Science.gov

Sample records for degenerate human intervertebral

  1. The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison

    2005-01-01

    In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475

  2. Implications for a Stem Cell Regenerative Medicine Based Approach to Human Intervertebral Disk Degeneration

    PubMed Central

    Kraus, Petra; Lufkin, Thomas

    2017-01-01

    The human body develops from a single cell, the zygote, the product of the maternal oocyte and the paternal spermatozoon. That 1-cell zygote embryo will divide and eventually grow into an adult human which is comprised of ~3.7 × 1013 cells. The tens of trillions of cells in the adult human can be classified into approximately 200 different highly specialized cell types that make up all of the different tissues and organs of the human body. Regenerative medicine aims to replace or restore dysfunctional cells, tissues and organs with fully functional ones. One area receiving attention is regeneration of the intervertebral discs (IVDs), which are located between the vertebrae and function to give flexibility and support load to the spine. Degenerated discs are a major cause of lower back pain. Different stem cell based regenerative medicine approaches to cure disc degeneration are now available, including using autologous mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs) and even attempts at direct transdifferentiation of somatic cells. Here we discuss some of the recent advances, successes, drawbacks, and the failures of the above-mentioned approaches. PMID:28326305

  3. Implications for a Stem Cell Regenerative Medicine Based Approach to Human Intervertebral Disk Degeneration.

    PubMed

    Kraus, Petra; Lufkin, Thomas

    2017-01-01

    The human body develops from a single cell, the zygote, the product of the maternal oocyte and the paternal spermatozoon. That 1-cell zygote embryo will divide and eventually grow into an adult human which is comprised of ~3.7 × 10(13) cells. The tens of trillions of cells in the adult human can be classified into approximately 200 different highly specialized cell types that make up all of the different tissues and organs of the human body. Regenerative medicine aims to replace or restore dysfunctional cells, tissues and organs with fully functional ones. One area receiving attention is regeneration of the intervertebral discs (IVDs), which are located between the vertebrae and function to give flexibility and support load to the spine. Degenerated discs are a major cause of lower back pain. Different stem cell based regenerative medicine approaches to cure disc degeneration are now available, including using autologous mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs) and even attempts at direct transdifferentiation of somatic cells. Here we discuss some of the recent advances, successes, drawbacks, and the failures of the above-mentioned approaches.

  4. Ultrastructure of inclusion bodies in annulus cells in the degenerating human intervertebral disc.

    PubMed

    Gruber, H E; Hanley, E N

    2009-06-01

    The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.

  5. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy.

    PubMed

    Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha C W; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle

    2015-01-01

    In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.

  6. Genome-Wide Identification of Long Noncoding RNAs in Human Intervertebral Disc Degeneration by RNA Sequencing

    PubMed Central

    Zhao, Bo; Lu, Minjuan; Wang, Dong; Li, Haopeng

    2016-01-01

    Long noncoding RNAs (lncRNAs) are emerging as crucial players in a myriad of biological processes. However, the precise mechanism and functions of most lncRNAs are poorly characterized. In this study, we presented genome-wide identification of lncRNAs in the patients with intervertebral disc degeneration (IDD) and spinal cord injury (control) using RNA sequencing (RNA-seq). A total of 124.6 million raw reads were yielded using Hiseq 2500 platform and approximately 88% clean reads could be aligned to human reference genome in both IDD and control groups. RNA-seq profiling indicated that 1,854 lncRNAs were differentially expressed (log2 fold change ≥ 1 or ≤−1, p < 0.05), in which 1,530 could potentially target 6,386 genes via cis-regulatory effects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for these target genes suggested that lncRNAs were involved in diverse pathways, such as lysosome, focal adhesion, and MAPK signaling. In addition, a competing endogenous RNA (ceRNA) network was constructed for analyzing the function of lncRNAs. Further, quantitative real time PCR (qRT-PCR) was used to confirm the differentially expressed lncRNAs and ceRNA network. In conclusion, our results present the first global identification of lncRNAs in IDD and may provide candidate diagnostic biomarkers for IDD treatment. PMID:28097131

  7. Genetic Factors in Intervertebral Disc Degeneration

    PubMed Central

    Feng, Yi; Egan, Brian; Wang, Jinxi

    2016-01-01

    Low back pain (LBP) is a major cause of disability and imposes huge economic burdens on human society worldwide. Among many factors responsible for LBP, intervertebral disc degeneration (IDD) is the most common disorder and is a target for intervention. The etiology of IDD is complex and its mechanism is still not completely understood. Many factors such as aging, spine deformities and diseases, spine injuries, and genetic factors are involved in the pathogenesis of IDD. In this review, we will focus on the recent advances in studies on the most promising and extensively examined genetic factors associated with IDD in humans. A number of genetic defects have been correlated with structural and functional changes within the intervertebral disc (IVD), which may compromise the disc’s mechanical properties and metabolic activities. These genetic and proteomic studies have begun to shed light on the molecular basis of IDD, suggesting that genetic factors are important contributors to the onset and progression of IDD. By continuing to improve our understanding of the molecular mechanisms of IDD, specific early diagnosis and more effective treatments for this disabling disease will be possible in the future. PMID:27617275

  8. The Effect of Discectomy and the Dependence on Degeneration of Human Intervertebral Disc Strain in Axial Compression

    PubMed Central

    O’Connell, Grace D.; Malhotra, Neil R.; Vresilovic, Edward J; Elliott, Dawn M.

    2011-01-01

    Study Design Biomechanics of human intervertebral discs before and after nucleotomy. Objective To noninvasively quantify the effect of nucleotomy on internal strains under axial compression in flexion, neutral, and extension positions, and to determine whether the change in strains depended on degeneration. Summary of Background Data Herniation and discectomy may accelerate the progression of disc degeneration. Removal of NP tissue has resulted in altered disc mechanics in vitro, including in a decrease in internal pressure and an increase in the deformations at physiologically relevant strains. We recently presented a technique to quantify internal disc strains using magnetic resonance imaging. Methods Degeneration was quantitatively assessed by the T1ρ relaxation in the nucleus pulposus (NP). Samples were prepared from human levels L3-L4 and/or L4-L5. A 1000N compressive load was applied while in the MR scanner. Nucleotomy was performed by removing 2g of NP through the posterior-lateral AF. The discs were rehydrated, reimaged and retested. The analyzed parameters include axial deformation, AF radial bulge and strains. Results The axial deformation was more compressive following nucleotomy. In the neutral position, the axial deformation following nucleotomy correlated with degeneration (as quantified by T1ρ in the NP), with minimal alteration in nondegenerated discs. Nucleotomy altered the radial displacements and strains in the neutral position, such that the inner AF radial bulge decreased and the radial strains were more tensile in the lateral AF and less tensile in the posterior AF. In the bending loading positions the radial strains were not affected by nucleotomy. Conclusions Nucleotomy alters the internal radial and axial AF strains in the neutral position, which may leave the AF vulnerable to damage and microfractures. In bending, the effects of nucleotomy were minimal; likely due to more of the applied load being directed over the AF. Some of the

  9. Variations in aggrecan localization and gene expression patterns characterize increasing stages of human intervertebral disk degeneration.

    PubMed

    Gruber, Helen E; Hoelscher, Gretchen L; Ingram, Jane A; Bethea, Synthia; Zinchenko, Natalia; Hanley, Edward N

    2011-10-01

    During disk degeneration, annulus dehydration and matrix fraying culminate in the formation of tears through which nucleus and annulus disk material may rupture, causing radicular pain. Annular tears are present in more than half of the patients in early adulthood and are almost always present in the elderly. Aggrecan, which provides the disk with a shock absorber function under loading, is a key disk extracellular matrix (ECM) component. The objective of the present study was to assess the immunolocalization of aggrecan in the annulus, and to assess molecular gene expression patterns in the annulus ECM utilizing microarray analysis. Immunohistochemistry was performed on 45 specimens using an anti-human aggrecan antibody. Affymetrix microarray gene expression studies used the extracellular matrix ontology approach to evaluate an additional 6 grade I-II, 9 grade III, and 4 grade IV disks. Grade III/IV disks were compared to healthier grade I/II disks. Healthy and less degenerated disks showed a general uniform aggrecan immunolocalization; more degenerated disks contained regions with little or no identifiable aggrecan localization. In degenerated disks, molecular studies showed a significant downregulation of aggrecan, ADAMTS-like 3, and ADAMTS10. Collagen types III and VIII, fibronectin, decorin, connective tissue growth factor, TIMP-3, latent TGF-β binding protein 2 and TGF-β1 were significantly upregulated with fold changes ranging from 2.4 to 9.8. Findings here help us better understand changes in the immunohistochemical distribution of a key proteoglycan during disk aging. Such information may have application as we work towards biologic therapies to improve the aging/degenerating disk matrix.

  10. Cell therapy for the degenerating intervertebral disc.

    PubMed

    Tong, Wei; Lu, Zhouyu; Qin, Ling; Mauck, Robert L; Smith, Harvey E; Smith, Lachlan J; Malhotra, Neil R; Heyworth, Martin F; Caldera, Franklin; Enomoto-Iwamoto, Motomi; Zhang, Yejia

    2017-03-01

    Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologically privileged site, permitting long-term survival of transplanted cells. All of the animal studies reviewed here reported some improvement in disc structure, and 2 studies showed attenuation of local inflammation. Among the 50 studies reviewed, 25 used some type of scaffold, and cell leakage is a consistently noted problem, though some studies showed reduced cell leakage. Hydrogel scaffolds may prevent cell leakage and provide biomechanical support until cells can become established matrix producers. However, these gels need to be optimized to prevent this leakage. Many animal models have been leveraged in this research space. Rabbit is the most frequently used model (28 of 50), followed by rat, pig, and dog. Sheep and goat IVDs resemble those of humans in size and in the absence of notochordal cells. Despite this advantage, there were only 2 sheep and 1 goat studies of 50 studies in this cohort. It is also unclear if a study in large animals is needed before clinical trials since

  11. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.

    PubMed

    Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D

    2015-12-01

    Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration.

  12. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study

    PubMed Central

    Le Maitre, Christine L; Hoyland, Judith A; Freemont, Anthony J

    2007-01-01

    Data implicate IL-1 in the altered matrix biology that characterizes human intervertebral disc (IVD) degeneration. In the current study we investigated the enzymic mechanism by which IL-1 induces matrix degradation in degeneration of the human IVD, and whether the IL-1 inhibitor IL-1 receptor antagonist (IL-1Ra) will inhibit degradation. A combination of in situ zymography (ISZ) and immunohistochemistry was used to examine the effects of IL-1 and IL-1Ra on matrix degradation and metal-dependent protease (MDP) expression in explants of non-degenerate and degenerate human IVDs. ISZ employed three substrates (gelatin, collagen, casein) and different challenges (IL-1β, IL-1Ra and enzyme inhibitors). Immunohistochemistry was undertaken for MDPs. In addition, IL-1Ra was introduced into degenerate IVD explants using genetically engineered constructs. The novel findings from this study are: IL-1Ra delivered directly onto explants of degenerate IVDs eliminates matrix degradation as assessed by multi-substrate ISZ; there is a direct relationship between matrix degradation assessed by ISZ and MDP expression defined by immunohistochemistry; single injections of IVD cells engineered to over-express IL-1Ra significantly inhibit MDP expression for two weeks. Our findings show that IL-1 is a key cytokine driving matrix degradation in the degenerate IVD. Furthermore, IL-1Ra delivered directly or by gene therapy inhibits IVD matrix degradation. IL-1Ra could be used therapeutically to inhibit degeneration of the IVD. PMID:17760968

  13. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  14. The elastic fibre network of the human lumbar anulus fibrosus: architecture, mechanical function and potential role in the progression of intervertebral disc degeneration

    PubMed Central

    Fazzalari, Nicola L.

    2009-01-01

    Elastic fibres are critical constituents of dynamic biological structures that functionally require elasticity and resilience. The network of elastic fibres in the anulus fibrosus of the intervertebral disc is extensive, however until recently, the majority of histological, biochemical and biomechanical studies have focussed on the roles of other extracellular matrix constituents such as collagens and proteoglycans. The resulting lack of detailed descriptions of elastic fibre network architecture and mechanical function has limited understanding of the potentially important contribution made by elastic fibres to healthy disc function and their possible roles in the progression of disc degeneration. In addition, it has made it difficult to postulate what the consequences of elastic fibre related disorders would be for intervertebral disc behaviour, and to develop treatments accordingly. In this paper, we review recent and historical studies which have examined both the structure and the function of the human lumbar anulus fibrosus elastic fibre network, provide a synergistic discussion in an attempt to clarify its potentially critical contribution both to normal intervertebral disc behaviour and the processes relating to its degeneration, and recommend critical areas for future research. PMID:19263091

  15. Inflammation in intervertebral disc degeneration and regeneration

    PubMed Central

    Molinos, Maria; Almeida, Catarina R.; Caldeira, Joana; Cunha, Carla; Gonçalves, Raquel M.; Barbosa, Mário A.

    2015-01-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players. PMID:25673296

  16. Intervertebral disk degeneration and emerging biologic treatments.

    PubMed

    Kepler, Christopher K; Anderson, D Greg; Tannoury, Chadi; Ponnappan, Ravi K

    2011-09-01

    Although understanding of the biologic basis of intervertebral disk (IVD) degeneration is rapidly advancing, the unique IVD environment presents challenges to the development and delivery of biologic treatments. Acceleration of cellular senescence and apoptosis in degenerative IVDs and the depletion of matrix proteins have prompted the development of treatments based on replacing IVD cells using various cell sources. However, this strategy has not been tested in animal models. IVD degeneration and associated pain have led to interest in pathologic innervation of the IVD and ultimately to the development of percutaneous devices to ablate afferent nerve endings in the posterior annulus. Degeneration leads to changes in the expression of matrix protein, cytokines, and proteinases. Injection of growth factors and mitogens may help overcome these degenerative changes in IVD phenotype, and these potential treatments are being explored in animal studies. Gene therapy is an elegant method to address changes in protein expression, but efforts to apply this technology to IVD degeneration are still at early stages.

  17. In Vivo Mouse Intervertebral Disc Degeneration Model Based on a New Histological Classification

    PubMed Central

    Ohnishi, Takashi; Sudo, Hideki; Iwasaki, Koji; Tsujimoto, Takeru; Ito, Yoichi M.; Iwasaki, Norimasa

    2016-01-01

    Although human intervertebral disc degeneration can lead to several spinal diseases, its pathogenesis remains unclear. This study aimed to create a new histological classification applicable to an in vivo mouse intervertebral disc degeneration model induced by needle puncture. One hundred six mice were operated and the L4/5 intervertebral disc was punctured with a 35- or 33-gauge needle. Micro-computed tomography scanning was performed, and the punctured region was confirmed. Evaluation was performed by using magnetic resonance imaging and histology by employing our classification scoring system. Our histological classification scores correlated well with the findings of magnetic resonance imaging and could detect degenerative progression, irrespective of the punctured region. However, the magnetic resonance imaging analysis revealed that there was no significant degenerative intervertebral disc change between the ventrally punctured and non-punctured control groups. To induce significant degeneration in the lumbar intervertebral discs, the central or dorsal region should be punctured instead of the ventral region. PMID:27482708

  18. Lumbar intervertebral disc degeneration and related factors in Korean firefighters

    PubMed Central

    Jang, Tae-Won; Ahn, Yeon-Soon; Byun, Junsu; Lee, Jong-In; Kim, Kun-Hyung; Kim, Youngki; Song, Han-Soo; Lee, Chul-Gab; Kwon, Young-Jun; Yoon, Jin-Ha; Jeong, Kyoungsook

    2016-01-01

    Objectives The job of firefighting can cause lumbar burden and low back pain. This study aimed to identify the association between age and lumbar intervertebral disc degeneration and whether the association differs between field and administrative (non-field) firefighters. Methods Subjects were selected using a stratified random sampling method. Firefighters were stratified by geographic area, gender, age and type of job. First, 25 fire stations were randomly sampled considering regional distribution. Then firefighters were stratified by gender, age and their job and randomly selected among the strata. A questionnaire survey and MRI scans were performed, and then four radiologists used Pfirrmann classification methods to determine the grade of lumbar intervertebral disc degeneration. Results Pfirrmann grade increased with lumbar intervertebral disc level. Analysis of covariance showed that age was significantly associated with lumbar intervertebral disc degeneration (p<0.05). The value of β (parameter estimate) was positive at all lumbar intervertebral disc levels and was higher in the field group than in the administrative group at each level. In logistic regression analysis, type of job was statistically significant only with regard to the L4–5 intervertebral disc (OR 3.498, 95% CI 1.241 to 9.860). Conclusions Lumbar intervertebral disc degeneration is associated with age, and field work such as firefighting, emergency and rescue may accelerate degeneration in the L4–5 intervertebral disc. The effects of field work on lumbar intervertebral disc degeneration were not clear in discs other than at the level L4–5. PMID:27354080

  19. Decellularized allogeneic intervertebral disc: natural biomaterials for regenerating disc degeneration

    PubMed Central

    Hu, Zhijun; Chen, Kai; Shan, Zhi; Chen, Shuai; Wang, Jiying; Mo, Jian; Ma, Jianjun; Xu, Wenbing; Qin, An; Fan, Shunwu

    2016-01-01

    Intervertebral disc degeneration is associated with back pain and disc herniation. This study established a modified protocol for intervertebral disc (IVD) decellularization and prepared its extracellular matrix (ECM). By culturing mesenchymal stem cells (MSCs)(3, 7, 14 and 21 days) and human degenerative IVD cells (7 days) in the ECM, implanting it subcutaneously in rabbit and injecting ECM microparticles into degenerative disc, the biological safety and efficacy of decellularized IVD was evaluated both in vitro and in vivo. Here, we demonstrated that cellular components can be removed completely after decellularization and maximally retain the structure and biomechanics of native IVD. We revealed that allogeneic ECM did not evoke any apparent inflammatory reaction in vivo and no cytotoxicity was found in vitro. Moreover, IVD ECM can induce differentiation of MSCs into IVD-like cells in vitro. Furthermore, allogeneic ECM microparticles are effective on the treatment of rabbit disc degeneration in vivo. In conclusion, our study developed an optimized method for IVD decellularization and we proved decellularized IVD is safe and effective for the treatment of degenerated disc diseases. PMID:26933821

  20. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans.

    PubMed

    Brisby, Helena; Papadimitriou, Nikolaos; Brantsing, Camilla; Bergh, Peter; Lindahl, Anders; Barreto Henriksson, Helena

    2013-03-01

    Low back pain is common and degenerated discs (DDs) are believed to be a major cause. In non-degenerated intervertebral discs (IVDs) presence of stem/progenitor cells was recently reported in different mammals (rabbit, rat, pig). Understanding processes of disc degeneration and regenerative mechanisms within DDs is important. The aim of the study was to examine the presence of local stem/progenitor cells in human DDs and if these cell populations could respond to paracrine stimulation in vitro. Tissue biopsies from the IVD region (L3-S1) were collected from 15 patients, age 34-69 years, undergoing surgery (spinal fusion) and mesenchymal stem cells (MSCs) (iliac crest) from 2 donors. Non-DD cells were collected from 1 donor (scoliosis) and chordoma tissue was obtained from (positive control, stem cell markers) 2 donors. The IVD biopsies were investigated for gene and protein expression of: OCT3/4, CD105, CD90, STRO-1, and NOTCH1. DD cell cultures (pellet mass) were performed with conditioned media from MSCs and non-degenerated IVD cells. Pellets were investigated after 7, 14, 28 days for the same stem cell markers as above. Gene expression of OCT3/4 and STRO-1 was detected in 13/15 patient samples, CD105 in 14/15 samples, and CD90 and NOTCH1 were detected 15/15 samples. Immunohistochemistry analysis supported findings on the protein level, in cells sparsely distributed in DDs tissues. DDs cell cultures displayed more undifferentiated appearance with increased expression of CD105, CD90, STRO-1, OCT3/4, NOTCH1, and JAGGED1, which was observed when cultured in conditioned cell culture media from MSCs compared to cell cultures cultured with conditioned media from non-DD cells. Expression of OCT3/4 (multipotency marker) and NOTCH1 (regulator of cell fate), MSC-markers, CD105, CD90, and STRO-1, indicate that primitive cell populations are present within DDs. Furthermore, the possibility to influence cells from DDs by paracrine signaling /soluble factors from MSCs and from

  1. A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic

    PubMed Central

    Ghosh, Peter

    2016-01-01

    Lower back pain is the leading cause of disability worldwide. Discogenic pain secondary to intervertebral disc degeneration is a significant cause of low back pain. Disc degeneration is a complex multifactorial process. Animal models are essential to furthering understanding of the degenerative process and testing potential therapies. The adult human lumbar intervertebral disc is characterized by the loss of notochordal cells, relatively large size, essentially avascular nature, and exposure to biomechanical stresses influenced by bipedalism. Animal models are compared with regard to the above characteristics. Numerous methods of inducing disc degeneration are reported. Broadly these can be considered under the categories of spontaneous degeneration, mechanical and structural models. The purpose of such animal models is to further our understanding and, ultimately, improve treatment of disc degeneration. The role of animal models of disc degeneration in translational research leading to clinical trials of novel cellular therapies is explored. PMID:27314030

  2. Injection of human umbilical tissue–derived cells into the nucleus pulposus alters the course of intervertebral disc degeneration in vivo

    PubMed Central

    Leckie, Steven K.; Sowa, Gwendolyn A.; Bechara, Bernard P.; Hartman, Robert A.; Coelho, Joao Paulo; Witt, William T.; Dong, Qing D.; Bowman, Brent W.; Bell, Kevin M.; Vo, Nam V.; Kramer, Brian C.; Kang, James D.

    2016-01-01

    Background context Patients often present to spine clinic with evidence of intervertebral disc degeneration (IDD). If conservative management fails, a safe and effective injection directly into the disc might be preferable to the risks and morbidity of surgery. Purpose To determine whether injecting human umbilical tissue–derived cells (hUTC) into the nucleus pulposus (NP) might improve the course of IDD. Design Prospective, randomized, blinded placebo–controlled in vivo study. Patient sample Skeletally mature New Zealand white rabbits. Outcome measures Degree of IDD based on magnetic resonance imaging (MRI), biomechanics, and histology. Methods Thirty skeletally mature New Zealand white rabbits were used in a previously validated rabbit annulotomy model for IDD. Discs L2–L3, L3–L4, and L4–L5 were surgically exposed and punctured to induce degeneration and then 3 weeks later the same discs were injected with hUTC with or without a hydrogel carrier. Serial MRIs obtained at 0, 3, 6, and 12 weeks were analyzed for evidence of degeneration qualitatively and quantitatively via NP area and MRI Index. The rabbits were sacrificed at 12 weeks and discs L4–L5 were analyzed histologically. The L3–L4 discs were fixed to a robotic arm and subjected to uniaxial compression, and viscoelastic displacement curves were generated. Results Qualitatively, the MRIs demonstrated no evidence of degeneration in the control group over the course of 12 weeks. The punctured group yielded MRIs with the evidence of disc height loss and darkening, suggestive of degeneration. The three treatment groups (cells alone, carrier alone, or cells+carrier) generated MRIs with less qualitative evidence of degeneration than the punctured group. MRI Index and area for the cell and the cell+carrier groups were significantly distinct from the punctured group at 12 weeks. The carrier group generated MRI data that fell between control and punctured values but failed to reach a statistically

  3. Expression of TRAIL and the death receptors DR4 and DR5 correlates with progression of degeneration in human intervertebral disks.

    PubMed

    Bertram, Helge; Nerlich, Andreas; Omlor, Georg; Geiger, Florian; Zimmermann, Gerald; Fellenberg, Joerg

    2009-07-01

    Intervertebral disks degenerate far earlier than other musculoskeletal tissues and apoptosis has been suggested to have a vital function in promoting the degeneration process that is strongly associated with back pain. However, the molecular mediators of apoptosis in the intervertebral disk are poorly understood. Fas/FasL, TRAIL/DR4, TRAIL/DR5 and TNF-alpha/TNFR1 are ligand/receptor pairs of the tumor necrosis factor/nerve growth factor family, which are able to induce apoptosis by trimerization of the receptor by its corresponding ligand. We investigated which of these molecules are expressed in intervertebral disks and whether their expression correlates to disk degeneration. Intervertebral disks from 28 donors (age 12-70 years) suffering from scoliosis, vertebrae fracture or disk degeneration were scored histologically for degeneration and analyzed for gene expression of FasL/Fas, TRAIL/DR4, TNF-alpha/TNFR1 and caspase 8. Protein expression of FasL and TRAIL was assessed by immunohistology and apoptotic cell death was quantified by poly(ADP-ribose) polymerase (PARP) p85 staining. Isolated disk cells were analyzed by flow cytometry for Fas, FasL, TRAIL, DR4 and DR5 expression. Gene expression of TRAIL (P=0.002) and caspase 8 (P=0.027) significantly correlated with degeneration. TRAIL expression further correlated with cellularity (P=0.04), muccoid matrix changes (P=0.009) and tears and cleft formation (P=0.019). FasL and TRAIL expression was confirmed by immunohistology and PARP cleavage was significantly associated with degeneration (P=0.027). Flow cytometry on isolated disk cells revealed correlations between DR4 and degeneration (P=0.014), DR4/DR5 double-positive cells and degeneration (P=0.019), as well as DR5 and changes in tissue granularity (P=0.03). This is the first study that shows that intervertebral disk cells express TRAIL, DR4 and DR5, which correlate to the degenerative state of the disk. Therefore, disk cells inherit the molecular machinery to

  4. Angiogenesis in the degeneration of the lumbar intervertebral disc

    PubMed Central

    David, Gh; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201

  5. Notochord Cells in Intervertebral Disc Development and Degeneration

    PubMed Central

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  6. Histological Identification of Propionibacterium acnes in Nonpyogenic Degenerated Intervertebral Discs

    PubMed Central

    Yuan, Ye; Zhou, Zezhu; Jiao, Yucheng; Zheng, Yuehuan; Lin, Yazhou; Xiao, Jiaqi

    2017-01-01

    Purpose. Low-virulence anaerobic bacteria, especially the Propionibacterium acnes (P. acnes), have been thought to be a new pathogeny for a series of disc diseases. However, until now, there has been no histological evidence to confirm this link. The purpose of this study was to confirm the presence of P. acnes in nonpyogenic intervertebral discs via histological observation. Method. Degenerated intervertebral discs were harvested from 76 patients with low back pain and/or sciatica but without any symptoms of discitis or spondylodiscitis. The samples were cultured under anaerobic conditions and then examined using 16S rDNA PCR to screen for P. acnes. Samples found to be positive for P. acnes were stained with hematoxylin-eosin (HE) and modified Brown-Brenn staining and observed under a microscope. Results. Here, 16 intervertebral discs were found to be positive for P. acnes via 16S rDNA PCR and the prevalence was 21.05% (16/76). Among them, 7 samples had visible microbes stained with HE and modified Brown-Brenn staining. Morphological examination showed the bacteria to be Gram-positive and rod-shaped, so they were considered P. acnes. Conclusion. P. acnes is capable of colonizing some degenerated intervertebral discs without causing discitis, and its presence could be further confirmed by histological evidence. Targeting these bacteria may be a promising therapy method for some disc diseases.

  7. On the Relative Relevance of Subject-Specific Geometries and Degeneration-Specific Mechanical Properties for the Study of Cell Death in Human Intervertebral Disk Models

    PubMed Central

    Malandrino, Andrea; Pozo, José M.; Castro-Mateos, Isaac; Frangi, Alejandro F.; van Rijsbergen, Marc M.; Ito, Keita; Wilke, Hans-Joachim; Dao, Tien Tuan; Ho Ba Tho, Marie-Christine; Noailly, Jérôme

    2015-01-01

    Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration. PMID:25717471

  8. Protective effect of ligustrazine on lumbar intervertebral disc degeneration of rats induced by prolonged upright posture.

    PubMed

    Liang, Qian-Qian; Ding, Dao-Fang; Xi, Zhi-Jie; Chen, Yan; Li, Chen-Guang; Liu, Shu-Fen; Lu, Sheng; Zhao, Yong-Jian; Shi, Qi; Wang, Yong-Jun

    2014-01-01

    Most chronic low back pain is the result of degeneration of the lumbar intervertebral disc. Ligustrazine, an alkaloid from Chuanxiong, reportedly is able to relieve pain, suppress inflammation, and treat osteoarthritis and it has the protective effect on cartilage and chondrocytes. Therefore, we asked whether ligustrazine could reduce intervertebral disc degeneration. To determine the effect of ligustrazine on disc degeneration, we applied a rat model. The intervertebral disc degeneration of the rats was induced by prolonged upright posture. We found that pretreatment with ligustrazine for 1 month recovered the structural distortion of the degenerative disc; inhibited the expression of type X collagen, matrix metalloproteinase (MMP)-13, and MMP3; upregulated type II collagen; and decreased IL-1 β , cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression. In conclusion, ligustrazine is a promising agent for treating lumbar intervertebral disc degeneration disease.

  9. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    SciTech Connect

    Purmessur, D.; Walter, B.A.; Roughley, P.J.; Laudier, D.M.; Hecht, A.C.; Iatridis, James

    2013-03-29

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  10. The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration

    PubMed Central

    Wu, Xinghuo; Liu, Wei; Duan, Zhenfeng; Gao, Yong; Li, Shuai; Wang, Kun; Song, Yu; Shao, Zengwu; Yang, Shuhua; Yang, Cao

    2016-01-01

    Protease nexin-1 (PN-1) is a serine protease inhibitor belonging to the serpin superfamily. This study was undertaken to investigate the regulatory role of PN-1 in the pathogenesis of intervertebral disk (IVD) degeneration. Expression of PN-1 was detected in human IVD tissue of varying grades. Expression of both PN-1 mRNA and protein was significantly decreased in degenerated IVD, and the expression levels of PN-1 were correlated with the grade of disc degeneration. Moreover, a decrease in PN-1 expression in primary NP cells was confirmed. On induction by IL-1β, the expression of PN-1 in NP cells was decreased at day 7, 14, and 21, as shown by western blot analysis and immunofluorescence staining. PN-1 administration decreased IL-1β-induced MMPs and ADAMTS production and the loss of Agg and Col II in NP cell cultures through the ERK1/2/NF-kB signaling pathway. The changes in PN-1 expression are involved in the pathogenesis of IVD degeneration. Our findings indicate that PN-1 administration could antagonize IL-1β-induced MMPs and ADAMTS, potentially preventing degeneration of IVD tissue. This study also revealed new insights into the regulation of PN-1 expression via the ERK1/2/NF-kB signaling pathway and the role of PN-1 in the pathogenesis of IVD degeneration. PMID:27460424

  11. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration

    PubMed Central

    Yang, Minghui; Lan, Minghong; Liu, Chang; Zhang, Yang; Huang, Bo

    2017-01-01

    Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD. PMID:28392887

  12. Simulation of the Progression of Intervertebral Disc Degeneration due to Decreased Nutrition Supply

    PubMed Central

    Gu, Weiyong; Zhu, Qiaoqiao; Gao, Xin; Brown, Mark D.

    2014-01-01

    Study Design Simulate the progression of human disc degeneration. Objective The objective of this study was to quantitatively analyze and simulate the changes in cell density, nutrition level, proteoglycan content, water content, and volume change during human disc degeneration using a numerical method. Summary of Background Data Understanding the etiology and progression of intervertebral disc (IVD) degeneration is crucial for developing effective treatment strategies for IVD-degeneration related diseases. During tissue degeneration, the disc undergoes losses of cell viability and activities, changes in extracellular matrix composition and structure, and compromise of the tissue-level integrity and function, which is significantly influenced by the inter-coupled biological, chemical, electrical, and mechanical signals in the disc. Characterizing these signals in human discs in vivo is difficult. Methods A realistic 3D finite element model of the human IVD was developed based on biomechano-electrochemical continuum mixture theory. The theoretical framework and the constitutive relationships were all biophysics based. All the material properties were obtained from experimental results. The cell-mediated disc degeneration process caused by lowered nutrition levels at disc boundaries was simulated and validated by comparing with experimental results. Results Cell density reached equilibrium state in 30 days after reduced nutrition supply at the disc boundary, while the proteoglycan (PG) and water contents reached a new equilibrium state in 55 years. The simulated results for the distributions of PG and water contents within the disc were consistent with the results measured in the literature, except for the distribution of PG content in the sagittal direction. Conclusions Poor nutrition supply has a long-term effect on disc degeneration. PMID:25188596

  13. Association between apparent diffusion coefficient and intervertebral disc degeneration in patients with ankylosing spondylitis

    PubMed Central

    Resorlu, Mustafa; Gokmen, Ferhat; Resorlu, Hatice; Adam, Gurhan; Akbal, Ayla; Cevizci, Sibel; Sariyildirim, Abdullah; Savas, Yilmaz; Guven, Mustafa; Aras, Adem Bozkurt

    2015-01-01

    Purpose: To assess the relation between ankylosing spondylitis (AS) and degenerative disc disease emerging in association with various intrinsic and extrinsic factors and to evaluate the correlation between degree of degeneration in intervertebral discs and apparent diffusion coefficient (ADC) values. Methods: Thirty-five patients with AS and a control group of 35 patients were included in the study. Three hundred fifty intervertebral discs were assessed in terms of degeneration by analyzing signal intensities and morphologies on T2 weighted series of a 1.5 Tesla magnetic resonance scanner. ADC values were determined in diffusion weighted images (DWI) using a “b value of 500 s/mm2”. Patients in the AS and control groups were compared in terms of intervertebral disc degeneration, and association between degree of degeneration and ADC values was analyzed. Results: The mean of total degeneration degrees for five lumbar intervertebral discs was significantly higher in the patients with AS compared to the control group (16.77±4.67 vs 13.00±4.08, respectively; P=0.001). When intervertebral discs were analyzed separately, disc degeneration was again significantly higher in patients with AS compared to the control group, with the exception of L5-S1. Age, cholesterol level, triglyceride level, duration of disease and BASFI index were significantly associated with degree of degeneration in patients with AS. A negative correlation was determined between disc degeneration and ADC value. Conclusion: AS is a risk factor for degenerative disc disease due to its systemic effects, the fact it leads to posture impairment and its inflammatory effects on the vertebrae. A decrease in ADC values is observed as degeneration worsens in degenerative disc disease. PMID:25785119

  14. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats

    PubMed Central

    Issy, A.C.; Castania, V.; Castania, M.; Salmon, C.E.G.; Nogueira-Barbosa, M.H.; Bel, E. Del; Defino, H.L.A.

    2013-01-01

    Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration. PMID:23532265

  15. lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis.

    PubMed

    Chen, Wen-Kang; Yu, Xiao-Hua; Yang, Wei; Wang, Cheng; He, Wen-Si; Yan, Yi-Guo; Zhang, Jian; Wang, Wen-Jun

    2017-02-01

    The term long non-coding RNA (lncRNA) refers to a group of RNAs with length more than 200 nucleotides, limited protein-coding potential, and having widespread biological functions, including regulation of transcriptional patterns and protein activity, formation of endogenous small interfering RNAs (siRNAs) and natural microRNA (miRNA) sponges. Intervertebral disc degeneration (IDD) and osteoarthritis (OA) are the most common chronic, prevalent and age-related degenerative musculoskeletal disorders. Numbers of lncRNAs are differentially expressed in human degenerative nucleus pulposus tissue and OA cartilage. Moreover, some lncRNAs have been shown to be involved in multiple pathological processes during OA, including extracellular matrix (ECM) degradation, inflammatory responses, apoptosis and angiogenesis. In this review, we summarize current knowledge concerning lncRNAs, from their biogenesis, classification and biological functions to molecular mechanisms and therapeutic potential in IDD and OA.

  16. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target

    PubMed Central

    Gilbert, Hamish T. J.; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M.; Hoyland, Judith A.

    2016-01-01

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration. PMID:27853274

  17. A novel approach for the annulus needle puncture model of intervertebral disc degeneration in rabbits

    PubMed Central

    Lei, Tao; Zhang, Yuan; Zhou, Qiang; Luo, Xiaoji; Tang, Ke; Chen, Rongsheng; Yu, Chang; Quan, Zhengxue

    2017-01-01

    Objective: To create the rabbit animal model of intervertebral disc (IVD) degeneration by the annulus needle puncture technique through a novel transabdominal approach. Methods: Thirteen New Zealand White rabbits underwent annular puncture at the L3/4, L4/5, and L5/6 discs through a transabdominal approach. For a longitudinal study to assess changes in disc height over time, serial X-rays, T2-weighted magnetic resonance imaging (MRI) (T2WI), and T2 mapping MRI were performed pre-operation and at 2, 4, and 6 weeks after puncture. Three rabbits were randomly selected for histological evaluation at 4 weeks post-operation. In addition, the remaining rabbits underwent a second surgery at 6 weeks after puncture. Results: All rabbits underwent the initial and second surgeries successfully without nerve-related complications. The operations had no significant effects on the rabbit body weight, and partial mild intra-abdominal adhesions were found in only 1 rabbit. The punctured discs were confirmed to be those of interest post-surgery and displayed progressive degeneration in disc height index (%), T2WI, and T2 relaxation time over time. At 4 weeks after puncture, a histological analysis revealed notochordal cell loss from the nucleus pulposus, fibrocartilage filling the nucleus pulposus space, and annulus fibrosus disorganization. Conclusion: The annular needle puncture model established through a transabdominal approach, which demonstrates better visualization, exact identification, consistent degeneration degrees and minimal complications, is radiologically and histologically consistent with human IVD degeneration. T2 mapping MRI can quantitatively discriminate between grades of mild degeneration. PMID:28386320

  18. Disc in Flames: Roles of TNF-α and IL-1β in Intervertebral Disc Degeneration

    PubMed Central

    Johnson, Zariel I.; Schoepflin, Zachary R.; Choi, Hyowon; Shapiro, Irving M.; Risbud, Makarand V.

    2016-01-01

    The intervertebral disc is an important mechanical structure that allows range of motion of the spinal column. Degeneration of the intervertebral disc, incited by aging, traumatic insult, genetic predisposition, or other factors, is often defined by functional and structural changes in the tissue, including excessive breakdown of the extracellular matrix, increased disc cell senescence and death, and compromised biomechanical function of the tissue. Intervertebral disc degeneration is strongly correlated with low back pain, which is a highly prevalent and costly condition, significantly contributing to loss in productivity and health care costs. Disc degeneration is a chronic, progressive condition, and current therapies are limited and often focused on symptomatic pain relief rather than curtailing the progression of the disease. Inflammatory processes, exacerbated by cytokines TNF-α and IL-1β are believed to be key mediators of disc degeneration and low back pain. In this review, we describe the contributions of TNF-α and IL-1β to changes seen during disc degeneration at the cellular and tissue level, new evidence suggesting a link between infection of the spine and low back pain, and the emerging therapeutic modalities aimed at combating these processes. PMID:26388614

  19. Endplate degeneration may be the origination of the vacuum phenomenon in intervertebral discs.

    PubMed

    Li, Fang-Cai; Zhang, Ning; Chen, Wei-Shan; Chen, Qi-Xin

    2010-08-01

    The intravertebral vacuum phenomenon (VP) is usually associated with degenerative disc disease, which could be related to the low back pain. Various theories related to the pathogenesis of VP have been proposed, but these theories have not been critically examined and remain hypothetical. In this article, we review the possible role of endplate degeneration in the pathogenesis of VP, and discuss several pathways possibly linked to them. Due to the endplate calcification and activated cytokines, the transport pathway of the nutrition for the intervertebral disc was blocked, resulting in the metabolic unbalance and decrease of the synthesis of matrix structural proteins. It could promote the matrix decomposition, causing the decrease of the quantity of matrix and the changes of stress distribution in intervertebral disc. As a result, the structure of intervertebral discs became increasingly unstable. While compression happened, the intravertebral cleft could occur and be gradually filled with gas, which may cause low back pain and aggravate the intervertebral discs degeneration. As outlined above, we hypothesize that endplate degeneration might be the origination of the vacuum phenomenon.

  20. Qualitative and quantitative assessment of degeneration of cervical intervertebral discs and facet joints.

    PubMed

    Walraevens, Joris; Liu, Baoge; Meersschaert, Joke; Demaerel, Philippe; Delye, Hans; Depreitere, Bart; Vander Sloten, Jos; Goffin, Jan

    2009-03-01

    Degeneration of intervertebral discs and facet joints is one of the most frequently encountered spinal disorders. In order to describe and quantify degeneration and evaluate a possible relationship between degeneration and biomechanical parameters, e.g., the intervertebral range of motion and intradiscal pressure, a scoring system for degeneration is mandatory. However, few scoring systems for the assessment of degeneration of the cervical spine exist. Therefore, two separate objective scoring systems to qualitatively and quantitatively assess the degree of cervical intervertebral disc and facet joint degeneration were developed and validated. The scoring system for cervical disc degeneration consists of three variables which are individually scored on neutral lateral radiographs: "height loss" (0-4 points), "anterior osteophytes" (0-3 points) and "endplate sclerosis" (0-2 points). The scoring system for facet joint degeneration consists of four variables which are individually scored on neutral computed tomography scans: "hypertrophy" (0-2 points), "osteophytes" (0-1 point), "irregularity" on the articular surface (0-1 point) and "joint space narrowing" (0-1 point). Each variable contributes with varying importance to the overall degeneration score (max 9 points for the scoring system of cervical disc degeneration and max 5 points for facet joint degeneration). Degeneration of 20 discs and facet joints of 20 patients was blindly assessed by four raters: two neurosurgeons (one senior and one junior) and two radiologists (one senior and one junior), firstly based on first subjective impression and secondly using the scoring systems. Measurement errors and inter- and intra-rater agreement were determined. The measurement error of the scoring system for cervical disc degeneration was 11.1 versus 17.9% of the subjective impression results. This scoring system showed excellent intra-rater agreement (ICC = 0.86, 0.75-0.93) and excellent inter-rater agreement (ICC = 0

  1. Protective Effects of Cannabidiol on Lesion-Induced Intervertebral Disc Degeneration

    PubMed Central

    Silveira, João W.; Issy, Ana Carolina; Castania, Vitor A.; Salmon, Carlos E. G.; Nogueira-Barbosa, Marcello H.; Guimarães, Francisco S.; Defino, Helton L. A.; Bel, Elaine Del

    2014-01-01

    Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol) injected immediately after lesion were analyzed acutely (2 days) by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration. PMID:25517414

  2. Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration.

    PubMed

    Silveira, João W; Issy, Ana Carolina; Castania, Vitor A; Salmon, Carlos E G; Nogueira-Barbosa, Marcello H; Guimarães, Francisco S; Defino, Helton L A; Del Bel, Elaine

    2014-01-01

    Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol) injected immediately after lesion were analyzed acutely (2 days) by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.

  3. Effects of psoralen on chondrocyte degeneration in lumbar intervertebral disc of rats.

    PubMed

    Yang, Libin; Sun, Xiaohui; Geng, Xiaolin

    2015-03-01

    Discuss the internal mechanism of delaying degeneration of lumber intervertebral disc. The cartilage of lumbar intervertebral disc of SD rats was selected in vitro, then cultured by tissue explant method, and identified by HE staining, toluidine blue staining and immunofluorescence. The optimal concentration of psoralen was screened by cell proliferation assay and RT-PCR method. The cells in third generation with good growth situation is selected and placed in 6-well plate at concentration of 1×10(5)/well and its expression was tested. Compared to concentration of 0, the mRNA expression of Col2al (Collagen Ⅱ) secreted by was up regulated chondrocyte of lumbar intervertebral disc at the concentration of 12.5 and 25μM (P<0.0 or P<0.01). The aggrecan mRNA of psoralen group was higher than blank control group (P<0.01); compared with IL-1β induced group, the mRNA expression of Col2al was significantly increased but the mRNA expression of ADAMTS-5 was significantly decreased in psoralen group (P<0.01). These findings suggest that, psoralen can remit the degeneration of lumbar intervertebral disc induced by IL-1β to some extent, and affect the related factors of IL-1β signaling pathway.

  4. Intervertebral disc degeneration: evidence for two distinct phenotypes

    PubMed Central

    Adams, Michael A; Dolan, Patricia

    2012-01-01

    We review the evidence that there are two types of disc degeneration. ‘Endplate-driven’ disc degeneration involves endplate defects and inwards collapse of the annulus, has a high heritability, mostly affects discs in the upper lumbar and thoracic spine, often starts to develop before age 30 years, usually leads to moderate back pain, and is associated with compressive injuries such as a fall on the buttocks. ‘Annulus-driven’ disc degeneration involves a radial fissure and/or a disc prolapse, has a low heritability, mostly affects discs in the lower lumbar spine, develops progressively after age 30 years, usually leads to severe back pain and sciatica, and is associated with repetitive bending and lifting. The structural defects which initiate the two processes both act to decompress the disc nucleus, making it less likely that the other defect could occur subsequently, and in this sense the two disc degeneration phenotypes can be viewed as distinct. PMID:22881295

  5. A rat tail temporary static compression model reproduces different stages of intervertebral disc degeneration with decreased notochordal cell phenotype.

    PubMed

    Hirata, Hiroaki; Yurube, Takashi; Kakutani, Kenichiro; Maeno, Koichiro; Takada, Toru; Yamamoto, Junya; Kurakawa, Takuto; Akisue, Toshihiro; Kuroda, Ryosuke; Kurosaka, Masahiro; Nishida, Kotaro

    2014-03-01

    The intervertebral disc nucleus pulposus (NP) has two phenotypically distinct cell types-notochordal cells (NCs) and non-notochordal chondrocyte-like cells. In human discs, NCs are lost during adolescence, which is also when discs begin to show degenerative signs. However, little evidence exists regarding the link between NC disappearance and the pathogenesis of disc degeneration. To clarify this, a rat tail disc degeneration model induced by static compression at 1.3 MPa for 0, 1, or 7 days was designed and assessed for up to 56 postoperative days. Radiography, MRI, and histomorphology showed degenerative disc findings in response to the compression period. Immunofluorescence displayed that the number of DAPI-positive NP cells decreased with compression; particularly, the decrease was notable in larger, vacuolated, cytokeratin-8- and galectin-3-co-positive cells, identified as NCs. The proportion of TUNEL-positive cells, which predominantly comprised non-NCs, increased with compression. Quantitative PCR demonstrated isolated mRNA up-regulation of ADAMTS-5 in the 1-day loaded group and MMP-3 in the 7-day loaded group. Aggrecan-1 and collagen type 2α-1 mRNA levels were down-regulated in both groups. This rat tail temporary static compression model, which exhibits decreased NC phenotype, increased apoptotic cell death, and imbalanced catabolic and anabolic gene expression, reproduces different stages of intervertebral disc degeneration.

  6. Hydrogen sulfide protects against endoplasmic reticulum stress and mitochondrial injury in nucleus pulposus cells and ameliorates intervertebral disc degeneration.

    PubMed

    Xu, Daoliang; Jin, Haiming; Wen, Jianxia; Chen, Jiaoxiang; Chen, Deheng; Cai, Ningyu; Wang, Yongli; Wang, Jianle; Chen, Yu; Zhang, Xiaolei; Wang, Xiangyang

    2017-03-01

    It has been suggested that excessive apoptosis in intervertebral disc cells induced by inflammatory cytokines, such as interleukin (IL)-1β, is related to the process of intervertebral disc degeneration (IVDD). Hydrogen sulfide (H2S), a gaseous signaling molecule, has drawn attention for its anti-apoptosis role in various pathophysiological processes in degenerative diseases. To date, there has been no investigation of the correlation of H2S production and IVDD or of the effects of H2S on IL-1β-induced apoptosis in nucleus pulposus (NP) cells. Here, we found that the expression levels of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), two key enzymes in the generation of H2S, were significantly decreased in human degenerate NP tissues as well as in IL-1β-treated NP cells. NaHS (H2S donor) administration showed a protective effect by inhibiting the endoplasmic reticulum (ER) stress response and mitochondrial dysfunction induced by IL-1β stimulation in vitro, the effect was related to activation of the PI3K/Akt and ERK1/2 signaling pathways. Suppression of these pathways by specific inhibitors, LY294002 and PD98059, partially reduced the protective effect of NaHS. Moreover, in the percutaneous needle puncture disc degeneration rat tail model, disc degeneration was partially reversed by NaHS administration. Taken together, our results suggest that H2S plays a protective role in IVDD and the underlying mechanism involves PI3K/Akt and ERK1/2 signaling pathways-mediated suppression of ER stress and mitochondrial dysfunction in IL-1β-induced NP cells.

  7. 1980 Volvo award in basic science. Proteoglycans in experimental intervertebral disc degeneration.

    PubMed

    Lipson, S J; Muir, H

    1981-01-01

    An animal model of intervertebral disc degeneration induced surgically by ventral nuclear herniation in the rabbit produces morphologic changes of disc degeneration. Histologic characteristics and proteoglycan changes have been studied at various times after herniation. After injury, there was metaplasia into fibrocartilage originating from the cells along the margins of the annular wound, with proliferation of cells changing almost the entire disc space into fibrocartilage. A vertebral osteophyte occurred through an endochondral ossification sequence. Aggregating proteoglycans had two periods of repletion in the early course of degeneration. The water content of the disc was rapidly but only transiently restored in the first two days after herniation, whilst the changes in the total proteoglycan content of the disc paralleled these changes. Hyaluronic acid content decreased rapidly after herniation, but the size of the proteoglycan monomers did not change with degeneration. It is suggested that loss of confined fluid mechanics signals an abortive repair attempt rather than that of biochemical changes in proteoglycans initiate disc degeneration.

  8. Effect of Survivin gene therapy via lentivirus vector on the course of intervertebral disc degeneration in an in vivo rabbit model

    PubMed Central

    Yue, Bin; Lin, Yazhou; Ma, Xuexiao; Zhang, Guoqing; Chen, Bohua

    2016-01-01

    The aim of the current study was to use gene therapy to attenuate or reverse the degenerative process within the intervertabral disc. The effect of survivin gene therapy via lentiviral vector transfection on the course of intervertebral disc degeneration was investigated in the current study in an in vivo rabbit model. A total of 15 skeletally mature female New Zealand White rabbits were randomly divided into three groups: Punctured blank control group (group A, n=5), punctured empty vector control group (group B, n=5) and the treatment group (group C, n=5). Computed tomography-guided puncture was performed at the L3-L4 and L4-L5 discs, in accordance with a previously validated rabbit annulotomy model for intervertebral disc degeneration. After 3 weeks, a lentiviral vector (LV) carrying survivin was injected into the nucleus pulposus. The results demonstrated that through magnetic resonance imaging, histology, gene expression, protein content and apoptosis analyses, group A and B were observed to exhibit disc degeneration, which increased over time, and no significant difference was observed between the two groups (P>0.05). However, there was reduced disc degeneration in group C compared with the punctured control groups, and the difference was statistically significant (P<0.05). Overall, the results of the present study demonstrated that injection of the LV carrying survivin into punctured rabbit intervertebral discs acted to delay changes associated with the degeneration of the discs. Although data from animal models should be extrapolated to the human condition with caution, the present study suggests potential for the use of gene therapy to decelerate disc degeneration. PMID:27748828

  9. Evidence for an Important Role of Smad-7 in Intervertebral Disc Degeneration

    PubMed Central

    Li, Bo; Su, Yi-Jun; Zheng, Xin-Feng; Yang, Yue-Hua; Jiang, Sheng-Dan

    2015-01-01

    Smad-7 inhibited the transforming growth factor beta (TGF-β)-induced proteoglycan synthesis in chondrocytes and completely antagonized the effect of TGF-β on the proliferation of the cells. The aim of this study was to evaluate the contribution of Smad-7 to the pathophysiology of disc degeneration by determining the expression of Smad-7 in the degenerative intervertebral discs and its effect on the extracellular matrix metabolism of disc cells. Instability of the lumbar spine produced by imbalanced dynamic and static forces was used to induce intervertebral disc degeneration in rats. The expression of Smad-7 was assessed by the immunohistochemical method. Disc cell apoptosis was detected by in situ TUNEL staining. The effect of Smad-7 overexpression on the matrix metabolism of disc cells was analyzed in vitro by real-time polymerase chain reaction (PCR) and Western blotting. Finally, intradiscal injection of the Smad-7 overexpression lentivirus was performed to evaluate the in vivo effect of Smad-7 on disc degeneration. Radiographic and histomorphological examinations showed that lumbar disc degeneration became more and more severe in the rats with induced instability. Immunohistochemical observation demonstrated increasing protein expression of Smad-7 in the degenerative discs. A significantly positive correlation was found between Smad-7 expression and the degree of disc degeneration and between Smad-7 expression and disc cell apoptosis. Overexpression of Smad-7 in disc cells inhibited the expression of TGF-β1, collagen type-I, collagen type-II, and aggrecan and promoted the expression of MMP-13, but did not change the expression of ADAMTS-5. The in vivo findings illustrated that intradiscal injection of lentivirus vector with Smad-7 overexpression accelerated the progress of disc degeneration. In conclusion, Smad-7 was highly expressed in the degenerative discs. Overexpression of Smad-7 weakened the protective role of TGF-β and accelerated the progress of

  10. Atomic Absorption Spectrometry Analysis of Trace Elements in Degenerated Intervertebral Disc Tissue

    PubMed Central

    Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Frankowski, Marcin; Nowakowski, Andrzej; Czabak-Garbacz, Róża; Kaczmarczyk, Jacek; Gasik, Robert

    2014-01-01

    Background Few studies have investigated trace elements (TE) in human intervertebral disc (IVD) tissue. Trace element presence can have diverse meanings: essential TE show the metabolic modalities of the tissue, while environmentally-related TE indicate pollution and tissue-specific absorption and accumulation. IVD is a highly specific compartment with impaired communication with adjacent bone. Analysis of TE in IVD provides new insights regarding tissue metabolism and IVD communication with other tissues. Material/Methods Thirty intervertebral discs were acquired from 22 patients during surgical treatment for degenerative disease. Atomic absorption spectrometry was used to evaluate the concentrations of Al, Cd, Pb, Cu, Ni, Mo, Mg, and Zn. Results Al, Pb, Cu, Mg, and Zn were detected in all samples. Pb was significantly positively correlated with age, and Ni concentration was weakly correlated with population count in the patient’s place of residence. Only Cu was observed in higher concentrations in IVD compared to in other tissues. Significant positive correlations were observed between the following pairs: Mg/Zn, Mg/Al, Mg/Pb, Zn/Al, Zn/Pb, and Al/Pb. Negative correlations were observed between Mg/Cd, Zn/Cd, Mg/Mo, and Mo/Pb. Conclusions This study is one of few to profile the elements in intervertebral discs in patients with degenerative changes. We report significant differences between trace element concentrations in intervertebral discs compared to in other tissues. Knowledge of the TE accumulation pattern is vital for better understanding intervertebral disc nutrition and metabolism. PMID:25366266

  11. Glucosamine Supplementation Demonstrates a Negative Effect On Intervertebral Disc Matrix in an Animal Model of Disc Degeneration

    PubMed Central

    Jacobs, Lloydine; Vo, Nam; Coehlo, J. Paulo; Dong, Qing; Bechara, Bernard; Woods, Barrett; Hempen, Eric; Hartman, Robert; Preuss, Harry; Balk, Judith; Kang, James; Sowa, Gwendolyn

    2013-01-01

    Study Design Laboratory based controlled in vivo study Objective To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration Summary of Background Data Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration. Methods Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses. Results The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix. Conclusions These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these

  12. Correlation between T2∗ (T2 star) relaxation time and cervical intervertebral disc degeneration

    PubMed Central

    Huang, Minghua; Guo, Yong; Ye, Qiong; Chen, Lei; Zhou, Kai; Wang, Qingjun; Shao, Lixin; Shi, Qinglei; Chen, Chun

    2016-01-01

    Abstract Purpose: To demonstrate the potential benefits of T2∗ relaxation time of intervertebral discs (IVDs) regarding the detection and grading of degenerative disc disease using 3.0-T magnetic resonance imaging (MRI) in a clinical setting. Materials and Methods: Cervical sagittal T2-weighted, T2∗ relaxation MRI was performed at 3.0-T in 61 subjects, covering discs C2–3 to C6–7. All discs were morphologically assessed based on the Pfirrmann grade, and regions of interests (ROIs) were drawn over the T2∗ mapping. Receiver operating characteristic (ROC) analysis was performed among grades to determine the cut-off values. Results: Cervical intervertebral discs (IVDs) of patients were commonly determined to be at Pfirrmann grades III to V. The nucleus pulposus (NP) values did not differ significantly between sexes at the same anatomic level (P > 0.05). In the NP, the T2∗ values tended to decrease with increasing grade (P < 0.000), and a significant difference was found in the T2 values between grades I to V (P < 0.05). T2∗ values based on disc degeneration level classification were as follows: grade I (>30 milliseconds), grade II (24.55–29.99 milliseconds), grade III (21.65–24.54 milliseconds), grade IV (18.35–21.64 milliseconds), and grade V (<18.34 milliseconds). Conclusion: Our standardized method of region-specific quantitative T2∗ relaxation time evaluation seems capable of characterizing different degrees of disc degeneration quantitatively. The T2∗ values obtained in these cervical IVDs may serve as baseline values for future T2∗ measurements in both healthy and degenerated cervical discs. PMID:27893652

  13. Effect of calcitonin pretreatment on naturally occurring intervertebral disc degeneration in guinea pig

    PubMed Central

    Jiang, Xiaohua; Tian, Faming; Wang, Wenya; Yan, Jinyin; Liu, Huanjiang; Liu, Binbin; Song, Huiping; Zhang, Yingze; Shen, Yong; Zhang, Liu

    2015-01-01

    Introduction: Our previous study suggested protective effects of calcitonin (CT) on experimental osteoarthritis. The aim of the present study was to provide evidence of whether CT pretreatment could prevent naturally occurring intervertebral disc degeneration in guinea pigs. Methods: Forty-two 3 months old female guinea pigs were randomly assigned into 2 groups as follows: Twenty-four were treated by normal saline as control group and sacrificed at 3, 6, 9 and 12 months of age (6 animals at each time point), the other 18 were received salmon CT (8 ug/kg/day, everyday) treatment at 3 months of age and sacrificed at the age of 6, 9 and 12 months respectively. Van Gieson stain and the histological score were used to identify the histological changes of the lumbar intervertebral discs. The disc height and vertebral body height were measured. Immunohistochemistry measurements for glycosaminoglycan, type II collagen, and matrix metalloprotease (MMP)-1 expressions were performed. Bone quality and microstructural changes in the L3-6 lumbar vertebral bodies were assessed by bone mineral density (BMD), micro-CT analysis and biomechanical testing. Results: Histological analysis indicated significantly higher disc degeneration scores in 9-month-old guinea pigs in comparison with younger animals, and grew higher with increasing age. CT treatment significantly reduced the histological score, and increased the disc height and the ratio to vertebral body height in 12 months old animals, as well as upregulated the glycosaminoglycan, type II collagen and inhibited the MMP-1 expression. Micro-CT analysis showed decreased percent bone volume (BV/TV) and increased trabecular separation (Tb.Sp), structural model index (SMI) in 12 months old animals in comparison with the younger animals. Markedly increased BV/TV and decreased Tb.Sp were observed in CT treated animals when compared with control animals. The biomechanical properties including maximum load, maximum stress, yield stress and

  14. Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice.

    PubMed

    Millecamps, Magali; Tajerian, Maral; Naso, Lina; Sage, E Helene; Stone, Laura S

    2012-06-01

    Chronic low back pain (LBP) is a complex, multifactorial disorder with unclear underlying mechanisms. In humans and rodents, decreased expression of secreted protein acidic rich in cysteine (SPARC) is associated with intervertebral disc (IVD) degeneration and signs of LBP. The current study investigates the hypothesis that IVD degeneration is a risk factor for chronic LBP. SPARC-null and age-matched control mice ranging from 6 to 78 weeks of age were evaluated in this study. X-ray and histologic analysis revealed reduced IVD height, increased wedging, and signs of degeneration (bulging and herniation). Cutaneous sensitivity to cold, heat, and mechanical stimuli were used as measures of referred (low back and tail) and radiating pain (hind paw). Region specificity was assessed by measuring icilin- and capsaicin-evoked behaviour after subcutaneous injection into the hind paw or upper lip. Axial discomfort was measured by the tail suspension and grip force assays. Motor impairment was determined by the accelerating rotarod. Physical function was evaluated by voluntary activity after axial strain or during ambulation with forced lateral flexion. SPARC-null mice developed (1) region-specific, age-dependent hypersensitivity to cold, icilin, and capsaicin (hind paw only), (2) axial discomfort, (3) motor impairment, and (4) reduced physical function. Morphine (6 mg/kg, i.p.) reduced cutaneous sensitivity and alleviated axial discomfort in SPARC-null mice. Ageing SPARC-null mice mirror many aspects of the complex and challenging nature of LBP in humans and incorporate both anatomic and functional components of the disease. The current study supports the hypothesis that IVD degeneration is a risk factor for chronic LBP.

  15. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs

    PubMed Central

    Schaaf, Rainer; Wälchli, Beat; Boos, Norbert

    2006-01-01

    While there is consensus in the literature that blood vessels are confined to the outer anulus fibrosus of normal adult intervertebral disc, debate continues whether there is a vascular in-growths into inner parts of the intervertebral disc during degeneration. We therefore tested the hypothesis that vascular in-growth is not a distinct feature of disc degeneration. The specific endothelial cell marker CD 31 (PECAM) was used to immunohistochemically investigate 42 paraffin-embedded complete mid-sagittal human intervertebral disc sections of various ages (0–86 years) and varying extent of histomorphological degeneration. Additionally, 20 surgical disc samples from individuals (26–69 years) were included in this study. In discs of fetal to infantile age, blood vessels perforated the cartilaginous end plate and extended into the inner and outer anulus fibrosus, but not into the nucleus pulposus. In adolescents and adults, no blood vessels were seen except for the outer zone of the anulus fibrosus adjacent to the insertion to ligaments. The cartilaginous end plate remained free of vessels, except for areas with circumscribed destruction of the end plate. In advanced disc degeneration, no vessels were observed except for those few cases with complete, scar-like disc destruction. However, some rim lesions and occasionally major clefts were surrounded by a small network of capillary blood vessels extending into deeper zones of the anulus fibrosus. A subsequent morphometric analysis, revealed slightly “deeper” blood vessel extension in juvenile/adolescent discs when compared to young, mature and senile adult individuals with significantly “deeper” extension in the posterior than anterior anulus. The analysis of the surgical specimens showed that only sparse capillary blood vessels which did not extend into the nucleus pulposus even in major disc disruption. Our results show that vascular invasion deeper than the periphery was not observed during disc

  16. Elevated interleukin-6 expression levels are associated with intervertebral disc degeneration

    PubMed Central

    DENG, XIAO; ZHAO, FENG; KANG, BAOLIN; ZHANG, XIN

    2016-01-01

    The present study aimed to investigate whether serum interleukin-6 (IL-6) expression levels were associated with the onset and progression of intervertebral disc degeneration (IDD). A comprehensive meta-analysis of the scientific literature from numerous electronic databases was performed, in order to obtain published studies associated with the topic of interest. Relevant case-control studies that had previously assessed a correlation between IL-6 expression levels and IDD were identified using predetermined inclusion and exclusion criteria. The STATA version 12.0 software was used for statistical analysis of the extracted data. A total of 112 studies were initially retrieved, with eight studies meeting the inclusion criteria. These contained a total of 392 subjects, of which 263 were patients with IDD and 129 were healthy controls. A meta-analysis of the eight studies demonstrated that serum IL-6 protein expression levels may be associated with IDD, and this was irrespective of IDD subtype (bulging, protrusion, or sequestration). Notably, serum expression levels of the IL-6 protein were upregulated in intervertebral disc (IVD) protrusion tissue, as compared with normal IVD tissue; thus suggesting that IL-6 may have an important role in the pathophysiological process of IDD. PMID:27073460

  17. Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery.

    PubMed

    Ma, Chi-Jiao; Liu, Xu; Che, Lu; Liu, Zhi-Heng; Samartzis, Dino; Wang, Hai-Qiang

    2015-01-01

    As a main contributing factor to low back pain, intervertebral disc degeneration (IDD) is the fundamental basis for various debilitating spinal diseases. The pros and cons of current treatment modalities necessitate biological treatment strategies targeting for reversing or altering the degeneration process in terms of molecules or genes. The advances in stem cell research facilitate the studies aiming for possible clinical application of stem cell therapies for IDD. Human NP cells are versatile with cell morphology full of variety, capable of synthesizing extracellular matrix components, engulfing substances by autophagy and phagocytosis, mitochondrial vacuolization indicating dysfunction, expressing Fas and FasL as significant omens of immune privileged sites. Human discs belong to immune privilege organs with functional FasL expression, which can interact with invasive immune cells by Fas-FasL regulatory machinery. IDD is characterized by decreased expression level of FasL with dysfunctional FasL, which in turn unbalances the interaction between NP cells and immune cells. Certain modulation factors might play a role in the process, such as miR-155. Accumulating evidence indicates that Fas-FasL network expresses in a variety of stem cells. Given the expression of functional FasL and insensitive Fas in stem cells (we term as FasL privilege), transplantation of stem cells into the disc may regenerate the degenerative disc by not only differentiating into NP-like cells, increasing extracellular matrix, but also reinforce immune privilege via interaction with immune cells by Fas-FasL network.

  18. Intervertebral Disc Degeneration and Ectopic Bone Formation in Apolipoprotein E Knockout Mice

    PubMed Central

    Zhang, Dawei; Jin, Li; Reames, Davis L.; Shen, Francis H.; Shimer, Adam L.; Li, Xudong

    2012-01-01

    Cardiovascular risk factors are known to be associated with intervertebral disc degeneration, but the underlying mechanism is still unclear. ApoE knockout (KO) mouse is a well-established model for arthrosclerosis. We hypothesize that ApoE may involve in maintaining disc health and ApoE KO mouse develops early disc degeneration. Discs of ApoE KO and wild-type (WT) mice were characterized with histological/immunological, biochemical, and real time RT-PCR assays. A comparison of the extracellular matrix production was also performed in disc cells. We demonstrated that ApoE was highly expressed in the endplates of WT discs and ectopic bone formed in the endplates of ApoE KO discs. Glycosaminoglycan content was decreased in both ApoE KO annulus fibrosus (AF) and nucleus pulpsous (NP) cells. Collagen levels were increased in AF and decreased in NP cells. Matrix metalloproteinases-3, 9, and 13 expression was increased which may partially explain the impaired matrix production. We also found increased collagen I, II, aggrecan and biglycan mRNA expressions in AF cells but decreased in NP cells. Apoptosis was increased in the ApoE KO NP tissue. These results suggest early disc degeneration changes in ApoE KO mice. ApoE, plus its importance to cardiovascular disease, may play a critical role in disc integrity and function. PMID:22915292

  19. Role of Cytokines in Intervertebral Disc Degeneration: Pain and Disc-content

    PubMed Central

    Risbud, Makarand V.; Shapiro, Irving. M

    2014-01-01

    Degeneration of the intervertebral disc is the major contributor to back/neck and radicular pain. It is characterized by an elevation in levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1 α/β, IL-6 and IL-17 secreted by the disc cells themselves; these cytokines promote matrix degradation, chemokine production and changes in cell phenotype. The resulting imbalance between catabolic and anabolic responses leads to degeneration, as well as herniation and radicular pain. Release of chemokines from degenerating discs promote infiltration and activation of T and B cells, macrophages, neutrophils, and mast cells further amplifying the inflammatory cascade. Immunocyte migration into the disc is accompanied by the appearance of microvasculature and nerve fibers arising from the dorsal root ganglion (DRG). In this inflammatory milieu, neurogenic factors in particular nerve growth factor (NGF) and brain-derive neurotrophic factor (BDNF) generated by disc and immune cells induce expression of pain associated cation channels in DRGs. Depolarization of these channels is likely to promote discogenic and radicular pain and reinforce the cytokine-mediated degenerative cascade. Taken together, the enhanced understanding of the contribution of cytokines and immune cells to catabolic and nociceptive processes provide new targets for treating symptomatic disc disease. PMID:24166242

  20. The Effects of Platelet-Rich Plasma on Halting the Progression in Porcine Intervertebral Disc Degeneration.

    PubMed

    Cho, Hongsik; Holt, David C; Smith, Richard; Kim, Song-Ja; Gardocki, Raymond J; Hasty, Karen A

    2016-02-01

    Disc degeneration and the subsequent herniation and/or rupture of the intervertebral disc (IVD) are due to a failure of the extracellular matrix of the annulus to contain the contents of the nucleus. This results from inadequate maintenance of the matrix components as well as the proteolytic activity of matrix metalloproteinases (MMPs) that degrade matrix molecules. Arresting progression of disc degeneration in the annulus holds greater clinical potential at this point than prevention of its onset in the nucleus. Therefore, in this study, we have therapeutic aims that would decrease levels of the cytokines and growth factors that indirectly lead to disc degeneration via stimulating MMP and increase levels of several beneficial growth factors, such as transforming growth factor-β, with the addition of platelet-rich plasma (PRP) that would stimulate cell growth and matrix synthesis. For this study, we attempted to address these imbalances of metabolism by using tumor necrosis factor-α treated annulus fibrosus cells isolated from porcine IVD tissue and incubating the cells in a growth factor rich environment with PRP. These results indicate that the PRP in vitro increased the production of the major matrix components (type II collagen and aggrecan) and decreased the inhibitory collagenase MMP-1. This application will address a therapeutic approach for intervening early in the degenerative process.

