Recommendations for the treatment of aging in standard technical specifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orton, R.D.; Allen, R.P.
1995-09-01
As part of the US Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program, Pacific Northwest Laboratory (PNL) evaluated the standard technical specifications for nuclear power plants to determine whether the current surveillance requirements (SRs) were effective in detecting age-related degradation. Nuclear Plant Aging Research findings for selected systems and components were reviewed to identify the stressors and operative aging mechanisms and to evaluate the methods available to detect, differentiate, and trend the resulting aging degradation. Current surveillance and testing requirements for these systems and components were reviewed for their effectiveness in detecting degraded conditions and for potential contributions to prematuremore » degradation. When the current surveillance and testing requirements appeared ineffective in detecting aging degradation or potentially could contribute to premature degradation, a possible deficiency in the SRs was identified that could result in undetected degradation. Based on this evaluation, PNL developed recommendations for inspection, surveillance, trending, and condition monitoring methods to be incorporated in the SRs to better detect age- related degradation of these selected systems and components.« less
Rehabilitation of degraded forests in Asia. World Bank technical paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, A.K.
The degraded forests discussed in this paper are those that have been so badly damaged they have completely lost their protective or productive functions--but still retain their potential revive. The paper focusses on the major areas in Asia fitting this description: swidden agriculture areas in moist forests; human-induced extensive Imperata grasslands; repeatedly hacked, low-profile hardwood forests; and overlogged forests. The areas are defined carefully to determine their extent in Asia; key characteristics are described; their impacts on the local ecology are evaluated; the social and economic pressures that prolong the degradation are analyzed; and technical methods for rehabilitating the damagedmore » areas are proposed.« less
Methods to improve oxidative stability of biodiesel
USDA-ARS?s Scientific Manuscript database
Oxidative degradation is one of the chief technical deficiencies of biodiesel relative to petrodiesel. Traditional methods to mitigate susceptibility to oxidation include employment of synthetic antioxidants, switching to more stable feedstocks, reducing the storage time of the fuel, and improving t...
Method of Individual Forecasting of Technical State of Logging Machines
NASA Astrophysics Data System (ADS)
Kozlov, V. G.; Gulevsky, V. A.; Skrypnikov, A. V.; Logoyda, V. S.; Menzhulova, A. S.
2018-03-01
Development of the model that evaluates the possibility of failure requires the knowledge of changes’ regularities of technical condition parameters of the machines in use. To study the regularities, the need to develop stochastic models that take into account physical essence of the processes of destruction of structural elements of the machines, the technology of their production, degradation and the stochastic properties of the parameters of the technical state and the conditions and modes of operation arose.
Final Report Inspection of Aged/Degraded Containments Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, Dan J; Ellingwood, B R; Oland, C Barry
2005-09-01
The Inspection of Aged/Degraded Containments Program had primary objectives of (1) understanding the significant factors relating corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and liners of reinforced concrete containments; (2) providing the United States Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments, and concrete containments as limited by liner integrity; (3) providing recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containmentmore » degradation; and (4) providing technical assistance to the USNRC (as requested) related to concrete technology. Primary program accomplishments have included development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of high-frequency acoustic imaging, magnetostrictive sensor, electromagnetic acoustic transducer, and multimode guided plate wave technologies for inspection of inaccessible regions of containment metallic pressure boundaries; development of a continuum damage mechanics-based approach for structural deterioration; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion. In addition, data and information assembled under this program has been transferred to the technical community through review meetings and briefings, national and international conference participation, technical committee involvement, and publications of reports and journal articles. Appendix A provides a listing of program reports, papers, and publications; and Appendix B contains a listing of program-related presentations.« less
Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.
Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen
2015-01-01
Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.
Methods of increasing efficiency and maintainability of pipeline systems
NASA Astrophysics Data System (ADS)
Ivanov, V. A.; Sokolov, S. M.; Ogudova, E. V.
2018-05-01
This study is dedicated to the issue of pipeline transportation system maintenance. The article identifies two classes of technical-and-economic indices, which are used to select an optimal pipeline transportation system structure. Further, the article determines various system maintenance strategies and strategy selection criteria. Meanwhile, the maintenance strategies turn out to be not sufficiently effective due to non-optimal values of maintenance intervals. This problem could be solved by running the adaptive maintenance system, which includes a pipeline transportation system reliability improvement algorithm, especially an equipment degradation computer model. In conclusion, three model building approaches for determining optimal technical systems verification inspections duration were considered.
Terahertz (THz) Radar: A Solution for Degraded Visibility Environments (DVE)
2016-11-01
TECHNICAL REPORT RDMR-WD-16-49 TERAHERTZ (THZ) RADAR: A SOLUTION FOR DEGRADED VISIBILITY ENVIRONMENTS (DVE) Henry O...Terahertz (THz) Radar: A Solution For Degraded Visibility Environments (DVE) 5. FUNDING NUMBERS 6. AUTHOR(S) Henry O. Everitt...to compensate for environmental conditions, allowing for actionable images in Degraded Visibility Environments (DVE). 14. SUBJECT TERMS Radar
2015-11-01
Group Chemistry, 2010, 9, 205-219. 6 C. A. S. Brevett and K. B. Sumpter, “ Sulfur Mustard Degradation on Ambient and Moist Concrete ”, ECBC Technical...reactions of reagents including chemical weapons on materials like concrete , soil, and sand, as well as reactive polymers.3,4,5,6,7 There are...Sumpter, G. W. Wagner, “Degradation of Mustard on Concrete : GC/MSD and SSMAS,” ECBC Technical Report ECBC-TR-482, Edgewood Chemical Biological Center
Proceedings of the international workshop on monitoring forest degradation in Southeast Asia
Leif A. Mortenson; James J. Halperin; Patricia N. Manley; Rich L. Turner
2013-01-01
The international workshop on monitoring forest degradation in Southeast Asia provided a forum for discussion of the technical, social and political challenges and successes that have occurred during recent work in sub-national forest degradation monitoring. The 2012 workshop, held in Bangkok, Thailand, followed recent US Forest Service/LEAF (USAID's Lowering...
The Fungal Degradation of Wood and Wood Products Selected Bibliography
1981-08-01
Pi 0-Alt^Jihi 1 TECHNICAL LIBRARY SPECIAL PUBLICATION ARLCD-SP-81006 THE FUNGAL DEGRADATION OF WOOD AND WOOD PRODUCTS SELECTED BIBLIOGRAPHY...GOVT ACCESSION NO. READ INSTRUCTIONS BEFORE COMPLETING FORM 3. RECIPIENT’S CATALOG NUMBER 4. TITLE fand SubJltJo; THE FUNGAL DEGRADATION OF...search con- centrated on the microbiological deterioration or degradation of wood (trees) or wood products which are found or used in tropical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.
2012-09-01
The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradationmore » of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).« less
Degradable Systems: A Survey of Multistate System Theory.
1982-08-01
and Subtitle) S. TYPE OF REPORT & PERIOD COVERED C. O DEGRADABLE SYSTEMS: A SURVEY OF MULTISTATE TECHNICAL SYSTEM THEORY 6. PERFORMING ORG. REPORT...THIS PAGE(R7,en Date £nt.,.d) AEoS-T- 8- 9 2 0 Degradable Systems: A Survey of Multistate System Theory by 1 2Emad El-Neweihi and Frank Proschan
Development of a novel method for quantification of autophagic protein degradation by AHA labeling.
Zhang, Jianbin; Wang, Jigang; Ng, Shukie; Lin, Qingsong; Shen, Han-Ming
2014-05-01
Autophagy is a catabolic process during which cellular components including protein aggregates and organelles are degraded via a lysosome-dependent process to sustain metabolic homeostasis during nutrient or energy deprivation. Measuring the rate of proteolysis of long-lived proteins is a classical assay for measurement of autophagic flux. However, traditional methods, such as a radioisotope labeling assay, are technically tedious and have low sensitivity. Here, we report a novel method for quantification of long-lived protein degradation based on L-azidohomoalanine (AHA) labeling in mouse embryonic fibroblasts (MEFs) and in human cancer cells. AHA is a surrogate for L-methionine, containing a bio-orthogonalazide moiety. When added to cultured cells, AHA is incorporated into proteins during active protein synthesis. After a click reaction between an azide and an alkyne, the azide-containing proteins can be detected with an alkyne-tagged fluorescent dye, coupled with flow cytometry. Induction of autophagy by starvation or mechanistic target of rapamycin (MTOR) inhibitors was able to induce a significant reduction of the fluorescence intensity, consistent with other autophagic markers. Coincidently, inhibition of autophagy by pharmacological agents or by Atg gene deletion abolished the reduction of the fluorescence intensity. Compared with the classical radioisotope pulse-labeling method, we think that our method is sensitive, quantitative, nonradioactive, and easy to perform, and can be applied to both human and animal cell culture systems.
Development of a novel method for quantification of autophagic protein degradation by AHA labeling
Zhang, Jianbin; Wang, Jigang; Ng, Shukie; Lin, Qingsong; Shen, Han-Ming
2014-01-01
Autophagy is a catabolic process during which cellular components including protein aggregates and organelles are degraded via a lysosome-dependent process to sustain metabolic homeostasis during nutrient or energy deprivation. Measuring the rate of proteolysis of long-lived proteins is a classical assay for measurement of autophagic flux. However, traditional methods, such as a radioisotope labeling assay, are technically tedious and have low sensitivity. Here, we report a novel method for quantification of long-lived protein degradation based on L-azidohomoalanine (AHA) labeling in mouse embryonic fibroblasts (MEFs) and in human cancer cells. AHA is a surrogate for L-methionine, containing a bio-orthogonalazide moiety. When added to cultured cells, AHA is incorporated into proteins during active protein synthesis. After a click reaction between an azide and an alkyne, the azide-containing proteins can be detected with an alkyne-tagged fluorescent dye, coupled with flow cytometry. Induction of autophagy by starvation or mechanistic target of rapamycin (MTOR) inhibitors was able to induce a significant reduction of the fluorescence intensity, consistent with other autophagic markers. Coincidently, inhibition of autophagy by pharmacological agents or by Atg gene deletion abolished the reduction of the fluorescence intensity. Compared with the classical radioisotope pulse-labeling method, we think that our method is sensitive, quantitative, nonradioactive, and easy to perform, and can be applied to both human and animal cell culture systems. PMID:24675368
NASA Astrophysics Data System (ADS)
Laporte, N.; Goetz, S. J.; Baccini, A.; Walker, W. S.; Ndunda, P.; Mekui, P.; Kellndorfer, J. M.; Knight, D.
2010-12-01
An international policy mechanism is under negotiation for compensating tropical nations that succeed in lowering their greenhouse gas emissions from tropical deforestation and forest degradation, responsible for approximately one-fifth of worldwide carbon emissions. One of the barriers to its success is the adoption of a unique MRV system and the participation of developing countries in carbon monitoring. A successful REDD policy must rely on a robust, scalable, cost effective method that will allow the Measurement Reporting and Verification from local to national scales, while also developing well-trained technical personnel to implement national REDD carbon monitoring systems. Participation of governments and forest stakeholders in forest and carbon monitoring methods at WHRC is achieved through ongoing technical workshops which include training of participants to collect field data to calibrate biomass models, and an annual Scholar’s Program where forest officers from the tropical regions of Latin America, Africa and Southeast Asia work with Woods Hole Research Center scientsts to improve skills in forest measurement and remote sensing monitoring techniques . Capacity building activities focus on technical aspects and approaches to forest-cover and carbon mapping and the use of satellite imagery together with ground-based measurement techniques in the development of forest cover and carbon-stock maps. After two years, the three-year project has involved more than 200 forest specialists from governments and NGOs in Bolivia, Cambodia, Colombia, the Democratic Republic of Congo, Gabon, Indonesia, Lao PDR, Kenya, Uganda, Vietnam and Zambia, among others with participation of ten scholars actively participating in the developement of National REDD plans for forest mapping and monitoring. Field Training Mbandaka- DR Congo 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClellan, G.E.; Wiker, S.F.
1985-05-31
This report quantifies for the first time the relationship between the signs and symptoms of acute radiation sickness and those of motion sickness. With this relationship, a quantitative comparison is made between data on human performance degradation during motion sickness and estimates of performance degradation during radiation sickness. The comparison validates estimates made by the Intermediate Dose Program on the performance degradation from acute radiation sickness.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ingredients with one or more other active or inert ingredients, without an intended chemical reaction, to... technical grade cannot be isolated) by chemical reaction. (k) Technical grade of active ingredient means a... unreacted starting materials, side reaction products, contaminants, and degradation products. (e) Impurity...
2011-03-09
anu.edu.au Nocturnal visual orientation in flying insects: a benchmark for the design of vision-based sensors in Micro-Aerial Vehicles Report...9 10 Technical horizon sensors Over the past few years, a remarkable proliferation of designs for micro-aerial vehicles (MAVs) has occurred...possible elevations, it may severely degrade the performance of sensors by local saturation. Therefore it is necessary to find a method whereby the effect
Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.F.A. Deng; M. Saglam; L.J. Gratton
2001-05-23
In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{submore » eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.« less
He, Yuanzhen; Cheng, Hefa
2016-05-01
Removal of N-nitrosodimethylamine (NDMA) in drinking water treatment poses a significant technical challenge due to its small molecular size, high polarity and water solubility, and poor biodegradability. Degradation of NDMA and its precursor, dimethylamine (DMA), was investigated by adsorbing them from aqueous solution using porous mineral sorbents, followed by destruction under microwave irradiation. Among the mineral sorbents evaluated, dealuminated ZSM-5 exhibited the highest sorption capacities for NDMA and DMA, which decreased with the density of surface cations present in the micropores. In contrast, the degradation rate of the sorbed NDMA increased with the density of surface cations under microwave irradiation. Evolutions of the degradation products and C/N ratio indicate that the sorbed NDMA and DMA could be eventually mineralized under continuous microwave irradiation. The degradation rate was strongly correlated with the bulk temperature of ZSM-5 and microwave power, which is consistent with the mechanism of pyrolysis caused by formation of micro-scale "hot spots" within the mineral micropores under microwave irradiation. Compared to existing treatment options for NDMA removal, microporous mineral sorption coupled with microwave-induced degradation has the unique advantages of being able to simultaneously remove NDMA and DMA and cause their full mineralization, and thus could serve as a promising alternative method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biodegradation of polystyrene-graft-starch copolymers in three different types of soil.
Nikolic, Vladimir; Velickovic, Sava; Popovic, Aleksandar
2014-01-01
Materials based on polystyrene and starch copolymers are used in food packaging, water pollution treatment, and textile industry, and their biodegradability is a desired characteristic. In order to examine the degradation patterns of modified, biodegradable derivates of polystyrene, which may keep its excellent technical features but be more environmentally friendly at the same time, polystyrene-graft-starch biomaterials obtained by emulsion polymerization in the presence of new type of initiator/activator pair (potassium persulfate/different amines) were subjected to 6-month biodegradation by burial method in three different types of commercially available soils: soil rich in humus and soil for cactus and orchid growing. Biodegradation was monitored by mass decrease, and the highest degradation rate was achieved in soil for cactus growing (81.30%). Statistical analysis proved that microorganisms in different soil samples have different ability of biodegradation, and there is a significant negative correlation between the share of polystyrene in copolymer and degree of biodegradation. Grafting of polystyrene on starch on one hand prevents complete degradation of starch that is present (with maximal percentage of degraded starch ranging from 55 to 93%), while on the other hand there is an upper limit of share of polystyrene in the copolymer (ranging from 37 to 77%) that is preventing biodegradation of degradable part of copolymers.
48 CFR 37.115-2 - General policy.
Code of Federal Regulations, 2011 CFR
2011-10-01
... degrade the level of technical expertise required to fulfill the Government's requirements (see 15.305 for competitive negotiations and 15.404-1(d) for cost realism analysis). When acquiring these services... skill levels and its use in key technical positions. [62 FR 44815, Aug. 22, 1997, as amended at 64 FR...
Lee, Kam L; Ireland, Timothy A; Bernardo, Michael
2016-06-01
This is the first part of a two-part study in benchmarking the performance of fixed digital radiographic general X-ray systems. This paper concentrates on reporting findings related to quantitative analysis techniques used to establish comparative image quality metrics. A systematic technical comparison of the evaluated systems is presented in part two of this study. A novel quantitative image quality analysis method is presented with technical considerations addressed for peer review. The novel method was applied to seven general radiographic systems with four different makes of radiographic image receptor (12 image receptors in total). For the System Modulation Transfer Function (sMTF), the use of grid was found to reduce veiling glare and decrease roll-off. The major contributor in sMTF degradation was found to be focal spot blurring. For the System Normalised Noise Power Spectrum (sNNPS), it was found that all systems examined had similar sNNPS responses. A mathematical model is presented to explain how the use of stationary grid may cause a difference between horizontal and vertical sNNPS responses.
Nanomodified Carbon/Carbon Composites for Intermediate Temperature
2007-08-31
Carbon nanofibers (CNF) are manufactured by Applied Sciences Inc ./Pyrograf® Products by pyrolytic decomposition of methane in the presence of iron-based...Using PT-30 Resin," Carbon 41 (5), 893 (2003). 7. PT-15 technical data sheet, Lonza Inc ., Fair Lawn, NJ. 8. M. L. Ramirez, et al, Poly. Degrad. & Stab...technical data sheet, Carbon Nanotechnologies, Houston, TX. 32. Advanced SiC NanoPowder technical data sheet, Alpha Materials, Inc ., St. Paul, MN. 33
Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock
2016-11-10
Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.
Tannergren, Christer; Borde, Anders; Boreström, Cecilia; Abrahamsson, Bertil; Lindahl, Anders
2014-06-16
The objective of this study was to develop and evaluate an in vitro method to investigate bacterial-mediated luminal degradation of drugs in colon in humans. This would be a valuable tool for the assessment of drug candidates during early drug development, especially for compounds intended to be developed as oral extended release formulations. Freshly prepared faecal homogenate from healthy human volunteers (n=3-18), dog (n=6) and rat (colon and caecal content, n=3) was homogenised with 3.8 parts (w/w) physiological saline under anaerobical conditions. Four model compounds (almokalant, budesonide, ximelagatran and metoprolol) were then incubated (n=3-18) separately in the human faecal homogenate for up to 120min at 37°C. In addition, ximelagatran was also incubated in the faecal or colonic content from dog and rat. The mean (±SD) in vitro half-life for almokalant, budesonide and ximelagatran was 39±1, 68±21 and 26±12min, respectively, in the human faecal homogenate. Metoprolol was found to be stable in the in vitro model. The in vitro degradation data was then compared to literature data on fraction absorbed after direct colon administration in humans. The percentage of drug remaining after 60min of in vitro incubation correlated (R(2)=0.90) with the fraction absorbed from colon in humans. The mean in vitro half-life of ximelagatran was similar in human faeces (26±12min) and rat colon content (34±31min), but significantly (p<0.05) longer in rat caecum content (50±11min) and dog faeces (126±17min). The in vitro method is in vivo relevant both qualitatively as all the model drugs that undergoes colonic degradation in vivo was rapidly degraded in the faecal homogenates as well as quantitatively since a correlation was established between percentage degraded in vitro at 60min and fraction absorbed in the colon for the model drugs, which have no other absorption limiting properties. Also, the method is easy to use from a technical point of view, which suggests that the method is suitable for use in early assessment of colonic absorption of extended release formulation candidates. Further improvement of the confidence in the use of the method would either require an extension of the correlation, which most likely will require more human regional absorption studies, or by including colonic degradation rate as an input in a physiological mechanistic absorption model and evaluate if the prediction of the plasma exposure after colonic administration of the present model drugs is improved. Copyright © 2013 Elsevier B.V. All rights reserved.
EDITORIAL: Tropical deforestation and greenhouse gas emissions
NASA Astrophysics Data System (ADS)
Gibbs, Holly K.; Herold, Martin
2007-10-01
Carbon emissions from tropical deforestation have long been recognized as a key component of the global carbon budget, and more recently of our global climate system. Tropical forest clearing accounts for roughly 20% of anthropogenic carbon emissions and destroys globally significant carbon sinks (IPCC 2007). Global climate policy initiatives are now being proposed to address these emissions and to more actively include developing countries in greenhouse gas mitigation (e.g. Santilli et al 2005, Gullison et al 2007). In 2005, at the Conference of the Parties (COP) in Montreal, the United Nations Framework Convention on Climate Change (UNFCCC) launched a new initiative to assess the scientific and technical methods and issues for developing policy approaches and incentives to reduce emissions from deforestation and degradation (REDD) in developing countries (Gullison et al 2007). Over the last two years the methods and tools needed to estimate reductions in greenhouse gas emissions from deforestation have quickly evolved, as the scientific community responded to the UNFCCC policy needs. This focus issue highlights those advancements, covering some of the most important technical issues for measuring and monitoring emissions from deforestation and forest degradation and emphasizing immediately available methods and data, as well as future challenges. Elements for effective long-term implementation of a REDD mechanism related to both environmental and political concerns are discussed in Mollicone et al. Herold and Johns synthesize viewpoints of national parties to the UNFCCC on REDD and expand upon key issues for linking policy requirements and forest monitoring capabilities. In response to these expressed policy needs, they discuss a remote-sensing-based observation framework to start REDD implementation activities and build historical deforestation databases on the national level. Achard et al offer an assessment of remote sensing measurements across the world's tropical forests that can provide key consistency and prioritization for national-level efforts. Gibbs et al calculate a range of national-level forest carbon stock estimates that can be used immediately, and also review ground-based and remote sensing approaches to estimate national-level tropical carbon stocks with increased accuracy. These papers help illustrate that methodologies and tools are indeed available to estimate emissions from deforestation. Clearly, important technical challenges remain (e.g. quantifying degradation, assessing uncertainty, verification procedures, capacity building, and Landsat data continuity) but we now have a sufficient technical base to support REDD early actions and readiness mechanisms for building national monitoring systems. Thus, we enter the COP 13 in Bali, Indonesia with great hope for a more inclusive climate policy encompassing all countries and emissions sources from both land-use and energy sectors. Our understanding of tropical deforestation and carbon emissions is improving and with that, opportunities to conserve tropical forests and the host of ecosystem services they provide while also increasing revenue streams in developing countries through economic incentives to avoid deforestation and degradation. References Gullison R E et al 2007 Tropical forests and climate policy Science 316 985 6 Intergovernmental Panel on Climate Change (IPCC) 2007 Climate Change 2007: The Physical Science Basis: Summary for Policymakers http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf Santilli M et al 2005 Tropical deforestation and the Kyoto Protocol: an editorial essay Clim. Change 71 267 76 Focus on Tropical Deforestation and Greenhouse Gas Emissions Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Pan-tropical monitoring of deforestation F Achard, R DeFries, H Eva, M Hansen, P Mayaux and H-J Stibig Monitoring and estimating tropical forest carbon stocks: making REDD a reality Holly K Gibbs, Sandra Brown, John O Niles and Jonathan A Foley Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC D Mollicone, A Freibauer, E D Schulze, S Braatz, G Grassi and S Federici
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1983-01-01
A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.
Myers, J A; Powell, D M C; Aldington, S; Sim, D; Psirides, A; Hathaway, K; Haney, M F
2017-11-01
The relationship between fatigue-related risk and impaired clinical performance is not entirely clear. Non-technical factors represent an important component of clinical performance and may be sensitive to the effects of fatigue. The hypothesis was that the sum score of overall non-technical performance is degraded by fatigue. Nineteen physicians undertook two different simulated air ambulance missions, once when rested, and once when fatigued (randomised crossover design). Trained assessors blinded to participants' fatigue status performed detailed structured assessments based on expected behaviours in four non-technical skills domains: teamwork, situational awareness, task management, and decision making. Participants also provided self-ratings of their performance. The primary endpoint was the sum score of overall non-technical performance. The main finding, the overall non-technical skills performance rating of the clinicians, was better in rested than fatigued states (mean difference with 95% CI, 2.8 [2.2-3.4]). The findings remained consistent across individual non-technical skills domains; also when controlling for an order effect and examining the impact of a number of possible covariates. There was no difference in self-ratings of clinical performance between rested and fatigued states. Non-technical performance of critical care air transfer clinicians is degraded when they are fatigued. Fatigued clinicians may fail to recognise the degree to which their performance is compromised. These findings represent risk to clinical care quality and patient safety in the dynamic and isolated environment of air ambulance transfer. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Simulation of Subpixel Atmospherically Degraded Target Detectability in Cluttered Scenes
2013-09-06
Number: The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the contents do not necessarily...September 6th 2012 and September 6th 2013. Results: Significant and representative cases are modeled and results are presented in an annex of the...3 4 Modeling an image degraded by the atmosphere
Gabriel, Frédéric L P; Mora, Mauricio Arrieta; Kolvenbach, Boris A; Corvini, Philippe F X; Kohler, Hans-Peter E
2012-06-05
In many environmental compartments, microbial degradation of α-quaternary nonylphenols proceeds along an ipso-substitution pathway. It has been reported that technical nonylphenol contains, besides α-quaternary nonylphenols, minor amounts of various α-H, α-methyl substituted tertiary isomers. Here, we show that potentially toxic metabolites of such minor components are formed during ipso-degradation of technical nonylphenol by Sphingobium xenophagum Bayram, a strain isolated from activated sewage sludge. Small but significant amounts of nonylphenols were converted to the corresponding nonylhydroquinones, which in the presence of air oxygen oxidized to the corresponding nonyl-p-benzoquinones-yielding a complex mixture of potentially toxic metabolites. Through reduction with ascorbic acid and subsequent analysis by gas chromatography-mass spectrometry, we were able to characterize this unique metabolic fingerprint and to show that its components originated for the most part from α-tertiary nonylphenol isomers. Furthermore, our results indicate that the metabolites mixture also contained several α, β-dehydrogenated derivatives of nonyl-p-benzoquinones that originated by hydroxylation induced rearrangement, and subsequent ring and side chain oxidation from α-tertiary nonylphenol isomers. We predict that in nonylphenol polluted natural systems, in which microbial ipso-degradation is prominent, 2-alkylquinone metabolites will be produced and will contribute to the overall toxicity of the remaining material.
A nuclear method to measure spallation by thermal cycling of protective surface layers
NASA Astrophysics Data System (ADS)
Stroosnijder, M. F.; Macchi, G.
1995-05-01
After a general introduction on spallation by thermal cycling, the principle of Thin Layer Activation (TLA) is outlined. A practical setup to measure spallation of protective surface layers by thermal cycling using TLA is discussed. Its use is illustrated with the study of the spallation behaviour of an advanced thermal barrier coating. It is shown that among the various benefits, TLA has a direct relation to material loss and shows a significant increase in sensitivity over other test methods. Due to its intrinsic properties, TLA can contribute to a greater scientific understanding of material degradation by thermal cycling and it can provide a more reliable assessment of the service lives of technical components.
NASA Astrophysics Data System (ADS)
Yagoubi, N.; Baillet, A.; Pellerin, F.; Ferrier, D.
1995-11-01
The combined chromatographic technics and thermal analysis constitute an informative methodology for studying the modifications which could occur following a radiotreatment of plastic material at different doses (25 to 100 kGy). Several plastic materials used as packagings (PVC, PE, PS) were investigated. SEC method coupled with UV and DDL detections was applied to document any changes in molecular weight distribution. Reticulation and scission were the main observed degradation phenomena. These structural modifications were supported by TGA data, while the DSC provided information on modifications in crystallinity. In addition, RP-HPLC was carried out for the evaluation of the radiochemical behaviour of the additives and monomers. Firstly we demonstrated the degradation of high molecular weight phenolic antioxidants in BHT within the PEVA. Secondly, the modifications of amino 6 caproic acid and ɛ caprolactam, present in polyamid 6, depend on the irradiation doses.
