Science.gov

Sample records for degenerate binary progenitor

  1. THE PROGENITORS OF TYPE Ia SUPERNOVAE. II. ARE THEY DOUBLE-DEGENERATE BINARIES? THE SYMBIOTIC CHANNEL

    SciTech Connect

    Di Stefano, R.

    2010-08-10

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, M{sub C} , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing 'progenitor problem'. Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to M{sub C} are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >10{sup 6} years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  2. The Progenitors of Type Ia Supernovae. II. Are they Double-degenerate Binaries? The Symbiotic Channel

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.

    2010-08-01

    In order for a white dwarf (WD) to achieve the Chandrasekhar mass, MC , and explode as a Type Ia supernova (SNIa), it must interact with another star, either accreting matter from or merging with it. The failure to identify the class or classes of binaries which produce SNeIa is the long-standing "progenitor problem." Its solution is required if we are to utilize the full potential of SNeIa to elucidate basic cosmological and physical principles. In single-degenerate models, a WD accretes and burns matter at high rates. Nuclear-burning white dwarfs (NBWDs) with mass close to MC are hot and luminous, potentially detectable as supersoft X-ray sources (SSSs). In previous work, we showed that >90%-99% of the required number of progenitors do not appear as SSSs during most of the crucial phase of mass increase. The obvious implication might be that double-degenerate binaries form the main class of progenitors. We show in this paper, however, that many binaries that later become double degenerates must pass through a long-lived NBWD phase during which they are potentially detectable as SSSs. The paucity of SSSs is therefore not a strong argument in favor of double-degenerate models. Those NBWDs that are the progenitors of double-degenerate binaries are likely to appear as symbiotic binaries for intervals >106 years. In fact, symbiotic pre-double-degenerates should be common, whether or not the WDs eventually produce SNeIa. The key to solving the Type Ia progenitor problem lies in understanding the appearance of NBWDs. Most of them do not appear as SSSs most of the time. We therefore consider the evolution of NBWDs to address the question of what their appearance may be and how we can hope to detect them.

  3. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Wheeler, J. Craig

    2012-10-20

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M{sub V} {approx}> 8.4 on the SN Ia in SNR 0509-67.5 and M{sub V} {approx}> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  4. Binaries discovered by the SPY project . V. GD 687 - a massive double degenerate binary progenitor that will merge within a Hubble time

    NASA Astrophysics Data System (ADS)

    Geier, S.; Heber, U.; Kupfer, T.; Napiwotzki, R.

    2010-06-01

    Aims: The ESO SN Ia Progenitor Survey (SPY) aims at finding merging double degenerate binaries as candidates for supernova type Ia (SN Ia) explosions. A white dwarf merger has also been suggested to explain the formation of rare types of stars like R CrB, extreme helium or He sdO stars. Here we present the hot subdwarf B binary GD 687, which will merge in less than a Hubble time. Methods: The orbital parameters of the close binary have been determined from time resolved spectroscopy. Since GD 687 is a single-lined binary, the spectra contain only information about the subdwarf primary and its orbit. From high resolution spectra the projected rotational velocity was derived. Assuming orbital synchronisation, the inclination of the system and the mass of the unseen companion were constrained. Results: The derived inclination is i = 39.3+6.2-5.6 °. The mass M2 = 0.71-0.21+0.22 M_⊙ indicates that the companion must be a white dwarf, most likely of C/O composition. This is only the fourth case that an sdB companion has been proven to be a white dwarf unambiguously. Its mass is somewhat larger than the average white dwarf mass, but may be as high as 0.93 M_⊙ in which case the total mass of the system comes close to the Chandrasekhar limit. Conclusions: GD 687 will evolve into a double degenerate system and merge to form a rare supermassive white dwarf with a mass in excess of solar. A death in a sub-Chandrasekhar supernova is also conceivable. Based on observations at the Paranal Observatory of the European Southern Observatory for programme No. 165.H-0588(A). Based on observations at the La Silla Observatory of the European Southern Observatory for programmes No. 072.D-0510(B), 079.D-0288(A), 080.D-0685(A) and 084.D-0348(A).

  5. Single Degenerate Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Bours, Madelon; Toonen, Silvia; Nelemans, Gijs

    2013-01-01

    There is a general agreement that Type Ia supernovae correspond to the thermonuclear runaway of a white dwarf (WD) in a compact binary. The details of these progenitor systems are still unclear. Using the population synthesis code SeBa and several assumption for the WD retention efficiency, we estimate the delay times and supernova rates for the single degenerate scenario.

  6. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  7. STELLAR BINARY COMPANIONS TO SUPERNOVA PROGENITORS

    SciTech Connect

    Kochanek, Christopher S.

    2009-12-20

    For typical models of binary statistics, 50%-80% of core-collapse supernova (ccSN) progenitors are members of a stellar binary at the time of the explosion. Independent of any consequences of mass transfer, this has observational consequences that can be used to study the binary properties of massive stars. In particular, the secondary companion to the progenitor of a Type Ib/c SN is frequently (approx50%) the more optically luminous star since the high effective temperatures of the stripped progenitors make it relatively easy for a lower luminosity, cooler secondary to emit more optical light. Secondaries to the lower mass progenitors of Type II SN will frequently produce excess blue emission relative to the spectral energy distribution of the red primary. Available data constrain the models weakly. Any detected secondaries also provide an independent lower bound on the progenitor mass and, for historical SN, show that it was not a Type Ia event. Bright ccSN secondaries have an unambiguous, post-explosion observational signature-strong, blueshifted, relatively broad absorption lines created by the developing SN remnant (SNR). These can be used to locate historical SN with bright secondaries, confirm that a source is a secondary, and, potentially, measure abundances of ccSN ejecta. Luminous, hot secondaries will re-ionize the SNR on timescales of 100-1000 yr that are faster than re-ionization by the reverse shock, creating peculiar H II regions due to the high metallicity and velocities of the ejecta.

  8. Single degenerate supernova type Ia progenitors. Studying the influence of different mass retention efficiencies

    NASA Astrophysics Data System (ADS)

    Bours, M. C. P.; Toonen, S.; Nelemans, G.

    2013-04-01

    Context. There is general agreement that supernovae Ia correspond to the thermonuclear runaway of a white dwarf that is part of a compact binary, but the details of the progenitor systems are still unknown and much debated. One of the proposed progenitor theories is the single-degenerate channel in which a white dwarf accretes from a companion, grows in mass, reaches a critical mass limit, and is then consumed after thermonuclear runaway sets in. However, there are major disagreements about the theoretical delay time distribution and the corresponding time-integrated supernova Ia rate from this channel. Aims: We investigate whether the differences are due to the uncertainty in the common envelope phase and the fraction of transferred mass that is retained by the white dwarf. This so-called retention efficiency may have a strong influence on the final amount and timing of supernovae Ia. Methods: Using the population synthesis code SeBa, we simulated large numbers of binaries for various assumptions on common envelopes and retention efficiencies. We compare the resulting supernova Ia rates and delay time distributions with each other and with those from the literature, including observational data. Results: For the three assumed retention efficiencies, the integrated rate varies by a factor 3-4 to even more than a factor 100, so in extreme cases, the retention efficiency strongly suppresses the single-degenerate channel. Our different assumptions for the common envelope phase change the integrated rate by a factor 2-3. Although our results do recover the trend in the theoretical predictions from different binary population synthesis codes, they do not fully explain the large disagreement among them.

  9. Close Binary Progenitors and Ejected Companions of Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Geier, S.; Kupfer, T.; Heber, U.; Nemeth, P.; Ziegerer, E.; Irrgang, A.; Schindewolf, M.; Marsh, T. R.; Gänsicke, B. T.; Barlow, B. N.; Bloemen, S.

    2017-03-01

    Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very thin hydrogen envelopes, which can be formed by common envelope ejection. Close sdB binaries with massive white dwarf (WD) companions are potential progenitors of thermonuclear supernovae type Ia (SN Ia). We discovered such a progenitor candidate as well as a candidate for a surviving companion star, which escapes from the Galaxy. More candidates for both types of objects have been found by cross-matching known sdB stars with proper motion and light curve catalogues. We found 72 sdO/B candidates with high Galactic restframe velocities, 12 of them might be unbound to our Galaxy. Furthermore, we discovered the second-most compact sdB+WD binary known. However, due to the low mass of the WD companion, it is unlikely to be a SN Ia progenitor.

  10. Planetary nebula progenitors that swallow binary systems

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-01-01

    I propose that some irregular messy planetary nebulae (PNe) owe their morphologies to triple-stellar evolution where tight binary systems evolve inside and/or on the outskirts of the envelope of asymptotic giant branch (AGB) stars. In some cases, the tight binary system can survive, in others, it is destroyed. The tight binary system might break up with one star leaving the system. In an alternative evolution, one of the stars of the broken-up tight binary system falls towards the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process, the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and messy PN as a descendant. The evolution of the triple-stellar system can be in a full common envelope evolution or in a grazing envelope evolution. Both before and after destruction (if destruction takes place), the system might launch pairs of opposite jets. One pronounced signature of triple-stellar evolution might be a large departure from axisymmetrical morphology of the descendant PN. I estimate that about one in eight non-spherical PNe is shaped by one of these triple-stellar evolutionary routes.

  11. The Local Type Ia Supernova Progenitors: One Double-Degenerate, No Symbiotics

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Schaefer, B. E.

    2012-01-01

    Although the basic mechanism responsible for Type Ia supernovae appears to be well understood (thermonuclear explosion of a carbon-oxygen white dwarf that has reached the Chandrasekhar mass limit), the identity of the progenitor system(s) remains a mystery. With implications from stellar evolution to frontline cosmology, it is critical to attack this problem from every possible angle. We present results from our study of three known historical Ia supernovae in the Large Magellanic Cloud (LMC) which allow us to eliminate possible progenitor candidates for at least the local population. We used archival Hubble Space Telescope images of SNR 0509-67.5, SNR 0509-68.7, and SNR 0519-69.0 to determine the site of each explosion and then search the surrounding area for potential ex-companion stars that were left behind. The search was carried out within an error ellipse that accounts for measurement error on the geometric center of the remnant, the orbital velocity of the pre-supernova binary system, and kicks from the actual explosion. For SNR 0509-67.5, the error ellipse is empty to the HST 5σ limiting magnitude of V=26.9. Using an LMC distance modulus of 18.5, this implies that any single degenerate ex-companion must be fainter than MV=+8.4 (corresponding approximately to a K9 main sequence star), which eliminates all currently-published single-degenerate models and leads us to conclude that this system had a double-degenerate (double white dwarf) progenitor. For SNR 0509-68.7 and SNR 0519-69.0, we can eliminate the possibility of red giant and subgiant ex-companions. It has been shown that the two confident galactic Ia supernovae (Tycho's SN 1572 and SN 1006) also do not have red giant ex-companion stars. Combined with our three systems, this eliminates the symbiotic progenitor channel for all of the nearby Ia supernovae. This work was supported by the National Science Foundation (AST-1109420).

  12. Constraints on single-degenerate Chandrasekhar mass progenitors of Type Iax supernovae

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Moriya, Takashi J.; Stancliffe, Richard J.; Wang, Bo

    2015-02-01

    Context. Type Iax supernovae (SNe Iax) are proposed as one new sub-class of SNe Ia since they present sufficiently distinct observational properties from the bulk of SNe Ia. Observationally, SNe Iax have been estimated to account for ~5%-30% of the total SN Ia rate, and most SNe Iax have been discovered in late-type galaxies. In addition, observations constrain the progenitor systems of some SN Iax progenitors that have ages of <80 Myr. Although the identity of the progenitors of SNe Iax is unclear, the weak deflagration explosions of Chandrasekhar-mass (Ch-mass) carbon/oxygen white dwarfs (C/O WDs) seem to provide a viable physical scenario. Aims: Comparing theoretical predictions from binary population synthesis (BPS) calculations with observations of SNe Iax, we put constraints on the single-degenerate (SD) Ch-mass model as a possible SN Iax progenitor. Methods: Based on the SD Ch-mass model, the SN rates and delay times are predicted by combining binary evolution calculations for the progenitor systems into a BPS model. Moreover, with current X-ray observations of SNe Iax, we constrain the pre-explosion mass-loss rates of stellar progenitor systems by using two analytic models. Results: From our calculations, the long delay times of ≳3 Gyr and low SN rates of ~3 × 10-5 yr-1 are found in the red-gaint donor channel, indicating that this channel is unlikely to produce SNe Iax. With our standard models, we predict that the Galactic SN Iax rate from the main-sequence (helium-star) donor scenario is ~1.5 × 10-3 yr-1 (~3 × 10-4 yr-1). The total rate of these two models is consistent with the observed SN Iax rate. The short delay times in the helium-star donor channel (<100 Myr) support the young host environments of SNe Iax. However, the relatively long delay times in the main-sequence donor channel (~250 Myr-1 Gyr) are less favourable for the observational constraints on the ages of SN Iax progenitors. Finally, with current X-ray observations for SNe Iax, we

  13. BDNF-Treated Retinal Progenitor Sheets Transplanted to Degenerate Rats

    PubMed Central

    Seiler, Magdalene J.; Thomas, Biju B.; Chen, Zhenhai; Arai, Shinichi; Chadalavada, Sridhar; Mahoney, Melissa J.; Sadda, Srinivas R.; Aramant, Robert B.

    2011-01-01

    The aim of this study was to evaluate the functional efficacy of retinal progenitor cell (RPC) containing sheets with BDNF microspheres following subretinal transplantation in a rat model of retinal degeneration. Sheets of E19 RPCs derived from human placental alkaline phosphatase (hPAP) expressing transgenic rats were coated with PLGA (Poly-lactide-co-glycolide) microspheres containing brain-derived neurotrophic factor (BDNF) and transplanted into the subretinal space of S334ter-line-3 rhodopsin retinal degenerate rats. Controls received transplants without BDNF or BDNF microspheres alone. Visual function was monitored using optokinetic head-tracking behavior. Visually evoked responses to varying light intensities were recorded from the superior colliculus (SC) by electrophysiology at 60 days after surgery. Frozen sections were studied by immunohistochemistry for photoreceptor and synaptic markers. Visual head tracking was significantly improved in rats that received BDNF-coated RPC sheets. Relatively more BDNF treated transplanted rats (80%) compared to non-BDNF transplants (57%) responded to a “low light” intensity of 1 cd/m2in a confined SC area. With bright light, the onset latency of SC responses was restored to a nearly normal level in BDNF treated transplants. No significant improvement was observed in the BDNF-only and no surgery transgenic control rats. The bipolar synaptic markers mGluR6 and PSD-95 showed normal distribution in transplants and abnormal distribution of the host retina, both with or without BDNF-treatment. Red-green cones were significantly reduced in the host retina overlying the transplant in the BDNF -treated group. In summary, BDNF coating improved the functional efficacy of RPC grafts. The mechanism of the BDNF effects - either promoting functional integration between the transplant and the host retina and/or synergistic action with other putative humoral factors released by the RPCs - still needs to be elucidated. PMID:17983616

  14. On double-degenerate type Ia supernova progenitors as supersoft X-ray sources. A population synthesis analysis using SeBa

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Nelemans, G.; Voss, R.; Toonen, S.

    2014-03-01

    Context. The nature of the progenitors of type Ia supernova progenitors remains unclear. While it is usually agreed that single-degenerate progenitor systems would be luminous supersoft X-ray sources, it was recently suggested that double-degenerate progenitors might also go through a supersoft X-ray phase. Aims: We aim to examine the possibility of double-degenerate progenitor systems being supersoft X-ray systems, and place stringent upper limits on the maximally possible durations of any supersoft X-ray source phases and expected number of these systems in a galactic population. Methods: We employ the binary population synthesis code SeBa to examine the mass-transfer characteristics of a possible supersoft X-ray phase of double-degenerate type Ia supernova progenitor systems for 1) the standard SeBa assumptions; and 2) an optimistic best-case scenario. The latter case establishes firm upper limits on the possible population of supersoft source double-degenerate type Ia supernova progenitor systems. Results: Our results indicate that unlike what is expected for single-degenerate progenitor systems, the vast majority of the material accreted by either pure wind mass transfer or a combination of wind and RLOF mass transfer is helium rather than hydrogen. Even with extremely optimistic assumptions concerning the mass-transfer and retention efficiencies, the average mass accreted by systems that eventually become double-degenerate type Ia supernovae is small. Consequently, the lengths of time that these systems may be supersoft X-ray sources are short, even under optimal conditions, and the expected number of such systems in a galactic population is negligible. Conclusions: The population of double-degenerate type Ia supernova progenitors that are supersoft X-ray sources is at least an order of magnitude smaller than the population of single-degenerate progenitors expected to be supersoft X-ray sources, and the supersoft X-ray behaviour of double-degenerate systems

  15. The Binary Progenitor of Tycho Brahe's Supernova

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, P.

    2006-08-01

    The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova (SN 1572) provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

  16. A SINGLE DEGENERATE PROGENITOR MODEL FOR TYPE Ia SUPERNOVAE HIGHLY EXCEEDING THE CHANDRASEKHAR MASS LIMIT

    SciTech Connect

    Hachisu, Izumi; Kato, Mariko; Saio, Hideyuki; Nomoto, Ken'ichi E-mail: mariko@educ.cc.keio.ac.jp E-mail: nomoto@astron.s.u-tokyo.ac.jp

    2012-01-01

    Recent observations of Type Ia supernovae (SNe Ia) suggest that some of the progenitor white dwarfs (WDs) had masses up to 2.4-2.8 M{sub Sun }, highly exceeding the Chandrasekhar mass limit. We present a new single degenerate model for SN Ia progenitors, in which the WD mass possibly reaches 2.3-2.7 M{sub Sun }. Three binary evolution processes are incorporated: optically thick winds from mass-accreting WDs, mass stripping from the binary companion star by the WD winds, and WDs being supported by differential rotation. The WD mass can increase by accretion up to 2.3 (2.7) M{sub Sun} from the initial value of 1.1 (1.2) M{sub Sun }, consistent with high-luminosity SNe Ia, such as SN 2003fg, SN 2006gz, SN 2007if, and SN 2009dc. There are three characteristic mass ranges of exploding WDs. In the extreme massive case, differentially rotating WDs explode as an SN Ia soon after the WD mass exceeds 2.4 M{sub Sun} because of a secular instability at T/|W| {approx} 0.14. For the mid-mass range of M{sub WD} = 1.5-2.4 M{sub Sun }, it takes some time (spinning-down time) until carbon is ignited to induce an SN Ia explosion after the WD mass has reached maximum, because it needs a loss or redistribution of angular momentum. For the lower mass case of rigidly rotating WDs, M{sub WD} = 1.38-1.5 M{sub Sun }, the spinning-down time depends on the timescale of angular momentum loss from the WD. The difference in the spinning-down time may produce the 'prompt' and 'tardy' components. We also suggest that the very bright super-Chandrasekhar mass SNe Ia are born in a low-metallicity environment.

  17. A New Merging Double Degenerate Binary in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Kilic, Mukremin; Tremblay, Pier-Emmanuel; López-Morales, Mercedes; Anglada-Escude, Guillem; Napiwotzki, Ralph; Osip, David; Weinberger, Alycia

    2015-05-01

    Characterizing the local space density of double degenerate (DD) binary systems is a complementary approach to broad sky surveys of DDs to determine the expected rates of WD binary mergers, in particular those that may evolve into other observable phenomena such as extreme helium stars, Am CVn systems, and SNe Ia. However, there have been few such systems detected in local space. We report here the discovery that WD 1242-105, a nearby bright WD, is a double-line spectroscopic binary consisting of two degenerate DA WDs of similar mass and temperature, despite it previously having been spectroscopically characterized as a single degenerate. Follow-up photometry, spectroscopy, and trigonometric parallax have been obtained in an effort to determine the fundamental parameters of each component of this system. The binary has a mass ratio of 0.7 and a trigonometric parallax of 25.5 mas, placing it at a distance of 39 pc. The system’s total mass is 0.95 {{M}⊙ } and has an orbital period of 2.85 hr, making it the strongest known gravitational wave source (log h=-20.78) in the mHz regime. Because of its orbital period and total mass, WD 1242-105 is predicted to merge via gravitational radiation on a timescale of 740 Myr, which will most likely not result in a catastrophic explosion. This paper includes data gathered with the 6.5 m Magellan telescopes and the 2.5 m Dupont telescope located at Las Campanas Observatory, Chile.

  18. Compact Binary Progenitors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Giacomazzo, Bruno; Perna, Rosalba; Rezzolla, Luciano; Troja, Eleonora; Lazzati, Davide

    2013-01-01

    In recent years, detailed observations and accurate numerical simulations have provided support to the idea that mergers of compact binaries containing either two neutron stars (NSs) or an NS and a black hole (BH) may constitute the central engine of short gamma-ray bursts (SGRBs). The merger of such compact binaries is expected to lead to the production of a spinning BH surrounded by an accreting torus. Several mechanisms can extract energy from this system and power the SGRBs. Here we connect observations and numerical simulations of compact binary mergers, and use the current sample of SGRBs with measured energies to constrain the mass of their powering tori. By comparing the masses of the tori with the results of fully general-relativistic simulations, we are able to infer the properties of the binary progenitors that yield SGRBs. By assuming a constant efficiency in converting torus mass into jet energy epsilon(sub jet) = 10%, we find that most of the tori have masses smaller than 0.01 Solar M, favoring "high-mass" binary NSs mergers, i.e., binaries with total masses approx >1.5 the maximum mass of an isolated NS. This has important consequences for the gravitational wave signals that may be detected in association with SGRBs, since "high-mass" systems do not form a long-lived hypermassive NS after the merger. While NS-BH systems cannot be excluded to be the engine of at least some of the SGRBs, the BH would need to have an initial spin of approx. 0.9 or higher.

  19. The physical properties of double degenerate common proper motion binaries

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Oswalt, Terry D.; Liebert, James; Hintzen, Paul

    1991-01-01

    Spectral types and spectrophotometry are presented for 21 double degenerate (DD) common proper motion binaries, along with estimates of their colors, absolute visual and bolometric magnitudes, and cooling ages. The oldest pairs in the sample are 9 x 10 to the 9th yr; the differential cooling ages range from 0.01 to 0.84. The median and mean separations of the DD pairs are 426 and 407 Au, respectively, both apparently smaller than the WD+MS values. The average UVW motions and velocity dispersions are significantly larger than the average velocities and dispersions associated with selected samples of single white dwarfs and MS+WD binaries when the latter are restricted to the same color/Mv range as the DD systems. This may be a result of the dynamical inflation of the velocity dispersion of DD systems due to their extremely ancient total stellar ages.

  20. Possible binary star progenitor for SN1987A

    NASA Astrophysics Data System (ADS)

    White, Graeme L.; Malin, D. F.

    1987-05-01

    Accurate optical astrometry gives a position (B1950.0) for the Large Magellanic Cloud supernova, SN 1987A, relative to the FK 4 system as right ascension, RA = 05h 35min 49.95 s±0.039 s, declination δ = -69°17arcmin57.9arcsec±0.27arcsec. Differential astrometry carried out on prime-focus plates taken with the AAT indicates that the component, star 1, of Sanduleak's star Sk -69202 is within 0.05±0.13 arc s of the supernova. The authors conclude that the progenitor of SN 1987A was star 1 or a fainter binary companion.

  1. The core-degenerate scenario for the progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zhou, W.-H.; Zuo, Z.-Y.; Li, Y.-B.; Luo, X.; Zhang, J.-J.; Liu, D.-D.; Wu, C.-Y.

    2017-02-01

    The origin of the progenitors of Type Ia supernovae (SNe Ia) is still uncertain. The core-degenerate (CD) scenario has been proposed as an alternative way for the production of SNe Ia. In this scenario, SNe Ia are formed at the final stage of common-envelope evolution from a merger of a carbon-oxygen white dwarf (CO WD) with the CO core of an asymptotic giant branch companion. However, the birthrates of SNe Ia from this scenario are still not well determined. In this work, we performed a detailed investigation on the CD scenario based on a binary population synthesis approach. The SN Ia delay times from this scenario are basically in the range of 90-2500 Myr, mainly contributing to the observed SNe Ia with short and intermediate delay times, although this scenario can also produce some old SNe Ia. Meanwhile, our work indicates that the Galactic birthrates of SNe Ia from this scenario are not more than 20 per cent of total SNe Ia due to more careful treatment of mass transfer. Although the SN Ia birthrates in this work are lower than those in Ilkov & Soker, the CD scenario cannot be ruled out as a viable mechanism for the formation of SNe Ia. Especially, SNe Ia with circumstellar material from this scenario contribute to 0.7-10 per cent of total SNe Ia, which means that the CD scenario can reproduce the observed birthrates of SNe Ia like PTF 11kx. We also found that SNe Ia happen systemically earlier for a high value of metallicity and their birthrates increase with metallicity.

  2. Formation and evolution of hypernova progenitors in massive binary systems

    NASA Astrophysics Data System (ADS)

    Becker, John Alex

    2004-10-01

    The massive stellar progenitor of a hypernova explosion and an associated gamma-ray burst must satisfy two primary constraints: (1)the outer layers of the stellar core must possess sufficient angular momentum to form a centrifugally supported torus about the collapsed central object (a Kerr black hole); and, (2)the envelope of the star must not be excessively massive or distended, so that the energetic, ultrarelativistic outflow generated by the central engine in the core of the star does not risk being smothered before it can escape from the star and expand outward to produce a gamma-ray burst. We have developed a new one-dimensional stellar evolution code that includes the effects of rotation on equilibrium stellar structure, and calculates the transport of angular momentum through the stellar interior due to convection, dynamical and secular shear instabilities, and gravity (buoyancy) waves. We have used this code to calculate a variety of evolutionary sequences involving the transfer of mass from one component of the binary system to the other. We have also calculated an evolutionary sequence ending in the merger of one component of the system with the core of the other, induced by a prior common-envelope phase. We find that over a wide range of initial binary system parameters, the initially less massive component of the system can accrete a substantial amount of mass and angular momentum from the initially more massive component. The accreted angular momentum is efficiently transported inward from the surface of the accreting star toward its core by a combination of convection and dynamical and secular shear instabilities. If accretion commences while the accretor is still on the main sequence, we find that the inward-progressing wave of angular momentum can penetrate the core of the mass- gaining star, contributing to its store of rotational angular momentum without the need for gravity wave transport of angular momentum across the core-envelope interface

  3. Metallicity dependence of Type Ib/c and IIb supernova progenitors in binary systems

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-CHul

    2015-08-01

    Type Ib/c supernovae (SNe Ib/c) are characterized by the lack of prominent hydrogen lines in the spectra, implying that their progenitors have lost most of their hydrogen envelopes by the time of the iron core collapse. Binary interactions provide an important evolutionary chanel for SNe Ib/c, and recent observations indicate that the inferred ejecta masses of SNe Ibc are more consistent with the prediction of the binary scenario than that of the single star scenario that invokes mass loss as the key evolutionary factor for SNe Ib/c progenitors. So far, theoretical predictions on the detailed properties of SNe Ib/c progenitors in binary systems have been made mostly with models using solar metallicity. However, unlike the single star scenario, where SNe Ib/c are expected only for sufficiently high metallicity, hydrogen-deficent SN progenitors can be produced via binary interactions at any metallicity. In this talk, I will discuss theoretical predictions on the metallicity dependence of the SNe Ib/c progenitor structure, based on evolutionary models of massive binary stars. Sepefically, I will address how the ejecta masses of SNe Ib and Ic and the ratio of SN Ib/c to SN IIb as well as SN Ib to SN Ic would systematically change as a function of metallicity, and which new types of SNe are expected in binary systems at low metallicity.

  4. Metallicity dependence of Type Ib/c and IIb supernova progenitors in binary systems

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Chul

    Type Ib/c supernovae (SNe Ib/c) are characterized by the lack of prominent hydrogen lines in thespectra, implying that their progenitors have lost most of their hydrogen envelopes by the time of the iron corecollapse. Binary interactions provide an important evolutionary chanel for SNe Ib/c, and recent observations indicatethat the inferred ejecta masses of SNe Ibc are more consistent with the prediction of the binary scenario than that ofthe single star scenario that invokes mass loss as the key evolutionary factor for SNe Ib/c progenitors. So far,theoretical predictions on the detailed properties of SNe Ib/c progenitors in binary systems have been made mostlywith models using solar metallicity. However, unlike the single star scenario, where SNe Ib/c are expected only forsufficiently high metallicity, hydrogen-deficent SN progenitors can be produced via binary interactions at anymetallicity. In this talk, I will discuss theoretical predictions on the metallicity dependence of the SNe Ib/c progenitorstructure, based on evolutionary models of massive binary stars. Sepefically, I will address how the ejecta masses ofSNe Ib and Ic and the ratio of SN Ib/c to SN IIb as well as SN Ib to SN Ic would systematically change as a function ofmetallicity, and which new types of SNe are expected in binary systems at low metallicity.

  5. THE DOUBLE-DEGENERATE NUCLEUS OF THE PLANETARY NEBULA TS 01: A CLOSE BINARY EVOLUTION SHOWCASE

    SciTech Connect

    Tovmassian, Gagik; Richer, Michael G.; Yungelson, Lev; Rauch, Thomas; Suleimanov, Valery; Napiwotzki, Ralf; Stasinska, Grazyna; Tomsick, John; Wilms, Joern; Morisset, Christophe; Pena, Miriam

    2010-05-01

    We present a detailed investigation of SBS 1150+599A, a close binary star hosted by the planetary nebula PN G135.9+55.9 (TS 01). The nebula, located in the Galactic halo, is the most oxygen-poor known to date and is the only one known to harbor a double degenerate core. We present XMM-Newton observations of this object, which allowed the detection of the previously invisible component of the binary core, whose existence was inferred so far only from radial velocity (RV) and photometric variations. The parameters of the binary system were deduced from a wealth of information via three independent routes using the spectral energy distribution (from the infrared to X-rays), the light and RV curves, and a detailed model atmosphere fitting of the stellar absorption features of the optical/UV component. We find that the cool component must have a mass of 0.54 {+-} 0.2 M{sub sun}, an average effective temperature, T{sub eff}, of 58,000 {+-} 3000 K, a mean radius of 0.43 {+-} 0.3 R{sub sun}, a gravity, log g = 5.0 {+-} 0.3, and that it nearly fills its Roche lobe. Its surface elemental abundances are found to be: 12 + log He/H = 10.95 {+-} 0.04 dex, 12 + log C/H = 7.20 {+-} 0.3 dex, 12 + log N/H < 6.92, and 12 + log O/H < 6.80, in overall agreement with the chemical composition of the planetary nebula. The hot component has T{sub eff} = 160-180 kK, a luminosity of about {approx}10{sup 4} L{sub sun} and a radius slightly larger than that of a white dwarf. It is probably bloated and heated as a result of intense accretion and nuclear burning on its surface in the past. The total mass of the binary system is very close to the Chandrasekhar limit. This makes TS 01 one of the best Type Ia supernova progenitor candidates. We propose two possible scenarios for the evolution of the system up to its present stage.

  6. Observational Properties of Type Ib/c Supernova Progenitors in Binary Systems

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jeong; Yoon, Sung-Chul; Koo, Bon-Chul

    2015-08-01

    In several recent observational studies of Type Ib/c supernovae (SNe Ib/c), the inferred ejecta masses have a peak value of 2.0-4.0 {M}⊙ , in favor of the binary scenario for their progenitors rather than the Wolf-Rayet star scenario. To investigate the observational properties of relatively low-mass helium stars in binary systems as possible SN Ib/c progenitors, we constructed atmospheric models with the non-LTE radiative transfer code CMFGEN, using binary star evolution models. We find that these helium stars can be characterized by relatively narrow helium emission lines if the mass-loss rate during the final evolutionary phase is significantly enhanced as implied by many SN Ib/c observations. The optical brightness of helium star progenitors can be meaningfully enhanced with a strong wind for stars with M≳ 4.4 {M}⊙ , but is hardly affected or slightly weakened for relatively low-mass stars with ˜ 3.0 {M}⊙ , compared to the simple estimate using blackbody approximation. We further confirm the previous suggestion that the optical brightness would be generally higher for a less massive SN Ib/c progenitor. In good agreement with previous studies, our results indicate that the optical magnitudes and colors of the recently detected progenitor of the SN Ib iPTF13bvn can be well explained by a binary progenitor with a final helium star mass of about 3.0-4.4 {M}⊙ .

  7. TYPE Ib/c SUPERNOVAE IN BINARY SYSTEMS. I. EVOLUTION AND PROPERTIES OF THE PROGENITOR STARS

    SciTech Connect

    Yoon, S.-C.; Woosley, S. E.

    2010-12-10

    We investigate the evolution of Type Ib/c supernova (SN Ib/c) progenitors in close binary systems, using new evolutionary models that include the effects of rotation, with initial masses of 12-25 M{sub sun} for the primary components, and of single helium stars with initial masses of 2.8-20 M{sub sun}. We find that, despite the impact of tidal interaction on the rotation of primary stars, the amount of angular momentum retained in the core at the presupernova stage in different binary model sequences converges to a value similar to those found in previous single star models. This amount is large enough to produce millisecond pulsars, but too small to produce magnetars or long gamma-ray bursts. We employ the most up-to-date estimate for the Wolf-Rayet mass-loss rate, and its implications for SN Ib/c progenitors are discussed in detail. In terms of stellar structure, SN Ib/c progenitors in binary systems at solar metallicity are predicted to have a wide range of final masses up to about 7 M{sub sun}, with helium envelopes of M{sub He} {approx_equal} 0.16-1.5 M{sub sun}. Our results indicate that, if the lack of helium lines in the spectra of SNe Ic were due to small amounts of helium (e.g., M{sub He} {approx}< 0.5), the distribution of both initial and final masses of SN Ic progenitors should be bimodal. Furthermore, we find that a thin hydrogen layer (0.001 M{sub sun} {approx}< M{sub H} {approx}< 0.01 M{sub sun}) is expected to be present in many SN Ib progenitors at the presupernova stage. We show that the presence of hydrogen, together with a rather thick helium envelope, can lead to a significant expansion of some SN Ib/c progenitors by the time of supernova explosion. This may have important consequences for the shock break-out and supernova light curve. We also argue that some SN progenitors with thin hydrogen layers produced via Case AB/B transfer might be related to Type IIb supernova progenitors with relatively small radii of about 10 R{sub sun}.

  8. Possible binary progenitors for the Type Ib supernova iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Fraser, Morgan; Maund, Justyn R.; Smartt, Stephen J.

    2015-01-01

    Cao et al. reported a possible progenitor detection for the Type Ib supernovae iPTF13bvn for the first time. We find that the progenitor is in fact brighter than the magnitudes previously reported by approximately 0.7-0.2 mag with a larger error in the bluer filters. We compare our new magnitudes to our large set of binary evolution models and find that many binary models with initial masses in the range of 10-20 M⊙ match this new photometry and other constraints suggested from analysing the supernova. In addition, these lower mass stars retain more helium at the end of the model evolution indicating that they are likely to be observed as Type Ib supernovae rather than their more massive, Wolf-Rayet counter parts. We are able to rule out typical Wolf-Rayet models as the progenitor because their ejecta masses are too high and they do not fit the observed SED unless they have a massive companion which is the observed source at the supernova location. Therefore only late-time observations of the location will truly confirm if the progenitor was a helium giant and not a Wolf-Rayet star.

  9. The binary progenitor of Tycho Brahe's 1572 supernova.

    PubMed

    Ruiz-Lapuente, Pilar; Comeron, Fernando; Méndez, Javier; Canal, Ramon; Smartt, Stephen J; Filippenko, Alexei V; Kurucz, Robert L; Chornock, Ryan; Foley, Ryan J; Stanishev, Vallery; Ibata, Rodrigo

    2004-10-28

    The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

  10. The binary progenitor of Tycho Brahe's 1572 supernova

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar; Comeron, Fernando; Méndez, Javier; Canal, Ramon; Smartt, Stephen J.; Filippenko, Alexei V.; Kurucz, Robert L.; Chornock, Ryan; Foley, Ryan J.; Stanishev, Vallery; Ibata, Rodrigo

    2004-10-01

    The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

  11. Determining the progenitors of merging black-hole binaries

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Kovetz, Ely D.; Bird, Simeon; Cholis, Ilias; Muñoz, Julian B.

    2016-07-01

    We investigate a possible method for determining the progenitors of black-hole (BH) mergers observed via their gravitational wave (GW) signal. We argue that measurements of the cross-correlation of the GW events with overlapping galaxy catalogs may provide an additional tool in determining if BH mergers trace the stellar mass of the Universe, as would be expected from mergers of the end points of stellar evolution. If, on the other hand, the BHs are of primordial origin, as has been recently suggested, their merging would be preferentially hosted by lower biased objects and thus have a lower cross-correlation with luminous galaxies. Here, we forecast the expected precision of the cross-correlation measurement for current and future GW detectors such as LIGO and the Einstein Telescope. We then predict how well these instruments can distinguish the model that identifies high-mass BH-BH mergers as the merger of primordial black holes that constitute the dark matter in the Universe from more traditional astrophysical sources.

  12. BDNF-treated retinal progenitor sheets transplanted to degenerate rats: improved restoration of visual function.

    PubMed

    Seiler, Magdalene J; Thomas, Biju B; Chen, Zhenhai; Arai, Shinichi; Chadalavada, Sridhar; Mahoney, Melissa J; Sadda, Srinivas R; Aramant, Robert B

    2008-01-01

    The aim of this study was to evaluate the functional efficacy of retinal progenitor cell (RPC) containing sheets with BDNF microspheres following subretinal transplantation in a rat model of retinal degeneration. Sheets of E19 RPCs derived from human placental alkaline phosphatase (hPAP) expressing transgenic rats were coated with poly-lactide-co-glycolide (PLGA) microspheres containing brain-derived neurotrophic factor (BDNF) and transplanted into the subretinal space of S334ter line 3 rhodopsin retinal degenerate rats. Controls received transplants without BDNF or BDNF microspheres alone. Visual function was monitored using optokinetic head-tracking behavior. Visually evoked responses to varying light intensities were recorded from the superior colliculus (SC) by electrophysiology at 60days after surgery. Frozen sections were studied by immunohistochemistry for photoreceptor and synaptic markers. Visual head tracking was significantly improved in rats that received BDNF-coated RPC sheets. Relatively more BDNF-treated transplanted rats (80%) compared to non-BDNF transplants (57%) responded to a "low light" intensity of 1cd/m2 in a confined SC area. With bright light, the onset latency of SC responses was restored to a nearly normal level in BDNF-treated transplants. No significant improvement was observed in the BDNF-only and no surgery transgenic control rats. The bipolar synaptic markers mGluR6 and PSD-95 showed normal distribution in transplants and abnormal distribution of the host retina, both with or without BDNF treatment. Red-green cones were significantly reduced in the host retina overlying the transplant in the BDNF-treated group. In summary, BDNF coating improved the functional efficacy of RPC grafts. The mechanism of the BDNF effects--either promoting functional integration between the transplant and the host retina and/or synergistic action with other putative humoral factors released by the RPCs--still needs to be elucidated.

  13. Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets

    PubMed Central

    Seiler, M.J.; Aramant, R.B.; Thomas, B.B.; Peng, Q.; Sadda, S.R.; Keirstead, H.S.

    2010-01-01

    The aim of this study was to determine whether retinal progenitor layer transplants form synaptic connections with the host and restore vision. Donor retinal sheets, isolated from E19 rat fetuses expressing human alkaline phosphatase (hPAP), were transplanted to the subretinal space of thirteen S334ter-3 rats with fast retinal degeneration at the age of 0.8 to 1.3 months. Recipients were sacrificed at the age of 1.6 to 11.8 months. Frozen sections were analyzed by confocal immunohistochemistry for the donor cell label hPAP and synaptic markers. Vibratome slices were stained for hPAP, and processed for EM. Visual responses were recorded by electrophysiology from the superior colliculus (SC) in 8 rats at the age of 5.3 to 11.8 months. - All recorded transplanted rats had restored or preserved visual responses in the SC corresponding to the transplant location in the retina, with thresholds between −2.8 and −3.4 log cd/m2. No such responses were found in age-matched S334ter-3 rats without transplant, or in sham surgeries. Donor cells and processes were identified in the host by light and electron microscopy. Transplant processes penetrated the inner host retina in spite of occasional glial barriers between transplant and host. Labeled neuronal processes were found in the host inner plexiform layer, and formed apparent synapses with unlabeled cells presumably of host origin. Conclusions: Synaptic connections between graft and host cells, together with visual responses from corresponding locations in the brain, support the hypothesis that functional connections develop following transplantation of retinal layers into rodent models of retinal degeneration. PMID:20105230

  14. CONSTRAINTS ON THE BINARY COMPANION TO THE SN Ic 1994I PROGENITOR

    SciTech Connect

    Van Dyk, Schuyler D.

    2016-02-10

    Core-collapse supernovae (SNe), which mark the deaths of massive stars, are among the most powerful explosions in the universe and are responsible, e.g., for a predominant synthesis of chemical elements in their host galaxies. The majority of massive stars are thought to be born in close binary systems. To date, putative binary companions to the progenitors of SNe may have been detected in only two cases, SNe 1993J and 2011dh. We report on the search for a companion of the progenitor of the Type Ic SN 1994I, long considered to have been the result of binary interaction. Twenty years after explosion, we used the Hubble Space Telescope to observe the SN site in the ultraviolet (F275W and F336W bands), resulting in deep upper limits on the expected companion: F275W > 26.1 mag and F336W > 24.7 mag. These allow us to exclude the presence of a main sequence companion with a mass ≳10 M{sub ⊙}. Through comparison with theoretical simulations of possible progenitor populations, we show that the upper limits to a companion detection exclude interacting binaries with semi-conservative (late Case A or early Case B) mass transfer. These limits tend to favor systems with non-conservative, late Case B mass transfer with intermediate initial orbital periods and mass ratios. The most likely mass range for a putative main sequence companion would be ∼5–12 M{sub ⊙}, the upper end of which corresponds to the inferred upper detection limit.

  15. A binary progenitor for the Type Ib Supernova iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Bersten, Melina C.

    2015-01-01

    The recent detection in archival HST images of an object at the the location of supernova (SN) iPTF13bvn may represent the first direct evidence of the progenitor of a Type Ib SN. The object's photometry was found to be compatible with a Wolf-Rayet pre-SN star mass of ~ 11 M ⊙. However, based on hydrodynamical models we show that the progenitor had a pre-SN mass of ~ 3.5 M ⊙ and that it could not be larger than ~ 8 M ⊙. We propose an interacting binary system as the SN progenitor and perform evolutionary calculations that are able to self-consistently explain the light-curve shape, the absence of hydrogen, and the pre-SN photometry. Our models also predict that the remaining companion is a luminous O-type star of significantly lower flux in the optical than the pre-SN object. A future detection of such star may be possible and would provide the first robust progenitor identification for a Type-Ib SN.

  16. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  17. A BINARY PROGENITOR FOR THE TYPE IIb SUPERNOVA 2011dh IN M51

    SciTech Connect

    Benvenuto, Omar G.

    2013-01-10

    We perform binary stellar evolutionary calculations following the simultaneous evolution of both stars in the system to study a potential progenitor system for the Type IIb supernova 2011dh. Pre-explosion photometry as well as light-curve modeling has provided constraints on the physical properties of the progenitor system. Here, we present a close binary system (CBS) that is compatible with such constraints. The system is formed by stars of solar composition with 16 M {sub Sun} + 10 M {sub Sun} on a circular orbit with an initial period of 125 days. The primary star ends its evolution as a yellow supergiant with a mass of Almost-Equal-To 4 M {sub Sun }, a final hydrogen content of Almost-Equal-To (3-5) Multiplication-Sign 10{sup -3} M {sub Sun }, and with an effective temperature and luminosity in agreement with the Hubble Space Telescope (HST) pre-explosion observations of SN 2011dh. These results are nearly insensitive to the adopted accretion efficiency factor {beta}. At the time of explosion, the companion star has an effective temperature of 22,000-40,000 K, depending on the value of {beta}, and lies near the zero-age main sequence. Considering the uncertainties in the HST pre-SN photometry, the secondary star is only marginally detectable in the bluest observed band. CBSs, as opposed to single stars, provide a natural frame to explain the properties of SN 2011dh.

  18. The hot subdwarf B + white dwarf binary KPD 1930+2752. A supernova type Ia progenitor candidate

    NASA Astrophysics Data System (ADS)

    Geier, S.; Nesslinger, S.; Heber, U.; Przybilla, N.; Napiwotzki, R.; Kudritzki, R.-P.

    2007-03-01

    Context: The nature of the progenitors of type Ia supernovae is still under debate. KPD 1930+2752 is one of the best SN Ia progenitor candidates known today. The object is a double degenerate system consisting of a subluminous B star (sdB) and a massive white dwarf (WD). Maxted et al. ([CITE]) conclude that the system mass exceeds the Chandrasekhar mass. This conclusion, however, rests on the assumption that the sdB mass is 0.5 M⊙. However, recent binary population synthesis calculations suggest that the mass of an sdB star may range from 0.3 M⊙ to more than 0.7 M⊙. Aims: It is therefore important to measure the mass of the sdB star simultaneously with that of the white dwarf. Since the rotation of the sdB star is tidally locked to the orbit, the inclination of the system can be constrained if the sdB radius and the projected rotational velocity can be measured with high precision. An analysis of the ellipsoidal variations in the light curve allows the constraints derived from spectroscopy to be tightened. Methods: We derived the mass-radius relation for the sdB star from a quantitative spectral analysis of 150 low-resolution spectra obtained with the Calar Alto 2.2 m telescope using metal-rich, line-blanketed LTE model atmospheres with and without NLTE line formation. The projected rotational velocity was determined for the first time from 200 high-resolution spectra obtained with the Keck I 10 m and with the ESO-VLT 8.2 m telescopes. In addition a reanalysis of the published light curve was performed. Results: The atmospheric and orbital parameters were measured with unprecedented accuracy. In particular the projected rotational velocity <[(v_rot sin{i} = 92.3 ± 1.5 km s-1)]> was determined. Assuming the companion to be a white dwarf, the mass of the sdB is limited between <[(0.45 M⊙)]> and <[(0.64 M⊙)]> and the corresponding total mass of the system ranges from <[(1.33 M⊙)]> to <[(2.04 M⊙)]>. This constrains the inclination to i>68°. The

  19. Radiative-transfer models for supernovae IIb/Ib/Ic from binary-star progenitors

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Hillier, D. John; Woosley, Stan; Livne, Eli; Waldman, Roni; Yoon, Sung-Chul; Langer, Norbert

    2015-10-01

    We present 1D non-local thermodynamic equilibrium time-dependent radiative-transfer simulations for supernovae (SNe) of Type IIb, Ib, and Ic that result from the terminal explosion of the mass donor in a close-binary system. Here, we select three ejecta with a total kinetic energy of ≈1.2 × 1051 erg, but characterized by different ejecta masses (2-5 M⊙), composition, and chemical mixing. The Type IIb/Ib models correspond to the progenitors that have retained their He-rich shell at the time of explosion. The Type Ic model arises from a progenitor that has lost its helium shell, but retains 0.32 M⊙ of helium in a CO-rich core of 5.11 M⊙. We discuss their photometric and spectroscopic properties during the first 2-3 months after explosion, and connect these to their progenitor and ejecta properties including chemical stratification. For these three models, Arnett's rule overestimates the 56Ni mass by ≈ 50 per cent while the procedure of Katz et al., based on an energy argument, yields a more reliable estimate. The presence of strong C I lines around 9000Å prior to maximum is an indicator that the pre-SN star was underabundant in helium. As noted by others, the 1.08μm feature is a complex blend of C I, Mg II, and He I lines, which makes the identification of He uncertain in SNe Ibc unless other He I lines can be identified. Our models show little scatter in (V - R) colour 10 d after R-band maximum. We also address a number of radiative transfer properties of SNe Ibc, including the notion of a photosphere, the inference of a representative ejecta expansion rate, spectrum formation, blackbody fits and `correction factors'.

  20. A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Geier, S.; Marsh, T. R.; Wang, B.; Dunlap, B.; Barlow, B. N.; Schaffenroth, V.; Chen, X.; Irrgang, A.; Maxted, P. F. L.; Ziegerer, E.; Kupfer, T.; Miszalski, B.; Heber, U.; Han, Z.; Shporer, A.; Telting, J. H.; Gänsicke, B. T.; Østensen, R. H.; O'Toole, S. J.; Napiwotzki, R.

    2013-06-01

    Type Ia supernovae (SN Ia) are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accretion from a close companion, the helium is ignited causing a detonation wave that triggers the explosion of the white dwarf itself. We have discovered both shallow transits and eclipses in the tight binary system CD-30°11223 composed of a carbon/oxygen white dwarf and a hot helium star, allowing us to determine its component masses and fundamental parameters. In the future the system will transfer mass from the helium star to the white dwarf. Modelling this process we find that the detonation in the accreted helium layer is sufficiently strong to trigger the explosion of the core. The helium star will then be ejected at such high velocity that it will escape the Galaxy. The predicted properties of this remnant are an excellent match to the so-called hypervelocity star US 708, a hot, helium-rich star moving at more than 750 km s-1, sufficient for it to leave the Galaxy. The identification of both progenitor and remnant provides a consistent picture of the formation and evolution of underluminous SNIa.

  1. Uncovering the Putative B-Star Binary Companion of the SN 1993J Progenitor

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Bostroem, K. Azalee; Van Dyk, Schuyler D.; Filippenko, Alexei V.; Fransson, Claes; Matheson, Thomas; Cenko, S. Bradley; Chandra, Poonam; Dwarkadas, Vikram; Li, Weidong; hide

    2014-01-01

    The Type IIb supernova (SN) 1993J is one of only a few stripped-envelope SNe with a progenitor star identified in pre-explosion images. SN IIb models typically invoke H envelope stripping by mass transfer in a binary system. For the case of SN 1993J, the models suggest that the companion grew to 22 solar mass and became a source of ultraviolet (UV) excess. Located in M81, at a distance of only 3.6 Mpc, SN 1993J offers one of the best opportunities to detect the putative companion and test the progenitor model. Previously published near-UV spectra in 2004 showed evidence for absorption lines consistent with a hot (B2 Ia) star, but the field was crowded and dominated by flux from the SN. Here we present Hubble Space Telescope Cosmic Origins Spectrograph and Wide-Field Camera 3 observations of SN 1993J from 2012, at which point the flux from the SN had faded sufficiently to potentially measure the UV continuum properties from the putative companion. The resulting UV spectrum is consistent with contributions from both a hot B star and the SN, although we cannot rule out line-of-sight coincidences.

  2. Uncovering the putative B-star binary companion of the SN 1993J progenitor

    SciTech Connect

    Fox, Ori D.; Filippenko, Alexei V.; Bradley Cenko, S.; Li, Weidong; Parker, Alex H.; Azalee Bostroem, K.; Van Dyk, Schuyler D.; Fransson, Claes; Matheson, Thomas; Chandra, Poonam; Dwarkadas, Vikram; Smith, Nathan

    2014-07-20

    The Type IIb supernova (SN) 1993J is one of only a few stripped-envelope SNe with a progenitor star identified in pre-explosion images. SN IIb models typically invoke H envelope stripping by mass transfer in a binary system. For the case of SN 1993J, the models suggest that the companion grew to 22 M{sub ☉} and became a source of ultraviolet (UV) excess. Located in M81, at a distance of only 3.6 Mpc, SN 1993J offers one of the best opportunities to detect the putative companion and test the progenitor model. Previously published near-UV spectra in 2004 showed evidence for absorption lines consistent with a hot (B2 Ia) star, but the field was crowded and dominated by flux from the SN. Here we present Hubble Space Telescope Cosmic Origins Spectrograph and Wide-Field Camera 3 observations of SN 1993J from 2012, at which point the flux from the SN had faded sufficiently to potentially measure the UV continuum properties from the putative companion. The resulting UV spectrum is consistent with contributions from both a hot B star and the SN, although we cannot rule out line-of-sight coincidences.

  3. TYPE Ia SUPERNOVA PROGENITORS AND CHEMICAL ENRICHMENT IN HYDRODYNAMICAL SIMULATIONS. I. THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect

    Jiménez, Noelia; Tissera, Patricia B.; Matteucci, Francesca

    2015-09-10

    The nature of the Type Ia supernova (SN Ia) progenitors remains uncertain. This is a major issue for galaxy evolution models since both chemical and energetic feedback plays a major role in the gas dynamics, star formation, and therefore the overall stellar evolution. The progenitor models for the SNe Ia available in the literature propose different distributions for regulating the explosion times of these events. These functions are known as the delay time distributions (DTDs). This work is the first one in a series of papers aiming at studying five different DTDs for SNe Ia. Here we implement and analyze the single-degenerate (SD) scenario in galaxies dominated by a rapid quenching of the star formation, displaying the majority of the stars concentrated in the bulge component. We find a good fit to both the present observed SN Ia rates in spheroidal-dominated galaxies and the [O/Fe] ratios shown by the bulge of the Milky Way. Additionally, the SD scenario is found to reproduce a correlation between the specific SN Ia rate and the specific star formation rate (sSFR), which closely resembles the observational trend, at variance with previous works. Our results suggest that SN Ia observations in galaxies with very low and very high sSFRs can help to impose more stringent constraints on the DTDs and therefore on SN Ia progenitors.

  4. The massive binary companion star to the progenitor of supernova 1993J.

    PubMed

    Maund, Justyn R; Smartt, Stephen J; Kudritzki, Rolf P; Podsiadlowski, Philipp; Gilmore, Gerard F

    2004-01-08

    The massive star that underwent a collapse of its core to produce supernova (SN)1993J was subsequently identified as a non-variable red supergiant star in images of the galaxy M81 taken before explosion. It showed an excess in ultraviolet and B-band colours, suggesting either the presence of a hot, massive companion star or that it was embedded in an unresolved young stellar association. The spectra of SN1993J underwent a remarkable transformation from the signature of a hydrogen-rich type II supernova to one of a helium-rich (hydrogen-deficient) type Ib. The spectral and photometric peculiarities were best explained by models in which the 13-20 solar mass supergiant had lost almost its entire hydrogen envelope to a close binary companion, producing a 'type IIb' supernova, but the hypothetical massive companion stars for this class of supernovae have so far eluded discovery. Here we report photometric and spectroscopic observations of SN1993J ten years after the explosion. At the position of the fading supernova we detect the unambiguous signature of a massive star: the binary companion to the progenitor.

  5. Tendon Progenitor Cells in Injured Tendons Have Strong Chondrogenic Potential: The CD105-Negative Subpopulation Induces Chondrogenic Degeneration

    PubMed Central

    Asai, Shuji; Otsuru, Satoru; Candela, Maria Elena; Cantley, Leslie; Uchibe, Kenta; Hofmann, Ted J.; Zhang, Kairui; Wapner, Keith L.; Soslowsky, Louis J; Horwitz, Edwin M.; Enomoto-Iwamoto, Motomi

    2014-01-01

    To study the cellular mechanism of the tendon repair process, we used a mouse Achilles tendon injury model to focus on the cells recruited to the injured site. The cells isolated from injured tendon 1 week after the surgery and uninjured tendons contained the connective tissue progenitor populations as determined by colony-forming capacity, cell surface markers and multipotency. When the injured tendon-derived progenitor cells (inTPCs) were transplanted into injured Achilles tendons, they were not only integrated in the regenerating area expressing tenogenic phenotype but also trans-differentiated into chondrogenic cells in the degenerative lesion that underwent ectopic endochondral ossification. Surprisingly, the micromass culture of the inTPCs rapidly underwent chondrogenic differentiation even in the absence of exogenous BMPs or TGFβs. The cells isolated from human ruptured tendon tissues also showed connective tissue progenitor properties and exhibited stronger chondrogenic ability than bone marrow stromal cells. The mouse inTPCs contained two subpopulations one positive and one negative for CD105, a co-receptor of the TGFβ superfamily. The CD105-negative cells showed superior chondrogenic potential in vitro and induced larger chondroid degenerative lesions in mice as compared to the CD105-positive cells. These findings indicate that tendon progenitor cells are recruited to the injured site of tendons and have a strong chondrogenic potential and that the CD105-negative population of these cells would be the cause for chondroid degeneration in injured tendons. The newly identified cells recruited to the injured tendon may provide novel targets to develop therapeutic strategies to facilitate tendon repair. PMID:25220576

  6. Tendon progenitor cells in injured tendons have strong chondrogenic potential: the CD105-negative subpopulation induces chondrogenic degeneration.