  1. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies.

    PubMed

    Wang, S Z; Rui, Y F; Lu, J; Wang, C

    2014-10-01

    Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio-active substances and bio-compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.

  2. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration.

    PubMed

    Nasto, Luigi A; Robinson, Andria R; Ngo, Kevin; Clauson, Cheryl L; Dong, Qing; St Croix, Claudette; Sowa, Gwendolyn; Pola, Enrico; Robbins, Paul D; Kang, James; Niedernhofer, Laura J; Wipf, Peter; Vo, Nam V

    2013-07-01

    Oxidative damage is a well-established driver of aging. Evidence of oxidative stress exists in aged and degenerated discs, but it is unclear how it affects disc metabolism. In this study, we first determined whether oxidative stress negatively impacts disc matrix metabolism using disc organotypic and cell cultures. Mouse disc organotypic culture grown at atmospheric oxygen (20% O(2)) exhibited perturbed disc matrix homeostasis, including reduced proteoglycan synthesis and enhanced expression of matrix metalloproteinases, compared to discs grown at low oxygen levels (5% O(2)). Human disc cells grown at 20% O(2) showed increased levels of mitochondrial-derived superoxide anions and perturbed matrix homeostasis. Treatment of disc cells with the mitochondria-targeted reactive oxygen species (ROS) scavenger XJB-5-131 blunted the adverse effects caused by 20% O(2). Importantly, we demonstrated that treatment of accelerated aging Ercc1(-/Δ) mice, previously established to be a useful in vivo model to study age-related intervertebral disc degeneration (IDD), also resulted in improved disc total glycosaminoglycan content and proteoglycan synthesis. This demonstrates that mitochondrial-derived ROS contributes to age-associated IDD in Ercc1(-/Δ) mice. Collectively, these data provide strong experimental evidence that mitochondrial-derived ROS play a causal role in driving changes linked to aging-related IDD and a potentially important role for radical scavengers in preventing IDD.

  3. Effects of Tobacco Smoking on the Degeneration of the Intervertebral Disc: A Finite Element Study

    PubMed Central

    Elmasry, Shady; Asfour, Shihab; de Rivero Vaccari, Juan Pablo; Travascio, Francesco

    2015-01-01

    Tobacco smoking is associated with numerous pathological conditions. Compelling experimental evidence associates smoking to the degeneration of the intervertebral disc (IVD). In particular, it has been shown that nicotine down-regulates both the proliferation rate and glycosaminoglycan (GAG) biosynthesis of disc cells. Moreover, tobacco smoking causes the constriction of the vascular network surrounding the IVD, thus reducing the exchange of nutrients and anabolic agents from the blood vessels to the disc. It has been hypothesized that both nicotine presence in the IVD and the reduced solute exchange are responsible for the degeneration of the disc due to tobacco smoking, but their effects on tissue homeostasis have never been quantified. In this study, a previously presented computational model describing the homeostasis of the IVD was deployed to investigate the effects of impaired solute supply and nicotine-mediated down-regulation of cell proliferation and biosynthetic activity on the health of the disc. We found that the nicotine-mediated down-regulation of cell anabolism mostly affected the GAG concentration at the cartilage endplate, reducing it up to 65% of the value attained in normal physiological conditions. In contrast, the reduction of solutes exchange between blood vessels and disc tissue mostly affected the nucleus pulposus, whose cell density and GAG levels were reduced up to 50% of their normal physiological levels. The effectiveness of quitting smoking on the regeneration of a degenerated IVD was also investigated, and showed to have limited benefit on the health of the disc. A cell-based therapy in conjunction with smoke cessation provided significant improvements in disc health, suggesting that, besides quitting smoking, additional treatments should be implemented in the attempt to recover the health of an IVD degenerated by tobacco smoking. PMID:26301590

  4. IL-21 Is Positively Associated with Intervertebral Disc Degeneration by Interaction with TNF-α Through the JAK-STAT Signaling Pathway.

    PubMed

    Chen, Bin; Liu, Yi; Zhang, YuanQiang; Li, JingKun; Cheng, KaiYuan; Cheng, Lei

    2017-04-01

    This study was conducted in order to investigate the function of IL-21 in intervertebral disc degeneration. The serum concentration of IL-21 in patients with lumbar disc herniation (LDH) was examined by ELISA. Immunohistochemistry and western blot analysis were performed to detect the expression of IL-21, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-7), and tumor necrosis factor alpha (TNF-α) in degenerated intervertebral disc (IVD) tissues of human and rat. Moreover, nucleus pulposus (NP) cells were treated with 0, 10, 100, and 1000 ng/mL of IL-21 cytokine with and without AG490. TNF-α, ADAMTS-7, and matrix metalloproteinases-13 (MMP-13) mRNA expression was determined by RT-PCR. The expression of signal transducers and activators of transcription, STAT-1, STAT-3, and STAT-5b, was detected by western blot. IL-21 concentration level is higher in the degenerated group and positively correlates with the visual analog score (VAS). IL-21, ADAMTS-7, and TNF-α can be detected in the degenerative NP tissues in both human and rat degenerated NP tissues. The mRNA expression of ADAMTS-7, TNF-α, and MMP-13 was enhanced after stimulation with IL-21. Compared to control, STAT-1, STAT-3, and STAT-5b expression was also enhanced after IL-21 treatment, with STAT-3 being the most significantly enhanced; furthermore, expression was significantly reduced after treatment with AG490. The mRNA expression of TNF-α was markedly reduced after treatment with AG490 compared to treatment with IL-21 only. IL-21 is involved in the pathological development of IVD degeneration and IL-21 could aggravate IVD degeneration by stimulating TNF-α through the STAT signaling pathway.

  5. [Correlation between shape and direction of small articular surface in lower lumbar vertebrae and degeneration of intervertebral disc].

    PubMed

    Tan, L; Bai, X; Li, D

    1997-01-01

    To assess the possible correlation between the shape and the direction of the small articular surface in the lower lumbar vertebrae and the degeneration of the intervertebral disc, we investigated with computed tomography (CT) and evaluated with statistics the small articular surface and the transverse interface-joint angle (TIFA) of the L4-5 and the L5-S1 in 152 cases who had normal or degenerative discs verified through CT, MRI or operation. The small articular surface was found arc in 69.1% of the L4-5 and in 23.0% of the L5-S1. The TIFA of the L4-5 was less than that of the L5-S1. There was no correlation between the ratio of degeneration of the intervertebral disc at the L4-5 and the TIFA of the L4-5 and the L5-S1, but the ratio of degeneration of the intervertebral disc at the L5-S1 had postive correlation with the TIFA of the L4-5, negative correlation with the TIFA of the L5-S1, and particular correlation with the TIFA of the L5-S1 and L4-5. These results suggest that the shape and direction of the lower lumbar facet joint are related to the lumbar degeneration of intervertebral disc and the causes of degeneration at the L4-5 disc differ from those at the L5-S1 disc in biomechanics.

  6. MSC response to pH levels found in degenerating intervertebral discs

    SciTech Connect

    Wuertz, Karin Godburn, Karolyn; Iatridis, James C.

    2009-02-20

    Painful degenerative disc disease is a major health problem and for successful tissue regeneration, MSCs must endure and thrive in a harsh disc microenvironment that includes matrix acidity as a critical factor. MSCs were isolated from bone marrow of Sprague-Dawley rats from two different age groups (<1 month, n = 6 and 4-5 months, n = 6) and cultured under four different pH conditions representative of the healthy, mildly or severely degenerated intervertebral disc (pH 7.4, 7.1, 6.8, and 6.5) for 5 days. Acidity caused an inhibition of aggrecan, collagen-1, and TIMP-3 expression, as well as a decrease in proliferation and viability and was associated with a change in cell morphology. Ageing had generally minor effects but young MSCs maintained greater mRNA expression levels. As acidic pH levels are typical of increasingly degenerated discs, our findings demonstrate the importance of early interventions and predifferentiation when planning to use MSCs for reparative treatments.

  7. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation.

    PubMed

    Vadalà, Gianluca; Sowa, Gwendolyn; Hubert, Mark; Gilbertson, Lars G; Denaro, Vincenzo; Kang, James D

    2012-05-01

    Recent studies have shown that mesenchymal stem cell (MSC)-based therapy might be an effective approach for the treatment of intervertebral disc degeneration (IDD). However, many unanswered questions remain before clinical translation, such as the most effective stem cell type, a reliable transplantation method, including the carrier choice, and the fate of stem cells after misdirected delivery, among others. The objective of the study was to evaluate the fate and effect of allogenic bone marrow MSCs after transplantation into an IDD model. The L2-3, L3-4 and L4-5 intervertebral discs (IVDs) of four rabbits were stabbed to create IDD. Rabbit MSCs were expanded in vitro and in part transduced with retrovirus/eGFP. After 3 weeks, 1 × 10(5) MSCs were injected into the IVDs. The rabbits were followed by X-ray and MRI 3 and 9 weeks after injection. Then the animals were sacrificed and the spines analysed histologically. MRI showed no signs of regeneration. X-ray and gross anatomy inspection demonstrated large anterolateral osteophytes. Histological analysis showed that the osteophytes were composed of mineralized tissue surrounded by chondrocytes, with the labelled MSCs among the osteophyte-forming cells. The labelled MSCs were not found in the nucleus. Inflammatory cells were not observed in any injected IVDs. These results raise concern that MSCs can migrate out of the nucleus and undesirable bone formation may occur. While cause cannot be inferred from this study, the presence of MSCs in the osteophytes suggests a potential side-effect with this approach. IVD regeneration strategies need to focus on cell carrier systems and annulus-sealing technologies to avoid pitfalls.

  8. MyD88-dependent Toll-like receptor 4 signal pathway in intervertebral disc degeneration

    PubMed Central

    Qin, Chuqiang; Zhang, Bo; Zhang, Liang; Zhang, Zhi; Wang, Le; Tang, Long; Li, Shuangqing; Yang, Yixi; Yang, Fuguo; Zhang, Ping; Yang, Bo

    2016-01-01

    Lower back pain (LBP) is a common and remitting problem. One of the primary causes of LBP is thought to be degeneration of the intervertebral disc (IVD). The aim of the present study was to investigate the role of the myeloid differentiation primary-response protein 88 (MyD88)-dependent Toll-like receptor 4 (TLR4) signal pathway in the mechanism of IVD degeneration. IVD nucleus pulposus cells isolated and cultured from the lumbar vertebrae of Wistar rats were stimulated by various doses of lipopolysaccharide (LPS; 0.1, 1, 10 and 100 µg/ml) to simulate IVD degeneration. Cells were rinsed and cultured in serum-free Dulbecco's modified Eagle's medium/F12. Reverse transcription-quantitative polymerase chain reaction was used to determine the levels of TLR4, MyD88, tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β) mRNA expression after 1, 3, 6, 9 and 12 h of incubation. Additionally, western blot and enzyme-linked immunosorbent assay analyses were used to determine the levels of TLR4, MyD88, TNFα, and IL-1β protein expression after 24, 48 and 72 h of incubation. The levels of TLR4, MyD88, TNFα and IL-1β mRNA all increased in the cells stimulated by 10 µg/ml LPS at 3, 6 and 9 h (all P<0.001). Furthermore, the levels of TLR4, MyD88, TNFα and IL-1β protein all increased at 24, 48 and 72 h (all P<0.001). Additionally, the mRNA and protein levels of TLR4, MyD88, TNFα and IL-1β increased significantly in the cells stimulated by 1, 10 and 100 µg/ml LPS compared with the control group, and reached a peak in the 10 µg/ml LPS group (all P<0.001). These results suggest that the MyD88-dependent TLR4 signal pathway is a target pathway in IVD degeneration. This pathway is time phase- and dose-dependent, and when activated can lead to the release of inflammatory factors that participate in IVD degeneration. PMID:27446251

  9. Vitamin D Receptor Gene, Matrix Metalloproteinase 3 Polymorphisms and the Risk of Intervertebral Disc Degeneration Susceptibility: Meta-Analysis

    PubMed Central

    Huang, Yongjing; Zhao, Shujie; Xu, Nanwei

    2016-01-01

    Several studies have evaluated the association between vitamin D receptor, matrix metalloproteinase 3 (MMP-3) polymorphisms and the risk of intervertebral disc degeneration susceptibility. The findings were inconsistent. This meta-analysis aimed to systematically assess the association between vitamin D receptor, MMP-3 polymorphisms and the risk of intervertebral disc degeneration susceptibility. A search of various databases was done covering all papers published until December 31th, 2014. Eight, 4, 3 studies were finally included that addressed the risk of intervertebral disc degeneration susceptibility and vitamin D receptor FokI (rs2228570), ApaI (rs7975232), and MMP-3 (rs731236) polymorphisms, respectively. FokI (f vs. F: summary odds ratio [OR], 1.13; 95% confidence interval [CI], 0.76–1.69; ff vs. FF: OR, 1.02; 95% CI, 0.59–1.77; ff vs. Ff/FF: OR, 1.05; 95% CI, 0.70–1.58), ApaI (a vs. A: OR, 0.73; 95% CI, 0.45–1.19; aa vs. AA: OR, 0.53; 95% CI, 0.22–1.25 p=0.14; aa vs. AA/Aa: OR, 0.69; 95% CI, 0.53–0.89) in the vitamin D receptor gene and MMP3 polymorphisms (5A vs. 6A: OR, 1.92; 95% CI, 0.77–4.80; 5A5A vs. 6A6A: OR, 2.17; 95% CI, 0.75–6.24; 5A5A vs. 5A6A/6A6A: OR, 1.58; 95% CI, 0.72–3.44) were not obviously associated with risk of intervertebral disc degeneration susceptibility. FokI, ApaI polymorphisms in the vitamin D receptor gene and MMP-3 polymorphism are not obvious risk factors for intervertebral disc degeneration susceptibility. PMID:27790329

  10. Interleukin 1 Polymorphisms Contribute to Intervertebral Disc Degeneration Risk: A Meta-Analysis

    PubMed Central

    Fu, Changfeng; Xu, Feng; Chen, Yong; Wang, Zhenyu; Liu, Yi

    2016-01-01

    Objective We performed a meta-analysis to assess association between interleukin 1 (IL-1) polymorphisms and the risk of Intervertebral Disc Degeneration (IDD). Background A series of studies have investigated the association between common single nucleotide polymorphisms in IL-1 and IDD risk; however, the overall results are inconclusive. Methods Two independent investigators conducted a systematic search for relevant available studies. Allele frequencies were extracted from each study. The association between the IL-1α (+889C/T) or IL-1β (+3954C/T) polymorphism and IDD risk was measured by odds ratios (OR) with 95% confidence intervals (95% CI). Results Five and six studies, respectively, were ultimately included in the meta-analysis for the IL-1α (+889C/T) and IL-1β (+3954C/T) polymorphism. The combined results showed that the IL-1α (+889C/T) polymorphism was significantly associated with increased susceptibility to IDD, particularly in Caucasians (TT versus CC: OR = 2.95, 95% CI: 1.45, 6.04; Pheterogeneity = 0.82; TT versus CC/CT: OR = 2.29, 95% CI: 1.18, 4.47; Pheterogeneity = 0.20). In contrast, the IL-1β (+3954C/T) polymorphism showed a trend towards increased risk in Caucasians but no association in Asians. Conclusion This meta-analysis suggested that the IL-1α (+889C/T) polymorphism is significantly associated with risk of IDD, especially in Caucasian populations. PMID:27253397

  11. The Effects of Age, Gender, Ethnicity, and Spinal Level on the Rate of Intervertebral Disc Degeneration. A review of 1712 Intervertebral Discs

    PubMed Central

    Siemionow, Krzysztof; An, Howard; Masuda, Koichi; Andersson, Gunnar; Cs-Szabo, Gabriella

    2010-01-01

    Study Design A gross anatomical and magnetic resonance imaging (MRI) study of intervertebral disc (IVD) degeneration in fresh cadaveric lumbar spines. Objective The purpose of this study was to find the rate of IVD degeneration. Summary of Background Data Age, sex, race, and lumbar level are among some of the factors that play a role in IVD degeneration. The rate at which IVDs degenerate is unknown. Methods Complete lumbar spine segments (T11/12 to S1) were received within 24 hours of death. The nucleus pulposus, annulus fibrosus, cartilaginous and bony end-plate, and the peripheral verterbral body were assessed with MRI and IVD degeneration was graded by two observers from grade 1(nondegenerated) to grade 5(severely degenerated) based on a scale developed by Tanaka et al. The specimens were then sectioned and gross anatomical evaluation was performed according to Thompson et al. Results 433 donors and 1712 IVDs were analyzed. There were 366 Caucasians, 47 Africans, 16 Hispanics, 4 Asian. There were 306 males and 127 females. The age range was 14–81 years, (average 60.5+/−11.3). For donors greater than age 40, the L5/S1 IVD degenerated at a significantly faster rate of 0.043/year compared to 0.031, 0.034, 0.033, 0.027 for L12, L23, L34, L45, respectively. For donors younger than 40, L5/S1 IVD degenerated at a significantly faster rate of 0.141/year compared to 0.033,0.021, 0.031, 0.050 for L12, L23, L34, L45, respectively. Multiple regression analysis revealed that gender had no significant effect on IVD degeneration whereas African ethnicity was associated with lower Thompson score at L12, L23, L34, L45 when compared to Caucasians. Conclusions The relatively early degeneration at L5-S1 in all races and lower Thompson grade in donors of African ethnicity needs further investigation. Factors such as sagittal alignment, facet joint arthritis, and genetics potentially play a role in IVD degeneration. PMID:21217432

  12. Heme oxygenase-1 attenuates IL-1β induced alteration of anabolic and catabolic activities in intervertebral disc degeneration

    PubMed Central

    Hu, Bo; Shi, Changgui; Xu, Chen; Cao, Peng; Tian, Ye; Zhang, Ying; Deng, Lianfu; Chen, Huajiang; Yuan, Wen

    2016-01-01

    Intervertebral disc degeneration (IDD) is characterized by disordered extracellular matrix (ECM) metabolism, implicating subdued anabolism and enhanced catabolic activities in the nucleus pulposus (NP) of discs. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) are considered to be potent mediators of ECM breakdown. Hemeoxygenase-1 (HO-1) has been reported to participate in cellular anti-inflammatory processes. The purpose of this study was to investigate HO-1 modulation of ECM metabolism in human NP cells under IL-1β stimulation. Our results revealed that expression of HO-1 decreased considerably during IDD progression. Induction of HO-1 by cobalt protoporphyrin IX attenuated the inhibition of sulfate glycosaminoglycan and collagen type II (COL-II) synthesis and ameliorated the reduced expressions of aggrecan, COL-II, SOX-6 and SOX-9 mediated by IL-1β. Induction of HO-1 also reversed the effect of IL-1β on expression of the catabolic markers matrix metalloproteinases-1, 3, 9 and 13. This was combined with inhibition of the activation of mitogen-activated protein kinase signaling. These findings suggest that HO-1 might play a pivotal role in IDD, and that manipulating HO-1 expression might mitigate the impairment of ECM metabolism in NP, thus potentially offering a novel therapeutic approach to the treatment of IDD. PMID:26877238

  13. TGFβ regulates Galectin-3 expression through canonical Smad3 signaling pathway in nucleus pulposus cells: implications in intervertebral disc degeneration.

    PubMed

    Tian, Ye; Yuan, Wen; Li, Jun; Wang, Hua; Hunt, Maxwell G; Liu, Chao; Shapiro, Irving M; Risbud, Makarand V

    2016-03-01

    Galectin-3 is highly expressed in notochordal nucleus pulposus (NP) and thought to play important physiological roles; however, regulation of its expression remains largely unexplored. The aim of the study was to investigate if TGFβ regulates Galectin-3 expression in NP cells. TGFβ treatment resulted in decreased Galectin-3 expression. Bioinformatic analysis using JASPAR and MatInspector databases cross-referenced with published ChIP-Seq data showed nine locations of highly probable Smad3 binding in the LGALS3 proximal promoter. In NP cells, TGFβ treatment resulted in decreased activity of reporters harboring several 5' deletions of the proximal Galectin-3 promoter. While transfection of NP cells with constitutively active (CA)-ALK5 resulted in decreased promoter activity, DN-ALK5 blocked the suppressive effect of TGFβ on the promoter. The suppressive effect of Smad3 on the Galectin-3 promoter was confirmed using gain- and loss-of-function studies. Transfection with DN-Smad3 or Smad7 blocked TGFβ mediated suppression of promoter activity. We also measured Galectin-3 promoter activity in Smad3 null and wild type cells. Noteworthy, promoter activity was suppressed by TGFβ only in wild type cells. Likewise, stable silencing of Smad3 in NP cells using sh-Smad3 significantly blocked TGFβ-dependent decrease in Galectin-3 expression. Treatment of human NP cells isolated from tissues with different grades of degeneration showed that Galectin-3 expression was responsive to TGF-β-mediated suppression. Importantly, Galectin-3 synergized effects of TNF-α on inflammatory gene expression by NP cells. Together these studies suggest that TGFβ, through Smad3 controls Galectin-3 expression in NP cells and may have implications in the intervertebral disc degeneration.

  14. Herb formula "Fufangqishe-Pill" prevents upright posture-induced intervertebral disc degeneration at the lumbar in rats.

    PubMed

    Liang, Qian-Qian; Xi, Zhi-Jie; Bian, Qin; Cui, Xue-Jun; Li, Chen-Guang; Hou, Wei; Shi, Qi; Wang, Yong-Jun

    2010-01-01

    Degeneration of the lumbar spine plays an important role in most chronic low back pain. Prevention of lumbar intervertebral disc (IVD) degeneration is therefore a high research priority. Both our previous multicenter clinical trials and pharmacological research showed that Fufangqishe-Pill (FFQSP), a newly patented traditional Chinese medicine, could effectively relieve the symptoms of neck pain and prevent cervical degeneration. To clarify the effect of FFQSP on lumbar IVD degeneration, we applied a lumbar IVD degeneration rat model induced by prolonged upright posture. Pretreatment of FFQSP for one month prevented the histological changes indicating IVD disorganization; increased type II-collagen level, decreased type X-collagen protein level, and increased Col2alpha1 mRNA expression at all time points; and decreased Col10alpha1, matrix metalloproteinase (MMP)-3, MMP13, and Interleukin (IL)-1beta mRNA expression induced by upright posture for 7 and 9 months. These results suggest that FFQSP prevents lumbar IVD degeneration induced by upright posture. FFQSP is a promising medicine for lumbar IVD degeneration disease.

  15. Metabolic Syndrome Components Are Associated with Intervertebral Disc Degeneration: The Wakayama Spine Study

    PubMed Central

    Teraguchi, Masatoshi; Yoshimura, Noriko; Hashizume, Hiroshi; Muraki, Shigeyuki; Yamada, Hiroshi; Oka, Hiroyuki; Minamide, Akihito; Ishimoto, Yuyu; Nagata, Keiji; Kagotani, Ryohei; Tanaka, Sakae; Kawaguchi, Hiroshi; Nakamura, Kozo; Akune, Toru; Yoshida, Munehito

    2016-01-01

    Objective The objective of the present study was to examine the associations between metabolic syndrome (MS) components, such as overweight (OW), hypertension (HT), dyslipidemia (DL), and impaired glucose tolerance (IGT), and intervertebral disc degeneration (DD). Design The present study included 928 participants (308 men, 620 women) of the 1,011 participants in the Wakayama Spine Study. DD on magnetic resonance imaging was classified according to the Pfirrmann system. OW, HT, DL, and IGT were assessed using the criteria of the Examination Committee of Criteria for MS in Japan. Results Multivariable logistic regression analysis revealed that OW was significantly associated with cervical, thoracic, and lumbar DD (cervical: odds ratio [OR], 1.28; 95% confidence interval [CI], 0.92–1.78; thoracic: OR, 1.75; 95% CI, 1.24–2.51; lumbar: OR, 1.87; 95% CI, 1.06–3.48). HT and IGT were significantly associated with thoracic DD (HT: OR, 1.54; 95% CI, 1.09–2.18; IGT: OR, 1.65; 95% CI, 1.12–2.48). Furthermore, subjects with 1 or more MS components had a higher OR for thoracic DD compared with those without MS components (vs. no component; 1 component: OR, 1.58; 95% CI, 1.03–2.42; 2 components: OR, 2.60; 95% CI, 1.62–4.20; ≥3 components: OR, 2.62; 95% CI, 1.42–5.00). Conclusion MS components were significantly associated with thoracic DD. Furthermore, accumulation of MS components significantly increased the OR for thoracic DD. These findings support the need for further studies of the effects of metabolic abnormality on DD. PMID:26840834

  16. Anterior Limbus Vertebra and Intervertebral Disk Degeneration in Japanese Collegiate Gymnasts

    PubMed Central

    Koyama, Koji; Nakazato, Koichi; Min, Seok-Ki; Gushiken, Koji; Hatakeda, Yoshiaki; Seo, Kyoko; Hiranuma, Kenji

    2013-01-01

    Background: Magnetic resonance imaging (MRI) studies have shown that gymnasts have a high prevalence of radiological abnormalities, such as intervertebral disk degeneration (IDD) and anterior limbus vertebra (ALV). These 2 abnormalities may coexist at the same spinal level. However, the relationship between IDD and ALV remains unclear. Hypothesis: A significant relationship exists between IDD and ALV in Japanese collegiate gymnasts. Study Design: Case-control study. Methods: A total of 104 Japanese collegiate gymnasts (70 men and 34 women; age, 19.7 ± 1.0 years) with 11.8 ± 3.6 years of sporting experience participated. T1- and T2-weighted MRIs were used to evaluate ALV and IDD. Results: The prevalence among the gymnasts of IDD and ALV was 40.4% (42/104) and 20.2% (21/104), respectively. The prevalence of IDD was significantly higher in gymnasts with ALV than those without ALV, as determined using the chi-square test. Logistic regression analysis demonstrated a significant association between IDD and ALV (adjusted odds ratio [OR], 6.60; 95% confidence interval [CI], 2.14-20.35). IDD was further grouped by whether it was present in the upper lumbar region (L1-2, L2-3, and L3-4 disks) or in the lower lumbar region (L4-5 and L5-S1 disks). Upper IDD had a greater association with ALV (adjusted OR, 33.17; 95% CI, 7.09-155.25) than did lower IDD (adjusted OR, 6.71; 95% CI, 1.57-28.73). Conclusion: In Japanese collegiate gymnasts, ALV is a predictor of IDD, especially in the upper lumbar region. Clinical Relevance: Information regarding ALV is important to prevent IDD in Japanese collegiate gymnasts. PMID:26535240

  17. 3D finite element analysis of nutrient distributions and cell viability in the intervertebral disc: effects of deformation and degeneration.

    PubMed

    Jackson, Alicia R; Huang, Chun-Yuh C; Brown, Mark D; Gu, Wei Yong

    2011-09-01

    The intervertebral disc (IVD) receives important nutrients, such as glucose, from surrounding blood vessels. Poor nutritional supply is believed to play a key role in disc degeneration. Several investigators have presented finite element models of the IVD to investigate disc nutrition; however, none has predicted nutrient levels and cell viability in the disc with a realistic 3D geometry and tissue properties coupled to mechanical deformation. Understanding how degeneration and loading affect nutrition and cell viability is necessary for elucidating the mechanisms of disc degeneration and low back pain. The objective of this study was to analyze the effects of disc degeneration and static deformation on glucose distributions and cell viability in the IVD using finite element analysis. A realistic 3D finite element model of the IVD was developed based on mechano-electrochemical mixture theory. In the model, the cellular metabolic activities and viability were related to nutrient concentrations, and transport properties of nutrients were dependent on tissue deformation. The effects of disc degeneration and mechanical compression on glucose concentrations and cell density distributions in the IVD were investigated. To examine effects of disc degeneration, tissue properties were altered to reflect those of degenerated tissue, including reduced water content, fixed charge density, height, and endplate permeability. Two mechanical loading conditions were also investigated: a reference (undeformed) case and a 10% static deformation case. In general, nutrient levels decreased moving away from the nutritional supply at the disc periphery. Minimum glucose levels were at the interface between the nucleus and annulus regions of the disc. Deformation caused a 6.2% decrease in the minimum glucose concentration in the normal IVD, while degeneration resulted in an 80% decrease. Although cell density was not affected in the undeformed normal disc, there was a decrease in cell

  18. Dysfunctional Microcirculation of the Lumbar Vertebral Marrow Prior to the Bone Loss and Intervertebral Discal Degeneration

    PubMed Central

    Lu, Guang-ming

    2015-01-01

    Study Design. Descriptive study, stratified sampling. Objective. Using dynamic computed tomographic perfusion (CTP) to explore the age-related distribution patterns of the microcirculation perfusion in the vertebral marrow, the vertebral bone mineral density (BMD), and the intervertebral discal degeneration (IDD) further to discuss the possible causation between them. Summary of Background Data. A latest viewpoint deemed that reduced blood supply of the vertebral marrow was correlated with an increased incidence of IDD and loss of BMD. However, the causative relationship between them needs more investigation. Methods. One hundred eighty-six general people were randomly enrolled by stratified sampling and grouped by age: 15 years or less, 16 to 25 years, 26 to 35 years, 36 to 45 years, 46 to 55 years, 56 to 65 years, 66 to 75 years, and 76 years or more. Both CTP and BMD of the third and fourth lumbar vertebral marrow were measured, and the IDD incidence of the third-fourth vertebrae was assessed. The temporal-spatial distribution patterns of the age-related changes of CTP, BMD, and IDD were described, and the correlations between them were calculated. Results. Microcirculatory perfusion of the vertebral marrow developed to maturate by 25 years, maintained stable at 35 years, and then declined by age after 35 years. BMD grew to a peak phase in 26 to 45 years and then dropped by years. However, IDD presented a sudden increase after 45 years of age. CTP (blood flow [r = 0.806], blood volume [r = 0.685], and permeability [r = 0.619]) showed strong positive correlations and CTP (time to peak [r = −0.211], mean transit time [r = −0.598]) showed negative correlations with BMD. Meanwhile, CTP (blood flow [r = −0.815], blood volume [r = −0.753], and permeability [r = −0.690]) had strong negative correlations and CTP (time to peak [r = 0.323] and mean transit time [r = 0.628]) had positive correlations with the incidence of IDD. Conclusion. Aging-related decrease

  19. Characterization of in vivo effects of platelet-rich plasma and biodegradable gelatin hydrogel microspheres on degenerated intervertebral discs.

    PubMed

    Sawamura, Kazuhide; Ikeda, Takumi; Nagae, Masateru; Okamoto, Shin-ichi; Mikami, Yasuo; Hase, Hitoshi; Ikoma, Kazuya; Yamada, Tetsuya; Sakamoto, Hirotaka; Matsuda, Ken-ichi; Tabata, Yasuhiko; Kawata, Mitsuhiro; Kubo, Toshikazu

    2009-12-01

    We have previously shown that administration of platelet-rich plasma-impregnated gelatin hydrogel microspheres (PRP-GHMs) into a degenerated intervertebral disc (IVD) markedly suppresses progression of IVD degeneration. In the current study, we characterized the in vivo effects of PRP-GHM treatment in a degenerated IVD model in rabbit. On magnetic resonance images, the IVD height was significantly greater after treatment with PRP-GHMs compared with phosphate-buffered saline-impregnated GHMs, PRP without GHMs, and needle puncture only. Water content was also preserved in PRP-GHM-treated IVDs. Consistent with this observation, the mRNA expression of proteoglycan core protein and type II collagen was significantly higher after PRP-GHM treatment compared with other treatment groups. No proliferating cells were found in the nucleus pulposus and inner annulus fibrosus in any groups, but the number of apoptotic cells in the nucleus pulposus after PRP-GHM treatment was significantly lower than that after other treatments. These results provide an improved understanding of the therapeutic effects of PRP-GHM treatment of degenerated IVDs.

  20. 2D segmentation of intervertebral discs and its degree of degeneration from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, José Maria; Lazary, Aron; Frangi, Alejandro F.

    2014-03-01

    Low back pain (LBP) is a disorder suffered by a large population around the world. A key factor causing this illness is Intervertebral Disc (IVD) degeneration, whose early diagnosis could help in preventing this widespread condition. Clinicians base their diagnosis on visual inspection of 2D slices of Magnetic Resonance (MR) images, which is subject to large interobserver variability. In this work, an automatic classification method is presented, which provides the Pfirrmann degree of degeneration from a mid-sagittal MR slice. The proposed method utilizes Active Contour Models, with a new geometrical energy, to achieve an initial segmentation, which is further improved using fuzzy C-means. Then, IVDs are classified according to their degree of degeneration. This classification is attained by employing Adaboost on five specific features: the mean and the variance of the probability map of the nucleus using two different approaches and the eccentricity of the fitting ellipse to the contour of the IVD. The classification method was evaluated using a cohort of 150 intervertebral discs assessed by three experts, resulting in a mean specificity (93%) and sensitivity (83%) similar to the one provided by every expert with respect to the most voted value. The segmentation accuracy was evaluated using the Dice Similarity Index (DSI) and Root Mean Square Error (RMSE) of the point-to-contour distance. The mean DSI ± 2 standard deviation was 91:7% ±5:6%, the mean RMSE was 0:82mm and the 95 percentile was 1:36mm. These results were found accurate when compared to the state-of-the-art.

  1. Oestrogen and parathyroid hormone alleviate lumbar intervertebral disc degeneration in ovariectomized rats and enhance Wnt/β-catenin pathway activity

    PubMed Central

    Jia, Haobo; Ma, Jianxiong; Lv, Jianwei; Ma, Xinlong; Xu, Weiguo; Yang, Yang; Tian, Aixian; Wang, Ying; Sun, Lei; Xu, Liyan; Fu, Lin; Zhao, Jie

    2016-01-01

    To investigate the mitigation effect and mechanism of oestrogen and PTH on disc degeneration in rats after ovariectomy, as well as on Wnt/β-catenin pathway activity, thirty 3-month-old rats were ovariectomized and divided into three groups. Ten additional rats were used as controls. Eight weeks later, the rats were administered oestrogen or PTH for 12 weeks, and then discs were collected for tests. Results showed that nucleus pulposus cells in the Sham group were mostly notochord cells, while in the OVX group, cells gradually developed into chondrocyte-like cells. Oestrogen or PTH could partly recover the notochord cell number. After ovariectomy, the endplate roughened and endplate porosity decreased. After oestrogen or PTH treatment, the smoothness and porosity of endplate recovered. Compared with the Sham group, Aggrecan, Col2a and Wnt/β-catenin pathway expression in OVX group decreased, and either oestrogen or PTH treatment improved their expression. The biomechanical properties of intervertebral disc significantly changed after ovariectomy, and oestrogen or PTH treatment partly recovered them. Disc degeneration occurred with low oestrogen, and the underlying mechanisms involve nutrition supply disorders, cell type changes and decreased Wnt/β-catenin pathway activity. Oestrogen and PTH can retard disc degeneration in OVX rats and enhance Wnt/β-catenin pathway activity in nucleus pulposus. PMID:27279629

  2. Exogenous thymosin beta4 prevents apoptosis in human intervertebral annulus cells in vitro.

    PubMed

    Tapp, H; Deepe, R; Ingram, J A; Yarmola, E G; Bubb, M R; Hanley, E N; Gruber, H E

    2009-12-01

    Loss of cells in the human disc due to programmed cell death (apoptosis) is a major factor in the aging and degenerating human intervertebral disc. Our objective here was to determine if thymosin beta(4) (TB4), a small, multifunctional 5 kDa protein with diverse activities, might block apoptosis in human annulus cells cultured in monolayer or three-dimensional (3D) culture. Apoptosis was induced in vitro using hydrogen peroxide or serum starvation. Annulus cells were processed for identification of apoptotic cells using the TUNEL method. The percentage of apoptotic cells was determined by cell counts. Annulus cells also were treated with TB4 for determination of proliferation, and proteoglycan production was assessed using cell titer and 1,2 dimethylmethylamine (DMB) assays and histological staining. A significant reduction in disc cell apoptosis occurred after TB4 treatment. The percentage of cells undergoing apoptosis decreased significantly in TB4 treated cells in both apoptosis induction designs. TB4 exposure did not alter proteoglycan production as assessed by either DMB measurement or histological staining. Our results indicate the need for further studies of the anti-apoptotic effect of TB4 and suggest that TB4 may have therapeutic application in future biological therapies for disc degeneration.

  3. Menopause causes vertebral endplate degeneration and decrease in nutrient diffusion to the intervertebral discs.

    PubMed

    Wang, Yi-Xiang J; Griffith, James F

    2011-07-01

    The vasculature in the outer annulus supplies only the periphery of the disc so that nutrition to the bulk of the disc, including all the inner annulus and nucleus pulposus, is derived from the vertebral epiphyseal end arteries where nutrients diffuse across the cartilaginous endplate to reach the disc. In this regard the vertebral endplate plays an important role in disc nutrition. Compromise of diffusion of nutrients to the disc cells may play a large part in the progression or even initiation of disc degeneration. Increasing evidence suggests that estrogen deficiency also influence the severity of disc degeneration in post-menopausal females. Structural disorganization of the vertebral endplate occurs with disc degeneration, with the most common endplate changes observed clinically being Schmorl's node. Schmorl's node is more commonly seen in post-menopausal women than younger women. Osteosclerosis, osteonecrosis and fibrosis associated with Schmorl's nodes can impede nutrient diffusion into the disc as well as removal of metabolites from the disc. We hypothesize that menopause negatively affects vertebral endplate quality and induces endplate degeneration. This endplate degeneration decreases nutrients diffusion from vertebral body into discs, and also impedes removal of metabolites, leads to further disc degeneration. To confirm our hypothesis, a cross-sectional post-contrast MRI study can be performed in pre-menopausal and post-menopausal women. If the hypothesis is confirmed, then low dose hormone replacement treatment may retard disc degeneration in post menopausal women and thereby limit the consequences associated with disc degeneration such as low back pain.

  4. Role of biomechanics on intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair?

    PubMed Central

    Iatridis, James C.; Nicoll, Steven B.; Michalek, Arthur J.; Walter, Benjamin A.; Gupta, Michelle S.

    2013-01-01

    Background Context Degeneration and injuries of the intervertebral disc result in large alterations in biomechanical behaviors. Repair strategies using biomaterials can be optimized based on biomechanical and biological requirements. Purpose To review current literature on 1) effects of degeneration, simulated degeneration, and injury on biomechanics of the intervertebral disc with special attention paid to needle puncture injuries which are a pathway for diagnostics and regenerative therapies; and 2) promising biomaterials for disc repair with a focus on how those biomaterials may promote biomechanical repair. Study Design/Setting A narrative review to evaluate the role of biomechanics on disc degeneration and regenerative therapies with a focus on what biomechanical properties need to be repaired and how to evaluate and accomplish such repairs using biomaterials. Model systems for screening of such repair strategies are also briefly described. Methods Papers were selected from two main Pubmed searches using keywords: intervertebral AND biomechanics (1823 articles) and intervertebral AND biomaterials (361 articles). Additional keywords (injury, needle puncture, nucleus pressurization, biomaterials, hydrogel, sealant, tissue engineering) were used to narrow articles to the topics most relevant to this review. Results Degeneration and acute disc injuries have the capacity to influence nucleus pulposus pressurization and annulus fibrosus integrity, which are necessary for effective disc function, and therefore, require repair. Needle injection injuries are of particular clinical relevance with potential to influence disc biomechanics, cellularity, and metabolism, yet these effects are localized or small, and more research is required to evaluate and reduce potential clinical morbidity using such techniques. NP replacement strategies, such as hydrogels, are required to restore NP pressurization or lost volume. AF repair strategies, including crosslinked hydrogels

  5. Reliable Magnetic Resonance Imaging Based Grading System for Cervical Intervertebral Disc Degeneration

    PubMed Central

    Chen, Antonia F.; Kang, James D.; Lee, Joon Y.

    2016-01-01

    Study Design Observational. Purpose To develop a simple and comprehensive grading system for cervical discs that precisely, consistently and meaningfully presents radiologic and morphologic data. Overview of Literature The Thompson grading system is commonly used to classify the severity of degenerative lumbar discs on magnetic resonance imaging (MRI). Inherent differences in the morphological and physiological characteristics of cervical discs have hindered development of precise classification systems. Other grading systems have been developed for degenerating cervical discs, but their versatility and feasibility in the clinical setting is suboptimal. Methods MRIs of 46 human cervical discs were de-identified and displayed in PowerPoint format. Each slide depicted a single disc with a normal (grade 0) disc displayed in the top right corner for reference. The presentation was given to 25 physicians comprising attending spine surgeons, spine fellows, orthopaedic residents, and two attending musculoskeletal radiologists. The grading system included Grade 0 (normal height compared to C2–3, mid cleft still visible), grade 1 (dark disc, normal height), grade 2 (collapsed disc, few osteophytes), and grade 3 (collapsed disc, many osteophytes). The ease of use of the system was gauged in the participants and the interobserver reliability was calculated. Results The intraclass correlation coefficient for interobserver reliability was 0.87, and 0.94 for intraobserver reliability, indicating excellent reliability. Ninety-five percent and 85 percent of the clinicians judged the grading system to be clinically feasible and useful in daily practice, respectively. Conclusions The grading system is easy to use, has excellent reliability, and can be used for precise and consistent clinician communication. PMID:26949461

  6. Narrowing of lumbar spinal canal predicts chronic low back pain more accurately than intervertebral disc degeneration: a magnetic resonance imaging study in young Finnish male conscripts.

    PubMed

    Visuri, Tuomo; Ulaska, Jaana; Eskelin, Marja; Pulkkinen, Pekka

    2005-11-01

    The objective of this magnetic resonance imaging study was to evaluate the role of degenerative changes, developmental spinal stenosis, and compression of spinal nerve roots in chronic low back (CLBP) and radicular pain in Finnish conscripts. The degree of degeneration, protrusion, and herniation of the intervertebral discs and stenosis of the nerve root canals was evaluated, and the midsagittal diameter and cross-sectional area of the lumbar vertebrae canal were measured in 108 conscripts with CLBP and 90 asymptomatic controls. The midsagittal diameters at L1-L4 levels were significantly smaller in the patients with CLBP than in the controls. Moreover, degeneration of the L4/5 disc and protrusion or herniation of the L5/S1 disc and stenosis of the nerve root canals at level L5/S1 were more frequent among the CLBP patients. Multifactorial analysis of the magnetic resonance imaging findings provided a total explanatory rate of only 33%. Narrowing of the vertebral canal in the anteroposterior direction was more likely to produce CLBP and radiating pain than intervertebral disc degeneration or narrowing of the intervertebral nerve root canals.

  7. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    PubMed

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.

  8. Genetic polymorphisms of interleukin-1 alpha and the vitamin d receptor in mexican mestizo patients with intervertebral disc degeneration.

    PubMed

    Cervin Serrano, Salvador; González Villareal, Dalia; Aguilar-Medina, Maribel; Romero-Navarro, Jose Guillermo; Romero Quintana, Jose Geovanni; Arámbula Meraz, Eliakym; Osuna Ramírez, Ignacio; Picos-Cárdenas, Veronica; Granados, Julio; Estrada-García, Iris; Sánchez-Schmitz, Guzman; Ramos-Payán, Rosalío

    2014-01-01

    Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with back pain, a leading cause of musculoskeletal disability worldwide. Several conditions, such as occupational activities, gender, age, and obesity, have been associated with IDD. However, the development of this disease has strong genetic determinants. In this study, we explore the possible association between rs1800587 (c.-949C>T) of interleukin-1 alpha (IL1A) and rs2228570 (c.2T>V) and rs731236 (c.1056T>C) of vitamin D receptor (VDR) gene polymorphisms and the development of IDD in northwestern Mexican Mestizo population. Gene polymorphisms were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism, in two groups matched by age and gender: patients with symptomatic lumbar IDD (n = 100) and subjects with normal lumbar-spine MRI-scans (n = 100). Distribution of the mutated alleles in patients and controls was 27.0% versus 28.0% (P = 0.455) for T of rs1800587 (IL1A); 53.0% versus 58.0% (P = 0.183) for V of rs2228570 (VDR); and 18.0% versus 21.0% (P = 0.262) for C of rs731236 (VDR). Our results showed no association between the studied polymorphisms and IDD in this population. This is the first report on the contribution of gene polymorphisms on IDD in a Mexican population.

  9. Genetic Polymorphisms of Interleukin-1 Alpha and the Vitamin D Receptor in Mexican Mestizo Patients with Intervertebral Disc Degeneration

    PubMed Central

    Cervin Serrano, Salvador; González Villareal, Dalia; Aguilar-Medina, Maribel; Romero-Navarro, Jose Guillermo; Romero Quintana, Jose Geovanni; Arámbula Meraz, Eliakym; Osuna Ramírez, Ignacio; Picos-Cárdenas, Veronica; Granados, Julio; Estrada-García, Iris; Sánchez-Schmitz, Guzman; Ramos-Payán, Rosalío

    2014-01-01

    Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with back pain, a leading cause of musculoskeletal disability worldwide. Several conditions, such as occupational activities, gender, age, and obesity, have been associated with IDD. However, the development of this disease has strong genetic determinants. In this study, we explore the possible association between rs1800587 (c.-949C>T) of interleukin-1 alpha (IL1A) and rs2228570 (c.2T>V) and rs731236 (c.1056T>C) of vitamin D receptor (VDR) gene polymorphisms and the development of IDD in northwestern Mexican Mestizo population. Gene polymorphisms were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism, in two groups matched by age and gender: patients with symptomatic lumbar IDD (n = 100) and subjects with normal lumbar-spine MRI-scans (n = 100). Distribution of the mutated alleles in patients and controls was 27.0% versus 28.0% (P = 0.455) for T of rs1800587 (IL1A); 53.0% versus 58.0% (P = 0.183) for V of rs2228570 (VDR); and 18.0% versus 21.0% (P = 0.262) for C of rs731236 (VDR). Our results showed no association between the studied polymorphisms and IDD in this population. This is the first report on the contribution of gene polymorphisms on IDD in a Mexican population. PMID:25506053

  10. The rat intervertebral disk degeneration pain model: relationships between biological and structural alterations and pain

    PubMed Central

    2011-01-01

    Introduction Degeneration of the interverterbral disk is as a cause of low-back pain is increasing. To gain insight into relationships between biological processes, structural alterations and behavioral pain, we created an animal model in rats. Methods Disk degeneration was induced by removal of the nucleus pulposus (NP) from the lumbar disks (L4/L5 and L5/L6) of Sprague Dawley rats using a 0.5-mm-diameter microsurgical drill. The degree of primary hyperalgesia was assessed by using an algometer to measure pain upon external pressure on injured lumbar disks. Biochemical and histological assessments and radiographs of injured disks were used for evaluation. We investigated therapeutic modulation of chronic pain by administering pharmaceutical drugs in this animal model. Results After removal of the NP, pressure hyperalgesia developed over the lower back. Nine weeks after surgery we observed damaged or degenerated disks with proteoglycan loss and narrowing of disk height. These biological and structural changes in disks were closely related to the sustained pain hyperalgesia. A high dose of morphine (6.7 mg/kg) resulted in effective pain relief. However, high doses of pregabalin (20 mg/kg), a drug that has been used for treatment of chronic neuropathic pain, as well as the anti-inflammatory drugs celecoxib (50 mg/kg; a selective inhibitor of cyclooxygenase 2 (COX-2)) and ketorolac (20 mg/kg; an inhibitor of COX-1 and COX-2), did not have significant antihyperalgesic effects in our disk injury animal model. Conclusions Although similarities in gene expression profiles suggest potential overlap in chronic pain pathways linked to disk injury or neuropathy, drug-testing results suggest that pain pathways linked to these two chronic pain conditions are mechanistically distinct. Our findings provide a foundation for future research on new therapeutic interventions that can lead to improvements in the treatment of patients with back pain due to disk degeneration. PMID

  11. Degeneration of the intervertebral disc with new approaches for treating low back pain.

    PubMed

    Le Maitre, C L; Binch, A L; Thorpe, A A; Hughes, S P

    2015-03-01

    This review paper discusses the process of disc degeneration and the current understanding of cellular degradation in patients who present with low back pain. The role of surgical treatment for low back pain is analysed with emphasis on the proven value of spinal fusion. The interesting and novel developments of stem cell research in the treatment of low back pain are presented with special emphasis on the importance of the cartilaginous end plate and the role of IL-1 in future treatment modalities.

  12. A videofluoroscopy-based tracking algorithm for quantifying the time course of human intervertebral displacements.

    PubMed

    Balkovec, Christian; Veldhuis, Jim H; Baird, John W; Brodland, G Wayne; McGill, Stuart M

    2017-03-15

    The motions of individual intervertebral joints can affect spine motion, injury risk, deterioration, pain, treatment strategies, and clinical outcomes. Since standard kinematic methods do not provide precise time-course details about individual vertebrae and intervertebral motions, information that could be useful for scientific advancement and clinical assessment, we developed an iterative template matching algorithm to obtain this data from videofluoroscopy images. To assess the bias of our approach, vertebrae in an intact porcine spine were tracked and compared to the motions of high-contrast markers. To estimate precision under clinical conditions, motions of three human cervical spines were tracked independently ten times and vertebral and intervertebral motions associated with individual trials were compared to corresponding averages. Both tests produced errors in intervertebral angular and shear displacements no greater than 0.4° and 0.055 mm, respectively. When applied to two patient cases, aberrant intervertebral motions in the cervical spine were typically found to correlate with patient-specific anatomical features such as disc height loss and osteophytes. The case studies suggest that intervertebral kinematic time-course data could have value in clinical assessments, lead to broader understanding of how specific anatomical features influence joint motions, and in due course inform clinical treatments.

  13. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor.

    PubMed

    Tolonen, Jukka; Grönblad, Mats; Vanharanta, Heikki; Virri, Johanna; Guyer, Richard D; Rytömaa, Tapio; Karaharju, Erkki O

    2006-05-01

    Degenerated intervertebral disc has lost its normal architecture, and there are changes both in the nuclear and annular parts of the disc. Changes in cell shape, especially in the annulus fibrosus, have been reported. During degeneration the cells become more rounded, chondrocyte-like, whereas in the normal condition annular cells are more spindle shaped. These chondrocyte-like cells, often forming clusters, affect extracellular matrix turnover. In previous studies transforming growth factor beta (TGFbeta) -1 and -2, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) have been highlighted in herniated intervertebral disc tissue. In the present study the same growth factors are analysed immunohistochemically in degenerated intervertebral disc tissue. Disc material was obtained from 16 discs operated for painful degenerative disc disease. Discs were classified according to the Dallas Discogram Description. Different disc regions were analysed in parallel. As normal control disc tissue material from eight organ donors was used. Polyclonal antibodies against different growth factors and TGFbeta receptor type II were used, and the immunoreaction was detected by the avidin biotin complex method. All studied degenerated discs showed immunoreactivity for TGFbeta receptor type II and bFGF. Fifteen of 16 discs were immunopositive for TGFbeta-1 and -2, respectively, and none showed immunoreaction for PDGF. Immunopositivity was located in blood vessels and in disc cells. In the nucleus pulposus the immunoreaction was located almost exclusively in chondrocyte-like disc cells, whereas in the annular region this reaction was either in chondrocyte-like disc cells, often forming clusters, or in fibroblast-like disc cells. Chondrocyte-like disc cells were especially prevalent in the posterior disrupted area. In the anterior area of the annulus fibrosus the distribution was more even between these two cell types. bFGF was expressed in the anterior annulus

  14. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model.

    PubMed

    Osti, O L; Vernon-Roberts, B; Fraser, R D

    1990-08-01

    An animal model was developed to test the hypothesis that discrete peripheral tears within the anulus lead to secondary degenerative changes in other disc components. In 21 adult sheep, a cut was made in the left anterolateral anulus of three randomly selected lumbar discs. The cut was parallel and adjacent to the inferior end-plate, and had a controlled depth of 5 mm. This left the inner third of the anulus and the nucleus pulposus intact and closely reproduced the rim Lear lesion described by Schmorl. Animals were randomly allocated to different groups in relation to the length of time interval between operation and death, varying from 1 to 18 months. At death, the lumbar spine was cut into individual joint units and each disc sectioned into six parasagittal slabs. After observation of the slabs under the dissecting microscope, two of the six slabs, the one containing the anulus lesion and a contralateral, were processed for histology. The results of this study suggest that, despite the great care taken at operation to ensure that the inner anulus was left intact, progressive failure of the inner anulus was seen in all sheep and occurred in the majority of discs between 4 and 12 months after the operation. Although the outermost anulus showed the ability to heal, the defect induced by the cut led initially to deformation and bulging of the collagen bundles, and eventually to inner extension of the tear and complete failure. These findings suggest that discrete tears of the outer anulus may have a role in the formation of concentric clefts and in accelerating the development of radiating clefts. Peripheral tears of the anulus fibrosus therefore may play an important role in the degeneration of the intervertebral joint complex.

  15. Determination and comparison of specifics of nucleus pulposus cells of human intervertebral disc in alginate and chitosan–gelatin scaffolds

    PubMed Central

    Renani, Hamid Bahramian; Ghorbani, Masood; Beni, Batool Hashemibeni; Karimi, Z; Mirhosseini, MM; Zarkesh, H; Kabiri, A

    2012-01-01

    Introduction: Low back pain is a major economical and social problem nowadays. Intervertebral disc herniation and central degeneration of disc are two major reasons of low back pain that occur because of structural impairment of disc. The intervertebral disc contains three parts as follows : Annulus fibrosus, transitional region, and nucleus pulposus, which forms the central nucleus of the disc. The reduction of cell count and extracellular matrix, especially in nucleus pulposus, causes disc degeneration. Different scaffolds (natural and synthetic) have been used for tissue repairing and regeneration of the intervertebral disc in tissue engineering. Most scaffolds have biodegradable and biocompatible characteristics and also prepare a fine condition for proliferation and migration of cells. In this study, proliferation of NP cells of human intervertebral disc compromised in Chitosan-gelatin scaffold with alginate scaffold was studied. Materials and Methods: NP cells derived from nucleus pulposus by collagenase enzymatic hydrolysis. They were derived from patients who undergoing open surgery for discectomy in the Isfahan Alzahra hospital. Chitosan was blended with gelatin and glutaraldehyde was used for cross linking the two polymers. Then, alginate scaffold was prepared. Cellular suspension with 1 × 105 transferred to each scaffold and cultured for 21 days. Cell viability and proliferation investigated by trypan blue and (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Scanning electron microscope (SEM) was used to assert the porosity and to survey structure of scaffold. Results: MTT assay dem1onstrated that cell viability of third day had significant difference in contrast by first day in both scaffolds. Accordingly, there was a significant decreased in cellular viability from day 3 to 21. Results of the cell count showed a punctual elevation cell numbers for alginate scaffold but there was no similar result for chitosan

  16. IAPP modulates cellular autophagy, apoptosis, and extracellular matrix metabolism in human intervertebral disc cells

    PubMed Central

    Wu, Xinghuo; Song, Yu; Liu, Wei; Wang, Kun; Gao, Yong; Li, Shuai; Duan, Zhenfeng; Shao, Zengwu; Yang, Shuhua; Yang, Cao

    2017-01-01

    The pathogenic process of intervertebral disc degeneration (IDD) is characterized by imbalance in the extracellular matrix (ECM) metabolism. Nucleus pulposus (NP) cells have important roles in maintaining the proper structure and tissue homeostasis of disc ECM. These cells need adequate supply of glucose and oxygen. Islet amyloid polypeptide (IAPP) exerts its biological effects by regulating glucose metabolism. The purpose of this study was to investigate the expression of IAPP in degenerated IVD tissue, and IAPP modulation of ECM metabolism in human NP cells, especially the crosstalk mechanism between apoptosis and autophagy in these cells. We found that the expression of IAPP and Calcr-RAMP decreased considerably during IDD progression, along with the decrease in the expression of AG, BG, and Col2A1. Induction of IAPP in NP cells by transfection with pLV-IAPP enhanced the synthesis of aggrecan and Col2A1 and attenuated the expression of pro-inflammatory factors, tumor necrosis factor (TNF)-α, and interleukin (IL)-1. Upregulation of IAPP also affected the expression of the catabolic markers—matrix metalloproteinases (MMPs) 3, 9 and 13 and ADAMTS 4 and 5. Downregulation of IAPP by siRNA inhibited the expression of anabolic genes but increased the expression of catabolic genes and inflammatory factors. The expressions of autophagic and apoptotic markers in NP cells transfected with pLV-IAPP were upregulated, including BECLIN1, ATG5, ATG7, LC3 II/I and Bcl-2, while significantly increase in the expression of Bax and Caspase-3 in NP cells transfected with pLV-siIAPP. Mechanistically, PI3K/AKT-mTOR and p38/JNK MAPK signal pathways were involved. We propose that IAPP might play a pivotal role in the development of IDD, by regulating ECM metabolism and controlling the crosstalk between apoptosis and autophagy in NP, thus potentially offering a novel therapeutic approach to the treatment of IDD. PMID:28149534

  17. Expression of the two pore domain potassium channel TREK-1 in human intervertebral disc cells.

    PubMed

    Sharma, Pankaj; Hughes, Stephen; El Haj, Alicia; Maffulli, Nicola

    2012-07-01

    Potassium channels play a major role in intracellular homeostasis and regulation of cell volume. Intervertebral disc cells respond to mechanical loading in a complex manner. Mechanical loading may play a role in disc degeneration. Lumbar intervertebral disc samples from 5 patients (average age: 47 years, range: 25-64 years) were used for this study, investigating cells from the nucleus pulposus and the annulus fibrosus duplicate samples to determine RNA expression and protein expression. Analysis of mRNA expression by RT-PCR demonstrated that TREK 1 was expressed by nucleus pulposus (n=5) and annulus fibrosus (n=5) cells. Currently, TREK-1 is the only potassium channel known to be activated by intracellular acidosis, and responds to mechanical and chemical stimuli. Whilst the precise role of potassium channels in cellular homeostasis remains to be determined, TREK-1 may be important to protect disc cells against ischaemic damage, and subsequent disc degeneration, and may also play a role in effecting mechanotransduction. Further research is required to fully elucidate the role of the TREK-1 ion channel in intervertebral disc cells.

  18. Landscape of RNAs in human lumbar disc degeneration

    PubMed Central

    Pei, Yan-Jun; Wu, Zhi-Gang; Yu, Yang; Yang, Yong-Feng; Liu, Xu; Che, Lu; Ma, Chi-Jiao; Xie, Yan-Ke; Hu, Qing-Jie; Wan, Zhong-Yuan; Wang, Hai-Qiang

    2016-01-01

    Accumulating evidence indicates noncoding RNAs (ncRNAs) fine-tune gene expression with mysterious machinery. We conducted a combination of mRNA, miRNA, circRNA, LncRNA microarray analyses on 10 adults' lumbar discs. Moreover, we performed additional global exploration on RNA interacting machinery in terms of in silico computational pipeline. Here we show the landscape of RNAs in human lumbar discs. In general, the RNA-abundant landscape comprises 14,635 mRNAs (37.93%), 2,059 miRNAs (5.34%), 18,995 LncRNAs (49.23%) and 2,894 (7.5%) circRNAs. Chromosome 1 contributes for RNA transcription at most (10%). Bi-directional transcription contributes evenly for RNA biogenesis, in terms of 5′ to 3′ and 3′ to 5′. Despite the majority of circRNAs are exonic, antisense (1.49%), intergenic (0.035%), intragenic (1.69%), and intronic (6.29%) circRNAs should not be ignored. A single miRNA could interact with a multitude of circRNAs. Notably, CDR1as or ciRS-7 harbors 66 consecutive binding sites for miR-7-5p (previous miR-7), evidencing our pipeline. The majority of binding sites are perfect-matched (78.95%). Collectively, global landscape of RNAs sheds novel insights on RNA interacting mechanisms in human intervertebral disc degeneration. PMID:27542248

  19. Spatially resolved streaming potentials of human intervertebral disk motion segments under dynamic axial compression.

    PubMed

    Iatridis, James C; Furukawa, Masaru; Stokes, Ian A F; Gardner-Morse, Mack G; Laible, Jeffrey P

    2009-03-01

    Intervertebral disk degeneration results in alterations in the mechanical, chemical, and electrical properties of the disk tissue. The purpose of this study is to record spatially resolved streaming potential measurements across intervertebral disks exposed to cyclic compressive loading. We hypothesize that the streaming potential profile across the disk will vary with radial position and frequency and is proportional to applied load amplitude, according to the presumed fluid-solid relative velocity and measured glycosaminoglycan content. Needle electrodes were fabricated using a linear array of AgAgCl micro-electrodes and inserted into human motion segments in the midline from anterior to posterior. They were connected to an amplifier to measure electrode potentials relative to the saline bath ground. Motion segments were loaded in axial compression under a preload of 500 N, sinusoidal amplitudes of +/-200 N and +/-400 N, and frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Streaming potential data were normalized by applied force amplitude, and also compared with paired experimental measurements of glycosaminoglycans in each disk. Normalized streaming potentials varied significantly with sagittal position and there was a significant location difference at the different frequencies. Normalized streaming potential was largest in the central nucleus region at frequencies of 0.1 Hz and 1.0 Hz with values of approximately 3.5 microVN. Under 0.01 Hz loading, normalized streaming potential was largest in the outer annulus regions with a maximum value of 3.0 microVN. Correlations between streaming potential and glycosaminoglycan content were significant, with R(2) ranging from 0.5 to 0.8. Phasic relationships between applied force and electrical potential did not differ significantly by disk region or frequency, although the largest phase angles were observed at the outermost electrodes. Normalized streaming potentials were associated with glycosaminoglycan content, fluid, and

  20. OPG rs2073617 polymorphism is associated with upregulated OPG protein expression and an increased risk of intervertebral disc degeneration

    PubMed Central

    Xue, Jing-Bo; Zhan, Xin-Li; Wang, Wen-Jun; Yan, Yi-Guo; Liu, Chong

    2016-01-01

    The present study aimed to investigate the associations between three distinct osteoprotegerin (OPG) gene polymorphisms and the risk of intervertebral disc degeneration (IDD). A total of 200 IDD patients and 200 healthy controls were recruited from the Department of Spine Surgery at the First Affiliated Hospital of the University of South China (Hengyang, China) between January 2013 and May 2014. The allele, genotype and haplotype frequency distributions of three OPG polymorphisms in the study and control populations were analyzed by polymerase chain reaction prior to restriction fragment length polymorphism or high resolution melting assays. In addition, serum OPG levels were measured via an ELISA. The genotype and allele frequencies of the OPG rs2073617 polymorphisms were significantly higher in the IDD patients, as compared with the control group (P<0.05). Furthermore, carriers of the C allele exhibited a higher risk of IDD, as compared with carriers of the T allele (P<0.001). Conversely, the genotype and allele frequencies of the two other gene polymorphisms, rs2073618 and rs3102735, showed no significant differences between the patients and controls (P>0.05). The serum OPG levels were significantly higher in IDD patients with TT, TC and CC genotypes at the OPG rs2073617 polymorphism, as compared with the control group (P<0.05). Logistic-regression analysis suggested that high serum levels of OPG were positively correlated with IDD risk, whereas the T-C-A, T-G-A and T-G-G haplotypes were negatively correlated with IDD risk (P<0.05). Furthermore, the G-T-G haplotype was associated with protection against IDD (P=0.008), whereas the G-C-G haplotype was associated with an elevated susceptibility to IDD (P=0.007). The results of the present study suggested that OPG rs2073617 polymorphisms and upregulated serum levels of OPG were associated with an increased risk of IDD, whereas the T-C-A, T-G-A and T-G-G haplotypes were protective factors for IDD. The results of the

  1. The noncoding RNA linc-ADAMTS5 cooperates with RREB1 to protect from intervertebral disc degeneration through inhibiting ADAMTS5 expression.

    PubMed

    Wang, Kun; Song, Yu; Liu, Wei; Wu, Xinghuo; Zhang, Yukun; Li, Shuai; Kang, Liang; Tu, Ji; Zhao, Kangcheng; Hua, Wenbin; Yang, Cao

    2017-03-24

    Previous studies have indicated the important roles of ADAMTS5 in intervertebral disc degeneration. However, the mechanisms that regulate ADAMTS5 expression in nuclear pulposus (NP) cells remain largely unknown. Evidence suggests that intergenic transcription may be associated with genes that encode transcriptional regulators. Here, we identified a long intergenic noncoding RNA, linc-ADAMTS5, that was transcribed in the opposite direction of ADAMTS5. In this study, through mining computational algorithm programs, and public available data sets, we identified Ras responsive element binding protein 1 (RREB1) as a crucial transcription factor regulating the expression of ADAMTS5 in NP cells. RNA pull-down, RNA immunoprecipitation, in vitro binding assays, and gain- and loss-of-function studies indicated that a physical interaction between linc-ADAMTS5 and splicing factor proline/glutamine-rich (SFPQ) facilitated the recruitment of RREB1 to binding sites within the ADAMTS5 promoter to induce chromatin remodeling. This resulted in subdued ADAMTS5 levels in cultured NP cells involving histone deacetylases. In clinical NP tissues, linc-ADAMTS5 and RREB1 were correlated negatively with ADAMTS5 expression. Taken together, these results demonstrate that RREB1 cooperates with noncoding RNA linc-ADAMTS5 to inhibit ADAMTS5 expression, thereby affecting degeneration of the extracellular matrix of the intervertebral disc.

  2. A 20-year-old female with Hirayama disease complicated with dysplasia of the cervical vertebrae and degeneration of intervertebral discs

    PubMed Central

    Hashimoto, Masaya; Yoshioka, Masayuki; Sakimoto, Yoshihiro; Suzuki, Masahiko

    2012-01-01

    A 20-year-old female patient was presented with a 1-year history of progressive weakness of the left hand. Examination on admission showed atrophy of the muscles of the left forearm, cold paralysis and minipolymyoclonus. MR images of the cervical cord showed anterior transfer of the cervical cord on anterior flexion and cervical cord compression at the site of cervical kyphosis, confirming the diagnosis of Hirayama disease. Many features of the present case are unusual: the patient is a female (who are rarely afflicted by this disease), with cervical kyphosis and a history of exercise involving cervical vertebral loading, suggesting a potential involvement of the latter two factors in the disease onset. The findings suggest that cervical vertebral dysplasia and intervertebral disc degeneration may influence cervical kyphosis, and be involved in the onset of Hirayama disease. PMID:23144342

  3. Investigation of intervertebral disc degeneration using multivariate FTIR spectroscopic imaging† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5fd00160a Click here for additional data file.