Summary Report of Cable Aging and Performance Data for Fiscal Year 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celina, Mathias C.; Celina, Mathias C.; Redline, Erica Marie
2014-09-01
As part of the Light Water Reactor Sustainability Program, science - based engineering approaches were employed to address cable degradation behavior under a range of exposure environments. Experiments were conducted with the goal to provide best guidance for aged material states, remaining life and expected performance under specific conditions for a range of cable materials. Generic engineering tests , which focus on rapid accelerated aging and tensile elongation , were combined with complementar y methods from polymer degradation science. Sandia's approach, building on previous years' efforts, enabled the generation of some of the necessary data supporting the development of improvedmore » lifetime predictions models, which incorporate known material b ehaviors and feedback from field - returned 'aged' cable materials. Oxidation rate measurements have provided access to material behavior under low dose rate thermal conditions, where slow degradation is not apparent in mechanical property changes. Such da ta have shown aging kinetics consistent with established radiati on - thermal degradation models. ACKNOWLEDGEMENTS We gratefully acknowledge ongoing technical support at the LICA facility and extensive sample handling provided by Maryla Wasiolek and Don Hans on. Sam Durbin and Patrick Mattie are recognized for valuable guidance throughout the year and assistance in the preparation of the final report. Doug Brunson is appreciated for sample analysis, compilation and plotting of experimental data.« less
NASA Astrophysics Data System (ADS)
Olander, Lydia P.; Gibbs, Holly K.; Steininger, Marc; Swenson, Jennifer J.; Murray, Brian C.
2008-04-01
Global climate policy initiatives are now being proposed to compensate tropical forest nations for reducing carbon emissions from deforestation and forest degradation (REDD). These proposals have the potential to include developing countries more actively in international greenhouse gas mitigation and to address a substantial share of the world's emissions which come from tropical deforestation. For such a policy to be viable it must have a credible benchmark against which emissions reduction can be calculated. This benchmark, sometimes termed a baseline or reference emissions scenario, can be based directly on historical emissions or can use historical emissions as input for business as usual projections. Here, we review existing data and methods that could be used to measure historical deforestation and forest degradation reference scenarios including FAO (Food and Agricultural Organization of the United Nations) national statistics and various remote sensing sources. The freely available and corrected global Landsat imagery for 1990, 2000 and soon to come for 2005 may be the best primary data source for most developing countries with other coarser resolution high frequency or radar data as a valuable complement for addressing problems with cloud cover and for distinguishing larger scale degradation. While sampling of imagery has been effectively useful for pan-tropical and continental estimates of deforestation, wall-to-wall (or full coverage) allows more detailed assessments for measuring national-level reference emissions. It is possible to measure historical deforestation with sufficient certainty for determining reference emissions, but there must be continued calls at the international level for making high-resolution imagery available, and for financial and technical assistance to help countries determine credible reference scenarios. The data available for past years may not be sufficient for assessing all forms of forest degradation, but new data sources will have greater potential in 2007 and after. This paper focuses only on the methods for measuring changes in forest area, but this information must be coupled with estimates of change in forest carbon stocks in order to quantify emissions from deforestation and forest degradation.
1991-08-01
Development and Engineering Center, ATTN: SMCCR- SPS -T, Aberdeen Proving Ground, MD 21010-5423. However, the Defense Technical Information Center and the...and conducting electrical tests to determine materiel degradation. Organisms of Penicillium s were among the most aggressive biota and, in some cases...tested electronic components for fungal degradation using Aspergillus, Penicillium , Alternaria, Streptomyces, and Rhodotorula. Electrical parameter
Prognostics Applied to Electric Propulsion UAV
NASA Technical Reports Server (NTRS)
Goebel, Kai; Saha, Bhaskar
2013-01-01
Health management plays an important role in operations of UAV. If there is equipment malfunction on critical components, safe operation of the UAV might possibly be compromised. A technology with particular promise in this arena is equipment prognostics. This technology provides a state assessment of the health of components of interest and, if a degraded state has been found, it estimates how long it will take before the equipment will reach a failure threshold, conditional on assumptions about future operating conditions and future environmental conditions. This chapter explores the technical underpinnings of how to perform prognostics and shows an implementation on the propulsion of an electric UAV. A particle filter is shown as the method of choice in performing state assessment and predicting future degradation. The method is then applied to the batteries that provide power to the propeller motors. An accurate run-time battery life prediction algorithm is of critical importance to ensure the safe operation of the vehicle if one wants to maximize in-air time. Current reliability based techniques turn out to be insufficient to manage the use of such batteries where loads vary frequently in uncertain environments.
Current status of EVA degradation in Si modules and interface stability in CdTe/CdS modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czanderna, A.W.
1994-06-30
The goals, objectives, background, technical approach, status, and accomplishments on the PV Module Reliability Research Task are summarized for FY 1993. The accomplishments are reported in two elements, ethylene vinyl acetate (EVA) degradation and stability in CdTe/CdS modules. The EVA results are presented under the headings modified EVA and potential EVA replacements, degradation mechanisms, efficiency losses from yellowed EVA, and equipment acquisitions. The results on CdTe/CdS modules are presented under subheadings of stability of the SnO[sub 2]/CdS interface and degradation at the CdTe/CdS interface.
NASA Astrophysics Data System (ADS)
Adamkiewicz, Andrzej; Zeńczak, Wojciech
2017-03-01
Heavy oils (HFO fuels) used on ships play a part in degradation of technical condition of heat exchange surfaces of utilization boilers especially on the exhaust gas side. Presence of sulphur in these fuels is the main factor favouring degradation. The upper limit for sulphur content in the fuel used outside the SECA areas equal to 3.5% is currently in force, at least until the year 2020 or 2025. The recommended by classification societies overhauls of utilization boilers are, therefore characterized by a specially chosen strategy thanks to which it is possible to maintain their appropriate technical condition. The requirement to use fuels with low sulphur content (LSFO), which are significantly more expensive than MDO fuels, in the areas of controlled sulphur emissions also led to a further introduction of alternative fuels, such as methanol and above all liquefied natural gas (LNG), onto ships. That is especially valid for the ship owners whose vessels e.g. ferries sail mainly within SCECA This article analyses the consequences of the introduced fuel change on utilization boiler maintenance. A change in the technical condition maintenance strategy for utilization boilers has been suggested.
A Rain Taxonomy for Degraded Visual Environment Mitigation
NASA Technical Reports Server (NTRS)
Gatlin, P. N.; Petersen, W. A.
2018-01-01
This Technical Memorandum (TM) provides a description of a rainfall taxonomy that defines the detailed characteristics of naturally occurring rainfall. The taxonomy is based on raindrop size measurements collected around the globe and encompasses several different climate types. Included in this TM is a description of these rainfall observations, an explanation of methods used to process those data, and resultant metrics comprising the rain taxonomy database. Each of the categories in the rain taxonomy are characterized by a unique set of raindrop sizes that can be used in simulations of electromagnetic wave propagation through a rain medium.
Control and Diagnostic Model of Brushless Dc Motor
NASA Astrophysics Data System (ADS)
Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol
2014-09-01
A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values
Stability of Glass Fiber-Plastic Composites
1974-11-01
miniiiii’ 5 0712 01016774 9 x TECHNICA. . LIBRARY Jt U*Al>/l 1 Technical Report RL-75-6 STABILITY OF GLASS FIBER -PLASTIC COMPOSITES Wartan A...Subtitle) STABILITY OF GLASS FIBER -PLASTIC COMPOSITES 5. TYPE OF REPORT & PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER 7...Exploratory research was conducted to determine the stages and nature of degradation of glass fiber -plastic composite systems under various environmental
Magnesium degradation under physiological conditions - Best practice.
Gonzalez, Jorge; Hou, Rui Qing; Nidadavolu, Eshwara P S; Willumeit-Römer, Regine; Feyerabend, Frank
2018-06-01
This review focusses on the application of physiological conditions for the mechanistic understanding of magnesium degradation. Despite the undisputed relevance of simplified laboratory setups for alloy screening purposes, realistic and predictive in vitro setups are needed. Due to the complexity of these systems, the review gives an overview about technical measures, defines some caveats and can be used as a guideline for the establishment of harmonized laboratory approaches.
The Author’s Guide To Writing 412th Test Wing Technical Reports
2014-12-01
control CAD computer aided design cc cubic centimeters C.O. carry-over c/o checkout USAF United States Air Force C1 rolling moment coefficient...cooling air. Mission Impact: Results in maintenance inability to reliably duplicate and isolate valid aircraft failures, and degrades reliability...air. Mission Impact: Results in maintenance inability to reliably duplicate and isolate valid aircraft failures, and degrades reliability of system
UFD Storage and Transportation - Transportation Working Group Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, Steven J.; Ross, Steven B.
2011-08-01
The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references suchmore » as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report« less
Intelligent Diagnosis of Degradation State under Corrosion
NASA Astrophysics Data System (ADS)
Isoc, Dorin; Ignat-Coman, Aurelian; Joldiş, Adrian
2008-06-01
The work presents an inter- and multi-disciplinary research where the diagnosis is treated by using the artificial intelligence means and the application the degradation state of buildings and urban power networks. A possible model of degradation process caused by the corrosion and the technical achievement manner is given. The notions of micro- and macro-modeling and model granularity are introduced and applied. For resulting model the specification of intelligent processing of information and further the knowledge for suggested model are prepared. As concluding remarks the results are analysed and interpreted and a generalized approach is suggested and argued.
RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods
Holik, Aliaksei Z.; Law, Charity W.; Liu, Ruijie; Wang, Zeya; Wang, Wenyi; Ahn, Jaeil; Asselin-Labat, Marie-Liesse; Smyth, Gordon K.
2017-01-01
Abstract Carefully designed control experiments provide a gold standard for benchmarking different genomics research tools. A shortcoming of many gene expression control studies is that replication involves profiling the same reference RNA sample multiple times. This leads to low, pure technical noise that is atypical of regular studies. To achieve a more realistic noise structure, we generated a RNA-sequencing mixture experiment using two cell lines of the same cancer type. Variability was added by extracting RNA from independent cell cultures and degrading particular samples. The systematic gene expression changes induced by this design allowed benchmarking of different library preparation kits (standard poly-A versus total RNA with Ribozero depletion) and analysis pipelines. Data generated using the total RNA kit had more signal for introns and various RNA classes (ncRNA, snRNA, snoRNA) and less variability after degradation. For differential expression analysis, voom with quality weights marginally outperformed other popular methods, while for differential splicing, DEXSeq was simultaneously the most sensitive and the most inconsistent method. For sample deconvolution analysis, DeMix outperformed IsoPure convincingly. Our RNA-sequencing data set provides a valuable resource for benchmarking different protocols and data pre-processing workflows. The extra noise mimics routine lab experiments more closely, ensuring any conclusions are widely applicable. PMID:27899618
Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang
2013-12-18
Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.
NASA Astrophysics Data System (ADS)
Enomoto, Ayano; Hirata, Hiroshi
2014-02-01
This article describes a feasibility study of parallel image-acquisition using a two-channel surface coil array in continuous-wave electron paramagnetic resonance (CW-EPR) imaging. Parallel EPR imaging was performed by multiplexing of EPR detection in the frequency domain. The parallel acquisition system consists of two surface coil resonators and radiofrequency (RF) bridges for EPR detection. To demonstrate the feasibility of this method of parallel image-acquisition with a surface coil array, three-dimensional EPR imaging was carried out using a tube phantom. Technical issues in the multiplexing method of EPR detection were also clarified. We found that degradation in the signal-to-noise ratio due to the interference of RF carriers is a key problem to be solved.
Degradation of toxaphene in water during anaerobic and aerobic conditions.
LacayoR, M; van Bavel, B; Mattiasson, B
2004-08-01
The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.
40 CFR 205.162-3 - Instructions for maintenance, use, and repair.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and mechanics of the acts necessary to reasonably assure that degradation of noise emission level is...-technical language. (3) The instructions must not be used to secure an unfair competitive advantage. They...
40 CFR 204.58-3 - Instructions for maintenance, use, and repair.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degradation of noise emission levels is eliminated or minimized during the life of the compressor..., to the extent practicable, written in non-technical language. (3) The instructions must not be used...
Biominerlization and possible endosulfan degradation pathway adapted by Aspergillus niger.
Bhalerao, Tejomyee S
2013-11-28
Endosulfan is a chlorinated pesticide; its persistence in the environment and toxic effects on biota are demanding its removal. This study aims at improving the tolerance of the previously isolated fungus Aspergillus niger (A. niger) ARIFCC 1053 to endosulfan. Released chloride, dehalogenase activity, and released proteins were estimated along with analysis of endosulfan degradation and pathway identification. The culture could tolerate 1,000 mg/ml of technical grade endosulfan. Complete disappearance of endosulfan was seen after 168 h of incubation. The degradation study could easily be correlated with increase in released chlorides, dehalogenase activity and protein released. Comparative infrared spectral analysis suggested that the molecule of endosulfan was degraded efficiently by A. niger ARIFCC 1053. Obtained mass ion values by GC-MS suggested a hypothetical pathway during endosulfan degradation by A. niger ARIFCC 1053. All these results provide a basis for the development of bioremediation strategies to remediate the pollutant under study in the environment.
Advances in Degradable Embolic Microspheres: A State of the Art Review
Doucet, Jensen; Kiri, Lauren; O’Connell, Kathleen; Kehoe, Sharon; Lewandowski, Robert J.; Liu, David M.; Abraham, Robert J.; Boyd, Daniel
2018-01-01
Considerable efforts have been placed on the development of degradable microspheres for use in transarterial embolization indications. Using the guidance of the U.S. Food and Drug Administration (FDA) special controls document for the preclinical evaluation of vascular embolization devices, this review consolidates all relevant data pertaining to novel degradable microsphere technologies for bland embolization into a single reference. This review emphasizes intended use, chemical composition, degradative mechanisms, and pre-clinical safety, efficacy, and performance, while summarizing the key advantages and disadvantages for each degradable technology that is currently under development for transarterial embolization. This review is intended to provide an inclusive reference for clinicians that may facilitate an understanding of clinical and technical concepts related to this field of interventional radiology. For materials scientists, this review highlights innovative devices and current evaluation methodologies (i.e., preclinical models), and is designed to be instructive in the development of innovative/new technologies and evaluation methodologies. PMID:29373510
NASA Astrophysics Data System (ADS)
Moan, T.
2017-12-01
An overview of integrity management of offshore structures, with emphasis on the oil and gas energy sector, is given. Based on relevant accident experiences and means to control the associated risks, accidents are categorized from a technical-physical as well as human and organizational point of view. Structural risk relates to extreme actions as well as structural degradation. Risk mitigation measures, including adequate design criteria, inspection, repair and maintenance as well as quality assurance and control of engineering processes, are briefly outlined. The current status of risk and reliability methodology to aid decisions in the integrity management is briefly reviewed. Finally, the need to balance the uncertainties in data, methods and computational efforts and the cautious use and quality assurance and control in applying high fidelity methods to avoid human errors, is emphasized, and with a plea to develop both high fidelity as well as efficient, simplified methods for design.
Case studies in conservation science
NASA Astrophysics Data System (ADS)
Bisulca, Christina
The research presented in this dissertation covers three separate topics of conservation as defined by the National Science Foundation: 1) Materials Stabilization, Strengthening, Monitoring, and Repair; 2. Understanding Material Degradation and Aging; and 3) Materials and Structural Characterization of Cultural Heritage Objects (the 'technical study'). The first topic is addressed through a study to assess the consolidant tetraethoxysilane for the stabilization of alum treated wood. Falling under materials degradation studies is a study published in American Museum Novitates to understand how environmental conditions affect the aging of fossil resins from five different deposits. Two separate studies are included in technical study of cultural heritage objects which comprises the third research area of materials characterization. The first is a survey of red dyes used in Chinese paintings from the Ming Dynasty to the Early Republic (1364-1911). The second is a study of the pigments, dyes and binders used in Hawaiian barkcloth (kapa) from the 19th century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.
2013-05-17
This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components thatmore » may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and potential synergies with other national laboratory and university partners.« less
Application of fiber-reinforced bismaleimide materials to aircraft nacelle structures
NASA Technical Reports Server (NTRS)
Peros, Vasilios; Ruth, John; Trawinski, David
1992-01-01
Existing aircraft engine nacelle structures employ advanced composite materials to reduce weight and thereby increase overall performance. Use of advanced composite materials on existing aircraft nacelle structures includes fiber-reinforced epoxy structures and has typically been limited to regions furthest away from the hot engine core. Portions of the nacelle structure that are closer to the engine require materials with a higher temperature capability. In these portions, existing nacelle structures employ aluminum sandwich construction and skin/stringer construction. The aluminum structure is composed of many detail parts and assemblies and is usually protected by some form of ablative, insulator, or metallic thermal shield. A one-piece composite inner cowl for a new-generation engine nacelle structure has been designed using fiber-reinforced bismaleimide (BMI) materials and honeycomb core in a sandwich construction. The new composite design has many advantages over the existing aluminum structure. Multiple details were integrated into the one-piece composite design, thereby significantly reducing the number of detail parts and fasteners. The use of lightweight materials and the reduction of the number of joints result in a significant weight reduction over the aluminum design; manufacturing labor and the overall number of tools required have also been reduced. Several significant technical issues were addressed in the development of a BMI composite design. Technical evaluation of the available BMI systems led to the selection of a toughened BMI material which was resistant to microcracking under thermal cyclic loading and enhanced the damage tolerance of the structure. Technical evaluation of the degradation of BMI materials in contact with aluminum and other metals validated methods for isolation of the various materials. Graphite-reinforced BMI in contact with aluminum and some steels was found to degrade in salt spray testing. Isolation techniques such as those used for graphite-reinforced epoxy structures were shown to provide adequate protection. The springback and producibility of large BMI structures were evaluated by manufacturing prototype hardware which had the full-scale cross section of the one-piece composite structure.
Ehlers, Ina; Betson, Tatiana R.; Vetter, Walter; Schleucher, Jürgen
2014-01-01
The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science. PMID:25350380
NASA Astrophysics Data System (ADS)
Vaganova, N. A.
2017-12-01
Technogenic and climatic influences have a significant impact on the degradation of permafrost. Long-term forecasts of such changes during long-time periods have to be taken into account in the oil and gas and construction industries in view to development the Arctic and Subarctic regions. There are considered constantly operating technical systems (for example, oil and gas wells) that affect changes in permafrost, as well as the technical systems that have a short-term impact on permafrost (for example, flare systems for emergency flaring of associated gas). The second type of technical systems is rather complex for simulation, since it is required to reserve both short and long-scales in computations with variable time steps describing the complex technological processes. The main attention is paid to the simulation of long-term influence on the permafrost from the second type of the technical systems.
Slash-and-burn farmers: villains or victims?
Rambo, T
1990-01-01
Slash and burn farmers in southeast Asia are blamed for deforestation and are considered backward or ignorant. Efforts have been made by agricultural development experts to urge farmers to switch to fixed field methods. Slash and burn methods are used in upland areas with steep slopes, low soil fertility, and unpredictable natural hazards in order to allow survival in an environment made difficult for cultivation by other methods. Slash and burn farmers may be stable or migratory and use rotational or pioneering methods. Rotational methods involve clearing and burning a new plot every year, and then allowing regeneration of forest for 10-20 years. When population density is 40/square km, this method does not degrade the environment. Pioneering involves clearance of primary forest, cultivation for several years until soil fertility is destroyed, and then replacement with low productivity "imperata cylindrica grass." Pioneering tends to cause long-term environmental degradation. Humid tropic soils tend toward infertility, and in many areas of southeast Asia the soils are nutrient-poor and acidic. Ash from burning also reduces soil acidity. In northeast Thailand, 454 kg of calcium are released from burning one hectare of mature forest. The advantages are affordable natural fertilization and freedom from technical experts and imported spare parts. Frequent rotation also helps to expand the crops and provide disease protection. Population densities, competition for scarce resources, and social and economic pressures make the slash and burn technique inappropriate. As yet unavailable alternative farming techniques are needed which take advantage of slash and burn benefits. Slash and burn farmers are victims of deforestation even though they may appear to be the villains.
NASA Astrophysics Data System (ADS)
Beuse, Martin
2018-05-01
Battery charging and discharging regimes mostly attempt to maximize potential profit by following price signals. Combining a technical understanding of batteries with financial theory, researchers now present a framework that allows optimization of economic benefits considering both potential revenues and battery degradation.
Improved radioimmunotherapy of hematologic malignancies. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Press, O.W.
1996-08-15
Experiments were performed to study the rates of endocytosis, intracellular routing, and metabolic degradation of radiolabeled monoclonal antibodies targeting tumor-associated antigens on human leukemia and lymphoma cells. An attempt was made to examine in vivo the effects of lysosomotropic amines and thioamides on the retention of radiolabeled monoclonal antibodies by tumor cells. Experiments also examined the impact of newer radioiodination techniques on the metabolic degradation of radioiodinated antibodies, and on the radioimmunoscintigraphy and radioimmunotherapy of neoplasms. The endocytosis, intracellular routing, and degradation of radioimmunoconjugates prepared with I-131, In-111, and Y-90 were compared. The utility of radioimmunoconjugates targeting oncogene products formore » the radioimmunotherapy and radioimmunoscintigraphy of cancer was investigated.« less
Fast photocatalytic degradation of methylene blue dye using a low-power diode laser.
Liu, Xianhua; Yang, Yulou; Shi, Xiaoxuan; Li, Kexun
2015-01-01
This study focused on the application of diode lasers as alternative light sources for the fast photocatalytic degradation of methylene blue. The photocatalytic decomposition of methylene blue in aqueous solution under 443 nm laser light irradiation was found to be technically feasible using Ag/AgCl nanoparticles as photocatalysts. The effects of various experimental parameters, such as irradiation time, light source, catalyst loading, initial dye concentration, pH, and laser energy on decolorization and degradation were investigated. The mineralization of methylene blue was confirmed by chemical oxygen demand analysis. The results demonstrate that the laser-induced photocatalytic process can effectively degrade methylene blue under the optimum conditions (pH 9.63, 4 mg/L MB concentration, and 1.4 g/L Ag/AgCl nanoparticles). Copyright © 2014 Elsevier B.V. All rights reserved.
Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring
Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein
2016-01-01
This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orth, R.; Dauda, T.; McKenzie, D.E.
Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Taskmore » {number_sign}3.3 summarizes the iron dechlorination research conducted by Monsanto Company.« less
NASA Astrophysics Data System (ADS)
Świt, G.; Adamczak, A.; Krampikowska, A.
2017-10-01
Fibre reinforced polymer composites are currently dominating in the composite materials market. The lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load significantly limits the broad possibilities of application of these materials. Occurring and accumulation of defects in material during the exploitation of the construction lead to the changes of its technical condition. The necessity to control the condition of the composite is therefore justified. For this purpose, non-destructive method of acoustic emission can be applied. This article presents an example of application of acoustic emission method based on time analysis and time-frequency analysis for the evaluation of the progress of the destructive processes and the level of degradation of glass fibre reinforced composite tapes that were subject to tensile testing.
Wang, Dongping; Boukhalfa, Hakim; Marina, Oana; ...
2016-11-17
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high-explosives-bearing water from a high-explosives-machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high-explosives and inorganic-element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched-intermediate groundwater contain explosive compounds, including RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine); HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine); and TNT (2,4,6-trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation ismore » planned to identify remedial alternatives to protect the regional aquifer. Perched-intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched-intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX -degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX-degrading strain P. putida II-B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX-degrading P. putida strain II-B was specifically enriched in the RDX-degrading samples. Analysis of the accumulation of RDX-degradation products reveals that during active RDX degradation, there is a transient increase in the concentration of the degradation products MNX, DNX, TNX, and NDAB. The accumulation of these degradation products suggests that RDX is degraded via sequential reduction of the nitro functional groups followed by abiotic ring-cleavage. Here, the results suggest that strict anaerobic conditions are needed to stimulate RDX degradation under the TA-16 site-specific conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dongping; Boukhalfa, Hakim; Marina, Oana
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high-explosives-bearing water from a high-explosives-machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high-explosives and inorganic-element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched-intermediate groundwater contain explosive compounds, including RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine); HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine); and TNT (2,4,6-trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation ismore » planned to identify remedial alternatives to protect the regional aquifer. Perched-intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched-intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX -degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX-degrading strain P. putida II-B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX-degrading P. putida strain II-B was specifically enriched in the RDX-degrading samples. Analysis of the accumulation of RDX-degradation products reveals that during active RDX degradation, there is a transient increase in the concentration of the degradation products MNX, DNX, TNX, and NDAB. The accumulation of these degradation products suggests that RDX is degraded via sequential reduction of the nitro functional groups followed by abiotic ring-cleavage. Here, the results suggest that strict anaerobic conditions are needed to stimulate RDX degradation under the TA-16 site-specific conditions.« less
Wang, Dongping; Boukhalfa, Hakim; Marina, Oana; Ware, Doug S; Goering, Tim J; Sun, Fengjie; Daligault, Hajnalka E; Lo, Chien-Chi; Vuyisich, Momchilo; Starkenburg, Shawn R
2017-04-01
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high-explosives-bearing water from a high-explosives-machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high-explosives and inorganic-element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched-intermediate groundwater contain explosive compounds, including RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine); HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine); and TNT (2,4,6-trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation is planned to identify remedial alternatives to protect the regional aquifer. Perched-intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched-intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX -degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX-degrading strain P. putida II-B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX-degrading P. putida strain II-B was specifically enriched in the RDX-degrading samples. Analysis of the accumulation of RDX-degradation products reveals that during active RDX degradation, there is a transient increase in the concentration of the degradation products MNX, DNX, TNX, and NDAB. The accumulation of these degradation products suggests that RDX is degraded via sequential reduction of the nitro functional groups followed by abiotic ring-cleavage. The results suggest that strict anaerobic conditions are needed to stimulate RDX degradation under the TA-16 site-specific conditions. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
André, L; Lamy, E; Lutz, P; Pernier, M; Lespinard, O; Pauss, A; Ribeiro, T
2016-02-01
The electrical resistivity tomography (ERT) method is a non-intrusive method widely used in landfills to detect and locate liquid content. An experimental set-up was performed on a dry batch anaerobic digestion reactor to investigate liquid repartition in process and to map spatial distribution of inoculum. Two array electrodes were used: pole-dipole and gradient arrays. A technical adaptation of ERT method was necessary. Measured resistivity data were inverted and modeled by RES2DINV software to get resistivity sections. Continuous calibration along resistivity section was necessary to understand data involving sampling and physicochemical analysis. Samples were analyzed performing both biochemical methane potential and fiber quantification. Correlations were established between the protocol of reactor preparation, resistivity values, liquid content, methane potential and fiber content representing liquid repartition, high methane potential zones and degradations zones. ERT method showed a strong relevance to monitor and to optimize the dry batch anaerobic digestion process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analysis of spatiotemporal variability of C-factor derived from remote sensing data
NASA Astrophysics Data System (ADS)
Pechanec, Vilém; Mráz, Alexander; Benc, Antonín; Cudlín, Pavel
2018-01-01
Soil erosion is an important phenomenon that contributes to the degradation of agricultural land. Even though it is a natural process, human activities can significantly increase its impact on land degradation and present serious limitation on sustainable agricultural land use. Nowadays, the risk of soil erosion is assessed either qualitatively by expert assessment or quantitatively using model-based approach. One of the primary factors affecting the soil erosion assessment is a cover-management factor, C-factor. In the Czech Republic, several models are used to assess the C-factor on a long-term basis based on data collected using traditional tabular methods. This paper presents work to investigate the estimation of both long-term and short-term cover-management factors using remote sensing data. The results demonstrate a successful development of C-factor maps for each month of 2014, growing season average, and annual average for the Czech Republic. C-factor values calculated from remote sensing data confirmed expected trend in their temporal variability for selected crops. The results presented in this paper can be used for enhancing existing methods for estimating C-factor, planning future agricultural activities, and designing technical remediations and improvement activities of land use in the Czech Republic, which are also financially supported by the European Union funds.
Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands
Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.
1994-01-01
Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contamined aquifers.
Biochar: A synthesis of its agronomic impact beyond carbon sequestration
USDA-ARS?s Scientific Manuscript database
Biochar has been recently heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity and enter into future carbon trading markets. However, scientific and economic technicalities may limit the ability of biochar to consistently deliver o...
NASA Technical Reports Server (NTRS)
Ortega, R.; Price, J. M.; Fox, D.
2000-01-01
This technical memorandum documents the results of the research to develop a concept for assessing the structural integrity of impacted composite structures using the strength degradation factor in conjunction with available finite element tools. For this purpose, a literature search was conducted, a plan for conducting impact testing on two laminates was developed, and a finite element model of the impact process was created. Specimens for the impact testing were fabricated to support the impact testing plan.
Tolu, Julie; Gerber, Lorenz; Boily, Jean-François; Bindler, Richard
2015-06-23
Molecular-level chemical information about organic matter (OM) in sediments helps to establish the sources of OM and the prevalent degradation/diagenetic processes, both essential for understanding the cycling of carbon (C) and of the elements associated with OM (toxic trace metals and nutrients) in lake ecosystems. Ideally, analytical methods for characterizing OM should allow high sample throughput, consume small amounts of sample and yield relevant chemical information, which are essential for multidisciplinary, high-temporal resolution and/or large spatial scale investigations. We have developed a high-throughput analytical method based on pyrolysis-gas chromatography/mass spectrometry and automated data processing to characterize sedimentary OM in sediments. Our method consumes 200 μg of freeze-dried and ground sediment sample. Pyrolysis was performed at 450°C, which was found to avoid degradation of specific biomarkers (e.g., lignin compounds, fresh carbohydrates/cellulose) compared to 650°C, which is in the range of temperatures commonly applied for environmental samples. The optimization was conducted using the top ten sediment samples of an annually resolved sediment record (containing 16-18% and 1.3-1.9% of total carbon and nitrogen, respectively). Several hundred pyrolytic compound peaks were detected of which over 200 were identified, which represent different classes of organic compounds (i.e., n-alkanes, n-alkenes, 2-ketones, carboxylic acids, carbohydrates, proteins, other N compounds, (methoxy)phenols, (poly)aromatics, chlorophyll and steroids/hopanoids). Technical reproducibility measured as relative standard deviation of the identified peaks in triplicate analyses was 5.5±4.3%, with 90% of the RSD values within 10% and 98% within 15%. Finally, a multivariate calibration model was calculated between the pyrolytic degradation compounds and the sediment depth (i.e., sediment age), which is a function of degradation processes and changes in OM source type. This allowed validation of the Py-GC/MS dataset against fundamental processes involved in OM cycling in aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.
Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia
2017-07-15
In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.
Resch, C; Grasmug, M; Smeets, W; Braun, R; Kirchmayr, R
2006-01-01
Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.
DOT National Transportation Integrated Search
2012-07-30
Bridges have traditionally relied on a system of expansion joints and flexible bearings to accommodate movements due to temperature, creep, and shrinkage loading. Joints and elements in their vicinity experience a high amount of degradation; thus mod...
Microbial degradation of poly(amino acid)s.
Obst, Martin; Steinbüchel, Alexander
2004-01-01
Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyholm, N.; Kristensen, P.
1992-04-01
An international ring test involving 14 laboratories was organized on behalf of the Commission of the European Economic Communities (EEC) with the purpose of evaluating two proposed screening methods for assessment of biodegradability in seawater: (a) a shake flask die-away test based primarily on analysis of dissolved organic carbon and (b) a closed bottle test based on determination of dissolved oxygen. Both tests are performed with nutrient-enriched natural seawater as the test medium and with no inoculum added other than the natural seawater microflora. The test methods are seawater versions of the modified OECD screening test and the closed bottlemore » test, respectively, adopted by the Organization for Economic Cooperation and Development (OECD) and by the EEC as tests for ready biodegradability.' The following five chemicals were examined: sodium benzoate, aniline, diethylene glycol, pentaerythritol, and 4-nitrophenol. Sodium benzoate and aniline, which are known to be generally readily biodegradable consistently degraded in practically all tests, thus demonstrating the technical feasibility of the methods. Like in previous ring tests with freshwater screening methods variable results were obtained with the other three compounds, which is believed primarily to be due to site-specific differences between the microflora of the different seawater samples used and to some extent also to differences in the applied concentrations of test material. A positive result with the screening methods indicates that the test substance will most likely degrade relatively rapidly in seawater from the site of collection, while a negative test result does not preclude biodegradability under environmental conditions where the concentrations of chemicals are much lower than the concentrations applied for analytical reasons in screening tests.« less
Targeted polypeptide degradation
Church, George M [Brookline, MA; Janse, Daniel M [Brookline, MA
2008-05-13
This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.
Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols
Villas-Boas, Silas G.; Aggio, Raphael
2017-01-01
Sample preparation is one of the most important steps in metabolome analysis. The challenges of determining microbial metabolome have been well discussed within the research community and many improvements have already been achieved in last decade. The analysis of intracellular metabolites is particularly challenging. Environmental perturbations may considerably affect microbial metabolism, which results in intracellular metabolites being rapidly degraded or metabolized by enzymatic reactions. Therefore, quenching or the complete stop of cell metabolism is a pre-requisite for accurate intracellular metabolite analysis. After quenching, metabolites need to be extracted from the intracellular compartment. The choice of the most suitable metabolite extraction method/s is another crucial step. The literature indicates that specific classes of metabolites are better extracted by different extraction protocols. In this review, we discuss the technical aspects and advancements of quenching and extraction of intracellular metabolite analysis from microbial cells. PMID:29065530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athmer, C.; Ho, S.V.; Hughes, B.M.
Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Taskmore » {number_sign}7.2 summarizes the Field Scale Test conducted by Monsanto Company, DuPont, and General Electric.« less
Feng, Yiping; Song, Qingyun; Lv, Wenying; Liu, Guoguang
2017-12-01
Ketoprofen (KET) is a mostly used nonsteroidal anti-inflammatory drug that has been frequently detected in wastewater effluents and surface waters. In this study, we investigated the degradation of KET by sulfate radical (SO 4 - ) based advanced oxidation processes (SR-AOPs) in aqueous solution. The degradation kinetics, mechanisms, and effects of natural water matrices on thermally activated persulfate (TAP) oxidation of KET were systematically investigated. Increasing the temperature and persulfate (PS) concentrations greatly enhanced the degradation of KET. KET degradation is pH-dependent with an optimum pH of 5.0. Reactions in the presence of radical quenchers revealed the dominant role of SO 4 - in oxidizing KET. Water matrix significantly influenced the degradation of KET. The common inorganic anions present in natural waters exhibited inhibitory effect on KET degradation, and the inhibition followed the order of Cl - > CO 3 2- > HCO 3 - > NO 3 - ; however, no significant inhibition of KET degradation was observed in the presence of Ca 2+ and Mg 2+ cations. The presence of natural organic matter (NOM) suppressed KET degradation, and the suppression increased as NOM concentration increase. Products identification and mineralization experiments revealed that KET and its degradation intermediates were finally transformed into CO 2 and H 2 O. The results of this study indicated that applying SR-AOPs for the remediation of KET contaminated water matrix is technically possible. Copyright © 2017 Elsevier Ltd. All rights reserved.
Factors Associated With Exposure to Violent or Degrading Pornography Among High School Students.
Romito, Patrizia; Beltramini, Lucia
2015-08-01
The purpose of this study was to analyze pornography exposure in a sample of 702 Italian adolescents (46% males; mean age = 18.2, SD = 0.8). Among male students, 11% were not exposed, 44.5% were exposed to nonviolent material, and 44.5% were exposed to violent/degrading material. Among female students, 60.8% were not exposed, 20.4% were exposed to nonviolent material, and 18.8% were exposed to violent/degrading material. Among males, adjusted odds ratio (AdjOR) of exposure to violent/degrading pornography were higher if using alcohol, having friends who sell/buy sex, and taking sexual pictures. Females who were victims of family violence, attending technical/vocational schools, and taking sexual pictures had higher AdjOR of watching violent pornography; smoking and having friends who sell/buy sex were associated with both nonviolent and violent/degrading exposure. Exposure to violent/degrading pornography is common among adolescents, associated with at-risk behaviors, and, for females, it correlates with a history of victimization. School nurses have a pivotal role in including discussions about pornography in interventions about relationships, sexuality, or violence. © The Author(s) 2015.
Working session 1: Tubing degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharshafdjian, G.; Turluer, G.
1997-02-01
A general introductory overview of the purpose of the group and the general subject area of SG tubing degradation was given by the facilitator. The purpose of the session was described as to {open_quotes}develop conclusions and proposals on regulatory and technical needs required to deal with the issues of SG tubing degradation.{close_quotes} Types, locations and characteristics of tubing degradation in steam generators were briefly reviewed. The well-known synergistic effects of materials, environment, and stress and strain/strain rate, subsequently referred to by the acronym {open_quotes}MESS{close_quotes} by some of the group members, were noted. The element of time (i.e., evolution of thesemore » variables with time) was emphasized. It was also suggested that the group might want to consider the related topics of inspection capabilities, operational variables, degradation remedies, and validity of test data, and some background information in these areas was provided. The presentation given by Peter Millet during the Plenary Session was reviewed; Specifically, the chemical aspects and the degradation from the secondary side of the steam generator were noted. The main issues discussed during the October 1995 EPRI meeting on secondary side corrosion were reported, and a listing of the potential SG tube degradations was provided and discussed.« less
The Soil Degradation Subsystem of the Hungarian Environmental Information System
NASA Astrophysics Data System (ADS)
Szabó, József; Pirkó, Béla; Szabóné Kele, Gabriella; Dombos, Miklós; László, Péter; Koós, Sándor; Bakacsi, Zsófia; Laborczi, Annamária; Pásztor, László
2013-04-01
Regular data collection on the state of agricultural soils has not been in operation in Hungary for more than two decades. In the meantime, mainly thanks to the Hungarian Soil Strategy and the planned Soil Framework Directive, the demand for the information on state of Hungarian soils and the follow up of the harmful changes in their conditions and functioning has greatly increased. In 2010 the establishment of a new national soil monitoring system was supported by the Environment and Energy Operational Programme for Informatics Development. The aim of the project was to collect, manage, analyse and publish soil data related to the state of soils and the environmental stresses attributed to the pressures due to agriculture; setting up an appropriate information system in order to fulfil the directives of the Thematic Strategy for Soil Protection. Further objective was the web-based publication of soil data as well as information to support the related public service mission and to inform publicity. The developed information system operates as the Soil Degradation Subsystem of the National Environmental Information System being compatible with its other elements. A suitable representative sampling method was elaborated. The representativity is meant for soil associations, landuse, agricultural practices and typical degradation processes. Soil data were collected on county levels led by regional representatives but altogether they are representative for the whole territory of Hungary. During the project, about 700,000 elementary data were generated, close to 2,000 parcels of 285 farms were surveyed resulting more than 9,000 analysis, 7,000 samples and 28,000 pictures. The overall number of the recorded parcels is 4500, with a total area of about 250,000 hectares. The effect of agricultural land use on soils manifests in rapid changes -related to natural processes- in qualitative and quantitative soil parameters. In intensively used agricultural areas, particularly because of inappropriate land use and agricultural practice soil degradation occurs. To detect the soil degradation processes, and determine their type and degree, soil condition indicators were defined, which are based on analysis of the different soil state variables. In addition to state, also load indicators were defined based on the recorded data, for the determination of the type and level of loads in connection with the agro-technical elements of the agricultural cultivation. The indication models for determining the load indicators were quantified based on the relationship of the collected load parameters. The indication models as analytical queries were built into the TERRADEGRA system. Thus with the expansion and temporal repetition of the load- and status data an increasingly accurate picture of the environmental status of our soils can be drawn. Based on the built-in queries pilot data analysis were performed, whose results are available through a public web query-graphic surface (http://okir-tdr.helion.hu/). The web publication visualizes the load indicators related to agro-technical elements, the physical, chemical and biological degradation indicators of the identified human induced soil degradation processes as well as the load-state relationships using photos, thematic maps, diagrams and textual explanations.
Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for genomic research into the molecular basis of disease. However, use of FFPE samples in gene expression studies has been limited by technical challenges resulting from degradation...
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
1991-01-01
An overview is given of background and information on space propulsion systems on both the programmatic and technical levels. Feasibility experimental studies indicate that nondestructive evaluation tools such as ultrasonic, eddy current and x-ray may be successfully used to monitor the life limiting failure mechanisms of space propulsion systems. Encouraging results were obtained for monitoring the life limiting failure mechanisms for three space propulsion systems; the degradation of tungsten arcjet and magnetoplasmadynamic electrodes; presence and thickness of spallable electrically conducting molybdenum films in ion thrusters; and the degradation of the catalyst in hydrazine thrusters.
Developing radiation tolerant polymer nanocomposites using C 60 as an additive
Christian, Jonathan H.; Wilson, Jason; Nicholson, James C.; ...
2016-04-13
In nuclear facilities utilizing plutonium, polymeric materials are subjected to long-term, close-contact, and continuous α radiation exposure, which can lead to compounding material degradation and eventual failure. Herein we model the attenuation of α particles by linear-low-density polyethylene (LLDPE), polyvinyl alcohol (PVA) thin films, and C 60 using Monte Carlo N-Particle Extended (MCNPX) software. The degradation of these materials was investigated experimentally by irradiating them with a beam of α particles of 5.8 MeV energy at a tandem Van de Graaff accelerator delivering a dose rate of 2.95 × 10 6 rad s –1 over a 7.1 mm 2 samplemore » area. Our development of a method to test α particle-induced material degradation using a tandem accelerator is significant as degradation from naturally occurring α sources (i.e. Pu, Am) occurs too slowly for these sources to be used in practical experiments. Our results show that PVA nanocomposites containing 5 wt% C 60 were found to withstand about 7 times the α dose of undoped PVA films before a puncture in the film was detected. When these films were adhered to a LLDPE sheet the dual layer polymer was capable of withstanding about 13 times the dose of LLDPE and nearly twice the dose of the doped PVA thin film alone. Doping polymers with C 60 is an attractive way to generate more durable, radiation tolerant materials without increasing the thickness of the material which would lead to greater waste for disposal. Furthermore, the results herein help to resolve a prevalent technical challenge faced in nuclear facilities that utilize polymeric materials for nuclear processing and disposal.« less
NASA Astrophysics Data System (ADS)
Kachel-Jakubowska, Magdalena; Matwijczuk, Arkadiusz; Gagoś, Mariusz
2017-04-01
The technology of transesterification of biodiesel obtained from many agricultural products, which are often referred to as renewable resources, yields substantial amounts of by-products. They exhibit various properties that prompt scientific research into potential application thereof. Various spectroscopic methods, e.g. Fourier transform infrared spectroscopy, are being increasingly used in the research. In this paper, we present the results of Fourier transform infrared spectroscopy spectroscopy analyses of technical glycerine, distilled glycerine, and matter organic non glycerol, i.e. by-products of biodiesel production. To facilitate the spectroscopic analysis, a number of parameters were determined for all the materials, e.g. the calorific value, water content, sulphated ash content, methanol content, acidity, as well as the contents of esters, heavy metals, aldehydes, nitrogen, and phosphorus. The results indicate that the analysed products are characterised by a comparable calorific value in the range from 11.35 to 16.05 MJ kg-1 in the case of matter organic non glycerol and technical glycerine. Observation of changes in the position of selected peaks in the range of 3700-650 cm-1 in the Fourier transform infrared spectroscopy method facilitates determination of the level of degradation of the analysed material. Changes in the wavelength ranges can be used for monitoring the formation of secondary oxidation products containing carbonyl groups.
Environment assisted degradation mechanisms in aluminum-lithium alloys
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.
1988-01-01
Section 1 of this report records the progress achieved on NASA-LaRC Grant NAG-1-745 (Environment Assisted Degradation Mechanisms in Al-Li Alloys), and is based on research conducted during the period April 1 to November 30, 1987. A discussion of work proposed for the project's second year is included. Section 2 provides an overview of the need for research on the mechanisms of environmental-mechanical degradation of advanced aerospace alloys based on aluminum and lithium. This research is to provide NASA with the basis necessary to permit metallurgical optimization of alloy performance and engineering design with respect to damage tolerance, long term durability and reliability. Section 3 reports on damage localization mechanisms in aqueous chloride corrosion fatigue of aluminum-lithium alloys. Section 4 reports on progress made on measurements and mechanisms of localized aqueous corrosion in aluminum-lithium alloys. Section 5 provides a detailed technical proposal for research on environmental degradation of Al-Li alloys, and the effect of hydrogen in this.
Synthesis and analytical follow-up of the mineralization of a new fluorosurfactant prototype.
Peschka, M; Fichtner, N; Hierse, W; Kirsch, P; Montenegro, E; Seidel, M; Wilken, R D; Knepper, T P
2008-08-01
Fluorinated surfactants have become essential in numerous technical applications due to their unparalleled effectiveness and efficiency. The environmental persistence of the non-biodegradable perfluorinated alkyl moiety has become a matter of concern. Therefore, it was searched for new molecules with chemically stable fluorinated end groups which can be microbially transformed into labile fluorinated substances. One prototype substance, 10-(trifluoromethoxy)decane-1-sulfonate, has shown biomineralization. Monitoring the formation of metabolites over time elucidated the mechanism of biotransformation. Analysis was performed utilizing liquid chromatography-single quadrupole mass spectrometry (LC-MS) and quadrupole-time of flight tandem mass spectrometry (QqTOF-MS). It was possible to distinguish between two major degradation pathways of the fluorinated alkylsulfonate derivative: (i) a desulfonation and subsequent oxidation and degradation of the alkyl chain being predominant and (ii) an insertion of oxygen with a subsequent cleavage and degradation of the molecule. The utilized trifluoromethoxy-endgroup resulted in instable trifluoromethanol after degradation of the alkyl chain, which led to a high degree of mineralization of the molecule.
NASA Astrophysics Data System (ADS)
Mikhailov, Ivan; Levina, Vera; Leybo, Denis; Masov, Vsevolod; Tagirov, Marat; Kuznetsov, Denis
Nanostructured zero-valent iron (NSZVI) particles were synthesized by the method of ferric ion reduction with sodium borohydride with subsequent drying and passivation at room temperature in technical grade nitrogen. The obtained sample was characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering studies. The prepared NSZVI particles represent 100-200nm aggregates, which consist of 20-30nm iron nanoparticles in zero-valent oxidation state covered by thin oxide shell. The reactivity of the NSZVI sample, as the removal efficiency of refractory azo dyes, was investigated in this study. Two azo dye compounds, namely, orange G and methyl orange, are commonly detected in waste water of textile production. Experimental variables such as NSZVI dosage, initial dye concentration and solution pH were investigated. The kinetic rates of degradation of both dyes by NSZVI increased with the decrease of solution pH from 10 to 3 and with the increase of NSZVI dosage, but decreased with the increase of initial dye concentration. The removal efficiencies achieved for both orange G and methyl orange were higher than 90% after 80min of treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Stickel, Jonathan J.; Grundl, Nicholas J.
Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected tomore » limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.« less
Sievers, David A.; Stickel, Jonathan J.; Grundl, Nicholas J.; ...
2017-09-18
Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected tomore » limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.« less
Radiation and shielding study for the International Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Baze, M.; Firminhac, R. H.; Horne, W. E.; Kennedy, R. C.; Measel, P. R.; Sivo, L. L.; Wilkinson, M. C.
1974-01-01
Technical advisory services to ensure integrity of parts and material exposed to energetic particle radiation for the IUE scientific instruments, spacecraft, and subsystems are provided. A significant potential for interference, degradation, or failure for unprotected or sensitive items was found. Vulnerable items were identified, and appropriate tests, changes, and shields were defined.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... the examination or testing, evaluates the susceptibility to known degradation, mechanisms or failure... and applicants have not been supported by adequate descriptive and detailed technical information... attempted. Sections 50.55a(f)(6)(i) and (g)(6)(i) state that the NRC will evaluate determinations that ASME...
Final Technical Report: PV Fault Detection Tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Bruce Hardison; Jones, Christian Birk
The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.
Reform and efficiency of state-owned forest enterprises in Northeast China as “social firms”
Han Xue; Gregory E. Frey; Geng Yude; Frederick W. Cubbage; Zhang Zhaohui
2018-01-01
State-owned forest enterprises (SOFEs) in northeast China have experienced past economic loss andenvironmental degradation, causing government to seek reforms. Measurement of technical efficiencyallows us to evaluate overall trends and how reforms affect production of social and environmental goods.Previous assessments have used small samples, short time...
Incorporating biopulping technology into wood yard operations
Gary M. Scott; Eric Horn; Masood Akhtar; Ross E. Swaney; Michael J. Lentz; David F. Shipley
1998-01-01
Biopulping is the treatment of wood chips and other lignocellulosic materials with lignin-degrading fungi prior to pulping. Ten years of industry-sponsored research has demonstrated the technical feasibility of the technology for mechanical pulping at a laboratory scale. Two 50-ton outdoor chip pile trials recently conducted at the USDA Forest Service, Forest Products...
Test Plan: WIPP bin-scale CH TRU waste tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molecke, M.A.
1990-08-01
This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientificmore » benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.« less
NASA Astrophysics Data System (ADS)
Yang, Hong
Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.
Bending, Gary D; Lincoln, Suzanne D; Edmondson, Rodney N
2006-01-01
The extent of within field variability in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican, and the role of intrinsic soil factors and technical errors in contributing to the variability, was investigated in sites on sandy-loam and clay-loam. At each site, 40 topsoil samples were taken from a 160 x 60 m area, and pesticides applied in the laboratory. Time to 25% dissipation (DT25) ranged between 13 and 61 weeks for diflufenican, 5.6 and 17.2 weeks for azoxystrobin, and 0.3 and 12.5 weeks for isoproturon. Variability in DT25 was higher in the sandy-loam in which there was also greatest variability in soil chemical and microbial properties. Technical error associated with pesticide extraction, analysis and lack of model fit during derivation of DT25 accounted for between 5.3 and 25.8% of the variability for isoproturon and azoxystrobin, but could account for almost all the variability for diflufenican. Azoxystrobin DT25, sorption and pH were significantly correlated.
Chemical stabilization of polymers: Implications for dermal exposure to additives.
Bartsch, N; Girard, M; Schneider, L; Weijgert, V Van De; Wilde, A; Kappenstein, O; Vieth, B; Hutzler, C; Luch, A
2018-04-16
Technical benefits of additives in polymers stand in marked contrast to their associated health risks. Here, a multi-analyte method based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) was developed to quantify polymer additives in complex matrices such as low-density polyethylene (LDPE) and isolated human skin layers after dermal exposure ex vivo. That way both technical aspects and dermal exposure were investigated. The effects of polymer additivation on the material were studied using the example of LDPE. To this end, a tailor-made polymer was applied in aging studies that had been furnished with two different mixtures of phenol- and diarylamine-based antioxidants, plasticizers and processing aids. Upon accelerated thermo-oxidative aging of the material, the formation of LDPE degradation products was monitored with attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy. Compared to pure LDPE, a protective effect of added antioxidants could be observed on the integrity of the polymer. Further, thermo-oxidative degradation of the additives and its kinetics were investigated using LDPE or squalane as matrix. The half-lives of additives in both matrices revealed significant differences between the tested additives as well as between LDPE and squalane. For instance, 2-tert-butyl-6-[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol (Antioxidant 2246) showed a half-life 12 times lower when incorporated in LDPE as compared to squalane. As a model for dermal exposure of consumers, human skin was brought into contact with the tailor-made LDPE containing additives ex vivo in static Franz diffusion cells. The skin was then analyzed for additives and decomposition products. This study proved 10 polymer additives of diverse pysicochemical properties and functionalities to migrate out of the polymer and eventually overcome the intact human skin barrier during contact. Moreover, their individual distribution within distinct skin layers was demonstrated. This is exemplified by the penetration of the procarcinogenic antioxidant N-phenylnaphthalen-2-amine (Neozon D) into the viable epidermis and the permeation through the skin of the neurotoxic plasticizer N-butylbenzenesulfonamide (NBBS). In addition, the analyses of additive degradation products in the isolated skin layers revealed the presence of 2-tert-butyl-4-methylphenol in all layers after contact to a polymer with substances of origin like Antioxidant 2246. Thus, attention needs to be paid to absorption of polymer additives together with their degradation products when it comes to dermal exposure assessment.
Electrical condition monitoring method for polymers
Watkins, Jr. Kenneth S.; Morris, Shelby J.; Masakowski, Daniel D.; Wong, Ching Ping; Luo, Shijian
2010-02-16
An electrical condition monitoring method utilizes measurement of electrical resistivity of a conductive composite degradation sensor to monitor environmentally induced degradation of a polymeric product such as insulated wire and cable. The degradation sensor comprises a polymeric matrix and conductive filler. The polymeric matrix may be a polymer used in the product, or it may be a polymer with degradation properties similar to that of a polymer used in the product. The method comprises a means for communicating the resistivity to a measuring instrument and a means to correlate resistivity of the degradation sensor with environmentally induced degradation of the product.
Solar energy/utility interface - The technical issues
NASA Astrophysics Data System (ADS)
Tabors, R. D.; White, D. C.
1982-01-01
The technical and economic factors affecting an interface between solar/wind power sources and utilities are examined. Photovoltaic, solar thermal, and wind powered systems are subject to stochastic local climatic variations and as such may require full back-up services from utilities, which are then in a position of having reserve generating power and power lines and equipment which are used only part time. The low reliability which has degraded some economies of scale formerly associated with large, centralized power plants, and the lowered rate of the increase in electricity usage is taken to commend the inclusion of power sources with a modular nature such as is available from solar derived electrical generation. Technical issues for maintaining the quality of grid power and also effectively metering purchased and supplied back-up power as part of a homeostatic system of energy control are discussed. It is concluded that economic considerations, rather than technical issues, bear the most difficulty in integrating solar technologies into the utility network.
Synthetic Polymers from Readily Available Monosaccharides
NASA Astrophysics Data System (ADS)
Galbis, J. A.; García-Martín, M. G.
The low degradability of petroleum-based polymers and the massive use of these materials constitute a serious problem because of the environmental pollution that they can cause. Thus, sustained efforts have been extensively devoted to produce new polymers based on natural renewing resources and with higher degradability. Of the different natural sources, carbohydrates stand out as highly convenient raw materials because they are inexpensive, readily available, and provide great stereochemical diversity. New polymers, analogous to the more accredited technical polymers, but based on chiral monomers, have been synthesized from natural and available sugars. This chapter describes the potential of sugar-based monomers as precursors to a wide variety of macromolecular materials.
Photocatalytic Degradation Property of NANO-TiO2/DIATOMITE for Rodamine B Dye Wastewater
NASA Astrophysics Data System (ADS)
Liu, Yue; Zheng, Shuilin; Du, Gaoxiang; Shu, Feng; Chen, Juntao
The Nano-TiO2/Diatomite compound photocatalyst is used to degrade rhodamine B dye wastewater in photochemical reactor. The test result indicates that the rate of photodegradation of rhodamine B is influenced by reactive conditions. The best technical conditions are concentration of rhodamine B solution 10mg/L, ultraviolet light 300W, the compound photocatalyst amount used 1g/L, the pH 5.8, reaction time 20min. Under these conditions the rate of photodegradation of rhodamine B may reach as high as 97.80%. And the efficiency of photodegradation of catalyst only has a little changed in recycling.
Robust PV Degradation Methodology and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Dirk; Deline, Christopher A; Kurtz, Sarah
The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less
Robust PV Degradation Methodology and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Dirk C.; Deline, Chris; Kurtz, Sarah R.