    PubMed

    Asai, Shuji; Otsuru, Satoru; Candela, Maria Elena; Cantley, Leslie; Uchibe, Kenta; Hofmann, Ted J; Zhang, Kairui; Wapner, Keith L; Soslowsky, Louis J; Horwitz, Edwin M; Enomoto-Iwamoto, Motomi

    2014-12-01

    To study the cellular mechanism of the tendon repair process, we used a mouse Achilles tendon injury model to focus on the cells recruited to the injured site. The cells isolated from injured tendon 1 week after the surgery and uninjured tendons contained the connective tissue progenitor populations as determined by colony-forming capacity, cell surface markers, and multipotency. When the injured tendon-derived progenitor cells (inTPCs) were transplanted into injured Achilles tendons, they were not only integrated in the regenerating area expressing tenogenic phenotype but also trans-differentiated into chondrogenic cells in the degenerative lesion that underwent ectopic endochondral ossification. Surprisingly, the micromass culture of the inTPCs rapidly underwent chondrogenic differentiation even in the absence of exogenous bone morphogenetic proteins or TGFβs. The cells isolated from human ruptured tendon tissues also showed connective tissue progenitor properties and exhibited stronger chondrogenic ability than bone marrow stromal cells. The mouse inTPCs contained two subpopulations one positive and one negative for CD105, a coreceptor of the TGFβ superfamily. The CD105-negative cells showed superior chondrogenic potential in vitro and induced larger chondroid degenerative lesions in mice as compared to the CD105-positive cells. These findings indicate that tendon progenitor cells are recruited to the injured site of tendons and have a strong chondrogenic potential and that the CD105-negative population of these cells would be the cause for chondroid degeneration in injured tendons. The newly identified cells recruited to the injured tendon may provide novel targets to develop therapeutic strategies to facilitate tendon repair.

  7. Common-envelope ejection in massive binary stars. Implications for the progenitors of GW150914 and GW151226

    NASA Astrophysics Data System (ADS)

    Kruckow, M. U.; Tauris, T. M.; Langer, N.; Szécsi, D.; Marchant, P.; Podsiadlowski, Ph.

    2016-11-01

    Context. The recently detected gravitational wave signals (GW150914 and GW151226) of the merger event of a pair of relatively massive stellar-mass black holes (BHs) calls for an investigation of the formation of such progenitor systems in general. Aims: We analyse the common-envelope (CE) stage of the traditional formation channel in binaries where the first-formed compact object undergoes an in-spiral inside the envelope of its evolved companion star and ejects the envelope in this process. Methods: We calculated envelope binding energies of donor stars with initial masses between 4 and 115M⊙ for metallicities of Z = ZMilky Way ≃ Z⊙/ 2 and Z = Z⊙/ 50, and derived minimum masses of in-spiralling objects needed to eject these envelopes. Results: In addition to producing double white dwarf and double neutron star binaries, CE evolution may also produce massive BH-BH systems with individual BH component masses of up to 50 - 60M⊙, in particular for donor stars evolved to giants beyond the Hertzsprung gap. However, the physics of envelope ejection of massive stars remains uncertain. We discuss the applicability of the energy-budget formalism, the location of the bifurcation point, the recombination energy, and the accretion energy during in-spiral as possible energy sources, and also comment on the effect of inflated helium cores. Conclusions: Massive stars in a wide range of metallicities and with initial masses of up to at least 115M⊙ may shed their envelopes and survive CE evolution, depending on their initial orbital parameters, similarly to the situation for intermediate- and low-mass stars with degenerate cores. In addition to being dependent on stellar radius, the envelope binding energies and λ-values also depend on the applied convective core-overshooting parameter, whereas these structure parameters are basically independent of metallicity for stars with initial masses below 60M⊙. Metal-rich stars ≳60M⊙ become luminous blue variables and do

  8. Searching for twins of the V1309 Sco progenitor system: a selection of long-period contact binaries

    NASA Astrophysics Data System (ADS)

    Kurtenkov, Alexander

    2017-01-01

    The only well-studied red nova progenitor (V1309 Sco) was a contact binary with a 1.4-day period. The prospects for searching for similar systems, as well as stellar merger candidates in general, are explored in this work. The photospheric temperatures of 128 variables with periods P=1.1-1.8 d classified as W UMa-type binaries are calculated using their colors listed in the SDSS catalog. A selection of 15 contact binaries with similar temperatures and periods as the V1309 Sco progenitor is compiled. The Kepler Eclipsing Binary Catalog is used to analyse systems with eclipse timing variations (ETV) possibly caused by changes of the orbital period. Out of the 31 systems with parabolic ETV curves listed by Conroy et al. (2014, AJ, 147, 45) two could be contact binaries with a decreasing period and, therefore, potential stellar merger candidates. Out of the 569 contact binaries in the OGLE field analysed by Kubiak et al. (2006, AcA, 56, 253) 14 systems have periods longer than 0.8 d and a statistically significant period decrease.

  9. On the behavior of double degenerate binaries associated with Type I supernovae

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.; Iben, I., Jr.

    1986-01-01

    An analytical investigation is performed of the evolution of double degenerate dwarf binary systems into Type I supernovae. The discussion is limited to systems consisting of carbon-oxygen and oxygen-neon-magnesium dwarfs and those composed of two carbon-oxygen dwarfs. The companions spiral together and the secondary, with a mass more than about 0.6 solar mass, fills its Roche lobe. The radius of the secondary increases faster than the Roche lobe due to mass overflow, which becomes unstable. The instability can lead to a Type I explosion and may or may not cause the formation of a neutron star. If a neutron star forms, the secondary, reduced to below 0.6 solar mass, will spiral inward to the primary and eventually be absorbed by the neutron star. If a white dwarf remnant remains after the supernova explosion of the overflow radius, then a second supernova explosion can occur.

  10. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration.

    PubMed

    Kohler, Julia; Popov, Cvetan; Klotz, Barbara; Alberton, Paolo; Prall, Wolf Christian; Haasters, Florian; Müller-Deubert, Sigrid; Ebert, Regina; Klein-Hitpass, Ludger; Jakob, Franz; Schieker, Matthias; Docheva, Denitsa

    2013-12-01

    Although the link between altered stem cell properties and tissue aging has been recognized, the molecular and cellular processes of tendon aging have not been elucidated. As tendons contain stem/progenitor cells (TSPC), we investigated whether the molecular and cellular attributes of TSPC alter during tendon aging and degeneration. Comparing TSPC derived from young/healthy (Y-TSPC) and aged/degenerated human Achilles tendon biopsies (A-TSPC), we observed that A-TSPC exhibit a profound self-renewal and clonogenic deficits, while their multipotency was still retained. Senescence analysis showed a premature entry into senescence of the A-TSPC, a finding accompanied by an upregulation of p16(INK4A). To identify age-related molecular factors, we performed microarray and gene ontology analyses. These analyses revealed an intriguing transcriptomal shift in A-TSPC, where the most differentially expressed probesets encode for genes regulating cell adhesion, migration, and actin cytoskeleton. Time-lapse analysis showed that A-TSPC exhibit decelerated motion and delayed wound closure concomitant to a higher actin stress fiber content and a slower turnover of actin filaments. Lastly, based on the expression analyses of microarray candidates, we suggest that dysregulated cell-matrix interactions and the ROCK kinase pathway might be key players in TSPC aging. Taken together, we propose that during tendon aging and degeneration, the TSPC pool is becoming exhausted in terms of size and functional fitness. Thus, our study provides the first fundamental basis for further exploration into the molecular mechanisms behind tendon aging and degeneration as well as for the selection of novel tendon-specific therapeutical targets. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  12. Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina.

    PubMed

    Mollick, Tanzina; Mohlin, Camilla; Johansson, Kjell

    2016-09-01

    Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS

    SciTech Connect

    Fong, W.; Berger, E.

    2013-10-10

    We present a detailed investigation of Hubble Space Telescope rest-frame UV/optical observations of 22 short gamma-ray burst (GRB) host galaxies and sub-galactic environments. Utilizing the high angular resolution and depth of HST we characterize the host galaxy morphologies, measure precise projected physical and host-normalized offsets between the bursts and host centers, and calculate the locations of the bursts with respect to their host light distributions (rest-frame UV and optical). We calculate a median short GRB projected physical offset of 4.5 kpc, about 3.5 times larger than that for long GRBs, and find that ≈25% of short GRBs have offsets of ∼> 10 kpc. When compared to their host sizes, the median offset is 1.5 half-light radii (r{sub e} ), about 1.5 times larger than the values for long GRBs, core-collapse supernovae, and Type Ia supernovae. In addition, ≈20% of short GRBs having offsets of ∼> 5r{sub e} , and only ≈25% are located within 1r{sub e} . We further find that short GRBs severely under-represent their hosts' rest-frame optical and UV light, with ≈30%-45% of the bursts located in regions of their host galaxies that have no detectable stellar light, and ≈55% in the regions with no UV light. Therefore, short GRBs do not occur in regions of star formation or even stellar mass. This demonstrates that the progenitor systems of short GRBs must migrate from their birth sites to their eventual explosion sites, a signature of kicks in compact object binary systems. Utilizing the full sample of offsets, we estimate natal kick velocities of ≈20-140 km s{sup –1}. These independent lines of evidence provide the strongest support to date that short GRBs result from the merger of compact object binaries (NS-NS/NS-BH)

  14. iPTF13bvn: The First Evidence of a Binary Progenitor for a Type Ib Supernova

    NASA Astrophysics Data System (ADS)

    Bersten, Melina C.; Benvenuto, Omar G.; Folatelli, Gastón; Nomoto, Ken'ichi; Kuncarayakti, Hanindyo; Srivastav, Shubham; Anupama, G. C.; Quimby, Robert; Sahu, Devendra K.

    2014-10-01

    The recent detection in archival Hubble Space Telescope images of an object at the location of supernova (SN) iPTF13bvn may represent the first direct evidence of the progenitor of a Type Ib SN. The object's photometry was found to be compatible with a Wolf-Rayet pre-SN star mass of ≈11 M ⊙. However, based on hydrodynamical models, we show that the progenitor had a pre-SN mass of ≈3.5 M ⊙ and that it could not be larger than ≈8 M ⊙. We propose an interacting binary system as the SN progenitor and perform evolutionary calculations that are able to self-consistently explain the light curve shape, the absence of hydrogen, and the pre-SN photometry. We further discuss the range of allowed binary systems and predict that the remaining companion is a luminous O-type star of significantly lower flux in the optical than the pre-SN object. A future detection of such a star may be possible and would provide the first robust identification of a progenitor system for a Type Ib SN.

  15. iPTF 13bvn: The first evidence of a binary progenitor of a Type Ib supernova

    NASA Astrophysics Data System (ADS)

    Bersten, Melina; Nomoto, Ken'ichi

    2014-09-01

    The recent detection in archival HST images of an object at the location of supernova (SN) iPTF 13bvn may represent the first direct evidence of the progenitor of a Type Ib SN. The object's photometry was found to be compatible with a Wolf-Rayet pre-SN star mass of ~11 Msun. However, based on hydrodynamical models, we show that the progenitor had a pre-SN mass of ~3.5 Msun and that it could not be more massive than ~8 Msun. We propose an interacting binary system as the SN progenitor and perform evolutionary calculations that are able to self-consistently explain the light-curve shape, the absence of hydrogen, and the pre-SN photometry. We further discuss the range of allowed binary systems and predict that the remaining companion is a luminous O-type star of significantly lower flux in the optical than the pre-SN object. A future detection of such a star may be possible and would provide the first robust progenitor identification for a Type Ib SN.

  16. iPTF13bvn: The first evidence of a binary progenitor for a type Ib supernova

    SciTech Connect

    Bersten, Melina C.; Folatelli, Gastón; Nomoto, Ken'ichi; Quimby, Robert; Benvenuto, Omar G.; Srivastav, Shubham; Anupama, G. C.; Sahu, Devendra K.

    2014-10-01

    The recent detection in archival Hubble Space Telescope images of an object at the location of supernova (SN) iPTF13bvn may represent the first direct evidence of the progenitor of a Type Ib SN. The object's photometry was found to be compatible with a Wolf-Rayet pre-SN star mass of ≈11 M {sub ☉}. However, based on hydrodynamical models, we show that the progenitor had a pre-SN mass of ≈3.5 M {sub ☉} and that it could not be larger than ≈8 M {sub ☉}. We propose an interacting binary system as the SN progenitor and perform evolutionary calculations that are able to self-consistently explain the light curve shape, the absence of hydrogen, and the pre-SN photometry. We further discuss the range of allowed binary systems and predict that the remaining companion is a luminous O-type star of significantly lower flux in the optical than the pre-SN object. A future detection of such a star may be possible and would provide the first robust identification of a progenitor system for a Type Ib SN.

  17. Black-hole hair loss: Learning about binary progenitors from ringdown signals

    NASA Astrophysics Data System (ADS)

    Kamaretsos, Ioannis; Hannam, Mark; Husa, Sascha; Sathyaprakash, B. S.

    2012-01-01

    Perturbed Kerr black holes emit gravitational radiation, which (for the practical purposes of gravitational-wave astronomy) consists of a superposition of damped sinusoids termed quasinormal modes. The frequencies and time constants of the modes depend only on the mass and spin of the black hole—a consequence of the no-hair theorem. It has been proposed that a measurement of two or more quasinormal modes could be used to confirm that the source is a black hole and to test if general relativity continues to hold in ultrastrong gravitational fields. In this paper, we propose a practical approach to testing general relativity with quasinormal modes. We will also argue that the relative amplitudes of the various quasinormal modes encode important information about the origin of the perturbation that caused them. This helps in inferring the nature of the perturbation from an observation of the emitted quasinormal modes. In particular, we will show that the relative amplitudes of the different quasinormal modes emitted in the process of the merger of a pair of nonspinning black holes can be used to measure the component masses of the progenitor binary.

  18. DOUBLE DEGENERATE MERGERS AS PROGENITORS OF HIGH-FIELD MAGNETIC WHITE DWARFS

    SciTech Connect

    Garcia-Berro, Enrique; Loren-Aguilar, Pablo; Aznar-Siguan, Gabriela; Torres, Santiago; Camacho, Judit

    2012-04-10

    High-field magnetic white dwarfs have been long suspected to be the result of stellar mergers. However, the nature of the coalescing stars and the precise mechanism that produces the magnetic field are still unknown. Here, we show that the hot, convective, differentially rotating corona present in the outer layers of the remnant of the merger of two degenerate cores can produce magnetic fields of the required strength that do not decay for long timescales. Using a state-of-the-art Monte Carlo simulator, we also show that the expected number of high-field magnetic white dwarfs produced in this way is consistent with that found in the solar neighborhood.

  19. Is the central binary system of the planetary nebula Henize 2-428 a type Ia supernova progenitor?

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Soker, Noam; Althaus, Leandro G.; Ribas, Ignasi; Morales, Juan C.

    2016-05-01

    We critically discuss the recent observations of the binary system at the center of the bipolar planetary nebula Henize 2-428. We find that the proposed explanation of two equal-mass degenerate objects with a total mass larger than the Chandrasekhar limiting mass that supposedly will merge in less than a Hubble time, possibly leading to a SN Ia, is controversial. This hypothesis relies on the assumption that the variability of the He II 5412 Å spectral line is due to two absorption components. Instead, we propose that it can be accounted for by a broad absorption line from the central system on top of which there is a narrow emission line from the nebula. This prompted us to study if the binary system can be made of a degenerate star and a low-mass main sequence companion, or of two degenerate objects of smaller mass. We find that although both scenarios can account for the existence of two symmetric broad minima in the light curve, the second one agrees better with observations. We thus argue that the claim that Henize 2-428 provides observational evidence supporting the double-degenerate scenario for SN Ia is premature.

  20. The imprint of a symbiotic binary progenitor on the properties of Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Schure, K. M.; Vink, J.

    2012-01-01

    We present a model for the type Ia supernova remnant (SNR) of SN 1604, also known as Kepler's SNR. We find that its main features can be explained by a progenitor model of a symbiotic binary consisting of a white dwarf and an AGB donor star with an initial mass of 4-5 M⊙. The slow, nitrogen-rich wind emanating from the donor star has partially been accreted by the white dwarf, but has also created a circumstellar bubble. On the basis of observational evidence, we assume that the system moves with a velocity of 250 km s-1. Owing to the spatial velocity, the interaction between the wind and the interstellar medium has resulted in the formation of a bow shock, which can explain the presence of a one-sided, nitrogen-rich shell. We present two-dimensional hydrodynamical simulations of both the shell formation and the SNR evolution. The SNR simulations show good agreement with the observed kinematic and morphological properties of Kepler's SNR. In particular, the model reproduces the observed expansion parameters (m = V/(R/t)) of m ≈ 0.35 in the north and m ≈ 0.6 in the south of Kepler's SNR. We discuss the variations among our hydrodynamical simulations in light of the observations, and show that part of the blast wave may have completely traversed through the one-sided shell. The simulations suggest a distance to Kepler's SNR of 6 kpc, or otherwise imply that SN 1604 was a sub-energetic type Ia explosion. Finally, we discuss the possible implications of our model for type Ia supernovae and their remnants in general.

  1. Be stars with white dwarf companions: a new single degenerate binary channel to type Ia supernovae explosions

    NASA Astrophysics Data System (ADS)

    Orio, Marina; Luna, Gerardo; Zemko, Polina; Kotulla, Ralf; Gallagher, Jay; Harbeck, Daniel

    2016-07-01

    A handful of supersoft X-ray sources in the Magellanic Clouds that could not be identified with transient nova outbursts turned out to be mainly massive close binaries. 6 years ago we suggested that several such sources may exist in M31, because we found that a certain fraction of supersoft sources was located in star forming regions. Following that discovery, we clearly identified a Be binary in M31, and are currently collecting data for another candidate in that galaxy. Work is in progress to assess whether the compact object companion really is a hydrogen burning white dwarf (the alternative being a massive stellar-mass black hole). If we can demonstrate that Be+white dwarf interacting close binaries are common, and that hydrogen is often ignited on the white dwarf in these systems, we have discovered a new promising channel towards the explosion of supernovae of type Ia in star forming regions, without invoking double degenerate systems.

  2. Three very cool degenerate stars in Luyten common proper motion binaries - Implications for the age of the galactic disk

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Oswalt, Terry D.; Liebert, James; Sion, Edward M.

    1989-01-01

    During the course of a spectroscopic study of Luyten common proper motion (CPM) stars, spectrophotometric observations have been obtained of three binaries containing degenerate stars with estimated absolute magnitudes M(V) of about 16. Each of the three pairs consists of a yellow degenerate star primary and a DC 13 + secondary 1.4-2.3 mag fainter. One of the primary stars is spectral class DC 7, another is a sharp-lined DA 8, and the third shows peculiar broad absorption features which we interpret as pressure-shifted C2 Swan bands. The LP 701 - 69/70 system has survived for over 8 billion years without disruption by passing stars, despite its 1500 a.u. orbital major axis. The three cool degenerate companions nearly double the available sample of stars at the low-luminosity terminus of the white dwarf cooling sequence. These findings appear consistent with the conclusion that degenerate stars in the old disk population have not had time to evolve to a luminosity fainter than M(V) about 16.2.

  3. SU5416 induces premature senescence in endothelial progenitor cells from patients with age-related macular degeneration

    PubMed Central

    Berna, Marc J.; Kunst, Frank; Wege, Henning; Strunnikova, Natalya V.; Gordiyenko, Natalya; Grierson, Rebecca; Richard, Gisbert; Csaky, Karl G.

    2011-01-01

    Purpose We recently demonstrated increased frequency and growth potential of late outgrowth endothelial progenitor cells (OECs) in patients with neovascular age-related macular degeneration (nvAMD). This study investigated the effects of short- and long-term in vitro inhibition of vascular endothelial growth factor (VEGF) Receptor-2 (VEGFR-2) signaling by SU5416 and other inhibitors of the VEGF signaling pathway in OECs. Methods OECs, from the peripheral blood of patients with nvAMD, and human umbilical vein endothelial cells were grown in the presence of SU5416, other VEGFR-2 tyrosine kinase inhibitors (TKIs), and inhibitors of phosphatidylinositol 3′-Kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) in complete angiogenic medium. Apotosis was assessed after 48 h using the fluorescein isothiocyanate Annexin V method. Cell counts were performed for 10 days, and features of senescence were analyzed using senescence-associated β-galactosidase staining, the telomeric repeat amplification protocol for telomerase activity, Southern blot analysis for mean telomere length, flow cytometric analysis for cell-cycle arrest, and western blot for p53 and p21. Control OECs, cells treated for 7 days with inhibitors, as well as naturally senescent OECs were analyzed for expression of different endothelial antigens, including VEGFR-2 and the receptor for stromal cell-derived factor 1, chemokine receptor 4 (CXCR-4). Migration in vitro to VEGF and stromal cell-derived factor 1 of OECs was assessed. Results SU5416, other VEGFR-2 TKIs, and inhibitors of PI3K, Akt, and PKC induced apoptosis, inhibited long-term proliferation, reduced telomerase activity, and induced premature senescence and cell-cycle arrest in OECs as well as in human umbilical vein endothelial cells. Naturally senescent cells and cells rendered senescent by VEGFR-2 TKIs had reduced VEGFR-2 and CXCR-4 expression and demonstrated reduced migratory ability to VEGF. Conclusions This study demonstrates

  4. Progenitors of type Ia supernovae in elliptical galaxies

    SciTech Connect

    Gilfanov, M.; Bogdan, A.

    2011-09-21

    Although there is a nearly universal agreement that type Ia supernovae are associated with the thermonuclear disruption of a CO white dwarf, the exact nature of their progenitors is still unknown. The single degenerate scenario envisages a white dwarf accreting matter from a non-degenerate companion in a binary system. Nuclear energy of the accreted matter is released in the form of electromagnetic radiation or gives rise to numerous classical nova explosions prior to the supernova event. We show that combined X-ray output of supernova progenitors and statistics of classical novae predicted in the single degenerate scenario are inconsistent with X-ray and optical observations of nearby early type galaxies and galaxy bulges. White dwarfs accreting from a donor star in a binary system and detonating at the Chandrasekhar mass limit can account for no more than {approx}5% of type Ia supernovae observed in old stellar populations.

  5. The progenitors of supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia

    2014-09-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. SNeIa are generally thought to be thermonuclear explosions of carbon/oxygen (CO) white dwarfs (WDs). The canonical scenarios involve white dwarfs reaching the Chandrasekhar mass, either by accretion from a non-degenerate companion (single-degenerate channel, SD) or by a merger of two CO WDs (double-degenerate channel, DD). The study of SNeIa progenitors is a very active field of research for binary population synthesis (BPS) studies. The strength of the BPS approach is to study the effect of uncertainties in binary evolution on the macroscopic properties of a binary population, in order to constrain binary evolutionary processes. I will discuss the expected SNeIa rate from the BPS approach and the uncertainties in their progenitor evolution, and compare with current observations. I will also discuss the results of the POPCORN project in which four BPS codes were compared to better understand the differences in the predicted SNeIa rate of the SD channel. The goal of this project is to investigate whether differences in the simulated populations are due to numerical effects or whether they can be explained by differences in the input physics. I will show which assumptions in BPS codes affect the results most and hence should be studied in more detail.

  6. The Possible Detection of a Binary Companion to a Type Ibn Supernova Progenitor

    NASA Astrophysics Data System (ADS)

    Maund, J. R.; Pastorello, A.; Mattila, S.; Itagaki, K.; Boles, T.

    2016-12-01

    We present late-time observations of the site of the Type Ibn supernova (SN) 2006jc, acquired with the Hubble Space Telescope Advanced Camera for Surveys. A faint blue source is recovered at the SN position, with brightness {m}F435W=26.76+/- 0.20, {m}F555W=26.60+/- 0.23 and {m}F625W=26.32+/- 0.19 mag, although there is no detection in a contemporaneous narrow-band {{H}}α image. The spectral energy distribution of the late-time source is well-fit by a stellar-like spectrum ({log} {T}{eff}\\gt 3.7 and {log} L/{L}⊙ \\gt 4), subject to only a small degree of reddening—consistent with that estimated for SN 2006jc itself at early-times. The lack of further outbursts after the explosion of SN 2006jc suggests that the precursor outburst originated from the progenitor. The possibility of the source being a compact host cluster is ruled out on the basis of the source’s faintness; however, the possibility that the late-time source may be an unresolved light echo originating in a shell or sphere of pre-SN dust (within a radius 1 {pc}) is also discussed. Irrespective of the nature of the late-time source, these observations rule out a luminous blue variable as a companion to the progenitor of SN 2006jc.

  7. Ceramic-on-ceramic THA associated with fewer dislocations and less muscle degeneration by preserving muscle progenitors.

    PubMed

    Hernigou, Philippe; Roussignol, Xavier; Delambre, Jerome; Poignard, Alexandre; Flouzat-Lachaniette, Charles-Henri

    2015-12-01

    evaluated on CT scan and compared with the contralateral side. Bone muscle progenitors were evaluated by bone marrow MSCs and satellite cells for muscle. At revision, all the hips received the same implants with the same head diameter (32 mm) and a standard liner. Revisions were performed between 1995 and 2005. The followup after revision was at a mean of 14 years (range, 10-20 years) for ceramic revision and 12 years (range, 10-20 years) for polyethylene hips, and there was no differential loss to followup between the groups. More hips with polyethylene liners at the time of index arthroplasty dislocated after revision than did hips with ceramic liners (18% [29 of 160] compared with 1% [one of 80]; odds ratio, 17.5; 95% confidence interval, 2.3363-130.9100; p = 0.005). For the 80 hips with ceramic-on-ceramic, no osteolysis was detected before revision; there was no muscle fatty degeneration of the gluteus muscles on CT scan or histology. For the 160 hips with polyethylene liners, osteolytic lesions on the acetabulum and femur were observed in 100% of the hips. The increased atrophy of the gluteus muscles observed on CT scan correlated with the increase of osteolysis (r = 0.62; p = 0.012). The surgical limbs in the patients with polyethylene hips as compared with ceramic-on-ceramic hips demonstrated a greater reduction in cross-sectional area (respectively, 11.6% compared with 3%; odds ratio, 3.82; p < 0.001) and radiological density (41% [14.1/34.1] compared with 9%; odds ratio, 6.8; p = 0.006) of gluteus muscles when compared with the contralateral normal side. (41% compared with 9%; odds ratio, 6.8; p = 0.006). Ceramic bearing surfaces were associated with fewer dislocations after revision than polyethylene bearing surfaces. The reasons of the lower rate of dislocation with ceramic-on-ceramic bearings may be related to observed differences in the periarticular muscles (fat atrophy or not) with the two bearing surfaces. Level III, therapeutic study.

  8. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration

    PubMed Central

    Jones, Melissa K.; Lu, Bin; Saghizadeh, Mehrnoosh

    2016-01-01

    Purpose Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell–based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell–based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. Methods RNA-seq data of retinas from RCS rats injected with hNPCs (RCShNPCs) were compared to sham surgery in RCS (RCSsham) and wild-type Long Evans (LEsham) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. Results Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCSsham and LEsham samples. Additionally, 283 genes were differentially expressed between the RCShNPCs and RCSsham samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCSsham. Pathway analysis of the differential expression gene sets identified three affected pathways in RCShNPCs, which all play roles in phagocytosis signaling. Immunofluorescent

  9. The Post-merger Magnetized Evolution of White Dwarf Binaries: The Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Fisher, Robert; Garcia-Berro, Enríque; Ji, Suoqing; Kashyap, Rahul; Aznar-Siguán, Gabriela; Tzeferacos, Petros; Lee, Dongwook; Lorén-Aguilar, Pablo

    2014-06-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this presentation, I will present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and I will demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ~2 × 10^8 G. I discuss the impact of these findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  10. The Post-merger Magnetized Evolution of White Dwarf Binaries: The Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Ji, Suoqing; Fisher, Robert T.; García-Berro, Enrique; Tzeferacos, Petros; Jordan, George; Lee, Dongwook; Lorén-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-01

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths ~2 × 108 G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  11. THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS

    SciTech Connect

    Ji Suoqing; Fisher, Robert T.; Garcia-Berro, Enrique; Loren-Aguilar, Pablo; Cremer, Pascal; Behrends, Jan

    2013-08-20

    Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

  12. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans.

    PubMed

    Brisby, Helena; Papadimitriou, Nikolaos; Brantsing, Camilla; Bergh, Peter; Lindahl, Anders; Barreto Henriksson, Helena

    2013-03-01

    Low back pain is common and degenerated discs (DDs) are believed to be a major cause. In non-degenerated intervertebral discs (IVDs) presence of stem/progenitor cells was recently reported in different mammals (rabbit, rat, pig). Understanding processes of disc degeneration and regenerative mechanisms within DDs is important. The aim of the study was to examine the presence of local stem/progenitor cells in human DDs and if these cell populations could respond to paracrine stimulation in vitro. Tissue biopsies from the IVD region (L3-S1) were collected from 15 patients, age 34-69 years, undergoing surgery (spinal fusion) and mesenchymal stem cells (MSCs) (iliac crest) from 2 donors. Non-DD cells were collected from 1 donor (scoliosis) and chordoma tissue was obtained from (positive control, stem cell markers) 2 donors. The IVD biopsies were investigated for gene and protein expression of: OCT3/4, CD105, CD90, STRO-1, and NOTCH1. DD cell cultures (pellet mass) were performed with conditioned media from MSCs and non-degenerated IVD cells. Pellets were investigated after 7, 14, 28 days for the same stem cell markers as above. Gene expression of OCT3/4 and STRO-1 was detected in 13/15 patient samples, CD105 in 14/15 samples, and CD90 and NOTCH1 were detected 15/15 samples. Immunohistochemistry analysis supported findings on the protein level, in cells sparsely distributed in DDs tissues. DDs cell cultures displayed more undifferentiated appearance with increased expression of CD105, CD90, STRO-1, OCT3/4, NOTCH1, and JAGGED1, which was observed when cultured in conditioned cell culture media from MSCs compared to cell cultures cultured with conditioned media from non-DD cells. Expression of OCT3/4 (multipotency marker) and NOTCH1 (regulator of cell fate), MSC-markers, CD105, CD90, and STRO-1, indicate that primitive cell populations are present within DDs. Furthermore, the possibility to influence cells from DDs by paracrine signaling /soluble factors from MSCs and from

  13. The Binary Black Hole Merger Rate from Ultraluminous X-ray Source Progenitors

    NASA Astrophysics Data System (ADS)

    Finke, Justin; Razzaque, Soebur

    2017-01-01

    Ultraluminous X-ray sources (ULXs) exceed the Eddington luminosity for an approximately 10 solar mass black hole. The recent detection of a black hole merger event GW 150914 by the gravitational wave detector ALIGO indicates that black holes with mass greater than 10 do indeed exist. Motivated by this, we explore a scenario where ULXs consist of black holes formed by the collapse of high-mass, low-metallicity stars, and that these ULXs become binary black holes (BBHs) that eventually merge. We use empirical relations between the number of ULXs and the star formation rate and host galaxy metallicity to estimate the ULX formation rate and the BBH merger rate at all redshifts. This assumes the ULX rate is directly proportional to the star formation rate for a given metallicity, and that the black hole accretion rate is distributed as a log-normal distribution. We include an enhancement in the ULX formation rate at earlier epochs due to lower mean metallicities. Our model is able to reproduce both the rate and mass distribution of BBH mergers in the nearby universe inferred from the detection of GW 150914, LVT 151012, and GW 151226 by LIGO if the median accretion rate of ULXs is a factor 1 to 30 greater than the Eddington rate. Our predictions of the BBH merger rate, mass distribution.

  14. Survey for the Binary Progenitor in SN1006 and Update on SN1572

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar; Hernández, Jonay González; Tabernero, Hugo; Montes, David; Canal, Ramon; Mendez, Javier; Bedin, Luigi

    2013-01-01

    We have completed a survey down to R = 15 mag of the stars within a circle of 4 arcmin radius around the nominal center of the remnant of SN 1006, one of the three historical Type Ia supernovae (the other two being SN 1572 and SN 1604), in search of a possible surviving binary companion of the white dwarf whose explosion gave rise to the supernova. The stellar parameters (effective temperature, surface gravity, and metallicity), as well as the radial velocities of all the stars, have been measured from spectra obtained with the UVES spectrograph at the VLT, and from the former and the available photometry, distances have been determined. Chemical abundances of the Fe-peak elements Cr, Mn, Co, and Ni have also been measured to check for possible contamination of the stellar surface by the supernova ejecta. The limiting magnitude of the survey would allow us to find stellar companions of the red-giant type, subgiant stars, and main-sequence stars down to F5-6. Unlike in SN 1572, where a subgiant of type G0-1 has been proposed as the companion of SN 1572, for SN 1006 we can discard the possibility that SN 1006 had a red giant or subgiant companion.

  15. Transplantation of rat embryonic stem cell-derived retinal progenitor cells preserves the retinal structure and function in rat retinal degeneration.

    PubMed

    Qu, Zepeng; Guan, Yuan; Cui, Lu; Song, Jian; Gu, Junjie; Zhao, Hanzhi; Xu, Lei; Lu, Lixia; Jin, Ying; Xu, Guo-Tong

    2015-11-09

    Degenerative retinal diseases like age-related macular degeneration (AMD) are the leading cause of blindness. Cell transplantation showed promising therapeutic effect for such diseases, and embryonic stem cell (ESC) is one of the sources of such donor cells. Here, we aimed to generate retinal progenitor cells (RPCs) from rat ESCs (rESCs) and to test their therapeutic effects in rat model. The rESCs (DA8-16) were cultured in N2B27 medium with 2i, and differentiated to two types of RPCs following the SFEBq method with modifications. For rESC-RPC1, the cells were switched to adherent culture at D10, while for rESC-RPC2, the suspension culture was maintained to D14. Both RPCs were harvested at D16. Primary RPCs were obtained from P1 SD rats, and some of them were labeled with EGFP by infection with lentivirus. To generate Rax::EGFP knock-in rESC lines, TALENs were engineered to facilitate homologous recombination in rESCs, which were cotransfected with the targeting vector and TALEN vectors. The differentiated cells were analyzed with live image, immunofluorescence staining, flow cytometric analysis, gene expression microarray, etc. RCS rats were used to mimic the degeneration of retina and test the therapeutic effects of subretinally transplanted donor cells. The structure and function of retina were examined. We established two protocols through which two types of rESC-derived RPCs were obtained and both contained committed retina lineage cells and some neural progenitor cells (NPCs). These rESC-derived RPCs survived in the host retinas of RCS rats and protected the retinal structure and function in early stage following the transplantation. However, the glia enriched rESC-RPC1 obtained through early and longer adherent culture only increased the b-wave amplitude at 4 weeks, while the longer suspension culture gave rise to evidently neuronal differentiation in rESC-RPC2 which significantly improved the visual function of RCS rats. We have successfully differentiated

  16. SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-degenerate Binary Companion

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Brown, Peter J.; Vinkó, Jozsef; Silverman, Jeffrey M.; Sand, David J.; Challis, Peter; Kirshner, Robert P.; Wheeler, J. Craig; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Camacho, Yssavo; Dhungana, Govinda; Foley, Ryan J.; Friedman, Andrew S.; Graham, Melissa L.; Howell, D. Andrew; Hsiao, Eric Y.; Irwin, Jonathan M.; Jha, Saurabh W.; Kehoe, Robert; Macri, Lucas M.; Maeda, Keiichi; Mandel, Kaisey; McCully, Curtis; Pandya, Viraj; Rines, Kenneth J.; Wilhelmy, Steven; Zheng, Weikang

    2016-04-01

    We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected {M}B=-19.62+/- 0.02 mag and {{Δ }}{m}15(B)=0.86+/- 0.02. Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = -10,500 km s-1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.

  17. GRB 060218 and the binaries as progenitors of GRB-SN systems

    NASA Astrophysics Data System (ADS)

    Dainotti, Maria Giovanna; Bernardini, Maria Grazia; Bianco, Carlo Luciano; Caito, Letizia; Guida, Roberto; Ruffini, Remo

    2008-01-01

    We study the Gamma-Ray Burst (GRB) 060218: a particularly close source at z = 0.033 with an extremely long duration, namely T90~2000 s, related to SN 2006aj. This source appears to be a very soft burst, with a peak in the spectrum at 4.9 keV, therefore interpreted as an X-Ray Flash (XRF). It fullfills the Amati relation. I present the fitting procedure, which is time consuming. In order to show its sensitivity I also present two examples of fits with the same value of B and different value of Ee+/-tot. We fit the X- and γ-ray observations by Swift of GRB 060218 in the 0.1-150 keV energy band during the entire time of observations from 0 all the way to 106 s within a unified theoretical model. The free parameters of our theory are only three, namely the total energy Ee+/-tot. of the e+/- plasma, its baryon loading B≡MBc2/Ee+/-tot, as well as the CircumBurst Medium (CBM) distribution. We justify the extremely long duration of this GRB by a total energy Ee+/-tot = 2.32×1050 erg, a very high value of the baryon loading B = 1.0×10-2 and the effective CircumBurst Medium (CBM) density which shows a radial dependence ncbm~r-α with 1.0<=α<=1.7 and monotonically decreases from 1 to 10-6 particles/cm3. We recall that this value of the B parameter is the highest among the sources we have analyzed and it is very close to its absolute upper limit expected. By our fit we show that there is no basic differences between XRFs and more general GRBs. They all originate from the collapse process to a black hole and their difference is due to the variability of the three basic parameters within the range of full applicability of the theory. We also think that the smallest possible black hole, formed by the gravitational collapse of a neutron star in a binary system, is consistent with the especially low energetics of the class of GRBs associated with SNe Ib/c.

  18. Binary progenitors of supernovae

    NASA Astrophysics Data System (ADS)

    Trimble, V.

    1984-12-01

    Among the massive stars that are expected to produce Type II, hydrogen-rich supernovae, the presence of a close companion can increase the main sequence mass needed to yield a collapsing core. In addition, due to mass transfer from the primary to the secondary, the companion enhances the stripping of the stellar hydrogen envelope produced by single star winds and thereby makes it harder for the star to give rise to a typical SN II light curve. Among the less massive stars that may be the basis for Type I, hydrogen-free supernovae, a close companion could be an innocent bystander to carbon detonation/deflagration in the primary. It may alternatively be a vital participant which transfers material to a white dwarf primary and drives it to explosive conditions.

  19. The Progenitors of Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Tout, C. A.

    2005-08-01

    Type Ia supernovae are identified as exploding degenerate stars. Their luminosity is due to the radioactive decay of about a solar mass of 56Ni through 56Co to 56Fe. As such they are a major source of iron in the inter-stellar medium. Although it is generally accepted that a degenerate carbon/oxygen white dwarf explodes as it accretes material from a binary companion, the progenitors of type Ia supernovae have not been categorically identified. We discuss the various possible progenitors in detail and indicate theoretical and observational difficulties with each possibility. It may well be that the true nature of the progenitors has not yet even been conceived of. We look at why population synthesis fails to help distinguish and consider how the advent of population nucleosynthesis may change this. When used as universal standard candles SNe Ia are calibrated with the Phillips relation between absolute luminosity and light curve shape. This must therefore be valid at all redshifts and so both the absolute luminosity and the light curve decay must only depend on a single major property of the progenitors. We report on the latest understanding of this relation and find little to justify its universality beyond the local empirical evidence. A major effect on the absolute luminosities is the neutron to proton ratio at the time of the explosion because this determines the fraction of iron group elements made up of 56Ni.

  20. MOCCA-SURVEY database I. Accreting white dwarf binary systems in globular clusters - II. Cataclysmic variables - progenitors and population at birth

    NASA Astrophysics Data System (ADS)

    Belloni, Diogo; Giersz, Mirek; Rocha-Pinto, Helio J.; Leigh, Nathan W. C.; Askar, Abbas

    2017-02-01

    This is the second in a series of papers associated with cataclysmic variables (CVs) and related objects, formed in a suite of simulations for globular cluster evolution performed with the MOCCA Monte Carlo code. We study the properties of our simulated CV populations throughout the entire cluster evolution. We find that dynamics extends the range of binary CV progenitor properties, causing CV formation from binary progenitors that would otherwise not become CVs. The CV formation rate in our simulations can be separated into two regimes: an initial burst (≲1 Gyr) connected with the formation of the most massive white dwarfs, followed by a nearly constant formation rate. This result holds for all models regardless of the adopted initial conditions, even when most CVs form dynamically. Given the cluster age-dependence of CV properties, we argue that direct comparisons to observed Galactic field CVs could be misleading, since cluster CVs can be up to four times older than their field counterparts. Our results also illustrate that, due mainly to unstable mass transfer, some CVs that form in our simulations are destroyed before the present day. Finally, some field CVs might have originated from globular clusters, as found in our simulations, although the fraction of such escapers should be small relative to the entire Galactic field CV population.

  1. Chandra Observations of Soft Sources in Galaxies: New insights into binary evolution, Type Ia progenitors, and intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    di Stefano, Rosanne; Primini, Francis A.; Patel, Brandon; Liu, Jifeng; Greiner, Jochen; Kong, Albert; Soria, Roberto

    2009-09-01

    At the time Chandra was launched, we knew of only two dozen super soft x-ray sources (SSSs). Furthermore, the natures of most had not yet been understood. Chandra observations of more than 300 galaxies has discovered >1000 SSSs and established the statistics of the class while at the same time identifying its most extreme and intriguing members. We have discovered slightly harder sources, quasisoft x-ray sources (QSSs), and also much more luminous soft sources than any known in our Galaxy or in the Magellanic Clouds, with L in the range 10^{40}-10^{41} erg/s. Beyond the numbers, these observations have taught us a great deal about binary evolution, nuclear burning on white dwarfs and the progenitors of Type Ia supernovae, and models for intermediate-mass black holes. We review the revolution in our understanding of these sources made possible by the first decade of Chandra.

  2. Comparative Analysis of Circulating Endothelial Progenitor Cells in Age-Related Macular Degeneration Patients Using Automated Rare Cell Analysis (ARCA) and Fluorescence Activated Cell Sorting (FACS)

    PubMed Central

    Say, Emil Anthony T.; Melamud, Alex; Esserman, Denise Ann; Povsic, Thomas J.; Chavala, Sai H.

    2013-01-01

    Background Patients with age-related macular degeneration (ARMD) begin with non-neovascular (NNV) phenotypes usually associated with good vision. Approximately 20% of NNV-ARMD patients will convert to vision debilitating neovascular (NV) ARMD, but precise timing of this event is unknown. Developing a clinical test predicting impending conversion to NV-ARMD is necessary to prevent vision loss. Endothelial progenitor cells (EPCs), defined as CD34+VEGR2+ using traditional fluorescence activated cell sorting (FACS), are rare cell populations known to be elevated in patients with NV-ARMD compared to NNV-ARMD. FACS has high inter-observer variability and subjectivity when measuring rare cell populations precluding development into a diagnostic test. We hypothesized that automated rare cell analysis (ARCA), a validated and FDA-approved technology for reproducible rare cell identification, can enumerate EPCs in ARMD patients more reliably. This pilot study serves as the first step in developing methods for reproducibly predicting ARMD phenotype conversion. Methods We obtained peripheral venous blood samples in 23 subjects with NNV-ARMD or treatment naïve NV-ARMD. Strict criteria were used to exclude subjects with known angiogenic diseases to minimize confounding results. Blood samples were analyzed in masked fashion in two separate laboratories. EPCs were independently enumerated using ARCA and FACS within 24 hours of blood sample collection, and p<0.2 was considered indicative of a trend for this proof of concept study, while statistical significance was established at 0.05. Results We measured levels of CD34+VEGFR2+ EPCs suggestive of a trend with higher values in patients with NV compared to NNV-ARMD (p = 0.17) using ARCA. Interestingly, CD34+VEGR2+ EPC analysis using FACS did not produce similar results (p = 0.94). Conclusions CD34+VEGR2+ may have predictive value for EPC enumeration in future ARCA studies. EPC measurements in a small sample size were

  3. Comparative analysis of circulating endothelial progenitor cells in age-related macular degeneration patients using automated rare cell analysis (ARCA) and fluorescence activated cell sorting (FACS).

    PubMed

    Say, Emil Anthony T; Melamud, Alex; Esserman, Denise Ann; Povsic, Thomas J; Chavala, Sai H

    2013-01-01

    Patients with age-related macular degeneration (ARMD) begin with non-neovascular (NNV) phenotypes usually associated with good vision. Approximately 20% of NNV-ARMD patients will convert to vision debilitating neovascular (NV) ARMD, but precise timing of this event is unknown. Developing a clinical test predicting impending conversion to NV-ARMD is necessary to prevent vision loss. Endothelial progenitor cells (EPCs), defined as CD34(+)VEGR2(+) using traditional fluorescence activated cell sorting (FACS), are rare cell populations known to be elevated in patients with NV-ARMD compared to NNV-ARMD. FACS has high inter-observer variability and subjectivity when measuring rare cell populations precluding development into a diagnostic test. We hypothesized that automated rare cell analysis (ARCA), a validated and FDA-approved technology for reproducible rare cell identification, can enumerate EPCs in ARMD patients more reliably. This pilot study serves as the first step in developing methods for reproducibly predicting ARMD phenotype conversion. We obtained peripheral venous blood samples in 23 subjects with NNV-ARMD or treatment naïve NV-ARMD. Strict criteria were used to exclude subjects with known angiogenic diseases to minimize confounding results. Blood samples were analyzed in masked fashion in two separate laboratories. EPCs were independently enumerated using ARCA and FACS within 24 hours of blood sample collection, and p<0.2 was considered indicative of a trend for this proof of concept study, while statistical significance was established at 0.05. We measured levels of CD34(+)VEGFR2(+) EPCs suggestive of a trend with higher values in patients with NV compared to NNV-ARMD (p = 0.17) using ARCA. Interestingly, CD34(+)VEGR2(+) EPC analysis using FACS did not produce similar results (p = 0.94). CD34(+)VEGR2(+) may have predictive value for EPC enumeration in future ARCA studies. EPC measurements in a small sample size were suggestive of a trend in ARMD using

  4. Testing the single degenerate channel for supernova Ia

    NASA Astrophysics Data System (ADS)

    Parsons, Steven

    2014-10-01

    The progenitors of supernova Ia are close binaries containing white dwarfs. Of crucial importance to the evolution of these systems is how much material the white dwarf can stably accrete and hence grow in mass. This occurs during a short-lived intense phase of mass transfer known as the super soft source (SSS) phase. The short duration of this phase and large extinction to soft X-rays means that only a handful are known in our Galaxy. Far more can be learned from the underlying SSS progenitor population of close white dwarf plus FGK type binaries. Unfortunately, these systems are hard to find since the main-sequence stars completely outshine the white dwarfs at optical wavelengths. Because of this, there are currently no known close white dwarf binaries with F, G or early K type companions, making it impossible to determine the contribution of the single degenerate channel towards supernova Ia. Using the GALEX and RAVE surveys we have now identified the first large sample of FGK stars with UV excesses, a fraction of which are these illusive, close systems. Following an intense ground based spectroscopic investigation of these systems, we have identified 5 definite close binaries, with periods of less than a few days. Here we apply for COS spectroscopic observations to measure the mass and temperature of the white dwarfs in order to determine the future evolution of these systems. This will provide a crucial test for the single degenerate channel towards supernova Ia.

  5. SINGLE-DEGENERATE TYPE Ia SUPERNOVAE ARE PREFERENTIALLY OVERLUMINOUS

    SciTech Connect

    Fisher, Robert; Jumper, Kevin

    2015-06-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are generally expected to lead to overluminous 1991T-like SNe Ia events. We establish that the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel are broadly consistent with the observed rates of overluminous SNe Ia, and suggest that the population of SSSs are the dominant stellar progenitors of SNe 1991T-like events. We further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. We conclude with a range of observational tests of overluminous SNe Ia which will either support or strongly constrain the single-degenerate scenario.

  6. Shadows of our Former Companions: How the Single-degenerate Binary Type Ia Supernova Scenario Affects Remnants

    NASA Astrophysics Data System (ADS)

    Gray, William J.; Raskin, Cody; Owen, J. Michael

    2016-12-01

    Here we present three-dimensional high-resolution simulations of Type Ia supernova in the presence of a non-degenerate companion. We find that the presence of a nearby companion leaves a long-lived hole in the supernova ejecta. In particular, we aim to study the long-term evolution of this hole as the supernova ejecta interacts with the surrounding interstellar medium (ISM). Using estimates for the X-ray emission, we find that the hole generated by the companion remains for many centuries after the interaction between the ejecta and the ISM. We also show that the hole is discernible over a wide range of viewing angles and companion masses.

  7. Do Single-Degenerate Type Ia Supernovae Generally Lead to Normal Type Ia Supernovae?

    NASA Astrophysics Data System (ADS)

    Fisher, Robert

    2016-01-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the dominant progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly-accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this talk, I will clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia and demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are generally expected to be buoyancy-driven, and consequently lack a vigorous deflagration phase. I will show, using both analytic criteria and multidimensional numerical simulations, that the single-degenerate channel is inherently stochastic and leads to a variety of outcomes from failed SN 2002cx-like events through overluminous SN 1991T-like events. I will also demonstrate how the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel can be brought into agreement with single-degenerate SNe Ia. I will further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. I will conclude with a range of observational tests which will either support or strongly constrain the single-degenerate scenario.

  8. Grafted c-kit(+)/SSEA1(-) eye-wall progenitor cells delay retinal degeneration in mice by regulating neural plasticity and forming new graft-to-host synapses.

    PubMed

    Chen, Xi; Chen, Zehua; Li, Zhengya; Zhao, Chen; Zeng, Yuxiao; Zou, Ting; Fu, Caiyun; Liu, Xiaoli; Xu, Haiwei; Yin, Zheng Qin

    2016-12-30

    Despite diverse pathogenesis, the common pathological change observed in age-related macular degeneration and in most hereditary retinal degeneration (RD) diseases is photoreceptor loss. Photoreceptor replacement by cell transplantation may be a feasible treatment for RD. The major obstacles to clinical translation of stem cell-based cell therapy in RD remain the difficulty of obtaining sufficient quantities of appropriate and safe donor cells and the poor integration of grafted stem cell-derived photoreceptors into the remaining retinal circuitry. Eye-wall c-kit(+)/stage-specific embryonic antigen 1 (SSEA1)(-) cells were isolated via fluorescence-activated cell sorting, and their self-renewal and differentiation potential were detected by immunochemistry and flow cytometry in vitro. After labeling with quantum nanocrystal dots and transplantation into the subretinal space of rd1 RD mice, differentiation and synapse formation by daughter cells of the eye-wall c-kit(+)/SSEA1(-) cells were evaluated by immunochemistry and western blotting. Morphological changes of the inner retina of rd1 mice after cell transplantation were demonstrated by immunochemistry. Retinal function of rd1 mice that received cell grafts was tested via flash electroretinograms and the light/dark transition test. Eye-wall c-kit(+)/SSEA1(-) cells were self-renewing and clonogenic, and they retained their proliferative potential through more than 20 passages. Additionally, eye-wall c-kit(+)/SSEA1(-) cells were capable of differentiating into multiple retinal cell types including photoreceptors, bipolar cells, horizontal cells, amacrine cells, Müller cells, and retinal pigment epithelium cells and of transdifferentiating into smooth muscle cells and endothelial cells in vitro. The levels of synaptophysin and postsynaptic density-95 in the retinas of eye-wall c-kit(+)/SSEA1(-) cell-transplanted rd1 mice were significantly increased at 4 weeks post transplantation. The c-kit(+)/SSEA1(-) cells were

  9. THE VERY EARLY LIGHT CURVE OF SN 2015F IN NGC 2442: A POSSIBLE DETECTION OF SHOCK-HEATED COOLING EMISSION AND CONSTRAINTS ON SN Ia PROGENITOR SYSTEM

    SciTech Connect

    Im, Myungshin; Choi, Changsu; Kim, Jae-Woo; Yoon, Sung-Chul; Ehgamberdiev, Shuhrat A.; Monard, Libert A. G.; Sung, Hyun-Il E-mail: changsu@astro.snu.ac.kr

    2015-11-15

    The main progenitor candidates of Type Ia supernovae (SNe Ia) are white dwarfs in binary systems where the companion star is another white dwarf (double degenerate (DD) system) or a less-evolved, non-degenerate star with R{sub *} ≳ 0.1 R{sub ⊙} (single degenerate system). However, no direct observational evidence exists to tell us which progenitor system is more common. Recent studies suggest that the light curve of a supernova shortly after its explosion can be used to set a limit on the progenitor size, R{sub *}. Here, we report high-cadence monitoring observations of SN 2015F, a normal SN Ia in the galaxy NGC 2442, starting about 84 days before the first light time. Using our daily cadence data, we capture the emergence of the radioactively powered light curve; more importantly, with >97.4% confidence, we detect possible dim precursor emission that appears roughly 1.5 days before the rise of the radioactively powered emission. The signal is consistent with theoretical expectations for a progenitor system involving a companion star with R{sub *} ≃ 0.1–1 R{sub ⊙} or a prompt explosion of a DD system, but is inconsistent with the typically invoked size of a white dwarf progenitor of R{sub *} ∼ 0.01 R{sub ⊙}. Upper limits on the precursor emission also constrain the progenitor size to be R{sub *} ≲ 0.1 R{sub ⊙} with a companion star size of R{sub *} ≲ 1.0 R{sub ⊙}, excluding a very large companion star in the progenitor system. Additionally, we find that the distance to SN 2015F is 23.9 ± 0.4 Mpc.

  10. The Very Early Light Curve of SN 2015F in NGC 2442: A Possible Detection of Shock-heated Cooling Emission and Constraints on SN Ia Progenitor System

    NASA Astrophysics Data System (ADS)

    Im, Myungshin; Choi, Changsu; Yoon, Sung-Chul; Kim, Jae-Woo; Ehgamberdiev, Shuhrat A.; Monard, Libert A. G.; Sung, Hyun-Il

    2015-11-01

    The main progenitor candidates of Type Ia supernovae (SNe Ia) are white dwarfs in binary systems where the companion star is another white dwarf (double degenerate (DD) system) or a less-evolved, non-degenerate star with R* ≳ 0.1 R⊙ (single degenerate system). However, no direct observational evidence exists to tell us which progenitor system is more common. Recent studies suggest that the light curve of a supernova shortly after its explosion can be used to set a limit on the progenitor size, R*. Here, we report high-cadence monitoring observations of SN 2015F, a normal SN Ia in the galaxy NGC 2442, starting about 84 days before the first light time. Using our daily cadence data, we capture the emergence of the radioactively powered light curve; more importantly, with >97.4% confidence, we detect possible dim precursor emission that appears roughly 1.5 days before the rise of the radioactively powered emission. The signal is consistent with theoretical expectations for a progenitor system involving a companion star with R* ≃ 0.1-1 R⊙ or a prompt explosion of a DD system, but is inconsistent with the typically invoked size of a white dwarf progenitor of R* ˜ 0.01 R⊙. Upper limits on the precursor emission also constrain the progenitor size to be R* ≲ 0.1 R⊙ with a companion star size of R* ≲ 1.0 R⊙, excluding a very large companion star in the progenitor system. Additionally, we find that the distance to SN 2015F is 23.9 ± 0.4 Mpc.