    PubMed Central

    Peeters, Mirte; Detiger, Suzanne E. L.; Helder, Marco N.; Smit, Theo H.; Le Maitre, Christine L.; Sammon, Chris

    2016-01-01

    Traditionally tissue samples are analysed using protein or enzyme specific stains on serial sections to build up a picture of the distribution of components contained within them. In this study we investigated the potential of multivariate curve resolution-alternating least squares (MCR-ALS) to deconvolute 2nd derivative spectra of Fourier transform infrared (FTIR) microscopic images measured in transflectance mode of goat and human paraffin embedded intervertebral disc (IVD) tissue sections, to see if this methodology can provide analogous information to that provided by immunohistochemical stains and bioassays but from a single section. MCR-ALS analysis of non-degenerate and enzymatically in vivo degenerated goat IVDs reveals five matrix components displaying distribution maps matching histological stains for collagen, elastin and proteoglycan (PG), as well as immunohistochemical stains for collagen type I and II. Interestingly, two components exhibiting characteristic spectral and distribution profiles of proteoglycans were found, and relative component/tissue maps of these components (labelled PG1 and PG2) showed distinct distributions in non-degenerate versus mildly degenerate goat samples. MCR-ALS analysis of human IVD sections resulted in comparable spectral profiles to those observed in the goat samples, highlighting the inter species transferability of the presented methodology. Multivariate FTIR image analysis of a set of 43 goat IVD sections allowed the extraction of semi-quantitative information from component/tissue gradients taken across the IVD width of collagen type I, collagen type II, PG1 and PG2. Regional component/tissue parameters were calculated and significant correlations were found between histological grades of degeneration and PG parameters (PG1: p = 0.0003, PG2: p < 0.0001); glycosaminoglycan (GAG) content and PGs (PG1: p = 0.0055, PG2: p = 0.0001); and MRI T2* measurements and PGs (PG1: p = 0.0021, PG2: p < 0.0001). Additionally

  4. Evaluation of the proliferation and viability rates of nucleus pulposus cells of human intervertebral disk in fabricated chitosan-gelatin scaffolds by freeze drying and freeze gelation methods

    PubMed Central

    Karimi, Zeinab; Ghorbani, Masoud; Hashemibeni, Batool; Bahramian, Hamid

    2015-01-01

    Background: Low back pain is one of the most significant musculoskeletal diseases of our time. Intervertebral disk herniation and central degeneration of the disk are two major reasons for low back pain, which occur because of structural impairment of the disk. The reduction of cell count and extracellular matrix, especially in the nucleus pulposus, causes disk degeneration. Different scaffolds have been used for tissue repairing and regeneration of the intervertebral disk in tissue engineering. Various methods are used for fabrication of the porosity scaffolds in tissue engineering. The freeze drying method has disadvantages such as: It is time consuming, needs high energy, and so on. The freeze-gelation method can save a great deal of time and energy, and large-sized porous scaffolds can be fabricated by this method. In this study, proliferation of the nucleus pulposus (NP) cells of the human intervertebral disk are compromised in the fabricated Chitosan-gelatin scaffolds by freeze drying and freeze gelation methods. Materials and Methods: The cells were obtained from the nucleus pulposus by collagenase enzymatic hydrolysis. They were obtained from patients who were undergoing open surgery for discectomy in the Isfahan Alzahra Hospital. Chitosan was blended with gelatin. Chitosan polymer, solution after freezing at -80°C, was immersed in sodium hydroxide (NaOH) solution. The cellular suspension was transferred to each scaffold and cultured in plate for 14 days. Cell viability and proliferation were investigated by Trypan blue and MTT assays. Results: The MTT and Trypan blue assays demonstrated that cell viability and the mean of the cell number showed a significant difference between three and fourteen days, in both scaffolds. Accordingly, there was a significantly decrease in the fabricated chitosan-gelatin scaffold by the freeze-drying method. Conclusion: The fabricated chitosan-gelatin scaffold by the freeze-gelation method prepared a better condition for

  5. SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via the p53/p21 pathway

    PubMed Central

    Zhou, Nian; Lin, Xin; Dong, Wen; Huang, Wei; Jiang, Wei; Lin, Liangbo; Qiu, Quanhe; Zhang, Xiaojun; Shen, Jieliang; Song, Zhaojun; Liang, Xi; Hao, Jie; Wang, Dawu; Hu, Zhenming

    2016-01-01

    Cartilage end plates (CEP) degeneration plays an integral role in intervertebral disc (IVD) degeneration resulting from nutrient diffusion disorders. Although cell senescence resulting from oxidative stress is known to contribute to degeneration, no studies concerning the role of senescence in CEP degeneration have been conducted. SIRT1 is a longevity gene that plays a pivotal role in many cellular functions, including cell senescence. Therefore, the aim of this study was to investigate whether senescence is more prominent in human degenerative CEP and whether SIRT1-regulated CEP cells senescence in degenerative IVD as well as identify the signaling pathways that control that cell fate decision. In this study, the cell senescence phenotype was found to be more prominent in the CEP cells obtained from disc degenerative disease (DDD) patients than in the CEP cells obtained from age-matched lumbar vertebral fractures (LVF) patients. In addition, the results indicated that p53/p21 pathway plays an important role in the senescence of CEP cells in vivo and vitro. Furthermore, SIRT1 was found to be capable of alleviating the oxidative stress-induced senescence of CEP cells in humans via p53/p21 pathway. Thus, the information presented in this study could be used to further investigate the underlying mechanisms of CEP. PMID:26940203

  6. 1991 Volvo Award in clinical sciences. Smoking and lumbar intervertebral disc degeneration: an MRI study of identical twins.

    PubMed

    Battié, M C; Videman, T; Gill, K; Moneta, G B; Nyman, R; Kaprio, J; Koskenvuo, M

    1991-09-01

    The primary objective of this study was to determine whether disc degeneration, as assessed through magnetic resonance imaging, is greater in smokers than in nonsmokers. To control for the maximum number of potentially confounding variables, pairs of identical twins highly discordant for cigarette smoking were selected as study subjects. Data analyses revealed 18% greater mean disc degeneration scores in the lumbar spines of smokers as compared with nonsmokers. The effect was present across the entire lumbar spine, implicating a mechanism acting systemically. This investigation demonstrates the efficiency of using carefully selected controls in studying conditions of multifactorial etiology, such as disc degeneration.

  7. Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment.

    PubMed

    Serra, T; Capelli, C; Toumpaniari, R; Orriss, I R; Leong, J J H; Dalgarno, K; Kalaskar, D M

    2016-07-19

    Spinal fusion is the gold standard surgical procedure for degenerative spinal conditions when conservative therapies have been unsuccessful in rehabilitation of patients. Novel strategies are required to improve biocompatibility and osseointegration of traditionally used materials for lumbar cages. Furthermore, new design and technologies are needed to bridge the gap due to the shortage of optimal implant sizes to fill the intervertebral disc defect. Within this context, additive manufacturing technology presents an excellent opportunity to fabricate ergonomic shape medical implants. The goal of this study is to design and manufacture a 3D-printed lumbar cage for lumbar interbody fusion. Optimisations of the proposed implant design and its printing parameters were achieved via in silico analysis. The final construct was characterised via scanning electron microscopy, contact angle, x-ray micro computed tomography (μCT), atomic force microscopy, and compressive test. Preliminary in vitro cell culture tests such as morphological assessment and metabolic activities were performed to access biocompatibility of 3D-printed constructs. Results of in silico analysis provided a useful platform to test preliminary cage design and to find an optimal value of filling density for 3D printing process. Surface characterisation confirmed a uniform coating of nHAp with nanoscale topography. Mechanical evaluation showed mechanical properties of final cage design similar to that of trabecular bone. Preliminary cell culture results showed promising results in terms of cell growth and activity confirming biocompatibility of constructs. Thus for the first time, design optimisation based on computational and experimental analysis combined with the 3D-printing technique for intervertebral fusion cage has been reported in a single study. 3D-printing is a promising technique for medical applications and this study paves the way for future development of customised implants in spinal

  8. Effect of the Degenerative State of the Intervertebral Disk on the Impact Characteristics of Human Spine Segments

    PubMed Central

    Wilson, Sara E.; Alkalay, Ron N.; Myers, Elizabeth

    2013-01-01

    Models of the dynamic response of the lumbar spine have been used to examine vertebral fractures (VFx) during falls and whole body vibration transmission in the occupational setting. Although understanding the viscoelastic stiffness or damping characteristics of the lumbar spine are necessary for modeling the dynamics of the spine, little is known about the effect of intervertebral disk degeneration on these characteristics at high loading rates. We hypothesize that disk degeneration significantly affects the viscoelastic response of spinal segments to high loading rate. We additionally hypothesize the lumbar spine stiffness and damping characteristics are a function of the degree of preload. A custom, pendulum impact tester was used to impact 19 L1–L3 human spine segments with an end mass of 20.9 kg under increasing preloads with the resulting force response measured. A Kelvin–Voigt model, fitted to the frequency and decay response of the post-impact oscillations was used to compute stiffness and damping constants. The spine segments exhibited a second-order, under-damped response with stiffness and damping values of 17.9–754.5 kN/m and 133.6–905.3 Ns/m respectively. Regression models demonstrated that stiffness, but not damping, significantly correlated with preload (p < 0.001). Degenerative disk disease, reflected as reduction in magnetic resonance T2 relaxation time, was weakly correlated with change in stiffness at low preloads. This study highlights the need to incorporate the observed non-linear increase in stiffness of the spine under high loading rates in dynamic models of spine investigating the effects of a fall on VFx and those investigating the response of the spine to vibration. PMID:25024122

  9. Effect of the Degenerative State of the Intervertebral Disk on the Impact Characteristics of Human Spine Segments.

    PubMed

    Wilson, Sara E; Alkalay, Ron N; Myers, Elizabeth

    2013-01-01

    Models of the dynamic response of the lumbar spine have been used to examine vertebral fractures (VFx) during falls and whole body vibration transmission in the occupational setting. Although understanding the viscoelastic stiffness or damping characteristics of the lumbar spine are necessary for modeling the dynamics of the spine, little is known about the effect of intervertebral disk degeneration on these characteristics at high loading rates. We hypothesize that disk degeneration significantly affects the viscoelastic response of spinal segments to high loading rate. We additionally hypothesize the lumbar spine stiffness and damping characteristics are a function of the degree of preload. A custom, pendulum impact tester was used to impact 19 L1-L3 human spine segments with an end mass of 20.9 kg under increasing preloads with the resulting force response measured. A Kelvin-Voigt model, fitted to the frequency and decay response of the post-impact oscillations was used to compute stiffness and damping constants. The spine segments exhibited a second-order, under-damped response with stiffness and damping values of 17.9-754.5 kN/m and 133.6-905.3 Ns/m respectively. Regression models demonstrated that stiffness, but not damping, significantly correlated with preload (p < 0.001). Degenerative disk disease, reflected as reduction in magnetic resonance T2 relaxation time, was weakly correlated with change in stiffness at low preloads. This study highlights the need to incorporate the observed non-linear increase in stiffness of the spine under high loading rates in dynamic models of spine investigating the effects of a fall on VFx and those investigating the response of the spine to vibration.

  10. Mechanical behavior of the human lumbar intervertebral disc with polymeric hydrogel nucleus implant: An experimental and finite element study

    NASA Astrophysics Data System (ADS)

    Joshi, Abhijeet Bhaskar

    The origin of the lower back pain is often the degenerated lumbar intervertebral disc (IVD). We are proposing replacement of the degenerated nucleus by a PVA/PVP polymeric hydrogel implant. We hypothesize that a polymeric hydrogel nucleus implant can restore the normal biomechanics of the denucleated IVD by mimicking the natural load transfer phenomenon as in case of the intact IVD. Lumbar IVDs (n = 15) were harvested from human cadavers. In the first part, specimens were tested in four different conditions for compression: Intact, bone in plug, denucleated and Implanted. Hydrogel nucleus implants were chosen to have line-to-line fit in the created nuclear cavity. In the second part, nucleus implant material (modulus) and geometric (height and diameter) parameters were varied and specimens (n = 9) were tested. Nucleus implants with line-to-line fit significantly restored (88%) the compressive stiffness of the denucleated IVD. The synergistic effect between the implant and the intact annulus resulted in the nonlinear increase in implanted IVD stiffness, where Poisson effect of the hydrogel played major role. Nucleus implant parameters were observed to have a significant effect on the compressive stiffness. All implants with modulus in the tested range restored the compressive stiffness. The undersize implants resulted in incomplete restoration while oversize implants resulted in complete restoration compared to the BI condition. Finite element models (FEM) were developed to simulate the actual test conditions and validated against the experimental results for all conditions. The annulus (defined as hyperelastic, isotropic) mainly determined the nonlinear response of the IVD. Validated FEMs predicted 120--3000 kPa as a feasible range for nucleus implant modulus. FEMs also predicted that overdiameter implant would be more effective than overheight implant in terms of stiffness restoration. Underdiameter implants, initially allowed inward deformation of the annulus and

  11. A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.

    2017-01-01

    Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.

  12. Longitudinal Comparison of Enzyme- and Laser-Treated Intervertebral Disc by MRI, X-Ray, and Histological Analyses Reveals Discrepancies in the Progression of Disc Degeneration: A Rabbit Study

    PubMed Central

    Colombier, Pauline; Lesoeur, Julie; Youl, Samy; Madec, Stéphane; Gauthier, Olivier; Hamel, Olivier; Guicheux, Jérôme; Clouet, Johann

    2016-01-01

    Regenerative medicine is considered an attractive prospect for the treatment of intervertebral disc (IVD) degeneration. To assess the efficacy of the regenerative approach, animal models of IVD degeneration are needed. Among these animal models, chemonucleolysis based on the enzymatic degradation of the Nucleus Pulposus (NP) is often used, but this technique remains far from the natural physiopathological process of IVD degeneration. Recently, we developed an innovative animal model of IVD degeneration based on the use of a laser beam. In the present study, this laser model was compared with the chemonucleolysis model in a longitudinal study in rabbits. The effects of the treatments were studied by MRI (T2-weighted signal intensity (T2wsi)), radiography (IVD height index), and histology (NP area and Boos' scoring). The results showed that both treatments induced a degeneration of the IVD with a decrease in IVD height and T2wsi as well as NP area and an increase in Boos' scoring. The enzyme treatment leads to a rapid and acute process of IVD degeneration. Conversely, laser radiation induced more progressive and less pronounced degeneration. It can be concluded that laser treatment provides an instrumental in vivo model of slowly evolving IVD degenerative disease that can be of preclinical relevance for assessing new prophylactic biological treatments of disc degeneration. PMID:27247937

  13. Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture

    PubMed Central

    Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC

    2014-01-01

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441

  14. Development and validation of a bioreactor system for dynamic loading and mechanical characterization of whole human intervertebral discs in organ culture.

    PubMed

    Walter, B A; Illien-Jünger, S; Nasser, P R; Hecht, A C; Iatridis, J C

    2014-06-27

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48h of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques.

  15. Spine degeneration in a murine model of chronic human tobacco smokers

    PubMed Central

    Wang, Dong; Nasto, Luigi A; Roughley, Peter; Leme, Adriana S.; Houghton, McGarry; Usas, Arvydas; Sowa, Gwendolyn; Lee, Joon; Niedernhofer, Laura; Shapiro, Steven; Kang, James; Vo, Nam

    2012-01-01

    Objective To investigate the mechanisms by which chronic tobacco smoking promotes intervertebral disc degeneration (IDD) and vertebral degeneration in mice. Methods Three months old C57BL/6 mice were exposed to tobacco smoke by direct inhalation (5 cigarettes/day, 5 days/week for 6 months) to model long-term smoking in humans. Total disc proteoglycan content (DMMB assay), aggrecan proteolysis (immunobloting analysis), and cellular senescence (p16INK4a immunohistochemistry) were analyzed. Proteoglycan and collagen syntheses (35S-sulfate and 3H-proline incorporation, respectively) were measured using disc organotypic culture. Vertebral osteoporosity was measured by micro-computed tomography. Results Disc proteoglycan content of smoke-exposed mice was 63% of unexposed control, while new proteoglycan and collagen syntheses were 59% and 41% of those of untreated mice, respectively. Exposure to tobacco smoke dramatically increased metalloproteinase-mediated proteolysis of disc aggrecan within its interglobular domain (IGD). Cellular senescence was elevated two folds in discs of smoke-exposed mice. Smoke exposure increased vertebral endplate porosity, which closely correlates with IDD in humans. Conclusions These findings further support tobacco smoke as a contributor to spinal degeneration. Furthermore, the data provide a novel mechanistic insight, indicating that smoking-induced IDD is a result of both reduced PG synthesis and increased degradation of a key disc extracellular matrix protein, aggrecan. Cleavage of aggrecan IGD is extremely detrimental as this result in the loss of the entire glycosaminoglycan-attachment region of aggrecan, which is vital for attracting water necessary to counteract compressive forces. Our results suggest identification and inhibition of specific metalloproteinases responsible for smoke-induced aggrecanolysis as a potential therapeutic strategy to treat IDD. PMID:22531458

  16. Experimental observation of human bone marrow mesenchymal stem cell transplantation into rabbit intervertebral discs

    PubMed Central

    Tao, Hao; Lin, Yazhou; Zhang, Guoqing; Gu, Rui; Chen, Bohua

    2016-01-01

    Allogeneic bone marrow mesenchymal stem cell (BMSC) transplantation has been investigated worldwide. However, few reports have addressed the survival status of human BMSCs in the intervertebral discs (IVDs) in vivo following transplantation. The current study aimed to observe the survival status of human BMSCs in rabbit IVDs. The IVDs of 15 New Zealand white rabbits were divided into three groups: Punctured blank control group (L1-2); punctured physiological saline control group (L2-3); and punctured human BMSCs transfected with green fluorescent protein (GFP) group (L3-4, L4-5 and L5-6). One, 2, 4, 6 and 8 weeks after transplantation the IVDs were removed and a fluorescence microscope was used to observe the density of GFP-positive human BMSCs. The results indicated that in the sections of specimens removed at 1, 2, 4, 6 and 8 weeks post-transplantation, no GFP-positive cells were observed in the control groups, whereas GFP-positive cells were apparent in the nucleus pulposus at all periods in the GFP-labeled human BMSCs group, and the cell density at 6 and 8 weeks was significantly less than that at 1, 2 and 4 weeks post-transplantation (P<0.001). Thus, it was identified that human BMSCs were able to survive in the rabbit IVDs for 8 weeks. PMID:27588177

  17. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen

  18. The heterogeneity of the non-aggregating proteoglycans of the human intervertebral disc.

    PubMed Central

    DiFabio, J L; Pearce, R H; Caterson, B; Hughes, H

    1987-01-01

    Non-aggregating proteoglycans of differing average hydrodynamic volumes were prepared from nuclei pulposi and anuli fibrosi of three human lumbar spines and characterized by biochemical and immunochemical analyses. The hexose-to-hexuronate and protein-to-hexuronate ratios increased with decreasing hydrodynamic volume. Analysis by composite agarose/polyacrylamide-gel electrophoresis has demonstrated two aggregating subpopulations [McDevitt, Jahnke & Green (1982) Trans. Annu. Meet. Orthop. Res. Soc. 7, 50]. In the present study, electrophoresis of the non-aggregating pools has shown three additional subpopulations, here named bands III, IV and V. The two smallest proteoglycan pools from each tissue contained two and three components respectively. These components were isolated by preparative electrophoresis and analysed. Band III was a proteoglycan richer in keratan sulphate than in chondroitin sulphate; band IV was a proteoglycan richer in chondroitin sulphate than in keratan sulphate; band V contained only chondroitin sulphate. Unsaturated disaccharides prepared from the chondroitin sulphate of all bands were predominantly 6-sulphated, with only 5-15% 4-sulphated. The molecular masses of the chondroitin sulphate and keratan sulphate did not differ between the bands. The amino acid composition of band III differed from that of band IV. Thus three distinct subpopulations of non-aggregating proteoglycan were demonstrated in the human intervertebral disc. PMID:3117036

  19. Laser radiation at various wavelengths for decompression of intervertebral disk. Experimental observations on human autopsy specimens.

    PubMed

    Choy, D S; Altman, P A; Case, R B; Trokel, S L

    1991-06-01

    The interaction of laser radiation with the nucleus pulposus from autopsy specimens of human intervertebral disks was evaluated at different wavelengths (193 nm, 488 nm & 514 nm, 1064 nm, 1318 nm, 2150 nm, 2940 nm, and 10600 nm). A significant correlation of linear least squares fit of the mass ablated as a function of incident energy was found for all lasers used except the Excimer at 193 nm. The 2940-nm Erbium:YAG laser was most efficient in terms of mass of disk ablated per joule in the limited lower range where this wavelength was observed. At higher energy levels, the CO2 laser in the pulsed mode was most efficient. However, the Nd:YAG 1064-nm and 1318-nm lasers are currently best suited for percutaneous laser disk decompression because of the availability of usable waveguides. Carbonization of tissue with the more penetrating Nd:YAG 1064-nm laser increases the efficiency of tissue ablation and makes it comparable to the Nd:YAG 1318-nm laser.

  20. Stress - Strain Response of the Human Spine Intervertebral Disc As an Anisotropic Body. Mathematical Modeling and Computation

    NASA Astrophysics Data System (ADS)

    Minárová, Mária; Sumec, Jozef

    2016-01-01

    The paper deals with the biomechanical investigation on the human lumbar intervertebral disc under the static load. The disc is regarded as a two - phased ambient consisting of a fibrous outer part called annulus fibrosis and a liquid inner part nucleus pulposus. Due to the fibrous structure, the annulus fibrosis can be treated by using a special case of anisotropy - transversal isotropy. In the paper the corresponding tensor of material constants is derived. The tensor consequently incomes to the constitutive equations determining the stress - strain relation in the material. In order to study the mechanical behaviour the disc is observed within the motion segment, the basic unit for motion tracing. The motion segment involves two neighbouring vertebrae and the intervertebral disc between them that connect them both. When constitutive equations are accomplished, they can be incorporated in the finite element analysis. The illustrative example of the intervertebral disc L2/L3, the disc between the second and the third lumbar vertebrae the lumbar part of spine, with its computer implementation is performed. Finally the comparison of the results of using anisotropic and homogenized approach is provided. The comparison illustrates the eligibility of such a kind of approach.

  1. Viscoelastic finite element analysis of the cervical intervertebral discs in conjunction with a multi-body dynamic model of the human head and neck.

    PubMed

    Esat, V; Acar, M

    2009-02-01

    This article presents the effects of the frontal and rear-end impact loadings on the cervical spine components by using a multi-body dynamic model of the head and neck, and a viscoelastic finite element (FE) model of the six cervical intervertebral discs. A three-dimensional multi-body model of the human head and neck is used to simulate 15 g frontal and 8.5 g rear-end impacts. The load history at each intervertebral joint from the predictions of the multi-body model is used as dynamic loading boundary conditions for the FE model of the intervertebral discs. The results from the multi-body model simulations, such as the intervertebral disc loadings in the form of compressive, tensile, and shear forces and moments, and from the FE analysis such as the von Mises stresses in the intervertebral discs are analysed. This study shows that the proposed approach that uses dynamic loading conditions from the multi-body model as input to the FE model has the potential to investigate the kinetics and the kinematics of the cervical spine and its components together with the biomechanical response of the intervertebral discs under the complex dynamic loading history.

  2. Multipoint determination of pressure-volume curves in human intervertebral discs.

    PubMed Central

    Ranu, H S

    1993-01-01

    To gain further insight into the biomechanics of the human intervertebral disc and to determine a potential mechanism for causation and relief of symptoms related to a herniated disc, the pressure-volume relation was determined within the nucleus pulposus. Pressure was measured continuously within the nucleus pulposus in 17 intact lumbar discs from human cadavers by means of a miniature strain gauge at the tip of a size 4 French (1.3 mm) catheter inserted into the nucleus pulposus. The volume of the nucleus pulposus was increased at the slow, continuous rate of 0.034 ml/min by the pump regulated infusion of saline coloured with methylene blue. In 12 unloaded discs, nucleus pulposus pressure rose in a linear fashion (linear r = 0.96) from an initial mean pressure of 174 (SD 81) kPa. The mean rate of pressure rise was 327 (SD 109) kPa/ml volume increase. The peak pressure measured was 550 kPa; this was slightly higher than the capability of the transducer. Similar linear relations were obtained during infusion of saline into five vertically loaded discs fixed at the deformation produced by a 9.1 kg weight. The data define the pressure-volume relation within the disc and show that the nucleus pulposus, surrounded by the relatively inelastic annulus and the solid vertebral end plates, has the properties of a tight hydraulic space in which a large pressure rise will regularly result from a small increase in volume. Presumably the opposite is also true. The data may provide a biomechanical basis for the physiological variation in symptoms related to the disc, and for any benefits obtained from interventions designed to remove disc tissue. PMID:8447694

  3. Constitutive expression of cathepsin K in the human intervertebral disc: new insight into disc extracellular matrix remodeling via cathepsin K and receptor activator of nuclear factor-κB ligand

    PubMed Central

    2011-01-01

    Introduction Cathepsin K is a recently discovered cysteine protease which cleaves the triple helical domains of type I to II collagen. It has been shown to be up-regulated in synovial tissue from osteoarthritic and rheumatoid patients, and is a component in normal and nonarthritic cartilage, where it increases with aging. Studies on heart valve development have recently shown that receptor activator of nuclear factor-κB ligand (RANKL) acts during valve remodeling to promote cathepsin K expression. Since extracellular matrix remodeling is a critical component of disc structure and biomechanical function, we hypothesized that cathepsin K and RANKL may be present in the human intervertebral disc. Methods Studies were performed following approval of the authors' Human Subjects Institutional Review Board. Six annulus specimens from healthier Thompson grade I to II discs, and 12 specimens from more degenerate grade III to IV discs were utilized in microarray analysis of RANKL and cathepsin K gene expression. Immunohistochemistry was also performed on 15 additional disc specimens to assess the presence of RANKL and cathepsin K. Results Cathepsin K gene expression was significantly greater in more degenerated grade III to IV discs compared to healthier grade I to II discs (P = 0.001). RANKL was also identified with immunohistochemistry and molecular analyses. RANKL gene expression was also significantly greater in more degenerated discs compared to healthier ones (P = 0.0001). A significant linear positive correlation was identified between expression of cathepsin K and RANKL (r2 = 92.2; P < 0.0001). Conclusions Extracellular matrix remodeling is a key element of disc biology. Our use of an appropriate antibody and gene expression studies showed that cathepsin K is indeed present in the human intervertebral disc. Immunolocalization and molecular analyses also confirmed that RANKL is present in the human disc. Expression of RANKL was found to be significantly greater in

  4. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering.

    PubMed

    Cortes, Daniel H; Jacobs, Nathan T; DeLucca, John F; Elliott, Dawn M

    2014-06-27

    The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. This variation is probably caused by differences in the testing protocols and the constitutive models used to analyze the data. Therefore, the objective of this study was to measure the human lumbar disc annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplates (CEP) biphasic-swelling properties using a consistent experimental protocol and analyses. The testing protocol was composed of a swelling period followed by multiple confined compression ramps. To analyze the confined compression data, the tissues were modeled using a biphasic-swelling model, which augments the standard biphasic model through the addition of a deformation-dependent osmotic pressure term. This model allows considering the swelling deformations and the contribution of osmotic pressure in the analysis of the experimental data. The swelling stretch was not different between the disc regions (AF: 1.28±0.16; NP: 1.73±0.74; CEP: 1.29±0.26), with a total average of 1.42. The aggregate modulus (Ha) of the extra-fibrillar matrix was higher in the CEP (390kPa) compared to the NP (100kPa) or AF (30kPa). The permeability was very different across tissue regions, with the AF permeability (64 E(-16)m(4)/Ns) higher than the NP and CEP (~5.5 E(-16)m(4)/Ns). Additionally, a normalized time-constant (3000s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical

  5. Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis.

    PubMed

    Liu, Ming-Han; Bian, Bai-Shi-Jiao; Cui, Xiang; Liu, Lan-Tao; Liu, Huan; Huang, Bo; Cui, You-Hong; Bian, Xiu-Wu; Zhou, Yue

    2016-08-01

    Transplantation of mesenchymal stem cells (MSCs) into the degenerated intervertebral disc (IVD) has shown promise for decelerating or arresting IVD degeneration. Cellular mechanical properties play crucial roles in regulating cell-matrix interactions, potentially reflecting specific changes that occur based on cellular phenotype and behavior. However, the effect of co-culturing of MSCs with nucleus pulposus cells (NPCs) on the mechanical properties of NPCs remains unknown. In our study, we demonstrated that co-culture of degenerated NPCs with MSCs resulted in significantly decreased mechanical moduli (elastic modulus, relaxed modulus, and instantaneous modulus) and increased biological activity (proliferation and expression of matrix genes) in degenerated NPCs, but not normal NPCs. SDF-1, CXCR4 ligand, was highly expressed in MSCs when co-cultured with degenerated NPCs. Inhibition of SDF-1 using CXCR4 antagonist AMD3100 or knocking-down CXCR4 in degenerated NPCs abolished the MSCs-induced decrease in the mechanical moduli and increased biological activity of degenerated NPCs, suggesting a crucial role for SDF-1/CXCR4 signaling. AKT and FAK inhibition attenuated the MSCs- or SDF-1-induced decrease in the mechanical moduli of degenerated NPCs. In conclusion, it was demonstrated in vitro that MSCs regulate the mechanical properties of degenerated NPCs through SDF-1/CXCR4/AKT signaling. These findings highlight a possible mechanical mechanism for MSCs-induced modulation with degenerated NPCs, which may be applicable to MSCs-based therapy for disc degeneration.

  6. Effect of Degeneration on Fluid–Solid Interaction within Intervertebral Disk Under Cyclic Loading – A Meta-Model Analysis of Finite Element Simulations

    PubMed Central

    Nikkhoo, Mohammad; Khalaf, Kinda; Kuo, Ya-Wen; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2015-01-01

    The risk of low back pain resulted from cyclic loadings is greater than that resulted from prolonged static postures. Disk degeneration results in degradation of disk solid structures and decrease of water contents, which is caused by activation of matrix digestive enzymes. The mechanical responses resulted from internal solid–fluid interactions of degenerative disks to cyclic loadings are not well studied yet. The fluid–solid interactions in disks can be evaluated by mathematical models, especially the poroelastic finite element (FE) models. We developed a robust disk poroelastic FE model to analyze the effect of degeneration on solid–fluid interactions within disk subjected to cyclic loadings at different loading frequencies. A backward analysis combined with in vitro experiments was used to find the elastic modulus and hydraulic permeability of intact and enzyme-induced degenerated porcine disks. The results showed that the averaged peak-to-peak disk deformations during the in vitro cyclic tests were well fitted with limited FE simulations and a quadratic response surface regression for both disk groups. The results showed that higher loading frequency increased the intradiscal pressure, decreased the total fluid loss, and slightly increased the maximum axial stress within solid matrix. Enzyme-induced degeneration decreased the intradiscal pressure and total fluid loss, and barely changed the maximum axial stress within solid matrix. The increase of intradiscal pressure and total fluid loss with loading frequency was less sensitive after the frequency elevated to 0.1 Hz for the enzyme-induced degenerated disk. Based on this study, it is found that enzyme-induced degeneration decreases energy attenuation capability of disk, but less change the strength of disk. PMID:25674562

  7. 1988 Volvo award in basic science. Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology.

    PubMed

    Bayliss, M T; Johnstone, B; O'Brien, J P

    1988-09-01

    Slices of human annulus fibrosus were cultured under conditions that controlled their hydration and prevented loss of proteoglycans from the extracellular matrix. A quantitative analysis of proteoglycan synthesis was carried out. Both the absolute rate of synthesis and the topographical variation in chondrocyte activity changed with age; the most active cells in the adult were found in the mid-annulus region, whereas in the fetal disc the cells in the inner annulus were the most active. The conditions under which the tissue was stored, and changes in hydration during culture, had considerable effects on synthesis. Pathological discs had a wide range of biological activity that reflected the heterogeneous properties of these specimens. It is suggested that this culture method provides a means of investigating the way in which the synthesis of the macromolecular components of the intervertebral disc are coordinated and subsequently incorporated into the extracellular matrix.

  8. LIM mineralization protein-1 suppresses TNF-α induced intervertebral disc degeneration by maintaining nucleus pulposus extracellular matrix production and inhibiting matrix metalloproteinases expression.

    PubMed

    Liu, Hui; Pan, Hehai; Yang, Hao; Wang, Jianru; Zhang, Kuibo; Li, Xiang; Wang, Hua; Ding, Wenbin; Li, Bingxue; Zheng, Zhaomin

    2015-03-01

    Imbalanced metabolism of Nucleus pulposus (NP) extracellular matrix (ECM) is closely correlated to Intervertebral Disc Degenerative Disease. LIM mineralization protein-1 (LMP-1) has been proven to induce sulfated glycosaminoglycan (sGAG) production in NP and have an anti-inflammatory effect in pre-osteoclast. However, whether it has any effect on the NP ECM production and degradation under inflammatory stimulation has not been studied. In the current study, a TNF-α induced cell model was established in vitro. Lentivirus encoding LMP-1 (LV-LMP-1) and short heparin LMP-1 (LV-shLMP-1) were constructed to overexpress and knockdown LMP-1 expression in NP cells. LMP-1 mRNA level was regulated in a dose-dependent manner after transfection. LV-LMP-1 increased whereas LV-shLMP-1 decreased collagen II, aggrecan, versican expression, and sGAG production. LV-LMP-1 abolished while LV-shLMP-1 aggravated TNF-α mediated down-regulation of the above matrix genes via ERK1/2 activation. Moreover, LV-LMP-1 abrogated TNF-α induced MMP-3 and MMP-13 expression via inhibiting p65 translocation and MMP-3 and MMP-13 promoter activity. These results indicated that LMP-1 had an ECM production maintenance effect under inflammatory stimulation. This effect was via up-regulation of matrix genes expression at least partially through ERK1/2 activation, and down-regulation of MMPs expression through NF-κB inhibition.

  9. Degenerated intervertebral disc prolapse and its association of collagen I alpha 1 Spl gene polymorphism: A preliminary case control study of Indian population

    PubMed Central

    Anjankar, Shailendra D; Poornima, Subhadra; Raju, Subodh; Jaleel, MA; Bhiladvala, Dilnavaz; Hasan, Qurratulain

    2015-01-01

    Background: Degenerated disc disease (DDD) is a common disorder responsible for increased morbidity in a productive age group. Its etiology is multifactorial and genetic factors have been predominantly implicated. Disc prolapse results due to tear in the annulus, which is a fibrous structure composed largely of type I collagen. Functional polymorphism at the Sp1 site of the collagen I alpha 1 (COL1A1) gene has shown a positive association with DDD in Dutch and Greek populations. The purpose of this study was to assess COL1A1 Sp1 gene polymorphism in the Indian population. Materials and Methods: Fifty clinically and radiologically proven patients with disc prolapse requiring surgery were included as cases and 50 healthy, age-matched volunteers served as controls. After isolating DNA from their blood sample, genotyping for COL1A1 polymorphism (rs1800012) was performed and identified as GG, GT, and TT. Results: The mean age and body mass index in cases and controls were similar. 76% of the patients were males. The most common site of disc degeneration was L4–L5 (36%), followed by L5–S1 (34%). Homozygous–GG, heterozygous GT, and homozygous TT genotypes were seen in 38 (76%), 10 (20%) and 2 (4%) cases respectively, controls had similar percentage of genotypes as well. The alleles in cases and the control group showed no significant difference (P = 0.6744) and followed the Hardy–Weinberg Equilibrium in the study population. Conclusion: The COL1A1 (rs1800012) is in Hardy–Weinberg equilibrium in the present subset of Indian population. But taken as a single factor, it was not found to be associated with DDD in this preliminary study. Disc degeneration is multifactorial and also anticipated to be a result of multiple genes involvement and gene-gene interaction. PMID:26806964

  10. Form and function of the intervertebral disc in health and disease: a morphological and stain comparison study

    PubMed Central

    Walter, B. A.; Torre, O. M.; Laudier, D.; Naidich, T. P.; Hecht, A. C.; Iatridis, J. C.

    2015-01-01

    Multiple histologic measurements are commonly used to assess degenerative changes in intervertebral disc (IVD) structure; however, there is no consensus on which stains offer the clearest visualization of specific areas within the IVD. The objective of this study was to compare multiple tinctorial stains, evaluate their ability to highlight structural features within the IVD, and investigate how they influence the capacity to implement a degeneration scoring system. Lumbar IVDs from seven human autopsy specimens were stained using six commonly used stains (Hematoxylin/Eosin, Toluidine Blue, Safranin-O/Fast Green, Extended FAST, modified Gomori’s Trichrome, and Picrosirius Red Alcian Blue). All IVDs were evaluated by three separate graders to independently determine which stains (i) were most effective at discerning different structural features within different regions of the IVDs and (ii) allowed for the most reproducible assessment of degeneration grade, as assessed via the Rutges histological scoring system (Rutges et al. A validated new histological classification for intervertebral disc degeneration. Osteoarthritis Cartilage, 21, 2039-47). Although Trichrome, XFAST and PR/AB stains were all effective at highlighting different regions of whole IVDs, we recommend the use of PR/AB because it had the highest degree of rater agreement on assigned degeneration grade, allowed greater resolution of degeneration grade, has an inferential relationship between color and composition, and allowed clear differentiation of the different regions and structural disruptions within the IVD. The use of a standard set of stains together with a histological grading scheme can aid in the characterization of structural changes in different regions of the IVD and may simplify comparisons across the field. This collection of human IVD histological images highlights how IVD degeneration is not a single disease but a composite of multiple processes such as aging, injury, repair, and

  11. Tissue engineering strategies applied in the regeneration of the human intervertebral disk.

    PubMed

    Silva-Correia, Joana; Correia, Sandra I; Oliveira, Joaquim M; Reis, Rui L

    2013-12-01

    Low back pain (LBP) is one of the most common painful conditions that lead to work absenteeism, medical visits, and hospitalization. The majority of cases showing signs of LBP are due to age-related degenerative changes in the intervertebral disk (IVD), which are, in fact, associated with multiple spine pathologies. Traditional and more conservative procedures/clinical approaches only treat the symptoms of disease and not the underlying pathology, thus limiting their long-term efficiency. In the last few years, research and development of new approaches aiming to substitute the nucleus pulposus and annulus fibrosus tissue and stimulate its regeneration has been conducted. Regeneration of the damaged IVD using tissue engineering strategies appears particularly promising in pre-clinical studies. Meanwhile, surgical techniques must be adapted to this new approach in order to be as minimally invasive as possible, reducing recovering time and side effects associated to traditional surgeries. In this review, the current knowledge on IVD, its associated pathologies and current surgical procedures are summarized. Furthermore, it also provides a succinct and up-to-date overview on regenerative medicine research, especially on the newest tissue engineering strategies for IVD regeneration.

  12. Axonal Degeneration in Dental Pulp Precedes Human Primary Teeth Exfoliation.

    PubMed

    Suzuki, K; Lovera, M; Schmachtenberg, O; Couve, E

    2015-10-01

    The dental pulp in human primary teeth is densely innervated by a plethora of nerve endings at the coronal pulp-dentin interface. This study analyzed how the physiological root resorption (PRR) process affects dental pulp innervation before exfoliation of primary teeth. Forty-four primary canine teeth, classified into 3 defined PRR stages (early, middle, and advanced) were fixed and demineralized. Longitudinal cryosections of each tooth were stained for immunohistochemical and quantitative analysis of dental pulp nerve fibers and associated components with confocal and electron microscopy. During PRR, axonal degeneration was prominent and progressive in a Wallerian-like scheme, comprising nerve fiber bundles and nerve endings within the coronal and root pulp. Neurofilament fragmentation increased significantly during PRR progression and was accompanied by myelin degradation and a progressive loss of myelinated axons. Myelin sheath degradation involved activation of autophagic activity by Schwann cells to remove myelin debris. These cells expressed a sequence of responses comprising dedifferentiation, proliferative activity, GAP-43 overexpression, and Büngner band formation. During the advanced PRR stage, increased immune cell recruitment within the dental pulp and major histocompatibility complex (MHC) class II upregulation by Schwann cells characterized an inflammatory condition associated with the denervation process in preexfoliative primary teeth. The ensuing loss of dental pulp axons is likely to be responsible for the progressive reduction of sensory function of the dental pulp during preexfoliative stages.

  13. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.

    PubMed

    Wagnac, Eric; Arnoux, Pierre-Jean; Garo, Anaïs; El-Rich, Marwan; Aubin, Carl-Eric

    2011-10-01

    Under fast dynamic loading conditions (e.g. high-energy impact), the load rate dependency of the intervertebral disc (IVD) material properties may play a crucial role in the biomechanics of spinal trauma. However, most finite element models (FEM) of dynamic spinal trauma uses material properties derived from quasi-static experiments, thus neglecting this load rate dependency. The aim of this study was to identify hyperelastic material properties that ensure a more biofidelic simulation of the IVD under a fast dynamic compressive load. A hyperelastic material law based on a first-order Mooney-Rivlin formulation was implemented in a detailed FEM of a L2-L3 functional spinal unit (FSU) to represent the mechanical behavior of the IVD. Bony structures were modeled using an elasto-plastic Johnson-Cook material law that simulates bone fracture while ligaments were governed by a viscoelastic material law. To mimic experimental studies performed in fast dynamic compression, a compressive loading velocity of 1 m/s was applied to the superior half of L2, while the inferior half of L3 was fixed. An exploratory technique was used to simulate dynamic compression of the FSU using 34 sets of hyperelastic material constants randomly selected using an optimal Latin hypercube algorithm and a set of material constants derived from quasi-static experiments. Selection or rejection of the sets of material constants was based on compressive stiffness and failure parameters criteria measured experimentally. The two simulations performed with calibrated hyperelastic constants resulted in nonlinear load-displacement curves with compressive stiffness (7335 and 7079 N/mm), load (12,488 and 12,473 N), displacement (1.95 and 2.09 mm) and energy at failure (13.5 and 14.7 J) in agreement with experimental results (6551 ± 2017 N/mm, 12,411 ± 829 N, 2.1 ± 0.2 mm and 13.0 ± 1.5 J respectively). The fracture pattern and location also agreed with experimental results. The simulation performed with

  14. Self-complementary adeno-associated virus serotype 6 mediated knockdown of ADAMTS4 induces long-term and effective enhancement of aggrecan in degenerative human nucleus pulposus cells: A new therapeutic approach for intervertebral disc disorders

    PubMed Central

    Shenegelegn Mern, Demissew; Tschugg, Anja; Hartmann, Sebastian; Thomé, Claudius

    2017-01-01

    Inhibition of intervertebral disc (IVD) degeneration, which is often accompanied by painful inflammatory and immunopathological processes, is challenging. Current IVD gene therapeutic approaches are based on adenoviral gene delivery systems, which are limited by immune reactions to their viral proteins. Their applications in IVDs near to sensitive neural structure could provoke toxicity and immunological side-effects with neurological deficits. Self-complementary adeno-associated virus (scAAV) vectors, which do not express any viral gene and are not linked with any known disease in humans, are attractive therapeutic gene delivery vectors in degenerative IVDs. However, scAAV-based silencing of catabolic or inflammatory factor has not yet been investigated in human IVD cells. Therefore, we used scAAV6, the most suitable serotype for transduction of human nucleus pulposus (NP) cells, to knockdown the major catabolic gene (ADAMTS4) of IVD degeneration. IVD degeneration grades were determined by preoperative magnetic resonance imaging. Lumbar NP tissues of degeneration grade III were removed from 12 patients by nucleotomy. NP cells were isolated and cultured with low-glucose. Titre of recombinant scAAV6 vectors targeting ADAMTS4, transduction efficiencies, transduction units, cell viabilities and expression levels of target genes were analysed using quantitative PCR, fluorescence microscopy, fluorescence-activated cell sorting, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assays, quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assays during 48 days of post-transduction. Transduction efficiencies between 98.2% and 37.4% and transduction units between 611 and 245 TU/cell were verified during 48 days of post-transduction (p<0.001). scAAV6-mediated knockdown of ADAMTS4 with maximum 87.7% and minimum 40.1% was confirmed on day 8 and 48 with enhanced the level of aggrecan 48.5% and 30.2% respectively (p<0.001). scAAV6

  15. Pamidronate Down-regulates Tumor Necrosis Factor-alpha Induced Matrix Metalloproteinases Expression in Human Intervertebral Disc Cells

    PubMed Central

    Kang, Young-Mi; Hong, Seong-Hwan; Yang, Jae-Ho; Oh, Jin-Cheol; Park, Jin-Oh; Lee, Byung Ho; Lee, Sang-Yoon; Kim, Hak-Sun; Lee, Hwan-Mo

    2016-01-01

    Background N-containing bisphosphonates (BPs), such as pamidronate and risedronate, can inhibit osteoclastic function and reduce osteoclast number by inducing apoptotic cell death in osteoclasts. The aim of this study is to demonstrate the effect of pamidronate, second generation nitrogen-containing BPs and to elucidate matrix metallo-proteinases (MMPs) mRNA expression under serum starvation and/or tumor necrosis factor alpha (TNF-α) stimulation on metabolism of intervertebral disc (IVD) cells in vitro. Methods Firstly, to test the effect of pamidronate on IVD cells in vitro, various concentrations (10-12, 10-10, 10-8, and 10-6 M) of pamidronate were administered to IVD cells. Then DNA and proteoglycan synthesis were measured and messenger RNA (mRNA) expressions of type I collagen, type II collagen, and aggrecan were analyzed. Secondly, to elucidate the expression of MMPs mRNA in human IVD cells under the lower serum status, IVD cells were cultivated in full serum or 1% serum. Thirdly, to elucidate the expression of MMPs mRNA in IVD cells under the stimulation of 1% serum and TNF-α (10 ng/mL) In this study, IVD cells were cultivated in three dimensional alginate bead. Results Under the lower serum culture, IVD cells in alginate beads showed upregulation of MMP 2, 3, 9, 13 mRNA. The cells in lower serum and TNF-α also demonstrated upregulation of MMP-2, 3, 9, and 13 mRNA. The cells with various doses of pamidronate and lower serum and TNF-α were reveled partial down-regulation of MMPs. Conclusions Pamidronate, N-containing second generation BPs, was safe in metabolism of IVD in vitro maintaining chondrogenic phenotype and matrix synthesis, and down-regulated TNF-α induced MMPs expression. PMID:27622181

  16. Solute transport in intervertebral disc: experiments and finite element modeling.

    PubMed

    Das, D B; Welling, A; Urban, J P G; Boubriak, O A

    2009-04-01

    Loss of nutrient supply to the human intervertebral disc (IVD) cells is thought to be a major cause of disc degeneration in humans. To address this issue, transport of molecules of different size have been analyzed by a combination of experimental and modeling studies. Solute transport has been compared for steady-state and transient diffusion of several different solutes with molecular masses in the range 3-70 kDa, injected into parts of the disc where degeneration is thought most likely to occur first and into the blood supply to the disc. Diffusion coefficients of fluorescently tagged dextran molecules of different molecular weights have been measured in vitro using the concentration gradient technique in thin specimens of disc outer annulus and nucleus pulposus. Diffusion coefficients were found to decrease with molecular weight following a nonlinear relationship. Diffusion coefficients changed more rapidly for solutes with molecular masses less than 10 kDa. Although unrealistic or painful, solutes injected directly into the disc achieve the largest disc coverage with concentrations that would be high enough to be of practical use. Although more practical, solutes injected into the blood supply do not penetrate to the central regions of the disc and their concentrations dissipate more rapidly. Injection into the disc would be the best method to get drugs or growth factors to regions of degeneration in IVDs quickly; else concentrations of solute must be kept at a high value for several hours in the blood supply to the discs.

  17. Intervertebral disc replacement. Experimental study.

    PubMed

    Kostuik, J P

    1997-04-01

    Arthrodesis of the lumbosacral spine, although satisfactory for a majority of patients, has long term sequelae in 30% of patients. This is particularly true for adjacent segment degeneration. Numerous attempts at providing a mobile motion segment have been made in the past. The current status of the development of dynamic intervertebral prosthesis, including biomechanical and clinical data have been presented. The relevant material properties of plastics, ceramics, and metal are presented with the conclusion that metals currently present with the greatest longevity without undue fatigue and wear as many as 100,000,000 cycles (40 years use) as an alternative to spinal fusion. An analysis of the kinematics of the motion segment have resulted, together with the material properties in the development of a dynamic intervertebral disc for use in the lumbar spine. The disc resembles a normal motion segment. In motion stiffness and center of rotation, wear debris development in 1/300 equivalent to that of a total hip prosthesis for the same given time. Safety features include immediate screw fixation to prevent displacement, a wedge elastic (spring) shape, and a bony porous ingrowth surface. The prosthesis is constructed of cobalt chromium and titanium with minimal corrosive properties on long term testing.

  18. Can Exercise Positively Influence the Intervertebral Disc?

    PubMed

    Belavý, Daniel L; Albracht, Kirsten; Bruggemann, Gert-Peter; Vergroesen, Pieter-Paul A; van Dieën, Jaap H

    2016-04-01

    To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

  19. Intervertebral disc magnetic resonance image: correlation with gross morphology and biochemical composition

    PubMed Central

    Bishop, Paul B

    1993-01-01

    The magnetic resonance image, gross morphology, and biochemical composition of the intervertebral disc nucleus pulposus (NP), anulus fibrosus (AF) and cartilaginous endplates (CEP) from two groups of three human lumbar spines were compared. Group I consisted of all healthy discs from young donors (Grade I) and group II was comprised of discs that had undergone degeneration and age-related changes (average Grade 4). The gross morphological changes in the individual disc tissues associated with ageing/degeneration were consistent with specific changes in the characteristics of the magnetic resonance image. In particular, the mid-nuclear band of decreased magnetic resonance signal intensity seen in Grade 4 discs was associated with the appearance of clefts and fissures as well as a region of mucinous infiltration. The results of the biochemical analysis suggest that the changes in signal intensity are not due merely to changes in water content, but are also associated with changes in proteoglycan content. The changes associated with ageing/degeneration in the magnetic resonance image of the disc were related to a decrease in the proteoglycan content of the AF and NP. The water content of the NP also decreased. There was no clear association between the biochemical composition of the CEP and the magnetic resonance image. These results demonstrate that magnetic resonance imaging is an effective technique for evaluating subtle morphological changes in the intervertebral disc tissues and may be a sensitive indicator of the proteoglycan content of the AF and NP. ImagesFigure 1Figure 2

  20. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intervertebral body fusion device. 888.3080 Section 888.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body...

  1. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intervertebral body fusion device. 888.3080 Section 888.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body...

  2. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intervertebral body fusion device. 888.3080 Section 888.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body...

  3. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intervertebral body fusion device. 888.3080 Section 888.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body...

  4. 21 CFR 888.3080 - Intervertebral body fusion device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intervertebral body fusion device. 888.3080 Section 888.3080 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3080 Intervertebral body...

  5. Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven

    2016-07-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.

  6. Molecular Mechanisms of Biological Aging in Intervertebral Discs

    PubMed Central

    Vo, Nam V.; Hartman, Robert A.; Patil, Prashanti R.; Risbud, Makarand V.; Kletsas, Dimitris; Iatridis, James C.; Hoyland, Judith A.; Le Maitre, Christine L.; Sowa, Gwendolyn A.; Kang, James D.

    2016-01-01

    Advanced age is the greatest risk factor for the majority of human ailments, including spine-related chronic disability and back pain, which stem from age-associated intervertebral disc degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology of intervertebral disc aging in order to develop effective therapeutic interventions to combat the adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging research have begun to shed light on the basic biological process of aging. Here we review some of these insights and organize the complex process of disc aging into three different phases to guide research efforts to understand the biology of disc aging. The objective of this review is to provide an overview of the current knowledge and the recent progress made to elucidate specific molecular mechanisms underlying disc aging. In particular, studies over the last few years have uncovered cellular senescence and genomic instability as important drivers of disc aging. Supporting evidence comes from DNA repair-deficient animal models that show increased disc cellular senescence and accelerated disc aging. Additionally, stress-induced senescent cells have now been well documented to secrete catabolic factors, which can negatively impact the physiology of neighboring cells and ECM. These along with other molecular drivers of aging are reviewed in depth to shed crucial insights into the underlying mechanisms of age-related disc degeneration. We also highlight molecular targets for novel therapies and emerging candidate therapeutics that may mitigate age-associated IDD. PMID:26890203

  7. Molecular Therapy for Disk Degeneration and Pain

    PubMed Central

    Mwale, Fackson

    2013-01-01

    The nucleus pulposus of the intervertebral disk contains high amounts of the proteoglycan aggrecan, which confers the disk with a remarkable ability to resist compression. Other molecules such as collagens and noncollagenous proteins in the extracellular matrix are also essential for function. During disk degeneration, aggrecan and other molecules are lost due to proteolysis. This can result in loss of disk height, which can ultimately lead to pain. Biological therapy of intervertebral disk degeneration aims at preventing or restoring primarily aggrecan content and other molecules using therapeutic molecules. The purpose of the article is to review recent advances in biological repair of degenerate disks and pain. PMID:24436869

  8. Differences in acoustic properties of intact and degenerated human patellar cartilage during compression.

    PubMed

    Kiviranta, Panu; Lammentausta, Eveliina; Töyräs, Juha; Nieminen, Heikki J; Julkunen, Petro; Kiviranta, Ilkka; Jurvelin, Jukka S

    2009-08-01

    Ultrasound indentation measurements have been shown to provide means to assess cartilage integrity and mechanical properties. To determine cartilage stiffness in the ultrasound indentation geometry, cartilage is compressed with an ultrasound transducer to determine the induced strain from the ultrasound signal using the time-of-flight principle. As the ultrasound speed in cartilage has been shown to vary during compression, the assumption of constant speed generates significant errors in the values of mechanical parameters. This variation in ultrasound speed has been investigated in intact cartilage, however, its existence and significance in degenerated tissue is unknown. In the present study, we investigate this issue with both intact and spontaneously degenerated human tissue. To accomplish this aim, we determined ultrasound speed and attenuation in human patellar cartilage (n=68) during mechanical loading. For reference, cartilage mechanical properties and proteoglycan, collagen and water contents were determined. The acoustic properties were related to the composition and mechanical properties of the samples. Ultrasound speed showed significant, site-dependent variation and it was significantly associated (r=0.79-0.81, p<0.01) with the mechanical properties of cartilage. The compression related decrease in ultrasound speed showed statistically significant variation between different stages of degeneration. Error simulations revealed that changes in ultrasound speed during 2% compression could generate errors up to 15% in the values of elastic moduli of samples with early degeneration, if determined with the ultrasound indentation technique. In samples with advanced degeneration, the error was significantly (p<0.05) smaller being 2% on average. As the compression related variation in ultrasound speed was lower in more degenerated samples, the mechanical parameters could be diagnosed more reliably in tissue showing advanced degeneration. The present results

  9. A Novel Catechol-O-Methyltransferase Variant Associated with Human Disc Degeneration

    PubMed Central

    Gruber, Helen E.; Sha, Wei; Brouwer, Cory R.; Steuerwald, Nury; Hoelscher, Gretchen L.; Hanley, Edward N. Jr.

    2014-01-01

    Background: Disc degeneration and its associated low back pain are a major health care concern causing disability with a prominent role in this country's medical, social and economic structure. Low back pain is devastating and influences the quality of life for millions. Low back pain lifetime prevalence approximates 80% with an estimated direct cost burden of $86 billion per year. Back pain patients incur higher costs, greater health care utilization, and greater work loss than patients without back pain. Methods: Research was performed following approval of our Institutional Review Board. DNA was isolated, processed and amplified using routine techniques. Amplified DNA was hybridized to Affymetrix Genome-Wide Human SNP Arrays. Quality control and genotyping analysis were performed using Affymetrix Genotyping Console. The Birdseed v2 algorithm was used for genotyping analysis. 2589 SNPs were selected a priori to enter statistical analysis using lotistic regression in SAS. Results: Our objective was to search for novel single nucleotide polymorphisms (SNPs) associated with disc degeneration. Four SNPs were found to have a significant relationship to disc degeneration; three are novel. Rs165656, a new SNP found to be associated with disc degeneration, was in catechol-O-methyltransferase (COMT), a gene with well-recognized pain involvement, especially in female subjects (p=0.01). Analysis confirmed the previously association between COMT SNP rs4633 and disc degeneration. We also report two novel disc degeneration-related SNPs (rs2095019 and rs470859) located in intergenic regions upstream to thrombospondin 2. Conclusions: Findings contribute to the challenging field of disc degeneration and pain, and are important in light of the high clinical relevance of low back pain and the need for improved understanding of its fundamental basis. PMID:24904231

  10. Form and function of the intervertebral disc in health and disease: a morphological and stain comparison study.

    PubMed

    Walter, B A; Torre, O M; Laudier, D; Naidich, T P; Hecht, A C; Iatridis, J C

    2015-12-01

    Multiple histologic measurements are commonly used to assess degenerative changes in intervertebral disc (IVD) structure; however, there is no consensus on which stains offer the clearest visualization of specific areas within the IVD. The objective of this study was to compare multiple tinctorial stains, evaluate their ability to highlight structural features within the IVD, and investigate how they influence the capacity to implement a degeneration scoring system. Lumbar IVDs from seven human autopsy specimens were stained using six commonly used stains (Hematoxylin/Eosin, Toluidine Blue, Safranin-O/Fast Green, Extended FAST, modified Gomori's Trichrome, and Picrosirius Red Alcian Blue). All IVDs were evaluated by three separate graders to independently determine which stains (i) were most effective at discerning different structural features within different regions of the IVDs and (ii) allowed for the most reproducible assessment of degeneration grade, as assessed via the Rutges histological scoring system (Rutges et al. A validated new histological classification for intervertebral disc degeneration. Osteoarthritis Cartilage, 21, 2039-47). Although Trichrome, XFAST and PR/AB stains were all effective at highlighting different regions of whole IVDs, we recommend the use of PR/AB because it had the highest degree of rater agreement on assigned degeneration grade, allowed greater resolution of degeneration grade, has an inferential relationship between color and composition, and allowed clear differentiation of the different regions and structural disruptions within the IVD. The use of a standard set of stains together with a histological grading scheme can aid in the characterization of structural changes in different regions of the IVD and may simplify comparisons across the field. This collection of human IVD histological images highlights how IVD degeneration is not a single disease but a composite of multiple processes such as aging, injury, repair, and

  11. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine

    PubMed Central

    Kunkel, Maria E; Herkommer, Andrea; Reinehr, Michael; Böckers, Tobias M; Wilke, Hans-Joachim

    2011-01-01

    The main aim of this study was to provide anatomical data on the heights of the human intervertebral discs for all levels of the thoracic spine by direct and radiographic measurements. Additionally, the heights of the neighboring vertebral bodies were measured, and the prediction of the disc heights based only on the size of the vertebral bodies was investigated. The anterior (ADH), middle (MDH) and posterior heights (PDH) of the discs were measured directly and on radiographs of 72 spine segments from 30 donors (age 57.43 ± 11.27 years). The radiographic measurement error and the reliability of the measurements were calculated. Linear and non-linear regression analyses were employed for investigation of statistical correlations between the heights of the thoracic disc and vertebrae. Radiographic measurements displayed lower repeatability and were shorter than the anatomical ones (approximately 9% for ADH and 37% for PDH). The thickness of the discs varied from 4.5 to 7.2 mm, with the MDH approximately 22.7% greater. The disc heights showed good correlations with the vertebral body heights (R2, 0.659–0.835, P-values < 0.005; anova), allowing the generation of 10 prediction equations. New data on thoracic disc morphometry were provided in this study. The generated set of regression equations could be used to predict thoracic disc heights from radiographic measurement of the vertebral body height posterior. For the creation of parameterized models of the human thoracic discs, the use of the prediction equations could eliminate the need for direct measurement on intervertebral discs. Moreover, the error produced by radiographic measurements could be reduced at least for the PDH. PMID:21615399

  12. Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc

    PubMed Central

    Cuesta, Antonio; Viña, Eliseo; Cabo, Roberto; Vázquez, Gorka; Cobo, Ramón; García-Suárez, Olivia; García-Cosamalón, José; Vega, José A

    2015-01-01

    The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity. PMID:26617738

  13. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  14. Validation of Sodium MRI of Intervertebral Disc

    PubMed Central

    Wang, Chenyang; McArdle, Erin; Fenty, Matthew; Witschey, Walter; Elliott, Mark; Sochor, Matthew; Reddy, Ravinder; Borthakur, Arijitt

    2009-01-01

    Study Design This study demonstrated the diagnostic potential of sodium MRI for non-invasive quantification of PG in the intervertebral discs. Objective To determine the existence of a linear correlation between intervertebral disc [Na] measured from sodium MRI and [PG] measurement from DMMB assay. Summary of Background Data Previous studies have shown the possibility of quantifying [Na] in vivo using sodium MRI, however none has shown a direct linear correlation between [Na] measured from sodium MRI and [PG]. Methods 3D sodium MRI images of bovine discs were acquired and converted into [Na] maps. Samples were systematically removed from the discs for DMMB assay. The removal locations were photographically recorded and applied to the [Na] maps to extract the [Na] measurements for comparison. In vivo sodium MRI scans were also carried out on a pair of symptomatic and asymptomatic subjects. Results The linear regression fit of [Na] versus [PG] data yielded a significant linear correlation coefficient of 0.71. The in vivo sodium MRI image of the symptomatic subject showed significant [Na] decrease when compared to that of the asymptomatic subject. Conclusion Sodium MRI's specificity for PG in the intervertebral discs makes it a promising diagnostic tool for the earlier phase of disc degeneration. PMID:20147881

  15. Electromechanical probe and automated indentation maps are sensitive techniques in assessing early degenerated human articular cartilage.

    PubMed

    Sim, Sotcheadt; Chevrier, Anik; Garon, Martin; Quenneville, Eric; Lavigne, Patrick; Yaroshinsky, Alex; Hoemann, Caroline D; Buschmann, Michael D

    2016-06-09

    Recent advances in the development of new drugs to halt or even reverse the progression of Osteoarthritis at an early-stage requires new tools to detect early degeneration of articular cartilage. We investigated the ability of an electromechanical probe and an automated indentation technique to characterize entire human articular surfaces for rapid non-destructive discrimination between early degenerated and healthy articular cartilage. Human cadaveric asymptomatic articular surfaces (4 pairs of distal femurs and 4 pairs of tibial plateaus) were used. They were assessed ex vivo: macroscopically, electromechanically (maps of the electromechanical quantitative parameter, QP, reflecting streaming potentials), mechanically (maps of the instantaneous modulus, IM) and through cartilage thickness. Osteochondral cores were also harvested from healthy and degenerated regions for histological assessment, biochemical analyses and unconfined compression tests. The macroscopic visual assessment delimited three distinct regions on each articular surface: region I was macroscopically degenerated, region II was macroscopically normal but adjacent to region I and region III was the remaining normal articular surface. Thus, each extracted core was assigned to one of the three regions. A mixed effect model revealed that only the QP (p < 0.0001) and IM (p < 0.0001) were able to statistically discriminate the three regions. Effect size was higher for QP and IM than other assessments, indicating greater sensitivity to distinguish early degeneration of cartilage. When considering the mapping feature of the QP and IM techniques, it also revealed bilateral symmetry in a moderately similar distribution pattern between bilateral joints. This article is protected by copyright. All rights reserved.

  16. Feasibility of minimally-invasive fiber-based evaluation of chondrodystrophoid canine intervertebral discs by light absorption and scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanyuan; McKeirnan, Kelci; Piao, Daqing; Bartels, Kenneth E.

    2011-03-01

    Extrusion or protrusion of an intervertebral disc is a common, frequently debilitating, painful, and sometimes fatal neurologic disease in the chondrodystrophic dog (dachshund, Pekingese, etc.). A similar condition of intervertebral disc degeneration with extrusion/protrusion is also a relatively common neurologic condition in human patients. Degeneration of the relatively avascular chondrodystrophoid intervertebral disc is associated with loss of water content, increased collagen, and deposits of calcified mineral in the nucleus pulposus. Current diagnostic methods have many limitations for providing accurate information regarding disc composition in situ prior to surgical intervention. Disc composition (i.e., mineralization), can influence the type of treatment regime and potentially prognosis and recurrence rates. The objective of this study is to investigate the feasibility of using a fiber-needle spectroscopy sensor to analyze the changes of tissue compositions involved in the chondrodystrophoid condition of the canine intervertebral disc. The nucleous pulposus, in which the metaplastic process / degeneration develops, is approximately 2mm thick and 5mm in diameter in the dachshund-sized dog. It lies in the center of the disc, surrounded by the annulus fibrosis and is enclosed by cartilaginous vertebral endplates cranially and caudally. This "shallow-and-small-slab" geometry limits the configuration of a fiber probe to sense the disc tissue volume without interference from the vertebrae. A single-fiber sensor is inserted into a 20 gauge myelographic spinal needle for insertion into the disc in situ and connected via a bifurcated fiber to the light source and a spectrometer. A tungsten light source and a 940nm light-emitting-diode are combined for spectral illumination covering VIS/NIR with expected improved sensitivity to water. Analysis of the reflectance spectra is expected to provide information of scattering and absorption compositions of tissue in

  17. Effect of Cryopreservation on Canine and Human Activated Nucleus Pulposus Cells: A Feasibility Study for Cell Therapy of the Intervertebral Disc

    PubMed Central

    Tanaka, Masahiro; Hiyama, Akihiko; Arai, Fumiyuki; Nakajima, Daisuke; Nukaga, Tadashi; Nakai, Tomoko; Mochida, Joji

    2013-01-01

    Abstract It has been shown that coculture of bone marrow–derived stromal cells (BMSCs) with intervertebral disc (IVD) nucleus pulposus (NP) cells significantly activates the biological characteristics of NP cells in animal models and in humans. We therefore predicted that activated NP cells would be a useful graft source for cellular transplantation therapy in the treatment of degenerative IVDs. However, the activation protocol is based on fresh isolation and activation of NP cells, which limits the timing of clinical application. Cell transplantation therapy could be offered to more patients than is now possible if activated NP cells could be transplanted as and when required by the condition of the patient. No study has investigated the effect of cryopreservation on NP cells after enzymatic isolation. We investigated the effects of cryopreservation of canine and human NP cells in both cell and tissue form before coculture with autologous BMSCs. Cell viability, proliferation, glycosaminoglycan production, aggrecan transcriptional activity, colony generation, and gene expression profile of the cells after cryopreservation and subsequent coculture were analyzed. The influence of cryopreservation on cell chromosomal abnormalities and tumorigenesis was also studied. The results showed that there were no clear differences between the noncryopreserved and cryopreserved cells in terms of cell viability, proliferation capacity, and capacity to synthesize extracellular matrix. Furthermore, the cells showed no apparent chromosomal abnormalities or tumorigenic ability and exhibited similar patterns of gene expression. These findings suggest that by using cryopreservation, it may be possible to transplant activated NP cells upon request for patients' needs. PMID:23914334

  18. Effects of degeneration on the compressive and tensile properties of human meniscus.

    PubMed

    Fischenich, Kristine M; Lewis, Jackson; Kindsfater, Kirk A; Bailey, Travis S; Haut Donahue, Tammy L

    2015-06-01

    Healthy menisci function within the joint to prevent the underlying articular cartilage from excessive loads. Understanding how mechanical properties of menisci change with degeneration can drive future therapeutic studies to prevent this degeneration. Thus, the goal of this study was to characterize both compressive and tensile moduli of human menisci with varying degrees of gross damage due to osteoarthritis (OA). Twenty four paired menisci were collected from total knee joint replacement patients and the menisci were graded on a scale from 0-4 according to level of gross meniscal degeneration with 0=normal and 4=full tissue maceration. Each meniscus was then sectioned into anterior and posterior regions and subjected to indentation relaxation tests. Samples were sliced into 1mm thick strips, made into dumbbells using a custom punch, and pulled to failure. Significant decreases in instantaneous compressive modulus were seen in the lateral posterior region between grades 0 and 1 (36% decrease) and in the medial anterior regions between grades 1 and 2 (67% decrease) and 1 and 3 (72% decrease). Changes in equilibrium modulus where seen in the lateral anterior region between grades 1 and 2 (35% decrease), lateral posterior region between grades 0-2 (41% decrease), and medial anterior regions between grades 1 and 2 (59% decrease), 1 and 3 (67% decrease), 2 and 4 (54% decrease), and 3 and 4 (42% decrease). No significant changes were observed in tensile modulus across all regions and degenerative grades. The results of this study demonstrate the compressive moduli are affected even in early stages of gross degeneration, and continue to decrease with increased deterioration. However, osteoarthritic menisci retain a tensile modulus similar to that of previously reported healthy menisci. This study highlights progressive changes in meniscal mechanical compressive integrity as level of gross tissue degradation increases, and thus, early interventions should focus on

  19. RPGR-Associated Retinal Degeneration in Human X-Linked RP and a Murine Model

    PubMed Central

    Huang, Wei Chieh; Wright, Alan F.; Roman, Alejandro J.; Cideciyan, Artur V.; Manson, Forbes D.; Gewaily, Dina Y.; Schwartz, Sharon B.; Sadigh, Sam; Limberis, Maria P.; Bell, Peter; Wilson, James M.; Swaroop, Anand; Jacobson, Samuel G.