The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less
Robust PV Degradation Methodology and Application
Jordan, Dirk C.; Deline, Chris; Kurtz, Sarah R.; ...
2017-12-21
The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less
Recovering of images degraded by atmosphere
NASA Astrophysics Data System (ADS)
Lin, Guang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting
2017-08-01
Remote sensing images are seriously degraded by multiple scattering and bad weather. Through the analysis of the radiative transfer procedure in atmosphere, an image atmospheric degradation model considering the influence of atmospheric absorption multiple scattering and non-uniform distribution is proposed in this paper. Based on the proposed model, a novel recovering method is presented to eliminate atmospheric degradation. Mean-shift image segmentation and block-wise deconvolution are used to reduce time cost, retaining a good result. The recovering results indicate that the proposed method can significantly remove atmospheric degradation and effectively improve contrast compared with other removal methods. The results also illustrate that our method is suitable for various degraded remote sensing, including images with large field of view (FOV), images taken in side-glance situations, image degraded by atmospheric non-uniform distribution and images with various forms of clouds.
Statistical Bayesian method for reliability evaluation based on ADT data
NASA Astrophysics Data System (ADS)
Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong
2018-05-01
Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.
Method of radiation degradation of PTFE under vacuum conditions
NASA Astrophysics Data System (ADS)
Korenev, Sergey
2004-09-01
A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.
NASA Astrophysics Data System (ADS)
Jiang, Wei; Zhou, Jianzhong; Zheng, Yang; Liu, Han
2017-11-01
Accurate degradation tendency measurement is vital for the secure operation of mechanical equipment. However, the existing techniques and methodologies for degradation measurement still face challenges, such as lack of appropriate degradation indicator, insufficient accuracy, and poor capability to track the data fluctuation. To solve these problems, a hybrid degradation tendency measurement method for mechanical equipment based on a moving window and Grey-Markov model is proposed in this paper. In the proposed method, a 1D normalized degradation index based on multi-feature fusion is designed to assess the extent of degradation. Subsequently, the moving window algorithm is integrated with the Grey-Markov model for the dynamic update of the model. Two key parameters, namely the step size and the number of states, contribute to the adaptive modeling and multi-step prediction. Finally, three types of combination prediction models are established to measure the degradation trend of equipment. The effectiveness of the proposed method is validated with a case study on the health monitoring of turbine engines. Experimental results show that the proposed method has better performance, in terms of both measuring accuracy and data fluctuation tracing, in comparison with other conventional methods.
Boltia, Shereen A; Abdelkawy, Mohammed; Mohammed, Taghreed A; Mostafa, Nahla N
2018-09-05
Five simple, rapid, accurate, and precise spectrophotometric methods are developed for the determination of Silodosin (SLD) in the presence of its acid induced and oxidative induced degradation products. Method A is based on dual wavelength (DW) method; two wavelengths are selected at which the absorbance of the oxidative induced degradation product is the same, so wavelengths 352 and 377 nm are used to determine SLD in the presence of its oxidative induced degradation product. Method B depends on induced dual wavelength theory (IDW), which is based on selecting two wavelengths on the zero-order spectrum of SLD where the difference in absorbance between them for the spectrum of acid induced degradation products is not equal to zero so through multiplying by the equality factor, the absorption difference is made to be zero for the acid induced degradation product while it is still significant for SLD. Method C is first derivative ( 1 D) spectrophotometry of SLD and its degradation products. Peak amplitudes are measured at 317 and 357 nm. Method D is ratio difference spectrophotometry (RD) where the drug is determined by the difference in amplitude between two selected wavelengths, at 350 and 277 nm for the ratio spectrum of SLD and its acid induced degradation products while for the ratio spectrum of SLD and its oxidative induced degradation products the difference in amplitude is measured at 345 and 292 nm. Method E depends on measuring peak amplitudes of the first derivative of the ratio ( 1 DD) where peak amplitudes are measured at 330 nm in the presence of the acid induced degradation product and measured by peak to peak technique at 326 and 369 nm in the presence of the oxidative induced degradation product. The proposed methods are validated according to ICH recommendations. The calibration curves for all the proposed methods are linear over a concentration range of 5-70 μg/mL. The selectivity of the proposed methods was tested using different laboratory prepared mixtures of SLD with either its acid induced or oxidative induced degradation products showing specificity of SLD with accepted recovery values. The proposed methods have been successfully applied to the analysis of SLD in pharmaceutical dosage forms without interference from additives. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhao-Qiang; Hu, Chang-Hua; Si, Xiao-Sheng; Zio, Enrico
2018-02-01
Current degradation modeling and remaining useful life prediction studies share a common assumption that the degrading systems are not maintained or maintained perfectly (i.e., to an as-good-as new state). This paper concerns the issues of how to model the degradation process and predict the remaining useful life of degrading systems subjected to imperfect maintenance activities, which can restore the health condition of a degrading system to any degradation level between as-good-as new and as-bad-as old. Toward this end, a nonlinear model driven by Wiener process is first proposed to characterize the degradation trajectory of the degrading system subjected to imperfect maintenance, where negative jumps are incorporated to quantify the influence of imperfect maintenance activities on the system's degradation. Then, the probability density function of the remaining useful life is derived analytically by a space-scale transformation, i.e., transforming the constructed degradation model with negative jumps crossing a constant threshold level to a Wiener process model crossing a random threshold level. To implement the proposed method, unknown parameters in the degradation model are estimated by the maximum likelihood estimation method. Finally, the proposed degradation modeling and remaining useful life prediction method are applied to a practical case of draught fans belonging to a kind of mechanical systems from steel mills. The results reveal that, for a degrading system subjected to imperfect maintenance, our proposed method can obtain more accurate remaining useful life predictions than those of the benchmark model in literature.
2009-01-01
management. Forest and Natural Resources Management: USDA has provided technical guidance to assist MAIL in developing a pistachio forest management...plan for rehabilitating degraded pistachio woodlands. In 2006, target villages realized a 65 percent increase in income from pistachio nuts, with
Noise suppression methods for robust speech processing
NASA Astrophysics Data System (ADS)
Boll, S. F.; Ravindra, H.; Randall, G.; Armantrout, R.; Power, R.
1980-05-01
Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during this reporting period for the research program funded to develop real time, compressed speech analysis synthesis algorithms whose performance in invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the current research and results in the areas of noise suppression using the dual input adaptive noise cancellation using the short time Fourier transform algorithms, articulation rate change techniques, and a description of an experiment which demonstrated that the spectral subtraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC 10 coded, helicopter speech by 10.6 point.
Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A
2015-01-01
Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.
A Review of Information for Managing Aging in Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
WC Morgan; JV Livingston
1995-09-01
Age related degradation effects in safety related systems of nuclear power plants should be managed to prevent safety margins from eroding below the acceptable limits provided in plant design bases. The Nuclear Plant Aging Research (NPAR) Pro- gram, conducted under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, and other related aging management programs are developing technical information on managing aging. The aging management process central to these efforts consists of three key elements: 1) selecting structures, systems, and components (SSCs) in which aging should be controlled; 2) understanding the mechanisms and rates ofmore » degradation in these SSCs; and 3) managing degradation through effective inspection, surveillance, condition monitoring, trending, record keeping, mainten- ance, refurbishment, replacement, and adjustments in the operating environment and service conditions. This document concisely reviews and integrates information developed under the NPAR Program and other aging management studies and other available information related to understanding and managing age-related degradation effects and provides specific refer- ences to more comprehensive information on the same subjects.« less
NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1992-01-01
The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
2013-01-01
Background Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data. Results We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes. Conclusions Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes. PMID:23414703
Lalitha Devi, M; Chandrasekhar, K B
2009-12-05
The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).
Swain, Debasish; Patel, Prinesh N; Palaniappan, Ilayaraja; Sahu, Gayatri; Samanthula, Gananadhamu
2015-08-15
Azilsartan medoxomil potassium (AZM) is a new antihypertensive drug introduced in the year 2011. The presence of degradation products not only affects the quality, but also the safety aspects of the drug. Thus, it is essential to develop an efficient analytical method which could be useful to selectively separate and identify the degradation products of azilsartan medoxomil potassium. AZM was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions. Separation of the drug and degradation products was achieved by a liquid chromatography (LC) method using an Acquity UPLC(®) C18 CSH column with mobile phase consisting of 0.02% trifluoroacetic acid and acetonitrile using a gradient method. Identification and characterization of the degradation products was carried out using LC/electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). A total of five degradation products (DP 1 to DP 5) were formed under various stress conditions and their structures were proposed with the help of tandem mass spectrometry (MS/MS) experiments and accurate mass data. A common degradation product (DP 4) was observed under all the degradation conditions. DP 1, DP 2 and DP 5 were observed under acid hydrolytic conditions whereas DP 3 was observed under alkaline conditions. AZM was found to degrade under hydrolytic, oxidative and photolytic stress conditions. The structures of all the degradation products were proposed. The degradation pathway for the formation of degradation products was also hypothesized. A selective method was developed to quantify the drug in the presence of degradation products which is useful to monitor the quality of AZM. Copyright © 2015 John Wiley & Sons, Ltd.
Souri, E.; Aghdami, A. Negahban; Adib, N.
2014-01-01
An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r2>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms. PMID:25657790
Souri, E; Aghdami, A Negahban; Adib, N
2014-01-01
An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r(2)>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms.
The DTIC Review: Volume 2, Number 4, Surviving Chemical and Biological Warfare
1996-12-01
CHROMATOGRAPHIC ANALYSIS, NUCLEAR MAGNETIC RESONANCE, INFRARED SPECTROSCOPY , ARMY RESEARCH, DEGRADATION, VERIFICATION, MASS SPECTROSCOPY , LIQUID... mycotoxins . Such materials are not attractive as weapons of mass destruction however, as large amounts are required to produce lethal effects. In...VERIFICATION, ATOMIC ABSORPTION SPECTROSCOPY , ATOMIC ABSORPTION. AL The DTIC Review Defense Technical Information Center AD-A285 242 AD-A283 754 EDGEWOOO
New plastic recycling technology | Science Inventory | US EPA
Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy degradation processes. This news column provides a digest of recent technical reports relating to clean technology and environmental policy,
Campbell, Rebecca; Pierce, Steven J; Sharma, Dhruv B; Shaw, Jessica; Feeney, Hannah; Nye, Jeffrey; Schelling, Kristin; Fehler-Cabral, Giannina
2017-01-01
A growing number of U.S. cities have large numbers of untested sexual assault kits (SAKs) in police property facilities. Testing older kits and maintaining current case work will be challenging for forensic laboratories, creating a need for more efficient testing methods. We evaluated selective degradation methods for DNA extraction using actual case work from a sample of previously unsubmitted SAKs in Detroit, Michigan. We randomly assigned 350 kits to either standard or selective degradation testing methods and then compared DNA testing rates and CODIS entry rates between the two groups. Continuation-ratio modeling showed no significant differences, indicating that the selective degradation method had no decrement in performance relative to customary methods. Follow-up equivalence tests indicated that CODIS entry rates for the two methods could differ by more than ±5%. Selective degradation methods required less personnel time for testing and scientific review than standard testing. © 2016 American Academy of Forensic Sciences.
Optical storage media data integrity studies
NASA Technical Reports Server (NTRS)
Podio, Fernando L.
1994-01-01
Optical disk-based information systems are being used in private industry and many Federal Government agencies for on-line and long-term storage of large quantities of data. The storage devices that are part of these systems are designed with powerful, but not unlimited, media error correction capacities. The integrity of data stored on optical disks does not only depend on the life expectancy specifications for the medium. Different factors, including handling and storage conditions, may result in an increase of medium errors in size and frequency. Monitoring the potential data degradation is crucial, especially for long term applications. Efforts are being made by the Association for Information and Image Management Technical Committee C21, Storage Devices and Applications, to specify methods for monitoring and reporting to the user medium errors detected by the storage device while writing, reading or verifying the data stored in that medium. The Computer Systems Laboratory (CSL) of the National Institute of Standard and Technology (NIST) has a leadership role in the development of these standard techniques. In addition, CSL is researching other data integrity issues, including the investigation of error-resilient compression algorithms. NIST has conducted care and handling experiments on optical disk media with the objective of identifying possible causes of degradation. NIST work in data integrity and related standards activities is described.
Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging
NASA Astrophysics Data System (ADS)
Bolwin, Konstantin; Czekalla, Björn; Frohwein, Lynn J.; Büther, Florian; Schäfers, Klaus P.
2018-02-01
Patient motion during medical imaging using techniques such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single emission computed tomography (SPECT) is well known to degrade images, leading to blurring effects or severe artifacts. Motion correction methods try to overcome these degrading effects. However, they need to be validated under realistic conditions. In this work, a sophisticated anthropomorphic thorax phantom is presented that combines several aspects of a simulator for cardio-respiratory motion. The phantom allows us to simulate various types of cardio-respiratory motions inside a human-like thorax, including features such as inflatable lungs, beating left ventricular myocardium, respiration-induced motion of the left ventricle, moving lung lesions, and moving coronary artery plaques. The phantom is constructed to be MR-compatible. This means that we can not only perform studies in PET, SPECT and CT, but also inside an MRI system. The technical features of the anthropomorphic thorax phantom Wilhelm are presented with regard to simulating motion effects in hybrid emission tomography and radiotherapy. This is supplemented by a study on the detectability of small coronary plaque lesions in PET/CT under the influence of cardio-respiratory motion, and a study on the accuracy of left ventricular blood volumes.
A novel mechanochemical method for reconstructing the moisture-degraded HKUST-1.
Sun, Xuejiao; Li, Hao; Li, Yujie; Xu, Feng; Xiao, Jing; Xia, Qibin; Li, Yingwei; Li, Zhong
2015-07-11
A novel mechanochemical method was proposed to reconstruct quickly moisture-degraded HKUST-1. The degraded HKUST-1 can be restored within minutes. The reconstructed samples were characterized, and confirmed to have 95% surface area and 92% benzene capacity of the fresh HKUST-1. It is a simple and effective strategy for degraded MOF reconstruction.
Methods And Systms For Analyzing The Degradation And Failure Of Mechanical Systems
Jarrell, Donald B.; Sisk, Daniel R.; Hatley, Darrel D.; Kirihara, Leslie J.; Peters, Timothy J.
2005-02-08
Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.
Photovoltaic Performance and Reliability Workshop summary
NASA Astrophysics Data System (ADS)
Kroposki, Benjamin
1997-02-01
The objective of the Photovoltaic Performance and Reliability Workshop was to provide a forum where the entire photovoltaic (PV) community (manufacturers, researchers, system designers, and customers) could get together and discuss technical issues relating to PV. The workshop included presentations from twenty-five speakers and had more than one hundred attendees. This workshop also included several open sessions in which the audience and speakers could discuss technical subjects in depth. Several major topics were discussed including: PV characterization and measurements, service lifetimes for PV devices, degradation and failure mechanisms for PV devices, standardization of testing procedures, AC module performance and reliability testing, inverter performance and reliability testing, standardization of utility interconnect requirements, experience from field deployed systems, and system certification.
Mitchell, Anthea L; Rosenqvist, Ake; Mora, Brice
2017-12-01
Forest degradation is a global phenomenon and while being an important indicator and precursor to further forest loss, carbon emissions due to degradation should also be accounted for in national reporting within the frame of UN REDD+. At regional to country scales, methods have been progressively developed to detect and map forest degradation, with these based on multi-resolution optical, synthetic aperture radar (SAR) and/or LiDAR data. However, there is no one single method that can be applied to monitor forest degradation, largely due to the specific nature of the degradation type or process and the timeframe over which it is observed. The review assesses two main approaches to monitoring forest degradation: first, where detection is indicated by a change in canopy cover or proxies, and second, the quantification of loss (or gain) in above ground biomass (AGB). The discussion only considers degradation that has a visible impact on the forest canopy and is thus detectable by remote sensing. The first approach encompasses methods that characterise the type of degradation and track disturbance, detect gaps in, and fragmentation of, the forest canopy, and proxies that provide evidence of forestry activity. Progress in these topics has seen the extension of methods to higher resolution (both spatial and temporal) data to better capture the disturbance signal, distinguish degraded and intact forest, and monitor regrowth. Improvements in the reliability of mapping methods are anticipated by SAR-optical data fusion and use of very high resolution data. The second approach exploits EO sensors with known sensitivity to forest structure and biomass and discusses monitoring efforts using repeat LiDAR and SAR data. There has been progress in the capacity to discriminate forest age and growth stage using data fusion methods and LiDAR height metrics. Interferometric SAR and LiDAR have found new application in linking forest structure change to degradation in tropical forests. Estimates of AGB change have been demonstrated at national level using SAR and LiDAR-assisted approaches. Future improvements are anticipated with the availability of next generation LiDAR sensors. Improved access to relevant satellite data and best available methods are key to operational forest degradation monitoring. Countries will need to prioritise their monitoring efforts depending on the significance of the degradation, balanced against available resources. A better understanding of the drivers and impacts of degradation will help guide monitoring and restoration efforts. Ultimately we want to restore ecosystem service and function in degraded forests before the change is irreversible.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... DEPARTMENT OF AGRICULTURE Development of Technical Guidelines and Scientific Methods for... technical guidelines and scientific methods for quantifying greenhouse gas (GHG) emissions and carbon...-based methods to measure the carbon benefits from conservation and land management activities. In...
NASA Astrophysics Data System (ADS)
Akhtar-Schuster, Mariam; Safriel, Uriel; Abraham, Elena; de Vente, Joris; Essahli, Wafa; Escadafal, Richard; Stringer, Lindsay
2015-04-01
Achieving land degradation neutrality (LDN) through sustainable land management (SLM) targets the maintenance or restoration of the productivity of land, and therefore has to include decision-makers, knowledge generators and knowledge holders at the different relevant geographic scales. In order to enhance the implementation of the Convention, the Conference of the Parties (COP) of the United Nations Convention to Combat Desertification therefore decided that each future session of its Committee on Science and Technology (CST) would be organized in a predominantly scientific and technical conference-style format. This contribution will outline the major outcomes of UNCCD's 3rd scientific conference that will be held in Cancún, Mexico, from 9 to 12 March 2015, on addressing desertification, land degradation and drought issues (DLDD) for poverty reduction and sustainable development. The conference follows an exceptional new round table conference format that will allow the various stakeholders to discuss scientific as well as the contribution of traditional knowledge and practices in combating land degradation. This format should provide two-way communication and enable deeper insight into the availability and contribution of all forms of knowledge for achieving LDN through the assessment of: • the vulnerability of lands to DLDD and climate change and the adaptive capacities of socio-ecosystems; • best examples of adapted, knowledge-based practices and technologies; • monitoring and assessment methods to evaluate the effectiveness of adaptation practices and technologies. The outcomes of UNCCD's 3rd scientific conference will serve as a basis for discussing: • contributions of science to diagnose the status of land; • research gaps that need to be addressed to achieve LDN for poverty reduction; • additional institutional requirements to optimally bridge knowledge generation, knowledge maintenance and knowledge implementation at the science-policy interface.
Practical Approaches to Forced Degradation Studies of Vaccines.
Hasija, Manvi; Aboutorabian, Sepideh; Rahman, Nausheen; Ausar, Salvador F
2016-01-01
During the early stages of vaccine development, forced degradation studies are conducted to provide information about the degradation properties of vaccine formulations. In addition to supporting the development of analytical methods for the detection of degradation products, these stress studies are used to identify optimal long-term storage conditions and are part of the regulatory requirements for the submission of stability data. In this chapter, we provide detailed methods for forced degradation analysis under thermal, light, and mechanical stress conditions.
Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Ball, Andrew S
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are major pollutants globally and due to their carcinogenic and mutagenic properties their clean-up is paramount. Bioremediation or using PAH degrading microorganisms (mainly bacteria) to degrade the pollutants represents cheap, effective methods. These PAH degraders harbor functional genes which help microorganisms use PAHs as source of food and energy. Most probable number (MPN) and plate counting methods are widely used for counting PAHs degraders; however, as culture based methods only count a small fraction (<1%) of microorganisms capable of carrying out PAH degradation, the use of culture-independent methodologies is desirable.•This protocol presents a robust, rapid and sensitive qPCR method for the quantification of the functional genes involved in the degradation of PAHs in soil samples.•This protocol enables us to screen a vast number of PAH contaminated soil samples in few hours.•This protocol provides valuable information about the natural attenuation potential of contaminated soil and can be used to monitor the bioremediation process.
Elcey, C Daniel; Kunhi, A A Mohammad
2010-01-27
Widespread contamination of the environment, globally, has been caused by extensive and indiscriminate use of hexachlorocyclohexane (HCH) as an insecticide since the 1940s, threatening the biota including humans, and there is an urgent need to eliminate it, preferably through bioremediation technologies. A gamma-HCH-degrading microbial consortium was isolated by enrichment of a soil sample from a sugar cane field having a long history of technical grade HCH application. On acclimation the degrading ability improved substantially. The consortium, which took 10 days to degrade 25 microg mL(-1) of gamma-HCH, initially could mineralize even 300 microg mL(-1) of the substrate within 108 h on acclimation. With 300 microg mL(-1) substrate, the rate of degradation, as calculated for the early exponential phase, was 216 microg mL(-1) day(-1), the highest reported so far. An amount of 400 microg mL(-1) of gamma-HCH, however, was mineralized partially with only 78% Cl(-) release. No apparent accumulation of intermediary metabolites was observed up to 300 microg mL(-1) substrate, indicating a fast rate of mineralization. Aeration, mesophilic temperatures (20-35 degrees C), and near neutral pH (6.0-8.0) were favorable conditions for degradation. The presence of glucose at 1000 microg mL(-1) retarded the degradation, whereas cellulose and sawdust at 1600 microg mL(-1) and glucose at 100 microg mL(-1) did not show any marked effect. The consortium also mineralized alpha-, beta-, and delta-HCH efficiently. The consortium consisted of nine bacterial strains and a fungal strain, and individually they were able to degrade 10 microg mL(-1) of gamma-HCH. This mixed culture holds high potential for deployment in bioremediation of HCH-contaminated soils, waste dumpsites, and water bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Hara, J.M.; W. Gunther, G. Martinez-Guridi
New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines,more » empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.« less
Wang, Yan; Chen, Guixiu; Liang, Juanboo; Zou, Yongde; Wen, Xin; Liao, Xindi; Wu, Yinbao
2015-12-01
Using manure collected from swine fed with diet containing antibiotics and antibiotic-free swine manure spiked with antibiotics are the two common methods of studying the degradation behavior of veterinary antibiotic in manure in the environment. However, few studies had been conducted to co-compare these two different antibiotic addition methods. This study used oxytetracycline (OTC) as a model antibiotic to study antibiotic degradation behavior in manure under the above two OTC addition methods. In addition, the role of microorganisms present in the manure on degradation behavior was also examined. The results showed that degradation half-life of OTC in manure from swine fed OTC (9.04 days) was significantly shorter than that of the manure directly treated with OTC (9.65 days). Concentration of 4-epi-OTC in manure from swine fed OTC peaked earlier than that in manure spiked with OTC, and the degradation rates of 4-epi-OTC and α-apo-OTC in the manure from swine fed OTC were faster, but the peak concentrations were lower, than those in manure spiked with OTC. Bacterial diversity and relative abundance of Bacillus cereus data demonstrated that sterilization of the manure before experiment significantly decreased OTC degradation rate in both of the addition methods. Results of the present study demonstrated that the presence of the metabolites (especially 4-epi-OTC) and microorganisms had significant influence on OTC degradation.
NASA Astrophysics Data System (ADS)
Chen, Weigen; Zou, Jingxin; Wan, Fu; Fan, Zhou; Yang, Dingkun
2018-03-01
Detecting the dissolving furfural in mineral oil is an essential technical method to evaluate the ageing condition of oil-paper insulation and the degradation of mechanical properties. Compared with the traditional detection method, Raman spectroscopy is obviously convenient and timesaving in operation. This study explored the method of applying surface enhanced Raman scattering (SERS) on quantitative analysis of the furfural dissolved in oil. Oil solution with different concentration of furfural were prepared and calibrated by high-performance liquid chromatography. Confocal laser Raman spectroscopy (CLRS) and SERS technology were employed to acquire Raman spectral data. Monte Carlo cross validation (MCCV) was used to eliminate the outliers in sample set, then competitive adaptive reweighted sampling (CARS) was developed to select an optimal combination of informative variables that most reflect the chemical properties of concern. Based on selected Raman spectral features, support vector machine (SVM) combined with particle swarm algorithm (PSO) was used to set up a furfural quantitative analysis model. Finally, the generalization ability and prediction precision of the established method were verified by the samples made in lab. In summary, a new spectral method is proposed to quickly detect furfural in oil, which lays a foundation for evaluating the ageing of oil-paper insulation in oil immersed electrical equipment.
Combustion of PTFE: The effects of gravity on ultrafine particle generation
NASA Technical Reports Server (NTRS)
McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter
1996-01-01
The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.
NASA Astrophysics Data System (ADS)
Tantawy, Mahmoud A.; El-Ragehy, Nariman A.; Hassan, Nagiba Y.; Abdelkawy, Mohamed
2016-04-01
Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D1), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form.
Tantawy, Mahmoud A; El-Ragehy, Nariman A; Hassan, Nagiba Y; Abdelkawy, Mohamed
2016-04-15
Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D(1)), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form. Copyright © 2016 Elsevier B.V. All rights reserved.
Hegazy, M A; Yehia, A M; Moustafa, A A
2013-05-01
The ability of bivariate and multivariate spectrophotometric methods was demonstrated in the resolution of a quaternary mixture of mosapride, pantoprazole and their degradation products. The bivariate calibrations include bivariate spectrophotometric method (BSM) and H-point standard addition method (HPSAM), which were able to determine the two drugs, simultaneously, but not in the presence of their degradation products, the results showed that simultaneous determinations could be performed in the concentration ranges of 5.0-50.0 microg/ml for mosapride and 10.0-40.0 microg/ml for pantoprazole by bivariate spectrophotometric method and in the concentration ranges of 5.0-45.0 microg/ml for both drugs by H-point standard addition method. Moreover, the applied multivariate calibration methods were able for the determination of mosapride, pantoprazole and their degradation products using concentration residuals augmented classical least squares (CRACLS) and partial least squares (PLS). The proposed multivariate methods were applied to 17 synthetic samples in the concentration ranges of 3.0-12.0 microg/ml mosapride, 8.0-32.0 microg/ml pantoprazole, 1.5-6.0 microg/ml mosapride degradation products and 2.0-8.0 microg/ml pantoprazole degradation products. The proposed bivariate and multivariate calibration methods were successfully applied to the determination of mosapride and pantoprazole in their pharmaceutical preparations.
Biodegradation of tech-hexachlorocyclohexane in a upflow anaerobic sludge blanket (UASB) reactor.
Bhat, Praveena; Kumar, M Suresh; Mudliar, Sandeep N; Chakrabarti, T
2006-04-01
Biodegradability of technical grade hexachlorocyclohexane (tech-HCH) was studied in an upflow anaerobic sludge blanket reactor (UASB) under continuous mode of operation in concentration range of 100-200 mg/l and constant HRT of 48 h. At steady state operation more than 85% removal of tech-HCH (upto 175 mg/l concentration) and complete disappearance of beta-HCH was observed. Kinetic constants in terms of maximum specific tech-HCH utilization rate (k) and half saturation velocity constant (K(L)) were found to be 11.88 mg/g/day and 8.11 mg/g/day, respectively. The tech-HCH degrading seed preparation, UASB reactor startup and degradation in continuous mode of operation of the reactor is presented in this paper.
Section 2: Corrosion and failure analysis studies in support of the pulp and paper industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, J.R.; Pawel, S.J.; Swindeman, R.W.