  11. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe.

    PubMed

    Li, Weidong; Bloom, Joshua S; Podsiadlowski, Philipp; Miller, Adam A; Cenko, S Bradley; Jha, Saurabh W; Sullivan, Mark; Howell, D Andrew; Nugent, Peter E; Butler, Nathaniel R; Ofek, Eran O; Kasliwal, Mansi M; Richards, Joseph W; Stockton, Alan; Shih, Hsin-Yi; Bildsten, Lars; Shara, Michael M; Bibby, Joanne; Filippenko, Alexei V; Ganeshalingam, Mohan; Silverman, Jeffrey M; Kulkarni, S R; Law, Nicholas M; Poznanski, Dovi; Quimby, Robert M; McCully, Curtis; Patel, Brandon; Maguire, Kate; Shen, Ken J

    2011-12-14

    Type Ia supernovae are thought to result from a thermonuclear explosion of an accreting white dwarf in a binary system, but little is known of the precise nature of the companion star and the physical properties of the progenitor system. There are two classes of models: double-degenerate (involving two white dwarfs in a close binary system) and single-degenerate models. In the latter, the primary white dwarf accretes material from a secondary companion until conditions are such that carbon ignites, at a mass of 1.38 times the mass of the Sun. The type Ia supernova SN 2011fe was recently detected in a nearby galaxy. Here we report an analysis of archival images of the location of SN 2011fe. The luminosity of the progenitor system (especially the companion star) is 10-100 times fainter than previous limits on other type Ia supernova progenitor systems, allowing us to rule out luminous red giants and almost all helium stars as the mass-donating companion to the exploding white dwarf.

  12. Macular degeneration

    MedlinePlus Videos and Cool Tools

    ... at the center of the field of vision. Macular degeneration results from a partial breakdown of the insulating ... choroid layer of blood vessels behind the retina. Macular degeneration results in the loss of central vision only.

  13. Recurrent Novae Are Not Progenitors Of Type Ia Supernovae (Nor Are Any Binaries With Red Giant Or Sub-Giant Companion Stars)

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    2014-01-01

    I have made three tests for recurrent novae (RNe) as progenitors of Type Ia supernovae, and they decisively fail all three tests. (1) From 50% to 75% of RNe have neon-rich ejecta, so their white dwarfs are not CO composition, and they must be ejecting dredged up white dwarf material so the white dwarf is losing mass. (2) The orbital period change and ejected mass has been measured for four RNe, and all four show the white dwarf to be losing mass over each eruption cycle, with three of these measures (for U Sco in 2010, T CrB in 1946, and T Pyx in 2011) being highly significant, robust, and decisive. (3) Companion and ex-companion stars have now been sought with adequate sensitivity in many supernovae with a variety of robust methods, including looking for the ex-companion stars near the center of a Type Ia supernova remnant, early brightening in the light curve caused by a companion (the 'Kasen effect'), and looking for emission from the ejecta ramming into a prior wind. Over 100 supernova have been examined where any red giant companion should have been recognized, and over 60 supernovae have been examined where any sub-giant companion should have been recognized. Red giants or sub-giants are seen in zero of these systems. My strong conclusion is that RNe are not the progenitors of Type Ia supernovae. The third test can be extended to beyond the RNe, because we see that no supernova has any red giant or sub-giant companion star, so we can also reject all models that require such, including symbiotic stars and supersoft X-ray sources.

  14. The Hybrid CONe WD + He Star Scenario for the Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, B.; Meng, X.; Liu, D.-D.; Liu, Z.-W.; Han, Z.

    2014-10-01

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ~0.033-0.539 × 10-3 yr-1, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ~28 Myr-178 Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  15. THE HYBRID CONe WD + He STAR SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Wang, B.; Meng, X.; Liu, D.-D.; Han, Z.; Liu, Z.-W.

    2014-10-20

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ∼0.033-0.539 × 10{sup –3} yr{sup –1}, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ∼28 Myr-178 Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  16. The ELM Survey. VII. Orbital Properties of Low-Mass White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Gianninas, A.; Kilic, Mukremin; Kenyon, Scott J.; Allende Prieto, Carlos

    2016-02-01

    We present the discovery of 15 extremely low-mass (5\\lt {log}g\\lt 7) white dwarf (WD) candidates, 9 of which are in ultra-compact double-degenerate binaries. Our targeted extremely low-mass Survey sample now includes 76 binaries. The sample has a lognormal distribution of orbital periods with a median period of 5.4 hr. The velocity amplitudes imply that the binary companions have a normal distribution of mass with 0.76 M⊙ mean and 0.25 M⊙ dispersion. Thus extremely low-mass WDs are found in binaries with a typical mass ratio of 1:4. Statistically speaking, 95% of the WD binaries have a total mass below the Chandrasekhar mass, and thus are not type Ia supernova progenitors. Yet half of the observed binaries will merge in less than 6 Gyr due to gravitational wave radiation; probable outcomes include single massive WDs and stable mass transfer AM CVn binaries. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  17. The Intermediate Luminosity Optical Transient SN 2010da: The Progenitor, Eruption and Aftermath of an Unusual Supergiant High-mass X-ray Binary

    NASA Astrophysics Data System (ADS)

    Villar, Victoria; Berger, Edo; Chornock, Ryan; Laskar, Tanmoy; Margutti, Raffaella; Brown, Peter J.

    2016-06-01

    We present high- and medium-resolution optical spectroscopy, optical/UV imaging and archival Chandra, Hubble and Spitzer observations of the intermediate luminosity optical transient (ILOT) SN 2010da, discovered in the nearby galaxy NGC 300 (d=1.86 Mpc). SN 2010da had a peak absolute magnitude of M ~ -10.4 mag, dimmer than other recent ILOTs and supernova impostors. We detect hydrogen Balmer, Paschen and Ca II emission lines in our high-resolution spectra, which indicate a dusty and complex circumstellar environment. Based on SN 2010da's light curve and multi-epoch SEDs, we conclude that the progenitor of SN 2010da is a ~10-12 Msol yellow supergiant possibly transitioning into a blue loop phase. Since the 2010 eruption, the star has brightened by a factor of ~5 and remains highly variable in the optical. SN 2010da is a unique ILOT which seems to stem from a different physical origin than red SN 2008S-like events and luminous blue variable outbursts. Furthermore, we detect SN 2010da in archival Swift observations as an ultraluminous X-ray source. We additionally attribute He II 4686 and coronal Fe emission in addition to a steady X-ray luminosity of ~10^{37} erg/s to the presence of a compact companion.

  18. The Intermediate Luminosity Optical Transient SN 2010da: The Progenitor, Eruption, and Aftermath of a Peculiar Supergiant High-mass X-Ray Binary

    NASA Astrophysics Data System (ADS)

    Villar, V. A.; Berger, E.; Chornock, R.; Margutti, R.; Laskar, T.; Brown, P. J.; Blanchard, P. K.; Czekala, I.; Lunnan, R.; Reynolds, M. T.

    2016-10-01

    We present optical spectroscopy, ultraviolet-to-infrared imaging, and X-ray observations of the intermediate luminosity optical transient (ILOT) SN 2010da in NGC 300 (d = 1.86 Mpc) spanning from -6 to +6 years relative to the time of outburst in 2010. Based on the light-curve and multi-epoch spectral energy distributions of SN 2010da, we conclude that the progenitor of SN 2010da is a ≈10-12 M ⊙ yellow supergiant possibly transitioning into a blue-loop phase. During outburst, SN 2010da had a peak absolute magnitude of M bol ≲ -10.4 mag, dimmer than other ILOTs and supernova impostors. We detect multi-component hydrogen Balmer, Paschen, and Ca ii emission lines in our high-resolution spectra, which indicate a dusty and complex circumstellar environment. Since the 2010 eruption, the star has brightened by a factor of ≈5 and remains highly variable in the optical. Furthermore, we detect SN 2010da in archival Swift and Chandra observations as an ultraluminous X-ray source (L X ≈ 6 × 1039 erg s-1). We additionally attribute He ii 4686 Å and coronal Fe emission lines in addition to a steady X-ray luminosity of ≈1037 erg s-1 to the presence of a compact companion.

  19. Using large spectroscopic surveys to test the double degenerate model for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Breedt, E.; Steeghs, D.; Marsh, T. R.; Gentile Fusillo, N. P.; Tremblay, P.-E.; Green, M.; De Pasquale, S.; Hermes, J. J.; Gänsicke, B. T.; Parsons, S. G.; Bours, M. C. P.; Longa-Peña, P.; Rebassa-Mansergas, A.

    2017-07-01

    An observational constraint on the contribution of double degenerates to Type Ia supernovae requires multiple radial velocity measurements of ideally thousands of white dwarfs. This is because only a small fraction of the double degenerate population is massive enough, with orbital periods short enough, to be considered viable Type Ia progenitors. We show how the radial velocity information available from public surveys such as the Sloan Digital Sky Survey can be used to pre-select targets for variability, leading to a 10-fold reduction in observing time required compared to an unranked or random survey. We carry out Monte Carlo simulations to quantify the detection probability of various types of binaries in the survey and show that this method, even in the most pessimistic case, doubles the survey size of the largest survey to date (the SPY Survey) in less than 15 per cent of the required observing time. Our initial follow-up observations corroborate the method, yielding 15 binaries so far (eight known and seven new), as well as orbital periods for four of the new binaries.

  20. Tugboat model for OB binaries, X-ray stars and pulsars.

    PubMed

    Helfand, D J; Tademaru, E

    1977-05-12

    An examination of the kinematical properties of binary OB stars, binary X-ray sources and pulsars suggests an evolutionary sequence linking an apparent low-velocity class of pulsars to the binary nature of their extreme Population I progenitors.

  1. Cerebellar Degeneration

    MedlinePlus

    ... is a process in which neurons in the cerebellum - the area of the brain that controls coordination ... body, can cause neurons to die in the cerebellum. Neurological diseases that feature cerebellar degeneration include: ischemic ...

  2. Progenitor's Signatures in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Kosenko, D.; Schure, K. M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that Kepler's SNR is consistent with a symbiotic binary progenitor consisting of a white dwarf and an AGB star. Our hydrosimulations can reproduce the observed kinematic and morphological properties. For Tycho's remnant we use the characteristics of the X-ray spectrum and kinematics to show that the ejecta has likely interacted with dense circumstellar gas.

  3. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  4. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    SciTech Connect

    Kashyap, Rahul; Fisher, Robert; García-Berro, Enrique; Aznar-Siguán, Gabriela; Lorén-Aguilar, Pablo

    2015-02-10

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  5. EXTraS discovery of two pulsators in the direction of the LMC: a Be/X-ray binary pulsar in the LMC and a candidate double-degenerate polar in the foreground

    NASA Astrophysics Data System (ADS)

    Haberl, F.; Israel, G. L.; Rodriguez Castillo, G. A.; Vasilopoulos, G.; Delvaux, C.; De Luca, A.; Carpano, S.; Esposito, P.; Novara, G.; Salvaterra, R.; Tiengo, A.; D'Agostino, D.; Udalski, A.

    2017-02-01

    Context. The Exploring the X-ray Transient and variable Sky (EXTraS) project searches for coherent signals in the X-ray archival data of XMM-Newton. Aims: XMM-Newton performed more than 400 pointed observations in the region of the Large Magellanic Cloud (LMC). We inspected the results of the EXTraS period search to systematically look for new X-ray pulsators in our neighbour galaxy. Methods: We analysed the XMM-Newton observations of two sources from the 3XMM catalogue which show significant signals for coherent pulsations. Results: 3XMM J051259.8-682640 was detected as a source with a hard X-ray spectrum in two XMM-Newton observations, revealing a periodic modulation of the X-ray flux with 956 s. As optical counterpart we identify an early-type star with Hα emission. The OGLE I-band light curve exhibits a regular pattern with three brightness dips which mark a period of 1350 d. The X-ray spectrum of 3XMM J051034.6-670353 is dominated by a super-soft blackbody-like emission component (kT 70 eV) which is modulated by nearly 100% with a period of 1418 s. From GROND observations we suggest a star with r' = 20.9 mag as a possible counterpart of the X-ray source. Conclusions: 3XMM J051259.8-682640 is confirmed as a new Be/X-ray binary pulsar in the LMC. We discuss the long-term optical period as the likely orbital period which would be the longest known from a high-mass X-ray binary. The spectral and temporal properties of the super-soft source 3XMM J051034.6-670353 are very similar to those of RX J0806.3+1527 and RX J1914.4+2456 suggesting that it belongs to the class of double-degenerate polars and is located in our Galaxy rather than in the LMC.

  6. Striatopallidonigral degeneration

    PubMed Central

    Bell, W. E.; McCormick, W. F.

    1971-01-01

    A 15-year-old girl is described with a sporadic, progressive illness manifested by unilateral limb rigidity and dystonia. Obvious dysarthria and some intellectual decline also were noted. Neuropathological findings included gross discoloration and shrinkage of the pallida and, microscopically, profound neuronal loss and gliosis of the caudata and putamena, with less severe neuronal loss from the pallida and substantia nigra. The disease bears some similarities to striatonigral degeneration, but certain clinical and morphological differences justify its consideration as a separate syndrome. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:5565467

  7. Progenitors of Supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.; Claeys, J.; Mennekens, N.; Ruiter, A.

    2013-01-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.

  8. ON IDENTIFYING THE PROGENITORS OF Type Ia SUPERNOVAE

    SciTech Connect

    Livio, Mario; Pringle, J. E.

    2011-10-10

    We propose two new means of identifying the main class of progenitors of Type Ia supernovae-single or double degenerate: (1) if the range of supernova properties is significantly determined by the range of viewing angles of non-spherically symmetric explosions, then the nature of the correlation between polarization and another property (for example, the velocity gradient) can be used to determine the geometry of the asymmetry and hence the nature of the progenitor, and (2) in the double- but not in the single-degenerate case, the range in the observed properties (e.g., velocity gradients) is likely to increase with the amount of carbon seen in the ejecta.

  9. Dry Macular Degeneration

    MedlinePlus

    ... delay vision loss due to dry macular degeneration. Symptoms Dry macular degeneration symptoms usually develop gradually and without pain. They may ... of printed words Decreased intensity or brightness of ... causes total blindness. Dry macular degeneration is one of two types ...

  10. Macular degeneration (image)

    MedlinePlus

    Macular degeneration is a disease of the retina that affects the macula in the back of the eye. ... see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...

  11. Wind-driven evolution of white dwarf binaries to type Ia supernovae

    SciTech Connect

    Ablimit, Iminhaji; Xu, Xiao-jie; Li, X.-D.

    2014-01-01

    In the single-degenerate scenario for the progenitors of Type Ia supernovae (SNe Ia), a white dwarf rapidly accretes hydrogen- or helium-rich material from its companion star and appears as a supersoft X-ray source. This picture has been challenged by the properties of the supersoft X-ray sources with very low mass companions and the observations of several nearby SNe Ia. It has been pointed out that the X-ray radiation or the wind from the accreting white dwarf can excite winds or strip mass from the companion star, thus significantly influencing the mass transfer processes. In this paper, we perform detailed calculations of the wind-driven evolution of white dwarf binaries. We present the parameter space for the possible SN Ia progenitors and for the surviving companions after the SNe. The results show that the ex-companion stars of SNe Ia have characteristics more compatible with the observations, compared with those in the traditional single-degenerate scenario.

  12. Is black-hole ringdown a memory of its progenitor?

    PubMed

    Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S

    2012-10-05

    We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.

  13. Formation of millisecond pulsars with low-mass helium white dwarf companions in very compact binaries

    SciTech Connect

    Jia, Kun; Li, X.-D.

    2014-08-20

    Binary millisecond pulsars (BMSPs) are thought to have evolved from low-mass X-ray binaries (LMXBs). If the mass transfer in LMXBs is driven by nuclear evolution of the donor star, the final orbital period is predicted to be well correlated with the mass of the white dwarf (WD), which is the degenerate He core of the donor. Here we show that this relation can be extended to very small WD mass (∼0.14-0.17 M {sub ☉}) and narrow orbital period (about a few hours), depending mainly on the metallicities of the donor stars. There is also discontinuity in the relation, which is due to the temporary contraction of the donor when the H-burning shell crosses the hydrogen discontinuity. BMSPs with low-mass He WD companions in very compact binaries can be accounted for if the progenitor binary experienced very late Case A mass transfer. The WD companion of PSR J1738+0333 is likely to evolve from a Pop II star. For PSR J0348+0432, to explain its extreme compact orbit in the Roche-lobe-decoupling phase, even lower metallicity (Z = 0.0001) is required.

  14. Common continuum polarization properties: a possible link between proto-planetary nebulae and Type Ia Supernova progenitors

    NASA Astrophysics Data System (ADS)

    Cikota, Aleksandar; Patat, Ferdinando; Cikota, Stefan; Spyromilio, Jason; Rau, Gioia

    2017-10-01

    The lines of sight to highly reddened SNe Ia show peculiar continuum polarization curves, growing towards blue wavelengths and peaking at λ _{max} ≲ 0.4 μ m, like no other sightline to any normal Galactic star. We examined continuum polarization measurements of a sample of asymptotic giant branch (AGB) and post-AGB stars from the literature, finding that some proto-planetary nebulae (PPNe) have polarization curves similar to those observed along SN Ia sightlines. These polarization curves are produced by scattering on circumstellar dust. We discuss the similarity and the possibility that at least some SNe Ia might explode during the post-AGB phase of their binary companion. Furthermore, we speculate that the peculiar SN Ia polarization curves might provide observational support to the core-degenerate progenitor model.

  15. Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  16. Do we really know Mup (i.e. the transition mass between Type Ia and core-collapse supernova progenitors)?

    NASA Astrophysics Data System (ADS)

    Straniero, O.; Piersanti, L.; Cristallo, S.

    2016-01-01

    Mup is the minimum stellar mass that, after the core-helium burning, develops temperature and density conditions for the occurrence of a hydrostatic carbon burning. Stars whose mass is lower than this limit are the progenitors of C-O white dwarfs and, when belong to a close binary system, may give rise to explosive phenomena, such as novae or type Ia supernovae. Stars whose mass is only slightly larger than Mup ignite C in a degenerate core and, in turn, experience a thermonuclear runaway. Their final fate may be a massive O-Ne WDs or, if the core mass approaches the Chandrasekhar limit, an e-capture SNe. More massive objects ignite C in non-degenerate conditions. These “massive “ stars are the progenitors of various kind of core-collapse supernovae (type IIp. IIL, IIN, Ib, Ic). It goes without saying that Mup is a fundamental astrophysical parameter. From its knowledge depends our understanding of the SNe progenitors, of their rates, of the chemical evolution, of the WD luminosity functions and much more. A precise evaluation of Mup relies on our knowledge of various input physics used in stellar modeling, such as the plasma neutrino rate, responsible of the cooling of the core, the equation of state of high density plasma, which affects the heating of the contracting core and its compressibility, and some key nuclear reaction rates, such as, in particular, the 12C+12C and the 12C+α. In this paper we review the efforts made to determine this important parameter and we provide an up-to-date evaluation of the uncertainties due to the relevant nuclear physics inputs.

  17. Degenerate metric phase boundaries

    NASA Astrophysics Data System (ADS)

    Bengtsson, I.; Jacobson, T.

    1997-11-01

    The structure of boundaries between degenerate and non-degenerate solutions of Ashtekar's canonical reformulation of Einstein's equations is studied. Several examples are given of such `phase boundaries' in which the metric is degenerate on one side of a null hypersurface and non-degenerate on the other side. These include portions of flat space, Schwarzschild and plane-wave solutions joined to degenerate regions. In the last case, the wave collides with a planar phase boundary and continues on with the same curvature but degenerate triad, while the phase boundary continues in the opposite direction. We conjecture that degenerate phase boundaries are always null.

  18. EVOLUTION OF POST-IMPACT REMNANT HELIUM STARS IN TYPE Ia SUPERNOVA REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu

    2013-08-10

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx} 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.

  19. Derivation of neurons with functional properties from adult limbal epithelium: implications in autologous cell therapy for photoreceptor degeneration.

    PubMed

    Zhao, Xing; Das, Ani V; Bhattacharya, Sumitra; Thoreson, Wallace B; Sierra, Jorge Rodriguez; Mallya, Kavita B; Ahmad, Iqbal

    2008-04-01

    The limbal epithelium (LE), a circular and narrow epithelium that separates cornea from conjunctiva, harbors stem cells/progenitors in its basal layer that regenerate cornea. We have previously demonstrated that cells in the basal LE, when removed from their niche and cultured in reduced bond morphogenetic protein signaling, acquire properties of neural progenitors. Here, we demonstrate that LE-derived neural progenitors generate neurons with functional properties and can be directly differentiated along rod photoreceptor lineage in vitro and in vivo. These observations posit the LE as a potential source of neural progenitors for autologous cell therapy to treat photoreceptor degeneration in age-related macular degeneration and retinitis pigmentosa.

  20. Physical properties and evolution of the two white dwarfs in the Sanduleak-Pesch binary

    NASA Astrophysics Data System (ADS)

    Greenstein, J. L.; Dolez, N.; Vauclair, G.

    1983-10-01

    An important new binary white dwarf has been found by Sanduleak and Pesch. The stars are analyzed with the data from the Palomar double CCD spectrograph, using continuum fluxes, lines profiles, and Balmer decrements. They have hydrogen atmospheres, are young Population I, age ≈5×108 yr, temperatures of 12500K and 9500K, and the same visual magnitude. The cooler and less luminous star, B, has the larger radius and lower mass; B started its degenerate cooling, more recently, as the brighter of the pair. The estimated cooling times differ by approximately 108 yr. The white dwarfs, with masses 0.80 and 0.43 m_sun;, are descended from progenitors of 8 and 4 m_sun; (or 5 and 3.5 m_sun;).

  1. Searching for the Progenitors of Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne

    2011-05-01

    Type Ia supernovae are important cosmic probes. To understand and eliminate systematic uncertainties, it is important to know the nature and characteristics of their progenitors. I will talk about recent progress that may allow us to search for and identify progenitors within our own Galaxy, using data from wide-field surveys such as SDSS, Pan-STARRS, and LSST. We will consider the nuclear-burning phase that is expected to occur in both single-degenerate and double-degenerate models. We will also consider the expected characteristics just prior to explosion in the new class of spin-up/spin-down models. Finally, we will discuss the prospects for finding the progenitors in external galaxies, in light of the fact that most do not appear as x-ray sources, or else have a low duty cycle of x-ray activity.

  2. On the evolution of binary components which first fill their Roche lobes after the exhaustion of central helium

    NASA Astrophysics Data System (ADS)

    Iben, I., Jr.

    1986-05-01

    The evolution of model close binary components of initial mass 3-7 Msun and of Population I composition is followed from the beginning of the core helium-burning phase. For one set of models, mass loss is initiated at an arbitrary point during the early AGB phase (early case C events) and evolution is followed to the degenerate dwarf stage. For another set of models, mass loss is initiated when hydrogen is reignited and thermal pulses begin (late case C events). It is found that the inclusion of overshoot and semiconvection during the core helium-burning phase has little effect on the relationship between progenitor mass and final degenerate dwarf mass. A new channel for producing both oxygen-neon (ONe) degenerate dwarfs and neutron stars is identified. Involved are stars of initial mass 7. 8.5 Msun which undergo early case C events. For such stars, mass loss from the surface proceeds sufficiently more rapidly than the mass of the hydrogen-exhausted core can be decreased by convective dredge-up that carbon ignition at the center occurs before degeneracy sets in; the remnant of the mass transfer event can evolve into either an ONe degenerate dwarf or a neutron star at a combined frequency that is comparable to the observed rate of supernova formation in the Galaxy. In binary systems in which the primary becomes a neutron star or an ONe degenerate dwarf, the secondary will normally evolve into a CO degenerate dwarf, and common envelope action will lead in some instances to small enough orbital separations that orbital shrinkage due to gravitational wave radiation will again lead to Roche-lobe filling by the CO dwarf. If before the merging and explosion process begins, the heavier compact component is an ONe degenerate dwarf, a supernova-like explosion fueled by the conversion of carbon and oxygen into iron peak nuclei may result, and the light curve and spectrum may be of the Type I "peculiar" variety. The compact remnant remaining after the explosion may be either

  3. Macular Degeneration Partnership

    MedlinePlus

    ... Age Related Macular Degeneration) Partnership Listen AMD Month Public Service Announcement To raise awareness of AMD, the Macular Degeneration Partnership (MDP) is distributing a public service announcement (PSA) nationwide. Seen through the eyes of a ...

  4. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Liu, Zheng-Wei; Mackey, Jonathan; Chen, Ting-Wan; Langer, Norbert

    2015-12-01

    We propose that nebular Hα emission, as detected in the Type Ic superluminous supernova iPTF13ehe, stems from matter that is stripped from a companion star when the supernova ejecta collide with it. The temporal evolution, the line broadening, and the overall blueshift of the emission are consistent with this interpretation. We scale the nebular Hα luminosity predicted for Type Ia supernovae in single-degenerate systems to derive the stripped mass required to explain the Hα luminosity of iPTF13ehe. We find a stripped mass of 0.1-0.9 solar masses, assuming that the supernova luminosity is powered by radioactivity or magnetar spin down. Because a central heating source is required to excite the Hα emission, an interaction-powered model is not favored for iPTF13ehe if the Hα emission is from stripped matter. We derive a companion mass of more than 20 solar masses and a binary separation of less than about 20 companion radii based on the stripping efficiency during the collision, indicating that the supernova progenitor and the companion formed a massive close binary system. If Type Ic superluminous supernovae generally occur in massive close binary systems, the early brightening observed previously in several Type Ic superluminous supernovae may also be due to the collision with a close companion. Observations of nebular hydrogen emission in future Type Ic superluminous supernovae will enable us to test this interpretation.

  5. Blue Supergiant X-Ray Binaries in the Nearby Dwarf Galaxy IC 10

    NASA Astrophysics Data System (ADS)

    Laycock, Silas G. T.; Christodoulou, Dimitris M.; Williams, Benjamin F.; Binder, Breanna; Prestwich, Andrea

    2017-02-01

    In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black hole and neutron-star high-mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a multi-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8σ correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color-magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher {f}x/{f}v ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational-wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.

  6. High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey. III. DA white dwarfs

    NASA Astrophysics Data System (ADS)

    Koester, D.; Voss, B.; Napiwotzki, R.; Christlieb, N.; Homeier, D.; Lisker, T.; Reimers, D.; Heber, U.

    2009-10-01

    Context: The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Aims: Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. Methods: The spectra are compared with theoretical model atmospheres using a χ2 fitting technique. Results: Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new). Based on data obtained at the Paranal Observatory of the European Southern Observatory for programmes 165.H-0588 and 167.D-0407.

  7. Macular Degeneration: An Overview.

    ERIC Educational Resources Information Center

    Chalifoux, L. M.

    1991-01-01

    This article presents information on macular degeneration for professionals helping persons with this disease adjust to their visual loss. It covers types of macular degeneration, the etiology of the disease, and its treatment. Also considered are psychosocial problems and other difficulties that persons with age-related macular degeneration face.…

  8. Macular Degeneration: An Overview.

    ERIC Educational Resources Information Center

    Chalifoux, L. M.

    1991-01-01

    This article presents information on macular degeneration for professionals helping persons with this disease adjust to their visual loss. It covers types of macular degeneration, the etiology of the disease, and its treatment. Also considered are psychosocial problems and other difficulties that persons with age-related macular degeneration face.…

  9. Relativistic Binaries in Globular Clusters.

    PubMed

    Benacquista, Matthew J; Downing, Jonathan M B

    2013-01-01

    Galactic globular clusters are old, dense star systems typically containing 10(4)-10(6) stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  10. Activation of Bone Marrow-Derived Microglia Promotes Photoreceptor Survival in Inherited Retinal Degeneration

    PubMed Central

    Sasahara, Manabu; Otani, Atsushi; Oishi, Akio; Kojima, Hiroshi; Yodoi, Yuko; Kameda, Takanori; Nakamura, Hajime; Yoshimura, Nagahisa

    2008-01-01

    The role of microglia in neurodegeneration is controversial, although microglial activation in the retina has been shown to provide an early response against infection, injury, ischemia, and degeneration. Here we show that endogenous bone marrow (BM)-derived microglia play a protective role in vascular and neural degeneration in the retinitis pigmentosa model of inherited retinal degeneration. BM-derived cells were recruited to the degenerating retina where they differentiated into microglia and subsequently localized to the degenerating vessels and neurons. Inhibition of stromal-derived factor-1 in the retina reduced the number of BM-derived microglia and accelerated the rate of neurovascular degeneration. Systemic depletion of myeloid progenitors also accelerated the degenerative process. Conversely, activation of BM-derived myeloid progenitors by systemic administration of both granulocyte colony-stimulating factor and erythropoietin resulted in the deceleration of retinal degeneration and the promotion of cone cell survival. These data indicate that BM-derived microglia may play a protective role in retinitis pigmentosa. Functional activation of BM-derived myeloid progenitors by cytokine therapy may provide a novel strategy for the treatment of inherited retinal degeneration and other neurodegenerative diseases, regardless of the underlying genetic defect. PMID:18483210

  11. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    SciTech Connect

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos E-mail: skenyon@cfa.harvard.edu E-mail: alexg@nhn.ou.edu

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  12. The disappearance of the progenitors of supernovae 1993J and 2003gd.

    PubMed

    Maund, Justyn R; Smartt, Stephen J

    2009-04-24

    Using images from the Hubble Space Telescope and the Gemini Telescope, we confirmed the disappearance of the progenitors of two type II supernovae (SNe) and evaluated the presence of other stars associated with them. We found that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location and determined its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two supernovae were produced by red supergiants.

  13. Binary Plutinos

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    2015-08-01

    The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.

  14. THE PROGENITOR OF THE TYPE IIb SN 2008ax REVISITED

    SciTech Connect

    Folatelli, Gastón; Bersten, Melina C.; Benvenuto, Omar G.; Kuncarayakti, Hanindyo; Maeda, Keiichi; Nomoto, Ken’ichi

    2015-10-01

    Hubble Space Telescope observations of the site of the supernova (SN) SN 2008ax obtained in 2011 and 2013 reveal that the possible progenitor object detected in pre-explosion images was in fact multiple. Four point sources are resolved in the new, higher-resolution images. We identify one of the sources with the fading SN. The other three objects are consistent with single supergiant stars. We conclude that their light contaminated the previously identified progenitor candidate. After subtraction of these stars, the progenitor appears to be significantly fainter and bluer than previously measured. Post-explosion photometry at the SN location indicates that the progenitor object has disappeared. If single, the progenitor is compatible with a supergiant star of B to mid-A spectral type, while a Wolf–Rayet (W-R) star would be too luminous in the ultraviolet to account for the observations. Moreover, our hydrodynamical modeling shows that the pre-explosion mass was 4–5 M{sub ⊙} and the radius was 30–50 R{sub ⊙}, which is incompatible with a W-R progenitor. We present a possible interacting binary progenitor computed with our evolutionary models that reproduces all the observational evidence. A companion star as luminous as an O9–B0 main-sequence star may have remained after the explosion.

  15. No surviving evolved companions of the progenitor of SN 1006.

    PubMed

    González Hernández, Jonay I; Ruiz-Lapuente, Pilar; Tabernero, Hugo M; Montes, David; Canal, Ramon; Méndez, Javier; Bedin, Luigi R

    2012-09-27

    Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel. Both channels might contribute to the production of type Ia supernovae, but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned. More recently, observations have restricted surviving companions to be small, main-sequence stars, ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

  16. Type Ia Supernovae: Colors, Rates, and Progenitors

    NASA Astrophysics Data System (ADS)

    Heringer, Epson; Pritchet, Chris; Kezwer, Jason; Graham, Melissa L.; Sand, David; Bildfell, Chris

    2017-01-01

    The rate of type Ia supernovae (SNe Ia) in a galaxy depends not only on stellar mass, but also on star formation history (SFH). Here we show that two simple observational quantities (g ‑ r or u ‑ r host galaxy color, and r-band luminosity), coupled with an assumed delay time distribution (DTD) (the rate of SNe Ia as a function of time for an instantaneous burst of star formation), are sufficient to accurately determine a galaxy’s SN Ia rate, with very little sensitivity to the precise details of the SFH. Using this result, we compare observed and predicted color distributions of SN Ia hosts for the MENeaCS cluster supernova survey, and for the SDSS Stripe 82 supernova survey. The observations are consistent with a continuous DTD, without any cutoff. For old progenitor systems, the power-law slope for the DTD is found to be -{1.50}-0.15+0.19. This result favors the double degenerate scenario for SN Ia, though other interpretations are possible. We find that the late-time slopes of the DTD are different at the 1σ level for low and high stretch supernova, which suggest a single degenerate (SD) scenario for the latter. However, due to ambiguity in the current models’ DTD predictions, SD progenitors can neither be confirmed as causing high stretch supernovae nor ruled out from contributing to the overall sample.

  17. X-Ray Spectroscopy of the Low-Mass X-Ray Binaries 2S 0918-549 and 4U 1543-624: Evidence for Neon-rich Degenerate Donors

    NASA Astrophysics Data System (ADS)

    Juett, Adrienne M.; Chakrabarty, Deepto

    2003-12-01

    We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries 2S 0918-549 and 4U 1543-624 with the High Energy Transmission Grating Spectrometer on board the Chandra X-Ray Observatory and the Reflection Grating Spectrometer on board XMM-Newton. Previous low-resolution spectra of both sources showed a broad, linelike feature at 0.7 keV that was originally attributed to unresolved line emission. We recently showed that this feature could also be due to excess neutral Ne absorption, and this is confirmed by the new high-resolution Chandra and XMM spectra. The Chandra spectra are each well fitted by an absorbed-power-law+blackbody model with a modified Ne/O number ratio of 0.52+/-0.12 for 2S 0918-549 and 1.5+/-0.3 for 4U 1543-624, compared to the interstellar medium value of 0.18. The XMM spectrum of 2S 0918-549 is best fitted by an absorbed-power-law model with a Ne/O number ratio of 0.46+/-0.03, consistent with the Chandra result. On the other hand, the XMM spectrum of 4U 1543-624 is softer and less luminous than the Chandra spectrum and has a best-fit Ne/O number ratio of 0.54+/-0.03. The difference between the measured abundances and the expected interstellar ratio, as well as the variation of the column densities of O and Ne in 4U 1543-624, supports the suggestion that there is absorption local to these binaries. We propose that the variations in the O and Ne column densities of 4U 1543-624 are caused by changes in the ionization structure of the local absorbing material. It is important to understand the effect of ionization on the measured absorption columns before the abundance of the local material can be determined. This work supports our earlier suggestion that 2S 0918-549 and 4U 1543-624 are ultracompact binaries with Ne-rich companions.

  18. Neutron Star Mass Distribution in Binaries

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hwan; Kim, Young-Min

    2016-05-01

    Massive neutron stars with ∼ 2Mʘ have been observed in neutron star-white dwarf binaries. On the other hand, well-measured neutron star masses in double-neutron-star binaries are still consistent with the limit of 1.5Mʘ. These observations raised questions on the neutron star equations of state and the neutron star binary evolution processes. In this presentation, a hypothesis of super-Eddington accretion and its implications are discussed. We argue that a 2Mʘ neutron star is an outcome of the super-Eddington accretion during the evolution of neutron star-white dwarf binary progenitors. We also suggest the possibility of the existence of new type of neutron star binary which consists of a typical neutron star and a massive compact companion (high-mass neutron star or black hole) with M ≥ 2Mʘ.

  19. Resident vascular progenitor cells.

    PubMed

    Torsney, Evelyn; Xu, Qingbo

    2011-02-01

    Homeostasis of the vessel wall is essential for maintaining its function, including blood pressure and patency of the lumen. In physiological conditions, the turnover rate of vascular cells, i.e. endothelial and smooth muscle cells, is low, but markedly increased in diseased situations, e.g. vascular injury after angioplasty. It is believed that mature vascular cells have an ability to proliferate to replace lost cells normally. On the other hand, recent evidence indicates stem/progenitor cells may participate in vascular repair and the formation of neointimal lesions in severely damaged vessels. It was found that all three layers of the vessels, the intima, media and adventitia, contain resident progenitor cells, including endothelial progenitor cells, mesenchymal stromal cells, Sca-1+ and CD34+ cells. Data also demonstrated that these resident progenitor cells could differentiate into a variety of cell types in response to different culture conditions. However, collective data were obtained mostly from in vitro culture assays and phenotypic marker studies. There are many unanswered questions concerning the mechanism of cell differentiation and the functional role of these cells in vascular repair and the pathogenesis of vascular disease. In the present review, we aim to summarize the data showing the presence of the resident progenitor cells, to highlight possible signal pathways orchestrating cell differentiation toward endothelial and smooth muscle cells, and to discuss the data limitations, challenges and controversial issues related to the role of progenitors. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  20. Evolutionary Models for Type Ib/c Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Chul

    2015-04-01

    SNe Ib/c mark the deaths of hydrogen-deficient massive stars. The evolutionary scenarios for SNe Ib/c progenitors involve many important physical processes including mass loss by winds and its metallicity dependence, stellar rotation, and binary interactions. This makes SNe Ib/c an excellent test bed for stellar evolution theory. We review the main results of evolutionary models for SN Ib/c progenitors available in the literature and their confrontation with recent observations. We argue that the nature of SN Ib/c progenitors can be significantly different for single and binary systems, and that binary evolution models can explain the ejecta masses derived from SN Ib/c light curves, the distribution of SN Ib/c sites in their host galaxies, and the optical magnitudes of the tentative progenitor candidate of iPTF13bvn. We emphasise the importance of early-time observations of light curves and spectra, accurate measurements of helium mass in SN Ib/c ejecta, and systematic studies about the metallicity dependence of SN Ib/c properties, to better constrain theories.

  1. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    SciTech Connect

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-06-20

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  2. The Changing Nature of QU Carinae: SN Ia Progenitor or a Hoax?

    NASA Astrophysics Data System (ADS)

    Kafka, Stella

    2013-01-01

    The race to the elusive Type Ia supernovae (SNe Ia) progenitors is at its zenith, with numerous clues from SNe Ia ejecta and a dearth of observational candidates. Still, the single degenerate channel is a viable route of mass accumulation onto a white dwarf to the Chandrasekhar limit. I present long-term high resolution spectroscopy of QU Carinae, one of the most promising single degenerate SNe Ia progenitors. I discuss its highly variable nature and compare it to current scenarios for mass accumulation onto high-mass white dwarfs, eventually leading to WD detonation and to a supernova explosion.

  3. The direct identification of core-collapse supernova progenitors

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.

    2017-09-01

    To place core-collapse supernovae (SNe) in context with the evolution of massive stars, it is necessary to determine their stellar origins. I describe the direct identification of SN progenitors in existing pre-explosion images, particularly those obtained through serendipitous imaging of nearby galaxies by the Hubble Space Telescope. I comment on specific cases representing the various core-collapse SN types. Establishing the astrometric coincidence of a SN with its putative progenitor is relatively straightforward. One merely needs a comparably high-resolution image of the SN itself and its stellar environment to perform this matching. The interpretation of these results, though, is far more complicated and fraught with larger uncertainties, including assumptions of the distance to and the extinction of the SN, as well as the metallicity of the SN environment. Furthermore, existing theoretical stellar evolutionary tracks exhibit significant variations one from the next. Nonetheless, it appears fairly certain that Type II-P (plateau) SNe arise from massive stars in the red supergiant phase. Many of the known cases are associated with subluminous Type II-P events. The progenitors of Type II-L (linear) SNe are less established. Among the stripped-envelope SNe, there are now a number of examples of cool, but not red, supergiants (presumably in binaries) as Type IIb progenitors. We appear now finally to have an identified progenitor of a Type Ib SN, but no known example yet for a Type Ic. The connection has been made between some Type IIn SNe and progenitor stars in a luminous blue variable phase, but that link is still thin, based on direct identifications. Finally, I also describe the need to revisit the SN site, long after the SN has faded, to confirm the progenitor identification through the star's disappearance and potentially to detect a putative binary companion that may have survived the explosion. This article is part of the themed issue 'Bridging the gap

  4. New Limits on the Nature of Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Woods, Tyrone; Gilfanov, Marat

    2012-09-01

    To date, the question of which progenitor channel can reproduce the observed rate of type Ia supernovae (Sn Ia) remains unresolved. The single degenerate scenario posits that a white dwarf accretes stably from a companion star until reaching the Chandrasekhar mass. This requires that nuclear burning process at least 0.3 solar masses of hydrogen, the resulting energy release from which easily dominates the total luminosity of the WD (while nuclear burning is steady). In elliptical galaxies, measurements of the total observed soft X-ray emission have already placed strong upper limits on how much of this luminosity may be radiated in X-rays, limiting the possible contribution of "supersoft sources" to the Sn Ia rate. However, a population of single degenerate progenitors large enough to reproduce the Sn Ia rate would also easily provide among the dominant sources of ionizing photons, dramatically hardening the local ionizing UV background. This opens a new avenue for constraining the progenitors of Sn Ia, through consideration of the nebular emission now found in many early-type galaxies by large spectroscopic surveys such as SAURON. Modeling the predicted line ratios using the photoionization code MAPPINGS III, and demanding that they be consistent with those observed, allows us to place new constraints on the total contribution of the single degenerate channel to the Sn Ia rate in elliptical galaxies.

  5. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars.

  6. On the progenitor of the Type IIb supernova 2016gkg

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Charles D.; Foley, Ryan J.; Abramson, Louis E.; Pan, Yen-Chen; Lu, Cicero-Xinyu; Williams, Peter; Treu, Tommaso; Siebert, Matthew R.; Fassnacht, Christopher D.; Max, Claire E.

    2017-03-01

    We present a detection in pre-explosion Hubble Space Telescope (HST) imaging of a point source consistent with being the progenitor star of the Type IIb supernova (SN IIb) 2016gkg. Post-explosion imaging from the Keck adaptive optics system was used to perform relative astrometry between the Keck and HST imaging. We identify a single point source in the HST images coincident with the SN position to 0.89σ. The HST photometry is consistent with the progenitor star being an A0 Ia star with T = 9500 K and log (L/L⊙) = 5.15. We find that the SN 2016gkg progenitor star appears more consistent with binary than single-star evolutionary models. In addition, early-time light-curve data from SN 2016gkg revealed a rapid rise in luminosity within ∼0.4 d of non-detection limits, consistent with models of the cooling phase after shock break-out. We use these data to determine an explosion date of 2016 September 20.15 and progenitor-star radius of log (R/R⊙) = 2.41, which agrees with photometry from the progenitor star. Our findings are also consistent with detections of other SNe IIb progenitor stars, although more luminous and bluer than most other examples.

  7. Pellucid marginal corneal degeneration.

    PubMed

    Krachmer, J H

    1978-07-01

    Pellucid marginal degeneration of the cornea is a bilateral, clear, inferior, peripheral corneal-thinning disorder. Protrusion of the cornea occurs above a band of thinning, which is located 1 to 2 mm from the limbus and measures 1 to 2 mm in width. American ophthalmologists are generally not familiar with the condition because most of the literature concerning pellucid degeneration is European. Four cases are described. This condition is differentiated from other noninflammatory cornel-thinning disorders such as keratoconus, keratoglobus, keratotorus, and posterior keratoconus. It is also differentiated from peripheral corneal disorders associated with inflammation such as Terrien's peripheral corneal degeneration, Mooren's ulcers, and ulcers from connective tissue disease.

  8. The Crab Nebula's progenitor

    NASA Technical Reports Server (NTRS)

    Nomoto, K.; Sugimoto, D.; Sparks, W. M.; Fesen, R. A.; Gull, T. R.; Miyaji, S.

    1982-01-01

    The initial mass of the Crab Nebula's progenitor star is estimated by comparing the observed nebular chemical abundances with detailed evolutionary calculations for 2.4- and 2.6-solar-mass helium cores of stars with masses of 8 to 10 solar masses. The results indicate that the mass of the Crab's progenitor was between the upper limit of about 8 solar masses for carbon deflagration and the lower limit of about 9.5 solar masses set by the dredge-up of the helium layer before the development of the helium-burning convective region. A scenario is outlined for the evolution of the progenitor star. It is suggested that the Crab Nebula was probably the product of an electron-capture supernova.

  9. Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors.

    PubMed

    Hedlund, Eva; Belnoue, Laure; Theofilopoulos, Spyridon; Salto, Carmen; Bye, Chris; Parish, Clare; Deng, Qiaolin; Kadkhodaei, Banafsheh; Ericson, Johan; Arenas, Ernest; Perlmann, Thomas; Simon, András

    2016-06-01

    Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers remain in the midbrain aqueductal zone beyond the major dopamine neurogenic period. These cells express dopamine receptors, are located in regions heavily innervated by midbrain dopamine fibres and their proliferation can be stimulated by antagonizing dopamine receptors, ultimately leading to increased neurogenesis in vivo. Furthermore, treatment with dopamine receptor antagonists enhances neurogenesis in vitro, both from embryonic midbrain progenitors as well as from embryonic stem cells. Altogether our results indicate a potential for reactivation of resident midbrain cells with dopamine progenitor potential beyond the normal period of dopamine neurogenesis.

  10. Fundamental Parameters of Four Massive Eclipsing Binaries in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Koumpia, E.; Bonanos, A. Z.

    2012-04-01

    We present fundamental parameters of four massive eclipsing binaries in the young massive cluster Westerlund 1. The goal is to measure accurate masses and radii of their component stars, which provide much needed constraints for evolutionary models of massive stars. Accurate parameters can further be used to determine a dynamical lower limit for the magnetar progenitor and to obtain an independent distance to the cluster. Our results confirm and extend the evidence for a high mass for the progenitor of the magnetar.

  11. Fundamental Parameters of Four Massive Eclipsing Binaries in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Bonanos, A.; Koumpia, E.

    2012-01-01

    We present fundamental parameters of four massive eclipsing binaries in the young massive cluster Westerlund 1. The goal is to measure accurate masses and radii of their component stars, which provide much needed constraints for evolutionary models of massive stars. Accurate parameters can further be used to determine a dynamical lower limit for the magnetar progenitor and to obtain an independent distance to the cluster. Our results confirm and extend the evidence for a high mass for the progenitor of the magnetar.

  12. Biomechanics of Disc Degeneration

    PubMed Central

    Palepu, V.; Kodigudla, M.; Goel, V. K.

    2012-01-01

    Disc degeneration and associated disorders are among the most debated topics in the orthopedic literature over the past few decades. These may be attributed to interrelated mechanical, biochemical, and environmental factors. The treatment options vary from conservative approaches to surgery, depending on the severity of degeneration and response to conservative therapies. Spinal fusion is considered to be the “gold standard” in surgical methods till date. However, the association of adjacent level degeneration has led to the evolution of motion preservation technologies like spinal arthroplasty and posterior dynamic stabilization systems. These new technologies are aimed to address pain and preserve motion while maintaining a proper load sharing among various spinal elements. This paper provides an elaborative biomechanical review of the technologies aimed to address the disc degeneration and reiterates the point that biomechanical efficacy followed by long-term clinical success will allow these nonfusion technologies as alternatives to fusion, at least in certain patient population. PMID:22745914

  13. Wet Macular Degeneration

    MedlinePlus

    ... has a hereditary component. Researchers have identified several genes related to developing the condition. Smoking. Smoking cigarettes or being regularly exposed to smoke significantly increases your risk of macular degeneration. Obesity. Research indicates that being obese increases the chance ...

  14. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  15. Evolution of binaries with compact objects in globular clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia

    2016-02-01

    Dynamical interactions that take place between objects in dense stellar systems lead to frequent formation of exotic stellar objects, unusual binaries, and systems of higher multiplicity. They are most important for the formation of binaries with neutron stars and black holes, which are usually observationally revealed in mass-transferring binaries. Here we review the current understanding of compact object's retention, of the metallicity dependence on the formation of low-mass X-ray binaries with neutron stars, and how mass-transferring binaries with a black hole and a white dwarf can be formed. We discuss as well one old unsolved puzzle and two new puzzles posed by recent observations: what descendants do ultra-compact X-ray binaries produce, how are very compact triples formed, and how can black hole low-mass X-ray binaries acquire non-degenerate companions?

  16. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  17. A common-envelope wind model for Type Ia supernovae - I. Binary evolution and birth rate

    NASA Astrophysics Data System (ADS)

    Meng, X.; Podsiadlowski, Ph.

    2017-08-01

    The single-degenerate (SD) model is one of the principal models for the progenitors of Type Ia supernovae (SNe Ia), but some of the predictions in the most widely studied version of the SD model, i.e. the optically thick wind (OTW) model, have not been confirmed by observations. Here, we propose a new version of the SD model in which a common envelope (CE) is assumed to form when the mass-transfer rate between a carbon-oxygen white dwarf (CO WD) and its companion exceeds a critical accretion rate. The WD may gradually increase its mass at the base of the CE. Due to the large nuclear luminosity for stable hydrogen burning, the CE may expand to giant dimensions and will lose mass from the surface of the CE by a CE wind (CEW). Because of the low CE density, the binary system will avoid a fast spiral-in phase and finally re-emerge from the CE phase. Our model may share the virtues of the OTW model but avoid some of its shortcomings. We performed binary stellar evolution calculations for more than 1100 close WD + MS binaries. Compared with the OTW model, the parameter space for SNe Ia from our CEW model extends to more massive companions and less massive WDs. Correspondingly, the Galactic birth rate from the CEW model is higher than that from the OTW model by ˜30 per cent. Finally, we discuss the uncertainties of the CEW model and the differences between our CEW model and the OTW model.

  18. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  19. The Progenitor Mass of the Magnetar SGR1900+14

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Figer, Don F.; Kudritzki, Rolf-Peter; Trombley, Christine; Kouveliotou, Chryssa; Wachter, Stefanie

    2009-12-01

    Magnetars are young neutron stars with extreme magnetic fields (B gsim 1014-1015 G). How these fields relate to the properties of their progenitor stars is not yet clearly established. However, from the few objects associated with young clusters it has been possible to estimate the initial masses of the progenitors, with results indicating that a very massive progenitor star (M prog> 40 M _{⊙}) is required to produce a magnetar. Here, we present adaptive-optics assisted Keck/NIRC2 imaging and Keck/NIRSPEC spectroscopy of the cluster associated with the magnetar SGR 1900+14, and report that the initial progenitor star mass of the magnetar was a factor of 2 lower than this limit, M prog = 17 ± 2 M_{⊙}. Our result presents a strong challenge to the concept that magnetars can only result from very massive progenitors. Instead, we favor a mechanism which is dependent on more than just initial stellar mass for the production of these extreme magnetic fields, such as the "fossil-field" model or a process involving close binary evolution.

  20. Striatal degeneration in childhood.

    PubMed Central

    Erdohazi, M; Marshall, P

    1979-01-01

    The clinical features, and the radiological and neuropathological findings of 3 unrelated children with striatal degeneration are presented. In one case the father had recently developed choreiform movements while in the other two the family history was negative for neurological disorders. Two patients had juvenile onset of psychiatric symptoms, seizures, and rigidity. The 3rd child presented with focal seizures at 9 weeks of age. The neuropathological findings are virtually identical in all 3 cases. The classification of striatal degeneration in childhood is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:434899

  1. On Measuring the Metallicity of a Type Ia Supernova’s Progenitor

    NASA Astrophysics Data System (ADS)

    Miles, Broxton J.; van Rossum, Daniel R.; Townsley, Dean M.; Timmes, F. X.; Jackson, Aaron P.; Calder, Alan C.; Brown, Edward F.

    2016-06-01

    In Type Ia Supernovae (SNe Ia) the relative abundances of chemical elements are affected by the neutron excess in the composition of the progenitor white dwarf. Since these products leave signatures in the spectra near maximum light, spectral features may be used to constrain the composition of the progenitor. We calculate the nucleosynthetic yields for three SN Ia simulations, assuming single degenerate, Chandrasekhar-mass progenitors, for a wide range of progenitor metallicities, and calculate synthetic light curves and spectra to explore correlations between progenitor metallicity and the strength of spectral features. We use two two-dimensional simulations of the deflagration-detonation-transition scenario with different 56Ni yields and the W7 simulation to control for differences between explosion models and total yields. While the overall yields of intermediate-mass elements (16 < A ≤slant 40) differ between the three cases, trends in the yields are similar. With increasing metallicity, 28Si yields remain nearly constant, 40Ca yields decline, and Ti and 54Fe yields increase. In the synthetic spectra, we identify two features at 30 days post-explosion that appear to deepen with progenitor metallicity: a Ti feature around 4200 Å and an Fe feature around 5200 Å. In all three simulations, their pseudo equivalent widths show a systematic trend with progenitor metallicity. This suggests that these two features may allow for differentiation among progenitor metallicities of observed SNe Ia and potentially help to reduce the intrinsic Hubble scatter.

  2. Gravitational-wave Constraints on the Progenitors of Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Callister, Thomas; Kanner, Jonah; Weinstein, Alan

    2016-07-01

    The nature of fast radio bursts (FRBs) remains enigmatic. Highly energetic radio pulses of millisecond duration, FRBs are observed with dispersion measures consistent with an extragalactic source. A variety of models have been proposed to explain their origin. One popular class of theorized FRB progenitor is the coalescence of compact binaries composed of neutron stars and/or black holes. Such coalescence events are strong gravitational-wave emitters. We demonstrate that measurements made by the LIGO and Virgo gravitational-wave observatories can be leveraged to severely constrain the validity of FRB binary coalescence models. Existing measurements constrain the binary black hole rate to approximately 5% of the FRB rate, and results from Advanced LIGO’s O1 and O2 observing runs may place similarly strong constraints on the fraction of FRBs due to binary neutron star and neutron star-black hole progenitors.

  3. Lung Epithelial Progenitor Cells

    PubMed Central

    Rawlins, Emma L.

    2008-01-01

    The current enthusiasm for stem cell research stems from the hope that damaged or diseased tissues may one day be repaired through the manipulation of endogenous or exogenous stem cells. The postnatal human respiratory system is highly accessible and provides unique opportunities for the application of such techniques. Several putative adult lung epithelial stem cells have been identified in the mouse model system. However, their in vivo capabilities to contribute to different lineages, and their control mechanisms, remain unclear. If stem cell–based therapies are to be successful in the lung, it is vitally important that we understand the normal behavior of adult lung stem cells, and how this is regulated. Lung embryonic progenitor cells are much better defined and characterized than their adult counterparts. Moreover, experiments on a variety of developing tissues are beginning to uncover general mechanisms by which embryonic progenitors influence final organ size and structure. This provides a framework for the study of lung embryonic progenitor cells, facilitating experimental design and interpretation. A similar approach to investigating adult lung stem cells could produce rapid advances in the field. PMID:18684716

  4. Radii and Mass-loss Rates of Type IIb Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Ouchi, Ryoma; Maeda, Keiichi

    2017-05-01

    Several Type IIb supernovae (SNe IIb) have been extensively studied, both in terms of the progenitor radius and the mass-loss rate in the final centuries before the explosion. While the sample is still limited, evidence has been accumulating that the final mass-loss rate tends to be larger for a more extended progenitor, with the difference exceeding an order of magnitude between the more and less extended progenitors. The high mass-loss rates inferred for the more extended progenitors are not readily explained by a prescription commonly used for a single stellar wind. In this paper, we calculate a grid of binary evolution models. We show that the observational relation in the progenitor radii and mass-loss rates may be a consequence of non-conservative mass transfer in the final phase of progenitor evolution without fine tuning. Further, we find a possible link between SNe IIb and SNe IIn. The binary scenario for SNe IIb inevitably leads to a population of SN progenitors surrounded by dense circumstellar matter (CSM) due to extensive mass loss (\\dot{M}≳ {10}-4 {M}⊙ {{yr}}-1) in the binary origin. About 4% of all observed SNe IIn are predicted to have dense CSM, produced by binary non-conservative mass transfer, whose observed characteristics are distinguishable from SNe IIn from other scenarios. Indeed, such SNe may be observationally dominated by systems experiencing huge mass loss in the final 103 yr, leading to luminous SNe IIn or initially bright SNe IIP or IIL with characteristics of SNe IIn in their early spectra.