    2012-01-01

    Purpose. We investigated the retinal disease due to mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene in human patients and in an Rpgr conditional knockout (cko) mouse model. Methods. XLRP patients with RPGR-ORF15 mutations (n = 35, ages at first visit 5–72 years) had clinical examinations, and rod and cone perimetry. Rpgr-cko mice, in which the proximal promoter and first exon were deleted ubiquitously, were back-crossed onto a BALB/c background, and studied with optical coherence tomography and electroretinography (ERG). Retinal histopathology was performed on a subset. Results. Different patterns of rod and cone dysfunction were present in patients. Frequently, there were midperipheral losses with residual rod and cone function in central and peripheral retina. Longitudinal data indicated that central rod loss preceded peripheral rod losses. Central cone-only vision with no peripheral function was a late stage. Less commonly, patients had central rod and cone dysfunction, but preserved, albeit abnormal, midperipheral rod and cone vision. Rpgr-cko mice had progressive retinal degeneration detectable in the first months of life. ERGs indicated relatively equal rod and cone disease. At late stages, there was greater inferior versus superior retinal degeneration. Conclusions. RPGR mutations lead to progressive loss of rod and cone vision, but show different patterns of residual photoreceptor disease expression. Knowledge of the patterns should guide treatment strategies. Rpgr-cko mice had onset of degeneration at relatively young ages and progressive photoreceptor disease. The natural history in this model will permit preclinical proof-of-concept studies to be designed and such studies should advance progress toward human therapy. PMID:22807293

  20. Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    PubMed Central

    2012-01-01

    Background Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue. Methods A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured in vitro and in vivo in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific in situ hybridization was performed to discriminate between cells of human and murine origin in xenotransplants. Results The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. In vitro and in vivo (subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels in vitro and in vivo, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of

  1. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs

    PubMed Central

    Nakamichi, Ryo; Ito, Yoshiaki; Inui, Masafumi; Onizuka, Naoko; Kayama, Tomohiro; Kataoka, Kensuke; Suzuki, Hidetsugu; Mori, Masaki; Inagawa, Masayo; Ichinose, Shizuko; Lotz, Martin K.; Sakai, Daisuke; Masuda, Koichi; Ozaki, Toshifumi; Asahara, Hiroshi

    2016-01-01

    The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx−/− mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration. PMID:27527664

  2. Temperature Distributions of the Lumbar Intervertebral Disc during Laser Annuloplasty : A Cadaveric Study

    PubMed Central

    Lee, Min Hyung; Hong, Jae Taek; Sung, Jae Hoon; Lee, Sang Won; Kim, Daniel H.

    2016-01-01

    Objective Low back pain, caused intervertebral disc degeneration has been treated by thermal annuloplasty procedure, which is a non-surgical treatement. The theoretical backgrounds of the annuloplasty are thermal destruct of nociceptor and denaturization of collagen fiber to induce contraction, to shrink annulus and thus enhancing stability. This study is about temperature and its distribution during thermal annuloplasty using 1414 nm Nd : YAG laser. Methods Thermal annuloplasty was performed on fresh human cadaveric lumbar spine with 20 intact intervertebral discs in a 37℃ circulating water bath using newly developed 1414 nm Nd : YAG laser. Five thermocouples were attached to different locations on the disc, and at the same time, temperature during annuloplasty was measured and analyzed. Results Thermal probe's temperature was higher in locations closer to laser fiber tip and on lateral locations, rather than the in depth locations. In accordance with the laser fiber tip and the depth, temperatures above 45.0℃ was measured in 3.0 mm depth which trigger nociceptive ablation in 16 levels (80%), in accordance with the laser fiber end tip and laterality, every measurement had above 45.0℃, and also was measured temperature over 60.0℃, which can trigger collagen denaturation at 16 levels (80%). Conclusion When thermal annuloplasty is needed in a selective lesion, annuloplasty using a 1414 nm Nd : YAG laser can be one of the treatment options. PMID:27847567

  3. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.

    PubMed

    Lu, Yongtao; Maquer, Ghislain; Museyko, Oleg; Püschel, Klaus; Engelke, Klaus; Zysset, Philippe; Morlock, Michael; Huber, Gerd

    2014-07-18

    Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.

  4. A new immunodeficient pigmented retinal degenerate rat strain to study transplantation of human cells without immunosuppression

    PubMed Central

    Seiler, Magdalene J.; Aramant, Robert B.; Jones, Melissa K.; Ferguson, Dave L.; Bryda, Elizabeth C.

    2015-01-01

    Purpose The goal of this study was to develop an immunodeficient rat model of retinal degeneration (RD nude rats) that will not reject transplanted human cells. Methods SD-Tg(S334ter)3Lav females homozygous for a mutated mouse rhodopsin transgene were mated with NTac:NIH-Whn (NIH nude) males homozygous for the Foxn1rnu allele. Through selective breeding, a new stock, SD-Foxn1 Tg(S334ter)3Lav (RD nude) was generated such that all animals were homozygous for the Foxn1rnu allele and either homo- or hemizygous for the S334ter transgene. PCR-based assays for both the Foxn1rnu mutation and the S334ter transgene were developed for accurate genotyping. Immunodeficiency was tested by transplanting sheets of hESC-derived neural progenitor cells to the subretinal space of RD nude rats, and, as a control, NIH nude rats. Rats were killed between 8 and 184 days after surgery, and eye sections were analyzed for human, neuronal, and glial markers. Results After transplantation to RD nude and to NIH nude rats, hESC-derived neural progenitor cells differentiated to neuronal and glial cells, and migrated extensively from the transplant sheets throughout the host retina. Migration was more extensive in RD nude than in NIH nude rats. Already 8 days after transplantation, donor neuronal processes were found in the host inner plexiform layer. In addition, host glial cells extended processes into the transplants. The host retina showed the same photoreceptor degeneration pattern as in the immunocompetent SD-Tg(S334ter)3Lav rats. Recipients survived well after surgery. Conclusions This new rat model is useful for testing the effect of human cell transplantation on the restoration of vision without interference of immunosuppression. PMID:24817311

  5. Genetic control of the alternative pathway of complement in humans and age-related macular degeneration.

    PubMed

    Hecker, Laura A; Edwards, Albert O; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H; Brown, William L; Charbel Issa, Peter; Scholl, Hendrik P; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E; Bailey, Kent R; Oppermann, Martin

    2010-01-01

    Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues.

  6. Mechanotransduction in intervertebral discs

    PubMed Central

    Tsai, Tsung-Ting; Cheng, Chao-Min; Chen, Chien-Fu; Lai, Po-Liang

    2014-01-01

    Mechanotransduction plays a critical role in intracellular functioning—it allows cells to translate external physical forces into internal biochemical activities, thereby affecting processes ranging from proliferation and apoptosis to gene expression and protein synthesis in a complex web of interactions and reactions. Accordingly, aberrant mechanotransduction can either lead to, or be a result of, a variety of diseases or degenerative states. In this review, we provide an overview of mechanotransduction in the context of intervertebral discs, with a focus on the latest methods of investigating mechanotransduction and the most recent findings regarding the means and effects of mechanotransduction in healthy and degenerative discs. We also provide some discussion of potential directions for future research and treatments. PMID:25267492

  7. Gradual Loss of Myelin and Formation of an Astrocytic Scar during Wallerian Degeneration in the Human Spinal Cord

    ERIC Educational Resources Information Center

    A. Buss, G. A. Brook; B. Kakulas; D. Martin; R. Franzen; J. Schoenen; J. Noth; A. B. Schmitt

    2004-01-01

    Axons undergo Wallerian degeneration distal to a point of injury. Experimental investigations have documented many of the cellular and molecular events that underlie this behaviour. Since relatively little is known about such events in human CNS pathologies and current experimental intervention strategies indicate the possibility of significant…

  8. RNA in situ hybridization characterization of non-enzymatic derived bovine intervertebral disc cell lineages suggests progenitor cell potential.

    PubMed

    Kraus, Petra; Yerden, Rachel; Kocsis, Victoria; Lufkin, Thomas

    2017-03-01

    Degeneration of the intervertebral disc (IVD) is a meritorious target for therapeutic cell based regenerative medicine approaches, however, controversy over what defines the precise identity of mature IVD cells and lack of single cell based quality control measures is of concern. Bos taurus and human IVDs are histologically more similar than is Mus musculus. The mature bovine IVD is well suited as model system for technology development to be translated into therapeutic cell based regenerative medicine applications. We present a reproducible non-enzymatic protocol to isolate cell progenitor populations of three distinct areas of the mature bovine IVD. Bovine specific RNA probes were validated in situ and employed to assess fate changes, heterogeneity, stem cell characteristics and differentiation potential of the cultures. Quality control measures with single cell resolution like RNA in situ hybridization to assess culture heterogeneity (PISH) followed by optimization of culture conditions could be translated to human IVD cell culture to increase the safety of cell based regenerative medicine.

  9. Mycolactone-mediated neurite degeneration and functional effects in cultured human and rat DRG neurons

    PubMed Central

    Sinisi, M; Fox, M; MacQuillan, A; Quick, T; Korchev, Y; Bountra, C; McCarthy, T; Anand, P

    2016-01-01

    Background Mycolactone is a polyketide toxin secreted by the mycobacterium Mycobacterium ulcerans, responsible for the extensive hypoalgesic skin lesions characteristic of patients with Buruli ulcer. A recent pre-clinical study proposed that mycolactone may produce analgesia via activation of the angiotensin II type 2 receptor (AT2R). In contrast, AT2R antagonist EMA401 has shown analgesic efficacy in animal models and clinical trials for neuropathic pain. We therefore investigated the morphological and functional effects of mycolactone in cultured human and rat dorsal root ganglia (DRG) neurons and the role of AT2R using EMA401. Primary sensory neurons were prepared from avulsed cervical human DRG and rat DRG; 24 h after plating, neurons were incubated for 24 to 96 h with synthetic mycolactone A/B, followed by immunostaining with antibodies to PGP9.5, Gap43, β tubulin, or Mitotracker dye staining. Acute functional effects were examined by measuring capsaicin responses with calcium imaging in DRG neuronal cultures treated with mycolactone. Results Morphological effects: Mycolactone-treated cultures showed dramatically reduced numbers of surviving neurons and non-neuronal cells, reduced Gap43 and β tubulin expression, degenerating neurites and reduced cell body diameter, compared with controls. Dose-related reduction of neurite length was observed in mycolactone-treated cultures. Mitochondria were distributed throughout the length of neurites and soma of control neurons, but clustered in the neurites and soma of mycolactone-treated neurons. Functional effects: Mycolactone-treated human and rat DRG neurons showed dose-related inhibition of capsaicin responses, which were reversed by calcineurin inhibitor cyclosporine and phosphodiesterase inhibitor 3-isobutyl-1-Methylxanthine, indicating involvement of cAMP/ATP reduction. The morphological and functional effects of mycolactone were not altered by Angiotensin II or AT2R antagonist EMA401. Conclusion Mycolactone

  10. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc.

    PubMed

    Malandrino, Andrea; Noailly, Jérôme; Lacroix, Damien

    2014-04-11

    Novel strategies to heal discogenic low back pain could highly benefit from comprehensive biophysical studies that consider both mechanical and biological factors involved in intervertebral disc degeneration. A decrease in nutrient availability at the bone-disc interface has been indicated as a relevant risk factor and as a possible initiator of cell death processes. Mechanical behaviour of both healthy and degenerated discs could highly interact with cell death in these compromised situations. In the present study, a mechano-transport finite element model was used to investigate the nature of mechanical effects on cell death processes via load-induced metabolic transport variations. Cycles of static sustained compression were chosen to simulate daily human activity. Healthy and degenerated cases were simulated as well as a reduced supply of solutes and an increase in solute exchange area at the bone-disc interface. Results showed that a reduction in metabolite concentrations at the bone-disc boundaries induced cell death, even when the increased exchange area was simulated. Slight local mechanical enhancements of glucose in the disc centre were capable of decelerating cell death but occurred only with healthy mechanical properties. However, mechanical deformations were responsible for a worsening in terms of cell death in the inner annulus, a disadvantaged zone far from the boundary supply with both an increased cell demand and a strain-dependent decrease of diffusivity. Such adverse mechanical effects were more accentuated when degenerative properties were simulated. Overall, this study paves the way for the use of biophysical models for a more integrated understanding of intervertebral disc pathophysiology.

  11. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms.

    PubMed Central

    López-Candales, A.; Holmes, D. R.; Liao, S.; Scott, M. J.; Wickline, S. A.; Thompson, R. W.

    1997-01-01

    Abdominal aortic aneurysms (AAAs) are characterized by structural deterioration of the aortic wall leading to progressive aortic dilatation and eventual rupture. The histopathological changes in AAAs are particularly evident within the elastic media, which is normally dominated by vascular smooth muscle cells (SMCs). To determine whether a decrease in vascular SMCs contributes to medial degeneration, we measured SMC density in 21 normal and pathological human abdominal aortic tissue specimens using immunohistochemistry for alpha-SMC actin and direct cell counts (medial SMCs per high-power field (HPF)). Medial SMC density was not significantly different between normal aorta (n = 5; 199.5 +/- 14.9 SMCs/HPF) and atherosclerotic occlusive disease (n = 6; 176.4 +/- 13.9 SMCs/HPF), but it was reduced by 74% in AAA (n = 10; 50.9 +/- 6.1 SMCs/HPF; P < 0.01 versus normal aorta). Light and electron microscopy revealed no evidence of overt cellular necrosis, but SMCs in AAAs exhibited ultrastructural changes consistent with apoptosis. Using in situ end-labeling (ISEL) of fragmented DNA to detect apoptotic cells, up to 30% of aortic wall cells were ISEL positive in AAAs. By double-labeling techniques, many of these cells were alpha-actin-positive SMCs distributed throughout the degenerative media. In contrast, ISEL-positive cells were observed only within the intimal plaque in atherosclerotic occlusive disease. The amount of p53 protein detected by immunoblotting was increased nearly fourfold in AAA compared with normal aorta and atherosclerotic occlusive disease (P < 0.01), and immunoreactive p53 was localized to lymphocytes and residual SMCs in the aneurysm wall. Using reverse transcription polymerase chain reaction assays a substantial amount of p53 mRNA expression was observed in AAAs. These results demonstrate that medial SMC density is significantly decreased in human AAA tissues associated with evidence of SMC apoptosis and increased production of p53, a potential

  12. An Anisotropic Multiphysics Model for Intervertebral Disk

    PubMed Central

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-01-01

    Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402

  13. [Biology and mechanobiology of the intervertebral disc].

    PubMed

    González Martínez, Emilio; García-Cosamalón, José; Cosamalón-Gan, Iván; Esteban Blanco, Marta; García-Suarez, Olivia; Vega, José A

    2017-01-24

    The intervertebral disc (IVD) is noted for its low cell content, and being the largest avascular structure of human body. The low amount of cells in the disc have to adapt to an anaerobic metabolism with low oxygen pressure and acidic pH. Apart from surviving in an adverse microenvironment, they are exposed to a high level of mechanical stress. The biological adaptation of cells to acidosis and hyperosmolarity conditions are regulated by mechanoproteins, which are responsible for converting a mechanical signal into a cellular response, thus modifying its gene expression. Mechanobiology helps us to better understand the pathophysiology of IVD and its potential biological repair.

  14. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans.

    PubMed

    Zangerl, Barbara; Goldstein, Orly; Philp, Alisdair R; Lindauer, Sarah J P; Pearce-Kelling, Susan E; Mullins, Robert F; Graphodatsky, Alexander S; Ripoll, Daniel; Felix, Jeanette S; Stone, Edwin M; Acland, Gregory M; Aguirre, Gustavo D

    2006-11-01

    Progressive rod-cone degeneration (prcd) is a late-onset, autosomal recessive photoreceptor degeneration of dogs and a homolog for some forms of human retinitis pigmentosa (RP). Previously, the disease-relevant interval was reduced to a 106-kb region on CFA9, and a common phenotype-specific haplotype was identified in all affected dogs from several different breeds and breed varieties. Screening of a canine retinal EST library identified partial cDNAs for novel candidate genes in the disease-relevant interval. The complete cDNA of one of these, PRCD, was cloned in dog, human, and mouse. The gene codes for a 54-amino-acid (aa) protein in dog and human and a 53-aa protein in the mouse; the first 24 aa, coded for by exon 1, are highly conserved in 14 vertebrate species. A homozygous mutation (TGC --> TAC) in the second codon shows complete concordance with the disorder in 18 different dog breeds/breed varieties tested. The same homozygous mutation was identified in a human patient from Bangladesh with autosomal recessive RP. Expression studies support the predominant expression of this gene in the retina, with equal expression in the retinal pigment epithelium, photoreceptor, and ganglion cell layers. This study provides strong evidence that a mutation in the novel gene PRCD is the cause of autosomal recessive retinal degeneration in both dogs and humans.

  15. Nuclear receptor NR2E3 gene mutations distort human retinal laminar architecture and cause an unusual degeneration.

    PubMed

    Jacobson, Samuel G; Sumaroka, Alexander; Aleman, Tomas S; Cideciyan, Artur V; Schwartz, Sharon B; Roman, Alejandro J; McInnes, Roderick R; Sheffield, Val C; Stone, Edwin M; Swaroop, Anand; Wright, Alan F

    2004-09-01

    Mutations in the nuclear receptor gene, NR2E3, cause a disorder of human retinal photoreceptor development characterized by hyperfunction and excess of the minority S (short wavelength or blue) cone photoreceptor type, but near absence of function of the majority rod receptor. NR2E3 disease can also progress to blindness. How the human retina accommodates mis-specified types and numbers of neurons and advances to retinal degeneration are unknown. We studied the retinal organization in vivo of patients with NR2E3 mutations. Early human NR2E3 disease with S cone hyperfunction showed thickened retinal layers within an otherwise normally structured retina. With visual loss, however, lamination was coarse and there was a strikingly thick and bulging appearance to the retina, localized to an annulus encircling the central fovea. This pattern was not found in other retinal degenerations. The abnormal laminar retinal architecture of early NR2E3 disease may be due in part to larger cells with an S cone phenotype in place of rods that failed to differentiate. The later-stage dysplastic appearance suggests a previously unrecognized proliferative response in human retinal degeneration.

  16. Identification of Chlamydia pneumoniae within human choroidal neovascular membranes secondary to age-related macular degeneration.

    PubMed

    Kalayoglu, Murat V; Bula, Deisy; Arroyo, Jorge; Gragoudas, Evangelos S; D'Amico, Donald; Miller, Joan W

    2005-11-01

    Age-related macular degeneration (AMD) is a leading cause of blindness in the United States, and increasing evidence suggests that it is an inflammatory disease. The prokaryotic obligate intracellular pathogen Chlamydia pneumoniae is emerging as a novel risk factor in cardiovascular disease, and recent sero-epidemiological data suggest that C. pneumoniae infection is also associated with AMD. In this study, we examined choroidal neovascular membrane (CNV) tissue from patients with neovascular AMD for the presence of C. pneumoniae and determined whether the pathogen can dysregulate the function of key cell types in ways that can cause neovascular AMD. Nine CNV removed from patients with neovascular AMD were examined for the presence of C. pneumoniae by immunohistochemistry (IHC) and polymerase chain reaction (PCR); in addition, we performed PCR on nine non-AMD eyes, and IHC on five non-AMD CNV, seven non-AMD eyes, and one internal limiting membrane specimen. Finally, human monocyte-derived macrophages and retinal pigment epithelial (RPE) cells were exposed to C. pneumoniae and assayed in vitro for the production of pro-angiogenic immunomodulators (VEGF, IL-8, and MCP-1). C. pneumoniae was detected in four of nine AMD CNV by IHC and two of nine AMD CNV by PCR, induced VEGF production by human macrophages, and increased production of IL-8 and MCP-1 by RPE cells. In contrast, none of the 22 non-AMD specimens showed evidence for C. pneumoniae. These data indicate that a pathogen capable of inducing chronic inflammation and pro-angiogenic cytokines can be detected in some AMD CNV, and suggest that infection may contribute to the pathogenesis of AMD.

  17. Formation of lamellar cross bridges in the annulus fibrosus of the intervertebral disc is a consequence of vascular regression.

    PubMed

    Smith, Lachlan J; Elliott, Dawn M

    2011-05-01

    Cross bridges are radial structures within the highly organized lamellar structure of the annulus fibrosus of the intervertebral disc that connect two or more non-consecutive lamellae. Their origin and function are unknown. During fetal development, blood vessels penetrate deep within the AF and recede during postnatal growth. We hypothesized that cross bridges are the pathways left by these receding blood vessels. Initially, the presence of cross bridges was confirmed in cadaveric human discs aged 25 and 53 years. Next, L1-L2 intervertebral discs (n=4) from sheep ranging in age from 75 days fetal gestation to adult were processed for paraffin histology. Mid-sagittal sections were immunostained for endothelial cell marker PECAM-1. The anterior and posterior AF were imaged using differential interference contrast microscopy, and the following parameters were quantified: total number of distinct lamellae, total number of cross bridges, percentage of cross bridges staining positive for PECAM-1, cross bridge penetration depth (% total lamellae), and PECAM-1 positive cross bridge penetration depth. Cross bridges were first observed at 100 days fetal gestation. The overall number peaked in neonates then remained relatively unchanged. The percentage of PECAM-1 positive cross bridges declined progressively from almost 100% at 100 days gestation to less than 10% in adults. Cross bridge penetration depth peaked in neonates then remained unchanged at subsequent ages. Depth of PECAM-1 positive cross bridges decreased progressively after birth. Findings were similar for both the anterior and posterior. The AF lamellar architecture is established early in development. It later becomes disrupted as a consequence of vascularization. Blood vessels then recede, perhaps due to increasing mechanical stresses in the surrounding matrix. In this study we present evidence that the pathways left by receding blood vessels remain as lamellar cross bridges. It is unclear whether the presence

  18. Naturally occurring rhodopsin mutation in the dog causes retinal dysfunction and degeneration mimicking human dominant retinitis pigmentosa.

    PubMed

    Kijas, James W; Cideciyan, Artur V; Aleman, Tomas S; Pianta, Michael J; Pearce-Kelling, Susan E; Miller, Brian J; Jacobson, Samuel G; Aguirre, Gustavo D; Acland, Gregory M

    2002-04-30

    Rhodopsin is the G protein-coupled receptor that is activated by light and initiates the transduction cascade leading to night (rod) vision. Naturally occurring pathogenic rhodopsin (RHO) mutations have been previously identified only in humans and are a common cause of dominantly inherited blindness from retinal degeneration. We identified English Mastiff dogs with a naturally occurring dominant retinal degeneration and determined the cause to be a point mutation in the RHO gene (Thr4Arg). Dogs with this mutant allele manifest a retinal phenotype that closely mimics that in humans with RHO mutations. The phenotypic features shared by dog and man include a dramatically slowed time course of recovery of rod photoreceptor function after light exposure and a distinctive topographic pattern to the retinal degeneration. The canine disease offers opportunities to explore the basis of prolonged photoreceptor recovery after light in RHO mutations and determine whether there are links between the dysfunction and apoptotic retinal cell death. The RHO mutant dog also becomes the large animal needed for preclinical trials of therapies for a major subset of human retinopathies.

  19. MRI quantification of human spine cartilage endplate geometry: Comparison with age, degeneration, level, and disc geometry.

    PubMed

    DeLucca, John F; Peloquin, John M; Smith, Lachlan J; Wright, Alexander C; Vresilovic, Edward J; Elliott, Dawn M

    2016-08-01

    Geometry is an important indicator of disc mechanical function and degeneration. While the geometry and associated degenerative changes in the nucleus pulposus and the annulus fibrosus are well-defined, the geometry of the cartilage endplate (CEP) and its relationship to disc degeneration are unknown. The objectives of this study were to quantify CEP geometry in three dimensions using an MRI FLASH imaging sequence and evaluate relationships between CEP geometry and age, degeneration, spinal level, and overall disc geometry. To do so, we assessed the MRI-based measurements for accuracy and repeatability. Next, we measured CEP geometry across a larger sample set and correlated CEP geometric parameters to age, disc degeneration, level, and disc geometry. The MRI-based measures resulted in thicknesses (0.3-1 mm) that are comparable to prior measurements of CEP thickness. CEP thickness was greatest at the anterior/posterior (A/P) margins and smallest in the center. The CEP A/P thickness, axial area, and lateral width decreased with age but were not related to disc degeneration. Age-related, but not degeneration-related, changes in geometry suggest that the CEP may not follow the progression of disc degeneration. Ultimately, if the CEP undergoes significant geometric changes with aging and if these can be related to low back pain, a clinically feasible translation of the FLASH MRI-based measurement of CEP geometry presented in this study may prove a useful diagnostic tool. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1410-1417, 2016.

  20. Prevalence of Age-Related Changes in Ovine Lumbar Intervertebral Discs during Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Nisolle, Jean-François; Bihin, Benoît; Kirschvink, Nathalie; Neveu, Fabienne; Clegg, Peter; Dugdale, Alexandra; Wang, Xiaoqing; Vandeweerd, Jean-Michel

    2016-01-01

    Ovine models are used to study intervertebral disc (IVD) degeneration. The objective of the current study was to assess the naturally occurring age-related changes of the IVD that can be diagnosed by CT and MRI in the lumbar spine of sheep. We used CT and T2-weighted MR images to score the IVD (L6S1 to L1L2) in 41 sheep (age, 6 mo to 11 y) that were euthanized for reasons not related to musculoskeletal disease. T2 mapping and measurement of T2 time of L6S1 to L2L3 were performed in 22 of the sheep. Degenerative changes manifested as early as 2 y of age and occurred at every IVD level. Discs were more severely damaged in older sheep. The age effect of the L6S1 IVD was larger than the average age effect for the other IVD. The current study provides evidence that lesions similar to those encountered in humans can be identified by CT and MRI in lumbar spine of sheep. Ideally, research animals should be assessed at the initiation of preclinical trials to determine the extent of prevalent degenerative changes. The ovine lumbosacral disc seems particularly prone to degeneration and might be a favorable anatomic site for studying IVD degeneration. PMID:27538861

  1. Distribution and Quantification of Choroidal Macrophages in Human Eyes With Age-Related Macular Degeneration

    PubMed Central

    McLeod, D. Scott; Bhutto, Imran; Edwards, Malia M.; Silver, Rachel E.; Seddon, Johanna M.; Lutty, Gerard A.

    2016-01-01

    Purpose Increasing evidence suggests a role for macrophages in the pathogenesis of age-related macular degeneration (AMD). This study examined choroidal macrophages and their activation in postmortem eyes from subjects with and without AMD. Methods Choroids were incubated with anti-ionized calcium-binding adapter molecule 1 (anti-IBA1) to label macrophages, anti-human leukocyte antigen-antigen D-related (anti-HLA-DR) as a macrophage activation marker, and Ulex europaeus agglutinin lectin to label blood vessels. Whole mounts were imaged using confocal microscopy. IBA1- and HLA-DR–positive (activated) cells were counted in submacula, paramacula, and nonmacula, and cell volume and sphericity were determined using computer-assisted image analysis. Results In aged control eyes, the mean number of submacular IBA1+ and HLA-DR+ macrophages was 433/mm2 and 152/mm2, respectively. In early AMD eyes, there was a significant increase in IBA1+ and HLA-DR+ cells in submacula compared to those in controls (P = 0.0015 and P = 0.008, respectively). In eyes with neovascular AMD, there were significantly more HLA-DR+ cells associated with submacular choroidal neovascularization (P = 0.001). Mean cell volume was significantly lower (P ≤ 0.02), and sphericity was significantly higher (P ≤ 0.005) in all AMD groups compared to controls. Conclusions The average number of IBA1+ macrophages in submacular and paramacular choroid was significantly higher in early/intermediate AMD compared to that in aged controls. HLA-DR+ submacular macrophages were significantly increased in all stages of AMD, and they were significantly more round and smaller in size in the submacular AMD choroid, suggesting their activation. These findings support the concept that AMD is an inflammatory disease. PMID:27802514

  2. Striatonigral Degeneration

    MedlinePlus

    ... disease, striatonigral degeneration is not responsive to levodopa. Dopamine and anticholinergics provide some benefit. Generally, treatment is ... disease, striatonigral degeneration is not responsive to levodopa. Dopamine and anticholinergics provide some benefit. Generally, treatment is ...

  3. Macular degeneration

    MedlinePlus Videos and Cool Tools

    ... at the center of the field of vision. Macular degeneration results from a partial breakdown of the insulating ... choroid layer of blood vessels behind the retina. Macular degeneration results in the loss of central vision only.

  4. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions.

    PubMed

    Sakai, Daisuke; Andersson, Gunnar B J

    2015-04-01

    Intervertebral disc (IVD) degeneration is frequently associated with low back and neck pain, which accounts for disability worldwide. Despite the known outcomes of the IVD degeneration cascade, the treatment of IVD degeneration is limited in that available conservative and surgical treatments do not reverse the pathology or restore the IVD tissue. Regenerative medicine for IVD degeneration, by injection of IVD cells, chondrocytes or stem cells, has been extensively studied in the past decade in various animal models of induced IVD degeneration, and has progressed to clinical trials in the treatment of various spinal conditions. Despite preliminary results showing positive effects of cell-injection strategies for IVD regeneration, detailed basic research on IVD cells and their niche indicates that transplanted cells are unable to survive and adapt in the avascular niche of the IVD. For this therapeutic strategy to succeed, the indications for its use and the patients who would benefit need to be better defined. To surmount these obstacles, the solution will be identified only by focused research, both in the laboratory and in the clinic.

  5. Indigo Carmine for the Selective Endoscopic Intervertebral Nuclectomy

    PubMed Central

    Kim, Inn-Se; Shin, Sang-Wook; Kim, Tae-Kyun; Kim, Jeung-Il

    2005-01-01

    This study was undertaken to prove that the selectively infiltrated parts of nucleus pulposus with indigo carmine was degenerated parts of nucleus pulposus. This study was done, between August and October 2002, in 5 patients, who received endoscopic discectomy, due to intervertebral disc herniation. Discogram was done with mixture of indigo carmine and radioactive dye. Blue discolored part was removed through endoscope, and small undiscolored part was removed together for the control. The two parts were stained with hematoxylin and eosin and compared under the microscope. Undiscolored part was normal nucleus pulposus, composed of chondrocytes with a matrix of type II collagen and proteoglycan, mainly aggrecan. However, in discolored part, slits with destruction of collagen fiber array and ingrowth of vessel and nerve were observed. Using indigo carmine in endoscopic discectomy gives us selective removal of degenerated disc. PMID:16100472

  6. Human organotypic retinal cultures (HORCs) as a chronic experimental model for investigation of retinal ganglion cell degeneration.

    PubMed

    Osborne, Andrew; Hopes, Marina; Wright, Phillip; Broadway, David C; Sanderson, Julie

    2016-02-01

    There is a growing need for models of human diseases that utilise native, donated human tissue in order to model disease processes and develop novel therapeutic strategies. In this paper we assessed the suitability of adult human retinal explants as a potential model of chronic retinal ganglion cell (RGC) degeneration. Our results confirmed that RGC markers commonly used in rodent studies (NeuN, βIII Tubulin and Thy-1) were appropriate for labelling human RGCs and followed the expected differential expression patterns across, as well as throughout, the macular and para-macular regions of the retina. Furthermore, we showed that neither donor age nor post-mortem time (within 24 h) significantly affected the initial expression levels of RGC markers. In addition, the feasibility of using human post mortem donor tissue as a long-term model of RGC degeneration was determined with RGC protein being detectable up to 4 weeks in culture with an associated decline in RGC mRNA and significant, progressive, apoptotic labelling of NeuN(+) cells. Differences in RGC apoptosis might have been influenced by medium compositions indicating that media constituents could play a role in supporting axotomised RGCs. We propose that using ex vivo human explants may prove to be a useful model for testing the effectiveness of neuroprotective strategies.

  7. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus.

    PubMed

    Iatridis, J C James C; ap Gwynn, Iolo

    2004-08-01

    Intervertebral disc degeneration results in disorganization of the laminate structure of the annulus that may arise from mechanical microfailure. Failure mechanisms in the annulus were investigated using composite lamination theory and other analyses to calculate stresses in annulus layers, interlaminar shear stress, and the region of stress concentration around a fiber break. Scanning electron microscopy (SEM) was used to evaluate failure patterns in the annulus and evaluate novel structural features of the disc tissue. Stress concentrations in the annulus due to an isolated fiber break were localized to approximately 5 microm away from the break, and only considered a likely cause of annulus fibrosus failure (i.e., radial tears in the annulus) under extreme loading conditions or when collagen damage occurs over a relatively large region. Interlaminar shear stresses were calculated to be relatively large, to increase with layer thickness (as reported with degeneration), and were considered to be associated with propagation of circumferential tears in the annulus. SEM analysis of intervertebral disc annulus fibrosus tissue demonstrated a clear laminate structure, delamination, matrix cracking, and fiber failure. Novel structural features noted with SEM also included the presence of small tubules that appear to run along the length of collagen fibers in the annulus and a distinct collagenous structure representative of a pericellular matrix in the nucleus region.

  8. Intervertebral disc properties: challenges for biodevices.

    PubMed

    Costi, John J; Freeman, Brian J C; Elliott, Dawn M

    2011-05-01

    Intervertebral disc biodevices that employ motion-preservation strategies (e.g., nucleus replacement, total disc replacement and posterior stabilization devices) are currently in use or in development. However, their long-term performance is unknown and only a small number of randomized controlled trials have been conducted. In this article, we discuss the following biodevices: interbody cages, nuclear pulposus replacements, total disc replacements and posterior dynamic stabilization devices, as well as future biological treatments. These biodevices restore some function to the motion segment; however, contrary to expectations, the risk of adjacent-level degeneration does not appear to have been reduced. The short-term challenge is to replicate the complex biomechanical function of the motion segment (e.g., biphasic, viscoelastic behavior and nonlinearity) to improve the quality of motion and minimize adjacent level problems, while ensuring biodevice longevity for the younger, more active patient. Biological strategies for regeneration and repair of disc tissue are being developed and these offer exciting opportunities (and challenges) for the longer term. Responsible introduction and rigorous assessment of these new technologies are required. In this article, we will describe the properties of the disc, explore biodevices currently in use for the surgical treatment of low back pain (with an emphasis on lumbar total disc replacement) and discuss future directions for biological treatments. Finally, we will assess the challenges ahead for the next generation of biodevices designed to replace the disc.

  9. Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine.

    PubMed

    Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-10-01

    Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding

  10. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    PubMed Central

    Bennis, Anna; Gorgels, Theo G. M. F.; ten Brink, Jacoline B.; van der Spek, Peter J.; Bossers, Koen; Heine, Vivi M.; Bergen, Arthur A.

    2015-01-01

    Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new therapeutics. This requires further in-depth knowledge of the similarities and differences between mouse and human RPE. Methods We performed a microarray study to identify and functionally annotate RPE specific gene expression in mouse and human RPE. We used a meticulous method to determine C57BL/6J mouse RPE signature genes, correcting for possible RNA contamination from its adjacent layers: the choroid and the photoreceptors. We compared the signature genes, gene expression profiles and functional annotations of the mouse and human RPE. Results We defined sets of mouse (64), human (171) and mouse–human interspecies (22) RPE signature genes. Not unexpectedly, our gene expression analysis and comparative functional annotation suggested that, in general, the mouse and human RPE are very similar. For example, we found similarities for general features, like “organ development” and “disorders related to neurological tissue”. However, detailed analysis of the molecular pathways and networks associated with RPE functions, suggested also multiple species-specific differences, some of which may be relevant for the development of AMD. For example, CFHR1, most likely the main complement regulator in AMD pathogenesis was highly expressed in human RPE, but almost absent in mouse RPE. Furthermore, functions assigned to mouse and human RPE expression profiles indicate (patho-) biological differences related to AMD, such as oxidative stress, Bruch’s membrane, immune-regulation and outer blood retina barrier. Conclusion These differences may be important for the development of new therapeutic strategies and translational studies in age-related macular

  11. Indications of that migration of stem cells is influenced by the extra cellular matrix architecture in the mammalian intervertebral disk region.

    PubMed

    Henriksson, H Barreto; Papadimitriou, N; Tschernitz, S; Svala, E; Skioldebrand, E; Windahl, S; Junevik, K; Brisby, H

    2015-10-01

    Disk-degeneration is believed a major cause for lumbar pain. Previously, potential stem cell niches in the intervertebral disk (IVD) region, located adjacent to epiphyseal plate, was reported. The aim of the study was to examine migration of mesenchymal stem cells (MSCs), extracellular matrix (ECM) architecture in a potential cellular migration route (CMR; area located between the niche and IVD) and in the IVD in non-degenerated lapine- and in human degenerated IVD tissues. Human MSCs (n=3), human degenerated IVD tissues (n=10) and lapine IVDs (n=10) were collected. The samples were examined by immunohistochemistry for stem cell markers; CD90, OCT3/4, pre-chondrocytic marker; GDF5, catabolic markers; MMP9, MMP13, inflammatory marker; IL1R, cellular migration markers; SNAI1, SNAI2, adhesion markers; β1-INTEGRIN and DDR2. In addition, gene-expression analyses (Real time PCR) were performed on additional samples. Further, time lapse studies were performed with hMSCs cultured on aligned COLL-I-fibers-coated glass-slides in DMEM-LG, 10% human serum containing fibroblast growth factor (bFGF). Presence of stem cells (CD90+, OCT3/4+), pre-chondocytic cells (GDF5+) and cells positive for migration markers (SNAI1+, SNAI2+), catabolic markers (MMP9+, MMP13+), inflammatory marker (IL1R+), adhesion markers (DDR2+, B1-INTEGRIN+) were detected (gene- and protein level) in investigated CMR and IVD regions. In the time lapse studies, MSCs alignment and protrusions were observed orientated in the same direction as collagen fibers. Results display influence of ECM collagen architecture and collagen fiber spatial direction on migration of stem cells. The results can be useful when developing tissue-engineering strategies for disk-degeneration.

  12. Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease

    PubMed Central

    Burkhardt, D.; Taylor, T. K. F.; Dillon, C. T.; Read, R.; Cake, M.; Little, C. B.

    2009-01-01

    The study design included a multidisciplinary examination of the mineral phase of ovine intervertebral disc calcifications. The objective of the study was to investigate the mineral phase and its mechanisms of formation/association with degeneration in a naturally occurring animal model of disc calcification. The aetiology of dystrophic disc calcification in adult humans is unknown, but occurs as a well-described clinical disorder with hydroxyapatite as the single mineral phase. Comparable but age-related pathology in the sheep could serve as a model for the human disorder. Lumbar intervertebral discs (n = 134) of adult sheep of age 6 years (n = 4), 8 years (n = 12) and 11 years (n = 2) were evaluated using radiography, morphology, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray powder diffraction, histology, immunohistology and proteoglycan analysis. Half of the 6-year, 84% of the 8-year and 86% of the 11-year-old discs had calcific deposits. These were not well delineated by plain radiography. They were either: (a) punctate deposits in the outer annulus, (b) diffuse deposits in the transitional zone or inner annulus fibrosus with occasional deposits in the nucleus, or (c) large deposits in the transitional zone extending variably into the nucleus. Their maximal incidence was in the lower lumbar discs (L4/5–L6/7) with no calcification seen in the lumbosacral or lower thoracic discs. All deposits were hydroxyapatite with large crystallite sizes (800–1,300 Å) compared to cortical bone (300–600 Å). No type X-collagen, osteopontin or osteonectin were detected in calcific deposits, although positive staining for bone sialoprotein was evident. Calcified discs had less proteoglycan of smaller hydrodynamic size than non-calcified discs. Disc calcification in ageing sheep is due to hydroxyapatite deposition. The variable, but large, crystal size and lack of protein markers indicate that this does not occur by

  13. Kingella kingae intervertebral disk infection.

    PubMed

    Amir, J; Shockelford, P G

    1991-05-01

    Disk inflammation in children is believed to result from infection, and Staphylococcus aureus is reported to be the organism most commonly isolated from cases of intervertebral disk infection. A case of disk inflammation caused by the unusual pathogen Kingella kingae is described. The antibiotic susceptibility of other K. kingae isolates and the clinical features of 11 other previously reported cases of disk infection caused by this microorganism are reviewed.

  14. Intervertebral disc extrusion and spinal decompression in a binturong (Arctictis binturong).

    PubMed

    Spriggs, Maria; Arble, Jason; Myers, Gwen

    2007-03-01

    A 10-yr-old binturong (Arctictis binturong) developed an acute onset of hind limb paralysis. Neurological examination revealed sensorimotor paraplegia. Myelography and computed tomography demonstrated a ventrolateral extradural compression of the spinal cord centered over the L3-L4 intervertebral disc space. Spinal decompression was performed via hemilaminectomy and excision of degenerate nucleus pulposus, confirmed by histopathologic examination. The binturong regained slight motor function by day 8 postoperatively but succumbed to pancreatitis 19 days postoperatively.

  15. Effects of Transplantation of hTIMP1-Expressing Bone Marrow Mesenchymal Stem Cells on the Extracellular Matrix of Degenerative Intervertebral Discs in an in vivo Rabbit Model.

    PubMed

    Yi, Zhou; Guanjun, Tu; Lin, Cong; Zifeng, Pei

    2014-04-08

    Study Design. Prospective, randomized controlled animal study.Objective. To observe ECM changes in degenerative IVD after transplantation of bone marrow mesenchymal stem cells (BMSCs) virally transfected with a construct expressing human tissue inhibitor of metalloproteinase 1 (hTIMP-1), and to discuss the feasibility of using this approach to treat intervertebral disc degeneration (IDD).Summary of Background Data. Intervertebral disc (IVD) degeneration is characterized by decreased cell numbers, bioactivity of the nucleus pulposus (NP), and remodeled extracellular matrix (ECM). Exogenous genes can be targeted into cells to produce inhibition of ECM degradation and increase ECM content in IVDs, and thereby potentially stop or reverse degenerative processes and modify disc structure.Methods. BMSCs were isolated from a pure New-Zealand rabbit and identified by flow cytometry. Transgenic BMSCs were acquired by transfection with a recombinant adenovirus vector carrying the hTIMP-1 gene. Animal models of IDD were established by annulus puncture and then given intra-NP injections according to their random assignment into three groups: (1) a transgenic BMSC transplantation (TgBT) group that received BMSCs transfected with an hTIMP-1-expressing adenovirus vector; (2) a BMSC transplantation (BT) group that received unaltered BMSCs; and (3) a control (PCon) group that received cell-free phosphate-buffered saline. Degree of degeneration was evaluated 12 wks after modeling. ECM content was quantified using immunohistochemistry (IHC) and spectrophotography. Expression of hTIMP-1 was observed via quantitative PCR, western blot, and IHC.Results. Significantly fewer degenerative changes and increased ECM content were observed in the TBT and BT groups compared to PCon animals (P < .05). The TBT group had greater ECM content than did the BT group (P < .05), as well as higher levels of hTIMP-1 mRNA and protein.Conclusions. Transplantation of BMSCs transfected with hTIMP-1 can

  16. Replacement Gene Therapy with a Human RPGRIP1 Sequence Slows Photoreceptor Degeneration in a Murine Model of Leber Congenital Amaurosis

    PubMed Central

    Pawlyk, Basil S.; Bulgakov, Oleg V.; Liu, Xiaoqing; Xu, Xiaoyun; Adamian, Michael; Sun, Xun; Khani, Shahrokh C.; Berson, Eliot L.; Sandberg, Michael A.

    2010-01-01

    Abstract RPGR-interacting protein-1 (RPGRIP1) is localized in the photoreceptor-connecting cilium, where it anchors the RPGR (retinitis pigmentosa GTPase regulator) protein, and its function is essential for photoreceptor maintenance. Genetic defect in RPGRIP1 is a known cause of Leber congenital amaurosis (LCA), a severe, early-onset form of retinal degeneration. We evaluated the efficacy of replacement gene therapy in a murine model of LCA carrying a targeted disruption of RPGRIP1. The replacement construct, packaged in an adeno-associated virus serotype 8 (AAV8) vector, used a rhodopsin kinase gene promoter to drive RPGRIP1 expression. Both promoter and transgene were of human origin. After subretinal delivery of the replacement gene in the mutant mice, human RPGRIP1 was expressed specifically in photoreceptors, localized correctly in the connecting cilia, and restored the normal localization of RPGR. Electroretinogram and histological examinations showed better preservation of rod and cone photoreceptor function and improved photoreceptor survival in the treated eyes. This study demonstrates the efficacy of human gene replacement therapy and validates a gene therapy design for future clinical trials in patients afflicted with this condition. Our results also have therapeutic implications for other forms of retinal degenerations attributable to a ciliary defect. PMID:20384479

  17. Lumbosacral Sagittal Alignment in Association to Intervertebral Disc Diseases

    PubMed Central

    Maleki, Farid; Meybodi, Ali Tayebi; Mahdavi, Ali; Saberi, Hooshang

    2014-01-01

    Study Design A cross-sectional case-control study was designed to compare the sagittal alignment of lumbosacral regions in two groups of patients suffering from low back pain, one with intervertebral disc pathologies and one without. Purpose To evaluate the correlation between lumbosacral sagittal alignment and disc degeneration. Overview of Literature Changes in lumbar lordosis and pelvic parameters in degenerative disc lesions have been assessed in few studies. Overall, patients with discopathy were shown to have lower lumbar lordosis and more vertical sacral profiles. Methods From patients with intractable low back pain undergoing lumbosacral magnetic resonance imaging, 50 subjects with disc degeneration and 50 controls with normal scans were consecutively enrolled. A method was defined with anterior tangent-lines going through anterior bodies of L1 and S1 to measure global lumbosacral angle, incorporating both lumbar lordosis and sacral slope. Global lumbosacral angle using the proposed method and lumbar lordosis using Cobb's method were measured in both groups. Results Lumbar lordosis based on Cobb's method was lower in group with discopathy (20°-67°; mean, 40.48°±9.89°) than control group (30°-62°; mean, 44.96°±7.68°), although it was not statistically significant. The proposed global lumbosacral angle in subject group (53°-103°; mean, 76.5°±11.018°) was less than control group (52°-101°; mean, 80.18°±9.95°), with the difference being statistically significant (p=0.002). Conclusions Patients with intervertebral disc lesions seem to have more straightened lumbosacral profiles, but it has not been proven which comes first: disc degeneration or changes in sagittal alignment. Finding an answer to this dilemma demands more comprehensive long-term prospective studies. PMID:25558325

  18. Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 mice.

    PubMed

    Sun, Jianan; Mandai, Michiko; Kamao, Hiroyuki; Hashiguchi, Tomoyo; Shikamura, Masayuki; Kawamata, Shin; Sugita, Sunao; Takahashi, Masayo

    2015-05-01

    Retinitis pigmentosa (RP) is a group of visual impairments characterized by progressive rod photoreceptor cell loss due to a genetic background. Pigment epithelium-derived factor (PEDF) predominantly secreted by the retinal pigmented epithelium (RPE) has been reported to protect photoreceptors in retinal degeneration models, including rd1. In addition, clinical trials are currently underway outside Japan using human mesenchymal stromal cells and human neural stem cells to protect photoreceptors in RP and dry age-related macular degeneration, respectively. Thus, this study aimed to investigate the rescue effects of induced pluripotent stem (iPS)-RPE cells in comparison with those types of cells used in clinical trials on photoreceptor degeneration in rd1 mice. Cells were injected into the subretinal space of immune-suppressed 2-week-old rd1 mice. The results demonstrated that human iPS-RPE cells significantly attenuated photoreceptor degeneration on postoperative days (PODs) 14 and 21 and survived longer up to at least 12 weeks after operation than the other two types of graft cells with less immune responses and apoptosis. The mean PEDF concentration in the intraocular fluid in RPE-transplanted eyes was more than 1 µg/ml at PODs 14 and 21, and this may have contributed to the protective effect of RPE transplantation. Our findings suggest that iPS-RPE cells serve as a competent source to delay photoreceptor degeneration through stable survival in degenerating ocular environment and by releasing neuroprotective factors such as PEDF.

  19. Determination of the intervertebral disc space from CT images of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-03-01

    Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.

  20. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration

    PubMed Central

    Shirai, Hiroshi; Mandai, Michiko; Matsushita, Keizo; Kuwahara, Atsushi; Yonemura, Shigenobu; Nakano, Tokushige; Assawachananont, Juthaporn; Kimura, Toru; Saito, Koichi; Terasaki, Hiroko; Eiraku, Mototsugu; Sasai, Yoshiki; Takahashi, Masayo

    2016-01-01

    Retinal transplantation therapy for retinitis pigmentosa is increasingly of interest due to accumulating evidence of transplantation efficacy from animal studies and development of techniques for the differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells into retinal tissues or cells. In this study, we aimed to assess the potential clinical utility of hESC-derived retinal tissues (hESC-retina) using newly developed primate models of retinal degeneration to obtain preparatory information regarding the potential clinical utility of these hESC-retinas in transplantation therapy. hESC-retinas were first transplanted subretinally into nude rats with or without retinal degeneration to confirm their competency as a graft to mature to form highly specified outer segment structure and to integrate after transplantation. Two focal selective photoreceptor degeneration models were then developed in monkeys by subretinal injection of cobalt chloride or 577-nm optically pumped semiconductor laser photocoagulation. The utility of the developed models and a practicality of visual acuity test developed for monkeys were evaluated. Finally, feasibility of hESC-retina transplantation was assessed in the developed monkey models under practical surgical procedure and postoperational examinations. Grafted hESC-retina was observed differentiating into a range of retinal cell types, including rod and cone photoreceptors that developed structured outer nuclear layers after transplantation. Further, immunohistochemical analyses suggested the formation of host–graft synaptic connections. The findings of this study demonstrate the clinical feasibility of hESC-retina transplantation and provide the practical tools for the optimization of transplantation strategies for future clinical applications. PMID:26699487

  1. Murine Ccl2/Cx3cr1 Deficiency Results in Retinal Lesions Mimicking Human Age-Related Macular Degeneration

    PubMed Central

    Tuo, Jingsheng; Bojanowski, Christine M.; Zhou, Min; Shen, Defen; Ross, Robert J.; Rosenberg, Kevin I.; Cameron, D. Joshua; Yin, Chunyue; Kowalak, Jeffrey A.; Zhuang, Zhengping; Zhang, Kang; Chan, Chi-Chao

    2007-01-01

    Purpose Senescent Ccl2-/- mice are reported to develop cardinal features of human age-related macular degeneration (AMD). Loss-of-function single-nucleotide polymorphisms within CX3CR1 are also found to be associated with AMD. The authors generated Ccl2-/-/Cx3cr1-/- mice to establish a more characteristic and reproducible AMD model. Methods Single Ccl2- and Cx3cr1-deficient mice were crossbred to obtain Ccl2-/-/Cx3cr1-/- mice. Funduscopy, histopathology, retinal A2E quantification, proteomics, RT-PCR gene expression assay, immunochemistry, and Western blotting were used to examine the retina and to evaluate gene expression within the retinal tissue. Results By 6 weeks of age, all Ccl2-/-/Cx3cr1-/- mice developed AMD-like retinal lesions, including drusen, retinal pigment epithelium alteration, and photoreceptor degeneration. Furthermore, choroidal neovascularization occurred in 15% of the mice. These degenerative lesions progressed with age. A2E, a major lipofuscin fluorophore that accumulated during AMD progression, was significantly higher in the Ccl2-/-/Cx3cr1-/- retina than in the wild-type retina. Complement cofactor was higher in the Ccl2-/-/Cx3cr1-/- RPE. Proteomics data indicated that four proteins were differentially expressed in Ccl2-/-/Cx3cr1-/- retina compared with control. One of these proteins, ERp29, an endoplasmic reticulum protein, functions as an escort chaperone and in protein folding. Conclusions The authors concluded that Ccl2-/-/Cx3cr1-/- mice develop a broad spectrum of AMD abnormalities with early onset and high penetrance. These observations implicate certain chemokines and endoplasmic reticulum proteins in AMD pathogenesis. Similar to the mechanism of neurodegeneration caused by dysfunction of endoplasmic reticulum proteins, decreased chaperoning may cause misfolded protein accumulation, leading to drusen formation and retinal degeneration. PMID:17652758

  2. Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling

    PubMed Central

    Pereira, Catarina Leite; Teixeira, Graciosa Q.; Ribeiro-Machado, Cláudia; Caldeira, Joana; Costa, Madalena; Figueiredo, Francisco; Fernandes, Rui; Aguiar, Paulo; Grad, Sibylle; Barbosa, Mário A.; Gonçalves, Raquel M.

    2016-01-01

    Intervertebral disc (IVD) degeneration is characterized by significant biochemical and histomorphological alterations, such as loss of extracellular matrix (ECM) integrity, by abnormal synthesis of ECM main components, resultant from altered anabolic/catabolic cell activities and cell death. Mesenchymal Stem/Stromal Cell (MSC) migration towards degenerated IVD may represent a viable strategy to promote tissue repair/regeneration. Here, human MSCs (hMSCs) were seeded on top of cartilaginous endplates (CEP) of nucleotomized IVDs of bovine origin and cultured ex vivo up to 3 weeks. hMSCs migrated from CEP towards the lesion area and significantly increased expression of collagen type II and aggrecan in IVD, namely in the nucleus pulposus. Concomitantly, hMSCs stimulated the production of growth factors, promoters of ECM synthesis, such as fibroblast growth factor 6 (FGF-6) and 7 (FGF-7), platelet-derived growth factor receptor (PDGF-R), granulocyte-macrophage colony-stimulating factor (GM-CSF) and insulin-like growth factor 1 receptor (IGF-1sR). Overall, our results demonstrate that CEP can be an alternative route to MSC-based therapies for IVD regeneration through ECM remodeling, thus opening new perspectives on endogenous repair capacity through MSC recruitment. PMID:27652931

  3. MECHANICAL DESIGN CRITERIA FOR INTERVERTEBRAL DISC TISSUE ENGINEERING

    PubMed Central

    Nerurkar, Nandan L.; Elliott, Dawn M.; Mauck, Robert L.

    2009-01-01

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviour, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying measures where functional equivalence was achieved, and others where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. PMID:20080239

  4. A53T Human α-Synuclein Overexpression in Transgenic Mice Induces Pervasive Mitochondria Macroautophagy Defects Preceding Dopamine Neuron Degeneration

    PubMed Central

    Xie, Zhiguo; Turkson, Susie

    2015-01-01

    In vitro evidence suggests that the inefficient removal of damaged mitochondria by macroautophagy contributes to Parkinson's disease (PD). Using a tissue-specific gene amplification strategy, we generated a transgenic mouse line with human α-synuclein A53T overexpression specifically in dopamine (DA) neurons. Transgenic mice showed profound early-onset mitochondria abnormalities, characterized by macroautophagy marker-positive cytoplasmic inclusions containing mainly mitochondrial remnants, which preceded the degeneration of DA neurons. Genetic deletion of either parkin or PINK1 in these transgenic mice significantly worsened mitochondrial pathologies, including drastically enlarged inclusions and loss of total mitochondria contents. These data suggest that mitochondria are the main targets of α-synuclein and their defective autophagic clearance plays a significant role during pathogenesis. Moreover, endogenous PINK1 or parkin is indispensable for the proper autophagic removal of damaged mitochondria. Our data for the first time establish an essential link between mitochondria macroautophagy impairments and DA neuron degeneration in an in vivo model based on known PD genetics. The model, its well-defined pathologies, and the demonstration of a main pathogenesis pathway in the present study have set the stage and direction of emphasis for future studies. PMID:25609609

  5. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer.

    PubMed

    Takahashi, M; Miyoshi, H; Verma, I M; Gage, F H

    1999-09-01

    Retinitis pigmentosa (RP) is the most common inherited retinal disease, in which photoreceptor cells degenerate, leading to blindness. Mutations in the rod photoreceptor cGMP phosphodiesterase beta subunit (PDEbeta) gene are found in patients with autosomal recessive RP as well as in the rd mouse. We have recently shown that lentivirus vectors based on human immunodeficiency virus (HIV) type 1 achieve stable and efficient gene transfer into retinal cells. In this study, we evaluated the potential of HIV vector-mediated gene therapy for RP in the rd mouse. HIV vectors containing a gene encoding a hemagglutinin (HA)-tagged PDEbeta were injected into the subretinal spaces of newborn rd mouse eyes. One to three rows of photoreceptor nuclei were observed in the eyes for at least 24 weeks postinjection, whereas no photoreceptor cells remained in the eyes of control animals at 6 weeks postinjection. Expression of HA-tagged PDEbeta in the rescued photoreceptor cells was confirmed by two-color confocal immunofluorescence analysis using anti-HA and anti-opsin antibodies. HIV vector-mediated gene therapy appears to be a promising means for the treatment of recessive forms of inherited retinal degeneration.

  6. Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis

    PubMed Central

    Bian, Qin; Ma, Lei; Jain, Amit; Crane, Janet L; Kebaish, Khaled; Wan, Mei; Zhang, Zhengdong; Edward Guo, X; Sponseller, Paul D; Séguin, Cheryle A; Riley, Lee H; Wang, Yongjun; Cao, Xu

    2017-01-01

    Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αvβ6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin αv in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and αvβ6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD. PMID:28392965

  7. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    SciTech Connect

    Liang, Weiguo; Fang, Dejian; Ye, Dongping; Zou, Longqiang; Shen, Yan; Dai, Libing; Xu, Jiake

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.

  8. Intervertebral disc regeneration: from the degenerative cascade to molecular therapy and tissue engineering.

    PubMed

    Vadalà, Gianluca; Russo, Fabrizio; Di Martino, Alberto; Denaro, Vincenzo

    2015-06-01

    Low back pain is one of the major health problems in industrialized countries, as a leading source of disability in the working population. Intervertebral disc degeneration has been identified as its main cause, being a progressive process mainly characterized by alteration of extracellular matrix composition and water content. Many factors are involved in the degenerative cascade, such as anabolism/catabolism imbalance, reduction of nutrition supply and progressive cell loss. Currently available treatments are symptomatic, and surgical procedures consisting of disc removal are often necessary. Recent advances in our understanding of intervertebral disc biology led to an increased interest in the development of novel biological treatments aimed at disc regeneration. Growth factors, gene therapy, stem cell transplantation and biomaterials-based tissue engineering might support intervertebral disc regeneration by overcoming the limitation of the self-renewal mechanism. The aim of this paper is to overview the literature discussing the current status of our knowledge from the degenerative cascade of the intervertebral disc to the latest molecular, cell-based therapies and tissue-engineering strategies for disc regeneration.

  9. Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) for the detection of novel viruses in non-human primates.

    PubMed

    Staheli, Jeannette P; Ryan, Jonathan T; Bruce, A Gregory; Boyce, Richard; Rose, Timothy M

    2009-09-01

    Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) have proven to be a powerful tool for the identification of novel genes. CODEHOPs are designed from highly-conserved regions of multiply-aligned protein sequences from members of a gene family and are used in PCR amplification to identify distantly-related genes. The CODEHOP approach has been used to identify novel pathogens by targeting amino acid motifs conserved in specific pathogen families. We initiated a program utilizing the CODEHOP approach to develop PCR-based assays targeting a variety of viral families that are pathogens in non-human primates. We have also developed and further improved a computer program and website to facilitate the design of CODEHOP PCR primers. Here, we detail the method for the development of pathogen-specific CODEHOP PCR assays using the papillomavirus family as a target. Papillomaviruses constitute a diverse virus family infecting a wide variety of mammalian species, including humans and non-human primates. We demonstrate that our pan-papillomavirus CODEHOP assay is broadly reactive with all major branches of the virus family and show its utility in identifying a novel non-human primate papillomavirus in cynomolgus macaques.

  10. Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles

    2011-01-01

    Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336

  11. Experimental Application of Bone Marrow Mesenchymal Stem Cells for the Repair of Intervertebral Disc Annulus Fibrosus

    PubMed Central

    Li, Xiaohe; Zhang, Yunfeng; Song, Bin; En, He; Gao, Shang; Zhang, Shaojie; Cai, Yongqiang; Li, Zhi-jun; Li, Cunbao; Wang, Weiping; Wang, Xin; Wang, Haiyan; Wang, Zhiqiang; Zhang, Qi; Ma, Jierong

    2016-01-01

    Background This study provides experimental results on the applicability of bone marrow mesenchymal stem cells (BMSCs) for the repair of intervertebral disc annulus fibrosus in rabbits. Material/Method Thirty healthy rabbits were randomized into an observation group (n=15) and a control group (n=15). Both groups underwent degeneration of intervertebral disc annulus fibrosus. The observation group was treated with a solution of BMSCs and dexamethasone sodium phosphate, while the control group was treated with dexamethasone sodium phosphate only. Results The two groups were compared for efficacy and pathological conditions after treatment. Both disc height index and level of type II collagen in nucleus pulposus were significantly higher in the observation group than in the control group at 2, 4, 8, and 12 weeks after degeneration (p<0.05 for all comparisons). The percentages of grade 0 and grade 1 were significantly higher in the observation group than in the control group (p<0.05 for both grade 0 and 1 comparisons), while the percentage of grade 4 and grade 5 were significantly lower in the observation group than in the control group (p<0.05 for both grade 4 and 5 comparisons). Conclusions BMSCs cultured in vitro can effectively repair intervertebral disc annulus fibrosus, which is of positive significance, and thus is clinically recommended. PMID:27857031

  12. Intervertebral diskitis caused by Kingella kingae.

    PubMed

    Woolfrey, B F; Lally, R T; Faville, R J

    1986-06-01

    A case of childhood intervertebral diskitis caused by Kingella kingae is presented. In a review of the literature, the authors found 33 reported cases of infection caused by species of the Kingella genus, of which 29 were due to K. kingae. Of the 33 cases, 42% represented bacterial endocarditis and 48% bone and joint infection. Of the 16 bone and joint infections, 11 represented septic arthritis, 3 osteomyelitis, and 2 intervertebral diskitis, the latter finding making the authors' case of K. kingae intervertebral diskitis the third to be reported. A review of the bacteriologic findings in cases of childhood intervertebral diskitis indicates a prominent role for fastidious microorganisms and the need for careful attention to specimen procurement and microbiologic processing.

  13. Genetics Home Reference: intervertebral disc disease

    MedlinePlus

    ... link) National Institute of Neurological Disorders and Stroke: Low Back Pain Fact Sheet Educational Resources (8 links) American Association ... MalaCards: intervertebral disc disease Merck Manual Consumer Version: Low Back Pain Merck Manual Consumer Version: Neck Pain The Children's ...

  14. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation.

    PubMed

    Clouthier, Allison L; Hosseini, Hadi S; Maquer, Ghislain; Zysset, Philippe K

    2015-06-01

    Vertebral compression fractures are becoming increasingly common. Patient-specific nonlinear finite element (FE) models have shown promise in predicting yield strength and damage pattern but have not been experimentally validated for clinically relevant vertebral fractures, which involve loading through intervertebral discs with varying degrees of degeneration up to large compressive strains. Therefore, stepwise axial compression was applied in vitro on segments and performed in silico on their FE equivalents using a nonlocal damage-plastic model including densification at large compression for bone and a time-independent hyperelastic model for the disc. The ability of the nonlinear FE models to predict the failure pattern in large compression was evaluated for three boundary conditions: healthy and degenerated intervertebral discs and embedded endplates. Bone compaction and fracture patterns were predicted using the local volume change as an indicator and the best correspondence was obtained for the healthy intervertebral discs. These preliminary results show that nonlinear finite element models enable prediction of bone localisation and compaction. To the best of our knowledge, this is the first study to predict the collapse of osteoporotic vertebral bodies up to large compression using realistic loading via the intervertebral discs.

  15. Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration.

    PubMed

    Scholz, B; Kinzelmann, C; Benz, K; Mollenhauer, J; Wurst, H; Schlosshauer, B

    2010-07-13

    An injectable polyethylene glycol-crosslinked albumin gel (AG) supplemented with hyaluronic acid as a matrix for autologous chondrocyte implantation was evaluated with regard to its impact on angiogenesis. Healthy articular cartilage and intervertebral discs (IVD) are devoid of blood vessels, whereas pathological blood vessel formation augments degeneration of both theses tissues. In contrast to human endothelial cells, primary human articular chondrocytes encapsulated in the AG retained their viability. Endothelial cells did not adhere to the gel surface to a significant extent nor did they proliferate in vitro. The AG did not release any diffusible toxic components. Contrary to Matrigel employed as positive control, the AG prevented endothelial chemoinvasion in Transwell filter assays even in the presence of a chemotactic gradient of vascular endothelial growth factor. In ovo, the AG exhibited a barrier function for blood vessels of the chick chorioallantoic membrane. Subcutaneous implantation of human IVD chondrocytes enclosed in the albumin gel into immunodeficient mice revealed a complete lack of angiogenesis inside the gel after two weeks. At the same time, the IVD chondrocytes within the gel remained vital and displayed a characteristic gene expression pattern as judged from aggrecan, collagen type I and type II mRNA levels. In summary, aiming at articular cartilage and IVD regeneration the albumin gel promises to be a beneficial implant matrix for chondrocytes simultaneously exhibiting non-permissive properties for adverse endothelial cells.

  16. Polarization sensitive changes in the human macula associated with normal aging and age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    VanNasdale, Dean Allan, Jr.

    2011-12-01

    The human macula occupies a relatively small, but crucial retinal area, as it is the location responsible for our most acute spatial vision and best color discrimination. Localizing important landmarks in the retina is difficult even in normal eyes where morphological inter-individual variability is high. This becomes even more challenging in the presence of sight-threatening pathology. With respect to the human macula, there remains a significant gap in the understanding of normal structure and function. Even less is known about the pathological mechanisms that occur in sight-threatening diseases including age-related macular degeneration. Because relatively little is known about normal aging changes, it is also difficult to differentiate those changes from changes associated with retinal disease. To better understand normal and pathological changes in the macula, imaging techniques using specific optical signatures are required. Structural features in the macula can be distinguished based on their intrinsic properties using specific light/tissue interactions. Because of the high degree of structural regularity in the macula, polarization sensitive imaging is potentially a useful tool for evaluating the morphology and integrity of the cellular architecture for both normal individuals and those affected by disease. In our investigations, we used polarization sensitive imaging to determining normal landmarks that are important clinically and for research investigations. We found that precision and accuracy in localizing the central macula was greatly improved through the use of polarization sensitive imaging. We also found that specific polarization alterations can be used to demonstrate systematic changes as a function of age, disproportionately affecting the central macular region. When evaluating patients with age-related macular degeneration, we found that precision and accuracy of localizing the central macula was also improved, even when significant pathology

  17. Cloning of a gene encoding a lupus-associated human autoantibody VK region using the polymerase chain reaction and degenerate primers.

    PubMed

    Chastagner, P; Thèze, J; Zouali, M

    1991-05-30

    The variable light-chain-encoding gene of a human autoantibody secreted by a B-cell hybridoma derived from a patient with systemic lupus erythematosus was amplified using the polymerase chain reaction and degenerate primers. After cloning, the nucleotide sequence of the EcoRI-HindIII region was determined. It is highly homologous to a previously described gene expressed by a human lymphoid cell line.