1997-04-01
Technical support is being provided to various pulp and paper companies and related industries to help determine the cause of material degradation problems and to identify alternate materials to prevent such degradation. During the past year, examinations have included parts from several sootblowers, two failed economizer tubes, and inspection of a continuous digester. The results of the analyses and inspections were communicated to the plant operators, and, in some cases, recommendations were made. This article discusses examination of sootblower nozzles, which evidenced intergranular cracking. Analysis indicated the presence of chromium carbide precipitates along the grain boundaries, which can cause themore » sample to be sensitized to grain boundary attack.« less
Zhao, Yue; Lu, Qian; Wei, Yuquan; Cui, Hongyang; Zhang, Xu; Wang, Xueqin; Shan, Si; Wei, Zimin
2016-11-01
In this study, actinobacteria agent including Streptomyces sp. and Micromonospora sp. were inoculated during chicken manure composting by different inoculation methods. The effect of different treatments on cellulose degradation and the relationship between inoculants and indigenous actinobacteria were investigated during composting. The results showed that inoculation in different stages of composting all improved the actinobacteria community diversity particularly in the cooling stage of composting (M3). Moreover, inoculation could distinctly accelerate the degradation of organic matters (OM) especially celluloses. Redundancy analysis indicated that the correlation between indigenous actinobacteria and degradation of OM and cellulose were regulated by inoculants and there were significant differences between different inoculation methods. Furthermore, synergy between indigenous actinobacteria and inoculants for degradation of OM and cellulose in M3 was better than other treatments. Conclusively, we suggested an inoculation method to regulate the indigenous actinobacteria based on the relationship between inoculants and indigenous actinobacteria and degradation content. Copyright © 2016 Elsevier Ltd. All rights reserved.
Agricultural ecosystems - The world is watching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madison, M.F.; Licht, L.A.
1990-02-01
Environmental degradation is displacing nuclear war as the overriding concern of the world's people. An accusing finger is rightfully pointed at agricultural practices - for degrading water, air, food, and societal quality. As reported in the popular and technical press, there is a clamor for farming technology that is both productive and ecological. We cannot survive without a productive agriculture. Yet, the eroding soil, the degrading water quality, the decrease in farm profitability, the reductions in wildlife populations, and the closing store fronts in rural America point to a need for new management approaches. The word sustainable continues to bemore » mentioned as an underlying theme for future management techniques. Soil, air, and water form a seamless whole - the thin envelope we call the biosphere. The term sustainable agriculture implies a nourishing stewardship of the biosphere when used by farmers in pursuit of their livelihood. This biosphere simultaneously produces and sustains a multitude of products, including ourselves. It is all we have to create both our present and our future.« less
Phytoremediation of hazardous wastes. Technical report, 23--26 July 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCutcheon, S.C.; Wolfe, N.L.; Carreria, L.H.
1995-07-26
A new and innovative approach to phytoremediation (the use of plants to degrade hazardous contaminants) was developed. The new approach to phytoremediation involves rigorous pathway analyses, mass balance determinations, and identification of specific enzymes that break down trinitrotoluene (TNT), other explosives (RDX and HMX), nitrobenzene, and chlorinated solvents (e.g., TCE and PCE) (EPA 1994). As a good example, TNT is completely and rapidly degraded by nitroreductase and laccase enzymes. The aromatic ring is broken and the carbon in the ring fragments is incorporated into new plant fiber, as part of the natural lignification process. Half lives for TNT degradation approachmore » 1 hr or less under ideal laboratory conditions. Continuous-flow pilot studies indicate that scale up residence times in created wetlands may be two to three times longer than in laboratory batch studies. The use of created wetlands and land farming techniques guided by rigorous field biochemistry and ecology promises to be a vital part of a newly evolving field, ecological engineering.« less
Choi, Woo-Jung; Chang, Scott X
2009-07-01
Hydrocarbon-contaminated wastes generated from oil and gas drilling activities may be used as a soil amendment once composted and further decomposition of residual hydrocarbons can be accomplished after the composts are applied to soils. To test if N fertilization may enhance hydrocarbon decomposition, we investigated the effects of N application on hydrocarbon degradation in different-aged composts (1-, 2-, 3-, and 4-year-old composts, coded as 1Y, 2Y, 3Y, and 4Y composts, respectively) through a pot experiment planted with white spruce (Picea glauca [Moench] Voss) seedlings. The percentage degradation of total petroleum hydrocarbon (TPH, C11 to C40) in the composts without N fertilization was correlated to initial NH4+ concentrations (R = 0.99, P < 0.001). The percentage degradation of TPH was highest in the 3Y compost (41.1%) that had an initial level of 325.3 mg NH4+ -N kg(-1) and the lowest in the IY compost (9.3%) that had an initial level of 8.3 mg NH4+ -N kg(-1). The degradation of TPH was enhanced by Nfertilization in the 1Y (from 9.3 to 15.3%) and 4Y composts (from 14.3 to 22.6%) that had low initial NH4+ concentrations. Our results show that application of NH4+ -based fertilizers may enhance the degradation of TPH when initial NH4+ concentrations in the compost are low.
Risk Assessment During the Final Phase of an Uncontrolled Re-Entry
NASA Astrophysics Data System (ADS)
Gaudel, A.; Hourtolle, C.; Goester, J. F.; Fuentes, N.
2013-09-01
As French National Space Agency, CNES is empowered to monitor compliance with technical regulations of the French Space Operation Act, FSOA, and to take all necessary measures to ensure the safety of people, property, public health and environment for all space operations involving French responsibility at international level.Therefore, CNES developed ELECTRA that calculates the risk for ground population involved in three types of events: rocket launching, controlled re-entry and uncontrolled re-entry. For the first two cases, ELECTRA takes into account degraded cases due to a premature stop of propulsion.Major evolutions were implemented recently on ELECTRA to meet new users' requirements, like the risk assessment during the final phase of uncontrolled re-entry, that can be combined with the computed risk for each country involved by impacts.The purpose of this paper is to provide an overview of the ELECTRA method and main functionalities, and then to highlight these recent improvements.
Supramolecular complexation for environmental control.
Albelda, M Teresa; Frías, Juan C; García-España, Enrique; Schneider, Hans-Jörg
2012-05-21
Supramolecular complexes offer a new and efficient way for the monitoring and removal of many substances emanating from technical processes, fertilization, plant and animal protection, or e.g. chemotherapy. Such pollutants range from toxic or radioactive metal ions and anions to chemical side products, herbicides, pesticides to drugs including steroids, and include degradation products from natural sources. The applications involve usually fast and reversible complex formation, due to prevailing non-covalent interactions. This is of importance for sensing as well as for separation techniques, where the often expensive host compounds can then be reused almost indefinitely. Immobilization of host compounds, e.g. on exchange resins or on membranes, and their implementation in smart new materials hold particular promise. The review illustrates how the design of suitable host compounds in combination with modern sensing and separation methods can contribute to solve some of the biggest problems facing chemistry, which arise from the everyday increasing pollution of the environment.
Zhang, Xiao-Ning; Ran, Qin-Qin; Zhang, Xuejun
2015-01-01
Eucommia leaf contains large amounts of natural active products. In extracting the substances, the most important is the removal of the cuticle layer on the leaves and the cell wall in the leaves of Eucommia ulmoides. But the removal of the cuticle layer is a technical difficulty now. Cutinase (EC3.1.1.74) is a multifunctional enzyme with a common alpha/beta fold structure belonging to hydroplane that can make a substantial degradation of horny fatty acids. So this study isolated bacteria capable of producing cutinase from the lesion of Eucommia leaves and identified the bacteria. The identification using PCR-RFLP method confirmed that the strain belongs to Rhodotorula mucilaginosa. The fermentation conditions of the strain-producing cutinase were optimized in this study. The finding of cutinase-producing R. mucilaginosa is significant because the yeast is more secure than plant pathogens, being suitable for mass production.
Boboescu, Iulian Zoltan; Gherman, Vasile Daniel; Lakatos, Gergely; Pap, Bernadett; Bíró, Tibor; Maróti, Gergely
2016-03-01
The steadily increase of global energy requirements has brought about a general agreement on the need for novel renewable and environmentally friendly energy sources and carriers. Among the alternatives to a fossil fuel-based economy, hydrogen gas is considered a game-changer. Certain methods of hydrogen production can utilize various low-priced industrial and agricultural wastes as substrate, thus coupling organic waste treatment with renewable energy generation. Among these approaches, different biological strategies have been investigated and successfully implemented in laboratory-scale systems. Although promising, several key aspects need further investigation in order to push these technologies towards large-scale industrial implementation. Some of the major scientific and technical bottlenecks will be discussed, along with possible solutions, including a thorough exploration of novel research combining microbial dark fermentation and algal photoheterotrophic degradation systems, integrated with wastewater treatment and metabolic by-products usage. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1996-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunecky, Roman; Donohoe, Bryon S.; Yarbrough, John M.
The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systemsmore » employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Furthermore, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance.« less
Huang, Ying; Yang, Fei; Ai, Luoyan; Feng, Min; Wang, Chi; Wang, Zhaohui; Liu, Jianshe
2017-07-01
A large amount of chloride and ammonium ions were produced and released from industrial processes with non-biodegradable organic pollutants to affect efficiencies of advanced oxidation processes (AOPs). Here, the influences of chloride and ammonium ions on Co/peroxymonosulfate (Co/PMS) reaction system, a widely used AOPs to produce sulfate radicals, were investigated by examining the degradation efficiency of an azo dye (Acid Orange 7, AO7). The experimental results showed that a significant decrease in the degradation rate of AO7 was observed in the presence of NH 4 + , while a dual effect of chloride on AO7 bleaching appeared. The presence of NH 4 Cl was unfavorable for AO7 degradation at low concentration (<20 mM), whereas further addition of NH 4 Cl (>20 mM) apparently accelerated AO7 discoloration rate. The apparent effects of the two co-existing inorganic ions were determined by roles of the dominating ions at varied molar ratio of [NH 4 + ]/[Cl - ]. The present study may have technical implications for the treatment of industrial wastewater containing diverse ions in practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brunecky, Roman; Donohoe, Bryon S.; Yarbrough, John M.; ...
2017-08-29
The crystalline nature of cellulose microfibrils is one of the key factors influencing biomass recalcitrance which is a key technical and economic barrier to overcome to make cellulosic biofuels a commercial reality. To date, all known fungal enzymes tested have great difficulty degrading highly crystalline cellulosic substrates. We have demonstrated that the CelA cellulase from Caldicellulosiruptor bescii degrades highly crystalline cellulose as well as low crystallinity substrates making it the only known cellulase to function well on highly crystalline cellulose. Unlike the secretomes of cellulolytic fungi, which typically comprise multiple, single catalytic domain enzymes for biomass degradation, some bacterial systemsmore » employ an alternative strategy that utilizes multi-catalytic domain cellulases. Additionally, CelA is extremely thermostable and highly active at elevated temperatures, unlike commercial fungal cellulases. Furthermore we have determined that the factors negatively affecting digestion of lignocellulosic materials by C. bescii enzyme cocktails containing CelA appear to be significantly different from the performance barriers affecting fungal cellulases. Furthermore, we explore the activity and degradation mechanism of CelA on a variety of pretreated substrates to better understand how the different bulk components of biomass, such as xylan and lignin, impact its performance.« less
Dong, Hong-Wei; Fan, Li-Qiang; Luo, Zichen; Zhong, Jian-Jiang; Ryu, Dewey D Y; Bao, Jie
2013-09-01
Toxic compounds, such as formic acid, furfural, and hydroxymethylfurfural (HMF) generated during pretreatment of corn stover (CS) at high temperature and low pH, inhibit growth of Zymomonas mobilis and lower the conversion efficiency of CS to biofuel and other products. The inhibition of toxic compounds is considered as one of the major technical barriers in the lignocellulose bioconversion. In order to detoxify and/or degrade these toxic compounds by the model ethanologenic strain Z. mobilis itself in situ the fermentation medium, we constructed a recombinant Z. mobilis ZM4 (pHW20a-fdh) strain that is capable of degrading toxic inhibitor, formate. This is accomplished by cloning heterologous formate dehydrogenase gene (fdh) from Saccharomyces cerevisiae and by coupling this reaction of NADH regeneration reaction system with furfural and HMF degradation in the recombinant Z. mobilis strain. The NADH regeneration reaction also improved both the energy efficiency and cell physiological activity of the recombinant organism, which were definitely confirmed by the improved cell growth, ethanol yield, and ethanol productivity during fermentation with CS hydrolysate. Copyright © 2013 Wiley Periodicals, Inc.
Regulation of proteasomal degradation by modulating proteasomal initiation regions
Takahashi, Kazunobu; Matouschek, Andreas; Inobe, Tomonao
2016-01-01
Methods for regulating the concentrations of specific cellular proteins are valuable tools for biomedical studies. Artificial regulation of protein degradation by the proteasome is receiving increasing attention. Efficient proteasomal protein degradation requires a degron with two components: a ubiquitin tag that is recognized by the proteasome and a disordered region at which the proteasome engages the substrate and initiates degradation. Here we show that degradation rates can be regulated by modulating the disordered initiation region by the binding of modifier molecules, in vitro and in vivo. These results suggest that artificial modulation of proteasome initiation is a versatile method for conditionally inhibiting the proteasomal degradation of specific proteins. PMID:26278914
Elkady, Ehab Farouk; Fouad, Marwa Ahmed
2015-11-01
Two new hydrolytic products of letrozole were identified and proved to be true degradation products obtained by alkaline and acidic degradation of the drug. The acid and amide forms of the nitrile groups of letrozole were prepared and identified by IR and mass spectroscopic techniques. Subsequently, a simple, precise and selective stability-indicating RPLC method was developed and validated for the determination of letrozole in the presence of its degradation products. Letrozole was subjected to alkali and acid hydrolysis, oxidation, thermal degradation and photo-degradation. The degradation products were well isolated from letrozole. The chromatographic method was achieved using gradient elution of the drug and its degradation products on a reversed phase Zorbax Eclipse C18 column (100mm x 4.6mm, 3.5 μm) using a mobile phase consisting of 0.01M KH₂PO₄and methanol at a flow rate of 1 mL min⁻¹. Quantitation was achieved with UV detection at 230 nm. Linearity, accuracy and precision were found to be acceptable over the concentration range of 0.01-80 μgmL⁻¹. The proposed method was successfully applied to the determination of letrozole in bulk, plasma and in its pharmaceutical preparation.
Method of identification of patent trends based on descriptions of technical functions
NASA Astrophysics Data System (ADS)
Korobkin, D. M.; Fomenkov, S. A.; Golovanchikov, A. B.
2018-05-01
The use of the global patent space to determine the scientific and technological priorities for the technical systems development (identifying patent trends) allows one to forecast the direction of the technical systems development and, accordingly, select patents of priority technical subjects as a source for updating the technical functions database and physical effects database. The authors propose an original method that uses as trend terms not individual unigrams or n-gram (usually for existing methods and systems), but structured descriptions of technical functions in the form “Subject-Action-Object” (SAO), which in the authors’ opinion are the basis of the invention.
NASA Astrophysics Data System (ADS)
Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna
2017-03-01
Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2016-04-01
Three simple, specific, accurate and precise spectrophotometric methods were developed for the determination of cefprozil (CZ) in the presence of its alkaline induced degradation product (DCZ). The first method was the bivariate method, while the two other multivariate methods were partial least squares (PLS) and spectral residual augmented classical least squares (SRACLS). The multivariate methods were applied with and without variable selection procedure (genetic algorithm GA). These methods were tested by analyzing laboratory prepared mixtures of the above drug with its alkaline induced degradation product and they were applied to its commercial pharmaceutical products.
Technical errors in planar bone scanning.
Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M
2004-09-01
Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.
Adaptation of the Conditions of US EPA Method 538 for the ...
Report The objective of this study was to evaluate U.S. EPA’s Method 538 for the assessment of drinking water exposure to the nerve agent degradation product, EA2192, the most toxic degradation product of nerve agent VX. As a result of the similarities in sample preparation and analysis that Method 538 uses for nonvolatile chemicals, this method is applicable to the nonvolatile Chemical Warfare Agent (CWA) degradation product, EA2192, in drinking water. The method may be applicable to other nonvolatile CWAs and their respective degradation products as well, but the method will need extensive testing to verify compatibility. Gaps associated with the need for analysis methods capable of analyzing such analytes were addressed by adapting the EPA 538 method for this CWA degradation product. Many laboratories have the experience and capability to run the already rigorous method for nonvolatile compounds in drinking water. Increasing the number of laboratories capable of carrying out these methods serves to significantly increase the surge laboratory capacity to address sample throughput during a large exposure event. The approach desired for this study was to start with a proven high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) method for nonvolatile chemicals in drinking water and assess the inclusion of a similar nonvolatile chemical, EA2192.
Method of phorbol ester degradation in Jatropha curcas L. seed cake using rice bran lipase.
Hidayat, Chusnul; Hastuti, Pudji; Wardhani, Avita Kusuma; Nadia, Lana Santika
2014-03-01
A novel enzymatic degradation of phorbol esters (PE) in the jatropha seed cake was developed using lipase. Cihera rice bran lipase had the highest ability to hydrolyze PE, and reduced PE to a safe level after 8 h of incubation. Enzymatic degradation may be a promising method for PE degradation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms
Goldberg, Caren S.; Strickler, Katherine M.; Pilliod, David S.
2015-01-01
The discovery that macroorganisms can be detected from their environmental DNA (eDNA) in aquatic systems has immense potential for the conservation of biological diversity. This special issue contains 11 papers that review and advance the field of eDNA detection of vertebrates and other macroorganisms, including studies of eDNA production, transport, and degradation; sample collection and processing to maximize detection rates; and applications of eDNA for conservation using citizen scientists. This body of work is an important contribution to the ongoing efforts to take eDNA detection of macroorganisms from technical breakthrough to established, reliable method that can be used in survey, monitoring, and research applications worldwide. While the rapid advances in this field are remarkable, important challenges remain, including consensus on best practices for collection and analysis, understanding of eDNA diffusion and transport, and avoidance of inhibition in sample collection and processing. Nonetheless, as demonstrated in this special issue, eDNA techniques for research and monitoring are beginning to realize their potential for contributing to the conservation of biodiversity globally.
Rederstorff, Emilie; Fatimi, Ahmed; Sinquin, Corinne; Ratiskol, Jacqueline; Merceron, Christophe; Vinatier, Claire; Weiss, Pierre; Colliec-Jouault, Sylvia
2011-01-01
Polysaccharides are highly heat-sensitive macromolecules, so high temperature treatments are greatly destructive and cause considerable damage, such as a great decrease in both viscosity and molecular weight of the polymer. The technical feasibility of the production of exopolysaccharides by deep-sea bacteria Vibrio diabolicus and Alteromonas infernus was previously demonstrated using a bioproduct manufacturing process. The objective of this study was to determine which sterilization method, other than heat sterilization, was the most appropriate for these marine exopolysaccharides and was in accordance with bioprocess engineering requirements. Chemical sterilization using low-temperature ethylene oxide and a mixture of ionized gases (plasmas) was compared to the sterilization methods using gamma and beta radiations. The changes to both the physical and chemical properties of the sterilized exopolysaccharides were analyzed. The use of ethylene oxide can be recommended for the sterilization of polysaccharides as a weak effect on both rheological and structural properties was observed. This low-temperature gas sterilizing process is very efficient, giving a good Sterility Assurance Level (SAL), and is also well suited to large-scale compound manufacturing in the pharmaceutical industry. PMID:21566796
Shao, Sicheng; Hu, Yongyou; Cheng, Ce; Cheng, Jianhua; Chen, Yuancai
2018-06-14
Polluted waters with a high residue of tetracycline also have a high concentration of nitrate. Thus, screening for both, highly efficient tetracycline biodegradation and nitrate transformation, is a key technical strategy. In this study, a novel tetracycline degrading strain, SQY5, which was identified as Klebsiella sp., was isolated from municipal sludge. Biodegradation characteristics of tetracycline were studied under various environmental conditions; including inoculation dose (v/v), initial tetracycline concentration, temperature, and pH. Response surface methodology (RSM) analysis demonstrated that the maximum degradation ratio of tetracycline can be obtained under the condition with an initial tetracycline concentration of 61.27 mg L -1 , temperature of 34.96 °C, pH of 7.17, and inoculation dose of 29.89%. Furthermore, this was the first report on the relationship between the degradation of tetracycline and the denitrification effect, showing that a maximum tetracycline reduction rate of 0.113 mg L -1 ·h -1 and denitrification rate of 4.64 mg L -1 ·h -1 were observed within 32 h and 92 h of SQY5 inoculation, respectively. The data of this study has the potential for use in engineering processes designed for the simultaneous biological removal of nitrates while degrading antibiotics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Toporisic, Rebeka; Mlakar, Anita; Hvala, Jernej; Prislan, Iztok; Zupancic-Kralj, Lucija
2010-06-05
Stress stability testing and forced degradation were used to determine the stability of enalapril maleate (EM) and to find a degradation pathway for the drug. The degradation impurities, formed under different stressed conditions, were investigated by HPLC and UPLC-MS methods. HPLC analysis showed several degradation impurities of which several were already determined, but on oxidation in the presence of magnesium monoperoxyphthalate (MMPP) several impurities of EM were observed which were not yet characterized. The HPLC methods for determination of EM were validated. The linearity of HPLC method was established in the concentration range between 0.5 and 10 microg/mL with correlation coefficient greater than 0.99. The LOD of EM was 0.2 microg/mL and LOQ was 0.5 microg/mL. The validated HPLC method was used to determine the degradation impurities in samples after stress stability testing and forced degradation of EM. In order to identify new degradation impurities of EM after forced degradation UPLC-MS/MS(n), Orbitrap has been used. It was found that new impurities are oxidation products: (S)-1-((S)-2-((S)-1-ethoxy-4-(o,m,p-hydroxyphenyl)-1-oxobutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid, (2S)-1-((2S)-2-((2S)-1-ethoxy-4-hydroxy-1-oxo-4-phenylbutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid. (S)-2-(3-phenylpropylamino)-1-(pyrrolidin-1-yl)propan-1-one was identified as a new degradation impurity. Copyright (c) 2010. Published by Elsevier B.V.
Lean Manufacturing and the Infantry: Retaining Quality during Total Mobilization
United States last decisive war against a peer threat, World War II, required significant manpower resources. Prioritizing quality manpower ...distribution to technical jobs resulted in the degradation of the infantry, which then required the Army to implement corrective measures to reverse the...deficiency in quality. Should another decisive war occur in the future, the lethality and speed of modern warfare will increase the demand for manpower , which
United States Air Force Research Initiation Program. 1985 Technical Report. Volume 1
1987-04-01
Classification) USAF Research Initiation Program Volume 1 12. PERSONAL AUTHOR(S) Program Director Rodney C. Darrah 13a. TYPE OF...Maximum Voluntary +land Grip Torque for Circular Electrical Connectors 760-0MG-068 Temperature Dependence of Ion- Molecule Association Reactions...Foster 30 Photothermal and Photochemical Properties of Melanin and Their Role in Light Induced Degrad- ation of the Retina 760-0MG-106 Dr. James
Composite Socio-Technical Systems: A Method for Social Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingchen; He, Fulin; Hao, Jun
In order to model and study the interactions between social on technical systems, a systemic method, namely the composite socio-technical systems (CSTS), is proposed to incorporate social systems, technical systems and the interaction mechanism between them. A case study on University of Denver (DU) campus grid is presented in paper to demonstrate the application of the proposed method. In the case study, the social system, technical system, and the interaction mechanism are defined and modelled within the framework of CSTS. Distributed and centralized control and management schemes are investigated, respectively, and numerical results verifies the feasibility and performance of themore » proposed composite system method.« less
Krishnaiah, Ch; Reddy, A Raghupathi; Kumar, Ramesh; Mukkanti, K
2010-11-02
A simple, precise, accurate stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the quantitative determination of purity of Valsartan drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. The method was developed using Waters Aquity BEH C18 (100 mm x 2.1 mm, 1.7 microm) column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 225 nm, the run time was within 9.5 min, which Valsartan and its seven impurities were well separated. Valsartan was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Valsartan was found to degrade significantly in acid and oxidative stress conditions and stable in base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of Valsartan in pharmaceutical dosage forms.
Kakde, Rajendra B; Satone, Dinesh D; Gadapayale, Kamalesh K; Kakde, Megha G
2013-07-01
The objective of the current study was to develop a validated, specific stability-indicating reversed-phase liquid chromatographic (LC) method for the quantitative determination of escitalopram oxalate and clonazepam and their related substances in bulk drugs and pharmaceutical dosage forms in the presence of degradation products. Forced degradation studies were performed on the pure drugs of escitalopram oxalate and clonazepam, as per the stress conditions prescribed by the International Conference on Harmonization (ICH) using acid, base, oxidation, thermal stress and photolytic degradation to show the stability-indicating power of the method. Significant degradation was observed during acid and alkaline hydrolysis and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies. Good resolution between the peaks corresponded to the active pharmaceutical ingredients, escitalopram oxalate and clonazepam, and degradation products from the analyte were achieved on an ODS Hypersil C18 column (250 × 4.6 mm) using a mobile phase consisting of a mixture of acetonitrile-50 mM phosphate buffer + 10 mM triethylamine (70:30, v/v). The detection was conducted at 268 nm. The limit of detection and the limit of quantitation for escitalopram oxalate and clonazepam were established. The stress test solutions were assayed against the qualified working standards of escitalopram oxalate and clonazepam, which indicated that the developed LC method was stability-indicating. Validation of the developed LC method was conducted as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of escitalopram oxalate and clonazepam.
Dynamic Radioisotope Power System Development for Space Explorations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A L
Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust, and reliable dynamic conversion technology is challenging yet essential to building a suitable flight-ready generator. Considerations include working within existing hardware-handling infrastructure, where possible, so that development costs can be kept low, and integrating dynamic generators into spacecraft, which may be more complex than integration of static thermoelectric systems. Methods of interfacing to and controlling a dynamic generator must also be considered, and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development, and adaption.« less
Martin, Claudia; Corvini, Philippe F. X.; Vinken, Ralph; Junghanns, Charles; Krauss, Gudrun; Schlosser, Dietmar
2009-01-01
The aquatic hyphomycete Clavariopsis aquatica was used to quantify the effects of extracellular laccase and intracellular reactions on the isomer-specific biotransformation of technical nonylphenol (t-NP). In laccase-producing cultures, maximal removal rates of t-NP and the isomer 4-(1-ethyl-1,4-dimethylpentyl)phenol (NP112) were about 1.6- and 2.4-fold higher, respectively, than in laccase-lacking cultures. The selective suppression of either laccase or intracellular reactions resulted in essentially comparable maximal removal rates for both compounds. Evidence for an unspecific oxidation of t-NP isomers was consistently obtained from laccase-expressing fungal cultures when intracellular biotransformation was suppressed and from reaction mixtures containing isolated laccase. This observation contrasts with the selective degradation of t-NP isomers by bacteria and should prevent the enrichment of highly estrogenic isomers in remaining t-NP. In contrast with laccase reactions, intracellular fungal biotransformation caused a significant shift in the isomeric composition of remaining t-NP. As a result, certain t-NP constituents related to more estrogenic isomers were less efficiently degraded than others. In contrast to bacterial degradation via ipso-hydroxylation, the substitution pattern of the quaternary α-carbon of t-NP isomers does not seem to be very important for intracellular transformation in C. aquatica. As-yet-unknown intracellular enzymes are obviously induced by nonylphenols. Mass spectral data of the metabolites resulting from the intracellular oxidation of t-NP, NP112, and 4-(1-ethyl-1,3-dimethylpentyl)phenol indicate nonyl chain hydroxylation, further oxidation into keto or aldehyde compounds, and the subsequent formation of carboxylic acid derivatives. Further metabolites suggest nonyl chain desaturation and methylation of carboxylic acids. The phenolic moieties of the nonylphenols remained unchanged. PMID:19429559
Rao, Dantu Durga; Satyanarayana, N V; Malleswara Reddy, A; Sait, Shakil S; Chakole, Dinesh; Mukkanti, K
2010-02-05
A novel stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the determination of purity of desloratadine in presence of its impurities and forced degradation products. The method was developed using Waters Aquity BEH C18 column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 280nm. The run time was 8min within which desloratadine and its five impurities were well separated. Desloratadine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Desloratadine was found to degrade significantly in oxidative and thermal stress conditions and stable in acid, base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of desloratadine in pharmaceutical dosage forms.