  5. Kraepelin and degeneration theory.

    PubMed

    Hoff, Paul

    2008-06-01

    Emil Kraepelin's contribution to the clinical and scientific field of psychiatry is recognized world-wide. In recent years, however, there have been a number of critical remarks on his acceptance of degeneration theory in particular and on his political opinion in general, which was said to have carried "overtones of proto-fascism" by Michael Shepherd [28]. The present paper discusses the theoretical cornerstones of Kraepelinian psychiatry with regard to their relevance for Kraepelin's attitude towards degeneration theory. This theory had gained wide influence not only in scientific, but also in philosophical and political circles in the last decades of the nineteenth century. There is no doubt that Kraepelin, on the one hand, accepted and implemented degeneration theory into the debate on etiology and pathogenesis of mental disorders. On the other hand, it is not appropriate to draw a simple and direct line from early versions of degeneration theory to the crimes of psychiatrists and politicians during the rule of national socialism. What we need, is a differentiated view, since this will be the only scientific one. Much research needs to be done here in the future, and such research will surely have a significant impact not only on the historical field, but also on the continuous debate about psychiatry, neuroscience and neurophilosophy.

  6. Frontotemporal Lobar Degeneration

    PubMed Central

    Josephs, Keith A.

    2009-01-01

    Synopsis Frontotemporal lobar degeneration (FTLD) is a syndromic diagnosis that encompasses at least three different variants. Imaging modalities are clinically useful in FTLD while pathology remains the gold standard for definitive diagnosis. To date three different genes have been identified that account for FTLD. PMID:17659185

  7. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2017-01-12

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  8. The evolution of ultrashort period binary systems

    NASA Technical Reports Server (NTRS)

    Nelson, L. A.; Rappaport, S. A.; Joss, P. C.

    1986-01-01

    A discussion is presented concerning the results of detailed evolutionary calculations in which a very low mass and hydrogen-depleted semiattached binary star containing a collapsed object can reach an exceptionally short orbital period while sustaining a relatively high mass transfer rate. The observed properties of such systems can be understood under the assumption that they contain moderately to severely hydrogen-defficient secondary stars that are neither fully degenerate nor burning He. It is noted that for extremely hydrogen-depleted stars, the assumption of chemical homogeneity becomes untenable. Attention is given to the binary systems 4U 1626-67, 4U 1916-05, and G61-29.

  9. An Interferometric Harvest of Double Degenerates

    NASA Astrophysics Data System (ADS)

    Nelan, Edmund

    2001-07-01

    The white dwarf {WD} mass and age distributions hold clues to the star formation history of our Galaxy and the age of the disk. To extract this information we need to carefully calibrate the WD mass-radius relation and the WD cooling curve. But to do so, we must directly determine the masses for a variety of WDs of different sub-types. The only direct method is through the orbital analysis of resolved WDs in non- interacting binary systems. Sadly, this has been done, with varying quality, for only 4 WDs {40 Eri B, Sirius B, Procyon B, and Stien 2051B}, mainly because it is extremely difficult to resolve WDs in binary systems with periods less than 50 years. We propose a high angular resolution Snapshot survey with FGS1r to observe cool WDs with the objective of discovering {resolving} double degenerate systems with modest separations and periods as short as 25 years, ideal binaries for follow up mass determinations. By carefully selecting our targets, about 10 such systems should be revealed. This will dramatically increase the number of WDs available for dynamical mass measurements {its 2 for 1.}, enabling a better calibration the WD mass-radius relation.

  10. Quantum degenerate systems

    SciTech Connect

    Micheli, Fiorenza de; Zanelli, Jorge

    2012-10-15

    A degenerate dynamical system is characterized by a symplectic structure whose rank is not constant throughout phase space. Its phase space is divided into causally disconnected, nonoverlapping regions in each of which the rank of the symplectic matrix is constant, and there are no classical orbits connecting two different regions. Here the question of whether this classical disconnectedness survives quantization is addressed. Our conclusion is that in irreducible degenerate systems-in which the degeneracy cannot be eliminated by redefining variables in the action-the disconnectedness is maintained in the quantum theory: there is no quantum tunnelling across degeneracy surfaces. This shows that the degeneracy surfaces are boundaries separating distinct physical systems, not only classically, but in the quantum realm as well. The relevance of this feature for gravitation and Chern-Simons theories in higher dimensions cannot be overstated.

  11. Frontotemporal Lobar Degeneration

    PubMed Central

    Rabinovici, Gil D.; Miller, Bruce L.

    2010-01-01

    Frontotemporal lobar degeneration (FTLD) is a clinically and pathologically heterogeneous syndrome, characterized by progressive decline in behaviour or language associated with degeneration of the frontal and anterior temporal lobes. While the seminal cases were described at the turn of the 20th century, FTLD has only recently been appreciated as a leading cause of dementia, particularly in patients presenting before the age of 65 years. Three distinct clinical variants of FTLD have been described: (i) behavioural-variant frontotemporal dementia, characterized by changes in behaviour and personality in association with frontal-predominant cortical degeneration; (ii) semantic dementia, a syndrome of progressive loss of knowledge about words and objects associated with anterior temporal neuronal loss; and (iii) progressive nonfluent aphasia, characterized by effortful language output, loss of grammar and motor speech deficits in the setting of left perisylvian cortical atrophy. The majority of pathologies associated with FTLD clinical syndromes include either tau-positive (FTLD-TAU) or TAR DNA-binding protein 43 (TDP-43)-positive (FTLD-TDP) inclusion bodies. FTLD overlaps clinically and pathologically with the atypical parkinsonian disorders corticobasal degeneration and progressive supranuclear palsy, and with amyotrophic lateral sclerosis. The majority of familial FTLD cases are caused by mutations in the genes encoding microtubule-associated protein tau (leading to FTLD-TAU) or progranulin (leading to FTLD-TDP). The clinical and pathologic heterogeneity of FTLD poses a significant diagnostic challenge, and in vivo prediction of underlying histopathology can be significantly improved by supplementing the clinical evaluation with genetic tests and emerging biological markers. Current pharmacotherapy for FTLD focuses on manipulating serotonergic or dopaminergic neurotransmitter systems to ameliorate behavioural or motor symptoms. However, recent advances in FTLD

  12. Cataracts and macular degeneration.

    PubMed

    Shoch, D

    1979-09-01

    The intraocular lens restores general vision and some degree of independence and mobility to patients with dense cataracts and macular degeneration. The patient, however, must be repeatedly warned that fine central vision, particularly reading, will not be possible after the surgery. An aphakic spectacle leaves such patients a narrow band of vision when superimposed over the macular lesion, and contact lenses are too small for the patient to manage insertion without help.

  13. PTF 11kx: a type Ia supernova with a symbiotic nova progenitor.

    PubMed

    Dilday, B; Howell, D A; Cenko, S B; Silverman, J M; Nugent, P E; Sullivan, M; Ben-Ami, S; Bildsten, L; Bolte, M; Endl, M; Filippenko, A V; Gnat, O; Horesh, A; Hsiao, E; Kasliwal, M M; Kirkman, D; Maguire, K; Marcy, G W; Moore, K; Pan, Y; Parrent, J T; Podsiadlowski, P; Quimby, R M; Sternberg, A; Suzuki, N; Tytler, D R; Xu, D; Bloom, J S; Gal-Yam, A; Hook, I M; Kulkarni, S R; Law, N M; Ofek, E O; Polishook, D; Poznanski, D

    2012-08-24

    There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumstellar material are detected, and the SN ejecta are seen to interact with circumstellar material starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi.

  14. CCD Photometry, Roche Modeling and Evolutionary History of the WUMa-type Eclipsing Binary TYC01664-0110-1

    NASA Astrophysics Data System (ADS)

    Alton, K. B.; Stępień, K.

    2016-09-01

    TYC 01664-0110-1 (ASAS J212915+1604.9), a W UMa-type variable system (P=0.282962 d), was first detected over 17 years ago by the ROTSE-I telescope. Photometric data (B, V and Ic) collected at UnderOak Observatory (UO) resulted in five new times-of-minima for this variable star which were used to establish a revised linear ephemeris. No published radial velocity (RV) data are available for this system. However, since this W UMa binary undergoes a total eclipse, Roche modeling based on the Wilson-Devinney (W-D) code yielded a well-constrained photometric value for M2/M1 (q=0.356±0.001). There is a suggestion from ROTSE-I (1999) and ASAS survey data (2003, 2005, and 2008) that the secondary maximum is more variable than the primary one probably due to the so-called O'Connell effect. However, peak asymmetry in light curves (LC) from 2015 was barely evident during quadrature. Therefore, W-D model fits of these most recent data did not yield any substantive improvement with the addition of spot(s). Using the evolutionary model of cool close binaries we searched for a possible progenitor of TYC 01664-0110-1. The best fit is obtained if the initial binary has an orbital period between 3.3-3.8 d and component masses between 1.0-1.1 M⊙ and 0.30-0.35 M⊙. The model progenitor needs about 10 Gyr to attain the presently observed parameters of the variable. Its period slowly increases and the mass ratio decreases. According to the model predictions TYC 01664-0110-1 will go through the common envelope (CE) phase in the future, followed by merging of both components or formation of a double degenerate. Due to its apparent brightness (mV,max≍10.9 mag) and unique properties, the star is an excellent target for spectroscopic investigation of any possible deviations from a simple static model of a contact binary.

  15. The direct identification of core-collapse supernova progenitors.

    PubMed

    Van Dyk, Schuyler D

    2017-10-28

    To place core-collapse supernovae (SNe) in context with the evolution of massive stars, it is necessary to determine their stellar origins. I describe the direct identification of SN progenitors in existing pre-explosion images, particularly those obtained through serendipitous imaging of nearby galaxies by the Hubble Space Telescope I comment on specific cases representing the various core-collapse SN types. Establishing the astrometric coincidence of a SN with its putative progenitor is relatively straightforward. One merely needs a comparably high-resolution image of the SN itself and its stellar environment to perform this matching. The interpretation of these results, though, is far more complicated and fraught with larger uncertainties, including assumptions of the distance to and the extinction of the SN, as well as the metallicity of the SN environment. Furthermore, existing theoretical stellar evolutionary tracks exhibit significant variations one from the next. Nonetheless, it appears fairly certain that Type II-P (plateau) SNe arise from massive stars in the red supergiant phase. Many of the known cases are associated with subluminous Type II-P events. The progenitors of Type II-L (linear) SNe are less established. Among the stripped-envelope SNe, there are now a number of examples of cool, but not red, supergiants (presumably in binaries) as Type IIb progenitors. We appear now finally to have an identified progenitor of a Type Ib SN, but no known example yet for a Type Ic. The connection has been made between some Type IIn SNe and progenitor stars in a luminous blue variable phase, but that link is still thin, based on direct identifications. Finally, I also describe the need to revisit the SN site, long after the SN has faded, to confirm the progenitor identification through the star's disappearance and potentially to detect a putative binary companion that may have survived the explosion.This article is part of the themed issue 'Bridging the gap: from

  16. Probing post-explosion evolution of supernovae in the Type Ia single degenerate channel

    NASA Astrophysics Data System (ADS)

    Boehner, Philip

    2014-09-01

    Two leading theories exist to explain the progenitor models of Type Ia supernovae. In the single-degenerate scenario (SDS), a carbon-oxygen white dwarf slowly accretes matter from a non-degenerate binary companion that is exceeding its roche lobe until the mass of the white dwarf reaches the Chandrasekhar limit (M ˜ 1.4 solar masses). At this point a deflagration wave begins in the core, eventually turning into a detonation wave that reaches the surface and annihilates the white dwarf, causing the supernova event. In the double-degenerate scenario (DDS), two white dwarfs lose angular momentum due to the emission of gravitational waves and merge together, exceeding the Chandrasekhar limit and causing a supernova. In this study, we explore the observational evidence indicative of only the single-degenerate scenario by looking at the long-term effects caused by the interaction between the supernova debris and the non-degenerate companion. We model the interaction in two dimensions using the PROTEUS code that utilizes adaptive mesh refinement. Our simulations involve one supernova type interacting with one of seven different companion types -- four main-sequence-like stars (MS), one subgiant (SG), and two red giants (SY). During the interaction, a region mostly devoid of material is formed behind the companion. We find that the structure of this `hole' formed behind the companion is similar across each of these models, with an angular size extending 30°-45°. The structure of the supernova remnant is affected out to 90°-100° as a result of the interaction with the companion. Each companion type has a characteristic percentage of mass stripped from it by the end of the simulation with MS stars losing about ˜20% of their mass, the SG star losing about ˜10%, and the SY stars losing about ˜40%, where in the SY case only the denerate core and a small portion of the stellar envelope is left over. We find that the interaction contaminates the companion with trace

  17. ON THE PROGENITORS OF SUPER-CHANDRASEKHAR MASS TYPE Ia SUPERNOVAE

    SciTech Connect

    Chen Wencong; Li Xiangdong E-mail: lixd@nju.edu.cn

    2009-09-01

    Type Ia supernovae (SNe Ia) can be used as the standard candle to determine the cosmological distances because they are thought to have a uniform fuel amount. Recent observations of several overluminous SNe Ia suggest that the white dwarf masses at supernova explosion may significantly exceed the canonical Chandrasekhar mass limit. These massive white dwarfs may be supported by rapid differential rotation. Based on a single-degenerate model and the assumption that the white dwarf would differentially rotate when the accretion rate M-dot>3 x 10{sup -7} M-odot yr{sup -1}, we have calculated the evolutions of close binaries consisting of a white dwarf and a normal companion. To include the effect of rotation, we introduce an effective mass M{sub eff} for white dwarfs. For the donor stars with two different metallicities Z = 0.02 and 0.001, we present the distribution of the initial donor star masses and the orbital periods of the progenitors of super-Chandrasekhar mass SNe Ia. The calculation results indicate that, for an initial massive white dwarf of 1.2 M{sub sun}, a considerable fraction of SNe Ia may result from super-Chandrasekhar mass white dwarfs, but very massive (> 1.7 M{sub sun}) white dwarfs are difficult to form, and none of them could be found in old populations. However, super-Chandrasekhar mass SNe Ia are very rare when the initial mass of white dwarfs is 1.0 M{sub sun}. Additionally, SNe Ia in low metallicity environment are more likely to be homogeneous.

  18. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES

    SciTech Connect

    Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen

    2015-09-01

    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such as supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.

  19. TIME-SERIES SPECTROSCOPY OF TWO CANDIDATE DOUBLE DEGENERATES IN THE OPEN CLUSTER NGC 6633

    SciTech Connect

    Williams, Kurtis A.; Chakraborty, Subho; Serna-Grey, Donald; Gianninas, A.; Canton, Paul A.

    2015-12-15

    SNe Ia are heavily used tools in precision cosmology, yet we still are not certain what the progenitor systems are. General plausibility arguments suggest there is potential for identifying double degenerate SN Ia progenitors in intermediate-age open star clusters. We present time-resolved high-resolution spectroscopy of two white dwarfs (WDs) in the field of the open cluster NGC 6633 that had previously been identified as candidate double degenerates in the cluster. However, three hours of continuous observations of each candidate failed to detect any significant radial velocity variations at the ≳10 km s{sup −1} level, making it highly unlikely that either WD is a double degenerate that will merge within a Hubble Time. The WD LAWDS NGC 6633 4 has a radial velocity inconsistent with cluster membership at the 2.5σ level, while the radial velocity of LAWDS NGC 6633 7 is consistent with cluster membership. We conservatively conclude that LAWDS 7 is a viable massive double degenerate candidate, though unlikely to be a Type Ia progenitor. Astrometric data from GAIA will likely be needed to determine if either WD is truly a cluster member.

  20. Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Georgy, Cyril; Ekström, Sylvia

    2013-10-01

    Core-collapse supernova (SN) explosions mark the end of the tumultuous life of massive stars. Determining the nature of their progenitors is a crucial step towards understanding the properties of SNe. Until recently, no progenitor has been directly detected for SN of type Ibc, which are believed to come from massive stars that lose their hydrogen envelope through stellar winds and from binary systems where the companion has stripped the H envelope from the primary. Here we analyze recently reported observations of iPTF13bvn, which could possibly be the first detection of a SN Ib progenitor based on pre-explosion images. Very interestingly, the recently published Geneva models of single stars can reproduce the observed photometry of the progenitor candidate and its mass-loss rate, confirming a recently proposed scenario. We find that a single WR star with initial mass in the range 31-35 M⊙ fits the observed photometry of the progenitor of iPTF13bvn. The progenitor likely has a luminosity of log (L⋆/L⊙) ~ 5.55, surface temperature ~45 000 K, and mass of ~10.9 M⊙ at the time of explosion. Our non-rotating 32 M⊙ model overestimates the derived radius of the progenitor, although this could likely be reconciled with a fine-tuned model of a more massive (between 40 and 50 M⊙), hotter, and luminous progenitor. Our models indicate a very uncertain ejecta mass of ~8 M⊙, which is higher than the average of the SN Ib ejecta mass that is derived from the lightcurve (2-4 M⊙). This possibly high ejecta mass could produce detectable effects in the iPTF13bvn lightcurve and spectrum. If the candidate is indeed confirmed to be the progenitor, our results suggest that stars with relatively high initial masses (> 30 M⊙) can produce visible SN explosions at their deaths and do not collapse directly to a black hole.

  1. Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas C.

    2007-12-01

    Despite intense scrutiny, the progenitor system(s) that gives rise to Type Ia supernovae remains unknown. The favored theory invokes a carbon-oxygen white dwarf accreting hydrogen-rich material from a close companion until a thermonuclear runaway ensues that incinerates the white dwarf. However, simulations resulting from this single-degenerate, binary channel demand the presence of low-velocity Hα emission in spectra taken during the late nebular phase, since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, but has only rarely been sought. Here we present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multiepoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright). No Hα emission is detected in the spectra of either object. An upper limit of 0.01 Msolar of solar abundance material in the ejecta is established from the models of Mattila et al., which, when coupled with the mass-stripping simulations of Marietta et al. and Meng et al., effectively rules out progenitor systems for these supernovae with secondaries close enough to the white dwarf to be experiencing Roche lobe overflow at the time of explosion. Alternative explanations for the absence of Hα emission, along with suggestions for future investigations necessary to confidently exclude them as possibilities, are critically evaluated. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Additional observations were obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a

  2. Two Ultracool Degenerate Companions

    NASA Astrophysics Data System (ADS)

    Farihi, J.

    2005-07-01

    In the course of an extensive survey for low mass stellar and substellar companions to nearby white dwarfs, two extrememly cool degenerate objects have been discovered. GD 392B is one of only a few known white dwarfs with Teff⪉4000 K and exhibits collision induced absorption in the near infrared tep{far04}. GD 1400B is the second known L dwarf companion to a white dwarf and a possible brown dwarf (Farihi & Christopher 2004). Interested readers should consult the references for a complete description of these two cool objects.

  3. Postnatal onset of retinal degeneration by loss of embryonic Ezh2 repression of Six1

    PubMed Central

    Yan, Naihong; Cheng, Lin; Cho, Kinsang; Malik, Muhammad Taimur A.; Xiao, Lirong; Guo, Chenying; Yu, Honghua; Zhu, Ruilin; Rao, Rajesh C.; Chen, Dong Feng

    2016-01-01

    Some adult-onset disorders may be linked to dysregulated embryonic development, yet the mechanisms underlying this association remain poorly understood. Congenital retinal degenerative diseases are blinding disorders characterized by postnatal degeneration of photoreceptors, and affect nearly 2 million individuals worldwide, but ∼50% do not have a known mutation, implicating contributions of epigenetic factors. We found that embryonic deletion of the histone methyltransferase (HMT) Ezh2 from all retinal progenitors resulted in progressive photoreceptor degeneration throughout postnatal life, via derepression of fetal expression of Six1 and its targets. Forced expression of Six1 in the postnatal retina was sufficient to induce photoreceptor degeneration. Ezh2, although enriched in the embryonic retina, was not present in the mature retina; these data reveal an Ezh2-mediated feed-forward pathway that is required for maintaining photoreceptor homeostasis in the adult and suggest novel targets for retinal degeneration therapy. PMID:27677711

  4. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect

    Fuller, Jim; Lai Dong

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

  5. AGE-RELATED MACULAR DEGENERATION.

    PubMed

    Gheorghe, Andreea; Mahdi, Labib; Musat, Ovidiu

    2015-01-01

    The objective of our study was to review the current knowledge on Age- Related Macular Degeneration, including pathogenesis, ocular manifestations, diagnosis and ancillary testing. Relevant publications on Age-Related Macular Degeneration that were published until 2014. Age-related macular degeneration (AMD) is a common macular disease affecting elderly people in the Western world. It is characterized by the appearance of drusen in the macula, accompanied by choroidal neovascularization (CNV) or geographic atrophy.

  6. Young Remnants of Type Ia Supernovae and Their Progenitors: A Study of SNR G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Childs, Francesca; Soderberg, Alicia

    2016-03-01

    SNe Ia, with their remarkably homogeneous light curves and spectra, have been used as standardizable candles to measure the accelerating expansion of the universe. Yet, their progenitors remain elusive. Common explanations invoke a degenerate star (white dwarf) that explodes upon almost reaching the Chandrasekhar limit, by either steadily accreting mass from a companion star or violently merging with another degenerate star. We show that circumstellar interaction in young Galactic supernova remnants can be used to distinguish between these single and double degenerate (DD) progenitor scenarios. Here we propose a new diagnostic, the surface brightness index, which can be computed from theory and compared with Chandra and Very Large Array (VLA) observations. We use this method to demonstrate that a DD progenitor can explain the decades-long flux rise and size increase of the youngest known galactic supernova remnant (SNR), G1.9+0.3. We disfavor a single degenerate scenario for SNR G1.9+0.3. We attribute the observed properties to the interaction between a steep ejecta profile and a constant density environment. We suggest using the upgraded VLA, ASKAP, and MeerKAT to detect circumstellar interaction in the remnants of historical SNe Ia in the Local Group of galaxies. This may settle the long-standing debate over their progenitors.

  7. YOUNG REMNANTS OF TYPE Ia SUPERNOVAE AND THEIR PROGENITORS: A STUDY OF SNR G1.9+0.3

    SciTech Connect

    Chakraborti, Sayan; Childs, Francesca; Soderberg, Alicia

    2016-03-01

    SNe Ia, with their remarkably homogeneous light curves and spectra, have been used as standardizable candles to measure the accelerating expansion of the universe. Yet, their progenitors remain elusive. Common explanations invoke a degenerate star (white dwarf) that explodes upon almost reaching the Chandrasekhar limit, by either steadily accreting mass from a companion star or violently merging with another degenerate star. We show that circumstellar interaction in young Galactic supernova remnants can be used to distinguish between these single and double degenerate (DD) progenitor scenarios. Here we propose a new diagnostic, the surface brightness index, which can be computed from theory and compared with Chandra and Very Large Array (VLA) observations. We use this method to demonstrate that a DD progenitor can explain the decades-long flux rise and size increase of the youngest known galactic supernova remnant (SNR), G1.9+0.3. We disfavor a single degenerate scenario for SNR G1.9+0.3. We attribute the observed properties to the interaction between a steep ejecta profile and a constant density environment. We suggest using the upgraded VLA, ASKAP, and MeerKAT to detect circumstellar interaction in the remnants of historical SNe Ia in the Local Group of galaxies. This may settle the long-standing debate over their progenitors.

  8. TWIN BINARIES: STUDIES OF STABILITY, MASS TRANSFER, AND COALESCENCE

    SciTech Connect

    Lombardi, J. C.; Holtzman, W.; Gearity, K.; Dooley, K. L.; Kalogera, V.; Rasio, F. A.

    2011-08-20

    Motivated by suggestions that binaries with almost equal-mass components ('twins') play an important role in the formation of double neutron stars and may be rather abundant among binaries, we study the stability of synchronized close and contact binaries with identical components in circular orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries composed of convective main-sequence stars, subgiants, or giants with low-mass cores (M{sub c} {approx}< 0.15M, where M is the mass of a component), a secular instability is reached during the contact phase, accompanied by a dynamical mass transfer instability at the same or at a slightly smaller orbital separation. Binaries that come inside this instability limit transfer mass gradually from one component to the other and then coalesce quickly as mass is lost through the outer Lagrangian points. For twin giant binaries with moderate to massive cores (M{sub c} {approx}> 0.15M), we find that stable contact configurations exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary. In addition to the formation of binary neutron stars, we also discuss the implications of our results for the production of planetary nebulae with double degenerate central binaries.

  9. Apoptosis in human retinal degenerations.

    PubMed

    Xu, G Z; Li, W W; Tso, M O

    1996-01-01

    This paper examined the role of apoptosis in human retinal degenerations including pathologic myopia, age-related macular degeneration, serous retinal detachment, retinal lattice, and paving stone degenerations. Thirty-seven enucleated human eyes with 1 of the above-mentioned retinal degenerations were studied by histopathology and by TdT-mediated biotin-dUTP nicked-end labelling (TUNEL) technique. Tunnel labelling characteristic DNA fragmentation of apoptosis was observed in photoreceptor cells in 2 of the 4 eyes with pathologic myopia and in 4 of 16 eyes with age-related macular degeneration, 2 of which were exudative and 2 of which were atrophic. However, only a few scattered photoreceptor cells were labelled in 4 of 8 eyes with serous retinal detachment secondary to malignant melanoma of the choroid. Moreover, none of the photoreceptors cells in the 4 eyes with retinal lattice degeneration and 6 eyes with retinal paving stone degeneration were labelled. Apoptosis is 1 of the important pathways of photoreceptor cell degeneration in pathologic myopia and age-related macular degeneration.

  10. The first mass and angular momentum loss measurements for a CV-like binary

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy

    2014-10-01

    The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a "magnetic switch" found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22

  11. Fundamental parameters of four massive eclipsing binaries in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Koumpia, E.; Bonanos, A. Z.

    2012-11-01

    Context. Only a small number of high mass stars (>30 M⊙) have fundamental parameters (i.e. masses and radii) measured with high enough accuracy from eclipsing binaries to constrain formation and evolutionary models of massive stars. Aims: This work aims to increase this limited sample, by studying the four massive eclipsing binary candidates discovered by Bonanos in the young massive cluster Westerlund 1. Methods: We present new follow-up echelle spectroscopy of these binaries and models of their light and radial velocity curves. Results: We obtain fundamental parameters for the eight component stars, finding masses that span a range of 10-40 M⊙, and contributing accurate fundamental parameters for one additional very massive star, the 33 M⊙ component of W13. WR77o is found to have a ~40 M⊙ companion, which provides a second dynamical constraint on the mass of the progenitor of the magnetar known in the cluster. We also use W13 to estimate the first, direct, eclipsing binary distance to Westerlund 1 and therefore the magnetar and find it to be at 3.7 ± 0.6 kpc. Conclusions: Our results confirm previous evidence for a high mass for the progenitor of the magnetar. In addition, the availability of eclipsing binaries with accurate parameters opens the way for direct, independent, high precision eclipsing binary distance measurements to Westerlund 1.

  12. Circulating Progenitor Cells and Scleroderma

    PubMed Central

    2010-01-01

    Scleroderma (systemic sclerosis) is a disease of unknown origins that involves tissue ischemia and fibrosis in the skin and internal organs such as the lungs. The tissue ischemia is due to a lack of functional blood vessels and an inability to form new blood vessels. Bone marrow–derived circulating endothelial progenitor cells play a key role in blood vessel repair and neovascularization. Scleroderma patients appear to have defects in the number and function of circulating endothelial progenitor cells. Scleroderma patients also develop fibrotic lesions, possibly as the result of tissue ischemia. Fibroblast-like cells called fibrocytes that differentiate from a different pool of bone marrow–derived circulating progenitor cells seem to be involved in this process. Manipulating the production, function, and differentiation of circulating progenitor cells represents an exciting new possibility for treating scleroderma. PMID:18638425

  13. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    PubMed

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-04

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  14. Neutron-star–black-hole binaries produced by binary-driven hypernovae

    DOE PAGES

    Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; ...

    2015-12-04

    Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso ≳1052 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compactmore » binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.« less

  15. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae

    NASA Astrophysics Data System (ADS)

    Fryer, Chris L.; Oliveira, F. G.; Rueda, J. A.; Ruffini, R.

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso≳1052 erg ), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  16. Neutron-star–black-hole binaries produced by binary-driven hypernovae

    SciTech Connect

    Fryer, Chris L.; Oliveira, F. G.; Rueda, Jorge A.; Ruffini, Remo

    2015-12-04

    Here, binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (Eiso ≳1052 erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed “ultrastripped” binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  17. Fundamental Parameters of 4 Massive Eclipsing Binaries in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Z.; Koumpia, E.

    2011-05-01

    We present fundamental parameters of 4 massive eclipsing binaries in the young massive cluster Westerlund 1. The goal is to measure accurate masses and radii of their component stars, which provide much needed constraints for evolutionary models of massive stars. Accurate parameters can further be used to determine a dynamical lower limit for the magnetar progenitor and to obtain an independent distance to the cluster. Our results confirm and extend the evidence for a high mass for the progenitor of the magnetar. The authors acknowledge research and travel support from the European Commission Framework Program Seven under the Marie Curie International Reintegration Grant PIRG04-GA-2008-239335.

  18. Evolutionary history of four binary blue stragglers from the globular clusters ω Cen, M 55, 47 Tuc, and NGC 6752

    NASA Astrophysics Data System (ADS)

    Stȩpień, K.; Pamyatnykh, A. A.; Rozyczka, M.

    2017-01-01

    Context. Origin and evolution of blue stragglers in globular clusters is still a matter of debate. Aims: The aim of the present investigation is to reproduce the evolutionary history of four binary blue stragglers in four different clusters, for which precise values of global parameters are known. Methods: Using the model for cool close binary evolution that we developed, progenitors of all investigated binaries were found and their parameters evolved into the presently observed values. Results: The results show that the progenitors of the binary blue stragglers are cool close binaries with period of a few days, which transform into stragglers by rejuvenation of the initially less massive component as a result of mass transfer from its more massive companion overflowing the inner critical Roche surface. The parameters of V209 from ω Cen indicate that the binary is substantially enriched in helium. This is an independent and strong evidence of the existence of the helium rich subpopulation in this cluster.

  19. The status of general relativistic simulations of compact binary mergers as engines of short gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios

    2017-05-01

    Black hole - neutron star (BHNS) and neutron star - neutron star (NSNS) binaries are perhaps the most popular progenitors for short-hard gamma ray bursts. After about two decades of numerical relativity simulations of binary compact objects we are beginning to understand the necessary ingredients for jets to emerge from these systems following merger. We report on the latest development of this field summarizing the results from state-of-the-art numerical relativity (magnetohydrodynamic) simulations of compact binary mergers as progenitors of short-hard gamma-ray bursts.

  20. Human Retinal Progenitor Cell Transplantation Preserves Vision*

    PubMed Central

    Luo, Jing; Baranov, Petr; Patel, Sherrina; Ouyang, Hong; Quach, John; Wu, Frances; Qiu, Austin; Luo, Hongrong; Hicks, Caroline; Zeng, Jing; Zhu, Jing; Lu, Jessica; Sfeir, Nicole; Wen, Cindy; Zhang, Meixia; Reade, Victoria; Patel, Sara; Sinden, John; Sun, Xiaodong; Shaw, Peter; Young, Michael; Zhang, Kang

    2014-01-01

    Cell transplantation is a potential therapeutic strategy for retinal degenerative diseases involving the loss of photoreceptors. However, it faces challenges to clinical translation due to safety concerns and a limited supply of cells. Human retinal progenitor cells (hRPCs) from fetal neural retina are expandable in vitro and maintain an undifferentiated state. This study aimed to investigate the therapeutic potential of hRPCs transplanted into a Royal College of Surgeons (RCS) rat model of retinal degeneration. At 12 weeks, optokinetic response showed that hRPC-grafted eyes had significantly superior visual acuity compared with vehicle-treated eyes. Histological evaluation of outer nuclear layer (ONL) characteristics such as ONL thickness, spread distance, and cell count demonstrated a significantly greater preservation of the ONL in hRPC-treated eyes compared with both vehicle-treated and control eyes. The transplanted hRPCs arrested visual decline over time in the RCS rat and rescued retinal morphology, demonstrating their potential as a therapy for retinal diseases. We suggest that the preservation of visual acuity was likely achieved through host photoreceptor rescue. We found that hRPC transplantation into the subretinal space of RCS rats was well tolerated, with no adverse effects such as tumor formation noted at 12 weeks after treatment. PMID:24407289

  1. The effects of host galaxy properties on merging compact binaries detectable by LIGO

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, R.; Bellovary, J. M.; Brooks, A.; Shen, S.; Governato, F.; Christensen, C. R.

    2017-01-01

    Cosmological simulations of galaxy formation can produce present-day galaxies with a large range of assembly and star formation histories. A detailed study of the metallicity evolution and star formation history of such simulations can assist in predicting Laser Interferometer Gravitational-Wave Observatory (LIGO)-detectable compact object binary mergers. Recent simulations of compact binary evolution suggest that the compact object merger rate depends sensitively on the progenitor's metallicity. Rare low-metallicity star formation during galaxy assembly can produce more detected compact binaries than typical star formation. Using detailed simulations of galaxy and chemical evolution, we determine how sensitively the compact binary populations of galaxies with a similar present-day appearance depend on the details of their assembly. We also demonstrate by concrete example the extent to which dwarf galaxies overabundantly produce compact binary mergers, particularly binary black holes, relative to more massive galaxies. We discuss the implications for transient multimessenger astronomy with compact binary sources.

  2. Genetics Home Reference: Stargardt macular degeneration

    MedlinePlus

    ... Genetics Home Health Conditions Stargardt macular degeneration Stargardt macular degeneration Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Stargardt macular degeneration is a genetic eye disorder that causes progressive ...

  3. Mesenchymal progenitor cells for the osteogenic lineage.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  4. SINGLE-DEGENERATE TYPE Ia SUPERNOVAE WITHOUT HYDROGEN CONTAMINATION

    SciTech Connect

    Justham, Stephen

    2011-04-01

    The lack of hydrogen in spectra of type Ia supernovae (SNe Ia) is often seen as troublesome for single-degenerate (SD) progenitor models. We argue that, since continued accretion of angular momentum can prevent explosion of the white dwarf, it may be natural for the donor stars in SD progenitors of SNe Ia to exhaust their envelopes and shrink rapidly before the explosion. This outcome seems most likely for SD SN Ia progenitors where mass transfer begins from a giant donor star and might extend to other SD systems. Not only is the amount of hydrogen left in such a system below the current detection limit, but the donor star is typically orders of magnitude smaller than its Roche lobe by the point when an SD SN Ia occurs, in which case attempts to observe collisions between SN shocks and giant donor stars seem unlikely to succeed. We consider the constraints on this model from the circumstellar structures seen in spectra of SN 2006X and suggest a novel explanation for the origin of this material.

  5. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    that they somehow need to acquire mass if they are to explode as SN Ia. Currently there are two major scenarios for this mass acquisition. In the favoured single degenerate scenario the white dwarf accretes matter from a companion star which is much younger in its evolutionary state. The less favoured double degenerate scenario sees the merger of two white dwarfs (with a total combined mass of more than 1.38 Msun). This thesis has tried to answer the question about the mass acquisition in two ways. First the single degenerate scenario predicts a surviving companion post-explosion. We undertook an observational campaign to find this companion in two ancient supernovae (SN 1572 and SN 1006). Secondly, we have extended an existing code to extract the elemental and energy yields of SNe Ia spectra by automating spectra fitting to specific SNe Ia. This type of analysis, in turn, help diagnose to which of the two major progenitor scenarios is right.

  6. The binary white dwarf LHS 3236

    SciTech Connect

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L.; Dupuy, Trent J.; Liu, Michael C.; Hartkopf, William I.; Ireland, Michael J.; Leggett, S. K.

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  7. Binary population synthesis and SNIa rates

    NASA Astrophysics Data System (ADS)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.

    2013-01-01

    Despite the significance of type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. We investigate the potential contribution to the SNeIa rate from the most common progenitor channels using the binary population synthesis (BPS) code SeBa. Using SeBa, we aim constrain binary processes such as the common envelope phase and the efficiency of mass retention of white dwarf accretion. We find that the simulated rates are not sufficient to explain the observed rates. Further, we find that the mass retention efficiency of white dwarf accretion significantly influences the rates, but does not explain all the differences between simulated rates from different BPS codes.

  8. Engineering Retina from Human Retinal Progenitors (Cell Lines)

    PubMed Central

    Cao, Yang

    2009-01-01

    Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell–cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr2e3, expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription–polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell

  9. Efficacy and Safety of Human Retinal Progenitor Cells

    PubMed Central

    Semo, Ma'ayan; Haamedi, Nasrin; Stevanato, Lara; Carter, David; Brooke, Gary; Young, Michael; Coffey, Peter; Sinden, John; Patel, Sara; Vugler, Anthony

    2016-01-01

    Purpose We assessed the long-term efficacy and safety of human retinal progenitor cells (hRPC) using established rodent models. Methods Efficacy of hRPC was tested initially in Royal College of Surgeons (RCS) dystrophic rats immunosuppressed with cyclosporine/dexamethasone. Due to adverse effects of dexamethasone, this drug was omitted from a subsequent dose-ranging study, where different hRPC doses were tested for their ability to preserve visual function (measured by optokinetic head tracking) and retinal structure in RCS rats at 3 to 6 months after grafting. Safety of hRPC was assessed by subretinal transplantation into wild type (WT) rats and NIH-III nude mice, with analysis at 3 to 6 and 9 months after grafting, respectively. Results The optimal dose of hRPC for preserving visual function/retinal structure in dystrophic rats was 50,000 to 100,000 cells. Human retinal progenitor cells integrated/survived in dystrophic and WT rat retina up to 6 months after grafting and expressed nestin, vimentin, GFAP, and βIII tubulin. Vision and retinal structure remained normal in WT rats injected with hRPC and there was no evidence of tumors. A comparison between dexamethasone-treated and untreated dystrophic rats at 3 months after grafting revealed an unexpected reduction in the baseline visual acuity of dexamethasone-treated animals. Conclusions Human retinal progenitor cells appear safe and efficacious in the preclinical models used here. Translational Relevance Human retinal progenitor cells could be deployed during early stages of retinal degeneration or in regions of intact retina, without adverse effects on visual function. The ability of dexamethasone to reduce baseline visual acuity in RCS dystrophic rats has important implications for the interpretation of preclinical and clinical cell transplant studies. PMID:27486556

  10. Imaging frontotemporal lobar degeneration.

    PubMed

    Diehl-Schmid, Janine; Onur, Oezguer A; Kuhn, Jens; Gruppe, Traugott; Drzezga, Alexander

    2014-10-01

    The term frontotemporal lobar degeneration (FTLD) refers to a group of neurodegenerative disorders that target the frontal and temporal lobes. It accounts for approximately 10 % of pathologically confirmed dementias but has been demonstrated to be as prevalent as Alzheimer's disease in patients below the age of 65. The 3 major clinical syndromes associated with FTLD include behavioral variant frontotemporal dementia, semantic and nonfluent variants of primary progressive aphasia. The more recently introduced term logopenic variant appears to represent an atypical form of Alzheimer's disease in the majority of cases. The neuropathology underlying these clinical syndromes is very heterogeneous and does not correlate well with the clinical phenotype. This causes great difficulties in early and reliable diagnosis and treatment of FTLD. However, significant advances have been made in recent years via the application of magnetic resonance imaging and positron emission tomography imaging methods as biomarkers. The current review aims to provide a synopsis on the value of magnetic resonance imaging-based and molecular imaging procedures in FTLD.

  11. [Age related macular degeneration].

    PubMed

    Sayen, Alexandra; Hubert, Isabelle; Berrod, Jean-Paul

    2011-02-01

    Age-related macular degeneration (ARMD) is a multifactorial disease caused by a combination of genetic and environmental factors. It is the first cause of blindness in patients over 50 in the western world. The disease has been traditionally classified into early and late stages with dry (atrophic) and wet (neovascular) forms: neovascular form is characterized by new blood vessels development under the macula (choroidal neovascularisation) which lead to a rapid decline of vision associated with metamorphopsia and requiring an urgent ophtalmological examination. Optical coherence tomography is now one of the most important part of the examination for diagnosis and treatment. Patient with age related maculopathy should consider taking a dietary supplement such that used in AREDS. The treatment of the wet ARMD has largely beneficied since year 2006 of anti-VEGF (vascular endothelial growth factor) molecules such as ranibizumab or bevacizumab given as repeated intravitreal injections. A systematic follow up each 4 to 8 week in required for several years. There is no effective treatment at the moment for dry AMD. For patients with binocular visual acuity under 60/200 rehabilitation includes low vision specialist, vision aids and psychological support.

  12. No hot and luminous progenitor for Tycho's supernova

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Ghavamian, P.; Badenes, C.; Gilfanov, M.

    2017-09-01

    Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of 10-100 pc for 100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant ( 3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10-8 M⊙ yr-1 (recurrent novae; M⊙ is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.

  13. Accreting neutron stars, black holes, and degenerate dwarf stars.

    PubMed

    Pines, D

    1980-02-08

    During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.

  14. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries

    NASA Astrophysics Data System (ADS)

    Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.

    2017-02-01

    Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the

  15. Embryonic Heart Progenitors and Cardiogenesis

    PubMed Central

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  16. Testing Common Envelopes on Double White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Nandez, Jose L. A.; Ivanova, Natalia; Lombardi, James C., Jr.

    2015-06-01

    The formation of a double white dwarf binary likely involves a common envelope (CE) event between a red giant and a white dwarf (WD) during the most recent episode of Roche lobe overflow mass transfer. We study the role of recombination energy with hydrodynamic simulations of such stellar interactions. We find that the recombination energy helps to expel the common envelope entirely, while if recombination energy is not taken into account, a significant fraction of the common envelope remains bound. We apply our numerical methods to constrain the progenitor system for WD 1101+364 - a double WD binary that has well-measured mass ratio of q=0.87±0.03 and an orbital period of 0.145 days. Our best-fit progenitor for the pre-common envelope donor is a 1.5 ⊙ red giant.

  17. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors

    PubMed Central

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting

    2015-01-01

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. PMID:25608563

  18. Degenerate Quantum Gases of Strontium

    NASA Astrophysics Data System (ADS)

    Stellmer, Simon; Schreck, Florian; Killian, Thomas C.

    2014-03-01

    Degenerate quantum gases of alkaline-earth-like elements open new opportunities in research areas ranging from molecular physics to the study of strongly correlated systems. These experiments exploit the rich electronic structure of these elements, which is markedly different from the one of other species for which quantum degeneracy has been attained. Specifically, alkaline-earth-like atoms, such as strontium, feature metastable triplet states, narrow intercombination lines, and a nonmagnetic, closed-shell ground state. This review covers the creation of quantum degenerate gases of strontium and the first experiments performed with this new system. It focuses on laser-cooling and evaporation schemes, which enable the creation of Bose-Einstein condensates and degenerate Fermi gases of all strontium isotopes, and shows how they are used for the investigation of optical Feshbach resonances, the study of degenerate gases loaded into an optical lattice, as well as the coherent creation of Sr2 molecules.

  19. Age-Related Macular Degeneration

    MedlinePlus

    ... version of this page please turn Javascript on. Age-related Macular Degeneration About AMD Click for more ... a leading cause of vision loss among people age 60 and older. It causes damage to the ...

  20. Synchronization of magnetic stars in binary systems

    NASA Technical Reports Server (NTRS)

    Lamb, F. K.; Aly, J.-J.; Cook, M. C.; Lamb, D. Q.

    1983-01-01

    Asynchronous rotation of magnetic stars in close binary systems drives substantial field-aligned electrical currents between the magnetic star and its companion. The resulting magnetohydrodynamic torque is able to account for the heretofore unexplained synchronous rotation of the strongly magnetic degenerate dwarf component in systems like AM Her, VV Pup, AN UMa, and EF Eri as well as the magnetic A type component in systems like HD 98088 and 41 Tauri. The electric fields produced by even a small asynchronism are large and may accelerate some electrons to high energies, producing radio emission. The total energy dissipation rate in systems with degenerate dwarf spin periods as short as 1 minute may reach 10 to the 33rd ergs/s. Total luminosities of this order may be a characteristic feature of such systems.

  1. REMNANTS OF BINARY WHITE DWARF MERGERS

    SciTech Connect

    Raskin, Cody; Scannapieco, Evan; Timmes, F. X.; Fryer, Chris; Rockefeller, Gabriel

    2012-02-10

    We carry out a comprehensive smooth particle hydrodynamics simulation survey of double-degenerate white dwarf binary mergers of varying mass combinations in order to establish correspondence between initial conditions and remnant configurations. We find that all but one of our simulation remnants share general properties such as a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize our remnant configurations by the core mass, the rotational velocity of the core, and the half-mass radius of the disk. We also find that some of our simulations with very massive constituent stars exhibit helium detonations on the surface of the primary star before complete disruption of the secondary. However, these helium detonations are insufficiently energetic to ignite carbon, and so do not lead to prompt carbon detonations.

  2. Progress on realistic modeling of black hole-neutron star binary mergers

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2011-04-01

    Black hole-neutron star (BHNS) binary mergers are important gravitational wave sources and (possibly) gamma ray burst progenitors. The current state of the art of BHNS simulations, while an impressive acheivement, is inadequate in a number of ways--most importantly in its treatment of neutron star matter and neutrino emission. We present a status report on the efforts of the Caltech-Cornell-CITA-WSU collaboration to accurately model BHNS binaries with realistic microphysics.

  3. Detecting a Hot Companion to the Progenitor of the Type Ic Supernova 1994I in M51

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler

    2013-10-01

    Core-collapse supernovae {SNe} are the endpoints of the lives of massive stars {with initial mass > 8 solar masses}. We are reasonably confident that the progenitor stars for most hydrogen-rich Type II SNe are red supergiants, based in part on direct identifications with HST. However, the progenitors of the stripped-envelope He-rich Type Ib and He-poor Type Ic SNe have yet to be directly identified. These SNe are thought to arise from either single, high-mass stars in the Wolf-Rayet phase or, alternatively, from lower-mass stars in interacting binary systems. Both models can account for the required extensive envelope stripping. Until a progenitor is identified for these SN types, our best hope of testing these progenitor models is to detect the companion star to the progenitor, if the binary model holds. This star is predicted to be a hot supergiant. Therefore, it is best detected in the ultraviolet. The only SN which is sufficiently nearby and experienced low enough reddening to be a viable target for this detection is the SN Ic 1994I in M51. Furthermore, the SN was imaged by HST when it was still bright, so we can pinpoint its location. We therefore propose, as part of the UV Initiative in Cycle 21, to image the site in F275W and F336W to levels deep enough to significantly detect a putative progenitor companion, if it exists. The proposed observations will provide an important test of the binary progenitor hypothesis.

  4. How may short-duration GRBs form? A review of progenitor theories.

    NASA Astrophysics Data System (ADS)

    Szécsi, D.

    2017-07-01

    The origin of gamma-ray bursts (GRBs) is still a fascinating field of research nowadays. While we have been collecting more and more observationally constrained properties of GRB-physics, new theoretical results on the progenitor evolution (be it stellar or compact object) have also emerged. I review some of the most promising progenitor theories for forming a short-duration GRB. A special emphasis is put on the hypothetical case of forming a short-duration GRB through the double black hole merger scenario — in which case we may expect to observe a gravitational wave emission too. The chemically homogeneous channel for forming a black hole binary is discussed, and the stellar progenitors (so called TWUIN stars) are introduced. The birth place of these short-duration GRBs with a gravitational wave counterpart may be low-metallicity, starforming dwarf galaxies.

  5. iPTF13bvn: First identification of the progenitor of a Type Ib supernova

    NASA Astrophysics Data System (ADS)

    Folatelli, Gaston

    2014-10-01

    iPTF13bvn may provide the first conclusive answer to thelong-standing question of the nature of hydrogen-deficient supernova (SN)progenitors. The detection of a pre-explosion object in archivalimages at the SN site led at first to the proposal of a Wolf-Rayetprogenitor. However, our hydrodynamical modeling of the SN lightcurves indicated a much lower progenitor mass, and we proposed aninteracting binary system as the progenitor. The proposed HSTobservations will allow us to verify the disappearance of thepre-explosion object and, most importantly, they will test the binaryprogenitor scenario through the detection in the UV of a hot companionstar. If confirmed, this will be the first firm identification of theprogenitor of a hydrogen-deficient SN.

  6. THE PROGENITOR OF THE TYPE Ia SUPERNOVA THAT CREATED SNR 0519-69.0 IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Edwards, Zachary I.; Pagnotta, Ashley; Schaefer, Bradley E.

    2012-03-10

    Models for the progenitor systems of Type Ia supernovae can be divided into double-degenerate systems, which contain two white dwarfs, and single-degenerate systems, which contain one white dwarf plus one companion star (either a red giant, a subgiant, or a >1.16 M{sub Sun} main-sequence star). The white dwarf is destroyed in the supernova explosion, but any non-degenerate companion remains intact. We present the results of a search for an ex-companion star in SNR 0519-69.0, located in the Large Magellanic Cloud, based on images taken with the Hubble Space Telescope with a limiting magnitude of V = 26.05. SNR 0519-69.0 is confidently known to be from a Type Ia supernova based on its light echoes and X-ray spectra. The geometric center of the remnant (based on the H{alpha} and X-ray shell) is at 05:19:34.83, -69:02:06.92 (J2000). Accounting for the measurement uncertainties, the orbital velocity, and the kick velocity, any ex-companion star must be within 4.''7 of this position at the 99.73% confidence level. This circle contains 27 main-sequence stars brighter than V = 22.7, any one of which could be the ex-companion star left over from a supersoft source progenitor system. The circle contains no post-main-sequence stars, and this rules out the possibility of all other published single-degenerate progenitor classes (including symbiotic stars, recurrent novae, helium donors, and the spin-up/spin-down models) for this particular supernova. The only remaining possibility is that SNR 0519-69.0 was formed from either a supersoft source or a double-degenerate progenitor system.

  7. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations

    NASA Astrophysics Data System (ADS)

    Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J. J.; Fraser, M.; Poutanen, J.

    2016-03-01

    The progenitors of hydrogen-poor core-collapse supernovae (SNe) of Types Ib, Ic and IIb are believed to have shed their outer hydrogen envelopes either by extremely strong stellar winds, characteristic of classical Wolf-Rayet stars, or by binary interaction with a close companion star. The exact nature of the progenitors and the relative importance of these processes are still open questions. One relatively unexplored method to constrain the progenitors is to search for high-mass X-ray binaries (HMXBs) at SN locations in pre-explosion X-ray observations. In an HMXB, one star has already exploded as a core-collapse SN, producing a neutron star or a stellar mass black hole. It is likely that the second star in the system will also explode as an SN, which should cause a detectable long-term change in the system's X-ray luminosity. In particular, a pre-explosion detection of an HMXB coincident with an SN could be informative about the progenitor's nature. In this paper, we analyse pre-explosion ACIS observations of 18 nearby Type Ib, Ic and IIb SNe from the Chandra X-ray observatory public archive. Two sources that could potentially be associated with the SN are identified in the sample. Additionally we make similar post-explosion measurements for 46 SNe. Although our modelling indicates that progenitor systems with compact binary companions are probably quite rare, studies of this type can in the future provide more stringent constraints as the number of discovered nearby SNe and suitable pre-explosion X-ray data are both increasing.

  8. Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors

    PubMed Central

    Hedlund, Eva; Belnoue, Laure; Theofilopoulos, Spyridon; Salto, Carmen; Bye, Chris; Parish, Clare; Deng, Qiaolin; Kadkhodaei, Banafsheh; Ericson, Johan; Arenas, Ernest; Perlmann, Thomas; Simon, András

    2016-01-01

    Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers remain in the midbrain aqueductal zone beyond the major dopamine neurogenic period. These cells express dopamine receptors, are located in regions heavily innervated by midbrain dopamine fibres and their proliferation can be stimulated by antagonizing dopamine receptors, ultimately leading to increased neurogenesis in vivo. Furthermore, treatment with dopamine receptor antagonists enhances neurogenesis in vitro, both from embryonic midbrain progenitors as well as from embryonic stem cells. Altogether our results indicate a potential for reactivation of resident midbrain cells with dopamine progenitor potential beyond the normal period of dopamine neurogenesis. PMID:27246266

  9. HST Observations of the Planet Hosting Binary GJ 86

    NASA Astrophysics Data System (ADS)

    Farihi, Jay; Bond, H. E.; Dufour, P.; Schaefer, G.; Haghighipour, N.; Holberg, J. B.; Barstow, M. A.; Burleigh, M.

    2013-01-01

    We present new observations of the planet-hosting, visual binary GJ 86 (HR 637) using the Hubble Space Telescope. Ultraviolet and optical imaging with WFC3 confirms the stellar companion is a degenerate star and indicates the binary semimajor axis is larger than previous estimates, with a > 28 AU. Optical STIS spectroscopy of the secondary reveals a helium-rich white dwarf with C2 absorption bands and Teff=8180 K, thus making the binary system rather similar to Procyon. Based on the 10.8 pc distance, the companion has 0.59 Msol and descended from a main-sequence A star of 1.9 Msol with an original orbital separation a > 14 AU. If the giant planet is coplanar with the binary, the mass of GJ 86b is between 4.4 and 4.7 Mjup.

  10. Multi-epoch high-resolution spectroscopy of SN 2011fe. Linking the progenitor to its environment

    NASA Astrophysics Data System (ADS)

    Patat, F.; Cordiner, M. A.; Cox, N. L. J.; Anderson, R. I.; Harutyunyan, A.; Kotak, R.; Palaversa, L.; Stanishev, V.; Tomasella, L.; Benetti, S.; Goobar, A.; Pastorello, A.; Sollerman, J.

    2013-01-01

    Aims: The nearby Type Ia supernova (SN) 2011fe has provided an unprecedented opportunity for deriving some of the properties of its progenitor. This work provides additional and independent information on the circumstellar environment in which the explosion took place. Methods: We obtained high-resolution spectroscopy of SN 2011fe for 12 epochs, from 8 to 86 days after the estimated date of explosion, testing in particular the time evolution of Ca II and Na I. Results: Three main absorption systems are identified from Ca II and Na I, one associated to the Milky Way, one probably arising within a high-velocity cloud, and one most likely associated to the halo of M101. The total (Galactic and host galaxy) reddening, deduced from the integrated equivalent widths (EW) of the Na i lines, is EB - V ≲ 0.05 mag. The host galaxy absorption is dominated by a component detected at the same velocity measured from the 21-cm H i line at the projected SN position (~180 km s-1). During the ~3 months covered by our observations its EW peak-to-peak variation is 15.6 ± 6.5 mÅ. This small and marginally significant change is shown to be compatible with the geometric effects produced by the rapid SN photosphere expansion coupled to the patchy fractal structure of the interstellar medium (ISM). The observed behavior is fully consistent with ISM properties similar to those derived for our own Galaxy, with evidences for structures on scales ≲ 100 AU. Conclusions: SN 2011fe appears to be surrounded by a "clean" environment. The lack of blueshifted, time-variable absorption features is fully consistent with the progenitor being a binary system with a main-sequence, or even another degenerate star. Based on observations collected at the Mercator telescope, Telescopio Nazionale Galileo, Nordic Optical Telescope at Roque de los Muchachos, La Palma (Spain), and at the 1.82 m Copernico telescope on Mt. Ekar (Asiago, Italy).

  11. [Neurophysiology of corticobasal degeneration].