  18. Mesenchymal stem cell tracking in the intervertebral disc

    PubMed Central

    Handley, Charles; Goldschlager, Tony; Oehme, David; Ghosh, Peter; Jenkin, Graham

    2015-01-01

    Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc (IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure. Conservative management, including analgesia and physiotherapy often fails and surgical treatment, such as spinal fusion, is required. Stem cells offer an exciting possible regenerative approach to IVD disease. Preclinical research has demonstrated promising biochemical, histological and radiological results in restoring degenerate IVDs. Cell tracking provides an opportunity to develop an in-depth understanding of stem cell survival, differentiation and migration, enabling optimization of stem cell treatment. Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing imaging modality with high spatial resolution, ideally suited for stem cell tracking. Furthermore, novel MRI sequences have the potential to quantitatively assess IVD disease, providing an improved method to review response to biological treatment. Superparamagnetic iron oxide nanoparticles have been extensively researched for the purpose of cell tracking. These particles are biocompatible, non-toxic and act as excellent MRI contrast agents. This review will explore recent advances and issues in stem cell tracking and molecular imaging in relation to the IVD. PMID:25621106

  19. Apparent diffusion coefficient in normal and abnormal pattern of intervertebral lumbar discs: initial experience☆

    PubMed Central

    Niu, Gang; Yu, Xuewen; Yang, Jian; Wang, Rong; Zhang, Shaojuan; Guo, Youmin

    2011-01-01

    The aim of the present study was to compare the relationship of morphologically defined non-bulging/herniated, bulging and herniated intervertebral lumbar discs with quantitative apparent diffusion coefficient (ADC). Thirty-two healthy volunteers and 28 patients with back pain or sciatica were examined by MRI. All intervertebral lumbar discs from L1 to S1 were classified according to morphological abnormality and degenerated grades. The ADC values of nucleus pulposus (NP) were measured and recorded. The significant differences about mean ADC values of NP were found between non-bulging/herniated discs and bulging discs as well as herniated discs (P < 0.05), whereas there were no significant differences in ADC values between bulging and herniated discs (P > 0.05). Moreover, statistically significant relationship was found in the mean ADC values of NP between “non-bulging/herniated and non-degenerated discs” and “non-bulging/herniated degenerated discs” as well as herniated discs (P < 0.05). Linear regression analysis between ADC value and disc level revealed an inverse correlation (r = -0.18). The ADC map of the NP is a potentially useful tool for the quantitative assessment of componential and molecular alterations accompanied with lumbar disc abnormalities. PMID:23554690

  20. Investigation of different cell types and gel carriers for cell-based intervertebral disc therapy, in vitro and in vivo studies.

    PubMed

    Henriksson, H B; Hagman, M; Horn, M; Lindahl, A; Brisby, H

    2012-10-01

    Biological treatment options for the repair of intervertebral disc damage have been suggested for patients with chronic low back pain. The aim of this study was to investigate possible cell types and gel carriers for use in the regenerative treatment of degenerative intervertebral discs (IVD). In vitro: human mesenchymal cells (hMSCs), IVD cells (hDCs), and chondrocytes (hCs) were cultivated in three gel types: hyaluronan gel (Durolane®), hydrogel (Puramatrix®), and tissue-glue gel (TISSEEL®) in chondrogenic differentiation media for 9 days. Cell proliferation and proteoglycan accumulation were evaluated with microscopy and histology. In vivo: hMSCs or hCs and hyaluronan gel were co-injected into injured IVDs of six minipigs. Animals were sacrificed at 3 or 6 months. Transplanted cells were traced with anti-human antibodies. IVD appearance was visualized by MRI, immunohistochemistry, and histology. Hyaluronan gel induced the highest cell proliferation in vitro for all cell types. Xenotransplanted hMSCs and hCs survived in porcine IVDs for 6 months and produced collagen II in all six animals. Six months after transplantation of cell/gel, pronounced endplate changes indicating severe IVD degeneration were observed at MRI in 1/3 hC/gel, 1/3 hMSCs/gel and 1/3 gel only injected IVDs at MRI and 1/3 hMSC/gel, 3/3 hC/gel, 2/3 gel and 1/3 injured IVDs showed positive staining for bone mineralization. In 1 of 3 discs receiving hC/gel, in 1 of 3 receiving hMSCs/gel, and in 1 of 3 discs receiving gel alone. Injected IVDs on MRI results in 1 of 3 hMSC/gel, in 3 of 3 hC/gel, in 2 of 3 gel, and in 1 of 3 injured IVDs animals showed positive staining for bone mineralization. The investigated hyaluronan gel carrier is not suitable for use in cell therapy of injured/degenerated IVDs. The high cell proliferation observed in vitro in the hyaluronan could have been a negative factor in vivo, since most cell/gel transplanted IVDs showed degenerative changes at MRI and

  1. Development of Lead Hammerhead Ribozyme Candidates against Human Rod Opsin mRNA for Retinal Degeneration Therapy

    PubMed Central

    Abdelmaksoud, Heba E.; Yau, Edwin H.; Zuker, Michael; Sullivan, Jack M.

    2011-01-01

    To identify lead candidate allele-independent hammerhead ribozymes (hhRz) for the treatment of autosomal dominant mutations in the human rod opsin (RHO) gene, we tested a series of hhRzs for potential to significantly knockdown human RHO gene expression in a human cell expression system. Multiple computational criteria were used to select target mRNA regions likely to be single stranded and accessible to hhRz annealing and cleavage. Target regions are tested for accessibility in a human cell culture expression system where the hhRz RNA and target mRNA and protein are coexpressed. The hhRz RNA is embedded in an adenoviral VAI RNA chimeric RNA of established structure and properties which are critical to the experimental paradigm. The chimeric hhRz-VAI RNA is abundantly transcribed so that the hhRzs are expected to be in great excess over substrate mRNA. HhRz-VAI traffics predominantly to the cytoplasm to colocalize with the RHO mRNA target. Colocalization is essential for second-order annealing reactions. The VAI chimera protects the hhRz RNA from degradation and provides for a long half life. With cell lines chosen for high transfection efficiency and a molar excess of hhRz plasmid over target plasmid, the conditions of this experimental paradigm are specifically designed to evaluate for regions of accessibility of the target mRNA in cellulo. Western analysis was used to measure the impact of hhRz expression on RHO protein expression. Three lead candidate hhRz designs were identified that significantly knockdown target protein expression relative to control (p < 0.05). Successful lead candidates (hhRz CUC↓ 266, hhRz CUC↓ 1411, hhRz AUA↓ 1414) targeted regions of human RHO mRNA that were predicted to be accessible by a bioinformatics approach, whereas regions predicted to be inaccessible supported no knockdown. The maximum opsin protein level knockdown is approximately 30% over a 48 hr paradigm of testing. These results validate a rigorous computational

  2. Muscle biopsies show that FES of denervated muscles reverses human muscle degeneration from permanent spinal motoneuron lesion.

    PubMed

    Kern, Helmut; Rossini, Katia; Carraro, Ugo; Mayr, Winfried; Vogelauer, Michael; Hoellwarth, Ursula; Hofer, Christian

    2005-01-01

    This paper presents biopsy analyses in support of the clinical evidence of muscle recovery induced by a new system of life-long functional-electrical-stimulation (FES) training in permanent spinal-motoneuron-denervated human muscle. Not earlier than 1 year after subjects experienced complete conus cauda lesion, their thigh muscles were electrically stimulated at home for several years with large skin surface electrodes and an expressly designed stimulator that delivered much longer impulses than those presently available for clinical use. The poor excitability of long-term denervated muscles was first improved by several months of twitch-contraction training. Then, the muscles were tetanically stimulated against progressively increased loads. Needle biopsies of vastus lateralis from long-term denervated subjects showed severe myofiber atrophy or lipodystrophy beginning 2 years after spinal cord injury (SCI). Muscle biopsies from a group of 3.6- to 13.5-year denervated subjects, who underwent 2.4 to 9.3 years of FES, show that this progressive training almost reverted long-term muscle atrophy/degeneration.

  3. Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo--associated paraneoplastic cerebellar degeneration.

    PubMed

    Rojas-Marcos, Iñigo; Picard, Geraldine; Chinchón, David; Gelpi, Ellen; Psimaras, Dimitri; Giometto, Bruno; Delattre, J Y; Honnorat, J; Graus, F

    2012-04-01

    Isolated case reports suggest that breast tumors from patients with paraneoplastic cerebellar degeneration (PCD) and Yo antibodies overexpress human epidermal growth factor receptor 2 (HER2). HER2 overexpression is present in 15%-25% of breast cancers and is associated with poor prognosis. We retrospectively analyzed the status of HER2 in breast tumors of 27 patients with anti-Yo-associated PCD to evaluate whether HER2 overexpression in this group of patients is higher than expected. In addition, we analyzed HER2 status of 19 breast tumors from patients with paraneoplastic neurological syndromes and Ri antibodies to see whether HER2 was specifically related to anti-Yo-associated PCD. We also assessed cdr2 expression (the onconeural antigen recognized by Yo antibodies) in 21 HER2-positive breast tumors from patients without paraneoplastic neurological syndromes. HER2 was overexpressed in 26 patients (96.3%) with anti-Yo-associated PCD but only in 2 patients (10.5%) with paraneoplastic neurological syndromes associated with Ri antibodies (P< .0001). Only 5 (23.8%) of the 21 HER2-positive breast tumors showed cdr2 immunoreactivity. This study shows a very high frequency of HER2 overexpression in breast cancers in patients with anti-Yo-associated PCD but not in those from patients with Ri antibodies. Although the expression of cdr2 onconeural antigen is not high in HER2-positive breast cancers, HER2 overexpression seems to be an important requirement to develop an anti-Yo-associated PCD.

  4. Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration.

    PubMed

    Saini, Janmeet S; Corneo, Barbara; Miller, Justine D; Kiehl, Thomas R; Wang, Qingjie; Boles, Nathan C; Blenkinsop, Timothy A; Stern, Jeffrey H; Temple, Sally

    2017-01-21

    Age-related macular degeneration (AMD) affects the retinal pigment epithelium (RPE), a cell monolayer essential for photoreceptor survival, and is the leading cause of vision loss in the elderly. There are no disease-altering therapies for dry AMD, which is characterized by accumulation of subretinal drusen deposits and complement-driven inflammation. We report the derivation of human-induced pluripotent stem cells (hiPSCs) from patients with diagnosed AMD, including two donors with the rare ARMS2/HTRA1 homozygous genotype. The hiPSC-derived RPE cells produce several AMD/drusen-related proteins, and those from the AMD donors show significantly increased complement and inflammatory factors, which are most exaggerated in the ARMS2/HTRA1 lines. Using a panel of AMD biomarkers and candidate drug screening, combined with transcriptome analysis, we discover that nicotinamide (NAM) ameliorated disease-related phenotypes by inhibiting drusen proteins and inflammatory and complement factors while upregulating nucleosome, ribosome, and chromatin-modifying genes. Thus, targeting NAM-regulated pathways is a promising avenue for developing therapeutics to combat AMD.

  5. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord‐specific markers during early human intervertebral disc development

    PubMed Central

    Rodrigues‐Pinto, Ricardo; Berry, Andrew; Piper‐Hanley, Karen; Hanley, Neil; Richardson, Stephen M.

    2016-01-01

    ABSTRACT In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte‐like cells. Although animal studies indicate that notochord‐derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5–18 weeks post‐conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E‐cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co‐expressed by sclerotomal cells. CD90, Tie2, and E‐cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord‐specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327–1340, 2016. PMID:26910849

  6. Differential expression of galectin-1 and its interactions with cells and laminins in the intervertebral disc.

    PubMed

    Jing, Liufang; So, Stephen; Lim, Shaun W; Richardson, William J; Fitch, Robert D; Setton, Lori A; Chen, Jun

    2012-12-01

    Galectin-1 (Gal-1), an endogenous β-galactoside-binding protein, binds to laminins, which are highly expressed in the nucleus pulposus (NP) of the intervertebral disc (IVD). The objective of this study is to evaluate the expression of Gal-1 protein in IVD tissues during aging and the effect of Gal-1 on IVD cell adhesion to laminins. Tissues from rat, porcine, and human (scoliosis or disc degeneration) IVDs were used to evaluate Gal-1 expression via immunostaining, RT-PCR, and Western blot analysis. Attachment of isolated IVD cells (porcine and human) on select laminin isoforms (LM-111 and LM-511) was compared with/without pre-incubation with exogenous Gal-1. A biotinylated Gal-1(B-Gal-1) was used to evaluate for binding to IVD cells and to select for IVD cells by magnetic activated cell sorting (MACS). NP cells expressed high levels of Gal-1 protein as compared to anulus fibrosus (AF) cells in immature tissues, while exogenous Gal-1 increased both NP and AF cell attachment to laminins and exhibited a similar binding to both cell types in vitro. With aging, Gal-1 levels in NP tissue appeared to decrease. In addition, incubation with B-Gal-1 was able to promote the retention of more than 50% of IVD cells via MACS. Our results provide new findings for the presence and functional role of Gal-1 within IVDs. Similar staining patterns for Gal-1 and LM-511 in IVD tissue suggest that Gal-1 may serve as an adhesion molecule to interact with both cells and laminins. This MACS protocol may be useful for selecting pure IVD cells from mixed cells of pathological tissue.

  7. Research resource: nuclear receptor atlas of human retinal pigment epithelial cells: potential relevance to age-related macular degeneration.

    PubMed

    Dwyer, Mary A; Kazmin, Dmitri; Hu, Peng; McDonnell, Donald P; Malek, Goldis

    2011-02-01

    Retinal pigment epithelial (RPE) cells play a vital role in retinal physiology by forming the outer blood-retina barrier and supporting photoreceptor function. Retinopathies including age-related macular degeneration (AMD) involve physiological and pathological changes in the epithelium, severely impairing the retina and effecting vision. Nuclear receptors (NRs), including peroxisome proliferator-activated receptor and liver X receptor, have been identified as key regulators of physiological pathways such as lipid metabolic dysregulation and inflammation, pathways that may also be involved in development of AMD. However, the expression levels of NRs in RPE cells have yet to be systematically surveyed. Furthermore, cell culture lines are widely used to study the biology of RPE cells, without knowledge of the differences or similarities in NR expression and activity between these in vitro models and in vivo RPE. Using quantitative real-time PCR, we assessed the expression patterns of all 48 members of the NR family plus aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator in human RPE cells. We profiled freshly isolated cells from donor eyes (in vivo), a spontaneously arising human cell line (in vitro), and primary cell culture lines (in vitro) to determine the extent to which NR expression in the cultured cell lines reflects that of in vivo. To evaluate the validity of using cell culture models for investigating NR receptor biology, we determined transcriptional activity and target gene expression of several moderately and highly expressed NRs in vitro. Finally, we identified a subset of NRs that may play an important role in pathobiology of AMD.

  8. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-related Macular Degeneration.

    PubMed

    Nagineni, Chandrasekharam N; Kommineni, Vijay K; Ganjbaksh, Nader; Nagineni, Krishnasai K; Hooks, John J; Detrick, Barbara

    2015-11-01

    Chemokine reeptor-3 (CCR-3) was shown to be associated with choroidal neovascularization (CNV) in age-related macular degeneration (AMD). AMD is a vision threatening retinal disease that affects the aging population world-wide. Retinal pigment epithelium and choroid in the posterior part of the retina are the key tissues targeted in the pathogenesis of CNV in AMD. We used human retinal pigment epithelial (HRPE) and choroidal fibroblast (HCHF) cells, prepared from aged adult human donor eyes, to evaluate the expression of major CCR-3 ligands, CCL-5, CCL -7, CCL-11,CCL-24 and CCL-26. Microarray analysis of gene expression in HRPE cells treated with inflammatory cytokine mix (ICM= IFN-γ+TNF-α+IL-1β) revealed 75 and 23-fold increase in CCL-5 and CCL-7 respectively, but not CCL-11, CCL-24 and CCL-26. Chemokine secretion studies of the production of CCL5 and CCL7 by HRPE corroborated with the gene expression analysis data. When the HRPE cells were treated with either individual cytokines or the ICM, both CCL-5 and CCL-7 were produced in a dose dependent manner. Similar to the gene expression data, the ICM did not enhance HRPE production of CCL-11, CCL-24 and CCL-26. CCL-11 and CCL-26 were increased with IL-4 treatment and this HRPE production was augmented in the presence of TNF-α and IL1β. When HCHF cells were treated with either individual cytokines or the ICM, both CCL-5 and CCL-7 were produced in a dose dependent fashion. IL-4 induced low levels of CCL-11 and CCL-26 in HCHF and this production was significantly enhanced by TNF-α. Under these conditions, neither HRPE nor HCHF were demonstrated to produce CCL-24. These data demonstrate that chronic inflammation triggers CCL-5 and CCL-7 release by HRPE and HCHF and the subsequent interactions with CCR3 may participate in pathologic processes in AMD.

  9. Differentiating the aging of the mitral valve from human and canine myxomatous degeneration

    PubMed Central

    Connell, Patrick S.; Han, Richard I.; Grande-Allen, K. Jane

    2012-01-01

    During the course of both canine and human aging, the mitral valve remodels in generally predictable ways. The connection between these aging changes and the morbidity and mortality that accompany pathologic conditions has not been made clear. By exploring work that has investigated the specific valvular changes in both age and disease, with respect to the cells and the extracellular matrix found within the mitral valve, heretofore unexplored connections between age and myxomatous valve disease can be found. This review addresses several studies that have been conducted to explore such age and disease related changes in extracellular matrix, valvular endothelial and interstitial cells, and valve innervation, and also reviews attempts to correlate aging and myxomatous disease. Such connections can highlight avenues for future research and help provide insight as to when an individual diverts from an aging pattern into a diseased pathway. Recognizing these patterns and opportunities could result in earlier intervention and the hope of reduced morbidity and mortality for patients. PMID:22364720

  10. Safety and Efficacy of Human Wharton's Jelly-Derived Mesenchymal Stem Cells Therapy for Retinal Degeneration

    PubMed Central

    Leow, S. N.; Luu, Chi D.; Hairul Nizam, M. H.; Mok, P. L.; Ruhaslizan, R.; Wong, H. S.; Wan Abdul Halim, Wan Haslina; Ng, M. H.; Ruszymah, B. H. I.; Chowdhury, S. R.; Bastion, M. L. C.; Then, K. Y.

    2015-01-01

    Purpose To investigate the safety and efficacy of subretinal injection of human Wharton’s Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats. Methods RCS rats were divided into 2 groups: hWJ-MSCs treated group (n = 8) and placebo control group (n = 8). In the treatment group, hWJ-MSCs from healthy donors were injected into the subretinal space in one eye of each rat at day 21. Control group received saline injection of the same volume. Additional 3 animals were injected with nanogold-labelled stem cells for in vivo tracking of cells localisation using a micro-computed tomography (microCT). Retinal function was assessed by electroretinography (ERG) 3 days before the injection and repeated at days 15, 30 and 70 after the injection. Eyes were collected at day 70 for histology, cellular and molecular studies. Results No retinal tumor formation was detected by histology during the study period. MicroCT scans showed that hWJ-MSCs stayed localised in the eye with no systemic migration. Transmission electron microscopy showed that nanogold-labelled cells were located within the subretinal space. Histology showed preservation of the outer nuclear layer (ONL) in the treated group but not in the control group. However, there were no significant differences in the ERG responses between the groups. Confocal microscopy showed evidence of hWJ-MSCs expressing markers for photoreceptor, Müller cells and bipolar cells. Conclusions Subretinal injection of hWJ-MSCs delay the loss of the ONL in RCS rats. hWJ-MSCs appears to be safe and has potential to differentiate into retinal-like cells. The potential of this cell-based therapy for the treatment of retinal dystrophies warrants further studies. PMID:26107378

  11. Transcriptome Analysis of Human Injured Meniscus Reveals a Distinct Phenotype of Meniscus Degeneration with Aging

    PubMed Central

    Rai, Muhammad Farooq; Patra, Debabrata; Sandell, Linda J.; Brophy, Robert H.

    2013-01-01

    Objective Meniscus tears are associated with a heightened risk for osteoarthritis. We aimed to advance our understanding of the metabolic state of human injured meniscus at the time of arthroscopic partial meniscectomy through transcriptome-wide analysis of gene expression in relation to patient age and degree of cartilage chondrosis. Methods The degree of chondrosis of knee cartilage was recorded at the time of meniscectomy in symptomatic patients without radiographic osteoarthritis. RNA preparations from resected menisci (N=12) were subjected to transcriptome-wide microarray and QuantiGene Plex analyses. The relative changes in gene expression variation with age and chondrosis were analyzed and integrated biological processes were investigated computationally. Results We identified a set of genes in torn meniscus that were differentially expressed with age and chondrosis. There were 866 genes differentially regulated (≥1.5-fold; P<0.05) with age and 49 with chondrosis. In older patients, genes associated with cartilage and skeletal development and extracellular matrix synthesis were repressed while those involved in immune response, inflammation, cell cycle, and cellular proliferation were stimulated. With chondrosis, genes representing cell catabolism (cAMP catabolic process) and tissue and endothelial cell development were repressed and those involved in T cell differentiation and apoptosis were elevated. Conclusion Differences in age-related gene expression suggest that in older adults, meniscal cells might de-differentiate and initiate a proliferative phenotype. Conversely, meniscal cells in younger patients appear to respond to injury, but maintain the differentiated phenotype. Definitive molecular signatures identified in damaged meniscus could be segregated largely with age and, to a lesser extent, with chondrosis. PMID:23658108

  12. Striatopallidonigral degeneration

    PubMed Central

    Bell, W. E.; McCormick, W. F.

    1971-01-01

    A 15-year-old girl is described with a sporadic, progressive illness manifested by unilateral limb rigidity and dystonia. Obvious dysarthria and some intellectual decline also were noted. Neuropathological findings included gross discoloration and shrinkage of the pallida and, microscopically, profound neuronal loss and gliosis of the caudata and putamena, with less severe neuronal loss from the pallida and substantia nigra. The disease bears some similarities to striatonigral degeneration, but certain clinical and morphological differences justify its consideration as a separate syndrome. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:5565467

  13. Curcuma DMSO extracts and curcumin exhibit an anti-inflammatory and anti-catabolic effect on human intervertebral disc cells, possibly by influencing TLR2 expression and JNK activity

    PubMed Central

    2012-01-01

    Background As proinflammatory cytokines seem to play a role in discogenic back pain, substances exhibiting anti-inflammatory effects on intervertebral disc cells may be used as minimal-invasive therapeutics for intradiscal/epidural injection. The purpose of this study was to investigate the anti-inflammatory and anti-catabolic potential of curcuma, which has been used in the Indian Ayurvedic medicine to treat multiple ailments for a long time. Methods Human disc cells were treated with IL-1β to induce an inflammatory/catabolic cascade. Different extracts of curcuma as well as curcumin (= a component selected based on results with curcuma extracts and HPLC/MS analysis) were tested for their ability to reduce mRNA expression of proinflammatory cytokines and matrix degrading enzymes after 6 hours (real-time RT-PCR), followed by analysis of typical inflammatory signaling mechanisms such as NF-κB (Western Blot, Transcription Factor Assay), MAP kinases (Western Blot) and Toll-like receptors (real-time RT-PCR). Quantitative data was statistically analyzed using a Mann Whitney U test with a significance level of p < 0.05 (two-tailed). Results Results indicate that the curcuma DMSO extract significantly reduced levels of IL-6, MMP1, MMP3 and MMP13. The DMSO-soluble component curcumin, whose occurrence within the DMSO extract was verified by HPLC/MS, reduced levels of IL-1β, IL-6, IL-8, MMP1, MMP3 and MMP13 and both caused an up-regulation of TNF-α. Pathway analysis indicated that curcumin did not show involvement of NF-κB, but down-regulated TLR2 expression and inhibited the MAP kinase JNK while activating p38 and ERK. Conclusions Based on its anti-inflammatory and anti-catabolic effects, intradiscal injection of curcumin may be an attractive treatment alternative. However, whether the anti-inflammatory properties in vitro lead to analgesia in vivo will need to be confirmed in an appropriate animal model. PMID:22909087

  14. The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes.

    PubMed

    Malandrino, Andrea; Noailly, Jérôme; Lacroix, Damien

    2011-08-01

    Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such

  15. Propionibacterium acnes, Coagulase-Negative Staphylococcus, and the “Biofilm-like” Intervertebral Disc

    PubMed Central

    Coscia, Michael F.; Denys, Gerald A.; Wack, Matthew F.

    2016-01-01

    Study Design. Patients scheduled for spinal surgery were screened prospectively for a microbial presence associated with intervertebral disc specimens. Inclusion was limited to patients requiring surgery for any of five conditions: study patients with cervical spine intervertebral herniation (IVH), lumbar spine IVH, lumbar spine discogenic pain, and control patients with idiopathic scoliosis/Scheurermann's kyphosis or trauma/neuromuscular deformity. Exclusion criteria included ongoing systemic infection, abnormal pre-operative white cell counts, documented or suspected spinal infection, or previous surgery to the involved disc. Objective. The aim of this study was to test for an association between the presence of a bacterial entity in operated discs and a diagnosis of pathologic disc disease. Summary of Background Data. An association has been described between microbial colonization and progressive intervertebral disc degeneration in 36 herniation patients undergoing microdiscectomies. A total of 19 patients had positive cultures on long-term incubation, with Propionibacterium acnes present in 84% of discs. Materials and Methods. Discs were harvested during surgery, using strict sterile technique. Each disc was divided, with half the sample sealed in a sterile, commercially prepared anaerobic culture transport container, and half fixed in formalin. Live specimens were cultured for bacteria at a university-affiliated laboratory in a blinded fashion. Fixed pathologic specimens were gram-stained and read by a board-certified pathologist. Results. A total of 169 intervertebral discs from 87 patients were evaluated (46 males, 41 females). Positive cultures were noted in 76 of 169 discs (45%), with 34 discs positive for P. acnes and 30 discs positive for Staphylococcus. No pathologic evidence was seen of microorganisms, acute or chronic inflammation, or infection. Pooling the IVH and discogenic pain patients and contrasting them with control patients showed a

  16. An In Vivo Model of Reduced Nucleus Pulposus Glycosaminoglycan Content in the Rat Lumbar Intervertebral Disc

    PubMed Central

    Boxberger, John I.; Auerbach, Joshua D.; Sen, Sounok; Elliott, Dawn M.

    2009-01-01

    Study Design An in vivo model resembling early stage disc degeneration in the rat lumbar spine. Objective Simulate the reduced glycosaminoglycan content and altered mechanics observed in intervertebral disc degeneration using a controlled injection of chondroitinase ABC (ChABC). Summary of Background Data Nucleus glycosaminoglycan reduction occurs early during disc degeneration; however, mechanisms through which degeneration progresses from this state are unknown. Animal models simulating this condition are essential for understanding disease progression and for development of therapies aimed at early intervention. Methods ChABC was injected into the nucleus pulposus, and discs were evaluated via micro-CT, mechanical testing, biochemical assays, and histology 4 and 12 weeks after injection. Results At 4 weeks, reductions in nucleus glycosaminoglycan level by 43%, average height by 12%, neutral zone modulus by 40%, and increases in range of motion by 40%, and creep strain by 25% were found. Neutral zone modulus and range of motion were correlated with nucleus glycosaminoglycan. At 12 weeks, recovery of some mechanical function was detected as range of motion and creep returned to control levels; however, this was not attributed to glycosaminoglycan restoration, because mechanics were no longer correlated with glycosaminoglycan. Conclusion An in vivo model simulating physiologic levels of glycosaminoglycan loss was created to aid in understanding the relationships between altered biochemistry, altered mechanics, and altered cellular function in degeneration. PMID:18197098

  17. Macular degeneration (image)

    MedlinePlus

    Macular degeneration is a disease of the retina that affects the macula in the back of the eye. ... see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...

  18. Wet Macular Degeneration

    MedlinePlus

    Wet macular degeneration Overview By Mayo Clinic Staff Wet macular degeneration is a chronic eye disease that causes blurred vision ... of the retina responsible for central vision. Wet macular degeneration is one of two types of age-related ...

  19. Dry Macular Degeneration

    MedlinePlus

    Dry macular degeneration Overview By Mayo Clinic Staff Dry macular degeneration is a common eye disorder among people over 65. ... vision in your direct line of sight. Dry macular degeneration may first develop in one eye and then ...

  20. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  1. Direct demonstration of transsynaptic degeneration in the human visual system: a comparison of retrograde and anterograde changes

    PubMed Central

    Beatty, RM; Sadun, AA; Smith, LEH; Vonsattel, JP; Richardson, EP

    1982-01-01

    Transneuronal degeneration of retinal ganglion cells was directly demonstrated in a patient who had unilateral removal of the striate cortex forty years prior to necropsy. For comparison, another case is presented showing anterograde transneuronal atrophy forty years after enucleation of one eye. Images PMID:7069426

  2. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue.

  3. Minimally invasive photopolymerization in intervertebral disc tissue cavities

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Gantenbein-Ritter, Benjamin; Chan, Samantha; Bonél, Harald Marcel; Bourban, Pierre-Etienne; Mânson, Jan Anders; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2014-03-01

    Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerizationvolume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.

  4. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration.

    PubMed

    Tzameret, Adi; Sher, Ifat; Belkin, Michael; Treves, Avraham J; Meir, Amilia; Nagler, Arnon; Levkovitch-Verbin, Hani; Rotenstreich, Ygal; Solomon, Arieh S

    2015-09-01

    Vision incapacitation and blindness associated with incurable retinal degeneration affect millions of people worldwide. In this study, 0.25×10(6) human bone marrow stem cells (hBM-MSCs) were transplanted epiretinally in the right eye of Royal College Surgeons (RCS) rats at the age of 28 days. Epiretinally transplanted cells were identified as a thin layer of cells along vitreous cavity, in close proximity to the retina or attached to the lens capsule, up to 6 weeks following transplantation. Epiretinal transplantation delayed photoreceptor degeneration and rescued retinal function up to 20 weeks following cell transplantation. Visual functions remained close to normal levels in epiretinal transplantation rats. No inflammation or any other adverse effects were observed in transplanted eyes. Our findings suggest that transplantation of hBM-MSCs as a thin epiretinal layer is effective for treatment of retinal degeneration in RCS rats, and that transplanting the cells in close proximity to the retina enhances hBM-MSC therapeutic effect compared with intravitreal injection.

  5. Adipose-Derived Stromal Cells Protect Intervertebral Disc Cells in Compression: Implications for Stem Cell Regenerative Disc Therapy

    PubMed Central

    Sun, Zhen; Luo, Beier; Liu, Zhi-Heng; Samartzis, Dino; Liu, Zhongyang; Gao, Bo; Huang, Liangliang; Luo, Zhuo-Jing

    2015-01-01

    Introduction: Abnormal biomechanics plays a role in intervertebral disc degeneration. Adipose-derived stromal cells (ADSCs) have been implicated in disc integrity; however, their role in the setting of mechanical stimuli upon the disc's nucleus pulposus (NP) remains unknown. As such, the present study aimed to evaluate the influence of ADSCs upon NP cells in compressive load culture. Methods: Human NP cells were cultured in compressive load at 3.0MPa for 48 hours with or without ADSCs co-culture (the ratio was 50:50). We used flow cytometry, live/dead staining and scanning electron microscopy (SEM) to evaluate cell death, and determined the expression of specific apoptotic pathways by characterizing the expression of activated caspases-3, -8 and -9. We further used real-time (RT-) PCR and immunostaining to determine the expression of the extracellular matrix (ECM), mediators of matrix degradation (e.g. MMPs, TIMPs and ADAMTSs), pro-inflammatory factors and NP cell phenotype markers. Results: ADSCs inhibited human NP cell apoptosis via suppression of activated caspase-9 and caspase-3. Furthermore, ADSCs protected NP cells from the degradative effects of compressive load by significantly up-regulating the expression of ECM genes (SOX9, COL2A1 and ACAN), tissue inhibitors of metalloproteinases (TIMPs) genes (TIMP-1 and TIMP-2) and cytokeratin 8 (CK8) protein expression. Alternatively, ADSCs showed protective effect by inhibiting compressive load mediated increase of matrix metalloproteinases (MMPs; MMP-3 and MMP-13), disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs; ADAMTS-1 and 5), and pro-inflammatory factors (IL-1beta, IL-6, TGF-beta1 and TNF-alpha). Conclusions: Our study is the first in vitro study assessing the impact of ADSCs on NP cells in an un-physiological mechanical stimulation culture environment. Our study noted that ADSCs protect compressive load induced NP cell death and degradation by inhibition of activated caspase-9 and -3

  6. Detrimental Effects of Discectomy on Intervertebral Disc Biology can be Decelerated by Growth Factor Treatment during Surgery – A large animal organ culture model

    PubMed Central

    Illien-Jünger, S.; Lu, Y.; Purmessur, D.; Mayer, J.E.; Walter, B.A.; Roughley, P.J.; Qureshi, S.A.; Hecht, A.C.; Iatridis, J.C.

    2014-01-01

    BACKGROUND CONTEXT Lumbar discectomies are common surgical interventions that treat radiculopathy by removing herniated and loose intervertebral disc (IVD) tissues. However, remaining IVD tissue can continue to degenerate resulting in long-term clinical problems. Little information is available on the effects of discectomy on IVD biology. Currently no treatments exist that can suspend or reverse the degeneration of the remaining IVD. PURPOSE To improve knowledge how discectomy procedures influence IVD physiology and to assess the potential of growth-factor treatment as an augmentation during surgery STUDY DESIGN To determine effects of discectomy on IVDs with and without TGFβ3 augmentation using bovine IVD organ culture. METHODS This study determined effects of discectomy with and without TGFβ3 injection using 1, 6, and 19 days organ culture experiments. Treated IVDs were injected with 0.2μg TGFβ3 in 20μl PBS+BSA into several locations of the discectomy site. Cell viability, gene expression, nitric-oxide release, IVD height, aggrecan degradation, and proteoglycan content were determined. RESULTS Discectomy significantly increased cell death, aggrecan degradation and nitric-oxide release in healthy IVDs. TGFβ3 injection treatment prevented or mitigated those effects for the 19 days culture period. CONCLUSIONS Discectomy procedures induced cell death, catabolism and nitric-oxide production in healthy IVDs, and we conclude that post-discectomy degeneration is likely to be associated with cell death and matrix degradation. TGFβ3 injection augmented discectomy procedures by acting to protect IVD tissues by maintaining cell viability, limiting matrix degradation and suppressing nitric-oxide. We conclude that discectomy procedures can be improved with injectable therapies at the time of surgery although further in vivo and human studies are required. PMID:24768749

  7. Hygroviscoelasticity of the Human Intervertebral Disc.

    DTIC Science & Technology

    1980-07-01

    INFERIOR ARTICULAR PROCESS LAMINA TRANSVERSE PROCESS SUPERIOR ARTICULAR PROCESS PEDICLE (a) Top View , PEDICLE SUPERIOR ARTICULAR PROCESS TRANSVERSE...thread seating screw . Thus for every new specimen mounted in the fixture this adjust- ment was made by trial and error so that prior to testing a...difficult. As the strain was reduced the effect of swelling changes on the original specimen lengths became more important so that the screw attachment

  8. Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Itoh, T.; Sano, A.

    1988-11-01

    Metabolic changes induced by axial vibratory load to the spine were investigated based on water metabolism in normal intervertebral discs of rabbits with or without pentobarbital anesthesia. Tritiated water concentration in the intervertebral discs of unanesthetized rabbits was reduced remarkably by axial vibration for 30 minutes using the vibration machine developed for this study. Repeated vibratory load for 18 and 42 hours duration showed the recovery of /sup 3/H/sub 2/O concentration of the intervertebral disc without anesthesia. Computer simulation suggested a reduction of blood flow surrounding the intervertebral disc following the vibration stress. However, no reduction of the /sup 3/H/sub 2/O concentration in the intervertebral disc was noted under anesthesia. Emotional stress cannot be excluded as a factor in water metabolism in the intervertebral disc.

  9. Roentgenographic measurement of lumbar intervertebral disc height.

    PubMed

    Andersson, G B; Schultz, A; Nathan, A; Irstam, L

    1981-01-01

    The influences of differences in both intervertebral motion segment orientations and in reader judgments on measurements of the apparent intervertebral disc heights in lateral roentgenographs of the lumbar spine were examined. Forty-nine roentgenographs were obtained of nine discs that were titled laterally up to +/- 10 degrees, and rotated longitudinally up to +/- 20 degrees. Three orthopaedic surgeons and three radiologists measured disc heights from five of these roentgenographs, all using the same measurement method. The differences in apparent height that resulted from the orientation changes and differences in judgments among the six readers were considerable, usually of the order of one half of the nominal disc height. The results show that, while roentgenographic measurements can be used to estimate disc height, accurate measurements cannot readily be made from routine roentgenographs, and the interpretation should always be cautious.

  10. Kingella kingae intervertebral diskitis in an adult.

    PubMed

    Meis, J F; Sauerwein, R W; Gyssens, I C; Horrevorts, A M; van Kampen, A

    1992-09-01

    Kingella kingae rarely causes infection and is mainly associated with endocarditis and septic arthritis in adults. The organism is also capable of causing intervertebral diskitis in children, but thus far, no reports of this infection occurring in adults have been published. A case of diskitis due to K. kingae in an adult is reported for the first time, and the literature on this infection in children is reviewed.

  11. EVALUATION OF TERMINAL VERTEBRAL PLATE ON CERVICAL SPINE AT DIFFERENT AGE GROUPS AND ITS CORRELATION WITH INTERVERTEBRAL DISC THICKNESS

    PubMed Central

    Luiz Vieira, Juliano Silveira; da Silva Herrero, Carlos Fernando Pereira; Porto, Maximiliano Aguiar; Nogueira Barbosa, Marcello Henrique; Garcia, Sérgio Britto; Zambelli Ramalho, Leandra Náira; Aparecido Defino, Helton Luiz

    2015-01-01

    To evaluate, by means of histomorphometry, terminal vertebral plate thickness, intervertebral disc thickness and its correlation on different age groups, seeking to identify its correlation. Methods: C4-C5 and C5-C6 cervical segments removed from human cadavers of both genders were assessed and divided into five groups of 10-year age intervals, from 21 years old. TVP and intervertebral disc thickness evaluation was made by means of histomorphometry of histological slides stained with hematoxylin and eosyn. Lower C4 TVP, upper C5 TVP, and upper C6 TVP de were compared between each other and to the interposed intervertebral disc thickness between relevant TVP. Results: The thickness of terminal vertebral plates adjacent to the same ID did not show statistic differences. However, the comparison of upper and lower vertebral plates thickness on the same cervical vertebra (C5), showed statistical difference on all age groups studied. We found a statistical correlation coefficient above 80% between terminal vertebral plate and adjacent intervertebral disc, with a proportional thickness reduction of both structures on the different cervical levels studied, and also on the different age groups assessed. Conclusion: Terminal vertebral plate shows a morphologic correlation with the intervertebral disc next to it, and does not show correlation with the terminal vertebral plate on the same vertebra. PMID:26998448

  12. Water-filtered infrared-A radiation (wIRA) is not implicated in cellular degeneration of human skin

    PubMed Central

    Gebbers, Narcisa; Hirt-Burri, Nathalie; Scaletta, Corinne; Hoffmann, Gerd; Applegate, Lee Ann

    2007-01-01

    Background: Excessive exposure to solar ultraviolet radiation is involved in the complex biologic process of cutaneous aging. Wavelengths in the ultraviolet-A and -B range (UV-A and UV-B) have been shown to be responsible for the induction of proteases, e. g. the collagenase matrix metalloproteinase 1 (MMP-1), which are related to cell aging. As devices emitting longer wavelengths are widely used in therapeutic and cosmetic interventions and as the induction of MMP-1 by water-filtered infrared-A (wIRA) had been discussed, it was of interest to assess effects of wIRA on the cellular and molecular level known to be possibly involved in cutaneous degeneration. Objectives: Investigation of the biological implications of widely used water-filtered infrared-A (wIRA) radiators for clinical use on human skin fibroblasts assessed by MMP-1 gene expression (MMP-1 messenger ribonucleic acid (mRNA) expression). Methods: Human skin fibroblasts were irradiated with approximately 88% wIRA (780-1400 nm) and 12% red light (RL, 665-780 nm) with 380 mW/cm² wIRA(+RL) (333 mW/cm² wIRA) on the one hand and for comparison with UV-A (330-400 nm, mainly UV-A1) and a small amount of blue light (BL, 400-450 nm) with 28 mW/cm² UV-A(+BL) on the other hand. Survival curves were established by colony forming ability after single exposures between 15 minutes and 8 hours to wIRA(+RL) (340-10880 J/cm² wIRA(+RL), 300-9600 J/cm² wIRA) or 15-45 minutes to UV-A(+BL) (25-75 J/cm² UV-A(+BL)). Both conventional Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) and quantitative real-time RT-PCR techniques were used to determine the induction of MMP-1 mRNA at two physiologic temperatures for skin fibroblasts (30°C and 37°C) in single exposure regimens (15-60 minutes wIRA(+RL), 340-1360 J/cm² wIRA(+RL), 300-1200 J/cm² wIRA; 30 minutes UV-A(+BL), 50 J/cm² UV-A(+BL)) and in addition at 30°C in a repeated exposure protocol (up to 10 times 15 minutes wIRA(+RL) with 340 J/cm² wIRA(+RL), 300 J

  13. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.

    PubMed

    Nikkhoo, Mohammad; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2013-06-01

    Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The meta-model analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the anulus fibrosus and nucleus pulposus is critical for the quality of the simulation. We developed a material property updating protocol, which is basically a fitting algorithm consisted of finite element simulations and a quadratic response surface regression. This protocol was used to find the material properties, such as the hydraulic permeability, elastic modulus, and Poisson's ratio, of intact and degenerated porcine discs. The results showed that the in vitro disc experimental deformations were well fitted with limited finite element simulations and a quadratic response surface regression. The comparison of material properties of intact and degenerated discs showed that the hydraulic permeability significantly decreased but Poisson's ratio significantly increased for the degenerated discs. This study shows that the developed protocol is efficient and effective in defining material properties of a complex structure such as the intervertebral disc.

  14. Acquired degenerative changes of the intervertebral segments at and suprajacent to the lumbosacral junction. A radioanatomic analysis of the nondiskal structures of the spinal column and perispinal soft tissues.

    PubMed

    Jinkins, J R

    2001-01-01

    In earlier evolutionary times, mammals were primarily quadrupeds. However, other bipeds have also been represented during the course of the Earth's several billion year history. In many cases, either the bipedal stance yielded a large tail and hypoplastic upper extremities (e.g., Tyrannosaurus rex and the kangaroo), or it culminated in hypoplasia of the tail and further development and specialization of the upper extremities (e.g., nonhuman primates and human beings). In the human species this relatively recently acquired posture resulted in a more or less pronounced lumbosacral kyphosis. In turn, certain compensatory anatomic features have since occurred. These include the normal characteristic posteriorly directed wedge-shape of the L5 vertebral body and the L5-S1 intervertebral disk; the L4 vertebral body and the L4-L5 disk may be similarly visibly affected. These compensatory mechanisms, however, have proved to be functionally inadequate over the long term of the human life span. Upright posture also leads to increased weight bearing in humans that progressively causes excess stresses at and suprajacent to the lumbosacral junction. These combined factors result in accelerated aging and degenerative changes and a predisposition to frank biomechanical failure of the subcomponents of the spinal column in these spinal segments. One other specific problem that occurs at the lumbosacral junction that predisposes toward premature degeneration is the singular relationship that exists between a normally mobile segment of spine (i.e., the lumbar spine) and a normally immobile one (i.e., the sacrum). It is well known that mobile spinal segments adjacent to congenitally or acquired fused segments have a predilection toward accelerated degenerative changes. The only segment of the spine in which this is invariably normally true is at the lumbosacral junction (i.e., the unfused lumbar spine adjoining the fused sacrum). Nevertheless, biomechanical failures of the human spine

  15. Propriospinal Myoclonus Induced by a Herniated Lumbar Intervertebral Disc at a Young Age: A Case Report

    PubMed Central

    Song, Kwan Su; Kim, Chang Hyun; Lee, Ho Kook

    2011-01-01

    The cause of propriospinal myoclonus (PSM) is idiopathic. Cervical trauma, ischemic myelopathy secondary to a spinal dural arteriovenous fistula, syringomyelia, Lyme neuroborreliosis, human immunodeficiency virus central nervous system infection, and cervical disc herniation can be the cause of PSM, but lumbar herniated intervertebral disc (HIVD) induced PSM has not been reported. We describe a patient who presented with PSM induced by HIVD and was treated with an epidural steroid injection using a transforaminal approach. PMID:26064150

  16. Clinical Impact of Sagittal Spinopelvic Parameters on Disc Degeneration in Young Adults.

    PubMed

    Oh, Young-Min; Eun, Jong-Pil

    2015-10-01

    The sagittal balance plays an important role in the determination of shear and compressive forces applied on the anterior (vertebral bodies and intervertebral discs) and posterior (facet joints) elements of the lumbar vertebral column. Many studies have also examined the effect of structural changes in the disc on the biomechanical characteristics of the spinal segment. Nevertheless, the relationship between sagittal balance and the degree of disc degeneration has not been extensively explored. Thus, here we investigated the relationships between various sagittal spinopelvic parameters and the degree of disc degeneration in young adults.A total of 278 young adult male patients were included in this study (age range: 18-24 years old). Multiple sagittal spinopelvic parameters, including pelvic incidence (PI), sacral slope (SS), pelvic tilt (PT), lumbar lordosis (LL), sacral inclination (SI), lumbosacral angle (LSA), and sacral table angle (STA), were measured from standing lateral lumbosacral radiographs. The degree of intervertebral disc degeneration was classified using a modified Pfirrmann scale. To assess the pain intensity of each patient, the visual analogue scale (VAS) score for low back pain (LBP) was obtained from all the patients. Finally, the relationships between these spinopelvic parameters and the degree of disc degeneration in young adults were analyzed. Also, we performed multiple logistic regression study.Out of all the spinopelvic parameters measured in this study, a low STA and a low SI were the only significant risk factors that were associated with disc degeneration in young adults. It means that patients with disc degeneration tend to have more severe sacral kyphosis and vertical sacrum.We found that patients with disc degeneration showed a lower SI and lower STA compared with patients without disc degeneration in young adults. Therefore, we suggest that the patients with disc degeneration tend to have more vertical sacrum, more sacral kyphosis

  17. Efficacy of intervertebral disc regeneration with stem cells - a systematic review and meta-analysis of animal controlled trials.

    PubMed

    Wang, Zhen; Perez-Terzic, Carman M; Smith, Jay; Mauck, William D; Shelerud, Randy A; Maus, Timothy P; Yang, Tai-Hua; Murad, Mohammad Hassan; Gou, Shanmiao; Terry, Marisa J; Dauffenbach, Jason P; Pingree, Mathew J; Eldrige, Jason S; Mohammed, Khaled; Benkhadra, Khalid; van Wijnen, Andre J; Qu, Wenchun

    2015-06-10

    Management of intervertebral disc (IVD) degenerative disease is challenging, as it is accompanied by irreversible loss of IVD cells. Stem cell transplantation to the disc has shown promise in decelerating or arresting the degenerative process. Multiple pre-clinical animal trials have been conducted, but with conflicting outcomes. To assess the effect of stem cell transplantation, a systematic review and meta-analysis was performed. A comprehensive literature search was conducted through Week 3, 2015. Inclusion criteria consisted of controlled animal trials. Two reviewers screened abstracts and full texts. Disagreements were resolved by a third reviewer. Random effects models were constructed to pool standardized mean difference (SMD). Twenty two studies were included; nine of which were randomized. Statistically significant differences were found with the stem cell group exhibiting increased disc height index (SMD=3.64, 95% confidence interval (CI): 2.49, 4.78; p<0.001), increased MRI T2 signal intensity (SMD=2.28, 95% CI: 1.48, 3.08; p<0.001), increased Type II collagen mRNA expression (SMD=3.68, 95% CI: 1.66, 5.70; p<0.001), and decreased histologic disc degeneration grade (SMD=-2.97, 95% CI: -3.97, -1.97; p<0.001). There was statistical heterogeneity between studies that could not be explained with pre-planned subgroup analyses based on animal species, study designs, and transplanted cell types. Stem cells transplanted to the IVD in quadruped animals decelerate or arrest the IVD degenerative process. Further studies in human clinical trials will be needed to understand if such benefit can be translated to bipedal humans.

  18. Macular Degeneration Partnership

    MedlinePlus

    ... Age Related Macular Degeneration) Partnership Listen AMD Month Public Service Announcement To raise awareness of AMD, the Macular Degeneration Partnership (MDP) is distributing a public service announcement (PSA) nationwide. Seen through the eyes of a ...

  19. Macular Degeneration: An Overview.

    ERIC Educational Resources Information Center

    Chalifoux, L. M.

    1991-01-01

    This article presents information on macular degeneration for professionals helping persons with this disease adjust to their visual loss. It covers types of macular degeneration, the etiology of the disease, and its treatment. Also considered are psychosocial problems and other difficulties that persons with age-related macular degeneration face.…

  20. Simulating the sensitivity of cell nutritive environment to composition changes within the intervertebral disc

    NASA Astrophysics Data System (ADS)

    Wills, C. Ruiz; Malandrino, A.; van Rijsbergen, MM.; Lacroix, D.; Ito, K.; Noailly, J.

    2016-05-01

    Altered nutrition in the intervertebral disc affects cell viability and can generate catabolic cascades contributing to extracellular matrix (ECM) degradation. Such degradation is expected to affect couplings between disc mechanics and nutrition, contributing to accelerate degenerative processes. However, the relation of ECM changes to major biophysical events within the loaded disc remains unclear. A L4-L5 disc finite element model including the nucleus (NP), annulus (AF) and endplates was used and coupled to a transport-cell viability model. Solute concentrations and cell viability were evaluated along the mid-sagittal plane path. A design of experiment (DOE) was performed. DOE parameters corresponded to AF and NP biochemical tissue measurements in discs with different degeneration grades. Cell viability was not affected by any parameter combinations defined. Nonetheless, the initial water content was the parameter that affected the most the solute contents, especially glucose. Calculations showed that altered NP composition could negatively affect AF cell nutrition. Results suggested that AF and NP tissue degeneration are not critical to nutrition-related cell viability at early-stage of disc degeneration. However, small ECM degenerative changes may alter significantly disc nutrition under mechanical loads. Coupling disc mechano-transport simulations and enzyme expression studies could allow identifying spatiotemporal sequences related to tissue catabolism.

  1. Up-regulation of niacinamide in intervertebral disc aggrecan in vitro.

    PubMed

    Xiong, Xiaoqian; Yang, Shuhua; Shao, Zengwu; Liu, Xin; Zhan, Zirui; Duan, Deyu

    2006-01-01

    The regulatory effects of niacinamide (Nia) on intervertebral disc (IVD) aggrecan in vitro was investigated. Chiba's 10 ng/mL interleukin-1 (IL-1)-induced rabbit IVD degeneration model in vitro was established. 0.5, 0.25 and 0.05 mg/mL Nia was added to normal and degenerated IVDs for intervention. On the first and second week after intervention, safranin O-fast green staining intensity and glycosaminoglycan (GS) content were measured. The expression of aggrecan core protein was detected by RT-PCR. The results showed: (1) After treatment with 0.5 mg/mL Nia for one week, the GS content in nucleus pulposus (NP) was increased by 44.8% as compared with control group (P < 0 01); The GS content in IL-1 induction groups was increased with the increase of Nia concentrations: After treatment with 0.5 mg/mL for one week, the GS content in NP was increased by 68.3% as compared with control group (P < 0.01). After two weeks, GS content in NP and fibrous rings was still higher than in control group at the same period (P < 0.01) and untreated group (P < 0.01). (2) Safranin O-fast green staining revealed that with the increase of Nia concentrations, staining density in NP and fibrous rings was increased and histological structure damage to IVDs by IL-1beta was alleviated. (3) RT-PCR showed that the expression of core protein gene in IL-1beta-induced degenerated IVDS was increased with the increase of Nia concentrations. It was concluded that under conditions in vitro, Nia could up-regulate the expression of aggrecan in IVDs and protect IVDs from IL-1beta-induced degeneration at least partially, which offers a potential choice for IVD degeneration clinical therapy.

  2. MRI analysis of the ISOBAR TTL internal fixation system for the dynamic fixation of intervertebral discs: a comparison with rigid internal fixation

    PubMed Central

    2014-01-01

    Objectives Using magnetic resonance imaging (MRI), we analyzed the efficacy of the posterior approach lumbar ISOBAR TTL internal fixation system for the dynamic fixation of intervertebral discs, with particular emphasis on its effects on degenerative intervertebral disc disease. Methods We retrospectively compared the MRIs of 54 patients who had previously undergone either rigid internal fixation of the lumbar spine or ISOBAR TTL dynamic fixation for the treatment of lumbar spondylolisthesis. All patients had received preoperative and 6-, 12-, and 24-month postoperative MRI scans of the lumbar spine with acquisition of both routine and diffusion-weighted images (DWI). The upper-segment discs of the fusion were subjected to Pfirrmann grading, and the lumbar intervertebral discs in the DWI sagittal plane were manually drawn; the apparent diffusion coefficient (ADC) value was measured. Results ADC values in the ISOBAR TTL dynamic fixation group measured at the 6-, 12-, and 24-month postoperative MRI studies were increased compared to the preoperative ADC values. The ADC values in the ISOBAR TTL dynamic fixation group at 24 months postoperatively were significantly different from the preoperative values (P < 0.05). At 24 months, the postoperative ADC values were significantly different between the rigid fixation group and the ISOBAR TTL dynamic fixation group (P < 0.05). Conclusion MRI imaging findings indicated that the posterior approach lumbar ISOBAR TTL internal fixation system can prevent or delay the degeneration of intervertebral discs. PMID:24898377

  3. The cellular and molecular biology of the intervertebral disc: A clinician’s primer

    PubMed Central

    Erwin, W. Mark; Hood, Katherine E.

    2014-01-01

    Clinicians routinely encounter patients suffering from both degenerative and acute spinal pain, often as a consequence of pathology affecting the intervertebral disc (IVD). The IVD is a complex structure essential to spinal function and is subject to degenerative disease and injury. However, due to the complexity of spinal pain syndromes it is often difficult to determine the extent of the IVD’s contribution to the genesis of spinal pain. The location of the IVD is within close proximity to vital neural elements and may in the event of pathological change or injury compromise those structures. It is therefore important that clinicians performing manual therapy understand the cellular and molecular biology of the IVD as well as its clinical manifestation of degeneration/injury in order to safely manage and appreciate the role played by the disc in the development of mechanical spinal pain syndromes. PMID:25202152

  4. The cellular and molecular biology of the intervertebral disc: A clinician's primer.

    PubMed

    Erwin, W Mark; Hood, Katherine E

    2014-09-01

    Clinicians routinely encounter patients suffering from both degenerative and acute spinal pain, often as a consequence of pathology affecting the intervertebral disc (IVD). The IVD is a complex structure essential to spinal function and is subject to degenerative disease and injury. However, due to the complexity of spinal pain syndromes it is often difficult to determine the extent of the IVD's contribution to the genesis of spinal pain. The location of the IVD is within close proximity to vital neural elements and may in the event of pathological change or injury compromise those structures. It is therefore important that clinicians performing manual therapy understand the cellular and molecular biology of the IVD as well as its clinical manifestation of degeneration/injury in order to safely manage and appreciate the role played by the disc in the development of mechanical spinal pain syndromes.

  5. Prognosis of intervertebral disc loss from diagnosis of degenerative disc disease

    NASA Astrophysics Data System (ADS)

    Li, S.; Lin, A.; Tay, K.; Romano, W.; Osman, Said

    2015-03-01

    Degenerative Disc Disease (DDD) is one of the most common causes of low back pain, and is a major factor in limiting the quality of life of an individual usually as they enter older stages of life, the disc degeneration reduces the shock absorption available which in turn causes pain. Disc loss is one of the central processes in the pathogenesis of DDD. In this study, we investigated whether the image texture features quantified from magnetic resonance imaging (MRI) could be appropriate markers for diagnosis of DDD and prognosis of inter-vertebral disc loss. The main objective is to use simple image based biomarkers to perform prognosis of spinal diseases using non-invasive procedures. Our results from 65 subjects proved the higher success rates of the combination marker compared to the individual markers and in the future, we will extend the study to other spine regions to allow prognosis and diagnosis of DDD for a wider region.

  6. RADIOLOGICAL ANALYSIS OF EXPERIMENTAL DISC DEGENERATION IN RABBITS

    PubMed Central

    Vialle, Emiliano; Vialle, Luiz Roberto; Arruda, André de Oliveira; Riet, Ricardo Nascimento; Krieger, Antônio Bernardo de Queiroz

    2015-01-01

    Objective: To validate radiographic evaluation of a rabbit model for disc degeneration. Methods: Lumbar intervertebral discs of New Zealand rabbits were stabbed three times with a 18G needle at a limited depth of 5mm, through lateral approach. Serial radiographic images were taken on the early pre-and postoperative periods, and after four, eight and 12 weeks of the procedure, with subsequent analysis of disc height, osteophyte formation, endplate sclerosis, and presence of disc degeneration. The statistical analysis of data was validated by the Kappa coefficient, with a confidence interval (CI) of 95%. Results: A significant reduction of disc space was found on AP X-ray images after 12 postoperative weeks, with Kappa = 0.489 for CI 95% (0.25-0.72) with p < 0.001. X-ray signs of disc degeneration also presented Kappa = 0.63 for CI 95% (0.39-0.86) with p < 0.001. The remaining assessed criteria showed positive results, but with a lower Kappa value. Conclusion: The disc degeneration model using rabbits as proposed in this study was shown to be feasible, with positive X-ray correlation between pre- and postoperative images, validating the potential to induce disc degeneration in this animal model for future studies. PMID:27022512

  7. Cell transplantation in lumbar spine disc degeneration disease.

    PubMed

    Hohaus, C; Ganey, T M; Minkus, Y; Meisel, H J

    2008-12-01

    Low back pain is an extremely common symptom, affecting nearly three-quarters of the population sometime in their life. Given that disc herniation is thought to be an extension of progressive disc degeneration that attends the normal aging process, seeking an effective therapy that staves off disc degeneration has been considered a logical attempt to reduce back pain. The most apparent cellular and biochemical changes attributable to degeneration include a decrease in cell density in the disc that is accompanied by a reduction in synthesis of cartilage-specific extracellular matrix components. With this in mind, one therapeutic strategy would be to replace, regenerate, or augment the intervertebral disc cell population, with a goal of correcting matrix insufficiencies and restoring normal segment biomechanics. Biological restoration through the use of autologous disc chondrocyte transplantation offers a potential to achieve functional integration of disc metabolism and mechanics. We designed an animal study using the dog as our model to investigate this hypothesis by transplantation of autologous disc-derived chondrocytes into degenerated intervertebral discs. As a result we demonstrated that disc cells remained viable after transplantation; transplanted disc cells produced an extracellular matrix that contained components similar to normal intervertebral disc tissue; a statistically significant correlation between transplanting cells and retention of disc height could displayed. Following these results the Euro Disc Randomized Trial was initiated to embrace a representative patient group with persistent symptoms that had not responded to conservative treatment where an indication for surgical treatment was given. In the interim analyses we evaluated that patients who received autologous disc cell transplantation had greater pain reduction at 2 years compared with patients who did not receive cells following their discectomy surgery and discs in patients that

  8. Targeting the extracellular matrix: matricellular proteins regulate cell-extracellular matrix communication within distinct niches of the intervertebral disc.

    PubMed

    Bedore, Jake; Leask, Andrew; Séguin, Cheryle A

    2014-07-01

    The so-called "matricellular" proteins have recently emerged as important regulators of cell-extracellular matrix (ECM) interactions. These proteins modulate a variety of cell functions through a range of interactions with cell-surface receptors, hormones, proteases and structural components of the ECM. As such, matricellular proteins are crucial regulators of cell phenotype, and consequently tissue function. The distinct cell types and microenvironments that together form the IVD provide an excellent paradigm to study how matricellular proteins mediate communication within and between adjacent tissue types. In recent years, the role of several matricellular proteins in the intervertebral disc has been explored in vivo using mutant mouse models in which the expression of target matricellular proteins was deleted from either one or all compartments of the intervertebral disc. The current review outlines what is presently known about the roles of the matricellular proteins belonging to the CCN family, SPARC (Secreted Protein, Acidic, and Rich in Cysteine), and thrombospondin (TSP) 2 in regulating intervertebral disc cell-ECM interactions, ECM synthesis and disc tissue homeostasis using genetically modified mouse models. Furthermore, we provide a brief overview of recent preliminary studies of other matricellular proteins including, periostin (POSTN) and tenascin (TN). Each specific tissue type of the IVD contains a different matricellular protein signature, which varies based on the specific stage of development, maturity or disease. A growing body of direct genetic evidence links IVD development, maintenance and repair to the coordinate interaction of matricellular proteins within their respective niches and suggests that several of these signaling modulators hold promise in the development of diagnostics and/or therapeutics targeting intervertebral disc aging and/or degeneration.

  9. Loss of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans and retinal degeneration in mice.

    PubMed

    Parry, David A; Toomes, Carmel; Bida, Lina; Danciger, Michael; Towns, Katherine V; McKibbin, Martin; Jacobson, Samuel G; Logan, Clare V; Ali, Manir; Bond, Jacquelyn; Chance, Rebecca; Swendeman, Steven; Daniele, Lauren L; Springell, Kelly; Adams, Matthew; Johnson, Colin A; Booth, Adam P; Jafri, Hussain; Rashid, Yasmin; Banin, Eyal; Strom, Tim M; Farber, Debora B; Sharon, Dror; Blobel, Carl P; Pugh, Edward N; Pierce, Eric A; Inglehearn, Chris F

    2009-05-01

    Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction.

  10. Loss of the Metalloprotease ADAM9 Leads to Cone-Rod Dystrophy in Humans and Retinal Degeneration in Mice

    PubMed Central

    Parry, David A.; Toomes, Carmel; Bida, Lina; Danciger, Michael; Towns, Katherine V.; McKibbin, Martin; Jacobson, Samuel G.; Logan, Clare V.; Ali, Manir; Bond, Jacquelyn; Chance, Rebecca; Swendeman, Steven; Daniele, Lauren L.; Springell, Kelly; Adams, Matthew; Johnson, Colin A.; Booth, Adam P.; Jafri, Hussain; Rashid, Yasmin; Banin, Eyal; Strom, Tim M.; Farber, Debora B.; Sharon, Dror; Blobel, Carl P.; Pugh, Edward N.; Pierce, Eric A.; Inglehearn, Chris F.

    2009-01-01

    Cone-rod dystrophy (CRD) is an inherited progressive retinal dystrophy affecting the function of cone and rod photoreceptors. By autozygosity mapping, we identified null mutations in the ADAM metallopeptidase domain 9 (ADAM9) gene in four consanguineous families with recessively inherited early-onset CRD. We also found reduced photoreceptor responses in Adam9 knockout mice, previously reported to be asymptomatic. In 12-month-old knockout mice, photoreceptors appear normal, but the apical processes of the retinal pigment epithelium (RPE) cells are disorganized and contact between photoreceptor outer segments (POSs) and the RPE apical surface is compromised. In 20-month-old mice, there is clear evidence of progressive retinal degeneration with disorganized POS and thinning of the outer nuclear layer (ONL) in addition to the anomaly at the POS-RPE junction. RPE basal deposits and macrophages were also apparent in older mice. These findings therefore not only identify ADAM9 as a CRD gene but also identify a form of pathology wherein retinal disease first manifests at the POS-RPE junction. PMID:19409519

  11. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration

    PubMed Central

    Jones, Melissa K.; Lu, Bin; Saghizadeh, Mehrnoosh

    2016-01-01

    Purpose Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell–based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell–based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. Methods RNA-seq data of retinas from RCS rats injected with hNPCs (RCShNPCs) were compared to sham surgery in RCS (RCSsham) and wild-type Long Evans (LEsham) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. Results Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCSsham and LEsham samples. Additionally, 283 genes were differentially expressed between the RCShNPCs and RCSsham samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCSsham. Pathway analysis of the differential expression gene sets identified three affected pathways in RCShNPCs, which all play roles in phagocytosis signaling. Immunofluorescent

  12. Tendon degeneration and chronic shoulder pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis.

    PubMed Central

    Riley, G P; Harrall, R L; Constant, C R; Chard, M D; Cawston, T E; Hazleman, B L

    1994-01-01

    OBJECTIVES--To analyse the collagen composition of normal adult human supraspinatus tendon and to compare with: (1) a flexor tendon (the common biceps tendon) which is rarely involved in any degenerative pathology; (2) degenerate tendons from patients with chronic rotator cuff tendinitis. METHODS--Total collagen content, collagen solubility and collagen type were investigated by hydroxyproline analysis, acetic acid and pepsin digestion, cyanogen bromide peptide analysis, SDS-PAGE and Western blotting. RESULTS--The collagen content of the normal cadaver supraspinatus tendons (n = 60) was 96.3 micrograms HYPRO/mg dry weight (range 79.3-113.3) and there was no significant change across the age range 11 to 95 years. There was no significant difference from the common biceps tendon [93.3 (13.5) micrograms HYPRO/mg dry weight, n = 24]. Although extremely insoluble in both acetic acid and pepsin, much of the collagen was soluble after cyanogen bromide digestion [mean 47.9% (29.8)]. Seventeen per cent (10/60) of the 'normal' cadaver supraspinatus tendon sample contained more than 5% type III collagen, although none of the common biceps tendons had significant amounts. Degenerate supraspinatus and subscapularis tendons had a reduced collagen content [83.8 (13.9) micrograms/mg dry weight and 76.9 (16.8) micrograms/mg dry wt respectively) and were more soluble in acetic acid, pepsin and cyanogen bromide (p < 0.001). Eighty two per cent (14/17) of supraspinatus tendons and 100% (8/8) of subscapularis tendons from patients with tendinitis contained more than 5% type III collagen. CONCLUSIONS--The changes in collagen composition in rotator cuff tendinitis are consistent with new matrix synthesis, tissue remodelling and wound healing, in an attempt to repair the tendon defect, even in old and degenerate tendons. An increase in type III collagen in some 'normal' cadaver supraspinatus tendons is evidence that changes in collagen synthesis and turnover may precede tendon rupture

  13. Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model

    PubMed Central

    2014-01-01

    Introduction The intervertebral disc has a complex structure originating developmentally from both the mesenchyme and notochord. Notochordal cells disappear during adolescence, which is also when human discs begin to show degenerative signs. During degeneration later in life, disc cells decline because of apoptosis. Although many animal models have been developed to simulate human disc degeneration, few studies have explored the long-term changes in cell population and phenotype. Our objective was to elucidate the time-dependent notochordal cell disappearance and apoptotic cell death in a rat tail static compression-induced disc degeneration model. Methods Twenty-four 12-week-old male Sprague–Dawley rat tails were instrumented with an Ilizarov-type device and loaded statically at 1.3 MPa for up to 56 days. Loaded and distal-unloaded discs were harvested. Changes in cell number and phenotype were assessed with histomorphology and immunofluorescence. Apoptosis involvement was determined with terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and immunohistochemistry. Results The number of disc nucleus pulposus and annulus fibrosus cells decreased with the loading period; particularly, the decrease was notable at day 7 in larger, vacuolated, cytokeratin-8- and galectin-3-co-positive cells, indicating notochordal origin. Subsequently, the proportion of cells positive for TUNEL and cleaved caspase-3, markers of apoptosis induction, increased from day 7 through day 56. Although the percentage of cells immunopositive for cleaved caspase-8, a marker of apoptosis initiation through the death-receptor pathway, increased only at day 7, the percentage of cells immunopositive for cleaved caspase-9 and p53-regulated apoptosis-inducing protein 1 (p53AIP1), markers of apoptosis initiation through the p53-mediated mitochondrial pathway, increased from day 7 through day 56. The percentage of cells immunopositive for B-cell lymphoma 2 (Bcl-2) and silent

  14. Lumbosacral intervertebral disk disease in six cats.

    PubMed

    Harris, Jennipher E; Dhupa, Sarit

    2008-01-01

    Medical records of six cats diagnosed with lumbosacral intervertebral disk disease were reviewed. Clinical signs included reluctance to jump, low tail carriage, elimination outside the litter box, reluctance to ambulate, pelvic-limb paresis, urinary incontinence, and constipation. All cats had lumbosacral hyperpathia on palpation. Computed tomography in four cats revealed evidence of extradural spinal cord compression at the seventh lumbar (L(7)) to first sacral (S(1)) vertebral interspace. Compression was confirmed via myelography in three of these four cats, with confirmation in the fourth cat at the time of decompressive laminectomy. Each of the six cats underwent dorsal decompressive laminectomy at the L(7) to S(1) interspace. Postoperative clinical follow-up lasted 3 to 35 months, with most cats having excellent outcomes.