[BiOBr promoted the photocatalytic degradation of beta-cypermethrin under visible light].
Peng, Yi-Zhu; Zhao, Xiao-Rong; Jia, Man-Ke; Zhou, Wei; Huang, Ying-Ping
2014-05-01
As a visible light photocatalyst, bismuth oxide bromide (BiOBr) was used to catalyze the degradation of beta-cypermethrin (beta-CP). The photocatalytic degradation of beta-CP was studied with gas chromatography. The effects of pH and catalyst dose on the photocatalytic degradation efficiency were discussed. The oxidization and mineralization of beta-CP were detected by chemical oxygen demand (COD) analyzer. The results showed that beta-CP could be effectively degraded under visible light irradiation using BiOBr as the catalyst. At given experimental conditions, the degradation rate of beta-CP reached 94. 68% after 10 h and the COD removal rate reached 67. 99% after 36 h. With the increase of catalyst dose and pH value, the degradation rate was improved. The photocatalytic oxidation species was determined by peroxidase method and terephthalic acid fluorescence method. These results suggested that the photocatalytic degradation process mainly referred to hydroxyl radical ( OH) mechanism.
Engineered enzymatically active bacteriophages and methods of uses thereof
Collins, James J [Newton, MA; Kobayashi, Hideki [Yokohama, JP; Kearn, Mads [Ottawa, CA; Araki, Michihiro [Minatoku, JP; Friedland, Ari [Boston, MA; Lu, Timothy Kuan-Ta [Palo Alto, CA
2012-05-22
The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.
Madsen, James F.; Sandstrom, Mark W.; Zaugg, Steven D.
2002-01-01
A method for the isolation and detemrination of fipronil and four of its degradates has been developed. This method adapts an analytical method created by the U.S. Geological Survey National Water Quality Laboratory in 1995 for the determination of a broad range of high-use pesticides typically found in filtered natural-water samples. In 2000, fipronil and four of its degradates were extracted, analyzed, and validated using this method. The recoveries for these five compounds in reagent-water samples fortified at 1 microgram per liter (ug/L) avereraged 98 percent. Initial method detection limits averaged 0.0029 ug/L. The performance of these five new compounds is consistent with the performance of the compounds in the initial method, making it possible to include them in addition to the other 41 pesticides and pesticide degradates in the original method.
Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine.
Kumar, Jadi Praveen; Mandal, Biman B
2017-07-01
Sericin, a principal constituent of silk, is widely used in various biomedical applications. In addition, conferring protection against free radicals and oxidative damage add more value to its therapeutic potential. However, the antioxidant (AO) properties of silk sericin (SS) remains contingent on extraction procedures. In the present study, we have evaluated the effect of different extraction methods (conventional, autoclaving, urea, alkali and acid-degradation) on AO properties of SS from three Indian silk varieties [Antheraea assamensis (AA), Philosamia ricini (PR) and Bombyx mori (BM)]. The physico-chemical characterization studies revealed that the molecular weight of SS isolates of each method ranged from 10 to 220kDa along with varied protein structural biochemistry. SS extracts using urea-degradation (BM, PR and AA), conventional method and alkali-degradation (BM) displayed high percentage of β-sheets, random coils and turns. Acid-degraded SS (PR, followed by AA and BM) showed the highest total flavonoid content while conventional method (PR), autoclaving (AA) and alkali-degradation (BM) displayed lowest flavonoid levels. Interestingly, SS extracted by autoclaving (BM and AA), acid-degradation (PR), conventional and alkali-degradation (BM, AA and PR) methods exhibited 50% reduction of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical. Moreover, the efficacy of antioxidant potential of SS extracted by different methods was found to be in the order of "alkali>autoclaving>conventional" as demonstrated in L929 cells. Correspondingly, the anti-lipid peroxidation activity of SS extracted by alkali method (AA, BM and PR) further confirmed better AO properties amid others. Thus, the present study demonstrates that the extraction methods may significantly affect AO activity of SS which might be of importance for potential cosmetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Bodiwala, Kunjan Bharatkumar; Shah, Shailesh; Thakor, Jeenal; Marolia, Bhavin; Prajapati, Pintu
2016-11-01
A rapid, sensitive, and stability-indicating high-performance thin-layer chromatographic method was developed and validated to study degradation kinetics of Alogliptin benzoate (ALG) in an alkaline medium. ALG was degraded under acidic, alkaline, oxidative, and thermal stress conditions. The degraded samples were chromatographed on silica gel 60F254-TLC plates, developed using a quaternary-solvent system (chloroform-methanol-ethyl acetate-triethyl amine, 9+1+1+0.5, v/v/v/v), and scanned at 278 nm. The developed method was validated per International Conference on Harmonization guidelines using validation parameters such as specificity, linearity and range, precision, accuracy, LOD, and LOQ. The linearity range for ALG was 100-500 ng/band (correlation coefficient = 0.9997) with an average recovery of 99.47%. The LOD and LOQ for ALG were 9.8 and 32.7 ng/band, respectively. The developed method was successfully applied for the quantitative estimation of ALG in its synthetic mixture with common excipients. Degradation kinetics of ALG in an alkaline medium was studied by degrading it under three different temperatures and three different concentrations of alkali. Degradation of ALG in the alkaline medium was found to follow first-order kinetics. Contour plots have been generated to predict degradation rate constant, half-life, and shelf life of ALG in various combinations of temperature and concentration of alkali using Design Expert software.
Lin, Kai-Feng; He, Shu; Song, Yue; Wang, Chun-Mei; Gao, Yi; Li, Jun-Qin; Tang, Peng; Wang, Zheng; Bi, Long; Pei, Guo-Xian
2016-03-23
Low-temperature additive manufacturing (AM) holds promise for fabrication of three-dimensional (3D) scaffolds containing bioactive molecules and/or drugs. Due to the strict technical limitations of current approaches, few materials are suitable for printing at low temperature. Here, a low-temperature robocasting method was employed to print biomimic 3D scaffolds for bone regeneration using a routine collagen-hydroxyapatite (CHA) composite material, which is too viscous to be printed via normal 3D printing methods at low temperature. The CHA scaffolds had excellent 3D structure and maintained most raw material properties after printing. Compared to nonprinted scaffolds, printed scaffolds promoted bone marrow stromal cell proliferation and improved osteogenic outcome in vitro. In a rabbit femoral condyle defect model, the interconnecting pores within the printed scaffolds facilitated cell penetration and mineralization before the scaffolds degraded and enhanced repair, compared to nonprinted CHA scaffolds. Additionally, the optimal printing parameters for 3D CHA scaffolds were investigated; 600-μm-diameter rods were optimal in terms of moderate mechanical strength and better repair outcome in vivo. This low-temperature robocasting method could enable a variety of bioactive molecules to be incorporated into printed CHA materials and provides a method of bioprinting biomaterials without compromising their natural properties.
Zhang, Chao-Zhi; Li, Ting; Yuan, Yang; Xu, Jianqiang
2016-06-01
Graphene and graphene oxide (GO) have already existed in air, water and soil due to their popular application in functional materials. However, degradation of graphene and GO in wastewater has not been reported. Degradation of GO plays a key role in the elimination of graphene and GO in wastewater due to graphene being easily oxidized to GO. In this paper, GO was completely degraded to give CO2 by Photo-Fenton. The degradation intermediates were determined by UV-vis absorption spectra, elemental analysis (EA), fourier transform infrared (FT-IR) and liquid chromatography-mass spectrometry (LC-MS). Experimental results showed that graphene oxide was completely degraded to give CO2 after 28 days. Based on UV, FT-IR, LC-MS spectra and EA data of these degradation intermediates, the degradation mechanisms of GO were supposed. This paper suggests an efficient and environment-friendly method to degrade GO and graphene. Copyright © 2016 Elsevier Ltd. All rights reserved.
Local soil quality assessment of north-central Namibia: integrating farmers' and technical knowledge
NASA Astrophysics Data System (ADS)
Prudat, Brice; Bloemertz, Lena; Kuhn, Nikolaus J.
2018-02-01
Soil degradation is a major threat for farmers of semi-arid north-central Namibia. Soil conservation practices can be promoted by the development of soil quality (SQ) evaluation toolboxes that provide ways to evaluate soil degradation. However, such toolboxes must be adapted to local conditions to reach farmers. Based on qualitative (interviews and soil descriptions) and quantitative (laboratory analyses) data, we developed a set of SQ indicators relevant for our study area that integrates farmers' field experiences (FFEs) and technical knowledge. We suggest using participatory mapping to delineate soil units (Oshikwanyama soil units, KwSUs) based on FFEs, which highlight mostly soil properties that integrate long-term productivity and soil hydrological characteristics (i.e. internal SQ). The actual SQ evaluation of a location depends on the KwSU described and is thereafter assessed by field soil texture (i.e. chemical fertility potential) and by soil colour shade (i.e. SOC status). This three-level information aims to reveal SQ improvement potential by comparing, for any location, (a) estimated clay content against median clay content (specific to KwSU) and (b) soil organic status against calculated optimal values (depends on clay content). The combination of farmers' and technical assessment cumulates advantages of both systems of knowledge, namely the integrated long-term knowledge of the farmers and a short- and medium-term SQ status assessment. The toolbox is a suggestion for evaluating SQ and aims to help farmers, rural development planners and researchers from all fields of studies understanding SQ issues in north-central Namibia. This suggested SQ toolbox is adapted to a restricted area of north-central Namibia, but similar tools could be developed in most areas where small-scale agriculture prevails.
NASA Technical Reports Server (NTRS)
Sitterley, T. E.; Zaitzeff, L. P.; Berge, W. A.
1972-01-01
Flight control and procedural task skill degradation, and the effectiveness of retraining methods were evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Fifteen experienced pilots were trained and then tested after 4 months either without the benefits of practice or with static rehearsal, dynamic rehearsal or with dynamic warmup practice. Performance on both the flight control and procedure tasks degraded significantly after 4 months. The rehearsal methods effectively countered procedure task skill degradation, while dynamic rehearsal or a combination of static rehearsal and dynamic warmup practice was required for the flight control tasks. The quality of the retraining methods appeared to be primarily dependent on the efficiency of visual cue reinforcement.
NASA Astrophysics Data System (ADS)
Höhener, Patrick
2014-05-01
Chlorinated solvent spills at industrial and urban sites create groundwater plumes where tetrachloro- and trichloroethene may degrade to their daughter compounds, dichloroethenes, vinyl chloride and ethane. The assessment of degradation and natural attenuation at such sites may be based on the analysis and inverse modelling of concentration data, on the calculation of mass fluxes in transsects, and/or on the analysis of stable isotope ratios in the ethenes. Relatively few work has investigated the possibility of using ratio of concentrations for gaining information on degradation rates. The use of ratios bears the advantage that dilution of a single sample with contaminant-free water does not matter. It will be shown that molar ratios of daughter to parent compounds measured along a plume streamline are a rapid and robust mean of determining whether degradation rates increase or decrease along the degradation chain, and allow furthermore a quantitation of the relative magnitude of degradation rates compared to the rate of the parent compound. Furthermore, ratios of concentration will become constant in zones where degradation is absent, and this allows to sketching the extension of actively degrading zones. The assessment is possible for pure sources and also for mixed sources. A quantification method is proposed in order to estimate first-order degradation rates in zones of constant degradation activity. This quantification method includes corrections that are needed due to longitudinal and transversal dispersivity. The method was tested on a number of real field sites from literature. At the majority of these sites, the first-order degradation rates were decreasing along the degradation chain from tetrachloroethene to vinyl chloride, meaning that the latter was often reaching important concentrations. This is bad news for site owners due to the increased toxicity of vinyl chloride compared to its parent compounds.
Revitalization of Energy Supply Systems in the Scale of a Town, a District and an Island
NASA Astrophysics Data System (ADS)
Juchimiuk, Justyna
2016-09-01
Model actions undertaken in HafenCity and Wilhelmsburg during IBA Hamburg 2006- 13 as well as energy transformation of Danish island of Samsø towards self-sufficiency are examples of the use of energy as one of the key factors in the design of revitalization process in various scales. An important issue is to determine the impact of renewable energy systems on design process, architecture and urbanism of revitalized structures. Article examines the programs and projects related to the processes: renewal of degraded inner-industrial areas (brownfields), ecological restoration of degraded land, the revitalization of port and underdeveloped areas in the aspects of climate protection, the use of energy from renewable sources and improvement of technical conditions of building substance while maintaining the principles of sustainable development.
NASA Astrophysics Data System (ADS)
Blázquez, M.; Egizabal, A.; Unzueta, I.
2014-08-01
The LIFE+ Project SIRENA, Simulation of the release of nanomaterials from consumer products for environmental exposure assessment, (LIFE11 ENV/ES/596) has set up a Technological Surveillance System (TSS) to trace technical references at worldwide level related to nanocomposites and the release from nanocomposites. So far a total of seventy three items of different nature (from peer reviewed articles to presentations and contributions to congresses) have been selected and classified as "nanomaterials release simulation technologies". In present document, different approaches for the simulation of different life cycle stages through the physical degradation of polymer nanocomposites at laboratory scale are assessed. In absence of a reference methodology, the comparison of the different protocols used still remains a challenge.
Ramisetti, Nageswara Rao; Kuntamukkala, Ramakrishna; Lakshetti, Sridhar; Sripadi, Prabhakar
2014-07-01
The current study dealt with the degradation behavior of lacosamide (LAC) under ICH prescribed stress conditions. LAC was found to be labile under acid and base hydrolytic stress conditions, while it was stable to neutral hydrolytic, oxidative, photolytic and thermal stress. In total, seven degradation products (DPs) were formed, which were separated on a C18 column using a stability-indicating method. LC-MS analyses indicated that one of the DPs had the same molecular mass as that of the drug. Structural characterization of DPs was carried out using ESI-Q-TOF-MS/MS technique. The degradation pathways and mechanisms of degradation of the drug were delineated by carrying out the degradation in different co-solvents viz. methanol, deuterated methanol, ethanol, 1-propanol and acetonitrile. The developed LC method was validated for the determination of related substances and assay of LAC as per ICH guidelines. This study demonstrates a comprehensive approach of LAC degradation studies during its development phase. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Choong, Gabriel Y. H.; Parsons, Andrew J.; Grant, David M.; De Focatiis, Davide S. A.
2015-05-01
A method developed in the 1980s for the conversion of linear rheological data to molar mass distribution is revisited in the context of degradable polymers. The method is first applied using linear rheology for a linear polystyrene, for which all conversion parameters are known. A proof of principle is then carried out on four polycarbonate grades. Finally, preliminary results are shown on degradable polylactides. The application of this method to degrading polymer systems, and to systems containing nanofillers, is also discussed. This work forms part of a wider study of bioresorbable nanocomposites using polylactides, novel hydroxyapatite nanoparticles and tailored dispersants for medical applications.
Kinetic study and mechanism of Niclosamide degradation.
Zaazaa, Hala E; Abdelrahman, Maha M; Ali, Nouruddin W; Magdy, Maimana A; Abdelkawy, M
2014-11-11
A spectrophotometric kinetic study of Niclosamide alkaline degradation as a function of drug concentration, alkaline concentration and temperature has been established utilizing double divisor-ratio spectra spectrophotometric method. The developed method allowed determination of Niclosamide in presence of its alkaline degradation products; namely; 2-chloro-4-nitro aniline (DEG I) and 5-chloro salicylic acid (DEG II) with characterization of its degradation mechanism. It was found that degradation kinetic of Niclosamide followed pseudo-first order under the established experimental conditions with a degradation rate constant (k) of 0.0829 mol/h and half life (t1/2) of 8.35 h. The overall degradation rate constant as a function of the temperature under the given conditions obeyed Arrhenius equation where the activation energy was calculated to be 3.41 kcal/mol. Copyright © 2014 Elsevier B.V. All rights reserved.
Argan woodlands in South Morocco as an area of conflict between degradation and sustainable land use
NASA Astrophysics Data System (ADS)
Kirchhoff, Mario; Kagermeier, Andreas; Ries, Johannes B.
2016-04-01
The Argan woodlands are endemic for South Morocco and prone to degradation through expanding and intensifying agriculture and overgrazing. Unvegetated areas extend further due to degradation of soil and vegetation. Here infiltration is less than on vegetated areas, while runoff and soil erosion increase. The sale of the highly valuable oil, gained from the seeds of the argan tree, can be seen as an economic alternative for the region and a chance of survival for the argan woodlands. With the introduction of women's cooperatives for the production and sale of the oil, the Gesellschaft für Technische Zusammenarbeit (GTZ, Association for Technical Cooperation) hoped to halt argan degradation from 1995 to 2002. The effects of this approach shall be studied in a proposed DFG-project. The erosion gradient between soils under canopy cover and intertree areas in varying stages of degradation will be at the center of the analysis. Insight into onsite and offsite degradation shall be gained through the measurement of runoff and erosion rates, which lead to rill and gully erosion downslope. Measurements of soil chemical and physical properties might also help indicate when an argan woodland can be classified as natural. Furthermore to be studied are the effects of the new found value of the Argan woodlands among the local population with focus on regional tourism and a possible reduction of grazing pressure. Sustainable soil management in combination with the needs of the local population is essential for a sustainable land use in the region.
Methods for cellobiosan utilization
Linger, Jeffrey; Beckham, Gregg T.
2017-07-11
Disclosed herein are enzymes useful for the degradation of cellobiosan in materials such a pyrolysis oils. Methods of degrading cellobiosan using enzymes or organisms expressing the same are also disclosed.
Effect of different oxytetracycline addition methods on its degradation behavior in soil.
Chen, Gui-Xiu; He, Wei-Wei; Wang, Yan; Zou, Yong-De; Liang, Juan-Boo; Liao, Xin-Di; Wu, Yin-Bao
2014-05-01
The degradation behavior of veterinary antibiotics in soil is commonly studied using the following methods of adding antibiotics to the soil: (i) adding manure collected from animals fed with a diet containing antibiotics, (ii) adding antibiotic-free animal manure spiked with antibiotics and (iii) directly adding antibiotics. No research simultaneously comparing different antibiotic addition methods was found. Oxytetracycline (OTC) was used as a model antibiotic to compare the effect of the three commonly used antibiotic addition methods on OTC degradation behavior in soil. The three treatment methods have similar trends, though OTC degradation half-lives show the following significant differences (P<0.05): manure from swine fed OTC (treatment A)
Method of degrading pollutants in soil
Hazen, Terry C.; Lopez-De-Victoria, Geralyne
1994-01-01
A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.
Real-time PCR for rapidly detecting aniline-degrading bacteria in activated sludge.
Kayashima, Takakazu; Suzuki, Hisako; Maeda, Toshinari; Ogawa, Hiroaki I
2013-05-01
We developed a detection method that uses quantitative real-time PCR (qPCR) and the TaqMan system to easily and rapidly assess the population of aniline-degrading bacteria in activated sludge prior to conducting a biodegradability test on a chemical compound. A primer and probe set for qPCR was designed by a multiple alignment of conserved amino acid sequences encoding the large (α) subunit of aniline dioxygenase. PCR amplification tests showed that the designed primer and probe set targeted aniline-degrading strains such as Acidovorax sp., Gordonia sp., Rhodococcus sp., and Pseudomonas putida, thereby suggesting that the developed method can detect a wide variety of aniline-degrading bacteria. There was a strong correlation between the relative copy number of the α-aniline dioxygenase gene in activated sludge obtained with the developed qPCR method and the number of aniline-degrading bacteria measured by the Most Probable Number method, which is the conventional method, and a good correlation with the lag time of the BOD curve for aniline degradation produced by the biodegradability test in activated sludge samples collected from eight different wastewater treatment plants in Japan. The developed method will be valuable for the rapid and accurate evaluation of the activity of inocula prior to conducting a ready biodegradability test. Copyright © 2013 Elsevier Ltd. All rights reserved.
Towards more effective robotic gait training for stroke rehabilitation: a review
2012-01-01
Background Stroke is the most common cause of disability in the developed world and can severely degrade walking function. Robot-driven gait therapy can provide assistance to patients during training and offers a number of advantages over other forms of therapy. These potential benefits do not, however, seem to have been fully realised as of yet in clinical practice. Objectives This review determines ways in which robot-driven gait technology could be improved in order to achieve better outcomes in gait rehabilitation. Methods The literature on gait impairments caused by stroke is reviewed, followed by research detailing the different pathways to recovery. The outcomes of clinical trials investigating robot-driven gait therapy are then examined. Finally, an analysis of the literature focused on the technical features of the robot-based devices is presented. This review thus combines both clinical and technical aspects in order to determine the routes by which robot-driven gait therapy could be further developed. Conclusions Active subject participation in robot-driven gait therapy is vital to many of the potential recovery pathways and is therefore an important feature of gait training. Higher levels of subject participation and challenge could be promoted through designs with a high emphasis on robotic transparency and sufficient degrees of freedom to allow other aspects of gait such as balance to be incorporated. PMID:22953989
Criteria and Planning Guidance for Ex-Plant Harvesting to Support Subsequent License Renewal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Devanathan, Ram; Meyer, Ryan M.
As U.S. nuclear power plants look to subsequent license renewal (SLR) to operate for a 20-year period beyond 60 years, the U.S. Nuclear Regulatory Commission and the industry will be addressing technical issues around the capability of long-lived passive components to meet their functionality objectives. A key challenge will be to better understand likely materials degradation mechanisms in these components and their impacts on component functionality and margins to safety. Research addressing many of the remaining technical gaps in these areas for SLR may greatly benefit from materials sampled from plants (decommissioned or operating). Because of the cost and inefficiencymore » of piecemeal sampling, there is a need for a strategic and systematic approach to sampling materials from structures, systems, and components (SSC) in both operating and decommissioned plants. This document describes a potential approach for sampling (harvesting) materials that focuses on prioritizing materials for sampling using a number of criteria. These criteria are based on an evaluation of technical gaps identified in the literature, research needs to address these technical gaps, and lessons learned from previous harvesting campaigns. The document also describes a process for planning future harvesting campaigns; such a plan would include an understanding of the harvesting priorities, available materials, and the planned use of the materials to address the technical gaps.« less
Degradation trend estimation of slewing bearing based on LSSVM model
NASA Astrophysics Data System (ADS)
Lu, Chao; Chen, Jie; Hong, Rongjing; Feng, Yang; Li, Yuanyuan
2016-08-01
A novel prediction method is proposed based on least squares support vector machine (LSSVM) to estimate the slewing bearing's degradation trend with small sample data. This method chooses the vibration signal which contains rich state information as the object of the study. Principal component analysis (PCA) was applied to fuse multi-feature vectors which could reflect the health state of slewing bearing, such as root mean square, kurtosis, wavelet energy entropy, and intrinsic mode function (IMF) energy. The degradation indicator fused by PCA can reflect the degradation more comprehensively and effectively. Then the degradation trend of slewing bearing was predicted by using the LSSVM model optimized by particle swarm optimization (PSO). The proposed method was demonstrated to be more accurate and effective by the whole life experiment of slewing bearing. Therefore, it can be applied in engineering practice.
Report of the Working Group on Large-Scale Computing in Aeronautics.
1984-06-01
incompressible approximations that are presently made in the lifting line or lifting surface representations of rotor blades. Finally, viscous effects in the forms... Effects of Rotor Model Degradation in the Accuracy of Rotocraft Real-Time Simulation, NASA TN D-8378;1977. 20. Gullen, R. K., Cattell, C. S., and Overton...assistance to member nations for the purpose of increasing their scientific and technical potential; - Recommending effective ways for the member nations
2010-03-01
goal of putting thousands of unemployed Afghans to work. USDA has provided technical guidance to assist the ACC and MAIL in developing a pistachio ...forest management plan for rehabilitating degraded pistachio woodlands. In 2006, participating villages realized a 65-percent increase in income from... pistachio nuts, with further growth realized in 2007. This project is being expanded to include other villages. U.S. Based Training. The Cochran
A novel accelerated oxidative stability screening method for pharmaceutical solids.
Zhu, Donghua Alan; Zhang, Geoff G Z; George, Karen L S T; Zhou, Deliang
2011-08-01
Despite the fact that oxidation is the second most frequent degradation pathway for pharmaceuticals, means of evaluating the oxidative stability of pharmaceutical solids, especially effective stress testing, are still lacking. This paper describes a novel experimental method for peroxide-mediated oxidative stress testing on pharmaceutical solids. The method utilizes urea-hydrogen peroxide, a molecular complex that undergoes solid-state decomposition and releases hydrogen peroxide vapor at elevated temperatures (e.g., 30°C), as a source of peroxide. The experimental setting for this method is simple, convenient, and can be operated routinely in most laboratories. The fundamental parameter of the system, that is, hydrogen peroxide vapor pressure, was determined using a modified spectrophotometric method. The feasibility and utility of the proposed method in solid form selection have been demonstrated using various solid forms of ephedrine. No degradation was detected for ephedrine hydrochloride after exposure to the hydrogen peroxide vapor for 2 weeks, whereas both anhydrate and hemihydrate free base forms degraded rapidly under the test conditions. In addition, both the anhydrate and the hemihydrate free base degraded faster when exposed to hydrogen peroxide vapor at 30°C under dry condition than at 30°C/75% relative humidity (RH). A new degradation product was also observed under the drier condition. The proposed method provides more relevant screening conditions for solid dosage forms, and is useful in selecting optimal solid form(s), determining potential degradation products, and formulation screening during development. Copyright © 2011 Wiley-Liss, Inc.
Rosado, Daniel; Usero, José; Morillo, José
2015-09-15
A new integrated sediment quality assessment method composed of several assays (particle size profile, total metal content, protease K extraction, total organic carbon, toxicity bioassay with Photobacterium phosphoreum and macrobenthic community alteration) that provides a single result, the environmental degradation index (EDI), has been developed. The new method was tested on the Huelva estuary (southwest of Spain), a highly polluted area where metals dissolved in the water of the Tinto and Odiel rivers precipitate after flowing through the Iberian Pyrite Belt, one of the largest metallogenic areas of massive sulphide deposits in the world. The proposed method satisfactorily was able to reflect different degrees of pollution on the environmental degradation index. Thus, EDI categorized littoral samples as slightly degraded and all the Tinto and some of the Odiel as very highly degraded, emphasizing the lower zone of the Tinto estuary as the most deeply degraded of the entire study area. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdulrahman, Sameer A. M.; Basavaiah, K.; Cijo, M. X.; Vinay, K. B.