    PubMed

    Tyvaert, L; Cassim, F; Derambure, P; Defebvre, L

    2007-09-01

    Corticobasal degeneration (CBD) is a neurodegenerative disorder of mid- to late-adult life. From a clinical standpoint, CBD is characterized by (i) an insidious onset and a slowly progressing, unilateral, levodopa-unresponsive parkinsonian syndrome with dystonia or myoclonus and (ii) cerebral features such as apraxia, alien limb phenomena and cortical sensory loss. Decisive clinical diagnostic criteria are not available and thus a neuropathological study remains essential for accurate CBD diagnosis. Consequently, additional non-clinical criteria must be identified in order to improve diagnosis while patients are still alive. Electrophysiological exploration can yield functional information on a number of brain structures (both cortical and sub-cortical) involved in CBD. The disorder features a specific cortical (frontoparietal) alteration which could help with differential diagnoses for other extrapyramidal syndromes. Hence, exploration of a patient's myoclonus can provide some specific arguments for CBD. Indeed, myoclonus displays a number of clinical and electromyographical characteristics which are consistent with a cortical origin (a shorter latency of the cortical C response, for example). However, some typical cortical features are missing (giant somesthesic evoked potentials, and cortical potentials preceding myoclonus in jerk-locked back-averaging studies). Some authors explain these abnormalities in terms of a sub-cortical origin for the myoclonus. The frontoparietal alteration in CBD has also been explored in studies of oculomotor movement. Indeed, asymmetric lengthening of the lateral ocular saccade latency argues more in favour of CBD than progressive supranuclear palsy. Moreover, cognitive function is also compromised in the early stages of CBD, although it is sometimes difficult to distinguish between CBD, PSP and frontotemporal dementia. Studying cognitive potentials enables one to confirm subcorticofrontal abnormalities and to dissociate CBD

  12. Possible Progenitor of Special Supernova Type Detected

    NASA Astrophysics Data System (ADS)

    2008-04-01

    Using data from NASA's Chandra X-ray Observatory, scientists have reported the possible detection of a binary star system that was later destroyed in a supernova explosion. The new method they used provides great future promise for finding the detailed origin of these important cosmic events. In an article appearing in the February 14th issue of the journal Nature, Rasmus Voss of the Max Planck Institute for Extraterrestrial Physics in Germany and Gijs Nelemans of Radboud University in the Netherlands searched Chandra images for evidence of a much sought after, but as yet unobserved binary system - one that was about to go supernova. Near the position of a recently detected supernova, they discovered an object in Chandra images taken more than four years before the explosion. Optical image of SN 2007on Optical image of SN 2007on The supernova, known as SN 2007on, was identified as a Type Ia supernova. Astronomers generally agree that Type Ia supernovas are produced by the explosion of a white dwarf star in a binary star system. However, the exact configuration and trigger for the explosion is unclear. Is the explosion caused by a collision between two white dwarfs, or because a white dwarf became unstable by pulling too much material off a companion star? Answering such questions is a high priority because Type Ia supernovas are major sources of iron in the Universe. Also, because of their nearly uniform intrinsic brightness, Type Ia supernova are used as important tools by scientists to study the nature of dark energy and other cosmological issues. People Who Read This Also Read... Oldest Known Objects Are Surprisingly Immature Black Holes Have Simple Feeding Habits Discovery of Most Recent Supernova in Our Galaxy Geriatric Pulsar Still Kicking "Right now these supernovas are used as black boxes to measure distances and derive the rate of expansion of the universe," said Nelemans. "What we're trying to do is look inside the box." If the supernova explosion is

  13. Search for Binary Trojans

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.

    2015-11-01

    We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.

  14. Endothelial Progenitor Cells in Diabetic Retinopathy

    PubMed Central

    Lois, Noemi; McCarter, Rachel V.; O’Neill, Christina; Medina, Reinhold J.; Stitt, Alan W.

    2014-01-01

    Diabetic retinopathy (DR) is a leading cause of visual impairment worldwide. Patients with DR may irreversibly lose sight as a result of the development of diabetic macular edema (DME) and/or proliferative diabetic retinopathy (PDR); retinal blood vessel dysfunction and degeneration plays an essential role in their pathogenesis. Although new treatments have been recently introduced for DME, including intravitreal vascular endothelial growth factor inhibitors (anti-VEGFs) and steroids, a high proportion of patients (~40–50%) do not respond to these therapies. Furthermore, for people with PDR, laser photocoagulation remains a mainstay therapy despite this being an inherently destructive procedure. Endothelial progenitor cells (EPCs) are a low-frequency population of circulating cells known to be recruited to sites of vessel damage and tissue ischemia where they promote vascular healing and re-perfusion. A growing body of evidence suggests that the number and function of EPCs are altered in patients with varying degrees of diabetes duration, metabolic control, and in the presence or absence of DR. Although there are no clear-cut outcomes from these clinical studies, there is mounting evidence that some EPC sub-types may be involved in the pathogenesis of DR and may also serve as biomarkers for disease progression and stratification. Moreover, some EPC sub-types have considerable potential as therapeutic modalities for DME and PDR in the context of cell therapy. This study presents basic clinical concepts of DR and combines this with a general insight on EPCs and their relation to future directions in understanding and treating this important diabetic complication. PMID:24782825

  15. Age-related macular degeneration.

    PubMed

    Lim, Laurence S; Mitchell, Paul; Seddon, Johanna M; Holz, Frank G; Wong, Tien Y

    2012-05-05

    Age-related macular degeneration is a major cause of blindness worldwide. With ageing populations in many countries, more than 20% might have the disorder. Advanced age-related macular degeneration, including neovascular age-related macular degeneration (wet) and geographic atrophy (late dry), is associated with substantial, progressive visual impairment. Major risk factors include cigarette smoking, nutritional factors, cardiovascular diseases, and genetic markers, including genes regulating complement, lipid, angiogenic, and extracellular matrix pathways. Some studies have suggested a declining prevalence of age-related macular degeneration, perhaps due to reduced exposure to modifiable risk factors. Accurate diagnosis combines clinical examination and investigations, including retinal photography, angiography, and optical coherence tomography. Dietary anti-oxidant supplementation slows progression of the disease. Treatment for neovascular age-related macular degeneration incorporates intraocular injections of anti-VEGF agents, occasionally combined with other modalities. Evidence suggests that two commonly used anti-VEGF therapies, ranibizumab and bevacizumab, have similar efficacy, but possible differences in systemic safety are difficult to assess. Future treatments include inhibition of other angiogenic factors, and regenerative and topical therapies.

  16. Age-related macular degeneration

    PubMed Central

    Coleman, Hanna R; Chan, Chi-Chao; Ferris, Frederick L; Chew, Emily Y

    2008-01-01

    Age-related macular degeneration is the leading cause of blindness in elderly populations of European descent. The most consistent risk factors associated with this ocular condition are increasing age and cigarette smoking. Genetic investigations have shown that complement factor H, a regulator of the alternative complement pathway, and LOC387715/HtrA1 are the most consistent genetic risk factors for age-related macular degeneration. Although the pathogenesis of this disease is unknown, oxidative stress might have an important role. Treatment with antioxidant vitamins and zinc can reduce the risk of developing advanced age-related macular degeneration by about a quarter in those at least at moderate risk. Intravitreal injections of ranibizumab, a monoclonal antibody that inhibits all forms of vascular endothelial growth factor, have been shown to stabilise loss of vision and, in some cases, improve vision in individuals with neovascular age-related macular degeneration. These findings, combined with assessments of possible environmental and genetic interactions and new approaches to modulate inflammatory pathways, will hopefully further expand our ability to understand and treat age-related macular degeneration. PMID:19027484

  17. Human annulus progenitor cells: Analyses of this viable endogenous cell population.

    PubMed

    Gruber, Helen E; Riley, Frank E; Hoelscher, Gretchen L; Ingram, Jane A; Bullock, Letitia; Hanley, Edward N

    2016-08-01

    Back pain and intervertebral disc degeneration have growing socioeconomic/health care impacts. Increasing research efforts address use of stem and progenitor cell-based replacement therapies to repopulate and regenerate the disc. Data presented here on the innate human annulus progenitor cells: (i) assessed osteogenic, chondrogenic and adipogenic potentials of cultured human annulus cells; and (ii) defined progenitor-cell related gene expression patterns. Verification of the presence of progenitor cells within primary human disc tissue also used immunohistochemical identification of cell surface markers and microarray analyses. Differentiation analysis in cell cultures demonstrated a viable progenitor cell pool within Thompson grades III-IV discs. Osteogenesis was present in 8 out of 11 cultures (73%), chondrogenesis in 8 of 11 (73%), and adipogenesis in 6 of 6 (100%). Immunolocalization was positive for CD29, CD44, CD105, and CD14 (mean values 80.2%, 81.5%, 85.1%, and 88.6%, respectively); localization of CD45 and CD34 was negative in disc tissue. Compared to controls, surgical discs showed significantly downregulated genes with recognized progenitor cell functions: TCF7L2 (2.7 fold), BMI1 (3.8 fold), FGF receptor 2 (2 fold), PAFAH1B1 (2.3 fold), and GSTP1 (9 fold). Compared to healthier grade I/II discs, grade III/IV discs showed significantly upregulated XRCC5 (3.6 fold), TCF7L2 (6 fold), GSTP1 (3.7 fold), and BMI1 (3 fold). Additional significant cell marker analyses showed expression of platelet-derived growth factor receptor alpha, CD90, CD73, and STRO-1. Statement of Clinical Significance: Findings provide the first identification of progenitor cells in annulus specimens from older, more degenerate discs (in contrast to earlier studies of healthier discs or nondegenerative specimens from teenagers). Findings also increase knowledge on progenitor cells present in the disc and suggest their value in potential future utilization for regeneration and disc cell

  18. PHOEBE: PHysics Of Eclipsing BinariEs

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  19. X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van Paradijs, Jan; van den Heuvel, Edward Peter Jacobus

    1997-01-01

    Preface; 1. The properties of X-ray binaries, N. E. White, F. Nagase and A. N. Parmar; 2. Optical and ultraviolet observations of X-ray binaries J. van Paradijs and J. E. McClintock; 3. Black-hole binaries Y. Tanaka and W. H. G. Lewin; 4. X-ray bursts Walter H. G. Lewin, Jan Van Paradijs and Ronald E. Taam; 5. Millisecond pulsars D. Bhattacharya; 6. Rapid aperiodic variability in binaries M. van der Klis; 7. Radio properties of X-ray binaries R. M. Hjellming and X. Han; 8. Cataclysmic variable stars France Anne-Dominic Córdova; 9. Normal galaxies and their X-ray binary populations G. Fabbiano; 10. Accretion in close binaries Andrew King; 11. Formation and evolution of neutron stars and black holes in binaries F. Verbunt and E. P. J. van den Heuvel; 12. The magnetic fields of neutron stars and their evolution D. Bhattacharya and G. Srinivasan; 13. Cosmic gamma-ray bursts K. Hurley; 14. A catalogue of X-ray binaries Jan van Paradijs; 15. A compilation of cataclysmic binaries with known or suspected orbital periods Hans Ritter and Ulrich Kolb; References; Index.

  20. Quantum Degenerate Gases of Strontium

    NASA Astrophysics Data System (ADS)

    Desalvo, Brian; Martinez de Escobar, Natali; Mickelson, Pacal; Yan, Mi; Killian, Thomas

    2010-03-01

    We have produced quantum degenerate gases of three of the four stable isotopes of strontium. Using two-stage laser trapping and cooling followed by direct evaporative cooling in a far-off- resonance optical dipole trap (ODT), a stable Bose-Einstein Condensate (BEC) of ^84Sr is formed. Via dual species trapping and sympathetic cooling in an ODT, an attractive BEC of ^88Sr is created, as well as a degenerate Fermi gas of ^87Sr. Differences in the evaporation scheme used to reach degeneracy for each isotope will be presented as well as the varied dynamics of the gases.

  1. Disappearance of the Progenitor of Supernova iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Folatelli, Gastón; Van Dyk, Schuyler D.; Kuncarayakti, Hanindyo; Maeda, Keiichi; Bersten, Melina C.; Nomoto, Ken'ichi; Pignata, Giuliano; Hamuy, Mario; Quimby, Robert M.; Zheng, WeiKang; Filippenko, Alexei V.; Clubb, Kelsey I.; Smith, Nathan; Elias-Rosa, Nancy; Foley, Ryan J.; Miller, Adam A.

    2016-07-01

    Supernova (SN) iPTF13bvn in NGC 5806 was the first Type Ib SN to have been tentatively associated with a progenitor in pre-explosion images. We performed deep ultraviolet (UV) and optical Hubble Space Telescope observations of the SN site ˜740 days after explosion. We detect an object in the optical bands that is fainter than the pre-explosion object. This dimming is likely not produced by dust absorption in the ejecta; thus, our finding confirms the connection of the progenitor candidate with the SN. The object in our data is likely dominated by the fading SN, implying that the pre-SN flux is mostly due to the progenitor. We compare our revised pre-SN photometry with previously proposed models. Although binary progenitors are favored, models need to be refined. In particular, to comply with our deep UV detection limit, any companion star must be less luminous than a late-O star or substantially obscured by newly formed dust. A definitive progenitor characterization will require further observations to disentangle the contribution of a much fainter SN and its environment.

  2. Equilibrium, stability, and orbital evolution of close binary systems

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Rasio, Frederic A.; Shapiro, Stuart L.

    1994-01-01

    We present a new analytic study of the equilibrium and stability properties of close binary systems containing polytropic components. Our method is based on the use of ellipsoidal trial functions in an energy variational principle. We consider both synchronized and nonsynchronized systems, constructing the compressible generalizations of the classical Darwin and Darwin-Riemann configurations. Our method can be applied to a wide variety of binary models where the stellar masses, radii, spins, entropies, and polytropic indices are all allowed to vary over wide ranges and independently for each component. We find that both secular and dynamical instabilities can develop before a Roche limit or contact is reached along a sequence of models with decreasing binary separation. High incompressibility always makes a given binary system more susceptible to these instabilities, but the dependence on the mass ratio is more complicated. As simple applications, we construct models of double degenerate systems and of low-mass main-sequence star binaries. We also discuss the orbital evoltuion of close binary systems under the combined influence of fluid viscosity and secular angular momentum losses from processes like gravitational radiation. We show that the existence of global fluid instabilities can have a profound effect on the terminal evolution of coalescing binaries. The validity of our analytic solutions is examined by means of detailed comparisons with the results of recent numerical fluid calculations in three dimensions.

  3. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    SciTech Connect

    Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo

    2014-09-16

    We successfully, applied the induced gravitational collapse (IGC) paradigm to the explanation of GRB-SNe. The progenitor is a tight binary system composed of a CO core and a NS companion. Furthermore, the explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, gravitationally collapsing to a BH with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present the first full numerical simulations of the IGC process. We simulate the core-collapse, the SN explosion, and the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS. For appropriate binary parameters, the IGC occurs in short timescale 102–103 s due to the combined action of photon trapping and neutrino cooling near the NS surface. We also address the observational features of this process.

  4. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  5. The Type IIb Supernova 2013df and its Cool Supergiant Progenitor

    NASA Technical Reports Server (NTRS)

    VanDyk, Schuyler D.; Zeng, Weikang; Fox, Ori D.; Cenko, S. Bradley; Clubb, Kelsey I.; Filippenko, Alexei; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Kelly, Patrick L.; hide

    2014-01-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type II b, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less Ni-56 (is approximately less than 0.06M) was synthesized in the SN 2013df explosion than was the case for the SNe II b 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013dfis estimated to be A(sub V) = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope(HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T(sub eff) = 4250+/-100 K and a bolometric luminosity L(sub bol) =10(exp 4.94+/-0.06) Solar Luminosity. This leads to an effective radius Reff = 545+/-65 Solar Radius. The star likely had an initial mass in the range of 13-17Solar Mass; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  6. The type IIb supernova 2013df and its cool supergiant progenitor

    SciTech Connect

    Van Dyk, Schuyler D.; Cenko, S. Bradley; Foley, Ryan J.; Miller, Adam A.; Smith, Nathan; Lee, William H.; Ben-Ami, Sagi; Gal-Yam, Avishay

    2014-02-01

    We have obtained early-time photometry and spectroscopy of supernova (SN) 2013df in NGC 4414. The SN is clearly of Type IIb, with notable similarities to SN 1993J. From its luminosity at secondary maximum light, it appears that less {sup 56}Ni (≲ 0.06 M {sub ☉}) was synthesized in the SN 2013df explosion than was the case for the SNe IIb 1993J, 2008ax, and 2011dh. Based on a comparison of the light curves, the SN 2013df progenitor must have been more extended in radius prior to explosion than the progenitor of SN 1993J. The total extinction for SN 2013df is estimated to be A{sub V} = 0.30 mag. The metallicity at the SN location is likely to be solar. We have conducted Hubble Space Telescope (HST) Target of Opportunity observations of the SN with the Wide Field Camera 3, and from a precise comparison of these new observations to archival HST observations of the host galaxy obtained 14 yr prior to explosion, we have identified the progenitor of SN 2013df to be a yellow supergiant, somewhat hotter than a red supergiant progenitor for a normal Type II-Plateau SN. From its observed spectral energy distribution, assuming that the light is dominated by one star, the progenitor had effective temperature T {sub eff} = 4250 ± 100 K and a bolometric luminosity L {sub bol} = 10{sup 4.94±0.06} L {sub ☉}. This leads to an effective radius R {sub eff} = 545 ± 65 R {sub ☉}. The star likely had an initial mass in the range of 13-17 M {sub ☉}; however, if it was a member of an interacting binary system, detailed modeling of the system is required to estimate this mass more accurately. The progenitor star of SN 2013df appears to have been relatively similar to the progenitor of SN 1993J.

  7. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Synchronous rotation in magnetic X-ray binaries

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S. A.; Katz, J. I.

    1979-01-01

    AM Herculis is thought to be a binary stellar system that contains an accreting magnetic degenerate dwarf whose rotation is synchronous with the orbital period. This synchronism is remarkable, particularly because of the small moment of inertia of a degenerate dwarf and the large specific angular momentum of the accreted matter. This paper demonstrates that ohmic dissipation from the magnetic interaction of the stars is capable of bringing about exact synchronism, provided that some other process has brought the rotation period of the degenerate dwarf to the same order of magnitude as the orbital period. It is also shown that magnetostatic interaction in the synchronous state leads to oscillatory drifts in phase about exact synchronism with periods of approximately 1-10 yr. These phase drifts could manifest themselves in long-term periodic variability in the X-ray or optical properties of the source. Accretion torques could excite such oscillatory motions but need not disrupt synchronism once it has been established.

  9. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice

    PubMed Central

    Barnea-Cramer, Alona O.; Wang, Wei; Lu, Shi-Jiang; Singh, Mandeep S.; Luo, Chenmei; Huo, Hongguang; McClements, Michelle E.; Barnard, Alun R.; MacLaren, Robert E.; Lanza, Robert

    2016-01-01

    Photoreceptor degeneration due to retinitis pigmentosa (RP) is a primary cause of inherited retinal blindness. Photoreceptor cell-replacement may hold the potential for repair in a completely degenerate retina by reinstating light sensitive cells to form connections that relay information to downstream retinal layers. This study assessed the therapeutic potential of photoreceptor progenitors derived from human embryonic and induced pluripotent stem cells (ESCs and iPSCs) using a protocol that is suitable for future clinical trials. ESCs and iPSCs were cultured in four specific stages under defined conditions, resulting in generation of a near-homogeneous population of photoreceptor-like progenitors. Following transplantation into mice with end-stage retinal degeneration, these cells differentiated into photoreceptors and formed a cell layer connected with host retinal neurons. Visual function was partially restored in treated animals, as evidenced by two visual behavioral tests. Furthermore, the magnitude of functional improvement was positively correlated with the number of engrafted cells. Similar efficacy was observed using either ESCs or iPSCs as source material. These data validate the potential of human pluripotent stem cells for photoreceptor replacement therapies aimed at photoreceptor regeneration in retinal disease. PMID:27405580

  10. Ataxias and Cerebellar or Spinocerebellar Degeneration

    MedlinePlus

    ... underlying cause of the degeneration. Many ataxias are hereditary and are classified by chromosomal location and pattern ... underlying cause of the degeneration. Many ataxias are hereditary and are classified by chromosomal location and pattern ...

  11. The Binary White Dwarf LHS 3236

    NASA Astrophysics Data System (ADS)

    Harris, Hugh C.; Dahn, Conard C.; Dupuy, Trent J.; Canzian, Blaise; Guetter, Harry H.; Hartkopf, William I.; Ireland, Michael J.; Leggett, S. K.; Levine, Stephen E.; Liu, Michael C.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L.

    2013-12-01

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s-1, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M ⊙ also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M ⊙. In either case, the cooling ages of the stars are ~3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M ⊙) is well above the Chandrasekhar limit; however, the timescale for coalescence is long. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. PROGENITOR MODELS OF THE ELECTROMAGNETIC TRANSIENT ASSOCIATED WITH THE SHORT GAMMA RAY BURST 130603B

    SciTech Connect

    Hotokezaka, Kenta; Kyutoku, Koutarou; Tanaka, Masaomi; Wanajo, Shinya; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru

    2013-11-20

    An electromagnetic transient powered by the radioactive decay of r-process elements, a so-called kilonova/macronova, is one of the possible observable consequences of compact binary mergers including at least one neutron star. Recent observations strongly suggest the discovery of the first electromagnetic transient, which is associated with the short gamma ray burst 130603B. We explore a possible progenitor of this event by combining numerical-relativity simulations and radiative transfer simulations of the dynamical ejecta of binary neutron star and black hole-neutron star mergers. We show that the ejecta models within a realistic parameter range consistently reproduce the observed near-infrared excess. We also show that the soft equation-of-state models for binary neutron star mergers and the stiff equation-of-state models for black hole-neutron star mergers are suitable for reproducing the observed luminosity.

  13. Progenitor Models of the Electromagnetic Transient Associated with the Short Gamma Ray Burst 130603B

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Kyutoku, Koutarou; Tanaka, Masaomi; Kiuchi, Kenta; Sekiguchi, Yuichiro; Shibata, Masaru; Wanajo, Shinya

    2013-11-01

    An electromagnetic transient powered by the radioactive decay of r-process elements, a so-called kilonova/macronova, is one of the possible observable consequences of compact binary mergers including at least one neutron star. Recent observations strongly suggest the discovery of the first electromagnetic transient, which is associated with the short gamma ray burst 130603B. We explore a possible progenitor of this event by combining numerical-relativity simulations and radiative transfer simulations of the dynamical ejecta of binary neutron star and black hole-neutron star mergers. We show that the ejecta models within a realistic parameter range consistently reproduce the observed near-infrared excess. We also show that the soft equation-of-state models for binary neutron star mergers and the stiff equation-of-state models for black hole-neutron star mergers are suitable for reproducing the observed luminosity.

  14. Neuronal expression of pathological tau accelerates oligodendrocyte progenitor cell differentiation

    PubMed Central

    Ossola, Bernardino; Zhao, Chao; Compston, Alastair; Pluchino, Stefano; Franklin, Robin J. M.

    2015-01-01

    Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule‐associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau‐induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S‐htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2‐month‐old P301S‐htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL‐1β and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S‐htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S‐htau axons to demyelination‐induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S‐htau mice compared with Wt mice‐derived OPCs. Because the OPCs from P301S‐htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice‐derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination. GLIA 2016;64:457–471 PMID:26576485

  15. Case A Binary Evolution

    SciTech Connect

    Nelson, C A; Eggleton, P P

    2001-03-28

    We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.

  16. Modeling Renal Progenitors – Defining the Niche

    PubMed Central

    Tanigawa, Shunsuke; Perantoni, Alan O.

    2016-01-01

    Significant recent advances in methodologies for the differentiation of pluripotent stem cells to renal progenitors as well as the definition of niche conditions for sustaining those progenitors have dramatically enhanced our understanding of their biology and developmental programing, prerequisites for establishing viable approaches to renal regeneration. In this article, we review the evolution of culture techniques and models for the study of metanephric development, describe the signaling mechanisms likely to be driving progenitor self-renewal, and discuss current efforts to generate de novo functional tissues, providing in depth protocols and niche conditions for the stabilization of the nephronic Six2+ progenitor. PMID:26856661

  17. Formation of the first three gravitational-wave observations through isolated binary evolution

    NASA Astrophysics Data System (ADS)

    Stevenson, Simon; Vigna-Gómez, Alejandro; Mandel, Ilya; Barrett, Jim W.; Neijssel, Coenraad J.; Perkins, David; de Mink, Selma E.

    2017-04-01

    During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel--classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses >~160M\\xodot, >~60M\\xodot and >~90M\\xodot, for GW150914, GW151226 and LVT151012, respectively.

  18. Formation of the first three gravitational-wave observations through isolated binary evolution

    PubMed Central

    Stevenson, Simon; Vigna-Gómez, Alejandro; Mandel, Ilya; Barrett, Jim W.; Neijssel, Coenraad J.; Perkins, David; de Mink, Selma E.

    2017-01-01

    During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel—classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses ≳160M⊙, ≳60M⊙ and ≳90M⊙, for GW150914, GW151226 and LVT151012, respectively. PMID:28378739

  19. Formation of the first three gravitational-wave observations through isolated binary evolution.

    PubMed

    Stevenson, Simon; Vigna-Gómez, Alejandro; Mandel, Ilya; Barrett, Jim W; Neijssel, Coenraad J; Perkins, David; de Mink, Selma E

    2017-04-05

    During its first four months of taking data, Advanced LIGO has detected gravitational waves from two binary black hole mergers, GW150914 and GW151226, along with the statistically less significant binary black hole merger candidate LVT151012. Here we use the rapid binary population synthesis code COMPAS to show that all three events can be explained by a single evolutionary channel-classical isolated binary evolution via mass transfer including a common envelope phase. We show all three events could have formed in low-metallicity environments (Z=0.001) from progenitor binaries with typical total masses ≳160M⊙, ≳60M⊙ and ≳90M⊙, for GW150914, GW151226 and LVT151012, respectively.

  20. Accretion Onto Magnetic Degenerate Stars

    NASA Technical Reports Server (NTRS)

    Frank, Juhan

    2000-01-01

    While the original objectives of this research program included the study of radiative processes in cataclysmic variables and the evolution of neutron star magnetic fields, the scope of the reported research expanded to other related topics as this project developed. This final report therefore describes the results of our research in the following areas: 1) Irradiation-driven mass transfer cycles in cataclysmic variables and low-mass X-ray binaries; 2) Propeller effect and magnetic field decay in isolated old neutron stars; 3) Decay of surface magnetic fields in accreting neutron stars and pulsars; 4) Finite-Difference Hydrodynamic simulations of mass transfer in binary stars.

  1. THE PROGENITOR OF SUPERNOVA 2011dh HAS VANISHED

    SciTech Connect

    Van Dyk, Schuyler D.; Smith, Nathan; Ganeshalingam, Mohan

    2013-08-01

    We conducted Hubble Space Telescope (HST) Snapshot observations of the Type IIb supernova (SN) 2011dh in M51 at an age of {approx}641 days with the Wide Field Camera 3. We find that the yellow supergiant star, clearly detected in pre-SN HST images, has disappeared, implying that this star was almost certainly the progenitor of the SN. Interpretation of the early time SN data which led to the inference of a compact nature for the progenitor, and to the expected survival of this yellow supergiant, is now clearly incorrect. We also present ground-based UBVRI light curves obtained with the Katzman Automatic Imaging Telescope at Lick Observatory up to SN age {approx}70 days. From the light-curve shape including the very late time HST data, and from recent interacting binary models for SN 2011dh, we estimate that a putative surviving companion star to the now deceased yellow supergiant could be detectable by late 2013, especially in the ultraviolet. No obvious light echoes are detectable yet in the SN environment.

  2. Nitric Oxide Donor Molsidomine Positively Modulates Myogenic Differentiation of Embryonic Endothelial Progenitors

    PubMed Central

    Tirone, Mario; Conti, Valentina; Manenti, Fabio; Nicolosi, Pier Andrea; D’Orlando, Cristina; Azzoni, Emanuele

    2016-01-01

    Embryonic VE-Cadherin-expressing progenitors (eVE-Cad+), including hemogenic endothelium, have been shown to generate hematopoietic stem cells and a variety of other progenitors, including mesoangioblasts, or MABs. MABs are vessel-associated progenitors with multilineage mesodermal differentiation potential that can physiologically contribute to skeletal muscle development and regeneration, and have been used in an ex vivo cell therapy setting for the treatment of muscular dystrophy. There is currently a therapeutic need for molecules that could improve the efficacy of cell therapy protocols; one such good candidate is nitric oxide. Several studies in animal models of muscle dystrophy have demonstrated that nitric oxide donors provide several beneficial effects, including modulation of the activity of endogenous cell populations involved in muscle repair and the delay of muscle degeneration. Here we used a genetic lineage tracing approach to investigate whether the therapeutic effect of nitric oxide in muscle repair could derive from an improvement in the myogenic differentiation of eVE-Cad+ progenitors during embryogenesis. We show that early in vivo treatment with the nitric oxide donor molsidomine enhances eVE-Cad+ contribution to embryonic and fetal myogenesis, and that this effect could originate from a modulation of the properties of yolk sac hemogenic endothelium. PMID:27760216

  3. Retinal degeneration mutants in the mouse.

    PubMed

    Chang, B; Hawes, N L; Hurd, R E; Davisson, M T; Nusinowitz, S; Heckenlively, J R

    2002-02-01

    The Jackson Laboratory, having the world's largest collection of mouse mutant stocks and genetically diverse inbred strains, is an ideal place to look for genetically determined eye variations and disorders. Through ophthalmoscopy, electroretinography and histology, we have discovered disorders affecting all aspects of the eye including the lid, cornea, iris, lens and retina, resulting in corneal disorders, cataracts, glaucoma and retinal degenerations. Mouse models of retinal degeneration have been investigated for many years in the hope of understanding the causes of photoreceptor cell death. Sixteen naturally occurring mouse mutants that manifest degeneration of photoreceptors in the retina with preservation of all other retinal cell types have been found: retinal degeneration (formerly rd, identical with rodless retina, r, now Pde6b(rd1)); Purkinje cell degeneration (pcd); nervous (nr); retinal degeneration slow (rds, now Prph(Rd2)); retinal degeneration 3 (rd3); motor neuron degeneration (mnd); retinal degeneration 4 (Rd4); retinal degeneration 5 (rd5, now tub); vitiligo (vit, now Mitf(mi-vit)); retinal degeneration 6 (rd6); retinal degeneration 7 (rd7, now Nr2e3(rd7)); neuronal ceroid lipofuscinosis (nclf); retinal degeneration 8 (rd8); retinal degeneration 9 (Rd9); retinal degeneration 10 (rd10, now Pde6b(rd10)); and cone photoreceptor function loss (cpfl1). In this report, we first review the genotypes and phenotypes of these mutants and second, list the mouse strains that carry each mutation. We will also provide detailed information about the cpfl1 mutation. The phenotypic characteristics of cpfl1 mice are similar to those observed in patients with complete achromatopsia (ACHM2, OMIM 216900) and the cpfl1 mutation is the first naturally-arising mutation in mice to cause cone-specific photoreceptor function loss. cpfl1 mice may provide a model for congenital achromatopsia in humans.

  4. Human primordial germ cell-derived progenitors give rise to neurons and glia in vivo

    SciTech Connect

    Teng, Yincheng; Chen, Bin; Tao, Minfang

    2009-12-18

    We derived a cell population from cultured human primordial germ cells from early human embryos. The derivates, termed embryoid body-derived (EBD) cells, displayed an extensive capacity for proliferation and expressed a panel of markers in all three germ layers. Interestingly, EBD cells were also positive for markers of neural stem/progenitor cells, such as nestin and glial fibrillary acidic protein. When these cells were transplanted into the brain cavities of fetal sheep and postnatal NOD-SCID mice or nerve-degenerated tibialis anterior muscles, they readily gave rise to neurons or glial cells. To our knowledge, our data are the first to demonstrate that EBD cells can undergo further neurogenesis under suitable environments in vivo. Hence, with the abilities of extensive expansion, self-renewal, and differentiation, EBD cells may provide a useful donor source for neural stem/progenitor cells to be used in cell-replacement therapies for diseases of the nervous system.

  5. Human Migratory Meniscus Progenitor Cells Are Controlled via the TGF-β Pathway

    PubMed Central

    Muhammad, Hayat; Schminke, Boris; Bode, Christa; Roth, Moritz; Albert, Julius; von der Heyde, Silvia; Rosen, Vicki; Miosge, Nicolai

    2014-01-01

    Summary Degeneration of the knee joint during osteoarthritis often begins with meniscal lesions. Meniscectomy, previously performed extensively after meniscal injury, is now obsolete because of the inevitable osteoarthritis that occurs following this procedure. Clinically, meniscus self-renewal is well documented as long as the outer, vascularized meniscal ring remains intact. In contrast, regeneration of the inner, avascular meniscus does not occur. Here, we show that cartilage tissue harvested from the avascular inner human meniscus during the late stages of osteoarthritis harbors a unique progenitor cell population. These meniscus progenitor cells (MPCs) are clonogenic and multipotent and exhibit migratory activity. We also determined that MPCs are likely to be controlled by canonical transforming growth factor β (TGF-β) signaling that leads to an increase in SOX9 and a decrease in RUNX2, thereby enhancing the chondrogenic potential of MPC. Therefore, our work is relevant for the development of novel cell biological, regenerative therapies for meniscus repair. PMID:25418724

  6. Endothelial progenitor cells in atherosclerosis

    PubMed Central

    Du, Fuyong; Zhou, Jun; Gong, Ren; Huang, Xiao; Pansuria, Meghana; Virtue, Anthony; Li, Xinyuan; Wang, Hong; Yang, Xiao-Feng

    2012-01-01

    Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. Experimental and clinical studies have shown that atherosclerosis is associated with reduced numbers and dysfunction of EPCs; and that medications alone are able to partially reverse the impairment of EPCs in patients with atherosclerosis. Therefore, novel EPC-based therapies may provide enhancement in restoring EPCs’ population and improvement of vascular function. Here, for a better understanding of the molecular mechanisms underlying EPC impairment in atherosclerosis, we provide a comprehensive overview on EPC characteristics, phenotypes, and the signaling pathways underlying EPC impairment in atherosclerosis. PMID:22652782

  7. Binary Galaxies in Clusters

    NASA Astrophysics Data System (ADS)

    Ip, Peter Shun Sang

    1994-01-01

    CCD images of the binary-rich clusters of galaxies A373, A408, A667, A890, and A1250 taken at the Canada-France-Hawaii telescope show that about half the binary galaxies' are actually star-galaxy or star-star pairs. These clusters are not binary-rich. N-body simulations are used to study the effect of static cluster potentials on binary and single galaxies. The softening procedure is discussed in detail. Since Plummer softening is not self-consistent, and since the force laws for various other density models are similar to each other, uniform-density softening is used. The choice of the theoretical galaxy model in terms of the potential at various locations. A fixed cluster potential cannot stabilize binary galaxies against merger, but can disrupt even quite tightly bound binaries. A moderately good predictor of whether a binary merges or disrupts is the mean torque over a quarter of the initial binary period. But the dynamics of the situation is quite complicated, and depends on an interplay between the motion of the binary through the cluster and the absorption of orbital energy by the galaxies. There is also a substantial amount of mass loss. Simulations of single galaxies in cluster show that this mass loss is due mainly to the cluster potential, and not to an interplay between the merging binary and the cluster. This mass loss is driven partially by virial equilibrium responding to the initial tidal truncation by the cluster. Besides verifying some general results of mass loss from satellite systems in the tidal field of larger bodies, it was found that the galaxy loses mass at an exponential rate.

  8. Mergers of Black Hole -- Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Rantsiou, Emmanouela

    Motivated by the scenario that black hole-neutron star (BH-NS) mergers are viable progenitors of observed short Gamma-ray Bursts, we have used a 3D relativistic SPH (smoothed particle hydrodynamics) code to study mergers of such binary systems (with relatively low mass ratios). We have investigated a wide range of parameters for those binaries: mass ratio, Equation of State (EOS) for the NS, compactness of the NS. Most importantly, the BH's spin was varied in our simulations (from non-spinning to maximally spinning BHs), and so was the orbital inclination of the NS. We have found that the outcome of such mergers depends sensitively on both the magnitude of the BH spin and its obliquity (i.e., the inclination of the binary orbit with respect to the equatorial plane of the BH). In particular, only systems with sufficiently high BH spin parameter a and sufficiently low orbital inclinations allow any NS matter to escape or to form a long-lived disk outside the BH horizon after disruption. Mergers of binaries with orbital inclinations above ˜60° lead to complete prompt accretion of the entire NS by the BH, even for the case of an extreme Kerr BH. We find that the formation of a significant disk or torus of NS material around the BH always requires a near-maximal BH spin and a low initial inclination of the NS orbit just prior to merger. Furthermore, we have investigated and we are presenting the gravitational waveforms and gravitational wave energy spectra from some representative cases. Despite using simply the quadrupole formula with post-Newtonian extensions (up to 3.5 terms) for radiation reaction, we were able to clearly see the impact of the BH's spin and NS's orbital inclination on the spectra and waveforms produced in our simulations.

  9. SN Ia archaeology: Searching for the relics of progenitors past

    NASA Astrophysics Data System (ADS)

    Woods, Tyrone E.; Gilfanov, Marat; Clocchiatti, Alejandro; Rest, Armin

    2016-06-01

    Despite the critical role that SNe Ia play in the chemical enrichment of the Universe and their great importance in measuring cosmological distances, we still don't know for certain how they arise. In the canonical form of the ``single-degenerate'' scenario, a white dwarf grows through the nuclear burning of matter accreted at its surface from some companion star. This renders it a hot, luminous object (a supersoft X-ray source or SSS, 10^5-10^6K, 10^{38} erg/s) for up to a million years prior to explosion. Past efforts to directly detect the progenitors of very recent, nearby SNe Ia in archival soft X-ray images have produced only upper limits, and are only constraining assuming progenitors with much higher temperatures than known SSSs. In this talk, I will outline an alternative approach: given that such objects should be strong sources of ionizing radiation, one may instead search the environment surrounding nearby SN Ia remnants for interstellar matter ionized by the progenitor. Such fossil nebulae should extend out to tens of parsecs and linger for roughly the recombination timescale in the ISM, of order 10,000 — 100,000 years. Progress on this front has been hampered by the failure to detect nebulae surrounding most known SSSs using 1m class telescopes in the early 1990s. I will present new benchmark calculations for the emission-line nebulae expected to surround such objects, demonstrating that previous non-detections are entirely consistent with the low ISM densities expected in the vicinity of most SN Ia progenitors (Woods & Gilfanov, 2016). Modern large optical telescopes are now well able to reach the required limiting surface brightness needed to find such faint emission. With this in mind, I will introduce our new narrow-band survey for fossil nebulae surrounding young Magellanic SN Ia remnants and SSSs, already underway using the Magellan Baade telescope (PI: Alejandro Clocchiatti). In addition to opening a new era of SN Ia archaeology, I will show

  10. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    SciTech Connect

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B. E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change their orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.

  11. Light scattering of degenerate fermions

    NASA Astrophysics Data System (ADS)

    Aubin, S.; Leblanc, L. J.; Myrskog, S.; Extavour, M. H. T.; McKay, D.; Stummer, A.; Thywissen, J. H.

    2006-05-01

    We report on progress in measuring the suppression of resonant light scattering in a gas of degenerate fermions. A gas of trapped degenerate fermions is expected to exhibit narrower optical linewidths and longer excited state lifetimes than single atoms when the Fermi energy is larger than the photon recoil energy [1-3]. In this case, the number of available states into which a scattered atom can recoil is significantly reduced due to the filling of the Fermi sea. We produce a degenerate gas of 4x10^4 ultra-cold fermionic ^40K atoms by sympathetic cooling with bosonic ^87Rb in a micro-magnetic chip trap. The atoms can then be loaded into a tight dipole trap just above the surface of the chip and probed with a near resonance laser pulse. [1] Th. Busch, J. R. Anglin, J. I. Cirac, and P. Zoller, Europhys. Lett. 44, 1 (1998). [2] B. DeMarco and D. S. Jin, Phys. Rev. A 58, R4267 (1998). [3] J. Javanainen and J. Ruostekosky, Phys. Rev. A 52, 3033 (1995). Work supported by NSERC, CFI, OIT, Research Corporation, and PRO.

  12. General Pathophysiology in Retinal Degeneration

    PubMed Central

    Wert, Katherine J.; Lin, Jonathan H.; Tsang, Stephen H.

    2015-01-01

    Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/ or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade. PMID:24732759

  13. Radial keratotomy associated endothelial degeneration

    PubMed Central

    Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon

    2012-01-01

    Purpose To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Methods Retrospective case series were used. Results Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38–72 years), averaging 18.7 years (range: 11–33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch’s Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet’s stripping automated endothelial keratoplasty (DSAEK) in the other eye. Conclusions RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch’s dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration. PMID:22347792

  14. Radial keratotomy associated endothelial degeneration.

    PubMed

    Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon

    2012-01-01

    To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Retrospective case series were used. Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38-72 years), averaging 18.7 years (range: 11-33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch's Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet's stripping automated endothelial keratoplasty (DSAEK) in the other eye. RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch's dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration.

  15. Population synthesis of ultracompact X-ray binaries in the Galactic bulge

    NASA Astrophysics Data System (ADS)

    van Haaften, L. M.; Nelemans, G.; Voss, R.; Toonen, S.; Portegies Zwart, S. F.; Yungelson, L. R.; van der Sluys, M. V.

    2013-04-01

    Aims: We model the present-day number and properties of ultracompact X-ray binaries (UCXBs) in the Galactic bulge. The main objective is to compare the results to the known UCXB population as well as to data from the Galactic Bulge Survey, in order to learn about the formation of UCXBs and their evolution, such as the onset of mass transfer and late-time behavior. Methods: The binary population synthesis code SeBa and detailed stellar evolutionary tracks have been used to model the UCXB population in the Bulge. The luminosity behavior of UCXBs has been predicted using long-term X-ray observations of the known UCXBs as well as the thermal-viscous disk instability model. Results: In our model, the majority of UCXBs initially have a helium burning star donor. Of the white dwarf donors, most have helium composition. In the absence of a mechanism that destroys old UCXBs, we predict (0.2-1.9) × 105 UCXBs in the Galactic bulge, depending on assumptions, mostly at orbital periods longer than 60 min (a large number of long-period systems also follows from the observed short-period UCXB population). About 5-50 UCXBs should be brighter than 1035 ergs-1, mostly persistent sources with orbital periods shorter than about 30 min and with degenerate helium and carbon-oxygen donors. This is about one order of magnitude more than the observed number of (probably) three. Conclusions: This overprediction of short-period UCXBs by roughly one order of magnitude implies that fewer systems are formed, or that a super-Eddington mass transfer rate is more difficult to survive than we assumed. The very small number of observed long-period UCXBs with respect to short-period UCXBs, the surprisingly high luminosity of the observed UCXBs with orbital periods around 50 min, and the properties of the PSR J1719-1438 system all point to much faster UCXB evolution than expected from angular momentum loss via gravitational wave radiation alone. Old UCXBs, if they still exist, probably have orbital

  16. Thermonuclear supernova light curves: Progenitors and cosmology

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.

    Thermonuclear Supernovae (TN SNe) are an extremely important tool in modern astronomy. In their role as cosmological distance probes, they have revealed the accelerated expansion of the universe and have begun to constrain the nature of the dark energy that may be driving that expansion. The next decade will see a succession of wide-field surveys producing thousands of TNSN detections each year. Traditional methods of SN analysis, rooted in time-intensive spectroscopic follow-up, will become completely impractical. To realize the potential of this coming tide of massive data sets, we will need to extract cosmographic parameters (redshift and luminosity distance) from SN photometry without any spectroscopic support. In this dissertation, I present the Supernova Ontology with Fuzzy Templates (SOFT) method, an innovative new approach to the analysis of SN light curves. SOFT uses the framework of fuzzy set theory to perform direct comparisons of SN candidates against template light curves, simultaneously producing both classifications and cosmological parameter estimates. The SOFT method allows us to shed new light on two rich archival data sets. I revisit the IfA Deep Survey and HST GOODS to extract new and improved measurements of the TNSN rate from z=0.2 out to z=1.6. Our new analysis shows a steady increase in the TNSN rate out to z˜1, and adds support for a decrease in the rate at z=1.5. Comparing these rate measurements to theoretical models, I conclude that the progenitor scenario most favored by the collective observational data is a single degenerate model, regulated by a strong wind from the accreting white dwarf. Using a compilation of SN light curves from five recent surveys, I demonstrate that SOFT is able to derive useful constraints on cosmological models from a data set with no spectroscopic information at all. Looking ahead to the near future, I find that photometric analysis of data sets containing 2,000 SNe will be able to improve our constraints on

  17. Taming the binaries

    NASA Astrophysics Data System (ADS)

    Pourbaix, D.

    2008-07-01

    Astrometric binaries are both a gold mine and a nightmare. They are a gold mine because they are sometimes the unique source of orbital inclination for spectroscopic binaries, thus making it possible for astrophysicists to get some clues about the mass of the often invisible secondary. However, this is an ideal situation in the sense that one benefits from the additional knowledge that it is a binary for which some orbital parameters are somehow secured (e.g. the orbital period). On the other hand, binaries are a nightmare, especially when their binary nature is not established yet. Indeed, in such cases, depending on the time interval covered by the observations compared to the orbital period, either the parallax or the proper motion can be severely biased if the successive positions of the binary are modelled assuming it is a single star. With large survey campaigns sometimes monitoring some stars for the first time ever, it is therefore crucial to design robust reduction pipelines in which such troublesome objects are quickly identified and either removed or processed accordingly. Finally, even if an object is known not to be a single star, the binary model might turn out not to be the most appropriate for describing the observations. These different situations will be covered.

  18. The Effects of Common Envelope and Tidal Evolution On the Properties of X-ray Binaries, CVs and SN Ia

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell C.; Di Stefano, R.

    2011-09-01

    Population synthesis studies provide an excellent testbed for determining the consequences and significance of certain binary processes that lead to accretion onto a compact object. We investigated the recent observational constraints of the common envelope (CE) efficiency parameter with particular regard to the dependence on the mass ratio of the binary. In our population synthesis calculations, we also implemented binary tidal interactions prior to Roche lobe overflow, such as tidal capture of and spin up by the companion, synchronization, and enhanced equatorial mass loss of the giant that can significantly alter the evolution of the system. Finally, we analyzed these binary interactions in the context of nuclear burning on white dwarfs, accreting X-ray binaries, cataclysmic variables, progenitors of Type Ia supernovae, and other high energy binary phenomena.

  19. Period Evolution of Double White Dwarf Binaries Under the Influence of Gravitational Wave Emissions

    NASA Astrophysics Data System (ADS)

    Martens, Kylee; Benacquista, Matt; Belczynski, Chris

    2016-03-01

    Compact objects, such as Double White Dwarf (DWD) binaries, are the most populous producers of gravitational waves (GW) at low frequencies. The gravitational radiation (GR) emitted from the Galactic DWD binary population will create an unresolvable signal known as the confusion noise-limit (CNL) in the space-based evolved Laser Interferometer Space Antenna (eLISA). It is predicted that many thousand DWD binary signals will rise above the CNL and create resolvable GW signals. In previous work, Heather Johnson, from the University of Texas-Austin, produced ~61 million DWD systems using the binary population features in the StarTrack population synthesis code created by Chris Belczynski. We have created an evolutionary code that continues the period evolution of the DWD binaries under the effects of GR. Our present model only accounts for detached binary systems, but we are working on incorporating more features. Current period evolution models often extrapolate data based on smaller binary populations, however our model will utilize ~61 million binary systems in order to avoid inaccuracies.We then use two standard cylindrical density distributions to populate a galaxy with the evolved systems. We also discuss correlations between the progenitor binaries and the eLISA sources.

  20. A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe

    SciTech Connect

    Bloom, Joshua S.; Kasen, Daniel; Shen, Ken J.; Nugent, Peter E.; Butler, Nathaniel R.; Graham, Melissa L.; Andrew Howell, D.; Kolb, Ulrich; Holmes, Stefan; Haswell, Carole A.; Burwitz, Vadim; Rodriguez, Juan; Sullivan, Mark

    2012-01-10

    While a white dwarf (WD) is, from a theoretical perspective, the most plausible primary star of a Type Ia supernova (SN Ia), many other candidates have not been formally ruled out. Shock energy deposited in the envelope of any exploding primary contributes to the early SN brightness and, since this radiation energy is degraded by expansion after the explosion, the diffusive luminosity depends on the initial primary radius. We present a new non-detection limit of the nearby SN Ia 2011fe, obtained at a time that appears to be just 4 hr after explosion, allowing us to directly constrain the initial primary radius (R{sub p} ). Coupled with the non-detection of a quiescent X-ray counterpart and the inferred synthesized {sup 56}Ni mass, we show that R{sub p} {approx}< 0.02 R{sub Sun} (a factor of five smaller than previously inferred), that the average density of the primary must be {rho}{sub p} > 10{sup 4} g cm{sup -3}, and that the effective temperature must be less than a few Multiplication-Sign 10{sup 5} K. This rules out hydrogen-burning main-sequence stars and giants. Constructing the helium-burning and carbon-burning main sequences, we find that such objects are also excluded. By process of elimination, we find that only degeneracy-supported compact objects-WDs and neutron stars-are viable as the primary star of SN 2011fe. With few caveats, we also restrict the companion (secondary) star radius to R{sub c} {approx}< 0.1 R{sub Sun }, excluding Roche-lobe overflowing red giant and main-sequence companions to high significance.

  1. INTEGRAL FIELD SPECTROSCOPY OF SUPERNOVA EXPLOSION SITES: CONSTRAINING THE MASS AND METALLICITY OF THE PROGENITORS. I. TYPE Ib AND Ic SUPERNOVAE

    SciTech Connect

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Doi, Mamoru; Morokuma, Tomoki; Hashiba, Yasuhito; Aldering, Greg; Arimoto, Nobuo; Pereira, Rui

    2013-08-01

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parent stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.

  2. iPTF 13bvn: La primera evidencia de un progenitor binario para una supernova de tipo Ib

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Benvenuto, O. G.; Folatelli, G.; Nomoto, K.

    2015-08-01

    The detection of an object in archival images of the Hubble space telescope at the position of supernova (SN) iPTF 13bvn may be the first direct evidence of a type Ib progenitor. The photometry of this object is compatible with a Wolf-Rayet star with a mass of M. However, hydrodynamical models show that the progenitor would most probably have a mass of M, while masses of the order of 8 M are not possible in the context of those models. We propose an interacting binary system as a progenitor of this SN and perform evolutionary calculations giving rise to a self consistent explanation of the shape of the light curve, the absence of hydrogen, as well as the photometry of the pre-SN. Finally, we present color-magnitude and color-color diagrams that will be useful to discern among the different proposed scenarios when a future detection of this object occurs.

  3. THE YELLOW SUPERGIANT PROGENITOR OF THE TYPE II SUPERNOVA 2011dh IN M51

    SciTech Connect

    Maund, J. R.; Fraser, M.; Smartt, S. J.; Kotak, R.; Magill, L.; Ergon, M.; Sollerman, J.; Pastorello, A.; Benetti, S.; Botticella, M.-T.; Valenti, S.; Bufano, F.; Danziger, I. J.; Stephens, A. W.

    2011-10-01

    We present the detection of the putative progenitor of the Type IIb SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the supernova (SN) in the pre-explosion images was determined to within 23 mas. The progenitor candidate is consistent with an F8 supergiant star (logL/L{sub sun} = 4.92 {+-} 0.20 and T {sub eff} = 6000 {+-} 280 K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M{sub ZAMS} = 13 {+-} 3 M{sub sun}. The possibility of the progenitor source being a cluster is rejected, on the basis of: (1) the source not being spatially extended, (2) the absence of excess H{alpha} emission, and (3) the poor fit to synthetic cluster spectral energy distributions (SEDs). It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest that the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax and suggest that a large amount of the progenitor's hydrogen envelope was removed before explosion. Late-time observations will reveal if the yellow supergiant or the putative companion star were responsible for this SN explosion.

  4. Binary Minor Planets

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Walsh, Kevin J.

    2006-05-01

    A review of observations and theories regarding binary asteroids and binary trans-Neptunian objects [collectively, binary minor planets (BMPs)] is presented. To date, these objects have been discovered using a combination of direct imaging, lightcurve analysis, and radar. They are found throughout the Solar System, and present a challenge for theorists modeling their formation in the context of Solar System evolution. The most promising models invoke rotational disruption for the smallest, shortest-lived objects (the asteroids nearest to Earth), consistent with the observed fast rotation of these bodies; impacts for the larger, longer-lived asteroids in the main belt, consistent with the range of size ratios of their components and slower rotation rates; and mutual capture for the distant, icy, trans-Neptunian objects, consistent with their large component separations and near-equal sizes. Numerical simulations have successfully reproduced key features of the binaries in the first two categories; the third remains to be investigated in detail.

  5. Binaries in globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin

    1992-01-01

    Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.

  6. From Binaries to Triples

    NASA Astrophysics Data System (ADS)

    Freismuth, T.; Tokovinin, A.

    2002-12-01

    About 10% of all binary systems are close binaries (P<1000 days). Among those with P<10d, over 40% are known to belong to higher-multiplicity systems (triples, quadruples, etc.). Do ALL close systems have tertiary companions? For a selection of 12 nearby, and apparently "single" close binaries with solar-mass dwarf primary components from the 8-th catalogue of spectroscopic binary orbits, images in the B and R filters were taken at the CTIO 0.9m telescope and suitable tertiary candidates were be identified on color-magnitude diagrams (CMDs). Of the 12 SBs, four were found to have tertiary candidates: HD 67084, HD 120734, HD 93486, and VV Mon. However, none of these candidates were found to be common proper motion companions. Follow up observations using adaptive optics reveal a companion to HD 148704. Future observations are planned.

  7. Simulations of Binary Galaxy Mergers and the Link with Fast Rotators, Slow Rotators, and Kinematically Distinct Cores

    NASA Astrophysics Data System (ADS)

    Bois, M.; Emsellem, E.; Bournaud, F.; Alatalo, K.; Blitz, L.; Bureau, M.; Cappellari, M.; Davies, R. L.; Davis, T. A.; de Zeeuw, P. T.; Duc, P.-A.; Khochfar, S.; Krajnović; D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.-M.; Young, L. M.

    2013-10-01

    We study the formation of early-type galaxies (ETGs) through mergers with a sample of 70 high-resolution numerical simulations of binary mergers of disc galaxies. These simulations encompass various mass ratios, initial conditions and orbital parameters. We find that binary mergers of disc galaxies with mass ratios of 3:1 and 6:1 are nearly always classified as Fast Rotators according to the ATLAS3D criterion: they preserve the structure of the input fast rotating spiral progenitors. Major disc mergers (mass ratios of 2:1 and 1:1) lead to both Fast and Slow Rotators. Most of the Slow Rotators hold a stellar Kinematically Distinct Core (KDC) in their 1-3 central kilo-parsec: these KDCs are built from the stellar components of the progenitors. The mass ratio of the progenitors is a fundamental parameter for the formation of Slow Rotators in binary mergers, but it also requires a retrograde spin for the progenitor galaxies with respect to the orbital angular momentum. The importance of the initial spin of the progenitors is also investigated in the library of galaxy mergers of the GalMer project.