  15. An organ culture system to model early degenerative changes of the intervertebral disc II: profiling global gene expression changes

    PubMed Central

    2013-01-01

    Introduction Despite many advances in our understanding of the molecular basis of disc degeneration, there remains a paucity of preclinical models which can be used to study the biochemical and molecular events that drive disc degeneration, and the effects of potential therapeutic interventions. The goal of this study is to characterize global gene expression changes in a disc organ culture system that mimics early nontraumatic disc degeneration. Methods To mimic a degenerative insult, rat intervertebral discs were cultured in the presence of TNF-α, IL-1β and serum-limiting conditions. Gene expression analysis was performed using a microarray to identify differential gene expression between experimental and control groups. Differential pattern of gene expression was confirmed using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) or Western blot. Results Treatment resulted in significant changes in expression of more than 1,000 genes affecting many aspects of cell function including cellular movement, the cell cycle, cellular development, and cell death and proliferation. Many of the most highly upregulated and downregulated genes have known functions in disc degeneration and extracellular matrix hemostasis. Construction of gene networks based on known cellular pathways and expression data from our analysis demonstrated that the network associated with cell death, cell cycle regulation and DNA replication and repair was most heavily affected in this model of disc degeneration. Conclusions This rat organ culture model uses cytokine exposure to induce wide gene expression changes with the most affected genes having known reported functions in disc degeneration. We propose that this model is a valuable tool to study the etiology of disc degeneration and evaluate potential therapeutic treatments. PMID:24171898

  16. Biological treatment strategies for disc degeneration: potentials and shortcomings

    PubMed Central

    Nerlich, Andreas G.; Boos, Norbert

    2006-01-01

    Recent advances in molecular biology, cell biology and material sciences have opened a new emerging field of techniques for the treatment of musculoskeletal disorders. These new treatment modalities aim for biological repair of the affected tissues by introducing cell-based tissue replacements, genetic modifications of resident cells or a combination thereof. So far, these techniques have been successfully applied to various tissues such as bone and cartilage. However, application of these treatment modalities to cure intervertebral disc degeneration is in its very early stages and mostly limited to experimental studies in vitro or in animal studies. We will discuss the potential and possible shortcomings of current approaches to biologically cure disc degeneration by gene therapy or tissue engineering. Despite the increasing number of studies examining the therapeutic potential of biological treatment strategies, a practicable solution to routinely cure disc degeneration might not be available in the near future. However, knowledge gained from these attempts might be applied in a foreseeable future to cure the low back pain that often accompanies disc degeneration and therefore be beneficial for the patient. PMID:16983559

  17. Nicotinamide Phosphoribosyltransferase in Smooth Muscle Cells Maintains Genome Integrity, Resists Aortic Medial Degeneration and Is Suppressed in Human Thoracic Aortic Aneurysm Disease.

    PubMed

    Watson, Alanna; Nong, Zengxuan; Yin, Hao; O'Neil, Caroline; Fox, Stephanie; Balint, Brittany; Guo, Ray; Leo, Oberdan; Chu, Michael W; Gros, Robert; Pickering, J G

    2017-03-29

    Rationale: The thoracic aortic wall can degenerate over time with catastrophic consequences. Vascular smooth muscle cells (SMCs) can resist and repair artery damage but their capacities decline with age and stress. Recently, cellular production of NAD(+) via nicotinamide phosphoribosyltransferase (Nampt) has emerged as a mediator of cell vitality. However, a role for Nampt in aortic SMCs in vivo is unknown. Objective: To determine if a Nampt-NAD(+) control system exists within the aortic media and is required for aortic health. Methods and Results: Ascending aortas from patients with dilated aortopathy were immunostained for NAMPT, revealing an inverse relationship between SMC NAMPT content and aortic diameter. To determine if a Nampt-NAD(+)control system in SMCs impacts aortic integrity, mice with Nampt-deficient SMCs were generated. SMC-Nampt knockout mice were viable but with mildly dilated aortas that had a 43% reduction in NAD(+) in the media. Infusion of angiotensin II led to aortic medial hemorrhage and dissection. SMCs were not apoptotic but displayed SA-ß-galactosidase activity and upregulated p16, indicating premature senescence. Furthermore, there was evidence for oxidized DNA lesions, double-strand DNA strand breaks and pronounced susceptibility to single-strand breakage. This was linked to suppressed poly(ADP-ribose) polymerase-1 activity and was reversible upon re-supplying NAD(+) with nicotinamide riboside. Remarkably, we discovered unrepaired DNA strand breaks in SMCs within the human ascending aorta, which were specifically enriched in SMCs with low NAMPT. NAMPT promoter analysis revealed CpG hypermethylation within the dilated human thoracic aorta and in SMCs cultured from these tissues, which inversely correlated with NAMPT expression. Conclusions: The aortic media depends on an intrinsic NAD(+) fueling system to protect against DNA damage and premature SMC senescence, with relevance to human thoracic aortopathy.

  18. Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc.

    PubMed

    Li, Kang; Li, Yan; Xu, Bo; Mao, Lu; Zhao, Jie

    2016-09-01

    Intervertebral disc (IVD) degeneration contributes to most spinal degenerative diseases, while treatment inhibiting IVD degeneration is still in the experimental stage. Sesamin, a bioactive component extracted from sesame, has been reported to exert chondroprotective and anti-inflammatory effects. Here, we analyzed the anti-inflammatory and anti-catabolic effects of sesamin on rat IVD in vitro and ex vivo. Results show that sesamin significantly inhibits the lipopolysaccharide (LPS)-induced expression of catabolic enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5) and inflammation factors (IL-1β, TNF-α, iNOS, NO, COX-2, PGE2) in a dose-dependent manner in vitro. It is also proven that migration of macrophages induced by LPS can be inhibited by treatment with sesamin. Organ culture experiments demonstrate that sesamin protects the IVD from LPS-induced depletion of the extracellular matrix ex vivo. Moreover, sesamin suppresses LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway through inhibiting phosphorylation of JNK, the common downstream signaling pathway of LPS and IL-1β, which may be the potential mechanism of the effects of sesamin. In light of our results, sesamin protects the IVD from inflammation and extracellular matrix catabolism, presenting positive prospects in the treatment of IVD degenerative diseases.

  19. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging

    PubMed Central

    Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-01-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging’s basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs. PMID:26807369

  20. Small leucine-rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc.

    PubMed

    Chen, Lili; Liao, Jingwen; Klineberg, Eric; Leung, Victor Yl; Huang, Shishu

    2017-03-01

    The intervertebral disc (IVD) is responsible for normal spinal motion and load distribution. However, degeneration may occur due to age- and non-age-related processes and is primarily characterized by a reduction in the number of chondrocyte-like cells and abnormal extracellular matrix (ECM) structure in the nucleus pulposus. Although IVD progenitor cells have been identified, the local microenvironment components regulating the behaviour of these progenitor cell populations remain unknown. Small leucine-rich proteoglycans (SLRPs) are bioactive components of the ECM associated with fibrillogenesis, cellular growth and apoptosis and tissue remodelling. SLRPs support the survival of IVD progenitor cells under hypoxic conditions via the activation of specific hypoxia-inducible factors. Additionally, SLRPs deficiency (biglycan) in knockout mice is sufficient to accelerate the IVD degenerative process. These data suggest that SLRPs play an important role in the homeostasis of IVD. Given their specific properties and physiological functions, we propose a role of SLRPs in IVD degeneration and potential application in its regeneration. Copyright © 2015 John Wiley & Sons, Ltd.

  1. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging.

    PubMed

    Wáng, Yì-Xiáng J; Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-12-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs.

  2. In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration.

    PubMed

    Kaigle, A; Ekström, L; Holm, S; Rostedt, M; Hansson, T

    1998-02-01

    The dynamic axial stiffness of the L2-3 motion segment subjected to vibratory loading under intact and injured states of the intervertebral disc was studied using an in vivo porcine model. Three groups of animals with the following states of the intervertebral discs were studied: intact disc, acutely injured disc, and degenerated disc. A miniaturized servo-hydraulic exciter was used to sinusoidally vibrate the motion segment from 0.05 to 25 Hz under a compressive load with a peak value of either 100 or 200 N. The dynamic axial stiffness of the intervertebral disc was calculated at 1-Hz intervals over the frequency range. The results showed that the dynamic axial stiffness was frequency dependent. A positive relationship was found between an increase in mean dynamic stiffness and load magnitude. An increase in mean stiffness with successive exposures at the same load magnitude was observed, despite the allowance of a recovery period between loading. The greatest difference was noted between the first and second load sets. No significant change in stiffness was found due to an acute disc injury, whereas a significant increase in mean stiffness was found for the degenerated disc group as compared with the intact group. The form of the frequency response curve, however, remained relatively unaltered regardless of the degenerated state of the disc. With heavier loads, repeated loading, and/or disc degeneration, the stiffness of the intervertebral disc increases. An increase in stiffness can mean a reduction in the amount of allowable motion within the motion segment or a potentially harmful increase in force to obtain the desired motion. This may locally result in greater stresses due to an altered ability of the disc to distribute loads.

  3. P2X7-pannexin-1 and amyloid β-induced oxysterol input in human retinal cell: Role in age-related macular degeneration?

    PubMed

    Olivier, Elodie; Dutot, Mélody; Regazzetti, Anne; Leguillier, Teddy; Dargère, Delphine; Auzeil, Nicolas; Laprévote, Olivier; Rat, Patrice

    2016-08-01

    Age-related macular degeneration (AMD) is the most common cause of severe vision loss worldwide. Amyloid β involvement in degenerative diseases such as AMD is well known and its toxicity has been related to P2X7 receptor-pannexin-1. Recently, oxysterols (oxidized derivatives of cholesterol) have been implicated in AMD pathogenesis. The aim of our study was to highlight amyloid β/oxysterols relationship and to describe P2X7 receptor-pannexin-1 role in oxysterols toxicity. Using retinal epithelial cells, we first quantified sterols levels after amyloid β incubation and second we investigated the cytotoxic effects induced by oxysterols. For the first time, our results showed that amyloid β induced oxysterols formation in human retinal pigmented epithelial cells. We showed that oxysterol toxicity is mediated by P2X7 receptor activation. This activation was dependent on pannexin-1 with 25-hydroxycholesterol whereas P2X7 receptor signaling pathway was pannexin-1-independent for 7-ketocholesterol. Taken together our data suggest a pivotal role of P2X7 receptor-pannexin-1 in oxysterols toxicity in retinal cells which could be an important target to develop new treatments for AMD.

  4. The use of a novel injectable hydrogel nucleus pulposus replacement in restoring the mechanical properties of cyclically fatigued porcine intervertebral discs.

    PubMed

    Balkovec, Christian; Vernengo, Jennifer; McGill, Stuart M

    2013-06-01

    Repeated flexion and extension of an intervertebral disc has been shown to affect the angular stiffness of spinal motion segments and is a barometer of the mechanical integrity of the disc. A degenerated disc that loses height causes higher levels of stress on the annulus and facet joints which may increase its level of degeneration; restoring disc height may therefore help to slow this degenerative cascade. Previous research has indicated that nucleus implants have the potential to improve the mechanical characteristics of a disc and an implant that is custom-fit to the intervertebral disc yields the best results with respect to decreasing annular degeneration. Two groups of porcine spinal motion segments were exposed to repeated flexion and extension. One group was then injected with a novel hydrogel while the other group was used as a control. Both groups were then exposed to another round of cyclic flexion and extension to examine the effect that the hydrogel had on restoring the original mechanics to the motion segments. Angular stiffness was restored to the group which received the hydrogel injection in addition to a significant improvement in specimen height. No significant changes were seen in the group which did not receive an injection. It would appear that use of the novel injectable hydrogel is able to restore angular stiffness to cyclically fatigued spinal motion segments. It is also important to note that continued repetition of the event causing specimen fatigue after performing hydrogel injection will result in an eventual return to the same fatigued state.

  5. Autophagy Is a Protective Response to the Oxidative Damage to Endplate Chondrocytes in Intervertebral Disc: Implications for the Treatment of Degenerative Lumbar Disc

    PubMed Central

    Yu, Fei; Ma, Junxuan

    2017-01-01

    Low back pain (LBP) is the leading cause of disability in the elderly. Intervertebral disc degeneration (IDD) was considered as the main cause for LBP. Degeneration of cartilaginous endplate was a crucial harmful factor during the initiation and development of IDD. Oxidative stress was implicated in IDD. However, the underlying molecular mechanism for the degeneration of cartilaginous endplate remains elusive. Herein, we found that oxidative stress could induce apoptosis and autophagy in endplate chondrocytes evidenced by western blot analysis, flow cytometry, immunofluorescence staining, GFP-LC3B transfection, and MDC staining. In addition, we also found that the apoptosis of endplate chondrocytes was significantly increased after the inhibition of autophagy by bafilomycin A1 shown by flow cytometry. Furthermore, mTOR pathway upstream autophagy was greatly suppressed suggested by western blot assay. In conclusion, our study strongly revealed that oxidative stress could increase autophagy and apoptosis of endplate chondrocytes in intervertebral disc. The increase of autophagy activity could prevent endplate chondrocytes from apoptosis. The autophagy in endplate chondrocytes induced by oxidative stress was mTOR dependent. These findings might shed some new lights on the mechanism for IDD and provide new strategies for the treatments of IDD. PMID:28321270

  6. Intervertebral disc regeneration using platelet-rich plasma-containing bone marrow-derived mesenchymal stem cells: A preliminary investigation

    PubMed Central

    WANG, SHAN-ZHENG; JIN, JI-YANG; GUO, YU-DONG; MA, LIANG-YU; CHANG, QING; PENG, XIN-GUI; GUO, FANG-FANG; ZHANG, HAI-XIANG; HU, XIN-FENG; WANG, CHEN

    2016-01-01

    Platelet-rich plasma (PRP) is a promising strategy for intervertebral disc degeneration (IDD). However, the short half-life of growth factors released from PRP cannot continuously stimulate the degenerated discs. Thus, the present study hypothesized that the combined use of PRP and bone marrow-derived mesenchymal stem cells (BMSCs) may repair the early degenerated discs in the long term for their synergistic reparative effect. In the present study, following the induction of early IDD by annular puncture in rabbits, PRP was prepared and mixed with BMSCs (PRP-BMSC group) for injection into the early degenerated discs. As controls, phosphate-buffered saline (PBS; PBS group) and PRP (PRP group) were similarly injected. Rabbits without any intervention served as a control group. At 8 weeks following treatment, histological changes of the injected discs were assessed. Magnetic resonance imaging (MRI) was used to detect the T2-weighted signal intensity of the targeted discs at weeks 1, 2 and 8 following treatment. Annular puncture resulted in disc narrowing and decreased T2-weighted signal intensity. At weeks 1 and 3, MRI examinations showed regenerative changes in the PRP-BMSC group and PRP group, whereas the PBS group exhibited a continuous degenerative process of the discs. At 8 weeks post-injection, the PRP-BMSCs induced a statistically significant restoration of discs, as shown by MRI (PRP-BMSCs, vs.PRP and PBS; P<0.05), which was also confirmed by histological evaluations. Thus, compared with PRP, the administration of PRP-containing BMSCs resulted in a superior regenerative effect on the early degenerated discs, which may be a promising therapeutic strategy for the restoration of early degenerated discs. PMID:26956080

  7. Imaging of lumbar intervertebral disk degeneration and aging, excluding disk herniations.

    PubMed

    Jarvik, J G; Deyo, R A

    2000-11-01

    With the advent of CT and MR imaging, physicians have been able to complement their clinical diagnosis of the cause of low back pain with a detailed in vivo image of the structure and soft tissues of the spine. At the same time, there has been an increasing realization that information about morphology alone is not enough to make a definitive diagnosis. Proponents of diskography claim that, through pain provocation, it can provide the specificity missing from the purely morphologic information that CT and MR imaging provide. The specificity of diskography, however, is far from clear.

  8. ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells.

    PubMed

    Morozko, Eva L; Nishio, Ayako; Ingham, Neil J; Chandra, Rashmi; Fitzgerald, Tracy; Martelletti, Elisa; Borck, Guntram; Wilson, Elizabeth; Riordan, Gavin P; Wangemann, Philine; Forge, Andrew; Steel, Karen P; Liddle, Rodger A; Friedman, Thomas B; Belyantseva, Inna A

    2015-02-01

    In the mammalian inner ear, bicellular and tricellular tight junctions (tTJs) seal the paracellular space between epithelial cells. Tricellulin and immunoglobulin-like (Ig-like) domain containing receptor 1 (ILDR1, also referred to as angulin-2) localize to tTJs of the sensory and non-sensory epithelia in the organ of Corti and vestibular end organs. Recessive mutations of TRIC (DFNB49) encoding tricellulin and ILDR1 (DFNB42) cause human nonsyndromic deafness. However, the pathophysiology of DFNB42 deafness remains unknown. ILDR1 was recently reported to be a lipoprotein receptor mediating the secretion of the fat-stimulated cholecystokinin (CCK) hormone in the small intestine, while ILDR1 in EpH4 mouse mammary epithelial cells in vitro was shown to recruit tricellulin to tTJs. Here we show that two different mouse Ildr1 mutant alleles have early-onset severe deafness associated with a rapid degeneration of cochlear hair cells (HCs) but have a normal endocochlear potential. ILDR1 is not required for recruitment of tricellulin to tTJs in the cochlea in vivo; however, tricellulin becomes mislocalized in the inner ear sensory epithelia of ILDR1 null mice after the first postnatal week. As revealed by freeze-fracture electron microscopy, ILDR1 contributes to the ultrastructure of inner ear tTJs. Taken together, our data provide insight into the pathophysiology of human DFNB42 deafness and demonstrate that ILDR1 is crucial for normal hearing by maintaining the structural and functional integrity of tTJs, which are critical for the survival of auditory neurosensory HCs.

  9. Optimization of In Vivo Confocal Autofluorescence Imaging of the Ocular Fundus in Mice and Its Application to Models of Human Retinal Degeneration

    PubMed Central

    Issa, Peter Charbel; Singh, Mandeep S.; Lipinski, Daniel M.; Chong, Ngaihang V.; Delori, François C.; Barnard, Alun R.; MacLaren, Robert E.

    2012-01-01

    Purpose. To investigate the feasibility and to identify sources of experimental variability of quantitative and qualitative fundus autofluorescence (AF) assessment in mice. Methods. Blue (488 nm) and near-infrared (790 nm) fundus AF imaging was performed in various mouse strains and disease models (129S2, C57Bl/6, Abca4−/−, C3H-Pde6brd1/rd1, Rho−/−, and BALB/c mice) using a commercially available scanning laser ophthalmoscope. Gray-level analysis was used to explore factors influencing fundus AF measurements. Results. A contact lens avoided cataract development and resulted in consistent fundus AF recordings. Fundus illumination and magnification were sensitive to changes of the camera position. Standardized adjustment of the recorded confocal plane and consideration of the pupil area allowed reproducible recording of fundus AF from the retinal pigment epithelium with an intersession coefficient of repeatability of ±22%. Photopigment bleaching occurred during the first 1.5 seconds of exposure to 488 nm blue light (∼10 mW/cm2), resulting in an increase of fundus AF. In addition, there was a slight decrease in fundus AF during prolonged blue light exposure. Fundus AF at 488 nm was low in animals with an absence of a normal visual cycle, and high in BALB/c and Abca4−/− mice. Degenerative alterations in Pde6brd1/rd1 and Rho−/− were reminiscent of findings in human retinal disease. Conclusions. Investigation of retinal phenotypes in mice is possible in vivo using standardized fundus AF imaging. Correlation with postmortem analysis is likely to lead to further understanding of human disease phenotypes and of retinal degenerations in general. Fundus AF imaging may be useful as an outcome measure in preclinical trials, such as for monitoring effects aimed at lowering lipofuscin accumulation in the retinal pigment epithelium. PMID:22169101

  10. Engineering alginate for intervertebral disc repair.

    PubMed

    Bron, Johannes L; Vonk, Lucienne A; Smit, Theodoor H; Koenderink, Gijsje H

    2011-10-01

    Alginate is frequently studied as a scaffold for intervertebral disc (IVD) repair, since it closely mimics mechanical and cell-adhesive properties of the nucleus pulposus (NP) of the IVD. The aim of this study was to assess the relation between alginate concentration and scaffold stiffness and find preparation conditions where the viscoelastic behaviour mimics that of the NP. In addition, we measured the effect of variations in scaffold stiffness on the expression of extracellular matrix molecules specific to the NP (proteoglycans and collagen) by native NP cells. We prepared sample discs of different concentrations of alginate (1%-6%) by two different methods, diffusion and in situ gelation. The stiffness increased with increasing alginate concentration, while the loss tangent (dissipative behaviour) remained constant. The diffusion samples were ten-fold stiffer than samples prepared by in situ gelation. Sample discs prepared from 2% alginate by diffusion closely matched the stiffness and loss tangent of the NP. The stiffness of all samples declined upon prolonged incubation in medium, especially for samples prepared by diffusion. The biosynthetic phenotype of native cells isolated from NPs was preserved in alginate matrices up to 4 weeks of culturing. Gene expression levels of extracellular matrix components were insensitive to alginate concentration and corresponding matrix stiffness, likely due to the poor adhesiveness of the cells to alginate. In conclusion, alginate can mimic the viscoelastic properties of the NP and preserve the biosynthetic phenotype of NP cells but certain limitations like long-term stability still have to be addressed.

  11. Pellucid marginal corneal degeneration.

    PubMed

    Krachmer, J H

    1978-07-01

    Pellucid marginal degeneration of the cornea is a bilateral, clear, inferior, peripheral corneal-thinning disorder. Protrusion of the cornea occurs above a band of thinning, which is located 1 to 2 mm from the limbus and measures 1 to 2 mm in width. American ophthalmologists are generally not familiar with the condition because most of the literature concerning pellucid degeneration is European. Four cases are described. This condition is differentiated from other noninflammatory cornel-thinning disorders such as keratoconus, keratoglobus, keratotorus, and posterior keratoconus. It is also differentiated from peripheral corneal disorders associated with inflammation such as Terrien's peripheral corneal degeneration, Mooren's ulcers, and ulcers from connective tissue disease.

  12. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy

    PubMed Central

    Ruzicka, Filip; Schmitz, Jonathan E.; James, Garth A.; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Lipina, Radim; Ahmed, Fahad S.; Alamin, Todd F.; Anand, Neel; Baird, John C.; Bhatia, Nitin; Demir-Deviren, Sibel; Eastlack, Robert K.; Fisher, Steve; Garfin, Steven R.; Gogia, Jaspaul S.; Gokaslan, Ziya L.; Kuo, Calvin C.; Lee, Yu-Po; Mavrommatis, Konstantinos; Michu, Elleni; Noskova, Hana; Raz, Assaf; Sana, Jiri; Shamie, A. Nick; Stewart, Philip S.; Stonemetz, Jerry L.; Wang, Jeffrey C.; Witham, Timothy F.; Coscia, Michael F.; Birkenmaier, Christof; Fischetti, Vincent A.; Slaby, Ondrej

    2017-01-01

    Background In previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of ~25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs. Methods Specimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH. Results Bacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively; in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - ~20,000 CFU/g). Thirty-eight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013). Conclusions This study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it

  13. TNFα Transport Induced by Dynamic Loading Alters Biomechanics of Intact Intervertebral Discs

    PubMed Central

    Walter, Benjamin A.; Likhitpanichkul, Morakot; Illien-Junger, Svenja; Roughley, Peter J.; Hecht, Andrew C.; Iatridis, James C.

    2015-01-01

    Objective Intervertebral disc (IVD) degeneration is an important contributor to the development of back pain, and a key factor relating pain and degeneration are the presence of pro-inflammatory cytokines and IVD motion. There is surprisingly limited understanding of how mechanics and inflammation interact in the IVD. This study investigated interactions between mechanical loading and pro-inflammatory cytokines in a large animal organ culture model to address fundamental questions regarding (i.) how inflammatory mediators arise within the IVD, (ii.) how long inflammatory mediators persist, and (iii.) how inflammatory mediators influence IVD biomechanics. Methods Bovine caudal IVDs were cultured for 6 or 20-days under static & dynamic loading with or without exogenous TNFα in the culture medium, simulating a consequence of inflammation of the surrounding spinal tissues. TNFα transport within the IVD was assessed via immunohistochemistry. Changes in IVD structural integrity (dimensions, histology & aggrecan degradation), biomechanical behavior (Creep, Recovery & Dynamic stiffness) and pro-inflammatory cytokines in the culture medium (ELISA) were assessed. Results TNFα was able to penetrate intact IVDs when subjected to dynamic loading but not static loading. Once transported within the IVD, pro-inflammatory mediators persisted for 4–8 days after TNFα removal. TNFα exposure induced changes in IVD biomechanics (reduced diurnal displacements & increased dynamic stiffness). Discussion This study demonstrated that exposure to TNFα, as might occur from injured surrounding tissues, can penetrate healthy intact IVDs, induce expression of additional pro-inflammatory cytokines and alter IVD mechanical behavior. We conclude that exposure to pro-inflammatory cytokine may be an initiating event in the progression of IVD degeneration in addition to being a consequence of disease. PMID:25734788

  14. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  15. Biomechanics of Disc Degeneration

    PubMed Central

    Palepu, V.; Kodigudla, M.; Goel, V. K.

    2012-01-01

    Disc degeneration and associated disorders are among the most debated topics in the orthopedic literature over the past few decades. These may be attributed to interrelated mechanical, biochemical, and environmental factors. The treatment options vary from conservative approaches to surgery, depending on the severity of degeneration and response to conservative therapies. Spinal fusion is considered to be the “gold standard” in surgical methods till date. However, the association of adjacent level degeneration has led to the evolution of motion preservation technologies like spinal arthroplasty and posterior dynamic stabilization systems. These new technologies are aimed to address pain and preserve motion while maintaining a proper load sharing among various spinal elements. This paper provides an elaborative biomechanical review of the technologies aimed to address the disc degeneration and reiterates the point that biomechanical efficacy followed by long-term clinical success will allow these nonfusion technologies as alternatives to fusion, at least in certain patient population. PMID:22745914

  16. [The synergistic effect of amygdalin and HSYA on the IL-1beta induced endplate chondrocytes of rat intervertebral discs].

    PubMed

    Niu, Kai; Zhao, Yong-Jian; Zhang, Lei; Li, Chen-Guang; Wang, Yong-Jun; Zheng, Wei-Chao

    2014-08-01

    The effect of amygdalin joint hydroxysafflor yellow A (HSYA) on the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and the possible mechanism were studied and explored. Chondrocytes were obtained from endplate of one-month SD rat intervertebral discs and cultured primary endplate chondrocytes. After identification, they were divided into normal group, induced group, amygdalin group, HSYA group and combined group. CCK-8 kit was adopted to detect the proliferation of the endplate chondrocytes. FCM was measured to detect the apoptosis. Real-time PCR method was adopted to observe the mRNA expression of Aggrecan, Col 2 alpha1, Col 10 alpha1, MMP-13 and the inflammatory cytokines IL-1beta. The protein expression of Col II, Col X was tested through immunofluorescence. Compared with the normal group, the proliferation of the endplate chondrocytes decreased while the apoptosis increased (P < 0.05). With down regulation of the mRNA expressions of Aggrecan, Col 2 alpha1 and up regulation of the mRNA expressions of Col 10 alpha1, MMP-13, IL-1beta (P < 0.05), the protein expression of Col II decreased while the protein expression of Col X increased. Compared with the induced group, amygdalin group, HSYA group, the combined group could inhibit the apoptosis and promote the proliferation (P < 0.05). They could increase the mRNA expressions of Aggrecan and Col 2 alpha1 while decrease the mRNA expressions of Col 10 alpha1, MMP-13 and IL-1beta (P < 0.05). They could also enhance the protein expression of Col II while reduce the protein expression of Col X. The effect of the combined group was significantly better than that of amygdalin and HSYA. Amygdalin joint HSYA could inhibit the degeneration of the endplate chondrocytes derived from intervertebral discs of rats induced by IL-1beta and better than the single use of amygdalin or HSYA.

  17. Fusion angle affects intervertebral adjacent spinal segment joint forces-Model-based analysis of patient specific alignment.

    PubMed

    Senteler, Marco; Weisse, Bernhard; Rothenfluh, Dominique A; Farshad, Mazda T; Snedeker, Jess G

    2017-01-01

    This study addresses the hypothesis that adjacent segment intervertebral joint loads are sensitive to the degree of lordosis that is surgically imposed during vertebral fusion. Adjacent segment degeneration is often observed after lumbar fusion, but a causative mechanism is not yet clearly evident. Altered kinematics of the adjacent segments and potentially nonphysiological mechanical joint loads have been implicated in this process. However, little is known of how altered alignment and kinematics influence loading of the adjacent intervertebral joints under consideration of active muscle forces. This study investigated these effects by simulating L4/5 fusions using kinematics-driven musculoskeletal models of one generic and eight sagittal alignment-specific models. Models featured different spinopelvic configurations but were normalized by body height, masses, and muscle properties. Fusion of the L4/5 segment was implemented in an in situ (22°), hyperlordotic (32°), and hypolordotic (8°) fashion and kinematic input parameters were changed accordingly based on findings of an in vitro investigation. Bending motion from upright standing to 45° forward flexion and back was simulated for all models in intact and fused conditions. Joint loads at adjacent levels and moment arms of spinal muscles experienced changes after all types of fusion. Hypolordotic configuration led to an increase of adjacent segment (L3/4) shear forces of 29% on average, whereas hyperlordotic fusion reduced shear by 39%. Overall, L4/5 in situ fusion resulted in intervertebral joint forces closest to intact loading conditions. An artificial decrease in lumbar lordosis (minus 14° on average) caused by an L4/5 fusion lead to adverse loading conditions, particularly at the cranial adjacent levels, and altered muscle moment arms, in particular for muscles in the vicinity of the fusion. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:131-139, 2017.

  18. Impaired binding of the age-related macular degeneration-associated complement factor H 402H allotype to Bruch's membrane in human retina.

    PubMed

    Clark, Simon J; Perveen, Rahat; Hakobyan, Svetlana; Morgan, B Paul; Sim, Robert B; Bishop, Paul N; Day, Anthony J

    2010-09-24

    Age-related macular degeneration (AMD) is the predominant cause of blindness in the industrialized world where destruction of the macula, i.e. the central region of the retina, results in loss of vision. AMD is preceded by the formation of deposits in the macula, which accumulate between the Bruch's membrane and the retinal pigment epithelium (RPE). These deposits are associated with complement-mediated inflammation and perturb retinal function. Recent genetic association studies have demonstrated that a common allele (402H) of the complement factor H (CFH) gene is a major risk factor for the development of AMD; CFH suppresses complement activation on host tissues where it is believed to bind via its interaction with polyanionic structures. We have shown previously that this coding change (Y402H; from a tyrosine to histidine residue) alters the binding of the CFH protein to sulfated polysaccharides. Here we demonstrate that the AMD-associated polymorphism profoundly affects CFH binding to sites within human macula. Notably, the AMD-associated 402H variant binds less well to heparan sulfate and dermatan sulfate glycosaminoglycans within Bruch's membrane when compared with the 402Y form; both allotypes exhibit a similar level of binding to the RPE. We propose that the impaired binding of the 402H variant to Bruch's membrane results in an overactivation of the complement pathway leading to local chronic inflammation and thus contributes directly to the development and/or progression of AMD. These studies therefore provide a putative disease mechanism and add weight to the genetic association studies that implicate the 402H allele as an important risk factor in AMD.

  19. A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEX™ device for customized intervertebral disc prosthesis.

    PubMed

    Gloria, Antonio; De Santis, Roberto; Ambrosio, Luigi; Causa, Filippo; Tanner, K Elizabeth

    2011-05-01

    Spinal disease due to intervertebral disc degeneration represents a serious medical problem which affects many people worldwide. Disc arthroplasty may be considered the future ''gold standard'' of back pain treatment, even if problems related to available disc prostheses are considered. Hence, the aim of the present study was to improve the artificial disc technology by proposing the engineering of a pilot-scale device production process for a total multi-component intervertebral disc prosthesis. The device is made up of a poly(2-hydroxyethyl methacrylate)/poly(methyl methacrylate) (PHEMA/PMMA) (80/20 w/w) semi-interpenetrating polymer network (s-IPN) composite hydrogel reinforced with poly(ethylene terephthalate) (PET) fibers as annulus/nucleus substitute, and two hydroxyapatite-reinforced polyethylene composite (HAPEX™) endplates in order to anchor the multi-component device to the vertebral bodies. Static and dynamic-mechanical characterization show appropriate mechanical behavior. An example of engineering of a suitable pilot-scale device production process is also proposed in order to manufacture custom made implants.

  20. Effect of Static Load on the Nucleus Pulposus of Rabbit Intervertebral Disc Motion Segment in an Organ Culture

    PubMed Central

    Feng, Min-Shan; Zhang, Ping; Yu, Jie

    2016-01-01

    The development of mechanically active culture systems helps in understanding of the role of mechanical stress in intervertebral disc (IVD) degeneration. Motion segment cultures facilitate the application and control of mechanical loads. The purpose of this study was to establish a culturing method for rabbit IVD motion segments to observe the effect of static load on the whole disc organ. Segments were cultured in custom-made apparatuses under a constant, compressive load (3 kg) for 2 weeks. Tissue integrity, matrix synthesis, and matrix gene expression profile were assessed and compared with fresh one. The results showed ex vivo culturing of samples gradually destroyed the morphology. Proteoglycan contents and gene expression were decreased and downregulated obviously. However, immunohistochemical staining intensity and collagen type II gene expression were significantly enhanced and upregulated. In contrast, these trends were reversed under constant compression. These results indicated short-term static load stimulated the synthesis of type II collagen; however, constant compression led to progressive degeneration and specifically to proteoglycan. Through this study a loading and organ-culturing system for ex vivo rabbit IVD motion segments was developed, which can be used to study the effects of mechanical stimulation on the biology of IVDs and the pathomechanics of IVD degeneration. PMID:27872846

  1. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis

    PubMed Central

    Iannaccone, Alessandro; Giorgianni, Francesco; New, David D.; Hollingsworth, T. J.; Umfress, Allison; Alhatem, Albert H.; Neeli, Indira; Lenchik, Nataliya I.; Jennings, Barbara J.; Calzada, Jorge I.; Satterfield, Suzanne; Mathews, Dennis; Diaz, Rocio I.; Harris, Tamara; Johnson, Karen C.; Charles, Steve; Kritchevsky, Stephen B.; Gerling, Ivan C.; Beranova-Giorgianni, Sarka; Radic, Marko Z.

    2015-01-01

    Background We investigated sera from elderly subjects with and without age-related macular degeneration (AMD) for presence of autoantibodies (AAbs) against human macular antigens and characterized their identity. Methods Sera were collected from participants in the Age-Related Maculopathy Ancillary (ARMA) Study, a cross-sectional investigation ancillary to the Health ABC Study, enriched with participants from the general population. The resulting sample (mean age: 79.2±3.9 years old) included subjects with early to advanced AMD (n = 131) and controls (n = 231). Sera were tested by Western blots for immunoreactive bands against human donor macular tissue homogenates. Immunoreactive bands were identified and graded, and odds ratios (OR) calculated. Based on these findings, sera were immunoprecipitated, and subjected to 2D gel electrophoresis (GE). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the targets recognized by circulating AAbs seen on 2D-GE, followed by ELISAs with recombinant proteins to confirm LC-MS/MS results, and quantify autoreactivities. Results In AMD, 11 immunoreactive bands were significantly more frequent and 13 were significantly stronger than in controls. Nine of the more frequent bands also showed stronger reactivity. OR estimates ranged between 4.06 and 1.93, and all clearly excluded the null value. Following immunoprecipitation, 2D-GE and LC-MS/MS, five of the possible autoreactivity targets were conclusively identified: two members of the heat shock protein 70 (HSP70) family, HSPA8 and HSPA9; another member of the HSP family, HSPB4, also known as alpha-crystallin A chain (CRYAA); Annexin A5 (ANXA5); and Protein S100-A9, also known as calgranulin B that, when complexed with S100A8, forms calprotectin. ELISA testing with recombinant proteins confirmed, on average, significantly higher reactivities against all targets in AMD samples compared to controls. Conclusions Consistent with other evidence supporting the

  2. Identification of a Promoter for the Human C1q-Tumor Necrosis Factor–Related Protein-5 Gene Associated with Late-Onset Retinal Degeneration

    PubMed Central

    Chavali, Venkata R. M.; Sommer, Jeffrey R.; Petters, Robert M.

    2010-01-01

    Purpose. The Complement-1q tumor necrosis factor-related protein 5 (C1QTNF5/CTRP5) gene is located in the 3′ untranslated region of the Membrane Frizzled Related Protein (MFRP) gene, and these two genes are reported to be dicistronic. The authors examined the 5′ upstream sequence of CTRP5 for the presence of a promoter regulating the expression of this gene. Methods. The sequence upstream of the translational start site of human CTRP5 (hCTRP5) was analyzed by Promoter Inspector software. A series of plasmids containing segments of hCTRP5 putative promoter sequence (−29 bp to −3.6 kb) upstream of the luciferase gene were generated. Cells were transiently transfected with these plasmids, and luciferase activity was measured. 5′ RACE analysis was performed to determine the functional transcription start site. V5 tagged-pig CTRP5 (pCTRP5) gene, cloned downstream of the hCTRP5 putative promoter, was expressed in a human retinal cell line (ARPE-19) and a Chinese hamster ovary cell line (CHO-K1) to study the functionality of the putative promoter. Results. Bioinformatic analysis identified a putative promoter region between nt −1322 and +1 sequence of hCTRP5. 5′ RACE analysis revealed the presence of the transcriptional start site (TSS) at 62 bp upstream of the start codon in the CTRP5. The 1.3-kb sequence of the hCTRP5 predicted promoter produced higher levels of luciferase activity, indicating the strength of the cloned CTRP5 promoter. The promoter sequence between nt −1322 bp to −29 bp upstream of the first ATG of CTRP5 was found to be essential for this promoter activity. The predicted hCTRP5 promoter was found to control the expression of V5-tagged pCTRP5 and nuclear GFP, indicating that the promoter was functional. Conclusions. This study revealed the presence of a functional promoter for the CTRP5 gene located 5′ of its start site. Understanding the regulation of CTRP5 gene transcription may provide insights into the possible role of CTRP5 in

  3. Soluble factors from the notochordal-rich intervertebral disc inhibit endothelial cell invasion and vessel formation in the presence and absence of pro-inflammatory cytokines

    PubMed Central

    Cornejo, M.C.; Cho, S.K.; Giannarelli, C.; Iatridis, J.C.; Purmessur, D.

    2015-01-01

    Background Chronic low back pain can be associated with the pathological ingrowth of blood vessels and nerves into intervertebral discs (IVDs). The notochord patterns the IVD during development and is a source of anti-angiogenic soluble factors such as Noggin and Chondroitin sulfate (CS). These factors may form the basis for a new minimally invasive strategy to target angiogenesis in the IVD. Objective To examine the anti-angiogenic potential of soluble factors from notochordal cells (NCs) and candidates Noggin and CS under healthy culture conditions and in the presence of pro-inflammatory mediators. Design NC conditioned media (NCCM) was generated from porcine NC-rich nucleus pulposus tissue. To assess the effects of NCCM, CS and Noggin on angiogenesis, cell invasion and tubular formation assays were performed using human umbilical vein endothelial cells (HUVECs) ± tumor necrosis factor alpha (TNFα [10 ng/ml]). vascular endothelial growth factor (VEGF)-A, MMP-7, interleukin-6 (IL-6) and IL-8 mRNA levels were assessed using qRT-PCR. Results NCCM (10 & 100%), CS (10 and 100 μg) and Noggin (10 and 100 ng) significantly decreased cell invasion of HUVECs with and without TNFα. NCCM 10% and Noggin 10 ng inhibited tubular formation with and without TNFα and CS 100 μg inhibited tubules in Basal conditions whereas CS 10 μg inhibited tubules with TNFα. NCCM significantly decreased VEGF-A, MMP-7 and IL-6 mRNA levels in HUVECs with and without TNFα. CS and Noggin had no effects on gene expression. Conclusions We provide the first evidence that soluble factors from NCs can inhibit angiogenesis by suppressing VEGF signaling. Notochordal-derived ligands are a promising minimally invasive strategy targeting neurovascular ingrowth and pain in the degenerated IVD. PMID:25534363

  4. Expression of Prolyl Hydroxylases (PHDs) Is Selectively Controlled by HIF-1 and HIF-2 Proteins in Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Fujita, Nobuyuki; Markova, Dessislava; Anderson, D. Greg; Chiba, Kazuhiro; Toyama, Yoshiaki; Shapiro, Irving M.; Risbud, Makarand V.

    2012-01-01

    Adaptive response to hypoxia in nucleus pulposus cells of the intervertebral disc is regulated by the hypoxia-inducible factors, HIF-1α and HIF-2α. Moreover, oxygen-dependent turnover of HIF-1α in these cells is controlled by the prolyl-4-hydroxylase domain (PHD) family of proteins. Whether HIF homologues control expression of PHDs and whether PHDs control hypoxia-inducible factor (HIF) turnover and/or activity under hypoxia is not known. Here, we show that in nucleus pulposus cells, hypoxia robustly induces PHD3 expression and, to a lesser extent, of PHD2 and PHD1. Reporter analysis shows that the hypoxic induction of the PHD2 promoter is HIF-1α dependent, whereas PHD3 promoter/enhancer activity is dependent on both HIF-1α and HIF-2α. Lentiviral delivery of HIF-1α, ShHIF-1α, and ShHIF-1β confirmed these observations. Noteworthy, HIF-1α maintains basal expression of PHD1 in hypoxia at the posttranscriptional level. Finally, loss of function studies using lentiviral transduction of ShPHDs clearly shows that even at 1% O2, PHD2 selectively degrades HIF-1α. In contrast, in hypoxia, PHD3 enhances HIF-1α transcriptional activity without affecting protein levels. To correlate these observations with disc disease, a condition characterized by tissue vascularization, we analyzed human tissues. Increased PHD1 mRNA expression but decreased PHD2 and PHD3 expression is observed in degenerate tissues. Interestingly, the hypoxic responsiveness of all the PHDs is maintained in isolated nucleus pulposus cells regardless of the disease state. We propose that PHD2 and PHD3 can be used as a biomarker of tissue oxygenation in the disc and that, as such, it may have important clinical implications. PMID:22451659

  5. Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements, and Material Properties of the Intervertebral Disk and a Summary of Candidate Hydrogels for Repair

    PubMed Central

    Long, Rose G.; Torre, Olivia M.; Hom, Warren W.; Assael, Dylan J.; Iatridis, James C.

    2016-01-01

    There is currently a lack of clinically available solutions to restore functionality to the intervertebral disk (IVD) following herniation injury to the annulus fibrosus (AF). Microdiscectomy is a commonly performed surgical procedure to alleviate pain caused by herniation; however, AF defects remain and can lead to accelerated degeneration and painful conditions. Currently available AF closure techniques do not restore mechanical functionality or promote tissue regeneration, and have risk of reherniation. This review determined quantitative design requirements for AF repair materials and summarized currently available hydrogels capable of meeting these design requirements by using a series of systematic PubMed database searches to yield 1500+ papers that were screened and analyzed for relevance to human lumbar in vivo measurements, motion segment behaviors, and tissue level properties. We propose a testing paradigm involving screening tests as well as more involved in situ and in vivo validation tests to efficiently identify promising biomaterials for AF repair. We suggest that successful materials must have high adhesion strength (∼0.2 MPa), match as many AF material properties as possible (e.g., approximately 1 MPa, 0. 3 MPa, and 30 MPa for compressive, shear, and tensile moduli, respectively), and have high tensile failure strain (∼65%) to advance to in situ and in vivo validation tests. While many biomaterials exist for AF repair, few undergo extensive mechanical characterization. A few hydrogels show promise for AF repair since they can match at least one material property of the AF while also adhering to AF tissue and are capable of easy implantation during surgical procedures to warrant additional optimization and validation. PMID:26720265

  6. 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study.

    PubMed

    Roberts, S; Menage, J; Duance, V; Wotton, S; Ayad, S

    1991-09-01

    Several types of collagen are known to exist in the intervertebral disc in addition to the fibrillar collagens, Types I and II. Although they constitute only a small percentage of the total collagen content, these minor collagens may have important functions. This study was designed to investigate the presence of Types I, II, III, IV, VI, and IX collagens in the intervertebral disc and cartilage end plate by immunohistochemistry, thereby establishing their location within the tissues. Types III and VI collagen have a pericellular distribution in animal and human tissue. No staining for Type IX collagen was present in normal human disc, but in rat and bovine intervertebral disc, it was also located pericellularly. These results show that cells of the intervertebral disc and cartilage end plate sit in fibrous capsules, forming chondrons similar to those described in articular cartilage. In pathologic tissue the amount and distribution of the collagen types, and the organization of the pericellular capsule, differ from that seen in control material.

  7. MicroRNA-146a Ameliorates Inflammation via TRAF6/NF-κB Pathway in Intervertebral Disc Cells

    PubMed Central

    Lv, Feng; Huang, Yingzi; Lv, Wentao; Yang, Longbiao; Li, Feng; Fan, Jingli; Sun, Jianmin

    2017-01-01

    Background Intervertebral disc degeneration (IDD) has been widely recognized as a major contributor to low back pain. Accumulating evidence suggests that IDD is linked to various pro-inflammatory cytokines and metabolites. Recently, numerous studies have demonstrated that microRNAs (miRNAs) play a pivotal role in the development of most disorders, including degenerative disc diseases. Previous reports have revealed that miRNA-146a (miR-146a) could attenuate neuropathic pain in the spinal cord. The aim of this study was to investigate the role of miR-146a in the inflammatory response of IDD. Material/Methods Quantitative real-time (RT)-PCR was performed to investigate the levels of miR-146a in the PBMCs (peripheral blood mononuclear cells) of patients with IDD. Human nucleus pulposus (NP) cells were transiently transfected with miR-146a mimic; control NP cell transfections lacked miR-146a. Then all NP cells were treated with LPS (10 μM) to induce inflammation. The mRNA levels of miR-146a in NP cells were determined by RT-PCR. In addition, the mRNA and protein expression levels of tumor necrosis factor (TNF), receptor-associated factor 6 (TRAF6), and nuclear factor (NF)-κB in NP cells were evaluated by quantitative RT-PCR and Western blot analysis, respectively. Results We found that miR-146a was significantly downregulated in the PBMCs of patients. Moreover, overexpression of miR-146a significantly decreased the levels of pro-inflammatory cytokines in LPS-stimulated NP cells. The mRNA and protein levels of TRAF6 and NF-κB were downregulated by miR-146a overexpression. Conclusions These results suggest that overexpression of miR-146a could promote IDD through the TRAF/NF-κB pathway. Our findings also highlight miR-146a as a novel possible therapeutic target for IDD. PMID:28161709

  8. Striatal degeneration in childhood.

    PubMed Central

    Erdohazi, M; Marshall, P

    1979-01-01

    The clinical features, and the radiological and neuropathological findings of 3 unrelated children with striatal degeneration are presented. In one case the father had recently developed choreiform movements while in the other two the family history was negative for neurological disorders. Two patients had juvenile onset of psychiatric symptoms, seizures, and rigidity. The 3rd child presented with focal seizures at 9 weeks of age. The neuropathological findings are virtually identical in all 3 cases. The classification of striatal degeneration in childhood is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:434899

  9. Analysis of rabbit intervertebral disc physiology based on water metabolism. I. Factors influencing metabolism of the normal intervertebral discs

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Sano, A.

    1988-11-01

    Basic factors influencing the metabolism of intervertebral discs of rabbits were quantitatively analyzed based on the water metabolism. The blood flow surrounding the intervertebral disc was calculated using pharmacokinetic concepts from the data obtained by time-related tritiated water distribution analyses. The blood flow was estimated as 0.056 (mg/min/mg tissue) in the anterior annulus, 0.106 in the posterior annulus, 0.120 in the lateral annulus, and 0.084 in the nucleus pulposus, respectively (Experiment 1). Water content and fixed charge density in the intervertebral disc fractions also were measured (Experiment 2). The cations and uncharged small solutes transported into the disc tissue ranged in descending order from nucleus pulposus, lateral annulus, posterior annulus, to anterior annulus. The authors also calculated theoretically the swelling pressure of the proteoglycan in the intervertebral disc fractions from the results of Experiment 2. It was concluded that swelling pressure was highest in the nucleus pulposus, and lowest in the anterior annulus. The water in the posterior annulus is less exchangeable than in the other disc tissue fractions.

  10. Accuracy of survey radiographic diagnosis of intervertebral disc protrusion in dogs.

    PubMed

    Lamb, C R; Nicholls, A; Targett, M; Mannion, P

    2002-01-01

    To assess the diagnostic accuracy of survey radiography for canine thoracolumbar intervertebral disc protrusion, survey radiographs (lateral and ventrodorsal) of 64 dogs with surgically-confirmed thoracolumbar intervertebral disc protrusion, 51 dogs with negative myelograms and 29 dogs with various spinal conditions other than disc protrusion were reviewed by three independent observers who were unaware of any clinical information. There were marked differences in observer performance for diagnosis of intervertebral disc protrusion, although there were no significant differences in intraobserver diagnostic accuracy for small vs. large dogs. Accuracy of observers for determining sites of intervertebral disc protrusion using survey radiography was in the range 51-61%. All observers had low accuracy for identification of second sites of intervertebral disc protrusion. The most useful radiographic sign, narrowed intervertebral space, had only moderate sensitivity (range 64-69%) and moderate predictive value (range 63-71%) for intervertebral disc protrusion. Vacuum phenomenon was an infrequent but accurate sign of intervertebral disc protrusion. Recognition of multiple radiographic signs of intervertebral disc protrusion at one site was associated with increased accuracy of diagnosis. No observer was accurate enough to justify attempting targeted surgical treatment of intervertebral disc protrusion without myelography.

  11. Method for obtaining simple shear material properties of the intervertebral disc under high strain rates.

    PubMed

    Ott, Kyle A; Armiger, Robert S; Wickwire, Alexis C; Carneal, Catherine M; Trexler, Morgana M; Lennon, Andrew M; Zhang, Jiangyue; Merkle, Andrew C

    2012-01-01

    Predicting spinal injury under high rates of vertical loading is of interest, but the success of computational models in modeling this type of loading scenario is highly dependent on the material models employed. Understanding the response of these biological materials at high strain rates is critical to accurately model mechanical response of tissue and predict injury. While data exists at lower strain rates, there is a lack of the high strain rate material data that are needed to develop constitutive models. The Split Hopkinson Pressure Bar (SHPB) has been used for many years to obtain properties of various materials at high strain rates. However, this apparatus has mainly been used for characterizing metals and ceramics and is difficult to apply to softer materials such as biological tissue. Recently, studies have shown that modifications to the traditional SHPB setup allow for the successful characterization of mechanical properties of biological materials at strain rates and peak strain values that exceed alternate soft tissue testing techniques. In this paper, the previously-reported modified SHPB technique is applied to characterize human intervertebral disc material under simple shear. The strain rates achieved range from 5 to 250 strain s-1. The results demonstrate the sensitivity to the disc composition and structure, with the nucleus pulposus and annulus fibrosus exhibiting different behavior under shear loading. Shear tangent moduli are approximated at varying strain levels from 5 to 20% strain. This data and technique facilitates determination of mechanical properties of intervertebral disc materials under shear loading, for eventual use in constitutive models.

  12. [Early clinical effect of intervertebral fusion of lumbar degenerative disease using nano-hydroxyapatite/polyamide 66 intervertebral fusion cage].

    PubMed

    Yang, Bo; Ou, Yunsheng; Jiang, Dianming; An, Hong; Liu, Bo; Zhang, Jian; Li, Kaiting

    2014-10-01

    The present study is aimed to investigate the early clinical effects of nano-hydroxyapatite/polyamide 66 intervertebral fusion cage (n-HA/PA66 cage) for the treatment of lumbar degenerative diseases. We selected 27 patients with lumbar degenerative diseases who were managed by posterior decompression or reset operation combined with n-HA/PA66 cage intervertebral fusion and internal fixation from August 2010 to January 2012. The oswestry disability index (ODI), low back and leg pain visual analogue score (VAS), and intervertebral height (IH) were evaluated at preoperation, 1 week postoperation and the last follow-up period, respectively. Intervertebral bony fusion was evaluated at the last follow-up time. The patients were followed up for 12-24 months (averaged 19 months). The ODI, VAS and IH were significantly improved at 1 week postoperation and the last follow-up time compared with those at preoperative period (P < 0.05). But there was no significant difference between 1 week postoperative and the last follow-up time (P < 0.05). Brantigan's standard was used to evaluate fusion at the last follow-up time. There were 19 patients with grade 5 fusion, 8 with grade 4 fusion, with a fusion rate of 100%, and none with grade 1-3 fusions. There was no cage translocation and internal fixation breakage. These results suggested that n-HA/PA66 cage was an ideal biological material in the posterior lumbar interbody fusion and internal fixation operation for treatment of lumbar degenerative diseases. It can effectively maintain the intervertebral height and keep a high rate of bony fusion. The early clinical effect has been satisfactory.

  13. Kraepelin and degeneration theory.

    PubMed

    Hoff, Paul

    2008-06-01

    Emil Kraepelin's contribution to the clinical and scientific field of psychiatry is recognized world-wide. In recent years, however, there have been a number of critical remarks on his acceptance of degeneration theory in particular and on his political opinion in general, which was said to have carried "overtones of proto-fascism" by Michael Shepherd [28]. The present paper discusses the theoretical cornerstones of Kraepelinian psychiatry with regard to their relevance for Kraepelin's attitude towards degeneration theory. This theory had gained wide influence not only in scientific, but also in philosophical and political circles in the last decades of the nineteenth century. There is no doubt that Kraepelin, on the one hand, accepted and implemented degeneration theory into the debate on etiology and pathogenesis of mental disorders. On the other hand, it is not appropriate to draw a simple and direct line from early versions of degeneration theory to the crimes of psychiatrists and politicians during the rule of national socialism. What we need, is a differentiated view, since this will be the only scientific one. Much research needs to be done here in the future, and such research will surely have a significant impact not only on the historical field, but also on the continuous debate about psychiatry, neuroscience and neurophilosophy.

  14. Frontotemporal Lobar Degeneration

    PubMed Central

    Josephs, Keith A.

    2009-01-01

    Synopsis Frontotemporal lobar degeneration (FTLD) is a syndromic diagnosis that encompasses at least three different variants. Imaging modalities are clinically useful in FTLD while pathology remains the gold standard for definitive diagnosis. To date three different genes have been identified that account for FTLD. PMID:17659185

  15. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population.

    PubMed

    Shirazi-Adl, A; Taheri, M; Urban, J P G

    2010-05-07

    Responsible for making and maintaining the extracellular matrix, the cells of intervertebral discs are supplied with essential nutrients by diffusion from the blood supply through mainly the cartilaginous endplates (CEPs) and disc tissue. Decrease in transport rate and increase in cellular activity may adversely disturb the intricate supply-demand balance leading ultimately to cell death and disc degeneration. The present numerical study aimed to introduce for the first time cell viability criteria into nonlinear coupled nutrition transport equations thereby evaluating the dynamic nutritional processes governing viable cell population and concentrations of oxygen, glucose and lactic acid in the disc as CEP exchange area dropped from a fully permeable condition to an almost impermeable one. A uniaxial model of an in vitro cell culture analogue of the disc is first employed to examine and validate cell viability criteria. An axisymmetric model of the disc with four distinct regions was subsequently used to investigate the survival of cells at different CEP exchange areas. In agreement with measurements, predictions of the diffusion chamber model demonstrated substantial cell death as essential nutrient concentrations fell to levels too low to support cells. Cells died away from the nutrient supply and at higher cell densities. In the disc model, the nucleus region being farthest away from supply sources was most affected; cell death initiated first as CEP exchange area dropped below approximately 40% and continued exponentially thereafter to depletion as CEP calcified further. In cases with loss of endplate permeability and/or disruptions therein, as well as changes in geometry and fall in diffusivity associated with fluid outflow, the nutrient concentrations could fall to levels inadequate to maintain cellular activity or viability, resulting in cell death and disc degeneration.

  16. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration.

    PubMed

    Richardson, Stephen M; Kalamegam, Gauthaman; Pushparaj, Peter N; Matta, Csaba; Memic, Adnan; Khademhosseini, Ali; Mobasheri, Reza; Poletti, Fabian L; Hoyland, Judith A; Mobasheri, Ali

    2016-04-15

    Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.

  17. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications.

    PubMed

    Growney Kalaf, Emily A; Flores, Reynaldo; Bledsoe, J Gary; Sell, Scott A

    2016-06-01

    Reversal of intervertebral disc degeneration can have a potentially monumental effect on spinal health. As such, the goal of this research is to create an injectable, cellularized alginate-based nucleus pulposus that will restore disc function; with the primary goal of creating an alginate gel with tailorable rates of gelation to improve functionality over standard CaCl2 crosslinking techniques. Gelation characteristics of 1% sodium alginate were analyzed over various molar concentrations of a 1:2 ratio of CaCO3:glucono-δ-lactone (GDL), with 10% CaCl2 as the control crosslinker. Alginate construct characterization for all concentrations was performed via ultimate and cyclic compressive testing over a 28day degradation period in PBS. Dehydration, swell testing, and albumin release kinetics were determined, and cytotoxicity and cell homogeneity tests showed promise for cellularization strategies. Overall, the 30 and 60mM GDL alginate concentrations presented the most viable option for use in further studies, with a gelation time between 10 and 30min, low hysteresis over control, low percent change in thickness and weight under both PBS degradation and swelling conditions, and stable mechanical properties over 28days in vitro.

  18. Molecular regulation of CCN2 in the intervertebral disc: lessons learned from other connective tissues.

    PubMed

    Tran, Cassie M; Shapiro, Irving M; Risbud, Makarand V

    2013-08-08

    Connective tissue growth factor (CCN2/CTGF) plays an important role in extracellular matrix synthesis, especially in skeletal tissues such as cartilage, bone, and the intervertebral disc. As a result there is a growing interest in examining the function and regulation of this important molecule in the disc. This review discusses the regulation of CCN2 by TGF-β and hypoxia, two critical determinants that characterize the disc microenvironment, and discusses known functions of CCN2 in the disc. The almost ubiquitous regulation of CCN2 by TGF-β, including that seen in the disc, emphasizes the importance of the TGF-β-CCN2 relationship, especially in terms of extracellular matrix synthesis. Likewise, the unique cross-talk between CCN2 and HIF-1 in the disc highlights the tissue and niche specific mode of regulation. Taken together the current literature supports an anabolic role for CCN2 in the disc and its involvement in the maintenance of tissue homeostasis during both health and disease. Further studies of CCN2 in this tissue may reveal valuable targets for the biological therapy of disc degeneration.

  19. Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs

    PubMed Central

    Nasto, Luigi A.; Wang, Dong; Robinson, Andria R.; Clauson, Cheryl L.; Ngo, Kevin; Dong, Qing; Roughley, Peter; Epperly, Michael; Huq, Saiful M.; Pola, Enrico; Sowa, Gwendolyn; Robbins, Paul D.; Kang, James; Niedernhofer, Laura J.; Vo, Nam V.

    2013-01-01

    Intervertebral disc degeneration (IDD) is the leading cause of debilitating spinal disorders such as chronic lower back pain. Aging is the greatest risk factor for IDD. Previously, we demonstrated IDD in a murine model of a progeroid syndrome caused by reduced expression of a key DNA repair enzyme. This led us to hypothesize that DNA damage promotes IDD. To test our hypothesis, we chronically exposed adult wild-type (Wt) and DNA repair-deficient Ercc1−/Δ mice to the cancer therapeutic agent mechlorethamine (MEC) or ionization radiation (IR) to induce DNA damage and measured the impact on disc structure. Proteoglycan, a major structural matrix constituent of the disc, was reduced 3-5x in the discs of MEC- and IR-exposed animals compared to untreated controls. Expression of the protease ADAMTS4 and aggrecan proteolytic fragments were significantly increased. Additionally, new PG synthesis was reduced 2-3x in MEC- and IR-treated discs compared to untreated controls. Both cellular senescence and apoptosis were increased in discs of treated animals. The effects were more severe in the DNA repair-deficient Ercc1−/Δ mice than in Wt littermates. Local irradiation of the vertebra in Wt mice elicited a similar reduction in PG. These data demonstrate that genotoxic stress drives degenerative changes associated with IDD. PMID:23262094

  20. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  1. Prospectives for Gene Therapy of Retinal Degenerations

    PubMed Central

    Thumann, Gabriele

    2012-01-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  2. X-82 to Treat Age-related Macular Degeneration

    ClinicalTrials.gov

    2017-01-12

    Age-Related Macular Degeneration (AMD); Macular Degeneration; Exudative Age-related Macular Degeneration; AMD; Macular Degeneration, Age-related, 10; Eye Diseases; Retinal Degeneration; Retinal Diseases

  3. Incorporating Six Degree-of-Freedom Intervertebral Joint Stiffness in a Lumbar Spine Musculoskeletal Model—Method and Performance in Flexed Postures

    PubMed Central

    Meng, Xiangjie; Bruno, Alexander G.; Cheng, Bo; Wang, Wenjun; Bouxsein, Mary L.; Anderson, Dennis E.

    2015-01-01

    Intervertebral translations and rotations are likely dependent on intervertebral stiffness properties. The objective of this study was to incorporate realistic intervertebral stiffnesses in a musculoskeletal model of the lumbar spine using a novel force-dependent kinematics approach, and examine the effects on vertebral compressive loading and intervertebral motions. Predicted vertebral loading and intervertebral motions were compared to previously reported in vivo measurements. Intervertebral joint reaction forces and motions were strongly affected by flexion stiffness, as well as force–motion coupling of the intervertebral stiffness. Better understanding of intervertebral stiffness and force–motion coupling could improve musculoskeletal modeling, implant design, and surgical planning. PMID:26299207

  4. Effect of disc degeneration on the muscle recruitment pattern in upright posture: a computational analysis.

    PubMed

    Kim, Young Eun; Choi, Hae Won

    2015-01-01

    Based on the sensor driving control mechanism model, the effect of disc degeneration on the trunk muscle recruitment (TMR) pattern was analysed in erect standing posture. A previously developed computational model was used for this analysis, with modifications incorporating the T12-L1 motion segment and additional muscle fascicles. To generate disc degeneration at three different levels (L3-L4, L4-L5, or L5-S1), the material properties of the ground matrix of the annulus and bulk modulus of the nucleus were reduced. The finite element method combined with an optimization technique was applied to calculate the muscle forces. Minimization of deviations in the averaged tensile stress in the annulus fibres at the outermost layer in the five discs was selected for muscle force calculations. The results indicated that the disc degeneration noticeably increased the activation of the superficial muscle (IT and R) even though there was no clear change in the longissimus thoracis. Unlike some of the superficial muscles, activation in the deep muscles (multifidus (ML, MS, MT), LL and Q) was decreased. The change in TMR pattern generated an intervertebral disc angle difference and nucleus pressure increased in the upper level. These differences are expected to be functional in that they reduce the stress at the degenerated disc by changing the muscle activation, which slows down the progress of disc degeneration.

  5. Pediatric intervertebral disc calcification: A no touch lesion.

    PubMed

    Garg, Monika; Kumar, Sanyal; Satija, Bhawna; Gupta, Rajat

    2012-01-01

    Intervertebral disc calcification (IVDC), though rare, remains an important differential of pediatric spinal pain. A 7-year-old boy presented with sudden-onset severe neck pain and restricted movements. There was no definite history of trauma or infection. Imaging of the cervical spine showed calcification of the intervertebral disc at C2-3 level, with significant posterior protrusion into the spinal canal causing compression of the cervical spinal cord. The child was kept on conservative management. The calcification and posterior protrusion showed near-complete resolution on 3-month follow-up. This case report emphasizes that childhood IVDC is a benign condition which commonly resolves spontaneously, without any surgical intervention and neurological sequelae.

  6. Neural reprogramming in retinal degenerations

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Anderson, James R.; Kinard, Krista; Marshak, David W.; Wilson, John H.; Wensel, Theodore; Lucas, Robert J.

    2008-01-01

    Purpose Early visual defects in degenerative diseases such as retinitis pigmentosa (RP) may arise from phased remodeling of the neural retina. We sought to explore the functional expression of ionotropic (iGluR) and group III, type 6 metabotropic (mGluR6) glutamate receptors in late-stage photoreceptor degenerations. Methods Excitation mapping with organic cations and computational molecular phenotyping were used to determine whether retinal neurons displayed functional glutamate receptor signaling in rodent models of retinal degenerations and a sample of human RP. Results After photoreceptor loss in rodent models of RP, bipolar cells lose mGluR6 and iGluR glutamate-activated currents, while amacrine and ganglion cells retain iGluR-mediated responsivity. Paradoxically, amacrine and ganglion cells show spontaneous iGluR signals in vivo even though bipolar cells lack glutamate-coupled depolarization mechanisms. Cone survival can rescue iGluR expression by OFF bipolar cells. In a case of human RP with cone sparing, iGluR signaling appeared intact, but the numbers of bipolar cells expressing functional iGluRs was double that of normal retina. Conclusions RP triggers permanent loss of bipolar cell glutamate receptor expression, though spontaneous iGluR-mediated signaling by amacrine and ganglion cells implies that such truncated bipolar cells still release glutamate in response to some non-glutamatergic depolarization. Focal cone-sparing can preserve iGluR display by nearby bipolar cells, which may facilitate late-RP photoreceptor transplant attempts. An instance of human RP provides evidence that rod bipolar cell dendrite switching likely triggers new gene expression patterns and may impair cone pathway function. PMID:17591910

  7. Frontotemporal Lobar Degeneration

    PubMed Central

    Rabinovici, Gil D.; Miller, Bruce L.

    2010-01-01

    Frontotemporal lobar degeneration (FTLD) is a clinically and pathologically heterogeneous syndrome, characterized by progressive decline in behaviour or language associated with degeneration of the frontal and anterior temporal lobes. While the seminal cases were described at the turn of the 20th century, FTLD has only recently been appreciated as a leading cause of dementia, particularly in patients presenting before the age of 65 years. Three distinct clinical variants of FTLD have been described: (i) behavioural-variant frontotemporal dementia, characterized by changes in behaviour and personality in association with frontal-predominant cortical degeneration; (ii) semantic dementia, a syndrome of progressive loss of knowledge about words and objects associated with anterior temporal neuronal loss; and (iii) progressive nonfluent aphasia, characterized by effortful language output, loss of grammar and motor speech deficits in the setting of left perisylvian cortical atrophy. The majority of pathologies associated with FTLD clinical syndromes include either tau-positive (FTLD-TAU) or TAR DNA-binding protein 43 (TDP-43)-positive (FTLD-TDP) inclusion bodies. FTLD overlaps clinically and pathologically with the atypical parkinsonian disorders corticobasal degeneration and progressive supranuclear palsy, and with amyotrophic lateral sclerosis. The majority of familial FTLD cases are caused by mutations in the genes encoding microtubule-associated protein tau (leading to FTLD-TAU) or progranulin (leading to FTLD-TDP). The clinical and pathologic heterogeneity of FTLD poses a significant diagnostic challenge, and in vivo prediction of underlying histopathology can be significantly improved by supplementing the clinical evaluation with genetic tests and emerging biological markers. Current pharmacotherapy for FTLD focuses on manipulating serotonergic or dopaminergic neurotransmitter systems to ameliorate behavioural or motor symptoms. However, recent advances in FTLD

  8. Cataracts and macular degeneration.

    PubMed

    Shoch, D

    1979-09-01

    The intraocular lens restores general vision and some degree of independence and mobility to patients with dense cataracts and macular degeneration. The patient, however, must be repeatedly warned that fine central vision, particularly reading, will not be possible after the surgery. An aphakic spectacle leaves such patients a narrow band of vision when superimposed over the macular lesion, and contact lenses are too small for the patient to manage insertion without help.