2012-11-01
Spectrophotometric methods have been developed for the determination of dothiepin hydrochloride (DOTH) in both pure and tablet dosage form and their limits of detection and quantification have been evaluated. The methods are based on the measurement of the absorbance of a DOTH solution either in 0.1 N HCl at 229 nm (method A) or in methanol at 231 nm (method B). Beer's law is obeyed over a concentration range of 1-16 μg/ml DOTH for both methods. Molar absorptivity values are calculated to be 2.48 × 104 and 2.42 × 104 l/(mol × cm) with Sandell sensitivity values of 0.0134 and 0.0137 μg/cm2 for methods A and B, respectively. The degradation behavior of DOTH was investigated under different stress conditions such as acid hydrolysis, alkaline hydrolysis, water hydrolysis, oxidation, dry heat treatment, and UV-degradation. The drug undergoes significant degradation under oxidative conditions only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guang, Lu, E-mail: lu_g@163.com; Hui, Wang; Xuejun, Zou
2016-07-15
A group of BiOCl photocatalysts with different drying temperatures were prepared by a soft chemical method. The effects of drying temperatures on the crystalline phase, morphology, surface area and optical property of as-prepared samples were investigated in detail by XRD, SEM, N{sub 2} absorption–desorption and DRS. Moreover, their photocatalytic activities on the degradation of rhodamine B were evaluated under visible light irradiation. It was found that the sample dried at 120 °C had the best photocatalytic activity, which was mainly attributed to the highest exposing proportion of {001} facets correspond to BiOCl, largest BET and minimum bandgap. The degradation mechanismmore » was explored that superoxide radicals were mainly contributed to the degradation of chromophore, however, holes and hydroxyl were mainly contributed to the photo degradation. Moreover, holes and hydroxyl dominated the degradation of RhB. - Graphical abstract: Holes, hydroxyl and superoxide radicals can attribute to the degradation process but take different degradation pathways. Superoxide radicals mainly contribute to the degradation of chromophore, however, holes and hydroxyl mainly contribute to the photo degradation. Display Omitted - Highlights: • BiOCl nanosheets were prepared by a soft chemical method. • Effect of drying temperatures on as-prepared BiOCl samples was studied. • The highest removal efficiency of RhB was obtained over the sample dried at 120 °C.« less
Lu, Nan; Lu, Ying; Liu, Fangyuan; Zhao, Kun; Yuan, Xing; Zhao, Yahui; Li, Yuan; Qin, Hongwei; Zhu, Jia
2013-05-01
A series of experiments were conducted to investigate the kinetics of bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) degradation using H₃PW₁₂O₄₀/TiO₂ (PW₁₂/TiO₂) composite catalyst, toxicity of BPA intermediate products and degradation pathways. The results showed that the BPA photodegradation using PW₁₂/TiO₂ catalyst followed the first-order kinetics, and under the optimal experimental conditions at H₃PW₁₂O₄₀ loading amount of 6.3%, BPA initial concentration of 5 mg L(-1), and the solution pH of 8.2, the kinetic constant was 3.7-fold larger than that of pristine TiO₂. The hydroxyl radicals derived from the electroreduction of dissolved oxygen with electrons via chain reactions was the main reactive oxygen species. According to the identified intermediates, 4-isopropanolphenol, hydroquinone, 4-hydroxybenzoic acid, and phenol, the possible BPA photodegradation pathways were proposed. Upon 12h irradiation, 77% BPA (20 mg L(-1)) was mineralized and the toxicity to Daphnia magna (D. magna) was almost disappeared, implying the strong oxidation ability of PW₁₂/TiO₂ catalyst. The studies provide important information about the BPA degradation and promote the technical development for BPA removal. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leclercq, Sylvain; Lidbury, David; Van Dyck, Steven; Moinereau, Dominique; Alamo, Ana; Mazouzi, Abdou Al
2010-11-01
In nuclear power plants, materials may undergo degradation due to severe irradiation conditions that may limit their operational life. Utilities that operate these reactors need to quantify the ageing and the potential degradations of some essential structures of the power plant to ensure safe and reliable plant operation. So far, the material databases needed to take account of these degradations in the design and safe operation of installations mainly rely on long-term irradiation programs in test reactors as well as on mechanical or corrosion testing in specialized hot cells. Continuous progress in the physical understanding of the phenomena involved in irradiation damage and continuous progress in computer sciences have now made possible the development of multi-scale numerical tools able to simulate the effects of irradiation on materials microstructure. A first step towards this goal has been successfully reached through the development of the RPV-2 and Toughness Module numerical tools by the scientific community created around the FP6 PERFECT project. These tools allow to simulate irradiation effects on the constitutive behaviour of the reactor pressure vessel low alloy steel, and also on its failure properties. Relying on the existing PERFECT Roadmap, the 4 years Collaborative Project PERFORM 60 has mainly for objective to develop multi-scale tools aimed at predicting the combined effects of irradiation and corrosion on internals (austenitic stainless steels) and also to improve existing ones on RPV (bainitic steels). PERFORM 60 is based on two technical sub-projects: (i) RPV and (ii) internals. In addition to these technical sub-projects, the Users' Group and Training sub-project shall allow representatives of constructors, utilities, research organizations… from Europe, USA and Japan to receive the information and training to get their own appraisal on limits and potentialities of the developed tools. An important effort will also be made to teach young researchers in the field of materials' degradation. PERFORM 60 has officially started on March 1st, 2009 with 20 European organizations and Universities involved in the nuclear field.
Santos, C A; Freedman, B D; Leach, K J; Press, D L; Scarpulla, M; Mathiowitz, E
1999-06-28
The degradation of three poly(fumaric-co-sebacic anhydride) [P(FA:SA)] copolymers is examined in a composition of microspheres made by the hot melt encapsulation process. The emergence of low molecular weight oligomers occurs during degradation of the copolymer microspheres, as evidenced by a variety of characterization methods. Characterization was conducted to determine the extent of degradation of the polyanhydride microspheres using Fourier-transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction. It is demonstrated that degradation of P(FA:SA) is greatly accelerated at basic pH, yet there is little difference between degradation in neutral and acidic buffers. A good correlation exists between the results of each characterization method, which allows a better understanding of the degradation process and the resulting formation of low molecular weight oligomers in poly(fumaric-co-sebacic anhydride).
NASA Astrophysics Data System (ADS)
Harianti, Aulia Rahmi; Saksono, Nelson
2017-11-01
Phenol and Cr (VI) are two types of wastewater known as dangerous and difficult to degrade. Through this study, phenol and Cr (VI) metal wastewater were degraded simultaneously using plasma electrolysis method by reactive species, •OH and H•. The variation of anode depth and position of plasma formation as independent variables correlated with yield of hydroxyl radical, percentage of phenol and Cr (VI) degradation, and specific energy. Within 30 minutes, phenol was degraded to 98.4% and Cr (VI) was degraded to 93.35% with 171.05 kJ/mmol in specific energy, and 174.53 ppm in COD. The optimum condition was obtained in anodic plasma and 1.5 cm in anode depth. The highest degradation percentage of phenol and Cr (VI) were 99.79% and 97.33% achieved during 180 minutes of plasma electrolysis process.
Kumar, Navneet; Sangeetha, Dhanaraj; Reddy, Sunil P
2012-10-01
The objective of the current investigation was to study the degradation behavior of irinotecan hydrochloride under different International Conference on Harmonization (ICH) recommended stress conditions using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry and to establish a validated stability-indicating reverse-phase ultra-performance liquid chromatographic method for the quantitative determination of irinotecan hydrochloride and its seven impurities and degradation products in pharmaceutical dosage forms. Irinotecan hydrochloride was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Irinotecan hydrochloride was found to degrade significantly in oxidative and base hydrolysis and photolytic degradation conditions. The degradation products were well resolved from the main peak and its impurities, thus proving the stability-indicating power of the method. Chromatographic separation was achieved on a Waters Acquity BEH C8 (100 × 2.1 mm) 1.7-µm column with a mobile phase containing a gradient mixture of solvent A (0.02M KH(2)PO(4) buffer, pH 3.4) and solvent B (a mixture of acetonitrile and methanol in the ratio of 62:38 v/v). The mobile phase was delivered at a flow rate of 0.3 mL/min with ultraviolet detection at 220 nm. The run time was 8 min, within which irinotecan and its seven impurities and degradation products were satisfactorily separated. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of irinotecan hydrochloride in pharmaceutical dosage forms.
Stability-Indicating HPTLC Method for Studying Stress Degradation Behavior of Sulbutiamine HCl
Farid, Nehal F.; Abdelwahab, Nada S.
2016-01-01
Sulbutiamine (SUL) is an ester of thiazides with neurotropic action. A new stability indicating HPTLC method has been developed and validated for the determination of SUL in the presence of different degradation products. The drug was subjected to different stress conditions following ICH strategy such as hydrolytic degradation (neutral, alkaline and acidic hydrolysis), oxidation, photodegradation and dry heat degradation. The drug demonstrated degradation under all decomposition conditions except neutral hydrolysis and dry heat, where the drug was completely degraded with 0.1 N NaOH, 1 N HCl and 30% H2O2 while it was partially degradaed by 0.1 N HCl, 3% H2O2 and UV light. Structure elucidation of the resulting degradation products was performed using ESI-Q-MS–MS. A well-defined peak for SUL was obtained at Rf = 0.46 and was completely separated from all obtained degradation products. Chromatographic separation was carried out on HPTLC aluminum plates precoated with silica gel 60 F254 using acetone–methylene chloride–ammonia buffer (pH 8.5 ± 0.2) (7:3:0.5, v/v) as a developing system. Densitometric scanning of the separated peaks was performed at 254 nm. System suitability testing parameters were calculated to ascertain the quality performance of the developed method. The method was validated with respect to USP guidelines regarding accuracy, precision, specificity, robustness and ruggedness. Good correlation coefficients were achieved in the range of 0.4–5.0 µg/band, and the limit of detection and limit of quantitation were found to be 0.11 and 0.33 µg/band, respectively. The utility of the suggested method was verified by application to Arcalion forte® tablets where no interference from additives was found. PMID:26759487
De Barba, M; Miquel, C; Lobréaux, S; Quenette, P Y; Swenson, J E; Taberlet, P
2017-05-01
Microsatellite markers have played a major role in ecological, evolutionary and conservation research during the past 20 years. However, technical constrains related to the use of capillary electrophoresis and a recent technological revolution that has impacted other marker types have brought to question the continued use of microsatellites for certain applications. We present a study for improving microsatellite genotyping in ecology using high-throughput sequencing (HTS). This approach entails selection of short markers suitable for HTS, sequencing PCR-amplified microsatellites on an Illumina platform and bioinformatic treatment of the sequence data to obtain multilocus genotypes. It takes advantage of the fact that HTS gives direct access to microsatellite sequences, allowing unambiguous allele identification and enabling automation of the genotyping process through bioinformatics. In addition, the massive parallel sequencing abilities expand the information content of single experimental runs far beyond capillary electrophoresis. We illustrated the method by genotyping brown bear samples amplified with a multiplex PCR of 13 new microsatellite markers and a sex marker. HTS of microsatellites provided accurate individual identification and parentage assignment and resulted in a significant improvement of genotyping success (84%) of faecal degraded DNA and costs reduction compared to capillary electrophoresis. The HTS approach holds vast potential for improving success, accuracy, efficiency and standardization of microsatellite genotyping in ecological and conservation applications, especially those that rely on profiling of low-quantity/quality DNA and on the construction of genetic databases. We discuss and give perspectives for the implementation of the method in the light of the challenges encountered in wildlife studies. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Castillo, Carlos; Gomez, Jose Alfonso
2016-04-01
Standardization is the process of developing common conventions or proceedings to facilitate the communication, use, comparison and exchange of products or information among different parties. It has been an useful tool in different fields from industry to statistics due to technical, economic and social reasons. In science the need for standardization has been recognised in the definition of methods as well as in publication formats. With respect to gully erosion, a number of initiatives have been carried out to propose common methodologies, for instance, for gully delineation (Castillo et al., 2014) and geometrical measurements (Casalí et al., 2015). The main aims of this work are: 1) to examine previous proposals in gully erosion literature implying standardization processes; 2) to contribute with new approaches to improve the homogeneity of methodologies and presentation of results for a better communication among the gully erosion community. For this purpose, we evaluated the basic information provided on environmental factors, discussed the delineation and measurement procedures proposed in previous works and, finally, we analysed statistically the severity of degradation levels derived from different indicators at the world scale. As a result, we presented suggestions aiming to serve as guidance for survey design as well as for the interpretation of vulnerability levels and degradation rates for future gully erosion studies. References Casalí, J., Giménez, R., and Campo-Bescós, M. A.: Gully geometry: what are we measuring?, SOIL, 1, 509-513, doi:10.5194/soil-1-509-2015, 2015. Castillo C., Taguas E. V., Zarco-Tejada P., James M. R., and Gómez J. A. (2014), The normalized topographic method: an automated procedure for gully mapping using GIS, Earth Surf. Process. Landforms, 39, 2002-2015, doi: 10.1002/esp.3595
NASA Astrophysics Data System (ADS)
Reilhac, Anthonin; Boisson, Frédéric; Wimberley, Catriona; Parmar, Arvind; Zahra, David; Hamze, Hasar; Davis, Emma; Arthur, Andrew; Bouillot, Caroline; Charil, Arnaud; Grégoire, Marie-Claude
2016-02-01
In PET imaging, research groups have recently proposed different experimental set ups allowing multiple animals to be simultaneously imaged in a scanner in order to reduce the costs and increase the throughput. In those studies, the technical feasibility was demonstrated and the signal degradation caused by additional mice in the FOV characterized, however, the impact of the signal degradation on the outcome of a PET study has not yet been studied. Here we thoroughly investigated, using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies, different experimental designs for whole-body and brain acquisitions of two mice and assessed the actual impact on the detection of biological variations as compared to a single-mouse setting. First, we extended the validation of the PET-SORTEO Monte Carlo simulation platform for the simultaneous simulation of two animals. Then, we designed [18F]FDG and [11C]Raclopride input mouse models for the simulation of realistic whole-body and brain PET studies. Simulated studies allowed us to accurately estimate the differences in detection between single- and dual-mode acquisition settings that are purely the result of having two animals in the FOV. Validation results showed that PET-SORTEO accurately reproduced the spatial resolution and noise degradations that were observed with actual dual phantom experiments. The simulated [18F]FDG whole-body study showed that the resolution loss due to the off-center positioning of the mice was the biggest contributing factor in signal degradation at the pixel level and a minimal inter-animal distance as well as the use of reconstruction methods with resolution modeling should be preferred. Dual mode acquisition did not have a major impact on ROI-based analysis except in situations where uptake values in organs from the same subject were compared. The simulated [11C]Raclopride study however showed that dual-mice imaging strongly reduced the sensitivity to variations when mice were positioned side-by-side while no sensitivity reduction was observed when they were facing each other. This is the first study showing the impact of different experimental designs for whole-body and brain acquisitions of two mice on the quality of the results using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies.
NASA Technical Reports Server (NTRS)
Carter, J. R., Jr.; Tada, H. Y.
1973-01-01
A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.
[Application of synthetic biology in environmental remediation].
Tang, Hongzhi; Wang, Weiwei; Zhang, Lige; Huang, Ling; Lu, Xinyu; Xu, Ping
2017-03-25
Environmental problems are the most serious challenges in the 21st century. With the rapid development of modern industry and agriculture, ecological and environmental deterioration have become the most important factors to restrict the sustainable development of social economy. Microbial cells have strong ability for environmental remediation, but their evolution speed is slower than the speed of emerging pollutants. Therefore, the treatment using the synthetic biology is in urgent need. Full understanding of the microbial degradation characteristics (pathways) of refractory organic pollutants with the help of abundant microbial and gene resources in China is important. Using synthetic biology to redesign and transform the existing degrading strain will be used to degrade particular organic pollutants or multiple organic pollutants. For the complex pollutants, such as wastewater, based on the establishment of metabolic or regulation or resistance related gene modules of typical organic pollutants, artificial flora could be designed to solve the complex pollutants. The rational design and construction of engineering bacteria for typical environmental organic pollutants can effectively promote microbial catabolism of emerging contaminants, providing technical support for environmental remediation in China.
Łojewski, Tomasz; Zieba, Katarzyna; Lojewska, Joanna
2010-10-15
The paper deals with the application of size exclusion chromatography (SEC) for the studies of paper degradation phenomena. The goal is to solve some of the technical problems connected with the calibration of multi-detector SEC system and to find the correlation between SEC and viscometric results of degree of polymerization of cellulose. The results gathered for the paper samples degraded by acidic air pollutant (NO(2)) are used as an example of SEC-MALLS application. From the correlation between intrinsic viscosities and absolute value of molecular masses obtained with SEC/MALLS (Multi Angle Laser Light Scattering) technique, Mark-Houwink coefficients for cellulose in cupri-ethylenediamine solution were determined. Thus obtained coefficients were used for the determination of viscometric degree of polymerization (molecular mass) of the aged samples. An excellent correlation was found between the chromatographic values of molecular masses obtained with SEC-UV/VIS detection and the viscometric ones utilizing the improved values of Mark-Houwink coefficients. Copyright © 2010 Elsevier B.V. All rights reserved.
Waterman, Kenneth C; Swanson, Jon T; Lippold, Blake L
2014-10-01
Three competing mathematical fitting models (a point-by-point estimation method, a linear fit method, and an isoconversion method) of chemical stability (related substance growth) when using high temperature data to predict room temperature shelf-life were employed in a detailed comparison. In each case, complex degradant formation behavior was analyzed by both exponential and linear forms of the Arrhenius equation. A hypothetical reaction was used where a drug (A) degrades to a primary degradant (B), which in turn degrades to a secondary degradation product (C). Calculated data with the fitting models were compared with the projected room-temperature shelf-lives of B and C, using one to four time points (in addition to the origin) for each of three accelerated temperatures. Isoconversion methods were found to provide more accurate estimates of shelf-life at ambient conditions. Of the methods for estimating isoconversion, bracketing the specification limit at each condition produced the best estimates and was considerably more accurate than when extrapolation was required. Good estimates of isoconversion produced similar shelf-life estimates fitting either linear or nonlinear forms of the Arrhenius equation, whereas poor isoconversion estimates favored one method or the other depending on which condition was most in error. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Mejia Avendaño, Sandra; Liu, Jinxia
2015-01-01
The continuous production and use in certain parts of the world of perfluoroalkyl sulfonamide derivatives that can degrade to perfluorooctane sulfonic acid (PFOS) has called for better understanding of the environmental fate of these PFOS precursors. Aerobic soil biotransformation of N-ethyl perfluorooctane sulfonamide (EtFOSA, also known as Sulfluramid) was quantitatively investigated in semi-closed soil microcosms over 182 d for the first time. The apparent soil half-life of EtFOSA was 13.9±2.1 d and the yield to PFOS by the end of incubation was 4.0 mol%. A positive identification of a previously suspected degradation product, EtFOSA alcohol, provided strong evidence to determine degradation pathways. The lower mass balance in sterile soil than live soil suggested likely strong irreversible sorption of EtFOSA to the test soil. The aerobic soil biotransformation of a technical grade N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was semi-quantitatively examined, and the degradation pathways largely followed those in activated sludge and marine sediments. Aside from PFOS, major degradation products included N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonamide acetic acid (FOSAA). This study confirms that aerobic soil biotransformation of EtFOSE and EtFOSA contributes significantly to the PFOS observed in soil environment, as well as to several highly persistent sulfonamide derivatives frequently detected in biosolid-amended soils and landfill leachates. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Burrell, A. L.; Evans, J. P.; Liu, Y.
2017-12-01
Dryland degradation is an issue of international significance as dryland regions play a substantial role in global food production. Remotely sensed data provide the only long term, large scale record of changes within dryland ecosystems. The Residual Trend, or RESTREND, method is applied to satellite observations to detect dryland degradation. Whilst effective in most cases, it has been shown that the RESTREND method can fail to identify degraded pixels if the relationship between vegetation and precipitation has broken-down as a result of severe or rapid degradation. This study presents an extended version of the RESTREND methodology that incorporates the Breaks For Additive Seasonal and Trend method to identify step changes in the time series that are related to significant structural changes in the ecosystem, e.g. land use changes. When applied to Australia, this new methodology, termed Time Series Segmentation and Residual Trend analysis (TSS-RESTREND), was able to detect degradation in 5.25% of pixels compared to only 2.0% for RESTREND alone. This modified methodology was then assessed in two regions with known histories of degradation where it was found to accurately capture both the timing and directionality of ecosystem change.
Method of degrading pollutants in soil
Hazen, T.C.; Lopez-De-Victoria, G.
1994-07-05
Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.
NASA Astrophysics Data System (ADS)
Xiao, Liguang; Pang, Bo
2017-09-01
This experiment used zinc nitrate as precursor, ethanol as solvent and polyethylene glycol as dispersant, diatomite as carrier, diatomite loaded nano Zinc Oxide was prepared by sol-gel method, in addition, the formaldehyde degradation was studied by two kinds of experimental methods: preparation and loading, preparation and post loading, The samples were characterized by SEM, XRD, BET and IR. Experimental results showed that: Diatomite based nano Zinc Oxide had a continuous adsorption and degradation of formaldehyde, formaldehyde gas with initial concentration was 0.7mg/m3, after 36h degradation, the concentration reached 0.238mg/m3, the degradation rate reached to 66%.
Pandeti, Sukanya; Narender, Tadigoppula; Prabhakar, Sripadi; Reddy, Thota Jagadeswar
2017-03-30
Silodosin (SDN) is a novel α 1 -adrenoceptor antagonist in the treatment of benign prostatic hyperplasia (BPH). The presence of degradation products in a drug affects not only the quality, but also the safety and efficacy of drug formulation. Thus, it is essential to develop an efficient analytical method which could be useful to selectively separate, identify and characterise of all possible degradation products of SDN which is mandatory in drug development processes. SDN was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions. Separation of the drug and degradation products was achieved by a liquid chromatography (LC) method using an Acquity UPLC® BEH C18 (2.1 × 100 mm, 1.7 μm; Waters) column with mobile phase consisting of 0.1% formic acid (FA) in water (A) and 0.1% FA in acetonitrile (ACN) and methanol (MeOH) (1:1) (B) as organic modifier at a flow rate of 0.15 mL min -1 in gradient elution mode. Identification and characterization of the degradation products was performed by mass spectrometry methods using an LTQ-Orbitrap mass spectrometer. A total of five degradation products (DP1 to DP5) were formed under various stress conditions and their structures were proposed with the help of tandem mass spectrometry (MS/MS) experiments and high-resolution mass spectral data. A common degradation product (DP1) was observed under acidic and basic degradation conditions. DP2 was observed under acidic, DP4 and DP5 were observed under basic hydrolytic conditions, whereas DP3 was observed under oxidative conditions. SDN was found to be labile under hydrolytic and oxidative conditions. The structures of all the degradation products were proposed. The most rational mechanisms for the formation of the degradation products under different stress conditions have been established. The proposed method can be effectively used to carry out the determination and detection of SDN and its degradation products. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Kish, J.L.; Thurman, E.M.; Scribner, E.A.; Zimmerman, L.R.
2000-01-01
A method for the extraction and analysis of eight herbicides and five degradation products using solid-phase extraction from natural water samples followed by gas chromatography/mass spectrometry is presented in this report. This method was developed for dimethenamid; flufenacet; fluometuron and its degradation products, demethylfluometuron (DMFM), 3-(trifluromethyl)phenylurea (TFMPU), 3-(trifluromethyl)-aniline (TFMA); molinate; norflurazon and its degradation product, demethylnorflurazon; pendamethalin; the degradation product of prometryn, deisopropylprometryn; propanil; and trifluralin. The eight herbicides are used primarily in the southern United States where cotton, rice, and soybeans are produced. The exceptions are dimethenamid and flufenacet, which are used on corn in the Midwest. Water samples received by the U.S. Geological Survey's Organic Geochemistry Research Group in Lawrence, Kansas, are filtered to remove suspended particulate matter and then passed through disposable solid-phase extraction columns containing octadecyl-bonded porous silica (C-18) to extract the compounds. The herbicides and their degradation products are removed from the column by ethyl acetate elution. The eluate is evaporated under nitrogen, and components then are separated, identified, and quantified by injecting an aliquot of the concentrated extract into a high-resolution, fused-silica capillary column of a gas chromatograph/mass spectrometer under selected-ion mode. Method detection limits ranged from 0.02 to 0.05 ?g/L for all compounds with the exception of TFMPU, which has a method detection limit of 0.32 ?g/L. The mean absolute recovery is 107 percent. This method for the determination of herbicides and their degradation products is valuable for acquiring information about water quality and compound fate and transport in water.
Jahan, Md. Sarowar; Islam, Md. Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma
2014-01-01
A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R2) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R2 > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0–103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5–20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition. PMID:25452691
Jahan, Md Sarowar; Islam, Md Jahirul; Begum, Rehana; Kayesh, Ruhul; Rahman, Asma
2014-01-01
A rapid and stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method was developed for simultaneous quantification of paracetamol and ibuprofen in their combined dosage form especially to get some more advantages over other methods already developed for this combination. The method was validated according to United States Pharmacopeia (USP) guideline with respect to accuracy, precision, specificity, linearity, solution stability, robustness, sensitivity, and system suitability. Forced degradation study was validated according to International Conference on Harmonisation (ICH). For this, an isocratic condition of mobile phase comprising phosphate buffer (pH 6.8) and acetonitrile in a ratio of 65:35, v/v at a flow rate of 0.7 mL/minute over RP C18 (octadecylsilane (ODS), 150 × 4.6 mm, 5 μm, Phenomenex Inc.) column at ambient temperature was maintained. The method showed excellent linear response with correlation coefficient (R (2)) values of 0.999 and 1.0 for paracetamol and ibuprofen respectively, which were within the limit of correlation coefficient (R (2) > 0.995). The percent recoveries for two drugs were found within the acceptance limit of (97.0-103.0%). Intra-and inter-day precision studies of the new method were less than the maximum allowable limit percentage of relative standard deviation (%RSD) ≤ 2.0. Forced degradation of the drug product was carried out as per the ICH guidelines with a view to establishing the stability-indicating property of this method and providing useful information about the degradation pathways, degradation products, and how the quality of a drug substance and drug product changes with time under the influence of various stressing conditions. The degradation of ibuprofen was within the limit (5-20%, according to the guideline of ICH), while paracetamol showed <20% degradation in oxidation and basic condition.
Tian, Jingzhi; Rustum, Abu
2018-02-01
Imidacloprid is used as an active pharmaceutical ingredient (API) in veterinary drugs to control fleas and ticks for dogs and cats. Here we are reporting for the first time a validated stability-indicating reversed-phase UPLC-UV method for the assay of imidacloprid and estimation of its related compounds. The stability-indicating capability of this method has been demonstrated by a forced degradation study. All related compounds including processing impurities, imidacloprid API and degradates from stressed samples were well separated from each other. Structures of major degradates from forced degradation study were elucidated through UPLC-MS/MS and key degradation pathways were proposed from the proposed chemical structures of major degradates. The UPLC-UV method is carried out using an HSS T3 column (C18, 2.1 × 30 mm, 1.8 μm particle size) maintained at 30°C with mobile phase A (0.05% v/v of phosphoric acid in water) and mobile phase B (methanol/acetonitrile 75/25 v/v). Analytes are separated by a gradient elution and detected at 270 nm. The UPLC method is green and fast with only 6.5 min run time and about 3.5 ml mobile phase consumption for each sample analysis. The UPLC-UV method was validated according to ICH guidelines. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Towards Accelerated Aging Methodologies and Health Management of Power MOSFETs (Technical Brief)
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Patil, Nishad; Saha, Sankalita; Wysocki, Phil; Goebel, Kai
2009-01-01
Understanding aging mechanisms of electronic components is of extreme importance in the aerospace domain where they are part of numerous critical subsystems including avionics. In particular, power MOSFETs are of special interest as they are involved in high voltage switching circuits such as drivers for electrical motors. With increased use of electronics in aircraft control, it becomes more important to understand the degradation of these components in aircraft specific environments. In this paper, we present an accelerated aging methodology for power MOSFETs that subject the devices to indirect thermal overstress during high voltage switching. During this accelerated aging process, two major modes of failure were observed - latch-up and die attach degradation. In this paper we present the details of our aging methodology along with details of experiments and analysis of the results.
Video requirements for remote medical diagnosis
NASA Technical Reports Server (NTRS)
Davis, J. G.
1974-01-01
Minimal television system requirements for medical telediagnosis were studied. The experiment was conducted with the aid of a simulated telemedicine system. The first step involved making high quality videotape recordings of actual medical examinations conducted by a skilled nurse under the direction of a physician watching on closed circuit television. These recordings formed the baseline for the study. Next, these videotape recordings were electronically degraded to simulate television systems of less than broadcast quality. Finally, the baseline and degraded video recordings were shown (via a statistically randomized procedure) to a large number of physicians who attempted to reach a correct medical diagnosis and to visually recognize key physical signs for each patient. By careful scoring and analysis of the results of these viewings, the pictorial and diagnostic limitations as a function of technical video characteristics were to be defined.