  8. Binary technetium halides

    NASA Astrophysics Data System (ADS)

    Johnstone, Erik Vaughan

    In this work, the synthetic and coordination chemistry as well as the physico-chemical properties of binary technetium (Tc) chlorides, bromides, and iodides were investigated. Resulting from these studies was the discovery of five new binary Tc halide phases: alpha/beta-TcCl3, alpha/beta-TcCl 2, and TcI3, and the reinvestigation of the chemistries of TcBr3 and TcX4 (X = Cl, Br). Prior to 2009, the chemistry of binary Tc halides was poorly studied and defined by only three compounds, i.e., TcF6, TcF5, and TcCl4. Today, ten phases are known (i.e., TcF6, TcF5, TcCl4, TcBr 4, TcBr3, TcI3, alpha/beta-TcCl3 and alpha/beta-TcCl2) making the binary halide system of Tc comparable to those of its neighboring elements. Technetium binary halides were synthesized using three methods: reactions of the elements in sealed tubes, reactions of flowing HX(g) (X = Cl, Br, and I) with Tc2(O2CCH3)4Cl2, and thermal decompositions of TcX4 (X = Cl, Br) and alpha-TcCl 3 in sealed tubes under vacuum. Binary Tc halides can be found in various dimensionalities such as molecular solids (TcF6), extended chains (TcF5, TcCl4, alpha/beta-TcCl2, TcBr 3, TcI3), infinite layers (beta-TcCl3), and bidimensional networks of clusters (alpha-TcCl3); eight structure-types with varying degrees of metal-metal interactions are now known. The coordination chemistry of Tc binary halides can resemble that of the adjacent elements: molybdenum and ruthenium (beta-TcCl3, TcBr3, TcI 3), rhenium (TcF5, alpha-TcCl3), platinum (TcCl 4, TcBr4), or can be unique (alpha-TcCl2 and beta-TcCl 2) in respect to other known transition metal binary halides. Technetium binary halides display a range of interesting physical properties that are manifested from their electronic and structural configurations. The thermochemistry of binary Tc halides is extensive. These compounds can selectively volatilize, decompose, disproportionate, or convert to other phases. Ultimately, binary Tc halides may find application in the nuclear fuel

  9. Cool and luminous transients from mass-losing binary stars

    NASA Astrophysics Data System (ADS)

    Pejcha, Ondřej; Metzger, Brian D.; Tomida, Kengo

    2016-02-01

    We study transients produced by equatorial disc-like outflows from catastrophically mass-losing binary stars with an asymptotic velocity and energy deposition rate near the inner edge which are proportional to the binary escape velocity vesc. As a test case, we present the first smoothed-particle radiation-hydrodynamics calculations of the mass loss from the outer Lagrange point with realistic equation of state and opacities. The resulting spiral stream becomes unbound for binary mass ratios 0.06 ≲ q ≲ 0.8. For synchronous binaries with non-degenerate components, the spiral-stream arms merge at a radius of ˜10a, where a is the binary semi-major axis, and the accompanying shock thermalizes about 10 per cent of the kinetic power of the outflow. The mass-losing binary outflows produce luminosities reaching up to ˜106 L⊙ and effective temperatures spanning 500 ≲ Teff ≲ 6000 K, which is compatible with many of the class of recently discovered red transients such as V838 Mon and V1309 Sco. Dust readily forms in the outflow, potentially in a catastrophic global cooling transition. The appearance of the transient is viewing angle-dependent due to vastly different optical depths parallel and perpendicular to the binary plane. We predict a correlation between the peak luminosity and the outflow velocity, which is roughly obeyed by the known red transients. Outflows from mass-losing binaries can produce luminous (105 L⊙) and cool (Teff ≲ 1500 K) transients lasting a year or longer, as has potentially been detected by Spitzer surveys of nearby galaxies.

  10. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  11. Learning binary matroid ports

    SciTech Connect

    Coullard, C.; Hellerstein, L.

    1994-12-31

    Given a binary matroid M specified by a port oracle, we can in polynomial number of calls to the oracle construct a binary representation for M. For general matroids, we can in polynomial number of calls to a port oracle determine whether a given subset is independent (that is, we can simulate an independence oracle with a port oracle). The work is related to a theorem of Lehman on matroid ports, and is motivated by issues in computational learning theory.

  12. Binary-Symmetry Detection

    NASA Technical Reports Server (NTRS)

    Lopez, Hiram

    1987-01-01

    Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.

  13. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  14. Scattering from binary optics

    NASA Technical Reports Server (NTRS)

    Ricks, Douglas W.

    1993-01-01

    There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.

  15. Constraining the Single-degenerate Channel of Type Ia Supernovae with Stable Iron-group Elements in SNR 3C 397

    NASA Astrophysics Data System (ADS)

    Dave, Pranav; Kashyap, Rahul; Fisher, Robert; Timmes, Frank; Townsley, Dean; Byrohl, Chris

    2017-05-01

    Recent Suzaku X-ray spectra of supernova remnant (SNR) 3C 397 indicate enhanced stable iron group element abundances of Ni, Mn, Cr, and Fe. Seeking to address key questions about the progenitor and explosion mechanism of 3C 397, we compute nucleosynthetic yields from a suite of multidimensional hydrodynamics models in the near-Chandrasekhar-mass, single-degenerate paradigm for Type Ia supernovae (SNe Ia). Varying the progenitor white dwarf (WD) internal structure, composition, ignition, and explosion mechanism, we find that the best match to the observed iron peak elements of 3C 397 are dense (central density ≥6 × 109 g cm-3), low-carbon WDs that undergo a weak, centrally ignited deflagration, followed by a subsequent detonation. The amount of 56Ni produced is consistent with a normal or bright normal SNe Ia. A pure deflagration of a centrally ignited, low central density (≃2 × 109 g cm-3) progenitor WD, frequently considered in the literature, is also found to produce good agreement with 3C 397 nucleosynthetic yields, but leads to a subluminous SN Ia event, in conflict with X-ray line width data. Additionally, in contrast to prior work that suggested a large supersolar metallicity for the WD progenitor for SNR 3C 397, we find satisfactory agreement for solar- and subsolar-metallicity progenitors. We discuss a range of implications our results have for the single-degenerate channel.

  16. An Argument for Weakly Magnetized, Slowly Rotating Progenitors of Long Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Moreno Méndez, Enrique

    2014-01-01

    Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BH formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B <~ 102 G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.

  17. An argument for weakly magnetized, slowly rotating progenitors of long gamma-ray bursts

    SciTech Connect

    Moreno Méndez, Enrique

    2014-01-20

    Using binary evolution with Case-C mass transfer, the spins of several black holes (BHs) in X-ray binaries (XBs) have been predicted and confirmed (three cases) by observations. The rotational energy of these BHs is sufficient to power up long gamma-ray bursts (GRBs) and hypernovae (HNe) and still leave a Kerr BH behind. However, strong magnetic fields and/or dynamo effects in the interior of such stars deplete their cores from angular momentum preventing the formation of collapsars. Thus, even though binaries can produce Kerr BHs, most of their rotation is acquired from the stellar mantle, with a long delay between BH formation and spin up. Such binaries would not form GRBs. We study whether the conditions required to produce GRBs can be met by the progenitors of such BHs. Tidal-synchronization and Alfvén timescales are compared for magnetic fields of different intensities threading He stars. A search is made for a magnetic field range that allows tidal spin up all the way in to the stellar core but prevents its slow down during differential rotation phases. The energetics for producing a strong magnetic field during core collapse, which may allow for a GRB central engine, are also estimated. An observationally reasonable choice of parameters is found (B ≲ 10{sup 2} G threading a slowly rotating He star) that allows Fe cores to retain substantial angular momentum. Thus, the Case-C mass-transfer binary channel is capable of explaining long GRBs. However, the progenitors must have low initial spin and low internal magnetic field throughout their H-burning and He-burning phases.

  18. Red supergiants as supernova progenitors

    NASA Astrophysics Data System (ADS)

    Davies, Ben

    2017-09-01

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  19. Age-related macular degeneration

    PubMed Central

    Querques, Giuseppe; Avellis, Fernando Onofrio; Querques, Lea; Bandello, Francesco; Souied, Eric H

    2011-01-01

    Clinical question: Is there any new knowledge about the pathogenesis and treatment of age-related macular degeneration (AMD)? Results: We now understand better the biochemical and pathological pathways involved in the genesis of AMD. Treatment of exudative AMD is based on intravitreal injection of new antivascular endothelial growth factor drugs for which there does not yet exist a unique recognized strategy of administration. No therapies are actually available for atrophic AMD, despite some experimental new pharmacological approaches. Implementation: strategy of administration, safety of intravitreal injection PMID:21654887

  20. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy.

  1. Degeneration of a Nonrecombining Chromosome

    NASA Astrophysics Data System (ADS)

    Rice, William R.

    1994-01-01

    Comparative studies suggest that sex chromosomes begin as ordinary autosomes that happen to carry a major sex determining locus. Over evolutionary time the Y chromosome is selected to stop recombining with the X chromosome, perhaps in response to accumulation of alleles beneficial to the heterogametic but harmful to the homogametic sex. Population genetic theory predicts that a nonrecombining Y chromosome should degenerate. Here this prediction is tested by application of specific selection pressures to Drosophila melanogaster populations. Results demonstrate the decay of a nonrecombining, nascent Y chromosome and the capacity for recombination to ameliorate such decay.

  2. The interface between glial progenitors and gliomas

    PubMed Central

    Canoll, Peter

    2009-01-01

    The mammalian brain and spinal cord contain heterogeneous populations of cycling, immature cells. These include cells with stem cell-like properties as well as progenitors in various stages of early glial differentiation. This latter population is distributed widely throughout gray and white matter and numerically represents an extremely large cell pool. In this review, we discuss the possibility that the glial progenitors that populate the adult CNS are one source of gliomas. Indeed, the marker phenotypes, morphologies, and migratory properties of cells in gliomas strongly resemble glial progenitors in many ways. We review briefly some salient features of normal glial development and then examine the similarities and differences between normal progenitors and cells in gliomas, focusing on the phenotypic plasticity of glial progenitors and the responses to growth factors in promoting proliferation and migration of normal and glioma cells, and discussing known mutational changes in gliomas in the context of how these might affect the proliferative and migratory behaviors of progenitors. Finally, we will discuss the “cancer stem cell” hypothesis in light of the possibility that glial progenitors can generate gliomas. PMID:18784926

  3. Prorenin receptor is critical for nephron progenitors

    PubMed Central

    Song, Renfang; Preston, Graeme; Kidd, Laura; Bushnell, Daniel; Sims-Lucas, Sunder; Bates, Carlton M.; Yosypiv, Ihor V.

    2016-01-01

    Deficient nephrogenesis is the major factor contributing to renal hypoplasia defined as abnormally small kidneys. Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H+-ATPase. Global loss of PRR is lethal in mice and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. To circumvent lethality of the ubiquitous PRR mutation in mice and to determine the potential role of the PRR in nephrogenesis, we generated a mouse model with a conditional deletion of the PRR in Six2+ nephron progenitors and their epithelial derivatives (Six2PRR−/−). Targeted ablation of PRR in Six2+ nephron progenitors caused a marked decrease in the number of developing nephrons, small cystic kidneys and podocyte foot process effacement at birth, and early postnatal death. Reduced congenital nephron endowment resulted from premature depletion of nephron progenitor cell population due to impaired progenitor cell proliferation and loss of normal molecular inductive response to canonical Wnt/β-catenin signaling within the metanephric mesenchyme. At 2 months of age, heterozygous Six2PRR+/− mice exhibited focal glomerulosclerosis, decreased kidney function and massive proteinuria. Collectively, these findings demonstrate a cell-autonomous requirement for the PRR within nephron progenitors for progenitor maintenance, progression of nephrogenesis, normal kidney development and function. PMID:26658320

  4. New mouse primary retinal degeneration (rd-3)

    SciTech Connect

    Chang, B.; Hawes, N.L.; Roderick, T.H. ); Heckenlively, J.R. )

    1993-04-01

    A new mouse retinal degeneration that appears to be an excellent candidate for modeling human retinitis pigmentosa is reported. In this degeneration, called rd-3, differentiation proceeds postnatally through 2 weeks, and photoreceptor degeneration starts by 3 weeks. The rod photoreceptor loss is essentially complete by 5 weeks, whereas remnant cone cells are seen through 7 weeks. This is the only mouse homozygous retinal degeneration reported to date in which photoreceptors are initially normal. Crosses with known mouse retinal degenerations rd, Rds, nr, and pcd are negative for retinal degeneration in offspring, and linkage analysis places rd-3 on mouse chromosome 1 at 10 [+-]2.5 cM distal to Akp-1. Homology mapping suggests that the homologous human locus should be on chromosome 1q. 32 refs., 3 figs., 3 tabs.

  5. Mathematical glimpse on the Y chromosome degeneration

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.

    2006-04-01

    The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up sqrt{2} more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

  6. Human neural progenitor cells promote photoreceptor survival in retinal explants.

    PubMed

    Englund-Johansson, Ulrica; Mohlin, Camilla; Liljekvist-Soltic, Ingela; Ekström, Per; Johansson, Kjell

    2010-02-01

    Different types of progenitor and stem cells have been shown to provide neuroprotection in animal models of photoreceptor degeneration. The present study was conducted to investigate whether human neural progenitor cells (HNPCs) have neuroprotective properties on retinal explants models with calpain- and caspase-3-dependent photoreceptor cell death. In the first experiments, HNPCs in a feeder layer were co-cultured for 6 days either with postnatal rd1 mouse or normal rat retinas. Retinal histological sections were used to determine outer nuclear layer (ONL) thickness, and to detect the number of photoreceptors with labeling for calpain activity, cleaved caspase-3 and TUNEL. The ONL thickness of co-cultured rat and rd1 retinas was found to be almost 10% and 40% thicker, respectively, compared to controls. Cell counts of calpain activity, cleaved caspase-3 and TUNEL labeled photoreceptors in both models revealed a 30-50% decrease when co-cultured with HNPCs. The results represent significant increases of photoreceptor survival in the co-cultured retinas. In the second experiments, for an identification of putative survival factors, or a combination of them, a growth factor profile was performed on conditioned medium. The relative levels of various growth factors were analyzed by densitometric measurements of growth factor array membranes. Following growth factors were identified as most potential survival factors; granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GMCSF), insulin-like growth factor II (IGF-II), neurotrophic factor 3 (NT-3), placental growth factor (PIGF), transforming growth factors (TGF-beta1 and TGF-beta2) and vascular endothelial growth factor (VEGF-D). HNPCs protect both against calpain- and caspase-3-dependent photoreceptor cell death in the rd1 mouse and against caspase-3-dependent photoreceptor cell death in normal rat retinas in vitro. The protective effect is possibly achieved by a variety of

  7. INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe

    SciTech Connect

    Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.; Chevalier, R.; Hurley, K.; Hughes, J. P.; Fransson, C.; Barthelmy, S.; Cummings, J.; Briggs, M.; Connaughton, V.; Costa, E.; Del Monte, E. [INAF and others

    2012-06-01

    We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a 'normal' SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate M-dot < 2 x 10{sup -9} M{sub Sun }yr{sup -1} (3{sigma} c.l.) for wind velocity v{sub w} = 100 km s{sup -1}. Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if {approx}> 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n{sub CSM} < 150 cm{sup -3}) for 2 Multiplication-Sign 10{sup 15} {approx}< R {approx}< 5 Multiplication-Sign 10{sup 16} cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites.

  8. [Pathogenesis of age-related macular degeneration].

    PubMed

    Kaarniranta, Kai; Seitsonen, Sanna; Paimela, Tuomas; Meri, Seppo; Immonen, Ilkka

    2009-01-01

    Age-related macular degeneration is a multiform disease of the macula, the region responsible for detailed central vision. In recent years, plenty of new knowledge of the pathogenesis of this disease has been obtained, and the treatment of exudative macular degeneration has greatly progressed. The number of patients with age-related macular degeneration will multiply in the following decades, because knowledge of mechanisms of development of macular degeneration that could be subject to therapeutic measures is insufficient. Central underlying factors are genetic inheritance, exposure of the retina to chronic oxidative stress and accumulation of inflammation-inducing harmful proteins into or outside of retinal cells.

  9. Solar System binaries

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    The discovery of binaries in each of the major populations of minor bodies in the solar system is propelling a rapid growth of heretofore unattainable physical information. The availability of mass and density constraints for minor bodies opens the door to studies of internal structure, comparisons with meteorite samples, and correlations between bulk-physical and surface-spectral properties. The number of known binaries is now more than 70 and is growing rapidly. A smaller number have had the extensive followup observations needed to derive mass and albedo information, but this list is growing as well. It will soon be the case that we will know more about the physical parameters of objects in the Kuiper Belt than has been known about asteroids in the Main Belt for the last 200 years. Another important aspect of binaries is understanding the mechanisms that lead to their formation and survival. The relative sizes and separations of binaries in the different minor body populations point to more than one mechanism for forming bound pairs. Collisions appear to play a major role in the Main Belt. Rotational and/or tidal fission may be important in the Near Earth population. For the Kuiper Belt, capture in multi-body interactions may be the preferred formation mechanism. However, all of these conclusions remain tentative and limited by observational and theoretical incompleteness. Observational techniques for identifying binaries are equally varied. High angular resolution observations from space and from the ground are critical for detection of the relatively distant binaries in the Main Belt and the Kuiper Belt. Radar has been the most productive method for detection of Near Earth binaries. Lightcurve analysis is an independent technique that is capable of exploring phase space inaccessible to direct observations. Finally, spacecraft flybys have played a crucial paradigm-changing role with discoveries that unlocked this now-burgeoning field.

  10. Suppression of the accretion rate in thin discs around binary black holes

    NASA Astrophysics Data System (ADS)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  11. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  12. Electron-capture supernovae exploding within their progenitor wind

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Tominaga, Nozomu; Langer, Norbert; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.

    2014-09-01

    The most massive stars on the asymptotic giant branch (AGB), or the so-called super-AGB stars, are thought to produce supernovae triggered by electron captures in their degenerate O+Ne+Mg cores. Super-AGB stars are expected to have slow winds with high mass-loss rates, so their circumstellar density is high. The explosions of super-AGB stars are therefore presumed to occur in this dense circumstellar environment. We provide the first synthetic light curves for such events by exploding realistic electron-capture supernova progenitors within their super-AGB winds. We find that the early light curve - that is, before the recombination wave reaches the bottom of the hydrogen-rich envelope of supernova ejecta (the plateau phase) - is not affected by the dense wind. However, after the luminosity drop following the plateau phase, the luminosity remains much higher when the super-AGB wind is taken into account. We compare our results to the historical light curve of SN 1054, the progenitor of the Crab Nebula, and show that the explosion of an electron-capture supernova within an ordinary super-AGB wind can explain the observed light curve features. We conclude that SN 1054 could have been a Type IIn supernova without any extra extreme mass loss, which was previously suggested to be necessary to account for its early high luminosity. We also show that our light curves match Type IIn supernovae with an early plateau phase or the so-called Type IIn-P supernovae, and suggest that they are electron-capture supernovae within super-AGB winds. Although some electron-capture supernovae can be bright in the optical spectral range due to the large progenitor radius, their X-ray luminosity from the interaction does not necessarily get as bright as other Type IIn supernovae whose optical luminosities are also powered by the interaction. Thus, we suggest that optically bright X-ray-faint Type IIn supernovae can emerge from electron-capture supernovae. Optically faint Type IIn supernovae

  13. A genetic analysis of neural progenitor differentiation.

    PubMed

    Geschwind, D H; Ou, J; Easterday, M C; Dougherty, J D; Jackson, R L; Chen, Z; Antoine, H; Terskikh, A; Weissman, I L; Nelson, S F; Kornblum, H I

    2001-02-01

    Genetic mechanisms regulating CNS progenitor function and differentiation are not well understood. We have used microarrays derived from a representational difference analysis (RDA) subtraction in a heterogeneous stem cell culture system to systematically study the gene expression patterns of CNS progenitors. This analysis identified both known and novel genes enriched in progenitor cultures. In situ hybridization in a subset of clones demonstrated that many of these genes were expressed preferentially in germinal zones, some showing distinct ventricular or subventricular zone labeling. Several genes were also enriched in hematopoietic stem cells, suggesting an overlap of gene expression in neural and hematopoietic progenitors. This combination of methods demonstrates the power of using custom microarrays derived from RDA-subtracted libraries for both gene discovery and gene expression analysis in the central nervous system.

  14. Inflammatory profiles in canine intervertebral disc degeneration.

    PubMed

    Willems, Nicole; Tellegen, Anna R; Bergknut, Niklas; Creemers, Laura B; Wolfswinkel, Jeannette; Freudigmann, Christian; Benz, Karin; Grinwis, Guy C M; Tryfonidou, Marianna A; Meij, Björn P

    2016-01-13

    Intervertebral disc (IVD) disease is a common spinal disorder in dogs and degeneration and inflammation are significant components of the pathological cascade. Only limited studies have studied the cytokine and chemokine profiles in IVD degeneration in dogs, and mainly focused on gene expression. A better understanding is needed in order to develop biological therapies that address both pain and degeneration in IVD disease. Therefore, in this study, we determined the levels of prostaglandin E2 (PGE2), cytokines, chemokines, and matrix components in IVDs from chondrodystrophic (CD) and non-chondrodystrophic (NCD) dogs with and without clinical signs of IVD disease, and correlated these to degeneration grade (according to Pfirrmann), or herniation type (according to Hansen). In addition, we investigated cyclooxygenase 2 (COX-2) expression and signs of inflammation in histological IVD samples of CD and NCD dogs. PGE2 levels were significantly higher in the nucleus pulposus (NP) of degenerated IVDs compared with non-degenerated IVDs, and in herniated IVDs from NCD dogs compared with non-herniated IVDs of NCD dogs. COX-2 expression in the NP and annulus fibrosus (AF), and proliferation of fibroblasts and numbers of macrophages in the AF significantly increased with increased degeneration grade. GAG content did not significantly change with degeneration grade or herniation type. Cytokines interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, immune protein (IP)-10, tumor necrosis factor (TNF)-α, and granulocyte macrophage colony-stimulating factor (GM-CSF) were not detectable in the samples. Chemokine (C-C) motif ligand (CCL)2 levels in the NP from extruded samples were significantly higher compared with the AF of these samples and the NP from protrusion samples. PGE2 levels and CCL2 levels in degenerated and herniated IVDs were significantly higher compared with non-degenerated and non-herniated IVDs. COX-2 expression in the NP and AF and reactive changes in the

  15. The ELM Survey. VI. Eleven New Double Degenerates

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Kilic, Mukremin; Brown, Warren R.; Canton, Paul; Kenyon, Scott J.

    2015-10-01

    We present the discovery of 11 new double degenerate systems containing extremely low-mass white dwarfs (ELM WDs). Our radial velocity observations confirm that all of the targets have orbital periods ≤slant 1 day. We perform spectroscopic fits and provide a complete set of physical and binary parameters. We review and compare recent evolutionary calculations and estimate that the systematic uncertainty in our mass determinations due to differences in the evolutionary models is small (≈ 0.01 M⊙). Five of the new systems will merge due to gravitational wave radiation within a Hubble time, bringing the total number of merger systems found in the ELM Survey to 38. We examine the ensemble properties of the current sample of ELM WD binaries, including the period distribution as a function of effective temperature, and the implications for the future evolution of these systems. We also revisit the empirical boundaries of instability strip of ELM WDs and identify new pulsating ELM WD candidates. Finally, we consider the kinematic properties of our sample of ELM WDs and estimate that a significant fraction of the WDs from the ELM Survey are members of the Galactic halo. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  16. Circulating Vascular Progenitor Cells in Moyamoya Disease

    PubMed Central

    Kang, Hyun-Seung; Wang, Kyu-Chang

    2015-01-01

    Various approaches have been attempted in translational moyamoya disease research. One promising material for modeling and treating this disease is vascular progenitor cells, which can be acquired and expanded from patient peripheral blood. These cells may provide a novel experimental model and enable us to obtain insights regarding moyamoya disease pathogenesis. We briefly present the recent accomplishments in regard to the studies of vascular progenitor cells in moyamoya disease. PMID:26180610

  17. Hybrid vitronectin-mimicking polycaprolactone scaffolds for human retinal progenitor cell differentiation and transplantation.

    PubMed

    Lawley, Elodie; Baranov, Petr; Young, Michael

    2015-01-01

    Many advances have been made in an attempt to treat retinal degenerative diseases, such as age-related macular degeneration and retinitis pigmentosa. The irreversible loss of photoreceptors is common to both, and currently no restorative clinical treatment exists. It has been shown that retinal progenitor and photoreceptor precursor cell transplantation can rescue the retinal structure and function. Importantly, retinal progenitor cells can be collected from the developing neural retina with further expansion and additional modification in vitro, and the delivery into the degenerative host can be performed as a single-cell suspension injection or as a complex graft transplantation. Previously, we have described several polymer scaffolds for culture and transplantation of retinal progenitor cells of both mouse and human origin. This tissue engineering strategy increases donor cell survival and integration. We have also shown that biodegradable poly(ɛ-caprolactone) induces mature photoreceptor differentiation from human retinal progenitor cells. However, poor adhesive properties limit its use, and therefore it requires additional surface modification. The aim of this work was to study vitronectin-mimicking oligopeptides (Synthemax II-SC) poly(ɛ-caprolactone) films and their effects on human retinal progenitor cell adhesion, proliferation, and differentiation. Here, we show that the incorporation of vitronectin-mimicking oligopeptide into poly(ɛ-caprolactone) leads to dose-dependent increases in cell adhesion; the optimum dose identified as 30 µg/ml. Inhibition of human retinal progenitor cells proliferation was seen on poly(ɛ-caprolactone) and was maintained with the hybrid scaffold. This has been shown to be beneficial for driving cell differentiation. Additionally, we observed equal expression of Nrl, rhodopsin, recoverin, and rod outer membrane 1 after differentiation on the hybrid scaffold as compared to the standard fibronectin coating of poly

  18. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  19. Binary and Millisecond Pulsars.

    PubMed

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44) orbit around an unevolved companion.

  20. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  1. Binary catalogue of exoplanets

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  2. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  3. THE PROGENITOR MASS OF SN 2011dh FROM STELLAR POPULATION ANALYSIS

    SciTech Connect

    Murphy, Jeremiah W.; Jennings, Zachary G.; Williams, Benjamin; Dalcanton, Julianne J.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

    2011-11-20

    Using Hubble Space Telescope photometry, we characterize the age of the stellar association in the vicinity of supernova (SN) 2011dh and use it to infer the zero-age main-sequence mass (M{sub ZAMS}) of the progenitor star. We find two distinct and significant star formation (SF) events with ages of <6 and 17{sup +3}{sub -4} Myr, and the corresponding M{sub ZAMS} are >29 and 13{sup +2}{sub -1} M{sub Sun }, respectively. These two bursts represent 18{sup +4}{sub -9}% (young) and 64{sup +10}{sub -14}% (old) of the total SF in the last 50 Myr. Adopting these fractions as probabilities suggests that the most probable M{sub ZAMS} is 13{sup +2}{sub -1} M{sub Sun }. These results are most sensitive to the luminosity function along the well-understood main sequence (MS) and are less sensitive to uncertain late-stage stellar evolution. Therefore, they stand even if the progenitor suffered disruptive post-MS evolution (e.g., eruptive mass loss or binary Roche-lobe overflow). Progenitor identification will help to further constrain the appropriate population. Even though pre-explosion images show a yellow supergiant (YSG) at the site of the SN, panchromatic SN light curves suggest a more compact star as the progenitor. In spite of this, our results suggest an association between the YSG and the SN. Not only was the star located at the SN site, but reinforcing an association, the star's bolometric luminosity is consistent with the final evolutionary stage of the 17 Myr old starburst. If the YSG disappears, then M{sub ZAMS} = 13{sup +2}{sub -1} M{sub Sun }, but if it persists, then our results allow the possibility that the progenitor was an unseen star of >29 M{sub Sun }.

  4. Exact propagators for some degenerate hyperbolic operators

    NASA Astrophysics Data System (ADS)

    Beals, Richard; Kannai, Yakar

    2006-10-01

    Exact propagators are obtained for the degenerate second order hyperbolic operators ∂2 t - t 2 l Δ x , l=1,2,..., by analytic continuation from the degenerate elliptic operators ∂2 t + t 2 l Δ x . The partial Fourier transforms are also obtained in closed form, leading to integral transform formulas for certain combinations of Bessel functions and modified Bessel functions.

  5. The molecular basis of intervertebral disc degeneration.

    PubMed

    Kepler, Christopher K; Ponnappan, Ravi K; Tannoury, Chadi A; Risbud, Marakand V; Anderson, David G

    2013-03-01

    Intervertebral disc (IVD) degeneration remains a clinically important condition for which treatment is costly and relatively ineffective. The molecular basis of degenerative disc disease has been an intense focus of research recently, which has greatly increased our understanding of the biology underlying this process. To review the current understanding of the molecular basis of disc degeneration. Review article. A literature review was performed to identify recent investigations and current knowledge regarding the molecular basis of IVD degeneration. The unique structural requirements and biochemical properties of the disc contribute to its propensity toward degeneration. Mounting evidence suggests that genetic factors account for up to 75% of individual susceptibility to IVD degeneration, far more than the environmental factors such as occupational exposure or smoking that were previously suspected to figure prominently in this process. Decreased extracellular matrix production, increased production of degradative enzymes, and increased expression of inflammatory cytokines contribute to the loss of structural integrity and accelerate IVD degeneration. Neurovascular ingrowth occurs, in part, because of the changing degenerative phenotype. A detailed understanding of the biology of IVD degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Although significant advances have been made in explaining the biologic mediators of disc degeneration, the inhospitable biochemical environment of the IVD remains a challenging environment for biological therapies. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. What Is Age-Related Macular Degeneration?

    MedlinePlus

    ... To Protect Against Macular Degeneration Jan 27, 2016 Eye Exercises May Improve Vision Around Blind Spot Sep 29, 2015 Could Stem Cells Cure Blindness Caused by Macular Degeneration? Sep 29, 2015 Fighting the Signs of Aging? Don’t Forget the Eyes Sep 11, ... Follow The Academy Professionals: Education ...

  7. Kinetics of degenerate atomic gases

    NASA Astrophysics Data System (ADS)

    Geist, W.; You, L.; Kennedy, T. A. B.

    1998-05-01

    Using the Uehling-Uhlenbeck, or quantum Boltzmann equation, we discuss the kinetics and evaporative cooling of quantum degenerate gases confined in magnetic traps with cylindrical symmetry. We study the full nonergodic time evolution and compare with results obtained by making the ergodic or continuum energy approximation(C. W. Gardiner, P. Zoller, R. J. Ballagh, M. J. Davis, ``Quantum kinetic theory. Simulation of the quantum Boltzmann master equation'', Phys. Rev. A 56), 575 (1997).. We report evidence of strongly non-ergodic distribution functions, whose relaxation times do not coincide with other characteristic timescales, but depend on trap anisotropy. We also report our study of condensate growth which exhibits the same qualitative behaviour as observed in a recent experiment(H. J. Miesner, D. M. Stamper, M. R. Andrews, D. S. Durfee, S. Inouve, W. Ketterle, ``Bosonic stimulation in the formation of a Bose-Einstein condensate'', (preprint).). Preliminary results for sympathetic cooling of fermions by bosons will also be presented.

  8. Regularized degenerate multi-solitons

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Fring, Andreas

    2016-09-01

    We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

  9. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  10. Binary and Millisecond Pulsars.

    PubMed

    Lorimer, Duncan R

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  11. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  12. Identification list of binaries

    NASA Astrophysics Data System (ADS)

    Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.

    The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.

  13. Beam scanning binary logic

    NASA Astrophysics Data System (ADS)

    Itoh, Hideo; Mukai, Seiji; Watanabe, Masanobu; Mori, Masahiko; Yajima, Hiroyoshi

    1990-07-01

    A beam-scanning laser diode (BSLD) is presently applied to a novel optoelectronic logic operation, designated 'beam-scanning binary logic' (BSBL), that covers the implementation of both the basic logic gates and a spatial code encoder for photodetection, while allowing a greater reduction of the number of active devices than ordinary binary logic operations. BSBL executes multifunctional logic operations simultaneously. The data connections between logic gates in BSLD are flexible, due to the ability to electrically control both output power and laser-beam direction.

  14. T Tauri Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Dudorov, A. E.; Eretnova, O. V.

    2017-06-01

    The Hertzsprung-Russell diagram, the excess radius-age, and the eccentricity-period relations are constructed for double-lined spectroscopic T Tauri binaries. The masses and the ages of the classical T Tauri and the weak-line T Tauri stars are compared. All components of T Tauri stars have the excess radius in comparison with initial Main Sequence stars of corresponding mass. The younger the star the more excess radius it has. The overwhelming majority of close binaries (P<10d) have eccentricity near to zero. The fraction of quadruple systems in our sample are higher than for Main Sequence stars.

  15. Neural reprogramming in retinal degenerations

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Anderson, James R.; Kinard, Krista; Marshak, David W.; Wilson, John H.; Wensel, Theodore; Lucas, Robert J.

    2008-01-01

    Purpose Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. We sought to explore the functional expression of ionotropic (iGluR) and group III, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degenerations. Methods Excitation mapping with organic cations and computational molecular phenotyping were used to determine whether retinal neurons displayed functional glutamate receptor signaling in rodent models of retinal degenerations and a sample of human RP. Results After photoreceptor loss in rodent models of RP, bipolar cells lose mGluR6 and iGluR glutamate-activated currents, while amacrine and ganglion cells retain iGluR-mediated responsivity. Paradoxically, amacrine and ganglion cells show spontaneous iGluR signals in vivo even though bipolar cells lack glutamate-coupled depolarization mechanisms. Cone survival can rescue iGluR expression by OFF bipolar cells. In a case of human RP with cone sparing, iGluR signaling appeared intact, but the numbers of bipolar cells expressing functional iGluRs was double that of normal retina. Conclusions RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some non-glutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late-RP photoreceptor transplant attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function. PMID:17591910

  16. Clinicopathological correlations in corticobasal degeneration.

    PubMed

    Lee, Suzee E; Rabinovici, Gil D; Mayo, Mary Catherine; Wilson, Stephen M; Seeley, William W; DeArmond, Stephen J; Huang, Eric J; Trojanowski, John Q; Growdon, Matthew E; Jang, Jung Y; Sidhu, Manu; See, Tricia M; Karydas, Anna M; Gorno-Tempini, Maria-Luisa; Boxer, Adam L; Weiner, Michael W; Geschwind, Michael D; Rankin, Katherine P; Miller, Bruce L

    2011-08-01

    To characterize cognitive and behavioral features, physical findings, and brain atrophy patterns in pathology-proven corticobasal degeneration (CBD) and corticobasal syndrome (CBS) with known histopathology. We reviewed clinical and magnetic resonance imaging data in all patients evaluated at our center with either an autopsy diagnosis of CBD (n = 18) or clinical CBS at first presentation with known histopathology (n = 40). Atrophy patterns were compared using voxel-based morphometry. CBD was associated with 4 clinical syndromes: progressive nonfluent aphasia (n = 5), behavioral variant frontotemporal dementia (n = 5), executive-motor (n = 7), and posterior cortical atrophy (n = 1). Behavioral or cognitive problems were the initial symptoms in 15 of 18 patients; less than half exhibited early motor findings. Compared to controls, CBD patients showed atrophy in dorsal prefrontal and perirolandic cortex, striatum, and brainstem (p < 0.001 uncorrected). The most common pathologic substrates for clinical CBS were CBD (35%), Alzheimer disease (AD, 23%), progressive supranuclear palsy (13%), and frontotemporal lobar degeneration (FTLD) with TDP inclusions (13%). CBS was associated with perirolandic atrophy irrespective of underlying pathology. In CBS due to FTLD (tau or TDP), atrophy extended into prefrontal cortex, striatum, and brainstem, whereas in CBS due to AD, atrophy extended into temporoparietal cortex and precuneus (p < 0.001 uncorrected). Frontal lobe involvement is characteristic of CBD, and in many patients frontal, not parietal or basal ganglia, symptoms dominate early stage disease. CBS is driven by medial perirolandic dysfunction, but this anatomy is not specific to a single underlying histopathology. Antemortem prediction of CBD will remain challenging until clinical features of CBD are redefined, and sensitive, specific biomarkers are identified. Copyright © 2011 American Neurological Association.

  17. Clinicopathological correlations in corticobasal degeneration

    PubMed Central

    Lee, Suzee E.; Rabinovici, Gil D.; Mayo, Mary Catherine; Wilson, Stephen M.; Seeley, William W.; DeArmond, Stephen J.; Huang, Eric J.; Trojanowski, John Q.; Growdon, Matthew E.; Jang, Jung Y.; Sidhu, Manu; See, Tricia M.; Karydas, Anna M.; Gorno-Tempini, Maria-Luisa; Boxer, Adam L.; Weiner, Michael W.; Geschwind, Michael D.; Rankin, Katherine P.; Miller, Bruce L.

    2011-01-01

    Objective To characterize cognitive and behavioral features, physical findings and brain atrophy patterns in pathology-proven corticobasal degeneration (CBD) and corticobasal syndrome (CBS) with known histopathology. Methods We reviewed clinical and MRI data in all patients evaluated at our center with either an autopsy diagnosis of CBD (n=18) or clinical CBS at first presentation with known histopathology (n=40). Atrophy patterns were compared using voxel-based morphometry. Results CBD was associated with four clinical syndromes: progressive nonfluent aphasia (5), behavioral variant frontotemporal dementia (5), executive-motor (7), and posterior cortical atrophy (1). Behavioral or cognitive problems were the initial symptoms in 15/18 patients; less than half exhibited early motor findings. Compared to controls, CBD patients showed atrophy in dorsal prefrontal and peri-rolandic cortex, striatum and brainstem (p<0.001 uncorrected). The most common pathologic substrates for clinical CBS were CBD (35%), Alzheimer’s disease (AD, 23%), progressive supranuclear palsy (13%), and frontotemporal lobar degeneration (FTLD) with TDP inclusions (13%). CBS was associated with perirolandic atrophy irrespective of underlying pathology. In CBS due to FTLD (tau or TDP), atrophy extended into prefrontal cortex, striatum and brainstem, while in CBS due to AD, atrophy extended into temporoparietal cortex and precuneus (p<0.001 uncorrected). Interpretation Frontal lobe involvement is characteristic of CBD, and in many patients frontal, not parietal or basal ganglia symptoms, dominate early-stage disease. CBS is driven by medial peri-rolandic dysfunction, but this anatomy is not specific to one single underlying histopathology. Antemortem prediction of CBD will remain challenging until clinical features of CBD are redefined, and sensitive, specific biomarkers are identified. PMID:21823158

  18. Origin of the Napoleon's hat nebula around SN1987A and implications for the progenitor

    NASA Astrophysics Data System (ADS)

    Podsiadlowski, Ph.; Fabian, A. C.; Stevens, I. R.

    1991-11-01

    A simple geometrical model for the emission nebula around SN1987A, whose morphology has been likened to Napoleon's hat, is presented. The model consists of a ring and a truncated double cone. When the effects of light travel time are included, the model reproduces the important topological structures of the nebula and makes detailed quantitative predictions for its future appearance. In particular, the hat-shaped northern rim is simply explained as the interaction of the light front with the northern cone. To explain the origin of the double cone, it is argued that the progenitor of SN1987A was in a binary system: its strong wind, colliding with a weaker wind from the companion star, created an asymptotic shock surface that was spread out into the required geometry by the rotation of the binary.

  19. Astrophysical Implications of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Camp, J. B.

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  20. Astrophysical Implications of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  1. Implications of the Low Binary Black Hole Aligned Spins Observed by LIGO

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Piran, Tsvi

    2017-06-01

    We explore the implications of the low-spin components along the orbital axis observed in an Advanced LIGO O1 run on binary black hole (BBH) merger scenarios in which the merging BBHs have evolved from field binaries. The coalescence time determines the initial orbital separation of BBHs. This, in turn, determines whether the stars are synchronized before collapse, and hence determines their projected spins. Short coalescence times imply synchronization and large spins. Among known stellar objects, Wolf-Rayet (WR) stars seem to be the only progenitors consistent with the low aligned spins observed in LIGO’s O1, provided that the orbital axis maintains its direction during the collapse. We calculate the spin distribution of BBH mergers in the local universe, and its redshift evolution for WR progenitors. Assuming that the BBH formation rate peaks around a redshift of ˜2-3, we show that BBH mergers in the local universe are dominated by low-spin events. The high-spin population starts to dominate at a redshift of ˜0.5-1.5. WR stars are also progenitors of long gamma-ray bursts that take place at a comparable rate to BBH mergers. We discuss the possible connection between the two phenomena. Additionally, we show that hypothetical Population III star progenitors are also possible. Although WR and Population III progenitors are consistent with the current data, both models predict a non-vanishing fraction of high positive values of the BBHs’ aligned spin. If those are not detected within the coming LIGO/Virgo runs, it will be unlikely that the observed BBHs formed via field binaries.

  2. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428.

    PubMed

    Santander-García, M; Rodríguez-Gil, P; Corradi, R L M; Jones, D; Miszalski, B; Boffin, H M J; Rubio-Díez, M M; Kotze, M M

    2015-03-05

    The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

  3. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Rodríguez-Gil, P.; Corradi, R. L. M.; Jones, D.; Miszalski, B.; Boffin, H. M. J.; Rubio-Díez, M. M.; Kotze, M. M.

    2015-03-01

    The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ~1.76, which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4. This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

  4. One-armed Spiral Instability in Double-degenerate Post-merger Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kashyap, Rahul; Fisher, Robert; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2017-05-01

    Increasing observational and theoretical evidence points to binary white dwarf (WD) mergers as the origin of some, if not most, normal Type Ia supernovae (SNe Ia). In this paper, we discuss the post-merger evolution of binary WD mergers and their relevance to the double-degenerate channel of SNe Ia. We present 3D simulations of carbon-oxygen (C/O) WD binary systems undergoing unstable mass transfer, where we vary both the total mass and the mass ratio. We demonstrate that these systems generally give rise to a one-armed gravitational spiral instability. The spiral density modes transport mass and angular momentum in the disk even in the absence of a magnetic field and are most pronounced in systems with secondary-to-primary mass ratios larger than 0.6. We further analyze carbon burning in these systems to assess the possibility of detonation. Unlike the case of a 1.1+1.0 {M}⊙ C/O WD binary, we find that WD binary systems with lower mass and smaller mass ratios do not detonate as SNe Ia up to ˜8-22 outer dynamical times. Two additional models do, however, undergo net heating, and their secular increase in temperature could possibly result in a detonation on timescales longer than those considered here.

  5. Genetics Home Reference: age-related macular degeneration

    MedlinePlus

    ... Health Conditions age-related macular degeneration age-related macular degeneration Printable PDF Open All Close All Enable Javascript ... view the expand/collapse boxes. Description Age-related macular degeneration is an eye disease that is a leading ...

  6. Binary coding for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu

    2004-10-01

    Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.

  7. Eclipsing Binary Update, No. 2.

    NASA Astrophysics Data System (ADS)

    Williams, D. B.

    1996-01-01

    Contents: 1. Wrong again! The elusive period of DHK 41. 2. Stars observed and not observed. 3. Eclipsing binary chart information. 4. Eclipsing binary news and notes. 5. A note on SS Arietis. 6. Featured star: TX Ursae Majoris.

  8. Structure formation through self-gravitational instability in degenerate and non-degenerate anisotropic magnetized plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana

    2017-04-01

    The self-gravitational instability is examined for non-degenerate and degenerate magnetized plasma. In the case of non-degenerate collisionless magnetized plasma the pressure is considered as anisotropic while in the case of degenerate situations it is taken as isotropic. The effect of finite Larmor radius correction of non-degenerate ions and viscous dissipation is taken into account in both the cases. Firstly in non-degenerate anisotropic plasma the conventional magnetohydrodynamic model is used to construct basic set of equations within the framework of modified Chew-Goldberger and Low theory. Secondly, in the case of degenerate isotropic plasma, which is considered to be composed of degenerate electrons and non-degenerate ions, the model equations are constructed using quantum magneto hydrodynamic model. The dynamics of degenerate particles are governed by Bohm and exchange potentials. The general dispersion relations are derived for both degenerate and non-degenerate situations separately using linearized perturbation equations. The results are discussed analytically and numerically for various modes of propagation. In case of non degenerate strongly magnetized plasma the effects of stress tensor anisotropy dominate over the influence of FLR effects while the FLR effects prevail in the weak magnetic field region. In case of isotropic degenerate plasma the implications of exchange parameter on the Jeans mass have been estimated and it is found that the increase in exchange parameter increases the limit of Jeans mass. The Jeans length and Jeans mass have been estimated for the white dwarf stars as LJ ≈ 2.1 × 10^{11} m and MJ ≈ 5 × 10^{39} kg respectively assist the existence of super Chandrasekhar white dwarfs.

  9. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  10. Orbits For Sixteen Binaries

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Z.; Novakovic, B.

    2006-12-01

    In this paper orbits for 13 binaries are recalculated and presented. The reason is that recent observations show higher residuals than the corresponding ephemerides calculated by using the orbital elements given in the Sixth Catalog of Orbits of Visual Binary Stars. The binaries studied were: WDS 00182+7257 = A 803, WDS 00335+4006 = HO 3, WDS 00583+2124 = BU 302, WDS 01011+6022 = A 926, WDS 01014+1155 = BU 867, WDS 01112+4113 = A 655, WDS 01361-2954 + HJ 3447, WDS 02333+5219 = STT 42 AB, WDS 04362+0814 = A 1840 AB, WDS 08017-0836 = A 1580, WDS 08277-0425 = A 550, WDS 17471+1742 = STF 2215 and WDS 18025+4414 = BU 1127 Aa-B. In addition, for three binaries - WDS 01532+1526 = BU 260, WDS 02563+7253 =STF 312 AB and WDS 05003+3924 = STT 92 AB - the orbital elements are calculated for the first time. In this paper the authors present not only the orbital elements, but the masses, dynamical parallaxes, absolute magnitudes and ephemerides for the next five years, as well.

  11. The Progenitors of Type Ia Supernovae and the Related Objects

    NASA Astrophysics Data System (ADS)

    Wang, B.

    2011-01-01

    Type Ia supernovae (SNe Ia) are good cosmological distance indicators due to their high luminosities and remarkable uniformity, and thus are used for determining cosmological parameters. However, several key issues related to the nature of their progenitor systems are still not well understood. In this thesis, the progenitors of SNe Ia and the related objects are systematically investigated. Some main results are obtained as follows: (1) Recent observations implicate that about half of SNe Ia explode soon after starburst, with delay times less than 100 Myr, but previous models do not predict the young populations of SNe Ia. The WD + He model is proposed to solve this mystery. In this model, a carbon-oxygen WD (CO WD) accretes material from a He main sequence (MS) star or a He subgiant to increase its mass to the Chandrasekhar mass limit. It is found that this scenario can explain SNe Ia with short delay times (<100 Myr). (2) The progenitor model of SNe Ia with long delay times is systematically studied. It is found that SNe Ia from the WD + MS and WD + RG channels can contribute to the old populations (>1 Gyr) of SNe Ia, in which the WD + MS channel may be the main contributor. (3) It is found that the Galactic SN Ia birthrate from the double-degenerate (DD) model is close to those inferred from observations, while the birthrate from the single-degenerate (SD) model (including the contribution from the WD + MS, WD + RG and WD+He star channels) accounts for only about 1/2~2/3 of the observations. In these SD models, the WD + He star channel produces 14% of all SNe Ia, which constitutes the weak bimodality suggested by recent observations. (4) The companions in these SD models would survive after SN explosion. However, there has been no conclusive proof yet that any individual object is the surviving companion of a SN Ia. We show the distributions of many properties of the surviving companion stars of these SD models at the moment of SN explosion in the Galaxy. The

  12. Prorenin receptor is critical for nephron progenitors.

    PubMed

    Song, Renfang; Preston, Graeme; Kidd, Laura; Bushnell, Daniel; Sims-Lucas, Sunder; Bates, Carlton M; Yosypiv, Ihor V

    2016-01-15

    Deficient nephrogenesis is the major factor contributing to renal hypoplasia defined as abnormally small kidneys. Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H(+)-ATPase. Global loss of PRR is lethal in mice and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. To circumvent lethality of the ubiquitous PRR mutation in mice and to determine the potential role of the PRR in nephrogenesis, we generated a mouse model with a conditional deletion of the PRR in Six2(+) nephron progenitors and their epithelial derivatives (Six2(PRR-/-)). Targeted ablation of PRR in Six2(+) nephron progenitors caused a marked decrease in the number of developing nephrons, small cystic kidneys and podocyte foot process effacement at birth, and early postnatal death. Reduced congenital nephron endowment resulted from premature depletion of nephron progenitor cell population due to impaired progenitor cell proliferation and loss of normal molecular inductive response to canonical Wnt/β-catenin signaling within the metanephric mesenchyme. At 2 months of age, heterozygous Six2(PRR+/-) mice exhibited focal glomerulosclerosis, decreased kidney function and massive proteinuria. Collectively, these findings demonstrate a cell-autonomous requirement for the PRR within nephron progenitors for progenitor maintenance, progression of nephrogenesis, normal kidney development and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Planetary systems in binaries

    NASA Astrophysics Data System (ADS)

    Takeda, Genya

    In this thesis we investigate the orbital evolution of planets in binaries. Unlike our own Solar System, at least one out of five planetary systems known to date is associated with additional stellar companions. Despite their large distances from the planetary systems, these stellar companions play an important role in significantly altering the planetary architecture over very long timescales. Most of the planets in binaries are found in hierarchical configurations in which a planet orbits around a component of a wide stellar binary. The evolution of such hierarchical triples has been analytically understood through the framework of the Kozai mechanism, in which the orbital eccentricity of a planet secularly grows through angular momentum exchange with the stellar companion. The aim of our first study is to investigate the global effect of stellar companions in exciting planetary eccentricities through the Kozai mechanism, using synthetic eccentricity distributions computed numerically from various initial assumptions motivated by observational studies. As inferred from observations and theoretical planet formation simulations, newly formed planetary systems are more likely to be oligarchic, containing multiple giant planets. However, the long-term evolution of gravitationally coupled planets perturbed by a stellar companion has been little understood in the previous studies. From a large ensemble of numerical integrations of double-planet systems in binaries, we have found that there are various evolutionary classes of multiple planets in binaries compared to simple hierarchical triple systems containing only one planet. Using the Kozai mechanism and the Laplace-Lagrange secular theory, we also provide analytic criteria that can readily predict the secular evolutionary behavior of a pair of planetary orbits in binaries. In the last part of this thesis we discuss an alternative channel of planetary migration induced by a combined effect of dissipative tidal forces

  14. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues.

  15. Correlated binary regression with covariates specific to each binary observation.

    PubMed

    Prentice, R L

    1988-12-01

    Regression methods are considered for the analysis of correlated binary data when each binary observation may have its own covariates. It is argued that binary response models that condition on some or all binary responses in a given "block" are useful for studying certain types of dependencies, but not for the estimation of marginal response probabilities or pairwise correlations. Fully parametric approaches to these latter problems appear to be unduly complicated except in such special cases as the analysis of paired binary data. Hence, a generalized estimating equation approach is advocated for inference on response probabilities and correlations. Illustrations involving both small and large block sizes are provided.

  16. Panchromatic Observations of SN2011dh Point to a Compact Progenitor Star

    NASA Technical Reports Server (NTRS)

    Soderberg, A. M.; Margutti, R.; Zauerer, B. A.; Krauss, M.; Katz, B.; Chomiuk, L.; Dittmann, J. A.; Nakar, E.; Sakamoto, T.; Kawai, N.; hide

    2011-01-01

    We report the discovery and detailed monitoring of X-ray emission associated with the Type IIb SN2011dh using data from the Swift and Chandra satellites, placing it among the best studied X-ray supernovae to date. We further present millimeter and radio data obtained with the SMA, CARMA, and EVLA during the first three weeks after explosion. Combining these observations with early optical photometry, we show that the panchromatic dataset is well-described by non-thermal synchrotron emission (radio/mm) with inverse Compton scattering (X-ray) of a thermal population of optical photons. We derive the properties of the shockwave and the circumstellar environment and find a time-averaged shock velocity of v approximately equals 0.1c and a progenitor mass loss rate of M-dot approximately equals 6 X 10 (exp 5) Solar M/ yr (wind velocity, v(sub w) = 1000 km/s). We show that these properties are consistent with the sub-class of Type IIb supernovae characterized by compact progenitors (Type cIIb) and dissimilar from those with extended progenitors (Type eIIb). Furthermore, we consider the early optical emission in the context of a cooling envelope model to estimate a progenitor radius of R(sub star) approximately equals 10(exp 11) cm, in line with the expectations for a Type cIIb supernova. Together, these diagnostics suggest that the putative yellow supergiant progenitor star identified in archival HST observations is instead a binary companion or unrelated to the supernova. Finally, we searched for the high energy shock breakout pulse using X-ray and gamma-ray observations obtained during the purported explosion date range. Based on the compact radius of the progenitor, we estimate that the shock breakout pulse was detectable with current instruments but likely missed due to their limited temporal/ spatial coverage. Future all-sky missions will regularly detect shock breakout emission from compact SN progenitors enabling prompt follow-up observations of the shockwave with

  17. Type IIb Supernova 2013df Entering into an Interaction Phase: A Link between the Progenitor and the Mass Loss

    NASA Astrophysics Data System (ADS)

    Maeda, K.; Hattori, T.; Milisavljevic, D.; Folatelli, G.; Drout, M. R.; Kuncarayakti, H.; Margutti, R.; Kamble, A.; Soderberg, A.; Tanaka, M.; Kawabata, M.; Kawabata, K. S.; Yamanaka, M.; Nomoto, K.; Kim, J. H.; Simon, J. D.; Phillips, M. M.; Parrent, J.; Nakaoka, T.; Moriya, T. J.; Suzuki, A.; Takaki, K.; Ishigaki, M.; Sakon, I.; Tajitsu, A.; Iye, M.

    2015-07-01

    We report the late-time evolution of Type IIb supernova (SN IIb) 2013df. SN 2013df showed a dramatic change in its spectral features at ˜1 yr after the explosion. Early on it showed typical characteristics shared by SNe IIb/Ib/Ic dominated by metal emission lines, while later on it was dominated by broad and flat-topped Hα and He i emissions. The late-time spectra are strikingly similar to SN IIb 1993J, which is the only previous example clearly showing the same transition. This late-time evolution is fully explained by a change in the energy input from the 56Co decay to the interaction between the SN ejecta and dense circumstellar matter (CSM). The mass-loss rate is derived to be ˜ (5.4+/- 3.2)× {10}-5 {M}⊙ yr-1 (for the wind velocity of ˜20 km s-1), similar to SN 1993J but larger than SN IIb 2011dh by an order of magnitude. The striking similarity between SNe IIb 2013df and 1993J in the (candidate) progenitors and the CSM environments and the contrast in these natures to SN 2011dh infer that there is a link between the natures of the progenitor and the mass loss: SNe IIb with a more extended progenitor have experienced a much stronger mass loss in the final centuries toward the explosion. It might indicate that SNe IIb from a more extended progenitor are the explosions during a strong binary interaction phase, while those from a less extended progenitor have a delay between the strong binary interaction and the explosion. Based on data collected at the Subaru Telescope, operated by the National Astronomical Observatory of Japan, and also at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  18. Astrometric Binaries: White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  19. Sortilin Participates in Light-dependent Photoreceptor Degeneration in Vivo

    PubMed Central

    Martín-Oliva, David; de la Villa, Pedro; Cuadros, Miguel A.; Frade, José M.

    2012-01-01

    Both proNGF and the neurotrophin receptor p75 (p75NTR) are known to regulate photoreceptor cell death caused by exposure of albino mice to intense illumination. ProNGF-induced apoptosis requires the participation of sortilin as a necessary p75NTR co-receptor, suggesting that sortilin may participate in the photoreceptor degeneration triggered by intense lighting. We report here that light-exposed albino mice showed sortilin, p75NTR, and proNGF expression in the outer nuclear layer, the retinal layer where photoreceptor cell bodies are located. In addition, cone progenitor-derived 661W cells subjected to intense illumination expressed sortilin and p75NTR and released proNGF into the culture medium. Pharmacological blockade of sortilin with either neurotensin or the “pro” domain of proNGF (pro-peptide) favored the survival of 661W cells subjected to intense light. In vivo, the pro-peptide attenuated retinal cell death in light-exposed albino mice. We propose that an auto/paracrine proapoptotic mechanism based on the interaction of proNGF with the receptor complex p75NTR/sortilin participates in intense light-dependent photoreceptor cell death. We therefore propose sortilin as a putative target for intervention in hereditary retinal dystrophies. PMID:22558402

  20. Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation.