  9. Biomechanical study of a hat type cervical intervertebral fusion cage.

    PubMed

    Gu, Yu-Tong; Jia, Lian-Shun; Chen, Tong-Yi

    2007-02-01

    The purpose of this study was to evaluate the biomechanical effect of a hat type cervical intervertebral fusion cage (HCIFC). In this in vitro biomechanical study, 48 goat cervical spines (C2-5) were tested in flexion, extension, axial rotation, and lateral bending with a nondestructive stiffness method using a nonconstrained testing apparatus, and three-dimensional displacement was measured. Autologous iliac bone and cervical spine intervertebral fusion cage were implanted according to manufacturers' information after complete discectomy (C3-4). Eight spines in each of the following groups were tested: intact, autologous iliac bone graft, Harms cage, SynCage C, carbon cage, and HCIFC. The mean apparent stiffness values were calculated from the corresponding load-displacement curves. Additionally, cage volume and volume-related stiffness were determined. The stiffness of the SynCage C was statistically greatest in all directions. After implantation of the HCIFC, flexion stiffness increased compared with that of the intact motion segment. There was no significant difference in stiffness between the HCIFC and carbon cage. The stiffness of the HCIFC was statistically higher than that of the Harms cage in axial rotation and significantly lower in flexion, extension, and lateral bending. Volume-related stiffness of all cages was higher than that of iliac bone graft. The Harms cage was highest in volume-related stiffness in all directions. The HCIFC can provide enough primary stability for cervical intervertebral fusion.

  10. Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson’s Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque

    PubMed Central

    Koprich, James B.; Johnston, Tom H.; Reyes, Gabriela; Omana, Vanessa; Brotchie, Jonathan M.

    2016-01-01

    Recent failures in clinical trials for disease modification in Parkinson’s disease have highlighted the need for a non-human primate model of the synucleinopathy underpinning dopaminergic neuron degeneration. The present study was defined to begin the development of such a model in cynomolgus macaque. We have validated surgical and vector parameters to define a means to provide a robust over-expression of alpha-synuclein which is associated with Lewy-like pathology and robust degeneration of the nigrostriatal pathway. Thus, an AAV1/2 vector incorporating strong transcription and transduction regulatory elements was used to deliver the gene for the human A53T mutation of alpha-synuclein. When injected into 4 sites within each substantia nigra (7 μl per site, 1.7 x 1012 gp/ml), this vector provided expression lasting at least 4 months, and a 50% loss of nigral dopaminergic neurons and a 60% reduction in striatal dopamine. Further studies will be required to develop this methodology into a validated model of value as a drug development platform. PMID:27902767

  11. Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque.

    PubMed

    Koprich, James B; Johnston, Tom H; Reyes, Gabriela; Omana, Vanessa; Brotchie, Jonathan M

    2016-01-01

    Recent failures in clinical trials for disease modification in Parkinson's disease have highlighted the need for a non-human primate model of the synucleinopathy underpinning dopaminergic neuron degeneration. The present study was defined to begin the development of such a model in cynomolgus macaque. We have validated surgical and vector parameters to define a means to provide a robust over-expression of alpha-synuclein which is associated with Lewy-like pathology and robust degeneration of the nigrostriatal pathway. Thus, an AAV1/2 vector incorporating strong transcription and transduction regulatory elements was used to deliver the gene for the human A53T mutation of alpha-synuclein. When injected into 4 sites within each substantia nigra (7 μl per site, 1.7 x 1012 gp/ml), this vector provided expression lasting at least 4 months, and a 50% loss of nigral dopaminergic neurons and a 60% reduction in striatal dopamine. Further studies will be required to develop this methodology into a validated model of value as a drug development platform.

  12. Retinal remodeling in inherited photoreceptor degenerations.

    PubMed

    Marc, Robert E; Jones, Bryan W

    2003-10-01

    Photoreceptor degenerations initiated in rods or the retinal pigmented epithelium usually evoke secondary cone death and sensory deafferentation of the surviving neural retina. In the mature central nervous system, deafferentation evokes atrophy and connective re-patterning. It has been assumed that the neural retina does not remodel, and that it is a passive survivor. Screening of advanced stages of human and rodent retinal degenerations with computational molecular phenotyping has exposed a prolonged period of aggressive negative remodeling in which neurons migrate along aberrant glial columns and seals, restructuring the adult neural retina (1). Many neurons die, but survivors rewire the remnant inner plexiform layer (IPL), forming thousands of novel ectopic microneuromas in the remnant inner nuclear layer (INL). Bipolar and amacrine cells engage in new circuits that are most likely corruptive. Remodeling in human and rodent retinas emerges regardless of the molecular defects that initially trigger retinal degenerations. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, the exposure of intrinsic retinal remodeling by the removal of sensory control in retinal degenerations suggests that neuronal organization in the normal retina may be more plastic than previously believed.

  13. A prospective morphological study of facet joint integrity following intervertebral disc replacement with the CHARITE Artificial Disc.

    PubMed

    Trouillier, Hans; Kern, P; Refior, H J; Müller-Gerbl, M

    2006-02-01

    In degenerative disc disease (DDD), increased loading in the posterior column increases facet joint subchondral bone density and may lead to facet joint degeneration. While spinal fusion is commonly used to treat patients with symptomatic DDD, increased stress at the levels adjacent to fusion may accelerate facet joint and adjacent segment degeneration. Artificial disc replacements have been developed as an alternative to fusion. In this prospective study, the effects of disc replacement with the CHARITE Artificial Disc on facet joint loading and integrity were evaluated. Thirteen patients aged <50 years with symptomatic DDD were recruited. Computed tomography (CT) osteoabsorptiometry was performed prior to the implantation of the CHARITE Artificial Disc and six months after. With this technique, increases or decreases in facet joint loading and integrity are indicated by corresponding changes in subchondral bone density. Changes in the distribution of load alter the distribution of the areas of maximum bone density. Clinical outcome was also assessed at pre-operative and 6 and 12 month post-operative visits using the Visual Analogue Scale back and leg pain scores, the Oswestry Disability Index and the Short Form-36 (SF-36) questionnaire. The height of the intervertebral space at the operated level was monitored by lateral X-ray. Subchondral bone density was evaluated in the facet joints of all 13 patients at the operated level, 12 patients at the level above the operated segment, and five patients at the level below the operated segment. Quantitative measurements revealed no significant increases (> or =3%) in subchondral bone density of the facet joints at any level in any patient. Significant decreases (> or =3%) in subchondral bone density were measured at the operated level in 10/13 patients, at the level above the operated segment in 6/12 patients, and at the level below the operated segment in 3/5 patients. There were no changes in the distribution of the

  14. Link protein N-terminal peptide binds to bone morphogenetic protein (BMP) type II receptor and drives matrix protein expression in rabbit intervertebral disc cells.

    PubMed

    Wang, Zili; Weitzmann, M Neale; Sangadala, Sreedhara; Hutton, William C; Yoon, S Tim

    2013-09-27

    Intervertebral disc (IVD) degeneration and associated spinal disorders are leading sources of morbidity, and they can be responsible for chronic low back pain. Treatments for degenerative disc diseases continue to be a challenge. Intensive research is now focusing on promoting regeneration of degenerated discs by stimulating production of the disc matrix. Link protein N-terminal peptide (LPP) is a proteolytic fragment of link protein, an important cross-linker and stabilizer of the major structural components of cartilage, aggrecan and hyaluronan. In this study we investigated LPP action in rabbit primary intervertebral disc cells cultured ex vivo in a three-dimensional alginate matrix. Our data reveal that LPP promotes disc matrix production, which was evidenced by increased expression of the chondrocyte-specific transcription factor SOX9 and the extracellular matrix macromolecules aggrecan and collagen II. Using colocalization and pulldown studies we further document a noggin-insensitive direct peptide-protein association between LPP and BMP-RII. This association mediated Smad signaling that converges on BMP genes leading to expression of BMP-4 and BMP-7. Furthermore, through a cell-autonomous loop BMP-4 and BMP-7 intensified Smad1/5 signaling though a feedforward circuit involving BMP-RI, ultimately promoting expression of SOX9 and downstream aggrecan and collagen II genes. Our data define a complex regulatory signaling cascade initiated by LPP and suggest that LPP may be a useful therapeutic substitute for direct BMP administration to treat IVD degeneration and to ameliorate IVD-associated chronic low back pain.

  15. Link Protein N-terminal Peptide Binds to Bone Morphogenetic Protein (BMP) Type II Receptor and Drives Matrix Protein Expression in Rabbit Intervertebral Disc Cells*

    PubMed Central

    Wang, Zili; Weitzmann, M. Neale; Sangadala, Sreedhara; Hutton, William C.; Yoon, S. Tim

    2013-01-01

    Intervertebral disc (IVD) degeneration and associated spinal disorders are leading sources of morbidity, and they can be responsible for chronic low back pain. Treatments for degenerative disc diseases continue to be a challenge. Intensive research is now focusing on promoting regeneration of degenerated discs by stimulating production of the disc matrix. Link protein N-terminal peptide (LPP) is a proteolytic fragment of link protein, an important cross-linker and stabilizer of the major structural components of cartilage, aggrecan and hyaluronan. In this study we investigated LPP action in rabbit primary intervertebral disc cells cultured ex vivo in a three-dimensional alginate matrix. Our data reveal that LPP promotes disc matrix production, which was evidenced by increased expression of the chondrocyte-specific transcription factor SOX9 and the extracellular matrix macromolecules aggrecan and collagen II. Using colocalization and pulldown studies we further document a noggin-insensitive direct peptide-protein association between LPP and BMP-RII. This association mediated Smad signaling that converges on BMP genes leading to expression of BMP-4 and BMP-7. Furthermore, through a cell-autonomous loop BMP-4 and BMP-7 intensified Smad1/5 signaling though a feedforward circuit involving BMP-RI, ultimately promoting expression of SOX9 and downstream aggrecan and collagen II genes. Our data define a complex regulatory signaling cascade initiated by LPP and suggest that LPP may be a useful therapeutic substitute for direct BMP administration to treat IVD degeneration and to ameliorate IVD-associated chronic low back pain. PMID:23940040

  16. Double and zero quantum filtered 2H NMR analysis of D2O in intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Ooms, Kristopher J.; Vega, Alexander J.; Polenova, Tatyana; Cannella, Marco; Marcolongo, Michele

    2015-09-01

    The analysis of double and zero quantum filtered 2H NMR spectra obtained from D2O perfused in the nucleus pulposus of human intervertebral disc tissue samples is reported. Fitting the spectra with a three-site model allows for residual quadrupolar couplings and T2 relaxation times to be measured. The analysis reveals changes in both the couplings and relaxation times as the tissue begins to show signs of degradation. The full analysis demonstrates that information about tissue hydration, water collagen interactions, and sample heterogeneity can be obtained and used to better understand the biochemical differences between healthy and degraded tissue.

  17. Two Ultracool Degenerate Companions

    NASA Astrophysics Data System (ADS)

    Farihi, J.

    2005-07-01

    In the course of an extensive survey for low mass stellar and substellar companions to nearby white dwarfs, two extrememly cool degenerate objects have been discovered. GD 392B is one of only a few known white dwarfs with Teff⪉4000 K and exhibits collision induced absorption in the near infrared tep{far04}. GD 1400B is the second known L dwarf companion to a white dwarf and a possible brown dwarf (Farihi & Christopher 2004). Interested readers should consult the references for a complete description of these two cool objects.

  18. PHD/HIF-1 upregulates CA12 to protect against degenerative disc disease: a human sample, in vitro and ex vivo study.

    PubMed

    Chen, Shuai; Fang, Xiang-Qian; Wang, Qiang; Wang, Shao-Wei; Hu, Zhi-Jun; Zhou, Zhi-Jie; Xu, Wen-Bing; Wang, Ji-Ying; Qin, An; Fan, Shun-Wu

    2016-05-01

    Intervertebral disc degeneration is a major cause of low back pain. The nucleus pulposus (NP) is an important intervertebral disc component. Recent studies have shown that carbonic anhydrase 12 (CA12) is a novel NP marker. However, the mechanism by which CA12 is regulated and its physiological function are unclear. In our study, CA12, hypoxia-inducible factor 1α (HIF-1α) and HIF-2α expression levels were examined in 81 human degenerated NP samples using real-time RT-PCR, immunohistochemistry and western blot. Rat NP cells were cultured in a hypoxic environment, and hypoxia-induced CA12 expression was examined. Rat NP cells were treated with HIF-1α siRNA or the prolyl hydroxylase (PHD) inhibitor dimethyloxalylglycine (DMOG) to evaluate the role of PHD/HIF-1 in regulating CA12 expression. Rat NP cells were treated with CA12 siRNA to determine the function of CA12. A rat ex vivo model was established to confirm that PHD, HIF-1, and CA12 have important roles in disc degeneration. We found that CA12 was significantly downregulated in degenerated human NP samples at the mRNA and protein levels. CA12 expression sharply increased by ~30-fold in response to hypoxia. The expression of HIF-1α, but not HIF-2α, also decreased in degenerated human NP samples and was positively correlated with CA12 expression. HIF-1α knockdown under hypoxia reduced the CA12 mRNA and protein expression levels. DMOG treatment increased HIF-1α and CA12 expression. CA12 knockdown significantly inhibited anabolic protein expression, whereas catabolic enzymes remained unchanged. The ex vivo experiments supported our in vitro studies of the role of PHD/HIF-1/CA12. In conclusion, CA12 is downregulated in degenerated NPs, and its expression may be regulated by the PHD/HIF-1 axis. Decreased CA12 expression may lead to decreased extracellular matrix synthesis, which contributes to degenerative disc disease progression.

  19. The Paracrine Effect of Degenerated Disc Cells on Healthy Human Nucleus Pulposus Cells Is Mediated by MAPK and NF-κB Pathways and Can Be Reduced by TGF-β1.

    PubMed

    Cai, Feng; Zhu, Lei; Wang, Feng; Shi, Rui; Xie, Xin-Hui; Hong, Xin; Wang, Xiao-Hu; Wu, Xiao-Tao

    2017-02-01

    CM-mediated NPC dysfunction. Increased levels of inflammatory factors and decreased TGF-β1 levels in dCM suggest an inflammatory environment in degenerated disc tissue. The catabolic effect of dCM on human healthy NPCs is mediated by MAPK and NF-κB pathways and can be reduced by TGF-β1.

  20. Retinal remodeling triggered by photoreceptor degenerations.

    PubMed

    Jones, Bryan W; Watt, Carl B; Frederick, Jeanne M; Baehr, Wolfgang; Chen, Ching-Kang; Levine, Edward M; Milam, Ann H; Lavail, Matthew M; Marc, Robert E

    2003-09-08

    Many photoreceptor degenerations initially affect rods, secondarily leading to cone death. It has long been assumed that the surviving neural retina is largely resistant to this sensory deafferentation. New evidence from fast retinal degenerations reveals that subtle plasticities in neuronal form and connectivity emerge early in disease. By screening mature natural, transgenic, and knockout retinal degeneration models with computational molecular phenotyping, we have found an extended late phase of negative remodeling that radically changes retinal structure. Three major transformations emerge: 1) Müller cell hypertrophy and elaboration of a distal glial seal between retina and the choroid/retinal pigmented epithelium; 2) apparent neuronal migration along glial surfaces to ectopic sites; and 3) rewiring through evolution of complex neurite fascicles, new synaptic foci in the remnant inner nuclear layer, and new connections throughout the retina. Although some neurons die, survivors express molecular signatures characteristic of normal bipolar, amacrine, and ganglion cells. Remodeling in human and rodent retinas is independent of the initial molecular targets of retinal degenerations, including defects in the retinal pigmented epithelium, rhodopsin, or downstream phototransduction elements. Although remodeling may constrain therapeutic intervals for molecular, cellular, or bionic rescue, it suggests that the neural retina may be more plastic than previously believed.

  1. Simulated-physiological loading conditions preserve biological and mechanical properties of caprine lumbar intervertebral discs in ex vivo culture.

    PubMed

    Paul, Cornelis P L; Zuiderbaan, Hendrik A; Zandieh Doulabi, Behrouz; van der Veen, Albert J; van de Ven, Peter M; Smit, Theo H; Helder, Marco N; van Royen, Barend J; Mullender, Margriet G

    2012-01-01

    Low-back pain (LBP) is a common medical complaint and associated with high societal costs. Degeneration of the intervertebral disc (IVD) is assumed to be an important causal factor of LBP. IVDs are continuously mechanically loaded and both positive and negative effects have been attributed to different loading conditions.In order to study mechanical loading effects, degeneration-associated processes and/or potential regenerative therapies in IVDs, it is imperative to maintain the IVDs' structural integrity. While in vivo models provide comprehensive insight in IVD biology, an accompanying organ culture model can focus on a single factor, such as loading and may serve as a prescreening model to reduce life animal testing. In the current study we examined the feasibility of organ culture of caprine lumbar discs, with the hypothesis that a simulated-physiological load will optimally preserve IVD properties.Lumbar caprine IVDs (n = 175) were cultured in a bioreactor up to 21 days either without load, low dynamic load (LDL), or with simulated-physiological load (SPL). IVD stiffness was calculated from measurements of IVD loading and displacement. IVD nucleus, inner- and outer annulus were assessed for cell viability, cell density and gene expression. The extracellular matrix (ECM) was analyzed for water, glycosaminoglycan and total collagen content.IVD biomechanical properties did not change significantly with loading conditions. With SPL, cell viability, cell density and gene expression were preserved up to 21 days. Both unloaded and LDL resulted in decreased cell viability, cell density and significant changes in gene expression, yet no differences in ECM content were observed in any group.In conclusion, simulated-physiological loading preserved the native properties of caprine IVDs during a 21-day culture period. The characterization of caprine IVD response to culture in the LDCS under SPL conditions paves the way for controlled analysis of degeneration- and

  2. Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-κB pathway: Implications for disc degeneration.

    PubMed

    Han, Yingchao; Li, Xinhua; Yan, Meijun; Yang, Mingjie; Wang, Shanjin; Pan, Jie; Jun, Lili; Tan, Jun

    2017-03-23

    Cartilage endplate (CEP) cell calcification and apoptosis play a vital role in the intervertebral disc degeneration (IVDD). Oxidative stress is a key factor in inducing programmed cell death and cartilage calcification. However, the cell death and calcification of cartilage endplate cells under oxidative stress have never been described. The present study investigated the apoptosis and calcification in the cartilage endplate cell under oxidative stress induced by H2O2 to understand the underlying mechanism of IVDD. The cartilage endplate cells isolated from human lumbar discs were subjected to different concentrations of H2O2 for various time periods. The cell viability was determined by CCK-8 assay, whereas Western blot, immunofluorescence, and Alcian blue, Alizarin red, and Von Kossa staining evaluated the apoptosis and calcification. The level of mitochondria-specific reactive oxygen species (ROS) was quantified with an oxygen radical-sensitive probe-MitoSOX. The potential signaling pathways were investigated by Western blot after the addition of N-acetyl-l-cysteine (NAC). We found that the oxidative stress induced by H2O2 increased the apoptosis and subsequently the calcification in the cartilage endplate cells through the ROS/p38/ERK/p65 pathway. The apoptosis and the calcification of the cartilage endplate cells induced by H2O2 can be abolished by NAC. These results suggested that regulating the apoptosis and the calcification in the cartilage endplate cells under oxidative stress should be advantageous for the survival of cells and might delay the process of disc degeneration.

  3. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.

    PubMed

    Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy

    2015-04-01

    Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5

  4. Drosophila melanogaster as a Model of Muscle Degeneration Disorders.

    PubMed

    Kreipke, R E; Kwon, Y V; Shcherbata, H R; Ruohola-Baker, H

    2017-01-01

    Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration. In this review, we will discuss the ways in which the fruit fly provides a powerful platform with which to study human muscle degeneration disorders.

  5. Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration.

    PubMed

    Cunha, Carla; Almeida, Catarina R; Almeida, Maria Inês; Silva, Andreia M; Molinos, Maria; Lamas, Sofia; Pereira, Catarina L; Teixeira, Graciosa Q; Monteiro, António T; Santos, Susana G; Gonçalves, Raquel M; Barbosa, Mário A

    2017-03-01

    Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site. MSC transplantation was performed 24 hours after injury, in parallel with dermal fibroblasts as a control; 2 weeks after transplantation, animals were killed. Disc height index and histological grading score indicated less degeneration for the MSC-transplanted group, with no significant changes in extracellular matrix composition. Remarkably, MSC transplantation resulted in local downregulation of the hypoxia responsive GLUT-1 and in significantly less herniation, with higher amounts of Pax5+ B lymphocytes and no alterations in CD68+ macrophages within the hernia. The systemic immune response was analyzed in the blood, draining lymph nodes, and spleen by flow cytometry and in the plasma by cytokine array. Results suggest an immunoregulatory effect in the MSC-transplanted animals compared with control groups, with an increase in MHC class II+ and CD4+ cells, and also upregulation of the cytokines IL-2, IL-4, IL-6, and IL-10, and downregulation of the cytokines IL-13 and TNF-α. Overall, our results indicate a beneficial effect of systemically transplanted MSCs on in situ IVD regeneration and highlight the complex interplay between stromal cells and cells of the immune system in achieving successful tissue regeneration. Stem Cells Translational Medicine 2017;6:1029-1039.

  6. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

    PubMed Central

    Choy, Andrew Tsz Hang; Chan, Barbara Pui

    2015-01-01

    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332

  7. Longitudinal Changes in the Structure and Inflammatory Response of the Intervertebral Disc Due to Stab Injury in a Murine Organ Culture Model

    PubMed Central

    Abraham, Adam C.; Liu, Jennifer W.; Tang, Simon Y.

    2017-01-01

    Despite the significant public health impact of intervertebral disc (IVD) degeneration and low back pain, it remains challenging to investigate the multifactorial molecular mechanisms that drive the degenerative cascade. Organ culture model systems offer the advantage of allowing cells to live and interact with their native extracellular matrix, while simultaneously reducing the amount of biological variation and complexity present at the organismal level. Murine organ cultures in particular also allow the use of widely available genetically modified animals with molecular level reporters that would reveal insights on the degenerative cascade. Here, we utilize an organ culture system of murine lumbar functional spinal units where we are able to maintain the cellular, metabolic, and structural, and mechanical stability of the whole organ over a 21-day period. Furthermore, we describe a novel approach in organ culture by using tissues from animals with an NF-κB-luc reporter in combination with a mechanical injury model, and are able to show that proinflammatory factors and cytokines such as NF-κB and IL-6 produced by IVD cells can be monitored longitudinally during culture in a stab injury model. Taken together, we utilize a murine organ culture system that maintains the cellular and tissue level behavior of the intervertebral disc and apply it to transgenic animals that allow the monitoring of the inflammatory profile of IVDs. This approach could provide important insights on the molecular and metabolic mediators that regulate the homeostasis of the IVD. PMID:27273204

  8. The high-throughput phenotyping of the viscoelastic behavior of whole mouse intervertebral discs using a novel method of dynamic mechanical testing.

    PubMed

    Liu, Jennifer W; Abraham, Adam C; Tang, Simon Y

    2015-07-16

    Intervertebral disc (IVD) degeneration is highly correlated with lower back pain, and thus understanding the mechanisms of IVD degeneration is critical for the treatment of this disease. Utilizing mouse models to probe the mechanisms of degeneration is especially attractive due to the ease of manipulating mouse models and the availability of transgenics. Yet characterizing the mechanical behavior of mice IVDs remain challenging due to their minute size (approximately 540 μm in height and 1080 μm(2) in cross sectional area). We have thus developed a simple method to dynamically characterize the mechanical properties of intact mouse IVDs. The IVDs were dissected with the endplates intact, and dynamically compressed in the axial direction at 1% and 5% peak strains at 1 Hz. Utilizing this novel approach, we examined the effects of in vitro ribosylation and trypsin digestion for 24 or 72 h on the viscoelastic behavior of the whole murine IVD. Trypsin treatment resulted in a decrease of proteoglycans and loss of disc height, while ribosylation had no effect on structure or proteoglycan composition. The 72 h ribosylation group exhibited a stiffening of the disc, and both treatments significantly reduced viscous behavior of the IVDs, with the effects being more pronounced at 5% strain. Here we demonstrate a novel high-throughput method to mechanically characterize murine IVDs and detect strain-dependent differences in the elastic and the viscous behavior of the treated IVDs due to ribose and trypsin treatments.

  9. Short Link N Stimulates Intervertebral Disc Repair in a Novel Long-Term Organ Culture Model that Includes the Bony Vertebrae.

    PubMed

    AlGarni, Nizar; Grant, Michael P; Epure, Laura M; Salem, Omar; Bokhari, Rakan; Antoniou, John; Mwale, Fackson

    2016-11-01

    Link N (DHLSDNYTLDHDRAIH) is a peptide that occurs naturally in the intervertebral discs (IVDs) and cartilage as a result of proteolytic cleavage of Link protein. Several studies have identified Link N as a growth factor capable of stimulating matrix synthesis in these tissues. We have recently discovered that annulus fibrosus cells can release an enzyme (possibly cathepsin K) that can further cleave Link N resulting in an eight amino acid peptide, we called short Link N (sLink N). Separately, we recently developed and validated an organ culture model that has the vertebrae attached (vIVDs; IVD with intact vertebrae). The aims of this study were (i) to examine if sLink N has the potential to repair early degenerate discs and (ii) to determine if this new model can be used to test potential drugs for disc repair. To determine if sLink N was able to stimulate repair of the degenerate disc, vIVDs with trypsin-induced degeneration (DG) were used. After 4 weeks of culture, the proteoglycan content measured as glycosaminoglycans was stimulated by sLink N in the degenerated discs, and the staining of proteoglycan was observed throughout the tissue irrespective of its proximity to the cells. The quantity of extractable type II collagen and aggrecan was also increased when the degenerate discs were treated with sLink N. Taken together, the results suggest that sLink N can increase key disc matrix molecules, namely type II collagen and aggrecan. Thus sLink N is an attractive peptide for tissue engineering and regeneration of the disc due to its anabolic effects. Finally, we show the feasibility of using the long-term whole organ culture system with adjacent intact vertebrae for studying the DG and regeneration of the IVD.

  10. Amyloid precursor protein expression is enhanced in human platelets from subjects with Alzheimer's disease and Frontotemporal lobar degeneration: A Real-time PCR study.

    PubMed

    Vignini, Arianna; Morganti, Stefano; Salvolini, Eleonora; Sartini, Davide; Luzzi, Simona; Fiorini, Rosamaria; Provinciali, Leandro; Di Primio, Roberto; Mazzanti, Laura; Emanuelli, Monica

    2013-10-26

    Frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD) represent the most frequent causes of early-onset and late-onset degenerative dementia, respectively. A correct diagnosis entails the choice of appropriate therapies. In this view the present study aimed to identify biomarkers that could improve the differential diagnosis. We recently found an overexpression of platelet amyloid precursor protein (APP) in AD; furthermore, recent studies have suggested the presence of changes in APP processing in FTLD. In this context, we analyzed the mRNA expression level of Total APP (TOT) and APP containing a Kunitz-type serine protease inhibitor domain (KPI) in platelets obtained from AD patients, subjects with FTLD, and healthy subjects. In addition, we evaluated the correlation between platelet APP mRNA expression levels and cognitive impairment. Differential gene expression measurements revealed a significant up-regulation of APP TOT and APP KPI in both AD and FTLD patients compared to the controls (being AD/Controls: 1.67 for APP TOT and 1.47 for APP KPI; FTLD/Controls: 1.62 for APP TOT and 1.51 for APP KPI; p<0.05) , although it is interesting to note that in FTLD patients this expression did not correlate with the severity of cognitive impairment. This could be related to a reduced beta-amyloid (Aβ) formation, caused by an alteration of secretase enzymatic activity, even though a post-transcriptional regulation of APP mRNAs in FTLD cannot be excluded.

  11. Amyloid precursor protein expression is enhanced in human platelets from subjects with Alzheimer's disease and frontotemporal lobar degeneration: a real-time PCR study.

    PubMed

    Vignini, Arianna; Morganti, Stefano; Salvolini, Eleonora; Sartini, Davide; Luzzi, Simona; Fiorini, Rosamaria; Provinciali, Leandro; Di Primio, Roberto; Mazzanti, Laura; Emanuelli, Monica

    2013-12-01

    Frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD) represent the most frequent causes of early-onset and late-onset degenerative dementia, respectively. A correct diagnosis entails the choice of appropriate therapies. In this view the present study aimed to identify biomarkers that could improve the differential diagnosis. We recently found an overexpression of platelet amyloid precursor protein (APP) in AD; furthermore, recent studies have suggested the presence of changes in APP processing in FTLD. In this context, we analyzed the mRNA expression level of Total APP (TOT) and APP containing a Kunitz-type serine protease inhibitor domain (KPI) in platelets obtained from AD patients, subjects with FTLD, and healthy subjects. In addition, we evaluated the correlation between platelet APP mRNA expression levels and cognitive impairment.Differential gene expression measurements revealed a significant up-regulation of APP TOT and APP KPI in both AD and FTLD patients compared to the controls (being AD/Controls: 1.67 for APP TOT and 1.47 for APP KPI; FTLD/Controls: 1.62 for APP TOT and 1.51 for APP KPI; p < 0.05), although it is interesting to note that in FTLD patients this expression did not correlate with the severity of cognitive impairment.This could be related to a reduced beta-amyloid (Aβ) formation, caused by an alteration of secretase enzymatic activity, even though a post-transcriptional regulation of APP mRNAs in FTLD cannot be excluded.

  12. What Is Age-Related Macular Degeneration?

    MedlinePlus

    ... of Low Vision Age-Related Macular Degeneration Vision Simulator AMD Pictures and Videos: What Does Macular Degeneration ... degeneration as part of the body's natural aging process. There are different kinds of macular problems, but ...

  13. Genetics Home Reference: Stargardt macular degeneration

    MedlinePlus

    ... Genetics Home Health Conditions Stargardt macular degeneration Stargardt macular degeneration Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Stargardt macular degeneration is a genetic eye disorder that causes progressive ...

  14. Glucosamine and chondroitin sulfate supplementation to treat symptomatic disc degeneration: Biochemical rationale and case report

    PubMed Central

    van Blitterswijk, Wim J; van de Nes, Jos CM; Wuisman, Paul IJM

    2003-01-01

    Background Glucosamine and chondroitin sulfate preparations are widely used as food supplements against osteoarthritis, but critics are skeptical about their efficacy, because of the lack of convincing clinical trials and a reasonable scientific rationale for the use of these nutraceuticals. Most trials were on osteoarthritis of the knee, while virtually no documentation exists on spinal disc degeneration. The purpose of this article is to highlight the potential of these food additives against cartilage degeneration in general, and against symptomatic spinal disc degeneration in particular, as is illustrated by a case report. The water content of the intervertebral disc is a reliable measure of its degeneration/ regeneration status, and can be objectively determined by Magnetic Resonance Imaging (MRI) signals. Case presentation Oral intake of glucosamine and chondroitin sulfate for two years associated with disk recovery (brightening of MRI signal) in a case of symptomatic spinal disc degeneration. We provide a biochemical explanation for the possible efficacy of these nutraceuticals. They are bioavailable to cartilage chondrocytes, may stimulate the biosynthesis and inhibit the breakdown of their extracellular matrix proteoglycans. Conclusion The case suggests that long-term glucosamine and chondroitin sulfate intake may counteract symptomatic spinal disc degeneration, particularly at an early stage. However, definite proof requires well-conducted clinical trials with these food supplements, in which disc de-/regeneration can be objectively determined by MRI. A number of biochemical reasons (that mechanistically need to be further resolved) explain why these agents may have cartilage structure- and symptom-modifying effects, suggesting their therapeutic efficacy against osteoarthritis in general. PMID:12797867

  15. Material properties of bovine intervertebral discs across strain rates.

    PubMed

    Newell, Nicolas; Grigoriadis, Grigorios; Christou, Alexandros; Carpanen, Diagarajen; Masouros, Spyros D

    2017-01-01

    The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10(-3)-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.

  16. Ancestry of the Timorese: age-related macular degeneration associated genotype and allele sharing among human populations from throughout the world

    PubMed Central

    Morrison, Margaux A.; Magalhaes, Tiago R.; Ramke, Jacqueline; Smith, Silvia E.; Ennis, Sean; Simpson, Claire L.; Portas, Laura; Murgia, Federico; Ahn, Jeeyun; Dardenne, Caitlin; Mayne, Katie; Robinson, Rosann; Morgan, Denise J.; Brian, Garry; Lee, Lucy; Woo, Se J.; Zacharaki, Fani; Tsironi, Evangelia E.; Miller, Joan W.; Kim, Ivana K.; Park, Kyu H.; Bailey-Wilson, Joan E.; Farrer, Lindsay A.; Stambolian, Dwight; DeAngelis, Margaret M.

    2015-01-01

    We observed that the third leading cause of blindness in the world, age-related macular degeneration (AMD), occurs at a very low documented frequency in a population-based cohort from Timor-Leste. Thus, we determined a complete catalog of the ancestry of the Timorese by analysis of whole exome chip data and haplogroup analysis of SNP genotypes determined by sequencing the Hypervariable I and II regions of the mitochondrial genome and 17 genotyped YSTR markers obtained from 535 individuals. We genotyped 20 previously reported AMD-associated SNPs in the Timorese to examine their allele frequencies compared to and between previously documented AMD cohorts of varying ethnicities. For those without AMD (average age > 55 years), genotype and allele frequencies were similar for most SNPs with a few exceptions. The major risk allele of HTRA1 rs11200638 (10q26) was at a significantly higher frequency in the Timorese, as well as 3 of the 5 protective CFH (1q32) SNPs (rs800292, rs2284664, and rs12066959). Additionally, the most commonly associated AMD-risk SNP, CFH rs1061170 (Y402H), was also seen at a much lower frequency in the Korean and Timorese populations than in the assessed Caucasian populations (C ~7 vs. ~40%, respectively). The difference in allele frequencies between the Timorese population and the other genotyped populations, along with the haplogroup analysis, also highlight the genetic diversity of the Timorese. Specifically, the most common ancestry groupings were Oceanic (Melanesian and Papuan) and Eastern Asian (specifically Han Chinese). The low prevalence of AMD in the Timorese population (2 of 535 randomly selected participants) may be due to the enrichment of protective alleles in this population at the 1q32 locus. PMID:26217379

  17. [Age related macular degeneration].

    PubMed

    Sayen, Alexandra; Hubert, Isabelle; Berrod, Jean-Paul

    2011-02-01

    Age-related macular degeneration (ARMD) is a multifactorial disease caused by a combination of genetic and environmental factors. It is the first cause of blindness in patients over 50 in the western world. The disease has been traditionally classified into early and late stages with dry (atrophic) and wet (neovascular) forms: neovascular form is characterized by new blood vessels development under the macula (choroidal neovascularisation) which lead to a rapid decline of vision associated with metamorphopsia and requiring an urgent ophtalmological examination. Optical coherence tomography is now one of the most important part of the examination for diagnosis and treatment. Patient with age related maculopathy should consider taking a dietary supplement such that used in AREDS. The treatment of the wet ARMD has largely beneficied since year 2006 of anti-VEGF (vascular endothelial growth factor) molecules such as ranibizumab or bevacizumab given as repeated intravitreal injections. A systematic follow up each 4 to 8 week in required for several years. There is no effective treatment at the moment for dry AMD. For patients with binocular visual acuity under 60/200 rehabilitation includes low vision specialist, vision aids and psychological support.

  18. Prolonged Prevention of Retinal Degeneration with Retinylamine Loaded Nanoparticles

    PubMed Central

    Puntel, Anthony; Maeda, Akiko; Golczak, Marcin; Gao, Song-Qi; Yu, Guanping; Palczewski, Krzysztof; Lu, Zheng-Rong

    2015-01-01

    Retinal degeneration impairs the vision of millions in all age groups worldwide. Increasing evidence suggests that the etiology of many retinal degenerative diseases is associated with impairment in biochemical reactions involved in the visual cycle, a metabolic pathway responsible for regeneration of the visual chromophore (11-cis-retinal). Inefficient clearance of toxic retinoid metabolites, especially all-trans-retinal, is considered responsible for photoreceptor cytotoxicity. Primary amines, including retinylamine, are effective in lowing the concentration of all-trans-retinal within the retina and thus prevent retina degeneration in mouse models of human retinopathies. Here we achieved prolonged prevention of retinal degeneration by controlled delivery of retinylamine to the eye from polylactic acid nanoparticles in Abca4−/−Rdh8−/− (DKO) mice, an animal model of Stargardt disease/age-related macular degeneration. Subcutaneous administration of the nanoparticles containing retinylamine provided a constant supply of the drug to the eye for about a week and resulted in effective prolonged prevention of light-induced retinal degeneration in DKO mice. Retinylamine nanoparticles hold promise for prolonged prophylactic treatment of human retinal degenerative diseases, including Stargardt disease and age-related macular degeneration. PMID:25617130

  19. Age-Related Macular Degeneration

    MedlinePlus

    ... version of this page please turn Javascript on. Age-related Macular Degeneration About AMD Click for more ... a leading cause of vision loss among people age 60 and older. It causes damage to the ...

  20. Spontaneous lumbar intervertebral disc protrusion in cats: literature review and case presentations.

    PubMed

    Kathmann, I; Cizinauskas, S; Rytz, U; Lang, J; Jaggy, A

    2000-12-01

    Reports on intervertebral disc disease in cats are rare in the veterinary literature. It has been postulated that intervertebral disc protrusion is a frequent finding during necropsy in cats, without having any clinical relevance (King and Smith 1958, King & Smith 1960a, King & Smith 1960b). However, a total of six cases with disc protrusions and clinically significant neurological deficits have been reported over the past decade. (Heavner 1971, Seim & Nafe 1981, Gilmore 1983, Littlewood et al 1984, Sparkes & Skerry 1990, Bagley et al 1995). As in dogs, there are also two types of intervertebral disc disease in cats: Hansen's type I (extrusion), and type II (herniation). Cervical spinal cord involvement was more commonly recognised in cats than the lumbar or the thoraco lumbar area. Cats over 15 years were mainly affected (King & Smith 1958, King & Smith 1960a, King & Smith 1960b). We describe two cats with lumbar intervertebral disc protrusions. Emphasis is placed on differential diagnoses, treatment and follow-up.

  1. Injectable microcryogels reinforced alginate encapsulation of mesenchymal stromal cells for leak-proof delivery and alleviation of canine disc degeneration.

    PubMed

    Zeng, Yang; Chen, Chun; Liu, Wei; Fu, Qinyouen; Han, Zhihua; Li, Yaqian; Feng, Siyu; Li, Xiaokang; Qi, Chunxiao; Wu, Jianhong; Wang, Deli; Corbett, Christopher; Chan, Barbara P; Ruan, Dike; Du, Yanan

    2015-08-01

    In situ crosslinked thermo-responsive hydrogel applied for minimally invasive treatment of intervertebral disc degeneration (IVDD) may not prevent extrusion of cell suspension from injection site due to high internal pressure of intervertebral disc (IVD), causing treatment failure or osteophyte formation. In this study, mesenchymal stromal cells (MSCs) were encapsulated in alginate precursor and loaded into previously developed macroporous PGEDA-derived microcryogels (PMs) to form three-dimensional (3D) microscale cellular niches, enabling non-thermo-responsive alginate hydrogel to be injectable. The PMs reinforced alginate hydrogel showed superior elasticity compared to alginate hydrogel alone and could well protect encapsulated cells through injection. Chondrogenic committed MSCs in the injectable microniches expressed higher level of nucleus pulposus (NP) cell markers compared to 2D cultured cells. In an ex vivo organ culture model, injection of MSCs-laden PMs into NP tissue prevented cell leakage, improved cell retention and survival compared to free cell injection. In canine IVDD models, alleviated degeneration was observed in MSCs-laden PMs treated group after six months which was superior to other treated groups. Our results provide in-depth demonstration of injectable alginate hydrogel reinforced by PMs as a leak-proof cell delivery system for augmented regenerative therapy of IVDD in canine models.

  2. Cervical spine intervertebral kinematics with respect to the head are different during flexion and extension motions

    PubMed Central

    Anderst, William J.; Donaldson, William F.; Lee, Joon Y.; Kang, James D.

    2013-01-01

    Previous dynamic imaging studies of the cervical spine have focused entirely on intervertebral kinematics while neglecting to investigate the relationship between head motion and intervertebral motion. Specifically, it is unknown if the relationship between head and intervertebral kinematics is affected by movement direction. We tested the hypothesis that there would be no difference in sagittal plane intervertebral angles at identical head orientations during the flexion and extension movements. Nineteen asymptomatic subjects performed continuous head flexion-extension movements while biplane radiographs were collected at 30 images per second. A previously validated model-based volumetric tracking process determined three-dimensional vertebral position with sub-millimeter accuracy throughout the flexion–extension motion. Head movement was recorded at 60 Hz using conventional motion analysis and reflective markers. Intervertebral angles were determined at identical head orientations during the flexion and extension movements. Cervical motion segments were in a more extended orientation during flexion and in a more flexed orientation during extension for any given head orientation. The results suggest that static radiographs cannot accurately represent vertebral orientation during dynamic motion. Further, data should be collected during both flexion and extension movements when investigating intervertebral kinematics with respect to global head orientation. Also, in vitro protocols that use intervertebral total range of motion as validation criteria may be improved by assessing model fidelity using continuous intervertebral kinematics in flexion and in extension. Finally, musculoskeletal models of the head and cervical spine should account for the direction of head motion when determining muscle moment arms because vertebral orientations (and therefore muscle attachment sites) are dependent on the direction of head motion. PMID:23540377

  3. The three-dimensional architecture of the notochordal nucleus pulposus: novel observations on cell structures in the canine intervertebral disc.

    PubMed

    Hunter, Christopher J; Matyas, John R; Duncan, Neil A

    2003-03-01

    Cells from the nucleus pulposus of young (< 2 years) and old (> 5 years) non-chondrodystrophoid dogs were studied using routine histology, confocal laser scanning microscopy and transmission electron microscopy. The architecture of cell structures--from the tissue scale down to subcellular scale--was reported. Clusters of notochordal cells were observed in young nuclei pulposi, ranging from 10 to 426 cells each. These clusters resisted mechanical disruption and showed evidence of cell-cell signalling via gap junctions. Cells (30-40 microm in diameter) within the clusters had a physaliferous appearance, containing numerous large inclusions which ranged from 1 to 20 microm in diameter. The inclusions were surrounded by a dense actin cortex but were not contained by a lipid bilayer. The contents of the inclusions were determined not to be predominantly carbohydrate or neutral lipid as assessed by histochemical staining, but the exact composition of the contents remained uncertain. There were striking differences in the cell architecture of young vs. old nuclei pulposi, with a loss of both cell clusters and physaliferous cells during ageing. These observations demonstrate unique cell structures, which may influence our understanding of the differences between notochordal and chondrocytic cells in the nucleus pulposus. Such differences could have substantial impact upon how we think about development, degeneration and repair of the intervertebral disc.

  4. Riboflavin crosslinked high-density collagen gel for the repair of annular defects in intervertebral discs: An in vivo study.

    PubMed

    Grunert, Peter; Borde, Brandon H; Towne, Sara B; Moriguchi, Yu; Hudson, Katherine D; Bonassar, Lawrence J; Härtl, Roger

    2015-10-01

    Open annular defects compromise the ability of the annulus fibrosus to contain nuclear tissue in the disc space, and therefore lead to disc herniation with subsequent degenerative changes to the entire intervertebral disc. This study reports the use of riboflavin crosslinked high-density collagen gel for the repair of annular defects in a needle-punctured rat-tail model. High-density collagen has increased stiffness and greater hydraulic permeability than conventional low-density gels; riboflavin crosslinking further increases these properties. This study found that treating annular defects with crosslinked high-density collagen inhibited the progression of disc degeneration over 18 weeks compared to untreated control discs. Histological sections of FITC-labeled collagen gel revealed an early tight attachment to host annular tissue. The gel was subsequently infiltrated by host fibroblasts which remodeled it into a fibrous cap that bridged the outer disrupted annular fibers and partially repaired the defect. This repair tissue enhanced retention of nucleus pulposus tissue, maintained physiological disc hydration, and preserved hydraulic permeability, according to MRI, histological, and mechanical assessments. Degenerative changes were partially reversed in treated discs, as indicated by an increase in nucleus pulposus size and hydration between weeks 5 and 18. The collagen gel appeared to work as an instant sealant and by enhancing the intrinsic healing capabilities of the host tissue.

  5. Advancing the cellular and molecular therapy for intervertebral disc disease.

    PubMed

    Sakai, Daisuke; Grad, Sibylle

    2015-04-01

    The healthy intervertebral disc (IVD) fulfils the essential function of load absorption, while maintaining multi-axial flexibility of the spine. The interrelated tissues of the IVD, the annulus fibrosus, the nucleus pulposus, and the cartilaginous endplate, are characterised by their specific niche, implying avascularity, hypoxia, acidic environment, low nutrition, and low cellularity. Anabolic and catabolic factors balance a slow physiological turnover of extracellular matrix synthesis and breakdown. Deviations in mechanical load, nutrient supply, cellular activity, matrix composition and metabolism may initiate a cascade ultimately leading to tissue dehydration, fibrosis, nerve and vessel ingrowth, disc height loss and disc herniation. Spinal instability, inflammation and neural sensitisation are sources of back pain, a worldwide leading burden that is challenging to cure. In this review, advances in cell and molecular therapy, including mobilisation and activation of endogenous progenitor cells, progenitor cell homing, and targeted delivery of cells, genes, or bioactive factors are discussed.

  6. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development

    PubMed Central

    Sivakamasundari, V.; Kraus, Petra; Sun, Wenjie; Hu, Xiaoming; Lim, Siew Lan; Prabhakar, Shyam

    2017-01-01

    ABSTRACT Pax1 and Pax9 play redundant, synergistic functions in the patterning and differentiation of the sclerotomal cells that give rise to the vertebral bodies and intervertebral discs (IVD) of the axial skeleton. They are conserved in mice and humans, whereby mutation/deficiency of human PAX1/PAX9 has been associated with kyphoscoliosis. By combining cell-type-specific transcriptome and ChIP-sequencing data, we identified the roles of Pax1/Pax9 in cell proliferation, cartilage development and collagen fibrillogenesis, which are vital in early IVD morphogenesis. Pax1 is up-regulated in the absence of Pax9, while Pax9 is unaffected by the loss of Pax1/Pax9. We identified the targets compensated by a single- or double-copy of Pax9. They positively regulate many of the cartilage genes known to be regulated by Sox5/Sox6/Sox9 and are connected to Sox5/Sox6 by a negative feedback loop. Pax1/Pax9 are intertwined with BMP and TGF-B pathways and we propose they initiate expression of chondrogenic genes during early IVD differentiation and subsequently become restricted to the outer annulus by the negative feedback mechanism. Our findings highlight how early IVD development is regulated spatio-temporally and have implications for understanding kyphoscoliosis. PMID:28011632

  7. Comparative Role of Disc Degeneration and Ligament Failure on Functional Mechanics of the Lumbar Spine

    PubMed Central

    Ellingson, Arin M.; Shaw, Miranda N.; Giambini, Hugo; An, Kai-Nan

    2015-01-01

    Understanding spinal kinematics is essential for distinguishing between pathological conditions of spine disorders, which ultimately lead to low back pain. It’s of high importance to understand how changes in mechanical properties affect the response of the lumbar spine, specifically in an effort to differentiate those associated with disc degeneration from ligamentous changes, allowing for more precise treatment strategies. To do this the goals of this study were twofold: 1) develop and validate a finite element (FE) model of the lumbar spine and 2) systematically alter the properties of the intervertebral disc and ligaments to define respective roles in functional mechanics. A three-dimensional non-linear FE model of the lumbar spine (L3-Sacrum) was developed and validated for pure moment bending. Disc degeneration and sequential ligament failure was modeled. Intersegmental range of motion (ROM) and bending stiffness was measured. The prediction of the FE model to moment loading in all three planes of bending showed very good agreement, where global and intersegmental ROM and bending stiffness of the model fell within one standard deviation of the in vitro results. Degeneration decreased ROM for all directions. Stiffness increased for all directions except axial rotation, where it initially increased then decreased for moderate and severe degeneration, respectively. Incremental ligament failure produced increased ROM and decreased stiffness. This effect was much more pronounced for all directions except lateral bending, which is minimally impacted by ligaments. These results indicate that lateral bending may be more apt to detect the subtle changes associated with degeneration, without being masked by associated changes of surrounding stabilizing structures. PMID:26404463

  8. Mouse models for studies of retinal degeneration and diseases

    PubMed Central

    Chang, Bo

    2013-01-01

    Summary Mouse models, with their well-developed genetics and similarity to human physiology and anatomy, serve as powerful tools with which to investigate the etiology of human retinal degeneration. Mutant mice also provide reproducible, experimental systems for elucidating pathways of normal development and function. Here, I describe the tools used in the discoveries of many retinal degeneration models, including indirect ophthalmoscopy (to look at the fundus appearance), fundus photography and fluorescein angiography (to document the fundus appearance), electroretinography (to check retinal function) as well as the heritability test (for genetic characterization). PMID:23150358

  9. Inhibitory Effects of Platelet-Rich Plasma on Intervertebral Disc Degeneration: A Preclinical Study in a Rabbit Model

    PubMed Central

    Gui, Keke; Ren, Weimin; Yu, Yonglin; Li, Xin; Dong, Jiachun; Yin, Wangping

    2015-01-01

    Background Platelet-rich plasma (PRP) contains multiple growth hormones that may stimulate tissue repair. This study aimed to assess the effects of PRP in a rabbit model of IDD (annulus fibrosus puncture). Material/Methods Thirty-six adult New Zealand white rabbits were randomly divided into 3 groups: 0.1 mL PRP (group A), 0.1 mL phosphate-buffered saline (group B), and control (group C) (n=12/group). Annulus fibrosus puncture was performed to establish L4/5 and L5/6 IDD models. Two and 4 weeks later, 6 rabbits from each group were given an IVD injection at L4/5 and L5/6. Two or 4 weeks after injection, rabbits were scanned with X-ray and MRI before being sacrificed. IVDs were collected for hematoxylin and eosin, Masson’s trichrome, and Safranin O staining, and type II collagen immunohistochemistry. Results Over time, IVD height and disc imaging signal intensity decreased gradually in groups B and C, but only slightly in group A (baseline: 100% for all groups; A: 95.9±4.2% at 4 weeks, 90.1±8.4 at 6 weeks; B: 75.3±5.7% at 4 weeks, 70.8±6.4% at 6 weeks; C: 74.7±5.5% at 4 weeks, 69.9±6.2% at 6 weeks; all P<0.001, P<0.01 between A vs. B and C). Degenerative histological changes in IVDs in groups B and C were more severe compared with group A. Conclusions Platelet-rich plasma interventions can effectively attenuate the IDD process in rabbits. PMID:25965093

  10. Age-related macular degeneration.

    PubMed

    Lim, Laurence S; Mitchell, Paul; Seddon, Johanna M; Holz, Frank G; Wong, Tien Y

    2012-05-05

    Age-related macular degeneration is a major cause of blindness worldwide. With ageing populations in many countries, more than 20% might have the disorder. Advanced age-related macular degeneration, including neovascular age-related macular degeneration (wet) and geographic atrophy (late dry), is associated with substantial, progressive visual impairment. Major risk factors include cigarette smoking, nutritional factors, cardiovascular diseases, and genetic markers, including genes regulating complement, lipid, angiogenic, and extracellular matrix pathways. Some studies have suggested a declining prevalence of age-related macular degeneration, perhaps due to reduced exposure to modifiable risk factors. Accurate diagnosis combines clinical examination and investigations, including retinal photography, angiography, and optical coherence tomography. Dietary anti-oxidant supplementation slows progression of the disease. Treatment for neovascular age-related macular degeneration incorporates intraocular injections of anti-VEGF agents, occasionally combined with other modalities. Evidence suggests that two commonly used anti-VEGF therapies, ranibizumab and bevacizumab, have similar efficacy, but possible differences in systemic safety are difficult to assess. Future treatments include inhibition of other angiogenic factors, and regenerative and topical therapies.

  11. Application of the polynomial chaos expansion to approximate the homogenised response of the intervertebral disc.

    PubMed

    Karajan, N; Otto, D; Oladyshkin, S; Ehlers, W

    2014-10-01

    A possibility to simulate the mechanical behaviour of the human spine is given by modelling the stiffer structures, i.e. the vertebrae, as a discrete multi-body system (MBS), whereas the softer connecting tissue, i.e. the softer intervertebral discs (IVD), is represented in a continuum-mechanical sense using the finite-element method (FEM). From a modelling point of view, the mechanical behaviour of the IVD can be included into the MBS in two different ways. They can either be computed online in a so-called co-simulation of a MBS and a FEM or offline in a pre-computation step, where a representation of the discrete mechanical response of the IVD needs to be defined in terms of the applied degrees of freedom (DOF) of the MBS. For both methods, an appropriate homogenisation step needs to be applied to obtain the discrete mechanical response of the IVD, i.e. the resulting forces and moments. The goal of this paper was to present an efficient method to approximate the mechanical response of an IVD in an offline computation. In a previous paper (Karajan et al. in Biomech Model Mechanobiol 12(3):453-466, 2012), it was proven that a cubic polynomial for the homogenised forces and moments of the FE model is a suitable choice to approximate the purely elastic response as a coupled function of the DOF of the MBS. In this contribution, the polynomial chaos expansion (PCE) is applied to generate these high-dimensional polynomials. Following this, the main challenge is to determine suitable deformation states of the IVD for pre-computation, such that the polynomials can be constructed with high accuracy and low numerical cost. For the sake of a simple verification, the coupling method and the PCE are applied to the same simplified motion segment of the spine as was used in the previous paper, i.e. two cylindrical vertebrae and a cylindrical IVD in between. In a next step, the loading rates are included as variables in the polynomial response functions to account for a more

  12. Prevalence of Propionibacterium acnes in Intervertebral Discs of Patients Undergoing Lumbar Microdiscectomy: A Prospective Cross-Sectional Study

    PubMed Central

    Capoor, Manu N.; Ruzicka, Filip; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Schmitz, Jonathan E.; Hermanova, Marketa; Sana, Jiri; Michu, Elleni; Baird, John C.; Ahmed, Fahad S.; Maca, Karel; Lipina, Radim; Alamin, Todd F.; Coscia, Michael F.; Stonemetz, Jerry L.; Witham, Timothy; Ehrlich, Garth D.; Gokaslan, Ziya L.; Mavrommatis, Konstantinos; Birkenmaier, Christof; Fischetti, Vincent A.; Slaby, Ondrej

    2016-01-01

    Background The relationship between intervertebral disc degeneration and chronic infection by Propionibacterium acnes is controversial with contradictory evidence available in the literature. Previous studies investigating these relationships were under-powered and fraught with methodical differences; moreover, they have not taken into consideration P. acnes’ ability to form biofilms or attempted to quantitate the bioburden with regard to determining bacterial counts/genome equivalents as criteria to differentiate true infection from contamination. The aim of this prospective cross-sectional study was to determine the prevalence of P. acnes in patients undergoing lumbar disc microdiscectomy. Methods and Findings The sample consisted of 290 adult patients undergoing lumbar microdiscectomy for symptomatic lumbar disc herniation. An intraoperative biopsy and pre-operative clinical data were taken in all cases. One biopsy fragment was homogenized and used for quantitative anaerobic culture and a second was frozen and used for real-time PCR-based quantification of P. acnes genomes. P. acnes was identified in 115 cases (40%), coagulase-negative staphylococci in 31 cases (11%) and alpha-hemolytic streptococci in 8 cases (3%). P. acnes counts ranged from 100 to 9000 CFU/ml with a median of 400 CFU/ml. The prevalence of intervertebral discs with abundant P. acnes (≥ 1x103 CFU/ml) was 11% (39 cases). There was significant correlation between the bacterial counts obtained by culture and the number of P. acnes genomes detected by real-time PCR (r = 0.4363, p<0.0001). Conclusions In a large series of patients, the prevalence of discs with abundant P. acnes was 11%. We believe, disc tissue homogenization releases P. acnes from the biofilm so that they can then potentially be cultured, reducing the rate of false-negative cultures. Further, quantification study revealing significant bioburden based on both culture and real-time PCR minimize the likelihood that observed

  13. Spatial and structural dependence of mechanical properties of porcine intervertebral disc.

    PubMed

    Causa, F; Manto, L; Borzacchiello, A; De Santis, R; Netti, P A; Ambrosio, L; Nicolais, L

    2002-12-01

    Structure-function relationship of natural tissues is crucial to design a device mimicking the structures present in human body. For this purpose, to provide guidelines to design an intervertebral disc (IVD) substitute, in this study the influence of the spatial location and structural components on the mechanical properties of porcine IVD was investigated. Local compressive stiffness (LCS) was measured on the overall disc, also constrained between the two adjacent vertebrae: the dependence on the lumbar position was evaluated. The compliance values in the anterior position (A) were higher than both in the central posterior (CP) and in the lateral-posterior (RP, LP) locations. The values of Young's Modulus (74.67+/-6.03 MPa) and compression break load (1.36x10(4)+/-0.09x10(4)N) of the disc were also evaluated by distributed compression test. The NP rheological behavior was typical of weak-gels, with elastic modulus G' always higher than viscous modulus G" all over the frequency range investigated (G' and G" respectively equal to 320 and 85 Pa at 1 Hz) and with the moduli trends were almost parallel to each other.

  14. Experimental studies on the effect of chymopapain on nerve root compression caused by intervertebral disk material.

    PubMed

    Krempen, J F; Minnig, D I; Smith, B S

    1975-01-01

    Chymopapain degrades the nucleus pulposus portion of the intervertebral disk of rabbits. The degradation is not grossly visible until 15 days post-injection. Depolymerization of the chondromucoprotein and decreases in the ability of a disk to imbibe fluid, is, in effect, a "chemical decompression" of the nucleur pulposus. The enzyme must come into direct contact with the chondromucoprotein complex of the disk material, and to a significant extent also must reach the area of disk material adjacent to the herniated annulus. Rapid depolymerization of the chondromucoprotein complex on a biomechanical level, and "decompression" of disk material on a biomechanical level can be correlated with relief of pain in all types of disk herniation in human beings. A primary biochemical change in the disk material would lead to a secondary decrease in inflammation if the change led to a "decompression" of the chondromucoprotein. Since the primary effect of chymopapain is on the chondromucoprotein of the disk, beneficial results would not be expected if nerve root compression is due to bony impingement or scar tissue following previous surgery. Chymopapain did not seem to possess any anti-inflammatory properties when bone was used as an irritant under a nerve root. However, this was technically difficult to evaluate and the possibility that chymopapain may also interfere with a chemical mediator of pain or interfere directly with an inflammatory reaction secondary to root compression can not be excluded.

  15. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair.

    PubMed

    Schek, R M; Michalek, A J; Iatridis, J C

    2011-04-18

    Treatment of damaged intervertebral discs is a significant clinical problem and, despite advances in the repair and replacement of the nucleus pulposus, there are few effective strategies to restore defects in the annulus fibrosus. An annular repair material should meet three specifications: have a modulus similar to the native annulus tissue, support the growth of disc cells, and maintain adhesion to tissue under physiological strain levels. We hypothesized that a genipin crosslinked fibrin gel could meet these requirements. Our mechanical results showed that genipin crosslinked fibrin gels could be created with a modulus in the range of native annular tissue. We also demonstrated that this material is compatible with the in vitro growth of human disc cells, when genipin:fibrin ratios were 0.25:1 or less, although cell proliferation was slower and cell morphology more rounded than for fibrin alone. Finally, lap tests were performed to evaluate adhesion between fibrin gels and pieces of annular tissue. Specimens created without genipin had poor handling properties and readily delaminated, while genipin crosslinked fibrin gels remained adhered to the tissue pieces at strains exceeding physiological levels and failed at 15-30%. This study demonstrated that genipin crosslinked fibrin gels show promise as a gap-filling adhesive biomaterial with tunable material properties, yet the slow cell proliferation suggests this biomaterial may be best suited as a sealant for small annulus fibrosus defects or as an adhesive to augment large annulus repairs. Future studies will evaluate degradation rate, fatigue behaviors, and long-term biocompatibility.

  16. Crocin exerts anti-inflammatory and anti-catabolic effects on rat intervertebral discs by suppressing the activation of JNK.

    PubMed

    Li, Kang; Li, Yan; Ma, Zhenjiang; Zhao, Jie

    2015-11-01

    As intervertebral disc (IVD) degeneration has been proven to contribute to low back pain (LBP), drug treatment aiming at attenuating IVD degeneration may prove to be benefiical. Crocin, a bioactive component of saffron, has been found to exert anti-inflammatory effects on cartilage. In the present study, the anti-inflammatory and anti-catabolic effects of crocin on rat IVDs were analyzed in vitro and ex vivo. Nucleus pulposus (NP) cells were isolated from the lumbar IVDs of Sprague-Dawley rats. The NP cells were first treated with various concentrations of crocin, and then stimulated with lipopolysaccharide (LPS) to induce inflammation. Subsequently, RT-qPCR and enzyme-linked immunosorbent assay were carried out to measure the expression levels of catabolic enzymes, pro-inflammatory factors and the components of the extracellular matrix (ECM). In addition, western blot analysis was also used to investigate the related signaling pathways. The whole spinal motion segment (vertebra-IVD-vertebra section) of the rats was isolated and cultured in the presence or absence of LPS and crocin for 7 days. The ex vivo effects of crocin on the ECM of the IVD structures were determined by histological and biochemical analysis. In vitro, crocin significantly inhibited the LPS-induced overexpression of catabolic enzymes [matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif (ADAMTS)-4 and ADAMTS‑5], pro-inflammatory factors [interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6 and inducible nitric oxide synthase (iNOS)] and Toll-like receptor (TLR)‑2 in a concentration-dependent manner. Notably, crocin partly prevented the downregulation of aggrecan and type II collagen (collagen‑II). Moreover, crocin suppressed the LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway by inhibiting the phosphorylation of c-Jun N-terminal kinase (JNK). Ex vivo experiments

  17. Effect of Static Load on the Nucleus Pulposus of Rabbit Intervertebral Disc Motion Segment in Ex vivo Organ Culture

    PubMed Central

    Zhu, Li-Guo; Feng, Min-Shan; Zhan, Jia-Wen; Zhang, Ping; Yu, Jie

    2016-01-01

    Background: The development of mechanically active culture systems helps increase the understanding of the role of mechanical stress in intervertebral disc (IVD) degeneration. Motion segment cultures allow for preservation of the native IVD structure, and adjacent vertebral bodies facilitate the application and control of mechanical loads. The purpose of this study was to establish loading and organ culture methods for rabbit IVD motion segments to study the effect of static load on the whole disc organ. Methods: IVD motion segments were harvested from rabbit lumbar spines and cultured in no-loading 6-well plates (control conditions) or custom-made apparatuses under a constant, compressive load (3 kg, 0.5 MPa) for up to 14 days. Tissue integrity, matrix synthesis, and the matrix gene expression profile were assessed after 3, 7, and 14 days of culturing and compared with those of fresh tissues. Results: The results showed that ex vivo culturing of motion segments preserved tissue integrity under no-loading conditions for 14 days whereas the static load gradually destroyed the morphology after 3 days. Proteoglycan contents were decreased under both conditions, with a more obvious decrease under static load, and proteoglycan gene expression was also downregulated. However, under static load, immunohistochemical staining intensity and collagen Type II alpha 1 (COL2A1) gene expression were significantly enhanced (61.54 ± 5.91, P = 0.035) and upregulated (1.195 ± 0.040, P = 0.000), respectively, compared with those in the controls (P < 0.05). In contrast, under constant compression, these trends were reversed. Our initial results indicated that short-term static load stimulated the synthesis of collagen Type II alpha 1; however, sustained constant compression led to progressive degeneration and specifically to a decreased proteoglycan content. Conclusions: A loading and organ culture system for ex vivo rabbit IVD motion segments was developed. Using this system, we

  18. Crocin exerts anti-inflammatory and anti-catabolic effects on rat intervertebral discs by suppressing the activation of JNK

    PubMed Central

    LI, KANG; LI, YAN; MA, ZHENJIANG; ZHAO, JIE

    2015-01-01

    As intervertebral disc (IVD) degeneration has been proven to contribute to low back pain (LBP), drug treatment aiming at attenuating IVD degeneration may prove to be benefiical. Crocin, a bioactive component of saffron, has been found to exert anti-inflammatory effects on cartilage. In the present study, the anti-inflammatory and anti-catabolic effects of crocin on rat IVDs were analyzed in vitro and ex vivo. Nucleus pulposus (NP) cells were isolated from the lumbar IVDs of Sprague-Dawley rats. The NP cells were first treated with various concentrations of crocin, and then stimulated with lipopolysaccharide (LPS) to induce inflammation. Subsequently, RT-qPCR and enzyme-linked immunosorbent assay were carried out to measure the expression levels of catabolic enzymes, pro-inflammatory factors and the components of the extracellular matrix (ECM). In addition, western blot analysis was also used to investigate the related signaling pathways. The whole spinal motion segment (vertebra-IVD-vertebra section) of the rats was isolated and cultured in the presence or absence of LPS and crocin for 7 days. The ex vivo effects of crocin on the ECM of the IVD structures were determined by histological and biochemical analysis. In vitro, crocin significantly inhibited the LPS-induced overexpression of catabolic enzymes [matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif (ADAMTS)-4 and ADAMTS-5], pro-inflammatory factors [interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6 and inducible nitric oxide synthase (iNOS)] and Toll-like receptor (TLR)-2 in a concentration-dependent manner. Notably, crocin partly prevented the downregulation of aggrecan and type II collagen (collagen-II). Moreover, crocin suppressed the LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway by inhibiting the phosphorylation of c-Jun N-terminal kinase (JNK). Ex vivo experiments demonstrated

  19. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration.

    PubMed

    Koike, Masato; Nojiri, Hidetoshi; Ozawa, Yusuke; Watanabe, Kenji; Muramatsu, Yuta; Kaneko, Haruka; Morikawa, Daichi; Kobayashi, Keiji; Saita, Yoshitomo; Sasho, Takahisa; Shirasawa, Takuji; Yokote, Koutaro; Kaneko, Kazuo; Shimizu, Takahiko

    2015-06-25

    Mechanical stress and aging are major risk factors of cartilage degeneration. Human studies have previously reported that oxidative damage increased, while SOD2 protein was reciprocally downregulated in osteoarthritic degenerated cartilage. However, it remains unclear whether mitochondrial superoxide imbalance in chondrocytes causes cartilage degeneration. We herein demonstrate that mechanical loading promoted mitochondrial superoxide generation and selective Sod2 downregulation in chondrocytes in vivo and that mitochondrial superoxide inducer also downregulated Sod2 expression in chondrocytes in vitro. A genetically manipulated model revealed that Sod2 deficiency in chondrocytes also resulted in mitochondrial superoxide overproduction and dysfunction, thus leading to cartilage degeneration. Intra-articular injection of a permeable antioxidant effectively suppressed the mechanical loading-induced mitochondrial superoxide generation and cartilage degeneration in mice. Our findings demonstrate that mitochondrial superoxide plays a pivotal role in the development and progression of osteoarthritis, and the mitochondrial superoxide balance may therefore be a promising target for the treatment of cartilage degeneration.

  20. Experience-Related Structural Changes of Degenerated Occipital White Matter in Late-Blind Humans – A Diffusion Tensor Imaging Study

    PubMed Central

    Dietrich, Susanne; Hertrich, Ingo; Kumar, Vinod; Ackermann, Hermann

    2015-01-01

    Late-blind humans can learn to understand speech at ultra-fast syllable rates (ca. 20 syllables/s), a capability associated with hemodynamic activation of the central-visual system. Thus, the observed functional cross-modal recruitment of occipital cortex might facilitate ultra-fast speech processing in these individuals. To further elucidate the structural prerequisites of this skill, diffusion tensor imaging (DTI) was conducted in late-blind subjects differing in their capability of understanding ultra-fast speech. Fractional anisotropy (FA) was determined as a quantitative measure of the directionality of water diffusion, indicating fiber tract characteristics that might be influenced by blindness as well as the acquired perceptual skills. Analysis of the diffusion images revealed reduced FA in late-blind individuals relative to sighted controls at the level of the optic radiations at either side and the right-hemisphere dorsal thalamus (pulvinar). Moreover, late-blind subjects showed significant positive correlations between FA and the capacity of ultra-fast speech comprehension within right-hemisphere optic radiation and thalamus. Thus, experience-related structural alterations occurred in late-blind individuals within visual pathways that, presumably, are linked to higher order frontal language areas. PMID:25830371

  1. Age-Related Macular Degeneration.

    PubMed

    Mehta, Sonia

    2015-09-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly. AMD is diagnosed based on characteristic retinal findings in individuals older than 50. Early detection and treatment are critical in increasing the likelihood of retaining good and functional vision.

