
Aguirre, Rolando C; Colombo, Elisa M; Barraza, José F
2011-10-01
When a bright light is present in the field of view, visibility is dramatically reduced. Many studies have investigated the effect of glare on visibility considering foveal vision. However, the effects on peripheral vision have received little attention. In a previous work [J. Opt. Soc. Am. A 25, 1790 (2008)], we showed that the effect of glare on reaction time (RT) for foveal vision at mesopic adaptation depends on the stimulus spatial frequency. In this work, we extend this study to peripheral vision. We measured the RT of achromatic sinusoidal gratings as a function of contrast for a range of spatial frequency, and eccentricity, and for two glare levels, in addition to the no-glare condition. Data were fitted with Piéron's law, following a linear relationship. We found that glare increases the slope of these lines for all conditions. These slopes seem to depend critically on eccentricity for 4 cycles/degree (c/deg), but not for 1 and 2 c/deg. We explain our results in terms of the contrast sensitivity (gain) of the underlying detection mechanisms.
The influence of multispectral scanner spatial resolution on forest feature classification
NASA Technical Reports Server (NTRS)
Sadowski, F. G.; Malila, W. A.; Sarno, J. E.; Nalepka, R. F.
1977-01-01
Inappropriate spatial resolution and corresponding data processing techniques may be major causes for non-optimal forest classification results frequently achieved from multispectral scanner (MSS) data. Procedures and results of empirical investigations are studied to determine the influence of MSS spatial resolution on the classification of forest features into levels of detail or hierarchies of information that might be appropriate for nationwide forest surveys and detailed in-place inventories. Two somewhat different, but related studies are presented. The first consisted of establishing classification accuracies for several hierarchies of features as spatial resolution was progressively coarsened from (2 meters) squared to (64 meters) squared. The second investigated the capabilities for specialized processing techniques to improve upon the results of conventional processing procedures for both coarse and fine resolution data.
NASA Astrophysics Data System (ADS)
Lopez-Baeza, E.; Monsoriu Torres, A.; Font, J.; Alonso, O.
2009-04-01
The ESA SMOS (Soil Moisture and Ocean Salinity) Mission is planned to be launched in July 2009. The satellite will measure soil moisture over the continents and surface salinity of the oceans at resolutions that are sufficient for climatological-type studies. This paper describes the procedure to be used at the Spanish SMOS Level 3 and 4 Data Processing Centre (CP34) to generate Soil Moisture and other Land Surface Product maps from SMOS Level 2 data. This procedure can be used to map Soil Moisture, Vegetation Water Content and Soil Dielectric Constant data into different pre-defined spatial grids with fixed temporal frequency. The L3 standard Land Surface Products to be generated at CP34 are: Soil Moisture products: maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation Seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Vegetation Water Content products: maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. a': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month) using simple averaging method over the L2 products in ISEA grid, generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation Dielectric Constant products: (the dielectric constant products are delivered together with soil moisture products, with the same averaging periods and generation frequency): maximum spatial resolution with no spatial averaging, temporal averaging of 3 days, daily generation maximum spatial resolution with no spatial averaging, temporal averaging of 10 days, generation frequency of once every 10 days. b': maximum spatial resolution with no spatial averaging, temporal averaging of monthly decades (1st to 10th of the month, 11th to 20th of the month, 21st to last day of the month), generation frequency of once every decade monthly average, temporal averaging from L3 decade averages, monthly generation seasonal average, temporal averaging from L3 monthly averages, seasonally generation yearly average, temporal averaging from L3 monthly averages, yearly generation.
Wu, Yicong; Chandris, Panagiotis; Winter, Peter W.; Kim, Edward Y.; Jaumouillé, Valentin; Kumar, Abhishek; Guo, Min; Leung, Jacqueline M.; Smith, Corey; Rey-Suarez, Ivan; Liu, Huafeng; Waterman, Clare M.; Ramamurthi, Kumaran S.; La Riviere, Patrick J.; Shroff, Hari
2016-01-01
Most fluorescence microscopes are inefficient, collecting only a small fraction of the emitted light at any instant. Besides wasting valuable signal, this inefficiency also reduces spatial resolution and causes imaging volumes to exhibit significant resolution anisotropy. We describe microscopic and computational techniques that address these problems by simultaneously capturing and subsequently fusing and deconvolving multiple specimen views. Unlike previous methods that serially capture multiple views, our approach improves spatial resolution without introducing any additional illumination dose or compromising temporal resolution relative to conventional imaging. When applying our methods to single-view wide-field or dual-view light-sheet microscopy, we achieve a twofold improvement in volumetric resolution (~235 nm × 235 nm × 340 nm) as demonstrated on a variety of samples including microtubules in Toxoplasma gondii, SpoVM in sporulating Bacillus subtilis, and multiple protein distributions and organelles in eukaryotic cells. In every case, spatial resolution is improved with no drawback by harnessing previously unused fluorescence. PMID:27761486
Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; vanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.