    PubMed

    Xu, Leyan; Ryu, Jiwon; Hiel, Hakim; Menon, Adarsh; Aggarwal, Ayushi; Rha, Elizabeth; Mahairaki, Vasiliki; Cummings, Brian J; Koliatsos, Vassilis E

    2015-05-14

    Diffuse axonal injury is an extremely common type of traumatic brain injury encountered in motor vehicle crashes, sports injuries, and in combat. Although many cases of diffuse axonal injury result in chronic disability, there are no current treatments for this condition. Its basic lesion, traumatic axonal injury, has been aggressively modeled in primate and rodent animal models. The inexorable axonal and perikaryal degeneration and dysmyelination often encountered in traumatic axonal injury calls for regenerative therapies, including therapies based on stem cells and precursors. Here we explore the proof of concept that treatments based on transplants of human oligodendrocyte progenitor cells can replace or remodel myelin and, eventually, contribute to axonal regeneration in traumatic axonal injury. We derived human oligodendrocyte progenitor cells from the human embryonic stem cell line H9, purified and characterized them. We then transplanted these human oligodendrocyte progenitor cells into the deep sensorimotor cortex next to the corpus callosum of nude rats subjected to traumatic axonal injury based on the impact acceleration model of Marmarou. We explored the time course and spatial distribution of differentiation and structural integration of these cells in rat forebrain. At the time of transplantation, over 90 % of human oligodendrocyte progenitor cells expressed A2B5, PDGFR, NG2, O4, Olig2 and Sox10, a profile consistent with their progenitor or early oligodendrocyte status. After transplantation, these cells survived well and migrated massively via the corpus callosum in both injured and uninjured brains. Human oligodendrocyte progenitor cells displayed a striking preference for white matter tracts and were contained almost exclusively in the corpus callosum and external capsule, the striatopallidal striae, and cortical layer 6. Over 3 months, human oligodendrocyte progenitor cells progressively matured into myelin basic protein(+) and adenomatous

  1. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  2. A full likelihood procedure for analysing exchangeable binary data.

    PubMed

    George, E O; Bowman, D

    1995-06-01

    A full-likelihood procedure is proposed for analyzing correlated binary data under the assumption of exchangeability. The binomial and beta-binomial models are shown to occur as special cases correspondingly, respectively, to the choice of degenerate and beta-mixing distributions. For a finite exchangeable binary sequence of random variables, expressions for the joint distribution, moments, and correlations of all orders are derived. Maximum likelihood estimates of the moments of all orders are computed and used to estimate correlations and the distribution of the number of responses in a cluster. In an application to developmental toxicology data analysis, the procedure introduced is compared with a beta-binomial and a generalized estimating equation procedure in which mean response and intralitter correlation are linked to dose.

  3. Learning to assign binary weights to binary descriptor

    NASA Astrophysics Data System (ADS)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  4. Activated adult microglia influence retinal progenitor cell proliferation and differentiation toward recoverin-expressing neuron-like cells in a co-culture model.

    PubMed

    Xu, Yunhe; Balasubramaniam, Balini; Copland, David A; Liu, Jian; Armitage, M John; Dick, Andrew D

    2015-07-01

    Microglia contribute to immune homeostasis of the retina, and thus act as a potential regulator determining successful repair or retinal stem cell transplantation. We investigated the interaction between human microglia and retinal progenitor cells in cell co-culture to further our exploration on developing a new therapeutic strategy for retinal degeneration. Microglia and retinal progenitor cultures were developed using CD11b(+) and CD133(+), respectively, from adult donor retina. Microglia activation was developed using interferon-gamma and lipopolysaccharide. Retinal progenitor differentiation was analysed in co-culture with or without microglial activation. Retinal progenitor proliferation was analysed in presence of conditioned medium from activated microglia. Phenotype and function of adult human retinal cell cultures were examined using cell morphology, immunohistochemistry and real-time PCR. By morphology, neuron-like cells generated in co-culture expressed photoreceptor marker recoverin. Neurospheres derived from retinal progenitor cells showed reduced growth in the presence of conditioned medium from activated microglia. Delayed retinal progenitor cell migration and reduced cellular differentiation was observed in co-cultures with activated microglia. In independent experiments, activated microglia showed enhanced mRNA expression of CXCL10, IL-27, IL-6, and TNF-alpha compared to controls. Adult human retina retains retinal progenitors or potential to reprogram cells to then proliferate and differentiate into neuron-like cells in vitro. Human microglia support retinal progenitor differentiation into neuron-like cells, but such capacity is altered following microglial activation. Modulating microglia activity is a potential approach to promote retinal repair and facilitate success of stem-cell transplantation.

  5. Modified gravitational instability of degenerate and non-degenerate dusty plasma

    NASA Astrophysics Data System (ADS)

    Jain, Shweta; Sharma, Prerana

    2016-09-01

    The gravitational instability of strongly coupled dusty plasma (SCDP) is studied considering degenerate and non-degenerate dusty plasma situations. The SCDP system is assumed to be composed of the electrons, ions, neutrals, and strongly coupled dust grains. First, in the high density regime, due to small interparticle distance, the electrons are considered degenerate, whereas the neutrals, dust grains, and ions are treated non-degenerate. In this case, the dynamics of inertialess electrons are managed by Fermi pressure and Bohm potential, while the inertialess ions are by only thermal pressure. Second, in the non-degenerate regime, both the electrons and ions are governed by the thermal pressure. The generalized hydrodynamic model and the normal mode analysis technique are employed to examine the low frequency waves and gravitational instability in both degenerate and non-degenerate cases. The general dispersion relation is discussed for a characteristic timescale which provides two regimes of frequency, i.e., hydrodynamic regime and kinetic regime. Analytical solutions reveal that the collisions reduce the growth rate and have a strong impact on structure formation in both degenerate and non-degenerate circumstances. Numerical estimation on the basis of observed parameters for the degenerate and non-degenerate cases is presented to show the effects of dust-neutral collisions and dust effective velocity in the presence of polarization force. The values of Jeans length and Jeans mass have been estimated for degenerate white dwarfs as Jeans length L J = 1.3 × 10 5 cm and Jeans mass M J = 0.75 × 10 - 3 M⊙ and for non-degenerate laboratory plasma Jeans length L J = 6.86 × 10 16 cm and Jeans mass M J = 0.68 × 10 10 M⊙. The stability of the SCDP system is discussed using the Routh-Hurwitz criterion.

  6. S100B and APP Promote a Gliocentric Shift and Impaired Neurogenesis in Down Syndrome Neural Progenitors

    PubMed Central

    Lu, Jie; Esposito, Giuseppe; Scuderi, Caterina; Steardo, Luca; Delli-Bovi, Laurent C.; Hecht, Jonathan L.; Dickinson, Bryan C.; Chang, Christopher J.; Mori, Takashi; Sheen, Volney

    2011-01-01

    Down syndrome (DS) is a developmental disorder associated with mental retardation (MR) and early onset Alzheimer's disease (AD). These CNS phenotypes are attributed to ongoing neuronal degeneration due to constitutive overexpression of chromosome 21 (HSA21) genes. We have previously shown that HSA21 associated S100B contributes to oxidative stress and apoptosis in DS human neural progenitors (HNPs). Here we show that DS HNPs isolated from fetal frontal cortex demonstrate not only disturbances in redox states within the mitochondria and increased levels of progenitor cell death but also transition to more gliocentric progenitor phenotypes with a consequent reduction in neuronogenesis. HSA21 associated S100B and amyloid precursor protein (APP) levels are simultaneously increased within DS HNPs, their secretions are synergistically enhanced in a paracrine fashion, and overexpressions of these proteins disrupt mitochondrial membrane potentials and redox states. HNPs show greater susceptibility to these proteins as compared to neurons, leading to cell death. Ongoing inflammation through APP and S100B overexpression further promotes a gliocentric HNPs phenotype. Thus, the loss in neuronal numbers seen in DS is not merely due to increased HNPs cell death and neurodegeneration, but also a fundamental gliocentric shift in the progenitor pool that impairs neuronal production. PMID:21779383

  7. S100B and APP promote a gliocentric shift and impaired neurogenesis in Down syndrome neural progenitors.

    PubMed

    Lu, Jie; Esposito, Giuseppe; Scuderi, Caterina; Steardo, Luca; Delli-Bovi, Laurent C; Hecht, Jonathan L; Dickinson, Bryan C; Chang, Christopher J; Mori, Takashi; Sheen, Volney

    2011-01-01

    Down syndrome (DS) is a developmental disorder associated with mental retardation (MR) and early onset Alzheimer's disease (AD). These CNS phenotypes are attributed to ongoing neuronal degeneration due to constitutive overexpression of chromosome 21 (HSA21) genes. We have previously shown that HSA21 associated S100B contributes to oxidative stress and apoptosis in DS human neural progenitors (HNPs). Here we show that DS HNPs isolated from fetal frontal cortex demonstrate not only disturbances in redox states within the mitochondria and increased levels of progenitor cell death but also transition to more gliocentric progenitor phenotypes with a consequent reduction in neuronogenesis. HSA21 associated S100B and amyloid precursor protein (APP) levels are simultaneously increased within DS HNPs, their secretions are synergistically enhanced in a paracrine fashion, and overexpressions of these proteins disrupt mitochondrial membrane potentials and redox states. HNPs show greater susceptibility to these proteins as compared to neurons, leading to cell death. Ongoing inflammation through APP and S100B overexpression further promotes a gliocentric HNPs phenotype. Thus, the loss in neuronal numbers seen in DS is not merely due to increased HNPs cell death and neurodegeneration, but also a fundamental gliocentric shift in the progenitor pool that impairs neuronal production.

  8. Molecular Therapy for Disk Degeneration and Pain

    PubMed Central

    Mwale, Fackson

    2013-01-01

    The nucleus pulposus of the intervertebral disk contains high amounts of the proteoglycan aggrecan, which confers the disk with a remarkable ability to resist compression. Other molecules such as collagens and noncollagenous proteins in the extracellular matrix are also essential for function. During disk degeneration, aggrecan and other molecules are lost due to proteolysis. This can result in loss of disk height, which can ultimately lead to pain. Biological therapy of intervertebral disk degeneration aims at preventing or restoring primarily aggrecan content and other molecules using therapeutic molecules. The purpose of the article is to review recent advances in biological repair of degenerate disks and pain. PMID:24436869

  9. Total absorption by degenerate critical coupling

    SciTech Connect

    Piper, Jessica R. Liu, Victor; Fan, Shanhui

    2014-06-23

    We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.

  10. Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-01-01

    Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  11. DUST IN A TYPE Ia SUPERNOVA PROGENITOR: SPITZER SPECTROSCOPY OF KEPLER'S SUPERNOVA REMNANT

    SciTech Connect

    Williams, Brian J.; Borkowski, Kazimierz J.; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-08-10

    Characterization of the relatively poorly understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's supernova remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 {mu}m infrared (IR) spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 {mu}m, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the asymptotic giant branch stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength Infrared Spectrograph and Infrared Array Camera data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally heated dust emission from fast shocks (>1000 km s{sup -1}) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are {approx}80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km s{sup -1}) into moderate density material (n{sub 0} {approx} 50-250 cm{sup -3}) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  12. X-RAY EMISSION FROM THE BINARY CENTRAL STARS OF THE PLANETARY NEBULAE HFG 1, DS 1, AND LOTR 5

    SciTech Connect

    Montez, Rodolfo; Kastner, Joel H.; De Marco, Orsola; Chu, You-Hua

    2010-10-01

    Close binary systems undergoing mass transfer or common envelope interactions can account for the morphological properties of some planetary nebulae. The search for close binary companions in planetary nebulae is hindered by the difficulty of detecting cool, late-type, main-sequence companions in binary systems with hot pre-white-dwarf primaries. However, models of binary planetary nebula progenitor systems predict that mass accretion or tidal interactions can induce rapid rotation in the companion, leading to X-ray-emitting coronae. To test such models, we have searched for, and detected, X-ray emission from three binary central stars within planetary nebulae: the post-common envelope close binaries in HFG 1 and DS 1 consisting of O-type subdwarfs with late-type, main-sequence companions and the binary system in LoTr 5 consisting of O-type subdwarf and rapidly rotating, late-type giant companion. The X-ray emission in each case is best characterized by spectral models consisting of two optically thin thermal plasma components with characteristic temperatures of {approx}10 MK and 15-40 MK and total X-ray luminosities {approx}10{sup 30} erg s{sup -1}. We consider the possible origin of the X-ray emission from these binary systems and conclude that the most likely origin is, in each case, a corona around the late-type companion, as predicted by models of interacting binaries.

  13. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model.

    PubMed

    Lavasani, Mitra; Robinson, Andria R; Lu, Aiping; Song, Minjung; Feduska, Joseph M; Ahani, Bahar; Tilstra, Jeremy S; Feldman, Chelsea H; Robbins, Paul D; Niedernhofer, Laura J; Huard, Johnny

    2012-01-03

    With ageing, there is a loss of adult stem cell function. However, there is no direct evidence that this has a causal role in ageing-related decline. We tested this using muscle-derived stem/progenitor cells (MDSPCs) in a murine progeria model. Here we show that MDSPCs from old and progeroid mice are defective in proliferation and multilineage differentiation. Intraperitoneal administration of MDSPCs, isolated from young wild-type mice, to progeroid mice confer significant lifespan and healthspan extension. The transplanted MDSPCs improve degenerative changes and vascularization in tissues where donor cells are not detected, suggesting that their therapeutic effect may be mediated by secreted factor(s). Indeed, young wild-type-MDSPCs rescue proliferation and differentiation defects of aged MDSPCs when co-cultured. These results establish that adult stem/progenitor cell dysfunction contributes to ageing-related degeneration and suggests a therapeutic potential of post-natal stem cells to extend health.

  14. Very Degenerate Higgsino Dark Matter

    DOE PAGES

    Chun, Eung Jin; Jung, Sunghoon; Park, Jong-Chul

    2017-01-03

    In this paper, we present a study of the Very Degenerate Higgsino Dark Matter (DM), whose mass splitting between the lightest neutral and charged components is O(1) MeV, much smaller than radiative splitting of 355 MeV. The scenario is realized in the minimal supersymmetric standard model by small gaugino mixings. In contrast to the pure Higgsino DM with the radiative splitting only, various observable signatures with distinct features are induced. First of all, the very small mass splitting makes (a) sizable Sommerfeld enhancement and Ramsauer-Townsend (RT) suppression relevant to ~1 TeV Higgsino DM, and (b) Sommerfeld-Ramsauer-Townsend effect saturate at lowermore » velocities v/c ≲ 10-3. As a result, annihilation signals can be large enough to be observed from the galactic center and/or dwarf galaxies, while the relative signal sizes can vary depending on the locations of Sommerfeld peaks and RT dips. In addition, at collider experiments, stable chargino signatures can be searched for to probe the model in the future. Finally, DM direct detection signals, however, depend on the Wino mass; even no detectable signals can be induced if the Wino is heavier than about 10 TeV.« less

  15. Very Degenerate Higgsino Dark Matter

    NASA Astrophysics Data System (ADS)

    Chun, Eung Jin; Jung, Sunghoon; Park, Jong-Chul

    2017-01-01

    We present a study of the Very Degenerate Higgsino Dark Matter (DM), whose mass splitting between the lightest neutral and charged components is O(1) MeV, much smaller than radiative splitting of 355 MeV. The scenario is realized in the minimal supersymmetric standard model by small gaugino mixings. In contrast to the pure Higgsino DM with the radiative splitting only, various observable signatures with distinct features are induced. First of all, the very small mass splitting makes (a) sizable Sommerfeld enhancement and Ramsauer-Townsend (RT) suppression relevant to ˜1 TeV Higgsino DM, and (b) Sommerfeld-Ramsauer-Townsend effect saturate at lower velocities v/c ≲ 10-3. As a result, annihilation signals can be large enough to be observed from the galactic center and/or dwarf galaxies, while the relative signal sizes can vary depending on the locations of Sommerfeld peaks and RT dips. In addition, at collider experiments, stable chargino signatures can be searched for to probe the model in the future. DM direct detection signals, however, depend on the Wino mass; even no detectable signals can be induced if the Wino is heavier than about 10 TeV.

  16. Degeneration of Biogenic Superparamagnetic Magnetite

    SciTech Connect

    Li, Dr. Yi-Liang; Pfiffner, Susan M.; Dyar, Dr. M Darby; Vali, Dr. Hojatolah; Konhauser, Dr, Kurt; Cole, David R; Rondinone, Adam Justin; Phelps, Tommy Joe

    2009-01-01

    ABSTRACT. Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 hours incubation and 5-year storage were investigated with transmission electron microscopy, M ssbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 hour and 5-year crystals are 8.4164 and 8.3774 , respectively. The M ssbauer spectra indicated that the 265 hour magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.9901Fe2+ 1.0149O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.3875Fe2+0.4188O4). Such crystal-hemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases(fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.

  17. Accretion Disks in Algols: Progenitors and Evolution

    NASA Astrophysics Data System (ADS)

    van Rensbergen, W.; de Greve, J. P.

    2017-02-01

    There are only a few Algols with derived accretion disk parameters. These measurements provide additional constraints for tracing the origin of individual systems. With a modified binary evolution code, series of close binary evolution were calculated. For six Algols with accretion disks we found initial systems that evolve closely into the presently observed system parameters and disk characteristics.

  18. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  19. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  20. The Progenitor of GW150914

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    2016-06-01

    The spectacular detection of gravitational waves (GWs) from GW150914 and its reported association with a gamma-ray burst (GRB) offer new insights into the evolution of massive stars. Here, it is shown that no single star of any mass and credible metallicity is likely to produce the observed GW signal. Stars with helium cores in the mass range 35-133 M ⊙ encounter the pair instability and either explode or pulse until the core mass is less than 45 M ⊙, smaller than the combined mass of the observed black holes. The rotation of more massive helium cores is either braked by interaction with a slowly rotating hydrogen envelope, if one is present, or by mass loss, if one is not. The very short interval between the GW signal and the observed onset of the putative GRB in GW150914 is also too short to have come from a single star. A more probable model for making the gravitational radiation is the delayed merger of two black holes made by 70 and 90 M ⊙ stars in a binary system. The more massive component was a pulsational-pair instability supernova before making the first black hole.

  1. NEA rotations and binaries

    NASA Astrophysics Data System (ADS)

    Pravec, Petr; Harris, A. W.; Warner, B. D.

    2007-05-01

    Of nearly 3900 near-Earth asteroids known in June 2006, 325 have got estimated rotation periods. NEAs with sizes down to 10 meters have been sampled. Observed spin distribution shows a major changing point around D=200 m. Larger NEAs show a barrier against spin rates >11 d-1 (period P~2.2 h) that shifts to slower rates with increasing equatorial elongation. The spin barrier is interpreted as a critical spin rate for bodies held together by self-gravitation only, suggesting that NEAs larger than 200 m are mostly strenghtless bodies (i.e., with zero tensile strength), so called `rubble piles'. The barrier disappears at D<200 m where most objects rotate too fast to be held together by self-gravitation only, so a non-zero cohesion is implied in the smaller NEAs. The distribution of NEA spin rates in the `rubble pile' range (D>0.2 km) is non-Maxwellian, suggesting that other mechanisms than just collisions worked there. There is a pile up in front of the barrier (P of 2-3 h). It may be related to a spin up mechanism crowding asteroids to the barrier. An excess of slow rotators is seen at P>30 h. The spin-down mechanism has no clear lower limit on spin rate; periods as long as tens of days occur. Most NEAs appear to be in basic spin states with rotation around the principal axis. Excited rotations are present among and actually dominate in slow rotators with damping timescales >4.5 byr. A few tumblers observed among fast rotating coherent objects consistently appear to be more rigid or younger than the larger, rubble-pile tumblers. An abundant population of binary systems among NEAs has been found. The fraction of binaries among NEAs larger than 0.3 km has been estimated to be 15 +/-4%. Primaries of the binary systems concentrate at fast spin rates (periods 2-3 h) and low amplitudes, i.e., they lie just below the spin barrier. The total angular momentum content in the binary systems suggests that they formed at the critical spin rate, and that little or no angular

  2. The ELM Survey: Finding the Shortest Period Binary White Dwarfs

    NASA Astrophysics Data System (ADS)

    Canton, Paul; Gianninas, Alexandros; Kilic, Mukremin; Brown, Warren; Kenyon, Scott

    2014-08-01

    A new discovery space for short period binary white dwarfs has opened up with the availability of 14,600 deg^2 of SDSS Data Release 9 photometry. The Extremely Low-Mass (ELM) Survey takes advantage of this photometry and SDSS spectroscopy to identify compact systems with 1 hour or shorter orbital periods. To significantly increase the number of merging white dwarf systems known, we have proposed to obtain follow- up spectroscopic observations of all candidates with g ≤ 19 mag and photometric colors consistent with extremely low-mass (≤ 0.3 M_⊙) white dwarfs. Most of our 2012A Hale and 2012B KP 4m observing runs were lost to weather, yet we managed to identify at least one new short period binary. Our 2013A run on the KP 4m was successful in identifying many new ELM white dwarfs, and in our 2013B follow-up run we observed two new 3 hour binaries while also obtaining further data on a number of other merging systems. Here we propose to continue our program by observing our fall targets on the KP 4m telescope to constrain their binary orbital periods. Our two major science goals are to discover detached gravitational wave sources for fundamental tests of general relativity, and to constrain the formation rate and space density of merging white dwarfs. The latter is important for constraining the contribution of double degenerates to Type Ia and underluminous supernovae.

  3. Endothelial progenitor cells in cardiovascular diseases

    PubMed Central

    Lee, Poay Sian Sabrina; Poh, Kian Keong

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome. PMID:25126384

  4. Transient nuclear Prospero induces neural progenitor quiescence.

    PubMed

    Lai, Sen-Lin; Doe, Chris Q

    2014-10-29

    Stem cells can self-renew, differentiate, or enter quiescence. Understanding how stem cells switch between these states is highly relevant for stem cell-based therapeutics. Drosophila neural progenitors (neuroblasts) have been an excellent model for studying self-renewal and differentiation, but quiescence remains poorly understood. In this study, we show that when neuroblasts enter quiescence, the differentiation factor Prospero is transiently detected in the neuroblast nucleus, followed by the establishment of a unique molecular profile lacking most progenitor and differentiation markers. The pulse of low level nuclear Prospero precedes entry into neuroblast quiescence even when the timing of quiescence is advanced or delayed by changing temporal identity factors. Furthermore, loss of Prospero prevents entry into quiescence, whereas a pulse of low level nuclear Prospero can drive proliferating larval neuroblasts into quiescence. We propose that Prospero levels distinguish three progenitor fates: absent for self-renewal, low for quiescence, and high for differentiation.

  5. Neuropeptides: developmental signals in placode progenitor formation.

    PubMed

    Lleras-Forero, Laura; Tambalo, Monica; Christophorou, Nicolas; Chambers, David; Houart, Corinne; Streit, Andrea

    2013-07-29

    Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system.

  6. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  7. The quest for blue supergiants : The evolution of the progenitor of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira; Heger, Alexander

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  8. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    SciTech Connect

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-09-15

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z {approx}< 0.3 from the Sloan Digital Sky Survey Supernova Survey (SDSS-SN), we derive the SN Ia rate as a function of progenitor age (the delay time distribution, DTD). We use the VESPA stellar population synthesis algorithm to analyze the SDSS spectra of all galaxies in the field searched by SDSS-SN, giving us a reference sample of 77,000 galaxies for our SN Ia hosts. Our method does not assume any a priori shape for the DTD and is therefore minimally parametric. We present the DTD in physical units for high-stretch (luminous, slow declining) and low-stretch (subluminous, fast declining) supernovae in three progenitor age bins. We find strong evidence of two progenitor channels: one that produces high-stretch SNe Ia {approx}<400 Myr after the birth of the progenitor system, and one that produces low-stretch SNe Ia with a delay {approx}>2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  9. Microfluidic binary phase flow

    NASA Astrophysics Data System (ADS)

    Angelescu, Dan; Menetrier, Laure; Wong, Joyce; Tabeling, Patrick; Salamitou, Philippe

    2004-03-01

    We present a novel binary phase flow regime where the two phases differ substantially in both their wetting and viscous properties. Optical tracking particles are used in order to investigate the details of such multiphase flow inside capillary channels. We also describe microfluidic filters we have developed, capable of separating the two phases based on capillary pressure. The performance of the filters in separating oil-water emulsions is discussed. Binary phase flow has been previously used in microchannels in applications such as emulsion generation, enhancement of mixing and assembly of custom colloidal paticles. Such microfluidic systems are increasingly used in a number of applications spanning a diverse range of industries, such as biotech, pharmaceuticals and more recently the oil industry.

  10. Binary Love relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-07-01

    When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.

  11. Hamiltonian structure for degenerate AKNS systems

    NASA Astrophysics Data System (ADS)

    Corona-Corona, Gulmaro

    1997-01-01

    There is a family of degenerate AKNS systems for which the full theory of generic AKNS systems does not directly extend. The linear space of potentials still has a natural Poisson structure, but the scattering method used by Beals and Sattinger to show complete integrability for the generic AKNS systems fails for the degenerate case. A Poisson structure is not induced on the scattering side as in the generic case. As a consequence, the problem of complete integrability for degenerate AKNS systems still is an open question. In addition, contrary to the generic case, the Lax pair gives flows for degenerate integrable systems that are nonlocal. In general, they do not exist, and they are no longer linear on the scattering side. Necessary conditions for their existence and for linear evolution in the scattering side are found.

  12. Hamiltonian Structure for Degenerate Akns Systems

    NASA Astrophysics Data System (ADS)

    Corona-Corona, Gulmaro

    1995-01-01

    There is a family of degenerate AKNS systems for which the full theory of generic AKNS systems does not directly extend. The linear space of potentials still has a natural Poisson structure. This is studied by the scattering method used by Richard Beals and D.H. Sattinger (Commun. Math. Phys. 138, 409-436, 1991) to show complete integrability for the generic AKNS systems. This method fails for the degenerate case since a Poisson structure is not induced on the scattering side as in the generic case. As a consequence, the problem of complete integrability for degenerate AKNS systems still is an open question. In addition, contrary to the generic case, the Lax pair gives flows for degenerate integrable systems that are nonlocal. In general they do not exist, and they are no longer linear on the scattering side. Necessary conditions for their existence and for linear evolution of the scattering side are found.

  13. Thermal Properties of Degenerate Relativistic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Homorodean, Laurean

    We present the concentration-temperature phase diagram, characteristic functions, thermal equation of state and heat capacity at constant volume for degenerate ideal gases of relativistic fermions and bosons. The nonrelativistic and ultrarelativistic limits of these laws are also discussed.

  14. Degenerate primer design for highly variable genomes.

    PubMed

    Li, Kelvin; Shrivastava, Susmita; Stockwell, Timothy B

    2015-01-01

    The application of degenerate PCR primers towards target amplification and sequencing is a useful technique when a population of organisms under investigation is evolving rapidly, or is highly diverse. Degenerate bases in these primers are specified with ambiguity codes that represent alternative nucleotide configurations. Degenerate PCR primers allow the simultaneous amplification of a heterogeneous population by providing a mixture of PCR primers each of which anneal to an alternative genotype found in the isolated sample. However, as the number of degenerate bases specified in a pair of primers rises, the likelihood of amplifying unwanted alternative products also increases. These alternative products may confound downstream data analyses if their levels begin to obfuscate the desired PCR products. This chapter describes a set of computational methodologies that may be used to minimize the degeneracy of designed primers, while still maximizing the proportion of genotypes assayed in the targeted population.

  15. Parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  16. Binary Optics Toolkit

    SciTech Connect

    Neal, Daniel

    1996-04-02

    This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.

  17. Processing Of Binary Images

    NASA Astrophysics Data System (ADS)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  18. Quantitative Pfirrmann Disc Degeneration Grading System to Overcome the Limitation of Pfirrmann Disc Degeneration Grade.

    PubMed

    Rim, Dae Cheol

    2016-03-01

    Pfirrmann disc degeneration grade is one of morphologic disc degeneration grading system and it was reliable on routine T2-weighted magnetic resonance (MR) images. The purpose of this study was to evaluate the agreement of Pfirrmann disc degeneration grade, and check the alternative technique of disc degeneration grading system. Fifteen volunteers (4 medical doctors related to spinal disease, 2 medical doctors not related to spinal disease, 6 nurses in spinal hospital, and 3 para-medicines) were included in this study. Three different digitalized MR images were provided all volunteers, and they checked Pfirrmann disc degeneration grade of each disc levels after careful listening to explanation. Indeed, all volunteers checked the signal intensity of disc degeneration at the points of nucleus pulposus (NP), disc membrane, ligaments, fat, and air to modify the quantitative Pfirrmann disc degeneration grade. Total 225 grade results of Pfirrmann disc degeneration grade and 405 signal intensity results of quantitative Pfirrmann disc degeneration grade were analyzed. Average interobserver agreement was "moderate (mean±standard deviation, 0.575±0.251)" from poor to excellent. Completely agreed levels of Pfirrmann disc degeneration grade were only 4 levels (26.67%), and the disagreement levels were observed in 11 levels; two different grades in 8 levels (53.33%) and three different grades in 3 levels (20%). Quantitative Pfirrmann disc degeneration showed relatively cluster distribution with the interobserver deviations of 0.41-1.56 at the ratio of NP and disc membrane, and it showed relatively good cluster and distribution indicating that the proposed grading system has good discrimination ability. Pfirrmann disc degeneration grade showed the limitation of different interobserver results, but this limitation could be overcome by using quantitative techniques of MR signal intensity. Further evaluation is needed to access its advantage and reliabilities.

  19. Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.

    2015-09-01

    Calcium-rich supernovae (Ca-rich SNe) are peculiar low-luminosity SNe Ib with relatively strong Ca spectral lines at ˜2 months after peak brightness. This class also has an extended projected offset distribution, with several members of the class offset from their host galaxies by 30-150 kpc. There is no indication of any stellar population at the SN positions. Using a sample of 13 Ca-rich SNe, we present kinematic evidence that the progenitors of Ca-rich SNe originate near the centres of their host galaxies and are kicked to the locations of the SN explosions. Specifically, SNe with small projected offsets have large line-of-sight velocity shifts as determined by nebular lines, while those with large projected offsets have no significant velocity shifts. Therefore, the velocity shifts must not be primarily the result of the SN explosion. Additionally, nearly every Ca-rich SN is hosted by a galaxy with indications of a recent merger and/or is in a dense environment. We propose a progenitor model which fits all current data: the progenitor system for a Ca-rich SN is a double white dwarf (WD) system where at least one WD has a significant He abundance. This system, through an interaction with a super-massive black hole (SMBH) is ejected from its host galaxy and the binary is hardened, significantly reducing the merger time. After 10-100 Myr (on average), the system explodes with a large physical offset. The rate for such events is significantly enhanced for galaxies which have undergone recent mergers, potentially making Ca-rich SNe new probes of both the galaxy merger rate and (binary) SMBH population.

  20. V1309 Scorpii: merger of a contact binary

    NASA Astrophysics Data System (ADS)

    Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; Ulaczyk, K.

    2011-04-01

    Context. Stellar mergers are expected to take place in numerous circumstences in the evolution of stellar systems. In particular, they are considered as a plausible origin of stellar eruptions of the V838 Mon type. V1309 Sco is the most recent eruption of this type in our Galaxy. The object was discovered in September 2008. Aims: Our aim is to investigate the nature of V1309 Sco. Methods: V1309 Sco has been photometrically observed in course of the OGLE project since August 2001. We analyse these observations in different ways. In particular, periodogram analyses were done to investigate the nature of the observed short-term variability of the progenitor. Results: We find that the progenitor of V1309 Sco was a contact binary with an orbital period of ~1.4 day. This period was decreasing with time. The light curve of the binary was also evolving, indicating that the system evolved towards its merger. The violent phase of the merger, marked by the systematic brightenning of the object, began in March 2008, i.e. half a year before the outburst discovery. We also investigate the observations of V1309 Sco during the outburst and the decline and show that they can be fully accounted for within the merger hypothesis. Conclusions: For the first time in the literature we show from direct observations that contact binaries indeed end up by merging into a single object, as was suggested in numerous theoretical studies of these systems. Our study also shows that stellar mergers indeed result in eruptions of the V838 Mon type. Based on observations obtained with the 1.3-m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution of Washington. The photometric data analysed in the present paper are available from the OGLE Internet archive: ftp://ogle.astrouw.edu.pl/ogle/ogle3/V1309_SCO

  1. Double Eclipsing Binary Fitting

    NASA Astrophysics Data System (ADS)

    Cagas, P.; Pejcha, O.

    2012-06-01

    The parameters of the mutual orbit of eclipsing binaries that are physically connected can be obtained by precision timing of minima over time through light travel time effect, apsidal motion or orbital precession. This, however, requires joint analysis of data from different sources obtained through various techniques and with insufficiently quantified uncertainties. In particular, photometric uncertainties are often underestimated, which yields too small uncertainties in minima timings if determined through analysis of a χ2 surface. The task is even more difficult for double eclipsing binaries, especially those with periods close to a resonance such as CzeV344, where minima get often blended with each other. This code solves the double binary parameters simultaneously and then uses these parameters to determine minima timings (or more specifically O-C values) for individual datasets. In both cases, the uncertainties (or more precisely confidence intervals) are determined through bootstrap resampling of the original data. This procedure to a large extent alleviates the common problem with underestimated photometric uncertainties and provides a check on possible degeneracies in the parameters and the stability of the results. While there are shortcomings to this method as well when compared to Markov Chain Monte Carlo methods, the ease of the implementation of bootstrapping is a significant advantage.

  2. [Presacral schwannoma with degenerated areas ("ancient schwannoma")].

    PubMed

    Netsch, C; Oberhagemann, K; Bach, T; Feyerabend, B; Gross, A J

    2010-10-01

    A presacral, degenerative schwannoma ("ancient schwannoma") is a rare entity. The clinical signs are nonspecific, and a reliable preoperative diagnosis is difficult. Tumor heterogeneity with calcifications may be seen in degenerated schwannomas on MRI or CT but not necessarily. First-line treatment is complete surgical excision. We present the case of a 44-year-old male who required surgery for a presacral mass. Histopathological examination revealed the diagnosis of a schwannoma with degenerated areas.

  3. Neural remodeling in retinal degeneration.

    PubMed

    Marc, Robert E; Jones, Bryan W; Watt, Carl B; Strettoi, Enrica

    2003-09-01

    Mammalian retinal degenerations initiated by gene defects in rods, cones or the retinal pigmented epithelium (RPE) often trigger loss of the sensory retina, effectively leaving the neural retina deafferented. The neural retina responds to this challenge by remodeling, first by subtle changes in neuronal structure and later by large-scale reorganization. Retinal degenerations in the mammalian retina generally progress through three phases. Phase 1 initiates with expression of a primary insult, followed by phase 2 photoreceptor death that ablates the sensory retina via initial photoreceptor stress, phenotype deconstruction, irreversible stress and cell death, including bystander effects or loss of trophic support. The loss of cones heralds phase 3: a protracted period of global remodeling of the remnant neural retina. Remodeling resembles the responses of many CNS assemblies to deafferentation or trauma, and includes neuronal cell death, neuronal and glial migration, elaboration of new neurites and synapses, rewiring of retinal circuits, glial hypertrophy and the evolution of a fibrotic glial seal that isolates the remnant neural retina from the surviving RPE and choroid. In early phase 2, stressed photoreceptors sprout anomalous neurites that often reach the inner plexiform and ganglion cell layers. As death of rods and cones progresses, bipolar and horizontal cells are deafferented and retract most of their dendrites. Horizontal cells develop anomalous axonal processes and dendritic stalks that enter the inner plexiform layer. Dendrite truncation in rod bipolar cells is accompanied by revision of their macromolecular phenotype, including the loss of functioning mGluR6 transduction. After ablation of the sensory retina, Müller cells increase intermediate filament synthesis, forming a dense fibrotic layer in the remnant subretinal space. This layer invests the remnant retina and seals it from access via the choroidal route. Evidence of bipolar cell death begins in

  4. MALIGNANT DEGENERATION IN BURN SCARS

    PubMed Central

    Castañares, Salvador

    1961-01-01

    The malignant potential of burn scars has been recognized since Marjolin's classical description of cancer arising in several types of post-traumatic scars. With improved burn therapy since the last war, there has been a higher survival rate of severe burns with proportionate increase in cancer associated with burn scars. This will create increasing problems of permanent disability and compensation. The younger the patient at the time of the burn, the longer the time required for the cancer to develop. Acute cancer development in burn scars has been reported after a four-week interval. Cancer may develop from six weeks to fifty years or more. The etiology of cancer in burn scars is not known. The most important clinical finding is the fact that most of the burn cancers occur in areas which were not grafted. The most common type of cancer encountered in burn scars is squamous cell carcinoma, which forms in Marjolin ulcers. Basal cell carcinoma may develop in the most superficial of burn scars. Treatment should be directed primarily to prompt and adequate skin grafting in all deep burns in order to prevent malignant degeneration of the burn scars. Once it has developed the treatment is the same as for other malignancies which are not associated with burns. Wide surgical excision with block dissection of the regional lymph nodes when they are involved is the treatment of choice. The prognosis of burn scar cancer is poor, once the process has extended because of early and distant metastasis. ImagesFigure 1.Figure 2.Figure 2.Figure 3.Figure 3.Figure 4. PMID:13691372

  5. Frontotemporal lobar degeneration: current perspectives

    PubMed Central

    Riedl, Lina; Mackenzie, Ian R; Förstl, Hans; Kurz, Alexander; Diehl-Schmid, Janine

    2014-01-01

    The term frontotemporal lobar degeneration (FTLD) refers to a group of progressive brain diseases, which preferentially involve the frontal and temporal lobes. Depending on the primary site of atrophy, the clinical manifestation is dominated by behavior alterations or impairment of language. The onset of symptoms usually occurs before the age of 60 years, and the mean survival from diagnosis varies between 3 and 10 years. The prevalence is estimated at 15 per 100,000 in the population aged between 45 and 65 years, which is similar to the prevalence of Alzheimer’s disease in this age group. There are two major clinical subtypes, behavioral-variant frontotemporal dementia and primary progressive aphasia. The neuropathology underlying the clinical syndromes is also heterogeneous. A common feature is the accumulation of certain neuronal proteins. Of these, the microtubule-associated protein tau (MAPT), the transactive response DNA-binding protein, and the fused in sarcoma protein are most important. Approximately 10% to 30% of FTLD shows an autosomal dominant pattern of inheritance, with mutations in the genes for MAPT, progranulin (GRN), and in the chromosome 9 open reading frame 72 (C9orf72) accounting for more than 80% of familial cases. Although significant advances have been made in recent years regarding diagnostic criteria, clinical assessment instruments, neuropsychological tests, cerebrospinal fluid biomarkers, and brain imaging techniques, the clinical diagnosis remains a challenge. To date, there is no specific pharmacological treatment for FTLD. Some evidence has been provided for serotonin reuptake inhibitors to reduce behavioral disturbances. No large-scale or high-quality studies have been conducted to determine the efficacy of non-pharmacological treatment approaches in FTLD. In view of the limited treatment options, caregiver education and support is currently the most important component of the clinical management. PMID:24600223

  6. Age-related macular degeneration.

    PubMed

    Cheung, Lily K; Eaton, Angie

    2013-08-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and the prevalence of the disease increases exponentially with every decade after age 50 years. It is a multifactorial disease involving a complex interplay of genetic, environmental, metabolic, and functional factors. Besides smoking, hypertension, obesity, and certain dietary habits, a growing body of evidence indicates that inflammation and the immune system may play a key role in the development of the disease. AMD may progress from the early form to the intermediate form and then to the advanced form, where two subtypes exist: the nonneovascular (dry) type and the neovascular (wet) type. The results from the Age-Related Eye Disease Study have shown that for the nonneovascular type of AMD, supplementation with high-dose antioxidants (vitamin C, vitamin E, and β-carotene) and zinc is recommended for those with the intermediate form of AMD in one or both eyes or with advanced AMD or vision loss due to AMD in one eye. As for the neovascular type of the advanced AMD, the current standard of therapy is intravitreal injections of vascular endothelial growth factor inhibitors. In addition, lifestyle and dietary modifications including improved physical activity, reduced daily sodium intake, and reduced intake of solid fats, added sugars, cholesterol, and refined grain foods are recommended. To date, no study has demonstrated that AMD can be cured or effectively prevented. Clearly, more research is needed to fully understand the pathophysiology as well as to develop prevention and treatment strategies for this devastating disease.

  7. Evolution of Cool Close Binaries - Approach to Contact

    NASA Astrophysics Data System (ADS)

    Stępień, K.

    2011-06-01

    As a part of a larger project, a set of 27 evolutionary models of cool close binaries was computed under the assumption that their evolution is influenced by the magnetized winds blowing from both components. Short period binaries with the initial periods of 1.5 d, 2.0 d and 2.5 d were considered. For each period three values of 1.3 Msun, 1.1 Msun and 0.9 Msun were taken as the initial masses of the more massive components. The initial masses of the less massive components were adjusted to avoid extreme mass ratios. Here the results of the computations of the first evolutionary phase are presented, which starts from the initial conditions and ends when the more massive component reaches its critical Roche lobe. In all considered cases this phase lasts for several Gyr. For binaries with the higher total mass and/or longer initial periods this time is equal to, or longer than the main sequence life time of the more massive component. For the remaining binaries it amounts to a substantial fraction of this life time. From the statistical analysis of models, the predicted period distribution of detached binaries with periods shorter than 2 d was obtained and compared to the observed distribution from the ASAS data. An excellent agreement was obtained under the assumption that the period distribution in this range is determined solely by magnetic braking (MB), i.e., the mass and angular momentum loss due to the magnetized winds, as considered in the present paper. This result indicates, in particular, that virtually all cool detached binaries with periods of a few tenths of a day, believed to be the immediate progenitors of W UMa-type stars, were formed from young detached systems with periods around 2-3 d. MB is the dominant formation mechanism of cool contact binaries. It operates on the time scale of several Gyr rendering them rather old, with age of 6-10 Gyr. The results of the present analysis will be used as input data to investigate the subsequent evolution of the

  8. Binary-Signal Recovery

    NASA Technical Reports Server (NTRS)

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  9. The Nova Outburst: Thermonuclear Runaways on Degenerated Dwarfs

    SciTech Connect

    Starrfield, S.; Truran, J.W.; Sparks, W.M.

    1999-07-08

    Observational and theoretical studies of the outbursts of classical novae have provided critical insights into a broad range of astrophysical phenomena. Thermonuclear runaways (TNRs) in accreted hydrogen-rich envelopes on the white dwarf (WD) components of close binary systems constitute not only the outburst mechanism for a classical nova explosion, but also the recurrent novae and a fraction of the symbiotic novae explosions. Studies of the general characteristics of these explosions, both in our own galaxy and in neighboring galaxies of varying metallicity, can teach us about binary stellar evolution, while studies of the evolution of nova binary systems can constrain models for the (as yet unidentified) progenitors of Type Ia supernovae. Further, the empirical relation between the peak luminosity of a nova and the rate of decline, which presents a challenge to theoretical models, allows novae to be utilized as standard candles for distance determinations out to the Virgo Cluster. E xtensive studies of novae with IUE and the resulting abundance determinations have revealed the existence of oxygen-neon white dwarfs in some systems. The high levels of enrichment of novae ejecta in elements ranging from carbon to sulfur confirm that there is significant dredge-up of matter from the core of the underlying white dwarf and enable novae to contribute to the chemical enrichment of the interstellar medium. Observations of the epoch of dust formation in the expanding shells of novae allow important constraints to be placed on the dust formation process and confirm that graphite, SiC, and SiO{sub 2} grains are formed by the outburst. It is possible that grains from novae were injected into the pre-solar nebula and can be identified with some of the pre-solar grains or ''stardust'' found in meteorites. Finally, g-ray observations during the first several years of their outburst, using the next generation of satellite observatories, could confirm

  10. Visual binary stars: data to investigate formation of binaries

    NASA Astrophysics Data System (ADS)

    Kovaleva,, D.; Malkov,, O.; Yungelson, L.; Chulkov, D.

    Statistics of orbital parameters of binary stars as well as statistics of their physical characteristics bear traces of star formation history. However, statistical investigations of binaries are complicated by incomplete or missing observational data and by a number of observational selection effects. Visual binaries are the most common type of observed binary stars, with the number of pairs exceeding 130 000. The most complete list of presently known visual binary stars was compiled by cross-matching objects and combining data of the three largest catalogues of visual binaries. This list was supplemented by the data on parallaxes, multicolor photometry, and spectral characteristics taken from other catalogues. This allowed us to compensate partly for the lack of observational data for these objects. The combined data allowed us to check the validity of observational values and to investigate statistics of the orbital and physical parameters of visual binaries. Corrections for incompleteness of observational data are discussed. The datasets obtained, together with modern distributions of binary parameters, will be used to reconstruct the initial distributions and parameters of the function of star formation for binary systems.

  11. Light Echoes and the Progenitor of SN 2016adj in Cen A

    NASA Astrophysics Data System (ADS)

    Sugerman, Ben; Lawrence, Stephen

    2016-02-01

    The Type Ib/IIb supernova (SN) 2016adj is the fifth closest SN to be discovered during the lifetime of HST. This event offers us a rich variety of rare and unique opportunities, including: (1) identifying the progenitor; (2) mapping the three-dimensional structure and chemical composition of the progenitor's circumstellar and the host galaxy's interstellar environments; and (3) testing models of stellar mass loss and high-mass stellar evolution. The progenitor field of the SN has been observed from the near-UV to the mid-IR with HST and Spitzer, which will immediately allow us to accomplish the first science goal by identifying the progenitor (or establishing its upper limits) once new image with the SN present are taken with both observatories. Preliminary analyses of early-time spectra of SN 2016adj indicate its light is being extinguished by at least A(V)=2-4 magnitudes, meaning it is buried deep within the dust lane of Cen A. Echoes of the SN light off of this dust will allow us to produce high-resolution, three-dimensional maps of the structure and composition of the dust in and around the line-of-sight to the SN, which we will use to accomplish science goals (2)-(3) listed above. In particular, we will directly test the hypothesis that Type Ib/IIb SNe come not from very-high mass stars but from only moderately-massive stars that lost their envelopes to close binary companions. Please note that since echoes pass through a given point in space only once, data are permanently lost for each epoch that is not observed. While we will propose for continued observations in the Cycle 13 call for proposals, most of the science we propose cannot be achieved if the observations in this proposal are not taken before Cycle 13 begins.

  12. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  13. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    SciTech Connect

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.; Cenko, S. Bradley; Schaefer, Gail

    2014-07-20

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R{sub V} and A{sub V} values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  14. Binary Evolution: Roche Lobe Overflow and Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia

    One of the principal mechanisms that is responsible for the origin of blue stragglers is mass transfer that takes place while one of the binary companions overfills its Roche lobe. In this Chapter, we overview the theoretical understanding of mass transfer via Roche lobe overflow: classification, how both the donor and of the accretor respond to the mass transfer on different timescales (adiabatic response, equilibrium response, superadiabatic response, time-dependent response) for different types of their envelopes (convective and radiative). These responses, as well as the assumption on how liberal the process is, are discussed in terms of the stability of the ensuing mass transfer. The predictions of the theory of mass transfer via Roche lobe overflow are then briefly compared with the observed mass-transferring systems with both degenerate and non-degenerate donors. We conclude with the discussion which cases of mass transfer and which primordial binaries could be responsible for blue stragglers formation via Roche lobe overflow, as well as how this can be enhanced for blue stragglers formed in globular clusters

  15. Direct Conversion of Fibroblasts to Megakaryocyte Progenitors.

    PubMed

    Pulecio, Julian; Alejo-Valle, Oriol; Capellera-Garcia, Sandra; Vitaloni, Marianna; Rio, Paula; Mejía-Ramírez, Eva; Caserta, Ilaria; Bueren, Juan A; Flygare, Johan; Raya, Angel

    2016-10-11

    Current sources of platelets for transfusion are insufficient and associated with risk of alloimmunization and blood-borne infection. These limitations could be addressed by the generation of autologous megakaryocytes (MKs) derived in vitro from somatic cells with the ability to engraft and differentiate in vivo. Here, we show that overexpression of a defined set of six transcription factors efficiently converts mouse and human fibroblasts into MK-like progenitors. The transdifferentiated cells are CD41(+), display polylobulated nuclei, have ploidies higher than 4N, form MK colonies, and give rise to platelets in vitro. Moreover, transplantation of MK-like murine progenitor cells into NSG mice results in successful engraftment and further maturation in vivo. Similar results are obtained using disease-corrected fibroblasts from Fanconi anemia patients. Our results combined demonstrate that functional MK progenitors with clinical potential can be obtained in vitro, circumventing the use of hematopoietic progenitors or pluripotent stem cells.

  16. Targeting human oligodendrocyte progenitors for myelin repair.

    PubMed

    Dietz, Karen C; Polanco, Jessie J; Pol, Suyog U; Sim, Fraser J

    2016-09-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.

  17. Binary optics: Trends and limitations

    NASA Astrophysics Data System (ADS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-08-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  18. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  19. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    SciTech Connect

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R.; Murphy, Jeremiah W.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  20. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    SciTech Connect

    Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo

    2014-10-01

    The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ∼10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.

  1. HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE

    DOE PAGES

    Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo

    2014-09-16

    We successfully, applied the induced gravitational collapse (IGC) paradigm to the explanation of GRB-SNe. The progenitor is a tight binary system composed of a CO core and a NS companion. Furthermore, the explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, gravitationally collapsing to a BH with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present the first full numerical simulations of the IGC process. We simulate the core-collapse, the SN explosion, andmore » the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS. For appropriate binary parameters, the IGC occurs in short timescale 102–103 s due to the combined action of photon trapping and neutrino cooling near the NS surface. We also address the observational features of this process.« less

  2. Computational molecular phenotyping of retinal sheet transplants to rats with retinal degeneration

    PubMed Central

    Seiler, M.J.; Jones, B.W.; Aramant, R.B.; Yang, P.B.; Keirstead, H.S.; Marc, R.E.

    2012-01-01

    Retinal progenitor sheet transplants have been shown to extend neuronal processes into a degenerating host retina and to restore visual responses in the brain. The aim of this study was the first attempt to identify cells involved in transplant signals to retinal degenerate hosts using computational molecular phenotyping (CMP). - S334ter line 3 rats received fetal retinal sheet transplants at the age of 24-40d. Donor tissues were incubated with slow-releasing microspheres containing BDNF or GDNF. Up to 265 days after surgery, eyes of selected rats were vibratome sectioned through the transplant area (some slices stained for donor marker hPAP), dehydrated and embedded in Eponate, sectioned into serial ultrathin datasets and probed for rhodopsin, cone opsin, CRALBP, L-glutamate, L-glutamine, glutathione, glycine, taurine, GABA, and DAPI. - In large transplant areas, photoreceptor outer segments in contact with host RPE revealed rod and cone opsin immunoreactivity whereas no such staining was found in the degenerate host retina. Transplant photoreceptor layers contained high taurine levels. Glutamate levels in the transplants were higher than in the host retina whereas GABA levels were similar. The transplant inner nuclear layer showed some loss of neurons, but amacrine cells and horizontal cells were not reduced. In many areas, glial hypertrophy between the host and transplant was absent and host and transplant neuropil appeared to intermingle. CMP data indicate that horizontal cells and both glycinergic and GABAergic amacrine cells are involved in a novel circuit between transplant and host, generating alternative signal pathways between transplant and degenerating host retina. PMID:22594836

  3. The Search for Trojan Binaries

    NASA Astrophysics Data System (ADS)

    Merline, William J.; Tamblyn, P. M.; Dumas, C.; Close, L. M.; Chapman, C. R.; Durda, D. D.; Levison, H. F.; Hamilton, D. P.; Nesvorny, D.; Storrs, A.; Enke, B.; Menard, F.

    2007-10-01

    We report on observations of Jupiter Trojan asteroids in search of binaries. We made observations using HST/ACS of 35 small (V = 17.5-19.5) objects in Cycle 14, without detecting any binaires. We have also observed a few dozen Trojans in our ground-based study of larger Trojans, discovering only one binary. The result is that the frequency of moderately-separated binaries among the Trojans seem rather low, likely less than 5%. Although we have only statistics of small numbers, it appears that the binary frequencies are more akin to the larger Main-Belt asteroids, than to the frequency in the TNO region, which probably exceeds 10%. The low frequency is inconsistent with the projections based on Trojan contact binaries by Mann et al. (2006, BAAS 38, 6509), although our work cannot detect very close or contact binaries. We discovered and characterized the orbit and density of the first Trojan binary, (617) Patroclus using the Gemini AO system (Merline et al. 2001 IAUC 7741). A second binary, (624) Hecktor, has now been reported by Marchis et al. (2006, IAUC 8732). In a broad survey of Main Belt asteroids, we found that, among the larger objects, the binary fraction is about 2%, while we are finding that the fraction is significantly higher among smaller asteroids (and this is even more apparent from lightcurve discoveries). Further, characteristics of these smaller systems indicate a distinctly different formation mechanism the the larger MB binaries. Because the Trojans have compositions that are more like the KBOs, while they live in a collisional environment much more like the Main Belt than the KBOs, these objects should hold vital clues to binary formation mechanics. And because there seems to be a distinct difference in larger and smaller main-belt binaries, we sought to detect such differences among the Trojans as well.

  4. Radio emission from binary stars

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.

    1986-01-01

    This paper reviews the radio emission from binary star systems - the emission processes that occur, the characteristics of the binary systems inferred from the radio observations, and the reasons for the activity. Several classes of binary stars are described including those with two main sequence stars, those with one normal star and a white dwarf, and those containing a neutron star or a black hole.

  5. ON THE APPARENT LACK OF Be X-RAY BINARIES WITH BLACK HOLES

    SciTech Connect

    Belczynski, Krzysztof; Ziolkowski, Janusz E-mail: jz@camk.edu.p

    2009-12-20

    In our Galaxy there are 64 Be X-ray binaries known to date. Out of these, 42 host a neutron star (NS), and for the remainder the nature of the companion is unknown. None, so far, are known to host a black hole (BH). There seems to be no apparent mechanism that would prevent formation or detection of Be stars with BHs. This disparity is referred to as a missing Be-BH X-ray binary problem. We point out that current evolutionary scenarios that lead to the formation of Be X-ray binaries predict that the ratio of binaries with NSs to the ones with BHs is rather high, F{sub NStoBH} approx 10-50, with the more likely formation models providing the values at the high end. The ratio is a natural outcome of (1) the stellar initial mass function that produces more NSs than BHs and (2) common envelope evolution (i.e., a major mechanism involved in the formation of interacting binaries) that naturally selects progenitors of Be X-ray binaries with NSs (binaries with comparable mass components have more likely survival probabilities) over ones with BHs (which are much more likely to be common envelope mergers). A comparison of this ratio (i.e., F{sub NStoBH} approx 30) with the number of confirmed Be-NS X-ray binaries (42) indicates that the expected number of Be-BH X-ray binaries is of the order of only approx0-2. This is entirely consistent with the observed Galactic sample.