  2. Intraoperative CT as a registration benchmark for intervertebral motion compensation in image-guided open spinal surgery

    PubMed Central

    Fan, Xiaoyao; Paulsen, Keith D.; Roberts, David W.; Mirza, Sohail K.; Lollis, S. Scott

    2016-01-01

    Purpose An accurate and reliable benchmark of registration accuracy and intervertebral motion compensation is important for spinal image guidance. In this study, we evaluated the utility of intraoperative CT (iCT) in place of bone-implanted screws as the ground-truth registration and illustrated its use to benchmark the performance of intraoperative stereovision (iSV). Methods A template-based, multi-body registration scheme was developed to individually segment and pair corresponding vertebrae between preoperative CT and iCT of the spine. Intervertebral motion was determined from the resulting vertebral pair-wise registrations. The accuracy of the image-driven registration was evaluated using surface-to-surface distance error (SDE) based on segmented bony features and was independently verified using point-to-point target registration error (TRE) computed from bone-implanted mini-screws. Both SDE and TRE were used to assess the compensation accuracy using iSV. Results The iCT-based technique was evaluated on four explanted porcine spines (20 vertebral pairs) with artificially induced motion. We report a registration accuracy of 0.57 ± 0.32 mm (range 0.34–1.14 mm) and 0.29 ± 0.15 mm (range 0.14–0.78 mm) in SDE and TRE, respectively, for all vertebrae pooled, with an average intervertebral rotation of 4.9° ± 1.2° (range 1.5°–7.9°). The iSV-based compensation accuracy for one sample (four vertebrae) was 1.32 ± 0.19 mm and 1.72 ± 0.55 mm in SDE and TRE, respectively, exceeding the recommended accuracy of 2 mm. Conclusion This study demonstrates the effectiveness of iCT in place of invasive fiducials as a registration ground truth. These findings are important for future development of on-demand spinal image guidance using radiation-free images such as stereovision and ultrasound on human subjects. PMID:26194485

  3. Acupuncture treatment for feline multifocal intervertebral disc disease.

    PubMed

    Choi, Keum Hwa; Hill, Sara A

    2009-08-01

    A 14-year-old male neutered domestic shorthair cat was admitted to the Veterinary Medical Center, University of Minnesota for evaluation of severe hind limb ataxia, atrophy and paresis. Diagnosis based on physical examination, neurological assessment and magnetic resonance imaging (MRI) was multifocal intervertebral disc disease (IVDD) with dorsal disc protrusion throughout the thoracic and cranial lumbar spine. The Oriental Medicine (OM) diagnosis (pattern identification) was painful obstruction (Bi) syndrome caused by phlegm-heat accumulation with blood stagnation in the spine. High dose prednisolone therapy (1.25mg/kg PO, once daily) initially did not show any significant improvement in clinical signs. The cat was then treated with several modes of acupuncture treatment including dry needle acupuncture, electro-acupuncture and scalp acupuncture along with Tui-Na (hand manipulation in OM) and physical therapy. Significant improvements in mobility, proprioception and spinal posture were noticed and the cat was able to rise, walk and run 4 months after starting acupuncture treatments. This is the first case report of feline IVDD with multiple sites of disc compression which was successfully treated with several modes of acupuncture treatment.

  4. Higher risk for cervical herniated intervertebral disc in physicians

    PubMed Central

    Liu, Cheng; Huang, Chien-Cheng; Hsu, Chien-Chin; Lin, Hung-Jung; Guo, How-Ran; Su, Shih-Bin; Wang, Jhi-Joung; Weng, Shih-Feng

    2016-01-01

    Abstract There is no study about cervical herniated intervertebral disc (cervical HIVD) in physicians in the literature; therefore, we conceived a retrospective nationwide, population-based cohort study to elucidate the topic. We identified 26,038 physicians, 33,057 non-physician healthcare providers (HCPs), and identical numbers of non-HCP references (i.e., general population). All cohorts matched a 1:1 ratio with age and gender, and each were chosen from the Taiwan National Health Insurance Research Database (NHIRD). We compared cervical HIVD risk among physicians, nonphysician HCPs, and non-HCP references and performed a follow-up between 2007 and 2011. We also made comparisons among physician specialists. Both physicians and nonphysician HCPs had higher cervical HIVD risk than non-HCP references (odds ratio [OR]: 1.356; 95% confidence interval (CI): 1.162–1.582; OR: 1.383; 95% CI: 1.191–1.605, respectively). There was no significant difference of cervical HIVD risk between physicians and nonphysician HCPs. In the comparison among physician specialists, orthopedists had a higher cervical HIVD risk than other specialists, but the difference was not statistically significant (adjusted OR: 1.547; 95% CI: 0.782–3.061). Physicians are at higher cervical HIVD risk than the general population. Because unknown confounders could exist, further prospective studies are needed to identify possible causation. PMID:27741118

  5. Intervertebral foramen venous obstruction. A cause of periradicular fibrosis?

    PubMed

    Hoyland, J A; Freemont, A J; Jayson, M I

    1989-06-01

    Disc herniation into the intervertebral foramen (IVF) or osteophytic outgrowths from the margins of the apophyseal joints that project into the IVF may compress the neural structures, but in this cadaveric study of 160 lumbar foramens (age range, 35-91 years), the authors have found that they were much more commonly associated with compression and distortion of the large venous plexus within the IVF. In the absence of direct nerve compression (seen in only eight specimens), the most severe neural changes were associated with compression, congestion, and resultant dilatation of foraminal veins. Pathologic changes within and around the nerve root complex included peri- and intraneural fibrosis, edema of nerve roots, and focal demyelination. Inflammatory cells were notably absent. Vascular changes within the thickened fibrous sheath about damaged nerves, namely, basement membrane thickening, suggestive of endothelial cell injury also were observed. The association between vascular compression, tissue fibrosis, and endothelial injury distant from the compression may be causal--probably due to ischemia as a result of reduced venous outflow. Such observations have led the authors to propose that venous obstruction may be an important pathogenic mechanism in the development of perineural and intraneural fibrosis.

  6. Tyro3 Modulates Mertk-Associated Retinal Degeneration.

    PubMed

    Vollrath, Douglas; Yasumura, Douglas; Benchorin, Gillie; Matthes, Michael T; Feng, Wei; Nguyen, Natalie M; Sedano, Cecilia D; Calton, Melissa A; LaVail, Matthew M

    2015-12-01

    Inherited photoreceptor degenerations (IPDs) are the most genetically heterogeneous of Mendelian diseases. Many IPDs exhibit substantial phenotypic variability, but the basis is usually unknown. Mutations in MERTK cause recessive IPD phenotypes associated with the RP38 locus. We have identified a murine genetic modifier of Mertk-associated photoreceptor degeneration, the C57BL/6 (B6) allele of which acts as a suppressor. Photoreceptors degenerate rapidly in Mertk-deficient animals homozygous for the 129P2/Ola (129) modifier allele, whereas animals heterozygous for B6 and 129 modifier alleles exhibit an unusual intermixing of degenerating and preserved retinal regions, with females more severely affected than males. Mertk-deficient mice homozygous for the B6 modifier allele display degeneration only in the far periphery, even at 8 months of age, and have improved retinal function compared to animals homozygous for the 129 allele. We genetically mapped the modifier to an approximately 2-megabase critical interval that includes Tyro3, a paralog of Mertk. Tyro3 expression in the outer retina varies with modifier genotype in a manner characteristic of a cis-acting expression quantitative trait locus (eQTL), with the B6 allele conferring an approximately three-fold higher expression level. Loss of Tyro3 function accelerates the pace of photoreceptor degeneration in Mertk knockout mice, and TYRO3 protein is more abundant in the retinal pigment epithelium (RPE) adjacent to preserved central retinal regions of Mertk knockout mice homozygous for the B6 modifier allele. Endogenous human TYRO3 protein co-localizes with nascent photoreceptor outer segment (POS) phagosomes in a primary RPE cell culture assay, and expression of murine Tyro3 in cultured cells stimulates phagocytic ingestion of POS. Our findings demonstrate that Tyro3 gene dosage modulates Mertk-associated retinal degeneration, provide strong evidence for a direct role for TYRO3 in RPE phagocytosis, and suggest

  7. PHOTORECEPTOR DEGENERATION IN A MOUNTAIN LION CUB (PUMA CONCOLOR).

    PubMed

    DiSalvo, Andrew R; Reilly, Christopher M; Wiggans, K Tomo; Woods, Leslie W; Wack, Ray F; Clifford, Deana L

    2016-12-01

    An orphaned 4-mo-old female mountain lion cub ( Puma concolor ) was captured along the coastline in Montaña de Oro State Park in Los Osos, California, USA. Following suspicion that the cub was visually impaired, ophthalmic examination revealed diffuse bilateral retinal atrophy. Due to a poor prognosis, humane euthanasia was elected. Necropsy and histopathological findings were consistent with photoreceptor degeneration. Based on the cub's signalment, history, and histopathology, a genetic or nutritional etiology was suspected, with the former etiology more strongly supported. To the authors' knowledge, this is the first report of photoreceptor degeneration in a wild felid and should be considered in cases of blindness.

  8. Protective effect of niacinamide on interleukin-1beta-induced annulus fibrosus type II collagen degeneration in vitro.

    PubMed

    Duan, Deyu; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiong, Xiaoqian

    2007-02-01

    The protective effect of niacinamide on interleukin-1beta (IL-1beta)-induced annulus fibrosus (AF) type II collagen degeneration in vitro and the mechanism were investigated. Chiba's intervertebral disc (IVD) culture models in rabbits were established and 48 IVDs from 12 adult Japanese white rabbits were randomly divided into 4 groups: normal control group, niacinamide-treated group, type II collagen degneration group (IL-1beta) and treatment group (niacinamide+IL-1beta). After culture for one week, AFs were collected for inducible nitric oxide synthase (iNOS), cysteine containing aspartate specific protease-3 (Caspase-3) and type II collagen immunohistochemical examination, and type II collagen reverse transcription polymerase chain reaction (RT-PCR). The results showed that rate of iNOS positive staining AF cells in the 4 groups was 17.6%, 10.9%, 73.9% and 19.3% respectively. The positive rate in treatment group was significantly lower than in the type II collagen degeneration group (P<0.01). Rate of Caspase-3 positive staining AF cells in the 4 groups was 3.4%, 4.2%, 17.6% and 10.3% respectively. The positive rate in treatment group was lower than in the type II collagen degeneration group (P<0.01). Type II collagen staining demonstrated that lamellar structure and continuity of collagen in treatment group was better reversed than in the degeneration group. RT-PCR revealed that the expression of type II collagen in treatment group was significantly stronger than that in type II collagen degeneration group (P<0.01). It was concluded that niacinamide could effectively inhibit IL-1beta stimulated increase of iNOS and Caspase-3 in AF, and alleviate IL-1beta-caused destruction and synthesis inhibition of type II collagen. Niacinamide is of potential for clinical treatment of IVD degeneration.

  9. Temporal Analyses of the Response of Intervertebral Disc Cells and Mesenchymal Stem Cells to Nutrient Deprivation

    PubMed Central

    Turner, Sarah A.; Wright, Karina T.; Jones, Philip N.; Balain, Birender; Roberts, Sally

    2016-01-01

    Much emphasis has been placed recently on the repair of degenerate discs using implanted cells, such as disc cells or bone marrow derived mesenchymal stem cells (MSCs). This study examines the temporal response of bovine and human nucleus pulposus (NP) cells and MSCs cultured in monolayer following exposure to altered levels of glucose (0, 3.15, and 4.5 g/L) and foetal bovine serum (0, 10, and 20%) using an automated time-lapse imaging system. NP cells were also exposed to the cell death inducers, hydrogen peroxide and staurosporine, in comparison to serum starvation. We have demonstrated that human NP cells show an initial “shock” response to reduced nutrition (glucose). However, as time progresses, NP cells supplemented with serum recover with minimal evidence of cell death. Human NP cells show no evidence of proliferation in response to nutrient supplementation, whereas MSCs showed greater response to increased nutrition. When specifically inducing NP cell death with hydrogen peroxide and staurosporine, as expected, the cell number declined. These results support the concept that implanted NP cells or MSCs may be capable of survival in the nutrient-poor environment of the degenerate human disc, which has important clinical implications for the development of IVD cell therapies. PMID:26977156

  10. Transplantation and Stem Cell Therapy for Cerebellar Degenerations.

    PubMed

    Cendelin, Jan

    2016-02-01

    Stem cell-based and regenerative therapy may become a hopeful treatment for neurodegenerative diseases including hereditary cerebellar degenerations. Neurotransplantation therapy mainly aims to substitute lost cells, but potential effects might include various mechanisms including nonspecific trophic effects and stimulation of endogenous regenerative processes and neural plasticity. Nevertheless, currently, there remain serious limitations. There is a wide spectrum of human hereditary cerebellar degenerations as well as numerous cerebellar mutant mouse strains that serve as models for the development of effective therapy. By now, transplantation has been shown to ameliorate cerebellar function, e.g. in Purkinje cell degeneration mice, Lurcher mutant mice and mouse models of spinocerebellar ataxia type 1 and type 2 and Niemann-Pick disease type C. Despite the lack of direct comparative studies, it appears that there might be differences in graft development and functioning between various types of cerebellar degeneration. Investigation of the relation of graft development to specific morphological, microvascular or biochemical features of the diseased host tissue in various cerebellar degenerations may help to identify factors determining the fate of grafted cells and potential of their functional integration.

  11. Inherited complement regulatory protein deficiency predisposes to human disease in acute injury and chronic inflammatory statesthe examples of vascular damage in atypical hemolytic uremic syndrome and debris accumulation in age-related macular degeneration.

    PubMed

    Richards, Anna; Kavanagh, David; Atkinson, John P

    2007-01-01

    In this chapter, we examine the role of complement regulatory activity in atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD). These diseases are representative of two distinct types of complement-mediated injury, one being acute and self-limited, the other reflecting accumulation of chronic damage. Neither condition was previously thought to have a pathologic relationship to the immune system. However, alterations in complement regulatory protein genes have now been identified as major predisposing factors for the development of both diseases. In aHUS, heterozygous mutations leading to haploinsufficiency and function-altering polymorphisms in complement regulators have been identified, while in AMD, polymorphic haplotypes in complement genes are associated with development of disease. The basic premise is that a loss of function in a plasma or membrane inhibitor of the alternative complement pathway allows for excessive activation of complement on the endothelium of the kidney in aHUS and on retinal debris in AMD. These associations have much to teach us about the host's innate immune response to acute injury and to chronic debris deposition. We all experience cellular injury and, if we live long enough, will deposit debris in blood vessel walls (atherosclerosis leading to heart attacks and strokes), the brain (amyloid proteins leading to Alzheimer's disease), and retina (lipofuscin pigments leading to AMD). These are three common causes of morbidity and mortality in the developed world. The clinical, genetic, and immunopathologic understandings derived from the two examples of aHUS and AMD may illustrate what to anticipate in related conditions. They highlight how a powerful recognition and effector system, the alternative complement pathway, reacts to altered self. A response to acute injury or chronic debris accumulation must be appropriately balanced. In either case, too much activation or too little regulation promotes

  12. Ligaments associated with lumbar intervertebral foramina. 2. The fifth lumbar level.

    PubMed Central

    Amonoo-Kuofi, H S; el-Badawi, M G; Fatani, J A; Butt, M M

    1988-01-01

    The lumbosacral spines of two fetal and twelve adult cadavers have been studied by dissection. Evidence shows that the fifth lumbar intervertebral foramen is crossed on its external aspect by a strong, cord-like corporotransverse ligament passing obliquely downwards, forwards and medially from the inferior aspect of the accessory process of the fifth lumbar vertebra to the lateral surface of the intervertebral disc and the adjacent parts of the bodies of the fifth and first sacral vertebrae. Superficially, the ligament is related to another flat band--the lumbosacral hood. Together these ligaments separate and provide openings for the sympathetic ramus, the ventral ramus and blood vessels related to the intervertebral foramen. On the dorsal aspect, a tripartite ligament, the mamillo-transverso-accessory ligament, bears important relationships to the subdivisions of the dorsal ramus and also the zygapophyseal joint. The significance of these findings is discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 1 Fig. 5 PMID:3248957

  13. Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing

    PubMed Central

    Figueroa-Cavazos, J. Obedt; Flores-Villalba, Eduardo; Diaz-Elizondo, José A.

    2016-01-01

    This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material). Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated. PMID:27578960

  14. Postfusion magnetic resonance imaging artifacts caused by a titanium, cobalt-chromium-molybdenum, and carbon intervertebral disc spacer.

    PubMed

    Ernstberger, Thorsten; Heidrich, Gabert

    2007-04-01

    Intervertebral spacers for anterior spine fusion are made of different materials, such as titanium and CoCrMo-alloys or carbon fiber reinforced polymers (CFRP). Implant-related susceptibility artifacts can decrease the quality of magnetic resonance imaging (MRI) scans. This cadaveric study aimed to demonstrate the extent that implant-related MRI artifacting affects the postfusion differentiation of the spinal canal (SC) and intervertebral disc space (IDS). In 6 cadaveric porcine spines, we evaluated the postimplantation MRI scans of a titanium, CoCrMo-spacer and CFRP-spacer that differed in shape and surface qualities. A spacer made of human cortical bone was used as a control. A defined evaluation unit was divided into regions of interest (ROI) to characterize the SC and IDS. Considering 15 different MRI sequences read independently by an interobserver-validated team of specialists artifact-affected image quality of the median MRI slice was rated on a score of 0-1-2-3. A maximum score of 15 points for the SC and 9 points for the IDS (100%) was possible. Turbo spin echo sequences produced the best scores for both spacers and the control. Only the control achieved a score of 100%. For the IDS the CoCrMo-spacer, titanium and CFRP-spacer maximally scored 0%, 0% and 74%, for the SC 60%, 80% and 99%, respectively. By using favored T1 TSE sequences the CFRP-spacer represented clear advantages in postfusion spinal imaging. Independent of artifact dimensions the used scoring system allowed us to create an implant-related ranking of MRI scan quality in reference to the bone control.

  15. Standards of Practice: Quality Assurance Guidelines for Percutaneous Treatments of Intervertebral Discs

    SciTech Connect

    Kelekis, Alexis D. Filippiadis, Dimitris K.; Martin, Jean-Baptiste; Brountzos, Elias

    2010-10-15

    Percutaneous treatments are used in the therapy of small- to medium-sized hernias of intervertebral discs to reduce the intradiscal pressure in the nucleus and theoretically create space for the herniated fragment to implode inward, thus reducing pain and improving mobility and quality of life. These techniques involve the percutaneous removal of the nucleus pulposus by using a variety of chemical, thermal, or mechanical techniques and consist of removal of all or part of nucleus pulposus to induce more rapid healing of the abnormal lumbar disc. These guidelines are written to be used in quality improvement programs for assessing fluoroscopy- and/or computed tomography-guided percutaneous intervertebral disc ablative techniques.

  16. Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    SciTech Connect

    Omel'chenko, A I; Sobol', E N

    2009-03-31

    The thermomechanical effect of 1.56-{mu}m fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs. (laser biology and medicine)

  17. The effectiveness of percutaneous laser disc decompression for the prolapsed lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Mu, Ming Wei; Liu, Wei; Feng, Wei; Ma, Nan

    2009-07-01

    Objective: to investigate the role of associated factors in the effectiveness of laser treatment for prolapsed lumber intervertebral disc. Method: 302 prolapsed lumber intervertebral discs in 212 patients were treated with percutaneous laser disc decompression (PLDD). Patients were followed up by 12month, the associated factors which affecting the effectiveness of treatment, ie age, duration of illness were analyzed. Results: Punctual Success rate was 100%. After 12 month's follow up, 86% successful outcomes were obtained, in which 93% successful outcomes were obtained in patients less than 50 years old, 92% successful outcomes was obtained in the patients whose duration of illness less than 1 year.

  18. [Pathobiomechanical impairments of the vertebral column in intervertebral disk protrusion and herniation].

    PubMed

    Novosel'tsev, S V; Malinovskiĭ, E L; Smirnov, V V; Savvova, M v; Lebedeva, V V

    2011-01-01

    Magnetic resonance imaging of patients with intervertebral disk herniation was used to study the stages of degenerative and dystrophic processes in the spinal structures in the presence of intervertebral disk protrusion and herniation. Differences were found in the pathobiomechanical mechanisms in the spinal motor segments of herniation and protrusion in the area of their localization and in the adjacent spinal motor segments. Among the symptoms traditionally analyzed, joint facet joint arthritis and arthrosoarthritis classified as spondyloarthritis by radiodiagnosis were examined for their impact on the rate of herniation and protrusion.

  19. Differential expression of proteoglycan epitopes by ovine intervertebral disc cells

    PubMed Central

    MELROSE, JAMES; SMITH, SUSAN; GHOSH, PETER

    2000-01-01

    The alginate bead culture system has been utilised by several groups to examine the in vitro proteoglycan (PG) metabolism of chondrocytes and intervertebral disc cells, but the nature of the PGs produced has not been examined in detail. This is largely due to the difficulty of separating the anionically charged sodium alginate support matrix from PGs which are similarly charged. In the present study ovine annulus fibrosus, transitional zone and nucleus pulposus cells were dissociated enzymatically from their respective matrices by sequential digestion with pronase/clostridial collagenase and DNAase and then cultured in alginate beads for 10 d. The beads were solubilised and subjected to DEAE Sepharose CL6B anion exchange chromatography to separate the sodium alginate bead support matrix material quantitatively from the disc cell PGs. The alginate free bead PGs were then subjected to composite agarose polyacrylamide gel electrophoresis to resolve PG populations and the PGs were transferred to nitrocellulose membranes by semidry electroblotting. The PGs were identified by probing the blots with a panel of antibodies to defined PG core protein and glycosaminoglycan side chain epitopes. Alginate beads of disc cells were also embedded in paraffin wax and 4μm sections cut to immunolocalise decorin, biglycan, versican, and the 7-D-4 PG epitope within the beads. Decorin and biglycan had similar distributions in the beads, being localised on the cell surface whereas versican and the 7-D-4 PG epitope were immunolocalised interterritoriarly. This study is the first to demonstrate that ovine disc cells synthesise versican in alginate bead culture. Furthermore the immunoblotting studies also showed that a proportion of the 7-D-4 PG epitope was colocalised with versican. PMID:11005711

  20. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo

    PubMed Central

    Chen, Deheng; Xia, Dongdong; Pan, Zongyou; Xu, Daoliang; Zhou, Yifei; Wu, Yaosen; Cai, Ningyu; Tang, Qian; Wang, Chenggui; Yan, Meijun; Zhang, Jing Jie; Zhou, Kailiang; Wang, Quan; Feng, Yongzeng; Wang, Xiangyang; Xu, Huazi; Zhang, Xiaolei; Tian, Naifeng

    2016-01-01

    Intervertebral disc degeneration (IDD) is a complicated process that involves both cellular apoptosis and senescence. Metformin has been reported to stimulate autophagy, whereas autophagy is shown to protect against apoptosis and senescence. Therefore, we hypothesize that metformin may have therapeutic effect on IDD through autophagy stimulation. The effect of metformin on IDD was investigated both in vitro and in vivo. Our study showed that metformin attenuated cellular apoptosis and senescence induced by tert-butyl hydroperoxide in nucleus pulposus cells. Autophagy, as well as its upstream regulator AMPK, was activated by metformin in nucleus pulposus cells in a dose- and time-dependent manner. Inhibition of autophagy by 3-MA partially abolished the protective effect of metformin against nucleus pulposus cells' apoptosis and senescence, indicating that autophagy was involved in the protective effect of metformin on IDD. In addition, metformin was shown to promote the expression of anabolic genes such as Col2a1 and Acan expression while inhibiting the expression of catabolic genes such as Mmp3 and Adamts5 in nucleus pulposus cells. In vivo study illustrated that metformin treatment could ameliorate IDD in a puncture-induced rat model. Thus, our study showed that metformin could protect nucleus pulposus cells against apoptosis and senescence via autophagy stimulation and ameliorate disc degeneration in vivo, revealing its potential to be a therapeutic agent for IDD. PMID:27787519

  1. General Pathophysiology in Retinal Degeneration

    PubMed Central

    Wert, Katherine J.; Lin, Jonathan H.; Tsang, Stephen H.

    2015-01-01

    Retinal degeneration, including that seen in age-related macular degeneration and retinitis pigmentosa (RP), is the most common form of neural degenerative disease in the world. There is great genetic and allelic heterogeneity of the various retinal dystrophies. Classifications of these diseases can be ambiguous, as there are similar clinical presentations in retinal degenerations arising from different genetic mechanisms. As would be expected, alterations in the activity of the phototransduction cascade, such as changes affecting the renewal and shedding of the photoreceptor OS, visual transduction, and/ or retinol metabolism have a great impact on the health of the retina. Mutations within any of the molecules responsible for these visual processes cause several types of retinal and retinal pigment epithelium degenerative diseases. Apoptosis has been implicated in the rod cell loss seen in a mouse model of RP, but the precise mechanisms that connect the activation of these pathways to the loss of phosphodiesterase (PDE6β) function has yet to be defined. Additionally, the activation of apoptosis by CCAAT/-enhancer-binding protein homologous protein (CHOP), after activation of the unfolded protein response pathway, may be responsible for cell death, although the mechanism remains unknown. However, the mechanisms of cell death after loss of function of PDE6, which is a commonly studied mammalian model in research, may be generalizable to loss of function of different key proteins involved in the phototransduction cascade. PMID:24732759

  2. Cesare Lombroso: an anthropologist between evolution and degeneration.

    PubMed

    Mazzarello, Paolo

    2011-01-01

    Cesare Lombroso (1835-1909) was a prominent Italian medical doctor and intellectual in the second half of the nineteenth century. He became world famous for his theory that criminality, madness and genius were all sides of the same psychobiological condition: an expression of degeneration, a sort of regression along the phylogenetic scale, and an arrest at an early stage of evolution. Degeneration affected criminals especially, in particular the "born delinquent" whose development had stopped at an early stage, making them the most "atavistic" types of human being. Lombroso also advocated the theory that genius was closely linked with madness. A man of genius was a degenerate, an example of retrograde evolution in whom madness was a form of "biological compensation" for excessive intellectual development. To confirm this theory, in August 1897, Lombroso, while attending the Twelfth International Medical Congress in Moscow, decided to meet the great Russian writer Lev Tolstoy in order to directly verify, in him, his theory of degeneration in the genius. Lombroso's anthropological ideas fuelled a heated debate on the biological determinism of human behaviour.

  3. Cesare Lombroso: an anthropologist between evolution and degeneration

    PubMed Central

    Mazzarello, Paolo

    Summary Cesare Lombroso (1835–1909) was a prominent Italian medical doctor and intellectual in the second half of the nineteenth century. He became world famous for his theory that criminality, madness and genius were all sides of the same psychobiological condition: an expression of degeneration , a sort of regression along the phylogenetic scale, and an arrest at an early stage of evolution. Degeneration affected criminals especially, in particular the “born delinquent” whose development had stopped at an early stage, making them the most “atavistic” types of human being. Lombroso also advocated the theory that genius was closely linked with madness. A man of genius was a degenerate, an example of retrograde evolution in whom madness was a form of “biological compensation” for excessive intellectual development. To confirm this theory, in August 1897, Lombroso, while attending the Twelfth International Medical Congress in Moscow, decided to meet the great Russian writer Lev Tolstoy in order to directly verify, in him, his theory of degeneration in the genius. Lombroso’s anthropological ideas fuelled a heated debate on the biological determinism of human behaviour. PMID:21729591

  4. SDF‑1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF‑κB pathway.

    PubMed

    Liu, Zongchao; Ma, Chuan; Shen, Jieliang; Wang, Dawu; Hao, Jie; Hu, Zhenming

    2016-07-01

    Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell‑derived factor‑1 (SDF‑1)/C‑X‑C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF‑1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF‑1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor‑κB (NF‑κB) signaling pathway was investigated using CXCR4‑siRNA and NF‑κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF‑1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF‑1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post‑transfection with CXCR4 siRNA compared with SDF‑1 stimulation alone. Furthermore, SDF‑1 treatment increased the level of phosphorylated NF‑κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF‑1. Taken together, SDF‑1‑mediated apoptosis was suppressed by NF‑κB inhibition using PDTC. In conclusion, the SDF‑1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF‑κB pathway, thus suggesting that SDF‑1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases.

  5. SDF-1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF-κB pathway

    PubMed Central

    LIU, ZONGCHAO; MA, CHUAN; SHEN, JIELIANG; WANG, DAWU; HAO, JIE; HU, ZHENMING

    2016-01-01

    Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell-derived factor-1 (SDF-1)/C-X-C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF-1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF-1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor-κB (NF-κB) signaling pathway was investigated using CXCR4-siRNA and NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF-1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF-1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post-transfection with CXCR4 siRNA compared with SDF-1 stimulation alone. Furthermore, SDF-1 treatment increased the level of phosphorylated NF-κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF-1. Taken together, SDF-1-mediated apoptosis was suppressed by NF-κB inhibition using PDTC. In conclusion, the SDF-1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF-κB pathway, thus suggesting that SDF-1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases. PMID:27220474

  6. GENIPIN-CROSSLINKED FIBRIN HYDROGELS AS A POTENTIAL ADHESIVE TO AUGMENT INTERVERTEBRAL DISC ANNULUS REPAIR

    PubMed Central

    Schek, R.M.; Michalek, A.J.; Iatridis, J.C.

    2011-01-01

    Treatment of damaged intervertebral discs is a significant clinical problem and, despite advances in the repair and replacement of the nucleus pulposus, there are few effective strategies to restore defects in the annulus fibrosus. An annular repair material should meet three specifications: have a modulus similar to the native annulus tissue, support the growth of disc cells, and maintain adhesion to tissue under physiological strain levels. We hypothesized that a genipin crosslinked fibrin gel could meet these requirements. Our mechanical results showed that genipin crosslinked fibrin gels could be created with a modulus in the range of native annular tissue. We also demonstrated that this material is compatible with the in vitro growth of human disc cells, when genipin:fibrin ratios were 0.25:1 or less, although cell proliferation was slower and cell morphology more rounded than for fibrin alone. Finally, lap tests were performed to evaluate adhesion between fibrin gels and pieces of annular tissue. Specimens created without genipin had poor handling properties and readily delaminated, while genipin crosslinked fibrin gels remained adhered to the tissue pieces at strains exceeding physiological levels and failed at 15–30%. This study demonstrated that genipin crosslinked fibrin gels show promise as a gap-filling adhesive biomaterial with tunable material properties, yet the slow cell proliferation suggests this biomaterial may be best suited as a sealant for small annulus fibrosus defects or as an adhesive to augment large annulus repairs. Future studies will evaluate degradation rate, fatigue behaviors, and long-term biocompatibility. PMID:21503869

  7. Matrix stiffness promotes cartilage endplate chondrocyte calcification in disc degeneration via miR-20a targeting ANKH expression

    PubMed Central

    Liu, Ming-Han; Sun, Chao; Yao, Yuan; Fan, Xin; Liu, Huan; Cui, You-Hong; Bian, Xiu-Wu; Huang, Bo; Zhou, Yue

    2016-01-01

    The mechanical environment is crucial for intervertebral disc degeneration (IDD). However, the mechanisms underlying the regulation of cartilage endplate (CEP) calcification by altered matrix stiffness remain unclear. In this study, we found that matrix stiffness of CEP was positively correlated with the degree of IDD, and stiff matrix, which mimicked the severe degeneration of CEP, promoted inorganic phosphate-induced calcification in CEP chondrocytes. Co-expression analysis of the miRNA and mRNA profiles showed that increasing stiffness resulted in up-regulation of miR-20a and down-regulation of decreased ankylosis protein homolog (ANKH) during inorganic phosphate-induced calcification in CEP chondrocytes. Through a dual luciferase reporter assay, we confirmed that miR-20a directly targets 3′-untranslated regions of ANKH. The inhibition of miR-20a attenuated the calcium deposition and calcification-related gene expression, whereas the overexpression of miR-20a enhanced calcification in CEP chondrocytes on stiff matrix. The rescue of ANKH expression restored the decreased pyrophosphate efflux and inhibited calcification. In clinical samples, the levels of ANKH expression were inversely associated with the degeneration degree of CEP. Thus, our findings demonstrate that the miR-20a/ANKH axis mediates the stiff matrix- promoted CEP calcification, suggesting that miR-20a and ANKH are potential targets in restraining the progression of IDD. PMID:27142968

  8. Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels.

    PubMed

    Richardson, Stephen M; Hughes, Nesta; Hunt, John A; Freemont, Anthony J; Hoyland, Judith A

    2008-01-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain. As current clinical treatments are aimed at restoring biomechanical function and providing symptomatic relief, interest in methods focused on biological repair has increased. Several tissue engineering approaches using different cell types and hydrogels/scaffolds have been proposed. Owing to the unsuitable nature of degenerate cells for tissue engineering attention has focused on the use of mesenchymal stem cells (MSCs). Additionally, while rigid scaffolds have been demonstrated to allow MSC differentiation to the chondrocyte-like cells of the IVD, hydrogels are being increasingly studied as they allow minimally invasive implantation without extensive damage to the IVD. Here, we have studied the temperature-sensitive hydrogel chitosan-glycerophosphate (C/Gp), seeded with human MSCs and cultured for 4 weeks in standard medium. We have analysed the gene and protein expression profile of the MSCs and compared it to that of both nucleus pulposus (NP) cells and articular chondrocytes cultured in C/Gp. Gene expression analysis for chondrocytic-cell marker genes demonstrated differentiation of MSCs to a phenotype which showed similarities to both articular chondrocytes and NP cells. Conventional PCR demonstrated a lack of expression of osteogenic marker genes and the hypertrophic marker gene type X collagen. MSCs also secreted both proteoglycans and collagens in a ratio, which more closely resembled that of NP cells than articular chondrocytes. These results therefore suggest that MSC-seeded C/Gp gels could be used clinically for the regeneration of the degenerate human IVD.

  9. Comparison with Magnetic Resonance Three-Dimensional Sequence for Lumbar Nerve Root with Intervertebral Foramen

    PubMed Central

    Takashima, Hiroyuki; Shishido, Hiroki; Yoshimoto, Mitsunori; Imamura, Rui; Akatsuka, Yoshihiro; Terashima, Yoshinori; Fujiwara, Hiroyoshi; Nagae, Masateru; Kubo, Toshikazu; Yamashita, Toshihiko

    2016-01-01

    Study Design Prospective study based on magnetic resonance (MR) imaging of the lumbar spinal root of the intervertebral foramen. Purpose This study was to compare MR three-dimensional (3D) sequences for the evaluation of the lumbar spinal root of the intervertebral foramen. Overview of Literature The diagnosis of spinal disorders by MR imaging is commonly performed using two-dimensional T1- and T2-weighted images, whereas 3D MR images can be used for acquiring further detailed data using thin slices with multi-planar reconstruction. Methods On twenty healthy volunteers, we investigated the contrast-to-noise ratio (CNR) of the lumbar spinal root of the intervertebral foramen with a 3D balanced sequence. The sequences used were the fast imaging employing steady state acquisition and the coherent oscillatory state acquisition for the manipulation of image contrast (COSMIC). COSMIC can be used with or without fat suppression (FS). We compared these sequence to determine the optimized visualization sequence for the lumbar spinal root of the intervertebral foramen. Results For the CNR between the nerve root and the peripheral tissue, these were no significant differences between the sequences at the entry of foramen. There was a significant difference and the highest CNR was seen with COSMIC-FS for the intra- and extra-foramen. Conclusions In this study, the findings suggest that the COSMIC-FS sequences should be used for the internal or external foramen for spinal root disorders. PMID:26949459

  10. Low-level vibrations maintain the intervertebral disc during unloading

    NASA Astrophysics Data System (ADS)

    Holguin, Nilsson

    Changes in intervertebral disc (IVD) biochemistry, morphology and mechanics have been characterized only incompletely in the rat hindlimb unloading (HU) model. Although exposure to chronic vibrations can be damaging, low-magnitude vibrations can attenuate the geometric changes of the IVD due to altered spinal loading. Here, we tested the hypothesis that low-magnitude, high-frequency vibrations will mitigate the hypotrophy, biochemical degradation and deconditioning of the IVD during HU. When applied as whole-body vibrations through all four paws, Sprague-Dawley rats were subjected to HU and exposed to daily periods (15min/d) of either ambulatory activities (HU+AMB) or whole body vibrations superimposed upon ambulation (HU+WBV; WBV at 45Hz, 0.3g). After 4wks and, compared to age-matched control rats (AC), the lumbar IVD of HU+AMB had a 22% smaller glycosaminoglycans/collagen ratio, 12% smaller posterior IVD height, and 13% smaller cross-sectional area. Compared to HU+AMB rats, the addition of low-level vibratory loading did not significantly alter IVD biochemistry, posterior height, area, or volume, but directionally altered IVD geometry. When subjected to upright vibrations through the hindpaws, rats were HU for 4wks. A subset of HU rats stood in an upright posture on a vertically oscillating plate (0.2g) at 45- or 90-Hz (HU+45 or HU+90). After 4wks, regardless of sham (HU+SC) loading (HU+/-SC) and, compared to AC, IVD of HU+/-SC had 10% less height, 39% smaller nucleus pulposus area, less glycosaminoglycans in the nucleus pulposus (21%), anterior annulus fibrosus (16%) and posterior annulus fibrosus (19%), 76% less tension-compression neutral zone (NZ) modulus, 26% greater compressive modulus, 25% greater initial elastic damping modulus, 26% less torsional NZ stiffness, no difference in collagen content and a weaker relationship between tension-compression NZ modulus and posterior height change. Exogenously introduced oscillations maintained the morphology

  11. [Age-related macular degeneration].

    PubMed

    Budzinskaia, M V

    2014-01-01

    The review provides an update on the pathogenesis and new treatment modalities for neovascular age-related macular degeneration (AMD). The impact of polymorphism in particular genes, including complement factor H (CFH), age-related maculopathy susceptibility 2 (ARMS2/LOC387715), and serine peptidase (HTRA1), on AMD development is discussed. Clinical presentations of different forms of exudative AMD, that is classic, occult, or more often mixed choroidal neovascularization, retinal angiomatous proliferation, and choroidal polypoidal vasculopathy, are described. Particular attention is paid to the results of recent clinical trials and safety issues around the therapy.

  12. Degeneration of a Nonrecombining Chromosome

    NASA Astrophysics Data System (ADS)

    Rice, William R.

    1994-01-01

    Comparative studies suggest that sex chromosomes begin as ordinary autosomes that happen to carry a major sex determining locus. Over evolutionary time the Y chromosome is selected to stop recombining with the X chromosome, perhaps in response to accumulation of alleles beneficial to the heterogametic but harmful to the homogametic sex. Population genetic theory predicts that a nonrecombining Y chromosome should degenerate. Here this prediction is tested by application of specific selection pressures to Drosophila melanogaster populations. Results demonstrate the decay of a nonrecombining, nascent Y chromosome and the capacity for recombination to ameliorate such decay.

  13. Age-related macular degeneration

    PubMed Central

    Querques, Giuseppe; Avellis, Fernando Onofrio; Querques, Lea; Bandello, Francesco; Souied, Eric H

    2011-01-01

    Clinical question: Is there any new knowledge about the pathogenesis and treatment of age-related macular degeneration (AMD)? Results: We now understand better the biochemical and pathological pathways involved in the genesis of AMD. Treatment of exudative AMD is based on intravitreal injection of new antivascular endothelial growth factor drugs for which there does not yet exist a unique recognized strategy of administration. No therapies are actually available for atrophic AMD, despite some experimental new pharmacological approaches. Implementation: strategy of administration, safety of intravitreal injection PMID:21654887

  14. Mathematical glimpse on the Y chromosome degeneration

    NASA Astrophysics Data System (ADS)

    Lobo, M. P.

    2006-04-01

    The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up sqrt{2} more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

  15. Animal models of age related macular degeneration.

    PubMed

    Pennesi, Mark E; Neuringer, Martha; Courtney, Robert J

    2012-08-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations.

  16. Animal models of age related macular degeneration

    PubMed Central

    Pennesi, Mark E.; Neuringer, Martha; Courtney, Robert J.

    2013-01-01

    Age related macular degeneration (AMD) is the leading cause of vision loss of those over the age of 65 in the industrialized world. The prevalence and need to develop effective treatments for AMD has lead to the development of multiple animal models. AMD is a complex and heterogeneous disease that involves the interaction of both genetic and environmental factors with the unique anatomy of the human macula. Models in mice, rats, rabbits, pigs and non-human primates have recreated many of the histological features of AMD and provided much insight into the underlying pathological mechanisms of this disease. In spite of the large number of models developed, no one model yet recapitulates all of the features of human AMD. However, these models have helped reveal the roles of chronic oxidative damage, inflammation and immune dysregulation, and lipid metabolism in the development of AMD. Models for induced choroidal neovascularization have served as the backbone for testing new therapies. This article will review the diversity of animal models that exist for AMD as well as their strengths and limitations. PMID:22705444

  17. [Pathogenesis of age-related macular degeneration].

    PubMed

    Kaarniranta, Kai; Seitsonen, Sanna; Paimela, Tuomas; Meri, Seppo; Immonen, Ilkka

    2009-01-01

    Age-related macular degeneration is a multiform disease of the macula, the region responsible for detailed central vision. In recent years, plenty of new knowledge of the pathogenesis of this disease has been obtained, and the treatment of exudative macular degeneration has greatly progressed. The number of patients with age-related macular degeneration will multiply in the following decades, because knowledge of mechanisms of development of macular degeneration that could be subject to therapeutic measures is insufficient. Central underlying factors are genetic inheritance, exposure of the retina to chronic oxidative stress and accumulation of inflammation-inducing harmful proteins into or outside of retinal cells.

  18. Study of the influence of degenerative intervertebral disc changes on the deformation behavior of the cervical spine segment in flexion

    NASA Astrophysics Data System (ADS)

    Kolmakova, Tatyana V.

    2016-11-01

    The paper describes the model of the cervical spine segment (C3-C4) and the calculation results of the deformation behavior of the segment under degenerative changes of the intervertebral disc. The segment model was built based on the experimental literature data taking into account the presence of the cortical and cancellous bone tissue of vertebral bodies. The calculation results show that degenerative changes of the intervertebral disc cause the immobility of the C3 vertebra at flexion.

  19. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content.

    PubMed

    Michalek, Arthur J; Buckley, Mark R; Bonassar, Lawrence J; Cohen, Itai; Iatridis, James C

    2009-10-16

    Shear strain has been implicated as an initiator of intervertebral disc anulus failure, however a clear, multi-scale picture of how shear strain affects the tissue microstructure has been lacking. The purposes of this study were to measure microscale deformations in anulus tissue under dynamic shear in two orientations, and to determine the role of elastin in regulating these deformations. Bovine AF tissue was simultaneously shear loaded and imaged using confocal microscopy following either a buffer or elastase treatment. Digital image analysis was used to track through time local shear strains in specimens sheared transversely, and stretch and rotation of collagen fiber bundles in specimens sheared circumferentially. The results of this study suggest that sliding does not occur between AF plies under shear, and that interlamellar connections are governed by collagen and fibrilin rather than elastin. The transverse shear modulus was found to be approximately 1.6 times as high in plies the direction of the collagen fibers as in plies across them. Under physiological levels of in-plane shear, fiber bundles stretched and re-oriented linearly. Elastin was found to primarily stiffen plies transversely. We conclude that alterations in the elastic fiber network, as found with IVD herniation and degeneration, can therefore be expected to significantly influence the AF response to shear making it more susceptible to micro failure under bending or torsion loading.

  20. Interleukin-6 and interleukin-6 receptor expression, localization, and involvement in pain-sensing neuron activation in a mouse intervertebral disc injury model.

    PubMed

    Sainoh, Takeshi; Orita, Sumihisa; Miyagi, Masayuki; Sakuma, Yoshihiro; Yamauchi, Kazuyo; Suzuki, Miyako; Kubota, Go; Oikawa, Yasuhiro; Inage, Kazuhide; Sato, Jun; Fujimoto, Kazuki; Shiga, Yasuhiro; Inoue, Gen; Aoki, Yasuchika; Takahashi, Kazuhisa; Ohtori, Seiji

    2015-10-01

    The pathological mechanism of intractable low back pain is unclear. However, intervertebral disc (IVD) degeneration is a primary cause of low back pain, and pain-related mediators, such as interleukin-6 (IL-6), have been correlated with discogenic pain. The objective of this study is to elucidate the mechanism of local IL-6 and IL-6 receptor (IL-6R) expression after IVD injury as well as determine the involvement of IL-6/IL-6 signaling in discogenic pain. To do this, quantitative and immunohistological analyses in a mouse model of IVD injury were performed. Firstly, we measured the local expression levels of IL-6 and IL-6R in IVDs by enzyme-linked immunosorbent assay (ELISA). Secondly, we immunohistochemically confirmed their localization in injured IVDs. Lastly, we evaluated the effects of intradiscal injection of an IL-6 inhibitor by evaluating pain-related protein, calcitonin gene-related peptide (CGRP), expression in dorsal root ganglia (DRG) neurons that innervate IVDs. Injured IVDs showed increased production of IL-6 and IL-6R. IL-6 and IL-6R expression in the injured IVD were predominantly localized in the annulus fibrosus and endplate, and intradiscal injection of the IL-6 inhibitor suppressed CGRP expression in the DRG neurons. These results show that IL-6 and IL-6R expression levels are responsive to IVD injury and that inhibition of IL-6/IL-6R signaling may be a promising analgesic treatment for degenerative disc diseases.

  1. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model.

    PubMed

    Martin, John T; Milby, Andrew H; Chiaro, Joseph A; Kim, Dong Hwa; Hebela, Nader M; Smith, Lachlan J; Elliott, Dawn M; Mauck, Robert L

    2014-06-01

    Intervertebral disc degeneration has been implicated in the etiology of low back pain; however, the current surgical strategies for treating symptomatic disc disease are limited. A variety of materials have been developed to replace disc components, including the nucleus pulposus (NP), the annulus fibrosus (AF) and their combination into disc-like engineered constructs. We have previously shown that layers of electrospun poly(ε-caprolactone) scaffold, mimicking the hierarchical organization of the native AF, can achieve functional parity with native tissue. Likewise, we have combined these structures with cell-seeded hydrogels (as an NP replacement) to form disc-like angle-ply structures (DAPS). The objective of this study was to develop a model for the evaluation of DAPS in vivo. Through a series of studies, we developed a surgical approach to replace the rat caudal disc with an acellular DAPS and then stabilized the motion segment via external fixation. We then optimized cell infiltration into DAPS by including sacrificial poly(ethylene oxide) layers interspersed throughout the angle-ply structure. Our findings illustrate that DAPS are stable in the caudal spine, are infiltrated by cells from the peri-implant space and that infiltration is expedited by providing additional routes for cell migration. These findings establish a new in vivo platform in which to evaluate and optimize the design of functional disc replacements.

  2. 3D characterization of morphological changes in the intervertebral disc and endplate during aging: A propagation phase contrast synchrotron micro-tomography study

    PubMed Central

    Cao, Yong; Liao, Shenghui; Zeng, Hao; Ni, Shuangfei; Tintani, Francis; Hao, Yongqiang; Wang, Lei; Wu, Tianding; Lu, Hongbin; Duan, Chunyue; Hu, Jianzhong

    2017-01-01

    A better understanding of functional changes in the intervertebral disc (IVD) and interaction with endplate is essential to elucidate the pathogenesis of IVD degeneration disease (IDDD). To date, the simultaneous depiction of 3D micro-architectural changes of endplate with aging and interaction with IVD remains a technical challenge. We aim to characterize the 3D morphology changes of endplate and IVD during aging using PPCST. The lumbar vertebral level 4/5 IVDs harvested from 15-day-, 4- and 24-month-old mice were initially evaluated by PPCST with histological sections subsequently analyzed to confirm the imaging efficiency. Quantitative assessments of age-related trends after aging, including mean diameter, volume fraction and connectivity of the canals, and endplate porosity and thickness, reached a peak at 4 months and significantly decreased at 24 months. The IVD volume consistently exhibited same trend of variation with the endplate after aging. In this study, PPCST simultaneously provided comprehensive details of 3D morphological changes of the IVD and canal network in the endplate and the interaction after aging. The results suggest that PPCST has the potential to provide a new platform for attaining a deeper insight into the pathogenesis of IDDD, providing potential therapeutic targets. PMID:28266560

  3. Three-dimensional intervertebral range of motion in the cervical spine: Does the method of calculation matter?

    PubMed

    Anderst, William J; Aucie, Yashar

    2017-03-01

    Intervertebral range of motion (ROM) is commonly calculated using ordered rotations or projection angles. Ordered rotations are sequence-dependent, and projection angles are dependent upon on which orientation vectors are projected. This study assessed the effect of calculation method on intervertebral ROM in the subaxial cervical spine (C3-C7) during in vivo dynamic, three-dimensional, functional movement. Biplane radiographs were collected at 30 images per second while 29 participants performed full ROM flexion/extension, axial rotation and lateral bending movements of their cervical spine. In vivo bone motion was tracked with sub-millimeter accuracy using a validated volumetric model-based tracking technique. Intervertebral rotations were calculated using six Cardan angle sequences and two projection angle combinations. Within-subject comparisons revealed significant differences in intervertebral ROM among calculation methods (all p<0.002). Group mean ROM differences were small, but significantly different among calculation methods (p<0.001). A resampling technique demonstrated that as group size increases, the differences between calculation methods decreases substantially. It is concluded that the method used to calculate intervertebral rotations of the sub-axial cervical spine can significantly affect within-subject and between group comparisons of intervertebral ROM.

  4. Photoreceptor Cells Influence Retinal Vascular Degeneration in Mouse Models of Retinal Degeneration and Diabetes

    PubMed Central

    Liu, Haitao; Tang, Jie; Du, Yunpeng; Saadane, Aicha; Tonade, Deoye; Samuels, Ivy; Veenstra, Alex; Palczewski, Krzysztof; Kern, Timothy S.

    2016-01-01

    Purpose Loss of photoreceptor cells is associated with retinal vascular degeneration in retinitis pigmentosa, whereas the presence of photoreceptor cells is implicated in vascular degeneration in diabetic retinopathy. To investigate how both the absence and presence of photoreceptors could damage the retinal vasculature, we compared two mouse models of photoreceptor degeneration (opsin−/− and RhoP23H/P23H ) and control C57Bl/5J mice, each with and without diabetes. Methods Retinal thickness, superoxide, expression of inflammatory proteins, ERG and optokinetic responses, leukocyte cytotoxicity, and capillary degeneration were evaluated at 1 to 10 months of age using published methods. Results Retinal photoreceptor cells degenerated completely in the opsin mutants by 2 to 4 months of age, and visual function subsided correspondingly. Retinal capillary degeneration was substantial while photoreceptors were still present, but slowed after the photoreceptors degenerated. Diabetes did not further exacerbate capillary degeneration in these models of photoreceptor degeneration, but did cause capillary degeneration in wild-type animals. Photoreceptor cells, however, did not degenerate in wild-type diabetic mice, presumably because the stress responses in these cells were less than in the opsin mutants. Retinal superoxide and leukocyte damage to retinal endothelium contributed to the degeneration of retinal capillaries in diabetes, and leukocyte-mediated damage was increased in both opsin mutants during photoreceptor cell degeneration. Conclusions Photoreceptor cells affect the integrity of the retinal microvasculature. Deterioration of retinal capillaries in opsin mutants was appreciable while photoreceptor cells were present and stressed, but was less after photoreceptors degenerated. This finding proves relevant to diabetes, where persistent stress in photoreceptors likewise contributes to capillary degeneration. PMID:27548901

  5. Regularized degenerate multi-solitons

    NASA Astrophysics Data System (ADS)

    Correa, Francisco; Fring, Andreas

    2016-09-01

    We report complex {P}{T} -symmetric multi-soliton solutions to the Korteweg de-Vries equation that asymptotically contain one-soliton solutions, with each of them possessing the same amount of finite real energy. We demonstrate how these solutions originate from degenerate energy solutions of the Schrödinger equation. Technically this is achieved by the application of Darboux-Crum transformations involving Jordan states with suitable regularizing shifts. Alternatively they may be constructed from a limiting process within the context Hirota's direct method or on a nonlinear superposition obtained from multiple Bäcklund transformations. The proposed procedure is completely generic and also applicable to other types of nonlinear integrable systems.

  6. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  7. Exact propagators for some degenerate hyperbolic operators

    NASA Astrophysics Data System (ADS)

    Beals, Richard; Kannai, Yakar

    2006-10-01

    Exact propagators are obtained for the degenerate second order hyperbolic operators ∂2 t - t 2 l Δ x , l=1,2,..., by analytic continuation from the degenerate elliptic operators ∂2 t + t 2 l Δ x . The partial Fourier transforms are also obtained in closed form, leading to integral transform formulas for certain combinations of Bessel functions and modified Bessel functions.

  8. Structure formation through self-gravitational instability in degenerate and non-degenerate anisotropic magnetized plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana

    2017-04-01

    The self-gravitational instability is examined for non-degenerate and degenerate magnetized plasma. In the case of non-degenerate collisionless magnetized plasma the pressure is considered as anisotropic while in the case of degenerate situations it is taken as isotropic. The effect of finite Larmor radius correction of non-degenerate ions and viscous dissipation is taken into account in both the cases. Firstly in non-degenerate anisotropic plasma the conventional magnetohydrodynamic model is used to construct basic set of equations within the framework of modified Chew-Goldberger and Low theory. Secondly, in the case of degenerate isotropic plasma, which is considered to be composed of degenerate electrons and non-degenerate ions, the model equations are constructed using quantum magneto hydrodynamic model. The dynamics of degenerate particles are governed by Bohm and exchange potentials. The general dispersion relations are derived for both degenerate and non-degenerate situations separately using linearized perturbation equations. The results are discussed analytically and numerically for various modes of propagation. In case of non degenerate strongly magnetized plasma the effects of stress tensor anisotropy dominate over the influence of FLR effects while the FLR effects prevail in the weak magnetic field region. In case of isotropic degenerate plasma the implications of exchange parameter on the Jeans mass have been estimated and it is found that the increase in exchange parameter increases the limit of Jeans mass. The Jeans length and Jeans mass have been estimated for the white dwarf stars as LJ ≈ 2.1 × 10^{11} m and MJ ≈ 5 × 10^{39} kg respectively assist the existence of super Chandrasekhar white dwarfs.

  9. Continuous lumbar hemilaminectomy for intervertebral disc disease in an Amur tiger (Panthera tigris altaica).

    PubMed

    Flegel, Thomas; Böttcher, Peter; Alef, Michaele; Kiefer, Ingmar; Ludewig, Eberhard; Thielebein, Jens; Grevel, Vera

    2008-09-01

    A 13-yr-old Amur tiger (Panthera tigris altaica) was presented for an acute onset of paraplegia. Spinal imaging that included plain radiographs, myelography, and computed tomography performed under general anesthesia revealed lateralized spinal cord compression at the intervertebral disc space L4-5 caused by intervertebral disc extrusion. This extrusion was accompanied by an extensive epidural hemorrhage from L3 to L6. Therefore, a continuous hemilaminectomy from L3 to L6 was performed, resulting in complete decompression of the spinal cord. The tiger was ambulatory again 10 days after the surgery. This case suggests that the potential benefit of complete spinal cord decompression may outweigh the risk of causing clinically significant spinal instability after extensive decompression.

  10. Microscale Material Properties of Bone and the Mineralized Tissues of the Intervertebral Disc-Vertebral Body Interface

    NASA Astrophysics Data System (ADS)

    Paietta, Rachel C.

    The objective of this dissertation is to understand the influences of material structure on the properties, function and failure of biological connective tissues. Biological interfaces are becoming an increasingly studied system within mechanics and tissue engineering as a model for attaching dissimilar materials. The elastic modulus of bone (≈ 20 GPa) and cartilage (≈ 0.1-1 MPa) differ over orders of magnitude, which should intuitively create high stress concentrations and failure at the interface. Yet, these natural interface systems rarely fail in vivo, and the mechanism by which loads are transferred between tissues has not yet been established. Tissue quality is one major contributor to the mechanical behavior of bone and cartilage, and is defined by properties such as collagen orientation, mineral volume fraction, porosity and tissue geometry. These properties have yet to be established at the bone-cartilage interface in the spine, and the lack of quantitative data on material microstructure and behavior limits treatments and tissue engineering construct design. In this dissertation, second harmonic generation imaging, quantitative backscattered scanning electron imaging and nanoindentation are combined to characterize micrometer scale tissue quality and modulus in both bone and calcified cartilage. These techniques are utilized to: 1) determine the hierarchical micrometer to millimeter scale properties of lamellar bone, 2) quantify changes throughout development and aging at the human intervertebral disc-vertebral body junction, and 3) explore compressive fractures at this interface. This work is the first to provide quantitative data on the mineral volume fraction, collagen orientation and modulus from the same, undecalcified sections of tissue to corroborate tissue structure and mineralization and describe quantitative parameters of the interface. The principal findings from this work indicate that the underlying matrix, or collagen, organization in

  11. Changes in intervertebral disc morphology persist 5 mo after 21-day bed rest.

    PubMed

    Belavý, Daniel L; Bansmann, P Martin; Böhme, Gisela; Frings-Meuthen, Petra; Heer, Martina; Rittweger, Jörn; Zange, Jochen; Felsenberg, Dieter

    2011-11-01

    As part of the nutrition-countermeasures (NUC) study in Cologne, Germany in 2010, seven healthy male subjects underwent 21 days of head-down tilt bed rest and returned 153 days later to undergo a second bout of 21-day bed rest. As part of this model, we aimed to examine the recovery of the lumbar intervertebral discs and muscle cross-sectional area (CSA) after bed rest using magnetic resonance imaging and conduct a pilot study on the effects of bed rest in lumbar muscle activation, as measured by signal intensity changes in T(2)-weighted images after a standardized isometric spinal extension loading task. The changes in intervertebral disc volume, anterior and posterior disc height, and intervertebral length seen after bed rest did not return to prebed-rest values 153 days later. While recovery of muscle CSA occurred after bed rest, increases (P ≤ 0.016) in multifidus, psoas, and quadratus lumborum muscle CSA were seen 153 days after bed rest. A trend was seen for greater activation of the erector spinae and multifidus muscles in the standardized loading task after bed rest. Greater reductions of multifidus and psoas CSA muscle and greater increases in multifidus signal intensity with loading were associated with incidence of low back pain in the first 28 days after bed rest (P ≤ 0.044). The current study contributes to our understanding of the recovery of the lumbar spine after 21-day bed rest, and the main finding was that a decrease in spinal extensor muscle CSA recovers within 5 mo after bed rest but that changes in the intervertebral discs persist.

  12. A Finite Element Analysis of the Creep Response of Lumbar Intervertebral Joints in the Rhesus Monkey.

    DTIC Science & Technology

    1982-12-01

    description of the intervertebral joint. The Rhesus Monkey spine is a complex structure composed of a number of mobile vertebrae. It is divided into 4 reg...IS. -SUPPLEMENTARY NOTES 8o:it~Ics A ~JA~q Air. Force insItit of Tehnology (ATCJ 1 9 J N ’ Wrgb-o:.-o.,&O 43 19. KEY WORDS (Continue on reverse side

  13. [Dorsal extrusion of intervertebral disc as a cause of cauda equina syndrome].

    PubMed

    Jusić, Aldin; Skomorac, Rasim; Beculić, Hakija

    2011-01-01

    We have presented a case of rare dorsally sequestrated lumbar disc herniation manifesting as cauda equina syndrome. The patient was admitted to the Neurological Department of Canton Hospital Zenica due to urinary retention and weakness in both lower extremities. Magnetic resonance imaging showed a compressing mass located in the dorsal extradural space at the L2-L3 level. An extruded intervertebral disc was found intraoperatively. The decompression was followed by good recovery.

  14. Changes in intervertebral disc cross-sectional area with bed rest and space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A. D.; Evans, H. J.; Schneider, V. S.; Wendt, R. E. 3rd; Hedrick, T. D.

    1994-01-01

    STUDY DESIGN. We measured the cross-sectional area of the intervertebral discs of normal volunteers after an overnight rest; before, during, and after 5 or 17 weeks of bed rest; and before and after 8 days of weightlessness. OBJECTIVES. This study sought to determine the degree of expansion of the lumbar discs resulting from bed rest and space flight. SUMMARY OF BACKGROUND DATA. Weightlessness and bed rest, an analog for weightlessness, reduce the mechanical loading on the musculoskeletal system. When unloaded, intervertebral discs will expand, increasing the nutritional diffusion distance and altering the mechanical properties of the spine. METHODS. Magnetic resonance imaging was used to measure the cross-sectional area and transverse relaxation time (T2) of the intervertebral discs. RESULTS. Overnight or longer bed rest causes expansion of the disc area, which reaches an equilibrium value of about 22% (range 10-40%) above baseline within 4 days. Increases in disc area were associated with modest increases in disc T2. During bed rest, disc height increased approximately 1 mm, about one-half of previous estimates based on body height measurements. After 5 weeks of bed rest, disc area returned to baseline within a few days of ambulation, whereas after 17 weeks, disc area remained above baseline 6 weeks after reambulation. After 8 days of weightlessness, T2, disc area, and lumbar length were not significantly different from baseline values 24 hours after landing. CONCLUSIONS. Significant adaptive changes in the intervertebral discs can be expected during weightlessness. These changes, which are rapidly reversible after short-duration flights, may be an important factor during and after long-duration missions.

  15. In vivo experimental study of hat type cervical intervertebral fusion cage (HCIFC).

    PubMed

    Gu, Yu-tong; Yao, Zhen-jun; Jia, Lian-shun; Qi, Jin; Wang, Jun

    2010-12-01

    The purpose of this study was to compare the characteristics of interbody fusion achieved using the hat type cervical intervertebral fusion cage (HCIFC) with those of an autologous tricortical iliac crest graft, Harms cage and the carbon cage in a goat cervical spine model. Thirty-two goats underwent C3-4 discectomy and fusion. They were subdivided into four groups of eight goats each: group 1, autologous tricortical iliac crest bone graft; group 2, Harms cage filled with autologous iliac crest graft; group 3, carbon cage filled with autologous iliac bone; and group 4, HCIFC filled with autologous iliac graft. Radiography was performed pre- and postoperatively and after one, two, four, eight and 12 weeks. At the same time points, disc space height, intervertebral angle, and lordosis angle were measured. After 12 weeks, the goats were killed and fusion sites were harvested. Biomechanical testing was performed in flexion, extension, axial rotation, and lateral bending to determine the stiffness and range of motion. All cervical fusion specimens underwent histomorphological analyses. One week after operation, the disc space height (DSH), intervertebral angle (IVA) and lordosis angle (LA) of HCIFC and carbon cage were statistically greater than those of autologous iliac bone graft and Harms cage. Significantly higher values for DSH, IVA and LA were shown in cage-treated goats than in those that received bone graft over a 12-week period. The stiffness of Harms cage in axial rotation and lateral bending were statistically greater than that of other groups. Radiographic and histomorphological evaluation showed better fusion results in the cage groups than in the autologous bone group. HCIFC can provide a good intervertebral distractability and sufficient biomechanical stability for cervical fusion.

  16. Intradural rupture of lumbar intervertebral disk: report of two cases with review of the literature.

    PubMed

    Peyser, E; Harari, A

    1977-08-01

    Two cases of intradural rupture of lumbar intervertebral disks are described, in addition to 22 cases reported in the literature. Our case occurred among 753 herniated disks surgically treated in this department, an incidence similar to that in the literature. Clinically most cases presented as an acute cauda equina syndrome, and a myelographic block was almost always present. Prognosis is not made worse by the perforation. Various factors that might contribute to this relatively rate complication of disk disease are mentioned.

  17. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load

    SciTech Connect

    Ohshima, H.; Tsuji, H.; Hirano, N.; Ishihara, H.; Katoh, Y.; Yamada, H. )

    1989-11-01

    The behavior of water in the intervertebral disc of pig tail and its physiologic and biomechanical properties were investigated in relation to compression load. The water content, chemical composition, and swelling pressure in the intervertebral disc were measured, and the mechanism of the generation of the swelling pressure in relation to compression load stress was studied. The swelling pressure, through regulation of the water content of the disc and the resistance of the external load, differs with the region of the intervertebral disc. In the nucleus pulposus and the inner layer of the anulus fibrosus, the swelling pressure rises in proportion to the load, but few changes occur in the outer layer of the anulus fibrosus, and the constant pressure environment is thus maintained. The tritiated water (3H2O) uptake of the disc under various loads was measured. The molar partition coefficient of tritiated water is almost equal to 1 even under a compression load, which suggests that water is freely exchangeable. The diffusion of 3H2O in the intervertebral disc was traced using two pathway models: the perianular route and the end-plate route. The diffusion of water in the unloaded disc for both uptake and washout was about 2 to 3 times larger in the perianular route than in the end-plate route. Under load, the water diffusion was inhibited in both pathways. The relation between the load and displacement revealed viscoelastic properties indicating creep and stress relaxation. Young's modulus and the stiffness increased with a rise in load speed.

  18. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs.

    PubMed

    Ghannam, Malik; Jumah, Fareed; Mansour, Shaden; Samara, Amjad; Alkhdour, Saja; Alzuabi, Muayad A; Aker, Loai; Adeeb, Nimer; Massengale, Justin; Oskouian, Rod J; Shane Tubbs, R

    2017-03-01

    The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.

  19. [Results of surgical treatment for the intervertebral disc protrusion within thoracic spine].

    PubMed

    Malawski, S; Lukawski, S

    1998-01-01

    Results of surgical treatment for intervertebral disc protrusion within thoracic spine in 4 cases are presented. Protrusion had caused spinal compression resulting in neurological impairment (plegia). There were 3 females and 1 male, all in their forties or fifties. Two cases are presented in details, with radiological investigations included. Lateral approach was used at surgery. Neurological deficits subsided completely in all cases. Follow-up ranged from 1-15 years, mean 8 years.

  20. Molecular pathology of age-related macular degeneration

    PubMed Central

    Ding, Xiaoyan; Patel, Mrinali; Chan, Chi-Chao

    2009-01-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible blindness in the world. Although the etiology and pathogenesis of AMD remain largely unclear, a complex interaction of genetic and environmental factors is thought to exist. AMD pathology is characterized by degeneration involving the retinal photoreceptors, retinal pigment epithelium, and Bruch’s membrane, as well as, in some cases, alterations in choroidal capillaries. Recent research on the genetic and molecular underpinnings of AMD brings to light several basic molecular pathways and pathophysiological processes that might mediate AMD risk, progression, and/or response to therapy. This review summarizes, in detail, the molecular pathological findings in both humans and animal models, including genetic variations in CFH, CX3CR1, and ARMS2/HtrA1, as well as the role of numerous molecules implicated in inflammation, apoptosis, cholesterol trafficking, angiogenesis, and oxidative stress. PMID:19026761

  1. Relationship between streaming potential and compressive stress in bovine intervertebral tissue.

    PubMed

    Fujisaki, Kazuhiro; Tadano, Shigeru; Asano, Nozomu

    2011-09-02

    The intervertebral disc is formed by the nucleus pulposus (NP) and annulus fibrosus (AF), and intervertebral tissue contains a large amount of negatively charged proteoglycan. When this tissue becomes deformed, a streaming potential is induced by liquid flow with positive ions. The anisotropic property of the AF tissue is caused by the structural anisotropy of the solid phase and the liquid phase flowing into the tissue with the streaming potential. This study investigated the relationship between the streaming potential and applied stress in bovine intervertebral tissue while focusing on the anisotropy and loading location. Column-shaped specimens, 5.5 mm in diameter and 3 mm thick, were prepared from the tissue of the AF, NP and the annulus-nucleus transition region (AN). The loading direction of each specimen was oriented in the spinal axial direction, as well as in the circumferential and radial directions of the spine considering the anisotropic properties of the AF tissue. The streaming potential changed linearly with stress in all specimens. The linear coefficients k(e) of the relationship between stress and streaming potential depended on the extracted positions. These coefficients were not affected by the anisotropy of the AF tissue. In addition, these coefficients were lower in AF than in NP specimens. Except in the NP specimen, the k(e) values were higher under faster compression rate conditions. In cyclic compression loading the streaming potential changed linearly with compressive stress, regardless of differences in the tissue and load frequency.

  2. Distinct Intervertebral Disc Cell Population