2016-01-01
Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom. Methods A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions. Results The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI). Conclusion We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and OSI, and the spatial distribution of OSI and WSS did not exhibit a strong dependency on spatiotemporal resolution. PMID:27669568
Zonal wavefront sensing with enhanced spatial resolution.
Pathak, Biswajit; Boruah, Bosanta R
2016-12-01
In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.
Optical analysis of a compound quasi-microscope for planetary landers
NASA Technical Reports Server (NTRS)
Wall, S. D.; Burcher, E. E.; Huck, F. O.
1974-01-01
A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.
NASA Astrophysics Data System (ADS)
Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz
2017-04-01
This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Smith, M. D.; Conrath, B. J.; Bandfield, J. L.; Christensen, P. R.
1999-01-01
Successful operation of the Mars Global Surveyor spacecraft, beginning in September 1997, has permitted extensive infrared observations of condensation clouds during the martian southern summer and fall seasons (184 deg less than L(sub s) less than 28 deg). Initially, thin (normal optical depth less than 0.06 at 825/ cm) ice clouds and hazes were widespread, showing a latitudinal gradient. With the onset of a regional dust storm at L(sub s) = 224 deg, ice clouds essentially vanished in the southern hemisphere, to reappear gradually after the decay of the storm. The thickest clouds (optical depth approx. 0.6) were associated with major volcanic features. At L(exp s) = 318 deg, the cloud at Ascraeus Mons was observed to disappear between 21:30 and 09:30, consistent with historically recorded diurnal behavior for clouds of this type. Limb observations showed extended optically thin (depth less than 0.04) stratiform clouds at altitudes up to 55 km. A water ice haze was present in the north polar night at altitudes up to 40 km; this probably provided heterogeneous nucleation sites for the formation of CO2 clouds at altitudes below the 1 mbar pressure level, where atmospheric temperatures dropped to the condensation point of CO2.
Response of the middle atmosphere to Sco X-1
NASA Astrophysics Data System (ADS)
Goldberg, R. A.; Barcus, J. R.; Mitchell, J. D.
1985-10-01
On the night of Mar. 9, 1983 (UT) at Punta Lobos Launch Site, Peru (12.5 deg S, 76.8 deg W, magnetic dip -0.7 deg), a sequence of sounding rockets was flown to study the electrical structure of the equatorial middle atmosphere and to evaluate perturbations on this environment induced by the X-ray star Sco X-1. The rocket series was anchored by two Nike Orion payloads (31.032 and 31.033) which were launched at 0327 and 0857 UT, near Sco X-1 star-rise and after it had attained an elevation angle of 70 deg E. An enhanced flux of X-rays was observed on the second Nike Orion flight (31.033). This increase is directly attributed to Sco X-1, both from the spectral properties of the measured X-ray distribution and by spatial information acquired from a spinning X-ray detector during the upleg portion of the 31.033 flight. Simultaneously, a growth in ion conductivity and density was seen to occur in the lower mesosphere between 60 and 80 km on the second flight, specifically in the region of maximum energy deposition by the Sco X-1 X-rays. The results imply the presence of a significant number of ionized heavy constituents within the lower mesosphere, with masses possibly in the submacroscopoic range.
Response of the middle atmosphere to Sco X-1
NASA Technical Reports Server (NTRS)
Goldberg, R. A.; Barcus, J. R.; Mitchell, J. D.
1985-01-01
On the night of Mar. 9, 1983 (UT) at Punta Lobos Launch Site, Peru (12.5 deg S, 76.8 deg W, magnetic dip -0.7 deg), a sequence of sounding rockets was flown to study the electrical structure of the equatorial middle atmosphere and to evaluate perturbations on this environment induced by the X-ray star Sco X-1. The rocket series was anchored by two Nike Orion payloads (31.032 and 31.033) which were launched at 0327 and 0857 UT, near Sco X-1 star-rise and after it had attained an elevation angle of 70 deg E. An enhanced flux of X-rays was observed on the second Nike Orion flight (31.033). This increase is directly attributed to Sco X-1, both from the spectral properties of the measured X-ray distribution and by spatial information acquired from a spinning X-ray detector during the upleg portion of the 31.033 flight. Simultaneously, a growth in ion conductivity and density was seen to occur in the lower mesosphere between 60 and 80 km on the second flight, specifically in the region of maximum energy deposition by the Sco X-1 X-rays. The results imply the presence of a significant number of ionized heavy constituents within the lower mesosphere, with masses possibly in the submacroscopoic range.