  6. Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Watt, C B; Rapp, K; Anderson, J; Lin, Y; Shaw, M V; Yang, J-H; Marc, R E

    2011-10-01

    Retinitis pigmentosa (RP) is an inherited blinding disease characterized by progressive loss of retinal photoreceptors. There are numerous rodent models of retinal degeneration, but most are poor platforms for interventions that will translate into clinical practice. The rabbit possesses a number of desirable qualities for a model of retinal disease including a large eye and an existing and substantial knowledge base in retinal circuitry, anatomy, and ophthalmology. We have analyzed degeneration, remodeling, and reprogramming in a rabbit model of retinal degeneration, expressing a rhodopsin proline 347 to leucine transgene in a TgP347L rabbit as a powerful model to study the pathophysiology and treatment of retinal degeneration. We show that disease progression in the TgP347L rabbit closely tracks human cone-sparing RP, including the cone-associated preservation of bipolar cell signaling and triggering of reprogramming. The relatively fast disease progression makes the TgP347L rabbit an excellent model for gene therapy, cell biological intervention, progenitor cell transplantation, surgical interventions, and bionic prosthetic studies.

  7. Particle acceleration in binaries

    NASA Astrophysics Data System (ADS)

    Sinitsyna, V. G.; Sinitsyna, V. Y.

    2017-06-01

    Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV-85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  8. Very Wide Binaries

    NASA Astrophysics Data System (ADS)

    Olling, Robert; Shaya, E.

    2011-01-01

    We develop Bayesian statistical methods for discovering and assigning probabilities to physical stellar companions. The probabilities depend on similarities in "corrected" proper motion, parallax, and the phase-space density of field stars. Very wide binaries with separations over 10,000 AU have recently been predicted to form during the dissolution process of low-mass star clusters. In this case, these wide systems would still carry information about the density and size of the star cluster in which they formed. Alternatively, Galactic tides and weak interactions with passing stars peel off stars from such very wide binaries in less than 1/2 of a Hubble time. In the past, these systems have been used to rule in/out MACHOs or less compact dark (matter) objects. Ours is the first all-sky survey to locate escaped companions that are still drifting along with each other, long after their binary bond has been broken. We test stars for companionship up to an apparent separation of 8 parsec: 10 to 100 times wider than previous searches. Among Hipparcos stars within 100 pc, we find about 260 systems with separations between 0.01 and 1 pc, and another 190 with separation from 1 to 8 parsec. We find a number of previously unnoticed naked-eye companions, among which: Capella & 50 Per; Alioth, Megrez & Alcor; gamma & tau Cen; phi Eri & eta Hor; 62 & 63 Cnc; gamma & tau Per; zeta & delta Hya; beta01, beta02 & beta03 Tuc; 44 & 58 Oph and pi & rho Cep. At least 15 of our candidates are exoplanet host stars.

  9. Evolution of Close Binary Systems

    SciTech Connect

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  10. The eclipsing, double-lined, Of supergiant binary Cygnus OB2-B17

    NASA Astrophysics Data System (ADS)

    Stroud, V. E.; Clark, J. S.; Negueruela, I.; Roche, P.; Norton, A. J.; Vilardell, F.

    2010-02-01

    Context. Massive, eclipsing, double-lined, spectroscopic binaries are not common but are necessary to understand the evolution of massive stars as they are the only direct way to determine stellar masses. They are also the progenitors of energetic phenomena such as X-ray binaries and γ-ray bursts. Aims: We present a photometric and spectroscopic analysis of the candidate binary system Cyg OB2-B17 to show that it is indeed a massive evolved binary. Methods: We utilise V band and white-light photometry to obtain a light curve and period of the system, and spectra at different resolutions to calculate preliminary orbital parameters and spectral classes for the components. Results: Our results suggest that B17 is an eclipsing, double-lined, spectroscopic binary with a period of 4.0217±0.0004 days, with two massive evolved components with preliminary classifications of O7 and O9 supergiants. The radial velocity and light curves are consistent with a massive binary containing components with similar luminosities, and in turn with the preliminary spectral types and age of the association.

  11. Ecospheres around binary stars

    NASA Astrophysics Data System (ADS)

    Deka, B.

    2011-01-01

    Scientific investigations concerning ecospheres of other stars are very important for understanding the posibilities of existence and evolution of extraterrestrial life. In several last years astronomers discovered hundreds of extrasolar planets. Identification of stars with ecospheres is the first step in selecting those planets which could be inhabited. Usually an ecosphere of a single star is considered but it may also exist in planetary systems with two suns. This possibility is very promising in search for life on other planets as more that 60 % of stars reside in binary or multiple systems.

  12. Low autocorrelation binary sequences

    NASA Astrophysics Data System (ADS)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  13. BINARY STORAGE ELEMENT

    DOEpatents

    Chu, J.C.

    1958-06-10

    A binary storage device is described comprising a toggle provided with associsted improved driver circuits adapted to produce reliable action of the toggle during clearing of the toggle to one of its two states. or transferring information into and out of the toggle. The invention resides in the development of a self-regulating driver circuit to minimize the fluctuation of the driving voltages for the toggle. The disclosed driver circuit produces two pulses in response to an input pulse: a first or ''clear'' pulse beginning nt substantially the same time but endlrg slightly sooner than the second or ''transfer'' output pulse.

  14. The origin of the possible massive black hole in the progenitor system of iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Hirai, Ryosuke

    2017-07-01

    This letter complements a formation scenario of the progenitor of the supernova iPTF13bvn proposed by Hirai. Although the scenario was successful in reproducing various observational features of the explosion and pre-explosion photometry by assuming that the progenitor had a relatively large black hole (BH) companion, it lacked an explanation for the origin of the BH itself. We now explore the possible evolutionary paths towards this binary with a relatively large BH companion. We found that the BH was probably produced by a very massive star that experienced common envelope evolution. According to our mesa stellar models, the primary mass should have been ≳70 M_{⊙} to reproduce the required remnant mass and final separation. This indicates that iPTF13bvn was likely a rare case and normal Type Ib supernovae originate from different paths.

  15. Prospectives for gene therapy of retinal degenerations.

    PubMed

    Thumann, Gabriele

    2012-08-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  16. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  17. Optic pathway degeneration in Japanese black cattle.

    PubMed

    Chiba, Shiori; Funato, Shingo; Horiuchi, Noriyuki; Matsumoto, Kotaro; Inokuma, Hisashi; Furuoka, Hidefumi; Kobayashi, Yoshiyasu

    2015-02-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy.

  18. Optic pathway degeneration in Japanese black cattle

    PubMed Central

    CHIBA, Shiori; FUNATO, Shingo; HORIUCHI, Noriyuki; MATSUMOTO, Kotaro; INOKUMA, Hisashi; FURUOKA, Hidefumi; KOBAYASHI, Yoshiyasu

    2014-01-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy. PMID:25421501

  19. Observational Types of Binaries in the Binary Star Database

    NASA Astrophysics Data System (ADS)

    Malkov, O.; Kovaleva, D.; Kaygorodov, P.

    2017-06-01

    In the present paper we describe observational types of binaries, included in BDB, the Binary star database, which presently contains data on physical and positional parameters for about 260 000 components of 120 000 stellar systems of multiplicity 2 to more than 20, taken from a large variety of published catalogues and databases.

  20. Origin of hemopoietic stromal progenitor cells in chimeras

    SciTech Connect

    Chertkov, J.L.; Drize, N.J.; Gurevitch, O.A.; Samoylova, R.S.

    1985-12-01

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACL in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice.

  1. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  2. BINARIES DISCOVERED BY THE MUCHFUSS PROJECT: SDSS J08205+0008-AN ECLIPSING SUBDWARF B BINARY WITH A BROWN DWARF COMPANION

    SciTech Connect

    Geier, S.; Schaffenroth, V.; Drechsel, H.; Heber, U.; Kupfer, T.; Tillich, A.; Oestensen, R. H.; Smolders, K.; Degroote, P.; Maxted, P. F. L.; Barlow, B. N.; Gaensicke, B. T.; Marsh, T. R.; Napiwotzki, R.

    2011-04-20

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here, we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object ({approx_equal}0.068 M{sub sun}) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.

  3. Observable fractions of core-collapse supernova light curves brightened by binary companions

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Liu, Zheng-Wei; Izzard, Robert G.

    2015-07-01

    Many core-collapse supernova progenitors are presumed to be in binary systems. If a star explodes in a binary system, the early supernova light curve can be brightened by the collision of the supernova ejecta with the companion star. The early brightening can be observed when the observer is in the direction of the hole created by the collision. Based on a population synthesis model, we estimate the fractions of core-collapse supernovae in which the light-curve brightening by the collision can be observed. We find that 0.19 per cent of core-collapse supernova light curves can be observed with the collisional brightening. Type Ibc supernova light curves are more likely to be brightened by the collision (0.53 per cent) because of the high fraction of the progenitors being in binary systems and their proximity to the companion stars. Type II and IIb supernova light curves are less affected (˜10-3 and ˜10-2 per cent, respectively). Although the early, slow light-curve declines of some Type IIb and Ibc supernovae are argued to be caused by the collision with the companion star (e.g. SN 2008D), the small expected fraction, as well as the unrealistically small separation required, disfavour the argument. The future transient survey by the Large Synoptic Survey Telescope is expected to detect ˜10 Type Ibc supernovae with the early collisional brightening per year, and they will be able to provide information on supernova progenitors in binary systems.

  4. The binary fraction of planetary nebula central stars - II. A larger sample and improved technique for the infrared excess search

    NASA Astrophysics Data System (ADS)

    Douchin, Dimitri; De Marco, Orsola; Frew, D. J.; Jacoby, G. H.; Jasniewicz, G.; Fitzgerald, M.; Passy, Jean-Claude; Harmer, D.; Hillwig, Todd; Moe, Maxwell

    2015-04-01

    There is no conclusive explanation of why ˜80 per cent of planetary nebulae (PNe) are non-spherical. In the Binary Hypothesis, a binary interaction is a preferred channel to form a non-spherical PN. A fundamental step to corroborate or disprove the Binary Hypothesis is to estimate the binary fraction of central stars of PNe (CSPNe) and compare it with a prediction based on the binary fraction of the progenitor, main-sequence population. In this paper, the second in a series, we search for spatially unresolved I- and J-band flux excess in an extended sample of 34 CSPN by a refined measurement technique with a better quantification of the uncertainties. The detection rate of I- (J-)band flux excess is 32 ± 16 per cent (50 ± 24 per cent). This result is very close to what was obtained in Paper I with a smaller sample. We account conservatively for unobserved cool companions down to brown dwarf luminosities, increasing these fractions to 40 ± 20 per cent (62 ± 30 per cent). This step is very sensitive to the adopted brightness limit of our survey. Accounting for visual companions increases the binary fraction to 46 ± 23 per cent (71 ± 34 per cent). These figures are lower than in Paper I. The error bars are better quantified, but still unacceptably large. Taken at face value, the current CSPN binary fraction is in line with the main-sequence progenitor population binary fraction. However, including white dwarfs companions could increase this fraction by as much as 13 (21) per cent points.

  5. Cepheid Binary Companions

    NASA Astrophysics Data System (ADS)

    Remage Evans, Nancy

    Blue main sequence companions of binary Cepheids can be used to determine Clio luminosity of the Cepheids. By matching the composite spectrum of the companion and the Cepheid with those of standard stars, the spectral type of the companion and the magnitude difference between the two stars can be determined. The main sequence absolute magnitude calibration of the companion then leads to the absolute magnitude of the Cepheid. The aim of this project is to obtain low dispersion SWP spectra of three Cepheids (T Vul, Y Lac, and RS Ori) for which the LWP spectra show excess flux at 2500 from the companion. In addition, we request LWP low dispersion spectra of five Cepheids to complete the survey of all Cepheids brighter than 8" magnitude to look for companions. Archival IUE spectra are non-existant or inadequate (no LWP or overexposed). The purpose of this survey is to accurately determine the percentage of Cepheids which are binaries, to compare with evolutionary predictions. This IUE survey will identify definitively Cepheids with blue companions, about which there is come confusion from groundbased photometric techniques, and hence prevent distortions to such parameters as luminosity, color and reddening. In addition, the distribution of mass ratios (from the spectral type of the main sequence mass and the evolutionary mass of the Cepheid (Evans and Bolton, 1989)), is basic information about star formation.

  6. Autophagy in axonal and dendritic degeneration.

    PubMed

    Yang, Yi; Coleman, Michael; Zhang, Lihui; Zheng, Xiaoxiang; Yue, Zhenyu

    2013-07-01

    Degeneration of axons and dendrites is a common and early pathological feature of many neurodegenerative disorders, and is thought to be regulated by mechanisms distinct from those determining death of the cell body. The unique structures of axons and dendrites (collectively neurites) may cause them to be particularly vulnerable to the accumulation of protein aggregates and damaged organelles. Autophagy is a catabolic mechanism in which cells clear protein aggregates and damaged organelles. Basal autophagy occurs continuously as a housekeeping function, and can be acutely expanded in response to stress or injury. Emerging evidence shows that insufficient or excessive autophagy contributes to neuritic degeneration. Here, we review the recent progress that has begun to reveal the role of autophagy in neurite function and degeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The cell stress machinery and retinal degeneration.

    PubMed

    Athanasiou, Dimitra; Aguilà, Monica; Bevilacqua, Dalila; Novoselov, Sergey S; Parfitt, David A; Cheetham, Michael E

    2013-06-27

    Retinal degenerations are a group of clinically and genetically heterogeneous disorders characterised by progressive loss of vision due to neurodegeneration. The retina is a highly specialised tissue with a unique architecture and maintaining homeostasis in all the different retinal cell types is crucial for healthy vision. The retina can be exposed to a variety of environmental insults and stress, including light-induced damage, oxidative stress and inherited mutations that can lead to protein misfolding. Within retinal cells there are different mechanisms to cope with disturbances in proteostasis, such as the heat shock response, the unfolded protein response and autophagy. In this review, we discuss the multiple responses of the retina to different types of stress involved in retinal degenerations, such as retinitis pigmentosa, age-related macular degeneration and glaucoma. Understanding the mechanisms that maintain and re-establish proteostasis in the retina is important for developing new therapeutic approaches to fight blindness.

  8. Galactic constraints on supernova progenitor models

    NASA Astrophysics Data System (ADS)

    Acharova, I. A.; Gibson, B. K.; Mishurov, Yu. N.; Kovtyukh, V. V.

    2013-09-01

    Aims: To estimate the mean masses of oxygen and iron ejected per each type of supernovae (SNe) event from observations of the elemental abundance patterns in the Galactic disk and constrain the relevant SNe progenitor models. Methods: We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. This framework has been shown to recover the non-linear behaviour in radial gradients, the mean masses of oxygen and iron ejected during SNe explosions to be estimated, and constraints to be placed on SNe progenitor models. Results: (i) The mean mass of oxygen ejected per core-collapse SNe (CC SNe) event (which are concentrated within spiral arms) is ~0.27 M⊙; (ii) the mean mass of iron ejected by tardy Type Ia SNe (SNeIa, whose progenitors are older/longer-lived stars with ages ≳100 Myr and up to several Gyr, which do not concentrate within spiral arms) is ~0.58 M⊙; (iii) the upper mass of iron ejected by prompt SNeIa (SNe whose progenitors are younger/shorter-lived stars with ages ≲100 Myr, which are concentrated within spiral arms) is ≤0.23 M⊙ per event; (iv) the corresponding mean mass of iron produced by CC SNe is ≤0.04 M⊙ per event; (v) short-lived SNe (core-collapse or prompt SNeIa) supply ~85% of the Galactic disk's iron. Conclusions: The inferred low mean mass of oxygen ejected per CC SNe event implies a low upper mass limit for the corresponding progenitors of ~23 M⊙, otherwise the Galactic disk would be overabundant in oxygen. This inference is the consequence of the non-linear dependence between the upper limit of the progenitor initial mass and the mean mass of oxygen ejected per CC SNe explosion. The low mean mass of iron ejected by prompt SNeIa, relative to the mass produced by tardy SNeIa (~2.5 times lower), prejudices the idea that both sub-populations of SNeIa have the same physical nature. We

  9. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis.

    PubMed

    Kang, Shin H; Li, Ying; Fukaya, Masahiro; Lorenzini, Ileana; Cleveland, Don W; Ostrow, Lyle W; Rothstein, Jeffrey D; Bergles, Dwight E

    2013-05-01

    Oligodendrocytes associate with axons to establish myelin and provide metabolic support to neurons. In the spinal cord of amyotrophic lateral sclerosis (ALS) mice, oligodendrocytes downregulate transporters that transfer glycolytic substrates to neurons and oligodendrocyte progenitors (NG2(+) cells) exhibit enhanced proliferation and differentiation, although the cause of these changes in oligodendroglia is unknown. We found extensive degeneration of gray matter oligodendrocytes in the spinal cord of SOD1 (G93A) ALS mice prior to disease onset. Although new oligodendrocytes were formed, they failed to mature, resulting in progressive demyelination. Oligodendrocyte dysfunction was also prevalent in human ALS, as gray matter demyelination and reactive changes in NG2(+) cells were observed in motor cortex and spinal cord of ALS patients. Selective removal of mutant SOD1 from oligodendroglia substantially delayed disease onset and prolonged survival in ALS mice, suggesting that ALS-linked genes enhance the vulnerability of motor neurons and accelerate disease by directly impairing the function of oligodendrocytes.

  10. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies.

    PubMed

    Wang, S Z; Rui, Y F; Lu, J; Wang, C

    2014-10-01

    Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio-active substances and bio-compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.

  11. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells

    PubMed Central

    Lee, Soo Ok; Ma, Zhifang; Yeh, Chiuan-Ren; Luo, Jie; Lin, Tzu-Hua; Lai, Kuo-Pao; Yamashita, Shinichi; Liang, Liang; Tian, Jing; Li, Lei; Jiang, Qi; Huang, Chiung-Kuei; Niu, Yuanjie; Yeh, Shuyuan; Chang, Chawnshang

    2013-01-01

    The androgen deprivation therapy (ADT) to systematically suppress/reduce androgens binding to the androgen receptor (AR) has been the standard therapy for prostate cancer (PCa); yet, most of ADT eventually fails leading to the recurrence of castration resistant PCa. Here, we found that the PCa patients who received ADT had increased PCa stem/progenitor cell population. The addition of the anti-androgen, Casodex®, or AR-siRNA in various PCa cells led to increased stem/progenitor cells, whereas, in contrast, the addition of functional AR led to decreased stem/progenitor cell population but increased non-stem/progenitor cell population, suggesting that AR functions differentially in PCa stem/progenitor vs. non-stem/progenitor cells. Therefore, the current ADT might result in an undesired expansion of PCa stem/progenitor cell population, which explains why this therapy fails. Using various human PCa cell lines and three different mouse models, we concluded that targeting PCa non-stem/progenitor cells with AR degradation enhancer ASC-J9® and targeting PCa stem/progenitor cells with 5-azathioprine and γ-tocotrienol resulted in a significant suppression of the tumors at the castration resistant stage. This suggests that a combinational therapy that simultaneously targets both stem/progenitor and non-stem/progenitor cells will lead to better therapeutic efficacy and may become a new therapy to battle the PCa before and after castration resistant stages. PMID:22831834

  12. Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors.

    PubMed

    Ohmori, Tomoko; Tanigawa, Shunsuke; Kaku, Yusuke; Fujimura, Sayoko; Nishinakamura, Ryuichi

    2015-10-29

    The mammalian kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud, the former of which contains nephron progenitors. The third lineage, the stroma, fills up the interstitial space and is derived from distinct progenitors that express the transcription factor Foxd1. We showed previously that deletion of the nuclear factor Sall1 in nephron progenitors leads to their depletion in mice. However, Sall1 is expressed not only in nephron progenitors but also in stromal progenitors. Here we report that specific Sall1 deletion in stromal progenitors leads to aberrant expansion of nephron progenitors, which is in sharp contrast with a nephron progenitor-specific deletion. The mutant mice also exhibited cystic kidneys after birth and died before adulthood. We found that Decorin, which inhibits Bmp-mediated nephron differentiation, was upregulated in the mutant stroma. In contrast, the expression of Fat4, which restricts nephron progenitor expansion, was reduced mildly. Furthermore, the Sall1 protein binds to many stroma-related gene loci, including Decorin and Fat4. Thus, the expression of Sall1 in stromal progenitors restricts the excessive expansion of nephron progenitors in a non-cell autonomous manner, and Sall1-mediated regulation of Decorin and Fat4 might at least partially underlie the pathogenesis.

  13. Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors

    PubMed Central

    Ohmori, Tomoko; Tanigawa, Shunsuke; Kaku, Yusuke; Fujimura, Sayoko; Nishinakamura, Ryuichi

    2015-01-01

    The mammalian kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud, the former of which contains nephron progenitors. The third lineage, the stroma, fills up the interstitial space and is derived from distinct progenitors that express the transcription factor Foxd1. We showed previously that deletion of the nuclear factor Sall1 in nephron progenitors leads to their depletion in mice. However, Sall1 is expressed not only in nephron progenitors but also in stromal progenitors. Here we report that specific Sall1 deletion in stromal progenitors leads to aberrant expansion of nephron progenitors, which is in sharp contrast with a nephron progenitor-specific deletion. The mutant mice also exhibited cystic kidneys after birth and died before adulthood. We found that Decorin, which inhibits Bmp-mediated nephron differentiation, was upregulated in the mutant stroma. In contrast, the expression of Fat4, which restricts nephron progenitor expansion, was reduced mildly. Furthermore, the Sall1 protein binds to many stroma-related gene loci, including Decorin and Fat4. Thus, the expression of Sall1 in stromal progenitors restricts the excessive expansion of nephron progenitors in a non-cell autonomous manner, and Sall1-mediated regulation of Decorin and Fat4 might at least partially underlie the pathogenesis. PMID:26511275

  14. Potential Outcome Factors in Subacute Combined Degeneration

    PubMed Central

    Vasconcelos, Olavo M; Poehm, Erika H; McCarter, Robert J; Campbell, William W; Quezado, Zenaide M N

    2006-01-01

    BACKGROUND Subacute combined degeneration is an acquired myelopathy caused by vitamin B12 deficiency. Therapy with B12 leads to improvement in most but to complete recovery in only a few patients. Prognostic indicators in subacute combined degeneration are unknown; therefore, predicting complete recovery of neurologic deficits is challenging. PURPOSE To identify potential correlates of outcome and to generate hypotheses concerning predictors of complete resolution of neurologic deficits in subacute combined degeneration. DATA SOURCE We searched EMBASE (1974 to October 2005), MEDLINE (1968 to October 2005), and references from identified reports. REPORTS SELECTION Reports of patients with subacute combined degeneration containing results of magnetic resonance imaging (MRI) and description of outcome and 1 patient treated by the authors. DATA EXTRACTION, SYNTHESIS We extracted data from 45 reports and 57 patients (36 males, 21 females; age range: 10 to 81) with a diagnosis of subacute combined degeneration, and estimated the strength of association between clinical, laboratory, and radiological factors and complete resolution of signs and symptoms. RESULTS Eight patients (14%) achieved clinical resolution and 49 (86%) improved with B12 therapy. The absence of sensory dermatomal deficit, Romberg, and Babinski signs were associated with a higher complete resolution rate. Patients with MRI lesions in ≤7 segments and age less than 50 also appear to have higher rates of complete resolution. CONCLUSIONS B12 therapy is reported to stop progression and improve neurologic deficits in most patients with subacute combined degeneration. However, complete resolution only occurs in a small percentage of patients and appears to be associated with factors suggestive of less severe disease at the time of diagnosis. PMID:16970556

  15. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free

  16. TYPE Ia SINGLE DEGENERATE SURVIVORS MUST BE OVERLUMINOUS

    SciTech Connect

    Shappee, Benjamin J.; Kochanek, C. S.; Stanek, K. Z. E-mail: ckochanek@astronomy.ohio-state.edu

    2013-03-10

    In the single-degenerate (SD) channel of a Type Ia supernovae (SNe Ia) explosion, a main-sequence (MS) donor star survives the explosion but it is stripped of mass and shock heated. An essentially unavoidable consequence of mass loss during the explosion is that the companion must have an overextended envelope after the explosion. While this has been noted previously, it has not been strongly emphasized as an inevitable consequence. We calculate the future evolution of the companion by injecting 2-6 Multiplication-Sign 10{sup 47} erg into the stellar evolution model of a 1 M{sub Sun} donor star based on the post-explosion progenitors seen in simulations. We find that, due to the Kelvin-Helmholtz collapse of the envelope, the companion must become significantly more luminous (10-10{sup 3} L{sub Sun }) for a long period of time (10{sup 3}-10{sup 4} yr). The lack of such a luminous ''leftover'' star in the LMC supernova remnant SNR 0609-67.5 provides another piece of evidence against the SD scenario. We also show that none of the stars proposed as the survivors of the Tycho supernova, including Tycho G, could plausibly be the donor star. Additionally, luminous donors closer than {approx}10 Mpc should be observable with the Hubble Space Telescope starting {approx}2 yr post-peak. Such systems include SN 1937C, SN 1972E, SN 1986G, and SN 2011fe. Thus, the SD channel is already ruled out for at least two nearby SNe Ia and can easily be tested for a number of additional ones. We also discuss similar implications for the companions of core-collapse SNe.

  17. Type Ia Single Degenerate Survivors must be Overluminous

    NASA Astrophysics Data System (ADS)

    Shappee, Benjamin J.; Kochanek, C. S.; Stanek, K. Z.

    2013-03-01

    In the single-degenerate (SD) channel of a Type Ia supernovae (SNe Ia) explosion, a main-sequence (MS) donor star survives the explosion but it is stripped of mass and shock heated. An essentially unavoidable consequence of mass loss during the explosion is that the companion must have an overextended envelope after the explosion. While this has been noted previously, it has not been strongly emphasized as an inevitable consequence. We calculate the future evolution of the companion by injecting 2-6 × 1047 erg into the stellar evolution model of a 1 M ⊙ donor star based on the post-explosion progenitors seen in simulations. We find that, due to the Kelvin-Helmholtz collapse of the envelope, the companion must become significantly more luminous (10-103 L ⊙) for a long period of time (103-104 yr). The lack of such a luminous "leftover" star in the LMC supernova remnant SNR 0609-67.5 provides another piece of evidence against the SD scenario. We also show that none of the stars proposed as the survivors of the Tycho supernova, including Tycho G, could plausibly be the donor star. Additionally, luminous donors closer than ~10 Mpc should be observable with the Hubble Space Telescope starting ~2 yr post-peak. Such systems include SN 1937C, SN 1972E, SN 1986G, and SN 2011fe. Thus, the SD channel is already ruled out for at least two nearby SNe Ia and can easily be tested for a number of additional ones. We also discuss similar implications for the companions of core-collapse SNe.

  18. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration.

    PubMed

    De Nicola, Alejandro F; Labombarda, Florencia; Gonzalez Deniselle, Maria Claudia; Gonzalez, Susana L; Garay, Laura; Meyer, Maria; Gargiulo, Gisella; Guennoun, Rachida; Schumacher, Michael

    2009-07-01

    Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes. Clinical trials have shown that short-and long-term progesterone treatment induces a significant improvement in the level of disability among patients with brain injury. In experimental spinal cord injury (SCI), molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor (BDNF) mRNA, Na,K-ATPase mRNA, microtubule-associated protein 2 and choline acetyltransferase (ChAT). SCI also produces motoneuron chromatolysis. Progesterone treatment restores the expression of these molecules while chromatolysis subsided. SCI also causes oligodendrocyte loss and demyelination. In this case, a short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair injury-induced demyelination. Progesterone neuroprotection has also been shown in motoneuron neurodegeneration. In Wobbler mice spinal cord, progesterone reverses the impaired expression of BDNF, ChAT and Na,K-ATPase, prevents vacuolar motoneuron degeneration and the development of mitochondrial abnormalities, while functionally increases muscle strength and the survival of Wobbler mice. Multiple mechanisms contribute to these progesterone effects, and the role played by classical nuclear receptors, extra nuclear receptors, membrane receptors, and the reduced metabolites of progesterone in neuroprotection and myelin formation remain an exciting field worth of exploration.

  19. Multilevel Models for Binary Data

    ERIC Educational Resources Information Center

    Powers, Daniel A.

    2012-01-01

    The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…

  20. Multilevel Models for Binary Data

    ERIC Educational Resources Information Center

    Powers, Daniel A.

    2012-01-01

    The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…

  1. Retinal degeneration associated with ectopia lentis.

    PubMed

    Simonelli, F; De Crecchio, G; Testa, F; Nunziata, G; Mazzeo, S; Romano, N; Cavaliere, L; Rinaldi, M M; Rinaldi, E

    1999-06-01

    Two brothers had retinal degeneration, lens subluxation, and myopia since early life. There was no evidence of Marfan syndrome, homocystinuria, or other systemic disease. They had nystagmus, myopia, inferior dislocation of the lens, and posterior subcapsular opacities in both eyes. Fundus examination showed attenuated retinal vessels, macular atrophy with occasional pigment accumulation as clumps, and perivascular sleeves. Electroretinography revealed decreased photopic and scotopic responses. The visual fields were constricted. We believe this to be the first report of retinal degeneration with bilateral lens subluxation in a family. It appears to be inherited in an autosomal recessive fashion.

  2. Retinal Cell Degeneration in Animal Models

    PubMed Central

    Niwa, Masayuki; Aoki, Hitomi; Hirata, Akihiro; Tomita, Hiroyuki; Green, Paul G.; Hara, Akira

    2016-01-01

    The aim of this review is to provide an overview of various retinal cell degeneration models in animal induced by chemicals (N-methyl-d-aspartate- and CoCl2-induced), autoimmune (experimental autoimmune encephalomyelitis), mechanical stress (optic nerve crush-induced, light-induced) and ischemia (transient retinal ischemia-induced). The target regions, pathology and proposed mechanism of each model are described in a comparative fashion. Animal models of retinal cell degeneration provide insight into the underlying mechanisms of the disease, and will facilitate the development of novel effective therapeutic drugs to treat retinal cell damage. PMID:26784179

  3. Pathogenesis of tendinopathies: inflammation or degeneration?

    PubMed Central

    Abate, Michele; Gravare-Silbernagel, Karin; Siljeholm, Carl; Di Iorio, Angelo; De Amicis, Daniele; Salini, Vincenzo; Werner, Suzanne; Paganelli, Roberto

    2009-01-01

    The intrinsic pathogenetic mechanisms of tendinopathies are largely unknown and whether inflammation or degeneration has the prominent role is still a matter of debate. Assuming that there is a continuum from physiology to pathology, overuse may be considered as the initial disease factor; in this context, microruptures of tendon fibers occur and several molecules are expressed, some of which promote the healing process, while others, including inflammatory cytokines, act as disease mediators. Neural in-growth that accompanies the neovessels explains the occurrence of pain and triggers neurogenic-mediated inflammation. It is conceivable that inflammation and degeneration are not mutually exclusive, but work together in the pathogenesis of tendinopathies. PMID:19591655

  4. Visual system degeneration induced by blast overpressure.

    PubMed

    Petras, J M; Bauman, R A; Elsayed, N M

    1997-07-25

    The effect of blast overpressure on visual system pathology was studied in 14 male Sprague-Dawley rats weighing 360-432 g. Blast overpressure was simulated using a compressed-air driven shock tube, with the aim of studying a range of overpressures causing sublethal injury. Neither control (unexposed) rats nor rats exposed to 83 kiloPascals (kPa) overpressure showed evidence of visual system pathology. Neurological injury to brain visual pathways was observed in male rats surviving blast overpressure exposures of 104-110 kPa and 129-173 kPa. Optic nerve fiber degeneration was ipsilateral to the blast pressure wave. The optic chiasm contained small numbers of degenerated fibers. Optic tract fiber degeneration was present bilaterally, but was predominantly ipsilateral. Optic tract fiber degeneration was followed to nuclear groups at the level of the midbrain, midbrain-diencephalic junction, and the thalamus where degenerated fibers arborized among the neurons of: (i) the superior colliculus, (ii) pretectal region, and (iii) the lateral geniculate body. The superior colliculus contained fiber degeneration localized principally to two superficial layers (i) the stratum opticum (layer III) and (ii) stratum cinereum (layer II). The pretectal area contained degenerated fibers which were widespread in (i) the nucleus of the optic tract, (ii) olivary pretectal nucleus, (iii) anterior pretectal nucleus, and (iv) the posterior pretectal nucleus. Degenerated fibers in the lateral geniculate body were not universally distributed. They appeared to arborize among neurons of the dorsal and ventral nuclei: the ventral lateral geniculate nucleus (parvocellular and magnocellular parts); and the dorsal lateral geniculate nucleus. The axonopathy observed in the central visual pathways and nuclei of the rat brain are consistent with the presence of blast overpressure induced injury to the retina. The orbital cavities of the human skull contain frontally-directed eyeballs for binocular

  5. Kinematic control of robot with degenerate wrist

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  6. CT of sarcomatous degeneration in neurofibromatosis

    SciTech Connect

    Coleman, B.G.; Arger, P.H.; Dalinka, M.K.; Obringer, A.C.; Raney, B.R.; Meadows, A.T.

    1983-02-01

    Neurofibromatosis is a relatively common disorder that often involves many organ systems. One of the least understood aspects of this malady is a well documented potential for sarcomatous degeneration of neurofibromas. The inability to identify patients at risk and the lack of noninvasive screening methods for symptomatic patients often leads to late diagnosis. In six of seven subsequently proven neurofibrosarcomas, CT demonstrated low-density areas that histopathologically appeared to be due to necrosis, hemorrhage, and/or cystic degeneration. The density differences within these sarcomas were enhanced by the intravenous adminstration of iodinated contrast agents.

  7. [New aspects in age related macular degeneration].

    PubMed

    Turlea, C

    2012-01-01

    Being the leading cause of blindness in modern world Age Related Macular Degeneration has beneficiated in the last decade of important progress in diagnosis, classification and the discovery of diverse factors who contribute to the etiology of this disease. Treatments have arised who can postpone the irreversible evolution of the disease and thus preserve vision. Recent findings have identified predisposing genetic factors and also inflamatory and imunological parameters that can be modified trough a good and adequate prevention and therapy This articole reviews new aspects of patology of Age Related Macular Degeneration like the role of complement in maintaining inflamation and the role of oxidative stress on different structures of the retina.

  8. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  9. Magnetic activity of interacting binaries

    NASA Astrophysics Data System (ADS)

    Hill, Colin A.

    2017-10-01

    Interacting binaries provide unique parameter regimes, both rapid rotation and tidal distortion, in which to test stellar dynamo theories and study the resulting magnetic activity. Close binaries such as cataclysmic variables (CVs) have been found to differentially rotate, and so can provide testbeds for tidal dissipation efficiency in stellar convective envelopes, with implications for both CV and planet-star evolution. Furthermore, CVs show evidence of preferential emergence of magnetic flux tubes towards the companion star, as well as large, long-lived prominences that form preferentially within the binary geometry. Moreover, RS CVn binaries also show clear magnetic interactions between the two components in the form of coronal X-ray emission. Here, we review several examples of magnetic interactions in different types of close binaries.

  10. How do binary clusters form?

    NASA Astrophysics Data System (ADS)

    Arnold, Becky; Goodwin, Simon P.; Griffiths, D. W.; Parker, Richard. J.

    2017-10-01

    Approximately 10 per cent of star clusters are found in pairs, known as binary clusters. We propose a mechanism for binary cluster formation; we use N-body simulations to show that velocity substructure in a single (even fairly smooth) region can cause binary clusters to form. This process is highly stochastic and it is not obvious from a region's initial conditions whether a binary will form and, if it does, which stars will end up in which cluster. We find the probability that a region will divide is mainly determined by its virial ratio, and a virial ratio above 'equilibrium' is generally necessary for binary formation. We also find that the mass ratio of the two clusters is strongly influenced by the initial degree of spatial substructure in the region.

  11. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice.

    PubMed

    Jaskelioff, Mariela; Muller, Florian L; Paik, Ji-Hye; Thomas, Emily; Jiang, Shan; Adams, Andrew C; Sahin, Ergun; Kost-Alimova, Maria; Protopopov, Alexei; Cadiñanos, Juan; Horner, James W; Maratos-Flier, Eleftheria; Depinho, Ronald A

    2011-01-06

    An ageing world population has fuelled interest in regenerative remedies that may stem declining organ function and maintain fitness. Unanswered is whether elimination of intrinsic instigators driving age-associated degeneration can reverse, as opposed to simply arrest, various afflictions of the aged. Such instigators include progressively damaged genomes. Telomerase-deficient mice have served as a model system to study the adverse cellular and organismal consequences of wide-spread endogenous DNA damage signalling activation in vivo. Telomere loss and uncapping provokes progressive tissue atrophy, stem cell depletion, organ system failure and impaired tissue injury responses. Here, we sought to determine whether entrenched multi-system degeneration in adult mice with severe telomere dysfunction can be halted or possibly reversed by reactivation of endogenous telomerase activity. To this end, we engineered a knock-in allele encoding a 4-hydroxytamoxifen (4-OHT)-inducible telomerase reverse transcriptase-oestrogen receptor (TERT-ER) under transcriptional control of the endogenous TERT promoter. Homozygous TERT-ER mice have short dysfunctional telomeres and sustain increased DNA damage signalling and classical degenerative phenotypes upon successive generational matings and advancing age. Telomerase reactivation in such late generation TERT-ER mice extends telomeres, reduces DNA damage signalling and associated cellular checkpoint responses, allows resumption of proliferation in quiescent cultures, and eliminates degenerative phenotypes across multiple organs including testes, spleens and intestines. Notably, somatic telomerase reactivation reversed neurodegeneration with restoration of proliferating Sox2(+) neural progenitors, Dcx(+) newborn neurons, and Olig2(+) oligodendrocyte populations. Consistent with the integral role of subventricular zone neural progenitors in generation and maintenance of olfactory bulb interneurons, this wave of telomerase

  12. Lack of neurogenesis in the adult rat cerebellum after Purkinje cell degeneration and growth factor infusion.

    PubMed

    Grimaldi, Piercesare; Rossi, Ferdinando

    2006-05-01

    Although constitutive neurogenesis exclusively occurs in restricted regions of the adult mammalian brain, resident progenitors can be isolated from many different CNS sites, and neuronal neogeneration can be stimulated in vivo by injury or infusion of growth factors. To ask whether latent compensatory mechanisms, which may be exploited to promote repair processes, are present throughout the CNS, we examined the neurogenic potentialities of the adult rat cerebellum in normal conditions, following injury, and after infusion of growth factors. Degeneration of Purkinje cells was induced by intracerebroventricular administration of the toxin saporin, conjugated to anti-p75 antibodies. In addition, epidermal growth factor and basic fibroblast growth factor, or FGF8, were infused for 2 weeks to either intact or injured animals. In all conditions, proliferating cells were identified from bromodeoxyuridine (BrdU) incorporation. In the unmanipulated cerebellum there were rare dividing cells, mainly represented by NG2-positive presumptive oligodendrocyte precursors. Mitotic activity was strongly enhanced in cortical areas with Purkinje cell degeneration, being mostly sustained by microglia, plus minor fractions of NG2-expressing cells, astrocytes and oligodendrocytes. In contrast, growth factor infusion had a weak effect on both intact and injured cerebella. In all experimental conditions, we never found any BrdU-positive cells coexpressing distinctive markers for immature or differentiated cerebellar neurons. Therefore, although some progenitor cells reside in the adult cerebellum, the local environment, either intact or injured, does not provide efficient cues to direct their differentiation towards neuronal phenotypes. In addition, neurogenic potentialities cannot be induced or boosted by the application of growth factors which are effective in other CNS regions.

  13. A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression

    PubMed Central

    Seiler, Magdalene J.; Aramant, Robert B.; Jones, Melissa K.; Ferguson, Dave L.; Bryda, Elizabeth C.

    2015-01-01

    Purpose The goal of this study was to develop an immunodeficient rat model of retinal degeneration (RD nude rats) that will not reject transplanted human cells. Methods SD-Tg(S334ter)3Lav females homozygous for a mutated mouse rhodopsin transgene were mated with NTac:NIH-Whn (NIH nude) males homozygous for the Foxn1rnu allele. Through selective breeding, a new stock, SD-Foxn1 Tg(S334ter)3Lav (RD nude) was generated such that all animals were homozygous for the Foxn1rnu allele and either homo- or hemizygous for the S334ter transgene. PCR-based assays for both the Foxn1rnu mutation and the S334ter transgene were developed for accurate genotyping. Immunodeficiency was tested by transplanting sheets of hESC-derived neural progenitor cells to the subretinal space of RD nude rats, and, as a control, NIH nude rats. Rats were killed between 8 and 184 days after surgery, and eye sections were analyzed for human, neuronal, and glial markers. Results After transplantation to RD nude and to NIH nude rats, hESC-derived neural progenitor cells differentiated to neuronal and glial cells, and migrated extensively from the transplant sheets throughout the host retina. Migration was more extensive in RD nude than in NIH nude rats. Already 8 days after transplantation, donor neuronal processes were found in the host inner plexiform layer. In addition, host glial cells extended processes into the transplants. The host retina showed the same photoreceptor degeneration pattern as in the immunocompetent SD-Tg(S334ter)3Lav rats. Recipients survived well after surgery. Conclusions This new rat model is useful for testing the effect of human cell transplantation on the restoration of vision without interference of immunosuppression. PMID:24817311

  14. Distinct germline progenitor subsets defined through Tsc2–mTORC1 signaling

    PubMed Central

    Hobbs, Robin M; La, Hue M; Mäkelä, Juho-Antti; Kobayashi, Toshiyuki; Noda, Tetsuo; Pandolfi, Pier Paolo

    2015-01-01

    Adult tissue maintenance is often dependent on resident stem cells; however, the phenotypic and functional heterogeneity existing within this self-renewing population is poorly understood. Here, we define distinct subsets of undifferentiated spermatogonia (spermatogonial progenitor cells; SPCs) by differential response to hyperactivation of mTORC1, a key growth-promoting pathway. We find that conditional deletion of the mTORC1 inhibitor Tsc2 throughout the SPC pool using Vasa-Cre promotes differentiation at the expense of self-renewal and leads to germline degeneration. Surprisingly, Tsc2 ablation within a subset of SPCs using Stra8-Cre did not compromise SPC function. SPC activity also appeared unaffected by Amh-Cre-mediated Tsc2 deletion within somatic cells of the niche. Importantly, we find that differentiation-prone SPCs have elevated mTORC1 activity when compared to SPCs with high self-renewal potential. Moreover, SPCs insensitive to Tsc2 deletion are preferentially associated with mTORC1-active committed progenitor fractions. We therefore delineate SPC subsets based on differential mTORC1 activity and correlated sensitivity to Tsc2 deletion. We propose that mTORC1 is a key regulator of SPC fate and defines phenotypically distinct SPC subpopulations with varying propensities for self-renewal and differentiation. PMID:25700280

  15. Evaluating Systematic Dependence of Type Ia Supernovae: The Influence of Progenitor Central Density

    NASA Astrophysics Data System (ADS)

    Krueger, Brendan K.; Jackson, A. P.; Calder, A. C.; Townsley, D. M.; Brown, E. F.; Timmes, F. X.

    2011-01-01

    We present a study of type Ia supernovae in the single-degenerate scenario, in which a white dwarf accretes mass from a companion star until it approaches the Chandrasekhar limiting mass and an explosion ensues. We investigate progenitor models with a range of central densities to study the influence of this parameter on explosion outcome. We present a suite of simulations from a well-controlled statistical study that allows us to quantify the effects of a variety of initial conditions. We present details of the models, including the mass and distribution of 56Ni, the radioactive decay of which powers the light curve. Our results indicate that progenitors with a higher central density produce less 56Ni and hence a dimmer event. We combine our results with those from previous studies by our collaboration to explore trends in explosion brightness that follow from properties related to the morphology and color of the host galaxy. This work was supported by NASA under grant No. NNX09AD19G and utilized resources at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and by the State of New York.

  16. Experimental Study of the Biological Properties of Human Embryonic Stem Cell–Derived Retinal Progenitor Cells

    PubMed Central

    Shao, Jingzhi; Zhou, Peng-Yi; Peng, Guang-Hua

    2017-01-01

    Retinal degenerative diseases are among the leading causes of blindness worldwide, and cell replacement is considered as a promising therapeutic. However, the resources of seed cells are scarce. To further explore this type of therapy, we adopted a culture system that could harvest a substantial quantity of retinal progenitor cells (RPCs) from human embryonic stem cells (hESCs) within a relatively short period of time. Furthermore, we transplanted these RPCs into the subretinal spaces of Royal College of Surgeons (RCS) rats. We quantified the thickness of the treated rats’ outer nuclear layers (ONLs) and explored the visual function via electroretinography (ERG). It was found that the differentiated cells expressed RPC markers and photoreceptor progenitor markers. The transplanted RPCs survived for at least 12 weeks, resulting in beneficial effects on the morphology of the host retina, and led to a significant improvement in the visual function of the treated animals. These therapeutic effects suggest that the hESCs-derived RPCs could delay degeneration of the retina and partially restore visual function. PMID:28205557

  17. ON THE NATURE OF THE PROGENITOR OF THE Type Ia SN2011fe IN M101

    SciTech Connect

    Liu Jifeng; Di Stefano, Rosanne; Wang Tao; Moe, Maxwell

    2012-04-20

    The explosion of a Type Ia supernova, SN2011fe, in the nearby Pinwheel galaxy (M101 at 6.4 Mpc) provides an opportunity to study pre-explosion images and search for the progenitor, which should consist of a white dwarf (WD), possibly surrounded by an accretion disk, in orbit with another star. We report on our use of deep Chandra observations and Hubble Space Telescope observations to limit the luminosity and temperature of the pre-explosion WD. It is found that if the spectrum was a blackbody, then pre-SN WDs with steady nuclear burning of the highest possible temperatures and luminosities are excluded assuming moderate n{sub H} values, but values of kT between roughly 10 eV and 60 eV are permitted even if the WD was emitting at the Eddington luminosity. This allows the progenitor to be an accreting nuclear-burning WD with an expanded photosphere 4-100 times the WD itself, or a super-critically accreting WD blowing off an optically thick strong wind, or possibly a recurrent nova with luminosities an order of magnitude lower than Eddington. The observations are also consistent with a double degenerate scenario, or a spinning down WD that has been spun up by accretion from the donor.

  18. Skeletal muscle neural progenitor cells exhibit properties of NG2-glia

    PubMed Central

    Birbrair, Alexander; Zhang, Tan; Wang, Zhong-Min; Messi, María Laura; Enikolopov, Grigori N.; Mintz, Akiva; Delbono, Osvaldo

    2013-01-01

    Reversing brain degeneration and trauma lesions will depend on cell therapy. Our previous work identified neural precursor cells derived from the skeletal muscle of Nestin-GFP transgenic mice, but their identity, origin, and potential survival in the brain are only vaguely understood. In this work, we show that Nestin-GFP+ progenitor cells share morphological and molecular markers with NG2-glia, including NG2, PDGFRα, O4, NGF receptor (p75), glutamate receptor-1(AMPA), and A2B5 expression. Although these cells exhibit NG2, they do not express other pericyte markers, such as α-SMA or connexin-43, and do not differentiate into the muscle lineage. Patch-clamp studies displayed outward potassium currents, probably carried through Kir6.1 channels. Given their potential therapeutic application, we compared their abundance in tissues and concluded that skeletal muscle is the richest source of predifferentiated neural precursor cells. We found that these cells migrate toward the neurogenic subventricular zone displaying their typical morphology and nestin-GFP expression two weeks after brain injection. For translational purposes, we sought to identify these neural progenitor cells in wild-type species by developing a DsRed expression vector under Nestin-Intron II control. This approach revealed them in nonhuman primates and aging rodents throughout the lifespan. PMID:22999866

  19. Skeletal muscle neural progenitor cells exhibit properties of NG2-glia.

    PubMed

    Birbrair, Alexander; Zhang, Tan; Wang, Zhong-Min; Messi, María Laura; Enikolopov, Grigori N; Mintz, Akiva; Delbono, Osvaldo

    2013-01-01

    Reversing brain degeneration and trauma lesions will depend on cell therapy. Our previous work identified neural precursor cells derived from the skeletal muscle of Nestin-GFP transgenic mice, but their identity, origin, and potential survival in the brain are only vaguely understood. In this work, we show that Nestin-GFP+ progenitor cells share morphological and molecular markers with NG2-glia, including NG2, PDGFRα, O4, NGF receptor (p75), glutamate receptor-1(AMPA), and A2B5 expression. Although these cells exhibit NG2, they do not express other pericyte markers, such as α-SMA or connexin-43, and do not differentiate into the muscle lineage. Patch-clamp studies displayed outward potassium currents, probably carried through Kir6.1 channels. Given their potential therapeutic application, we compared their abundance in tissues and concluded that skeletal muscle is the richest source of predifferentiated neural precursor cells. We found that these cells migrate toward the neurogenic subventricular zone displaying their typical morphology and nestin-GFP expression two weeks after brain injection. For translational purposes, we sought to identify these neural progenitor cells in wild-type species by developing a DsRed expression vector under Nestin-Intron II control. This approach revealed them in nonhuman primates and aging rodents throughout the lifespan.

  20. On the Nature of the Progenitor of the Type Ia SN2011fe in M101

    NASA Astrophysics Data System (ADS)

    Liu, Jifeng; Di Stefano, Rosanne; Wang, Tao; Moe, Maxwell

    2012-04-01

    The explosion of a Type Ia supernova, SN2011fe, in the nearby Pinwheel galaxy (M101 at 6.4 Mpc) provides an opportunity to study pre-explosion images and search for the progenitor, which should consist of a white dwarf (WD), possibly surrounded by an accretion disk, in orbit with another star. We report on our use of deep Chandra observations and Hubble Space Telescope observations to limit the luminosity and temperature of the pre-explosion WD. It is found that if the spectrum was a blackbody, then pre-SN WDs with steady nuclear burning of the highest possible temperatures and luminosities are excluded assuming moderate n H values, but values of kT between roughly 10 eV and 60 eV are permitted even if the WD was emitting at the Eddington luminosity. This allows the progenitor to be an accreting nuclear-burning WD with an expanded photosphere 4-100 times the WD itself, or a super-critically accreting WD blowing off an optically thick strong wind, or possibly a recurrent nova with luminosities an order of magnitude lower than Eddington. The observations are also consistent with a double degenerate scenario, or a spinning down WD that has been spun up by accretion from the donor.

  1. Noninvasive Imaging of Administered Progenitor Cells

    SciTech Connect

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusion and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90

  2. Resident mesenchymal progenitors of articular cartilage.

    PubMed

    Candela, Maria Elena; Yasuhara, Rika; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2014-10-01

    Articular cartilage has poor capacity of self-renewal and repair. Insufficient number and activity of resident mesenchymal (connective tissue) progenitors is likely one of the underlying reasons. Chondroprogenitors reside not only in the superficial zone of articular cartilage but also in other zones of articular cartilage and in the neighboring tissues, including perichondrium (groove of Ranvier), synovium and fat pad. These cells may respond to injury and contribute to articular cartilage healing. In addition, marrow stromal cells can migrate through subchondral bone when articular cartilage is damaged. We should develop drugs and methods that correctly stimulate resident progenitors for improvement of repair and inhibition of degenerative changes in articular cartilage. Copyright © 2014. Published by Elsevier B.V.

  3. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  4. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  5. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    SciTech Connect

    Sajadian, Sedighe

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.

  6. Enhanced neurotrophin synthesis and molecular differentiation in non-transformed human retinal progenitor cells cultured in a rotating bioreactor.

    PubMed

    Kumar, Ravindra; Dutt, Kamla

    2006-01-01

    One approach to the treatment of retinal diseases, such as retinitis pigmentosa, is to replace diseased or degenerating cells with healthy cells. Even if all of the problems associated with tissue transplant were to be resolved, the availability of tissue would remain an ongoing problem. We have previously shown that transformed human retinal cells can be grown in a NASA-developed horizontally rotating culture vessel (bioreactor) to form three-dimensional-like structures with the expression of several retinal specific proteins. In this study, we have investigated growth of non-transformed human retinal progenitors (retinal stem cells) in a rotating bioreactor. This rotating culture vessel promotes cell-cell interaction between similar and dissimilar cells. We cultured retinal progenitors (Ret 1-4) alone or as a co-culture with human retinal pigment epithelial cells (RPE, D407) in this system to determine if 3D structures can be generated from non-transformed progenitors. Our second goal was to determine if the formation of 3D structures correlates with the upregulation of neurotrophins, basic fibroblast growth factor (bFGF), transforming growth factor alpha (TGFalpha), ciliary neurotrophic factor (CNTF), and brain-delivered neurotrophic factor (BDNF). These factors have been implicated in progenitor cell proliferation, commitment, differentiation, and survival. We also investigated the expression of the following retinal specific proteins in this system: neuron specific enolase (NSE); tyrosine hydroxylase (TH); D(2)D(3), D(4) receptors; protein kinase-C alpha (PKCalpha), and calbindin. The 3D structures generated were characterized by phase and scanning transmission electron microscopy. Retinal progenitors, cultured alone or as a co-culture in the rotating bioreactor, formed 3D structures with some degree of differentiation, accompanied by the upregulation of bFGF, CNTF, and TGFalpha. Brain-derived neurotrophic factor, which is expressed in vivo in RPE (D407), was

  7. Chondrogenic Progenitor Cells Respond to Cartilage Injury

    PubMed Central

    Choe, Hyeonghun; Zheng, Hongjun; Yu, Yin; Jang, Keewoong; Walter, Morgan W.; Lehman, Abigail D.; Ding, Lei; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Objective Hypocellularity resulting from chondrocyte death in the aftermath of mechanical injury is thought to contribute to posttraumatic osteoarthritis. However, we observed that nonviable areas in cartilage injured by blunt impact were repopulated within 7–14 days by cells that appeared to migrate from the surrounding matrix. The aim of this study was to assess our hypothesis that the migrating cell population included chondrogenic progenitor cells that were drawn to injured cartilage by alarmins. Methods Osteochondral explants obtained from mature cattle were injured by blunt impact or scratching, resulting in localized chondrocyte death. Injured sites were serially imaged by confocal microscopy, and migrating cells were evaluated for chondrogenic progenitor characteristics. Chemotaxis assays were used to measure the responses to chemokines, injury-conditioned medium, dead cell debris, and high mobility group box chromosomal protein 1 (HMGB-1). Results Migrating cells were highly clonogenic and multipotent and expressed markers associated with chondrogenic progenitor cells. Compared with chondrocytes, these cells overexpressed genes involved in proliferation and migration and underexpressed cartilage matrix genes. They were more active than chondrocytes in chemotaxis assays and responded to cell lysates, conditioned medium, and HMGB-1. Glycyrrhizin, a chelator of HMGB-1 and a blocking antibody to receptor for advanced glycation end products (RAGE), inhibited responses to cell debris and conditioned medium and reduced the numbers of migrating cells on injured explants. Conclusion Injuries that caused chondrocyte death stimulated the emergence and homing of chondrogenic progenitor cells, in part via HMGB-1 release and RAGE-mediated chemotaxis. Their repopulation of the matrix could promote the repair of chondral damage that might otherwise contribute to progressive cartilage loss. PMID:22777600

  8. Endothelial progenitor cell biology in ankylosing spondylitis.

    PubMed

    Verma, Inderjeet; Syngle, Ashit; Krishan, Pawan

    2015-03-01

    Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). EPCs were depleted in AS patients as compared to healthy controls (CD34(+) /CD133(+) : 0.027 ± 0.010% vs. 0.044 ± 0.011%, P < 0.001). EPC depletions were significantly associated with disease duration (r = -0.52, P = 0.01), BASDAI (r = -0.45, P = 0.04) and C-reactive protein (r = -0.5, P = 0.01). This is the first study to demonstrate endothelial progenitor cell depletion in AS patients. EPC depletions inversely correlate with disease duration, disease activity and inflammation, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  9. Ablation of central nervous system progenitor cells in transgenic rats using bacterial nitroreductase system.