Anthropogenic heat flux: advisable spatial resolutions when input data are scarce
NASA Astrophysics Data System (ADS)
Gabey, A. M.; Grimmond, C. S. B.; Capel-Timms, I.
2018-02-01
Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data. The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city, away from the centre and major roads. The remaining 10% contained elevated emissions and "hot spots" representing 30-40% of the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features (hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results demonstrate that simple QF models should be applied with conservative spatial resolution in cities that, like London, exhibit time-varying energy use patterns.
Generating High-Temporal and Spatial Resolution TIR Image Data
NASA Astrophysics Data System (ADS)
Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.
2017-09-01
Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.
Hassan-Esfahani, Leila; Ebtehaj, Ardeshir M; Torres-Rua, Alfonso; McKee, Mac
2017-09-14
Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from "AggieAir", an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products.
Hassan-Esfahani, Leila; Ebtehaj, Ardeshir M.; McKee, Mac
2017-01-01
Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from “AggieAir”, an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products. PMID:28906428
Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder
NASA Astrophysics Data System (ADS)
Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi
2017-05-01
Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.
NASA Astrophysics Data System (ADS)
Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.
2016-02-01
A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.
Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong
2018-01-01
Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356
NASA Astrophysics Data System (ADS)
Lin, S.; Li, J.; Liu, Q.
2018-04-01
Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day), which has better performance than using MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.
NASA Astrophysics Data System (ADS)
Deo, Ram K.; Domke, Grant M.; Russell, Matthew B.; Woodall, Christopher W.; Andersen, Hans-Erik
2018-05-01
Aboveground biomass (AGB) estimates for regional-scale forest planning have become cost-effective with the free access to satellite data from sensors such as Landsat and MODIS. However, the accuracy of AGB predictions based on passive optical data depends on spatial resolution and spatial extent of target area as fine resolution (small pixels) data are associated with smaller coverage and longer repeat cycles compared to coarse resolution data. This study evaluated various spatial resolutions of Landsat-derived predictors on the accuracy of regional AGB models at three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We combined national forest inventory data with Landsat-derived predictors at spatial resolutions ranging from 30–1000 m to understand the optimal spatial resolution of optical data for large-area (regional) AGB estimation. Ten generic models were developed using the data collected in 2014, 2015 and 2016, and the predictions were evaluated (i) at the county-level against the estimates of the USFS Forest Inventory and Analysis Program which relied on EVALIDator tool and national forest inventory data from the 2009–2013 cycle and (ii) within a large number of strips (~1 km wide) predicted via LiDAR metrics at 30 m spatial resolution. The county-level estimates by the EVALIDator and Landsat models were highly related (R 2 > 0.66), although the R 2 varied significantly across sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of coarser resolution. The Landsat-based total AGB estimates were larger than the LiDAR-based total estimates within the strips, however the mean of AGB predictions by LiDAR were mostly within one-standard deviations of the mean predictions obtained from the Landsat-based model at any of the resolutions. We conclude that satellite data at resolutions up to 1000 m provide acceptable accuracy for continental scale analysis of AGB.
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Gunson, M. R.; Abrams, M. C.; Zander, R.; Mahieu, E.; Goldman, A.; Ko, M. K. W.; Rodriguez, J. M.; Sze, N. D.
1994-01-01
Stratospheric volume mixing ratio profiles of chlorine nitrate (ClONO2) have been retrieved from 0.01/cm resolution infrared solar occultation spectra recorded at latitudes between 14 deg N and 54 deg S by the atmospheric trace molecule spectroscopy Fourier transform spectrometer during the Atmospheric Laboratory for Applications and Science (ATLAS) 1 shuttle mission (March 24 to April 2, 1992). The results were obtained from nonlinear least squares fittings of the ClONO2 nu(sub 4) band Q branch at 780.21/cm with improved spectroscopic parameters generated on the basis of recent laboratory work. The individual profiles, which have an accuracy of about +/- 20%, are compared with previous observations and model calculations.