Microbial enzymes: industrial progress in 21st century.
Singh, Rajendra; Kumar, Manoj; Mittal, Anshumali; Mehta, Praveen Kumar
2016-12-01
Biocatalytic potential of microorganisms have been employed for centuries to produce bread, wine, vinegar and other common products without understanding the biochemical basis of their ingredients. Microbial enzymes have gained interest for their widespread uses in industries and medicine owing to their stability, catalytic activity, and ease of production and optimization than plant and animal enzymes. The use of enzymes in various industries (e.g., food, agriculture, chemicals, and pharmaceuticals) is increasing rapidly due to reduced processing time, low energy input, cost effectiveness, nontoxic and eco-friendly characteristics. Microbial enzymes are capable of degrading toxic chemical compounds of industrial and domestic wastes (phenolic compounds, nitriles, amines etc.) either via degradation or conversion. Here in this review, we highlight and discuss current technical and scientific involvement of microorganisms in enzyme production and their present status in worldwide enzyme market.
Hydrogen blistering under extreme radiation conditions
NASA Astrophysics Data System (ADS)
Sznajder, Maciej; Geppert, Ulrich; Dudek, Miroslaw
2018-01-01
Metallic surfaces, exposed to a proton flux, start to degradate by molecular hydrogen blisters. These are created by recombination of protons with metal electrons. Continued irradiation progresses blistering, which is undesired for many technical applications. In this work, the effect of the proton flux magnitude onto the degradation of native metal oxide layers and its consequences for blister formation has been examined. To study this phenomenon, we performed proton irradiation experiments of aluminium surfaces. The proton kinetic energy was chosen so that all recombined hydrogen is trapped within the metal structure. As a result, we discovered that intense proton irradiation increases the permeability of aluminium oxide layers for hydrogen atoms, thereby counteracting blister formation. These findings may improve the understanding of the hydrogen blistering process, are valid for all metals kept under terrestrial ambient conditions, and important for the design of proton irradiation tests.
Bishop, Felicity L
2015-02-01
To outline some of the challenges of mixed methods research and illustrate how they can be addressed in health psychology research. This study critically reflects on the author's previously published mixed methods research and discusses the philosophical and technical challenges of mixed methods, grounding the discussion in a brief review of methodological literature. Mixed methods research is characterized as having philosophical and technical challenges; the former can be addressed by drawing on pragmatism, the latter by considering formal mixed methods research designs proposed in a number of design typologies. There are important differences among the design typologies which provide diverse examples of designs that health psychologists can adapt for their own mixed methods research. There are also similarities; in particular, many typologies explicitly orient to the technical challenges of deciding on the respective timing of qualitative and quantitative methods and the relative emphasis placed on each method. Characteristics, strengths, and limitations of different sequential and concurrent designs are identified by reviewing five mixed methods projects each conducted for a different purpose. Adapting formal mixed methods designs can help health psychologists address the technical challenges of mixed methods research and identify the approach that best fits the research questions and purpose. This does not obfuscate the need to address philosophical challenges of mixing qualitative and quantitative methods. Statement of contribution What is already known on this subject? Mixed methods research poses philosophical and technical challenges. Pragmatism in a popular approach to the philosophical challenges while diverse typologies of mixed methods designs can help address the technical challenges. Examples of mixed methods research can be hard to locate when component studies from mixed methods projects are published separately. What does this study add? Critical reflections on the author's previously published mixed methods research illustrate how a range of different mixed methods designs can be adapted and applied to address health psychology research questions. The philosophical and technical challenges of mixed methods research should be considered together and in relation to the broader purpose of the research. © 2014 The British Psychological Society.
2012-01-01
A rapid and reproducible stability indicating TLC method was developed for the determination of prednisolone acetate and chloramphenicol in presence of their degraded products. Uniform degradation conditions were maintained by refluxing sixteen reaction mixtures for two hours at 80°C using parallel synthesizer including acidic, alkaline and neutral hydrolysis, oxidation and wet heating degradation. Oxidation at room temperature, photochemical and dry heating degradation studies were also carried out. Separation was done on TLC glass plates, pre-coated with silica gel 60F-254 using chloroform: methanol (14:1 v/v). Spots at Rf 0.21 ± 0.02 and Rf 0.41 ± 0.03 were recognized as chloramphenicol and prednisolone acetate, respectively. Quantitative analysis was done through densitometric measurements at multiwavelength (243 nm, λmax of prednisolone acetate and 278 nm, λmax of chloramphenicol), simultaneously. The developed method was optimized and validated as per ICH guidelines. Method was found linear over the concentration range of 200-6000 ng/spot with the correlation coefficient (r2 ± S.D.) of 0.9976 ± 3.5 and 0.9920 ± 2.5 for prednisolone acetate and chloramphenicol, respectively. The developed TLC method can be applied for routine analysis of prednisolone acetate and chloramphenicol in presence of their degraded products in their individual and combined pharmaceutical formulations. PMID:22264235
Bearing performance degradation assessment based on time-frequency code features and SOM network
NASA Astrophysics Data System (ADS)
Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei
2017-04-01
Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data.
A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation
NASA Astrophysics Data System (ADS)
Xiong, Z.; Kaback, D.; Bennett, P. J.
2011-12-01
Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of <450 nm. During field injections, nZVI particles were observed in a monitoring well located 5 feet downgradient from the injection well. Chlorinated solvent degradation products, e.g. ethane and ethene, increased significantly in monitoring wells following nZVI injections. Groundwater monitoring will be continued for approximately eight months following the last sampling event in July 2011 to demonstrate the performance of nZVI particles.
Mazzarino, Monica; Abate, Maria Gabriella; Alocci, Roberto; Rossi, Francesca; Stinchelli, Raffaella; Molaioni, Francesco; de la Torre, Xavier; Botrè, Francesco
2011-01-10
The presence of microorganisms in urine samples, under favourable conditions of storage and transportation, may alter the concentration of steroid hormones, thus altering the correct evaluation of the urinary steroid profile in doping control analysis. According to the rules of the World Anti-Doping Agency (WADA technical document TD2004 EAAS), a testosterone deconjugation higher than 5% and the presence of 5α-androstane-3,17-dione and 5β-androstane-3,17-dione in the deconjugated fraction, are reliable indicators of urine degradation. The determination of these markers would require an additional quantitative analysis since the steroids screening analysis, in anti-doping laboratories, is performed in the total (free+conjugated) fraction. The aim of this work is therefore to establish reliable threshold values for some representative compounds (namely 5α-androstane-3,17-dione and 5β-androstane-3,17-dione) in the total fraction in order to predict directly at the screening stage the potential microbial degradation of the urine samples. Preliminary evidence on the most suitable degradation indexes has been obtained by measuring the urinary concentration of testosterone, epitestosterone, 5α-androstane-3,17-dione and 5β-androstane-3,17-dione by gas chromatography-mass spectrometric every day for 15 days in the deconjugated, glucuronide and total fraction of 10 pools of urines from 60 healthy subjects, stored under different pH and temperature conditions, and isolating the samples with one or more markers of degradation according to the WADA technical document TD2004EAAS. The threshold values for 5α-androstane-3,17-dione and 5β-androstane-3,17-dione were therefore obtained correlating the testosterone deconjugation rate with the urinary concentrations of 5α-androstane-3,17-dione and 5β-androstane-3,17-dione in the total fraction. The threshold values suggested as indexes of urine degradation in the total fraction were: 10 ng mL(-1) for 5α-androstane-3,17-dione and 20 ng mL(-1) for 5β-androstane-3,17-dione. The validity of this approach was confirmed by the analysis of routine samples for more than five months (i.e. on a total of more than 4000 urine samples): samples with a concentration of total 5α-androstane-3,17-dione and 5β-androstane-3,17-dione higher than the threshold values showed a percentage of free testosterone higher than 5 of its total amount; whereas free testosterone in a percentage higher than 5 of its total amount was not detected in urines with a concentration of total 5α-androstane-3,17-dione and 5β-androstane-3,17-dione lower than the threshold values. Copyright © 2010 Elsevier B.V. All rights reserved.
Xia, Jiaohui; Zhang, Hui; Ding, Shaoxuan; Li, Changyu; Ding, Jincheng; Lu, Jie
2017-07-12
The primary pollutants in reverse-osmosis concentrates (ROC) are the substances with the UV absorbance at 254 nm (UV 254 ), which is closely related to humic substances that can be degraded by humus-reducing bacteria. This work studied the degradation characteristics of humus-reducing bacteria in ROC treatment. The physiological and biochemical characteristics of humus-reducing bacteria were investigated, and the effects of pH values and electron donors on the reduction of humic analog, antraquinone-2, 6-disulfonate were explored to optimize the degradation. Furthermore, the O 3 -assisted UV-Fenton method was applied for the pretreatment of ROC, and the degradation of UV 254 absorbance was apparently promoted with their removal rate, reaching 84.2% after 10 days of degradation by humus-reducing bacteria.
He, Chunyang; Tian, Jie; Gao, Bin; Zhao, Yuanyuan
2015-01-01
Quantitatively distinguishing grassland degradation due to climatic variations from that due to human activities is of great significance to effectively governing degraded grassland and realizing sustainable utilization. The objective of this study was to differentiate these two types of drivers in the Liao River Basin during 1999-2009 using the residual trend (RESTREND) method and to evaluate the applicability of the method in semiarid and semihumid regions. The relationship between the normalized difference vegetation index (NDVI) and each climatic factor was first determined. Then, the primary driver of grassland degradation was identified by calculating the change trend of the normalized residuals between the observed and the predicted NDVI assuming that climate change was the only driver. We found that the RESTREND method can be used to quantitatively and effectively differentiate climate and human drivers of grassland degradation. We also found that the grassland degradation in the Liao River Basin was driven by both natural processes and human activities. The driving factors of grassland degradation varied greatly across the study area, which included regions having different precipitation and altitude. The degradation in the Horqin Sandy Land, with lower altitude, was driven mainly by human activities, whereas that in the Kungl Prairie, with higher altitude and lower precipitation, was caused primarily by climate change. Therefore, the drivers of degradation and local conditions should be considered in an appropriate strategy for grassland management to promote the sustainability of grasslands in the Liao River Basin.
Analysis of optical scheme for medium-range directed energy laser weapon system
NASA Astrophysics Data System (ADS)
Jabczyński, Jan K.; Kaśków, Mateusz; Gorajek, Łukasz; Kopczyński, Krzysztof
2017-10-01
The relations between range of operation and aperture of laser weapon system were investigated, taking into account diffraction and technical limitations as beam quality, accuracy of point tracking, technical quality of optical train, etc. As a result for the medium ranges of 1 - 2 km we restricted the analysis to apertures not wider than 150 mm and the optical system without adaptive optics. To choose the best laser beam shape, the minimization of aperture losses and thermooptical effects inside optics as well as the effective width of laser beam in far field should be taken into account. We have analyzed theoretically such a problem for the group of a few most interesting from that point of view profiles including for reference two limiting cases of Gaussian beam and `top hat' profile. We have found that the most promising is the SuperGaussian profile of index p = 2 for which the surfaces of beam shaper elements can be manufactured in the acceptable cost-effective way and beam quality does not decrease noticeably. Further, we have investigated the thermo-optic effects on the far field parameters of Gaussian and `top hat' beams to determine the influence of absorption in optical elements on beam quality degradation. The simplified formulae were derived for beam quality measures (parameter M2 and Strehl ratio) which enables to estimate the influence of absorption losses on degradation of beam quality.
Restoration of motion blurred images
NASA Astrophysics Data System (ADS)
Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.
2017-08-01
Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.
El-Gindy, A
2000-03-01
Two methods are presented for the determination of benoxinate HCI and its acid and alkali-induced degradation products using first derivative (1D) spectrophotometry with zero-crossing measurements and liquid chromatography. Benoxinate HCl was determined by measurement of its first derivative amplitude in mcllvaine's-citric acid phosphate buffer pH 7.0 at 268.4 and 272.4 nm in the presence of its alkali- and acid-induced degradation products, respectively. The acid- and alkali-induced, degradation products were determined by measurement of their first derivative amplitude in the same solvent at 307.5 nm. The LC method depends upon using a mu bondapak CN column with a mobile phase consisting of acetonitrile-water triethylamine (60:40:0.01, v/v) and adjusted to apparent pH 7. Quantitation was achieved with UV detection at 310 nm based on peak area. The proposed methods were utilized to investigate the kinetics of the acidic and alkaline degradation processes at different temperatures. The pH-rate profile of degradation of benoxinate HCl in Britton-Robinson buffer solutions was studied.
Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate.
Cortes-Tolalpa, Larisa; Norder, Justin; van Elsas, Jan Dirk; Falcao Salles, Joana
2018-03-01
The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were "trained" to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.
On modeling human reliability in space flights - Redundancy and recovery operations
NASA Astrophysics Data System (ADS)
Aarset, M.; Wright, J. F.
The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.
The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries
Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; ...
2015-11-21
Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less
De Micco, Veronica; Ruel, Katia; Joseleau, Jean-Paul; Aronne, Giovanna
2010-08-01
During cell wall formation and degradation, it is possible to detect cellulose microfibrils assembled into thicker and thinner lamellar structures, respectively, following inverse parallel patterns. The aim of this study was to analyse such patterns of microfibril aggregation and cell wall delamination. The thickness of microfibrils and lamellae was measured on digital images of both growing and degrading cell walls viewed by means of transmission electron microscopy. To objectively detect, measure and classify microfibrils and lamellae into thickness classes, a method based on the application of computerized image analysis combined with graphical and statistical methods was developed. The method allowed common classes of microfibrils and lamellae in cell walls to be identified from different origins. During both the formation and degradation of cell walls, a preferential formation of structures with specific thickness was evidenced. The results obtained with the developed method allowed objective analysis of patterns of microfibril aggregation and evidenced a trend of doubling/halving lamellar structures, during cell wall formation/degradation in materials from different origin and which have undergone different treatments.
Photocatalytic and Photoelectrochemically Degradation of Chlorsulfuron herbicide
NASA Astrophysics Data System (ADS)
Guo, Xu; Liu, Hongwei; Miao, Jinjie; Ma, Zhen
2017-12-01
Photocatalytic and photo electrochemical (PEC) degradation of chlorsulfuron herbicide were studied. Two novel PEC electrodes Ti/IrO2-Pt-WO3 (TIW) and Ti/IrO2-Pt-Ag3PO4 (TIA) were designed and some important factors were studied. Lower current density showed lower removal efficiency than higher conditions by electrochemical method. Furthermore, PEC showed higher degradation efficiency than the sum of individual EO and photocatalytic methode.
Characterization of technical surfaces by structure function analysis
NASA Astrophysics Data System (ADS)
Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.
2018-03-01
The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.
The Taguchi Method Application to Improve the Quality of a Sustainable Process
NASA Astrophysics Data System (ADS)
Titu, A. M.; Sandu, A. V.; Pop, A. B.; Titu, S.; Ciungu, T. C.
2018-06-01
Taguchi’s method has always been a method used to improve the quality of the analyzed processes and products. This research shows an unusual situation, namely the modeling of some parameters, considered technical parameters, in a process that is wanted to be durable by improving the quality process and by ensuring quality using an experimental research method. Modern experimental techniques can be applied in any field and this study reflects the benefits of interacting between the agriculture sustainability principles and the Taguchi’s Method application. The experimental method used in this practical study consists of combining engineering techniques with experimental statistical modeling to achieve rapid improvement of quality costs, in fact seeking optimization at the level of existing processes and the main technical parameters. The paper is actually a purely technical research that promotes a technical experiment using the Taguchi method, considered to be an effective method since it allows for rapid achievement of 70 to 90% of the desired optimization of the technical parameters. The missing 10 to 30 percent can be obtained with one or two complementary experiments, limited to 2 to 4 technical parameters that are considered to be the most influential. Applying the Taguchi’s Method in the technique and not only, allowed the simultaneous study in the same experiment of the influence factors considered to be the most important in different combinations and, at the same time, determining each factor contribution.
Alternate seal configuration for lithium primary cells
NASA Technical Reports Server (NTRS)
Kelley, J. A.
1982-01-01
The problem of glass degradation in the glass-to-metal seals in lithium/sulfur dioxide cells is discussed. The glass degradation mechanism is attributed to lithium reacting with glass which is a result of deposition of lithium at the glass/metal/electrolyte interface. The worst degradation was observed when cells were stored in the inverted position. Alternate sealing methods were examined and a modified Ziegler seal is considered to be one of the best possible methods. The seal consists of a crimp type soft seal using a plastic annulus and a metal tube. Results of degradation tests are presented.
Li, Ting; Zhang, Chao-Zhi; Gu, Chengyue
2017-12-01
With popular application of graphene and graphene oxide (GO), they have been discharged into water. Graphene and GO harm organisms. However, an efficient and economical method for removing graphene and GO in wastewater has seldom been reported. Graphene can be oxidized by hydrogen peroxide to give GO; therefore, degradation of graphene oxide is an important step in the procedure of removal of graphene from water. In this paper, GO degradation via photo-Fenton reaction under different conditions was carried out. Experimental results suggested that GO in wastewater can be efficiently and economically degraded into carbon dioxide and H 2 O when pH value is 3, concentration of H 2 O 2 and FeCl 3 are 35 mM and 5 ppm, respectively. Degradation mechanism of GO was suggested based on UV-vis absorption spectra, scanning electron microscopy, X-ray diffraction and liquid chromatography-mass spectra data of degradation intermediates. This paper suggests an efficient and economical degradation way of GO in wastewater.
Narayana, M B V; Chandrasekhar, K B; Rao, B M
2014-09-01
A validated specific stability-indicating reverse-phase liquid chromatographic method was developed for the quantitative determination of Ambrisentan as well as its related substances in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its related impurities. Forced degradation studies were performed on bulk samples of Ambrisentan as per the ICH-prescribed stress conditions using acid, base, oxidative, thermal stress and photolytic degradation to show the stability-indicating power of the LC method. Significant degradation in acidic, basic stress conditions was observed and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from the forced degradation studies and the impurity-spiked solution. Good resolution between the peaks corresponds to Ambrisentan-related impurities and degradation products from the analyte were achieved on a SunFire C18 column using a mobile phase consisting of a mixture of potassium dihydrogen orthophosphate at a pH adjusted to 2.5 with ortho-phosphoric acid in water and a mixture of acetonitrile:methanol using a simple linear gradient. The detection was carried out at 225 nm. The limit of detection and the limit of quantification for the Ambrisentan and its related impurities were established. The stressed test solutions were assayed against the qualified working standard of Ambrisentan and the mass balance in each case was between 98.9 and 100.3%, indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per the ICH requirements. The developed method was found to be suitable to check the quality of bulk samples of Ambrisentan at the time of batch release and also during its storage (long-term and accelerated stability). © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edger A., Jr.
1996-01-01
This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.
A General Accelerated Degradation Model Based on the Wiener Process.
Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning
2016-12-06
Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses.
A General Accelerated Degradation Model Based on the Wiener Process
Liu, Le; Li, Xiaoyang; Sun, Fuqiang; Wang, Ning
2016-01-01
Accelerated degradation testing (ADT) is an efficient tool to conduct material service reliability and safety evaluations by analyzing performance degradation data. Traditional stochastic process models are mainly for linear or linearization degradation paths. However, those methods are not applicable for the situations where the degradation processes cannot be linearized. Hence, in this paper, a general ADT model based on the Wiener process is proposed to solve the problem for accelerated degradation data analysis. The general model can consider the unit-to-unit variation and temporal variation of the degradation process, and is suitable for both linear and nonlinear ADT analyses with single or multiple acceleration variables. The statistical inference is given to estimate the unknown parameters in both constant stress and step stress ADT. The simulation example and two real applications demonstrate that the proposed method can yield reliable lifetime evaluation results compared with the existing linear and time-scale transformation Wiener processes in both linear and nonlinear ADT analyses. PMID:28774107
Using Corporate-Based Methods To Assess Technical Communication Programs.
ERIC Educational Resources Information Center
Faber, Brenton; Bekins, Linn; Karis, Bill
2002-01-01
Investigates methods of program assessment used by corporate learning sites and profiles value added methods as a way to both construct and evaluate academic programs in technical communication. Examines and critiques assessment methods from corporate training environments including methods employed by corporate universities and value added…
Atomistic modeling of water diffusion in hydrolytic biomaterials.
Gautieri, Alfonso; Mezzanzanica, Andrea; Motta, Alberto; Redealli, Alberto; Vesentini, Simone
2012-04-01
One of the most promising applications of hydrolytically degrading biomaterials is their use as drug release carriers. These uses, however, require that the degradation and diffusion of drug are reliably predicted, which is complex to achieve through present experimental methods. Atomistic modeling can help in the knowledge-based design of degrading biomaterials with tuned drug delivery properties, giving insights on the small molecules diffusivity at intermediate states of the degradation process. We present here an atomistic-based approach to investigate the diffusion of water (through which hydrolytic degradation occurs) in degrading bulk models of poly(lactic acid) or PLA. We determine the water diffusion coefficient for different swelling states of the polymeric matrix (from almost dry to pure water) and for different degrees of degradation. We show that water diffusivity is highly influenced by the swelling degree, while little or not influenced by the degradation state. This approach, giving water diffusivity for different states of the matrix, can be combined with diffusion-reaction analytical methods in order to predict the degradation path on longer time scales. Furthermore, atomistic approach can be used to investigate diffusion of other relevant small molecules, eventually leading to the a priori knowledge of degradable biomaterials transport properties, helping the design of the drug delivery systems.
Method for modeling the gradual physical degradation of a porous material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, Greg
Cementitious and other engineered porous materials encountered in waste disposals may degrade over time due to one or more mechanisms. Physical degradation may take the form of cracking (fracturing) and/or altered (e.g. increased) porosity, depending on the material and underlying degradation mechanism. In most cases, the hydraulic properties of degrading materials are expected to evolve due to physical changes occurring over roughly the pore to decimeter scale, which is conducive to calculating equivalent or effective material properties. The exact morphology of a degrading material in its end-state may or may not be known. In the latter case, the fully-degraded conditionmore » can be assumed to be similar to a more-permeable material in the surrounding environment, such as backfill soil. Then the fully-degraded waste form or barrier material is hydraulically neutral with respect to its surroundings, constituting neither a barrier to nor conduit for moisture flow and solute transport. Unless the degradation mechanism is abrupt, a gradual transition between the intact initial and fully-degraded final states is desired. Linear interpolation through time is one method for smoothly blending hydraulic properties between those of an intact matrix and those of a soil or other surrogate for the end-state.« less
A new approach to accelerated drug-excipient compatibility testing.
Sims, Jonathan L; Carreira, Judith A; Carrier, Daniel J; Crabtree, Simon R; Easton, Lynne; Hancock, Stephen A; Simcox, Carol E
2003-01-01
The purpose of this study was to develop a method of qualitatively predicting the most likely degradants in a formulation or probing specific drug-excipient interactions in a significantly shorter time frame than the typical 1 month storage testing. In the example studied, accelerated storage testing of a solid dosage form at 50 degrees C, the drug substance SB-243213-A degraded via the formation of two oxidative impurities. These impurities reached a level of 1% PAR after 3 months. Various stressing methods were examined to try to recreate this degradation and in doing so provide a practical and reliable method capable of predicting drug-excipient interactions. The technique developed was able to mimic the 1-month's accelerated degradation in just 1 hr. The method was suitable for automated analysis, capable of multisample stressing, and ideal for use in drug-excipient compatibility screening.
Scanning electron microscopy of bone: instrument, specimen, and issues.
Boyde, A; Jones, S J
1996-02-01
There are many ways available now to maximise and analyse the information that can be obtained on the structure and constitution of bone using SEM. This paper considers a range of methods and the problems that arise relating to instrumentation and methodology as they apply to the use of SEM in the study of bone. In addition to the review content, some novel technical approaches to the SEM of bone are considered here for the first time; these include low kV imaging for the detection of new surface bone packets (and residual demineralized matrix after resorption), low kV BSE imaging of uncoated, embedded, and unembedded samples, environmental SEM for the study of wet tissue, low distortion, very low magnification imaging for the study of cancellous bone architecture, the use of multiple detectors for fast electrons in improving the imaging of porous samples, and high resolution, low voltage imaging for the study of collagen degradation during bone resorption.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1997-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.
Salman, D; Peron, J-M R; Goronga, T; Barton, S; Swinden, J; Nabhani-Gebara, S
2016-03-01
The aim of this study is to conduct a forced degradation study on ifosfamide under several stress conditions to investigate the robustness of the developed HPLC method. It also aims to provide further insight into the stability of ifosfamide and its degradation profile using both HPLC and NMR. Ifosfamide solutions (20mg/mL; n=15, 20mL) were stressed in triplicate by heating (70°C), under acidic (pH 1 & 4) and alkaline (pH 10 & 12) conditions. Samples were analysed periodically using HPLC and FT-NMR. Ifosfamide was most stable under weakly acidic conditions (pH 4). NMR results suggested that the mechanism of ifosfamide degradation involves the cleavage of the PN bond. For all stress conditions, HPLC was not able to detect ifosfamide degradation products that were detected by NMR. These results suggest that the developed HPLC method for ifosfamide did not detect the degradation products shown by NMR. It is possible that degradation products co-elute with ifosfamide, do not elute altogether or are not amenable to the detection method employed. Therefore, investigation of ifosfamide stability requires additional techniques that do not suffer from the aforementioned shortcomings. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
A Novel Degradation Identification Method for Wind Turbine Pitch System
NASA Astrophysics Data System (ADS)
Guo, Hui-Dong
2018-04-01
It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.
Modelling accelerated degradation data using Wiener diffusion with a time scale transformation.
Whitmore, G A; Schenkelberg, F
1997-01-01
Engineering degradation tests allow industry to assess the potential life span of long-life products that do not fail readily under accelerated conditions in life tests. A general statistical model is presented here for performance degradation of an item of equipment. The degradation process in the model is taken to be a Wiener diffusion process with a time scale transformation. The model incorporates Arrhenius extrapolation for high stress testing. The lifetime of an item is defined as the time until performance deteriorates to a specified failure threshold. The model can be used to predict the lifetime of an item or the extent of degradation of an item at a specified future time. Inference methods for the model parameters, based on accelerated degradation test data, are presented. The model and inference methods are illustrated with a case application involving self-regulating heating cables. The paper also discusses a number of practical issues encountered in applications.
TiO2 used as photocatalyst for rhodamine B degradation under solar radiation
NASA Astrophysics Data System (ADS)
Ariyanti, Dessy; Maillot, Mathilde; Gao, Wei
2017-07-01
Transition metal oxide photocatalysis is a relatively new method representing advanced oxidation process to be applied in industrial wastewater treatment especially for degradation of organic pollutants. We investigate TiO2 as a photocatalyst for the photocatalytic degradation of Rhodamine B (RhB) under simulated sunlight. Various parameters and their effectiveness have been studied. The effects of processing parameters including catalyst loading and feed concentration were investigated; and the degradation pathway was proposed based on the UHPLC-MS analysis. The result showed that a higher kinetic rate can be obtained by employing low catalyst loading and feed concentration, i.e., 0.5 g/L of TiO2 loading and 5 ppm of RhB concentration, respectively. For this particular system, the optimum degradation rate (k) can achieve 0.297/min. The effectiveness of solar light-TiO2 system for RhB degradation shows this method can be used for wastewater treatment.
Evaluation of jamming efficiency for the protection of a single ground object
NASA Astrophysics Data System (ADS)
Matuszewski, Jan
2018-04-01
The electronic countermeasures (ECM) include methods to completely prevent or restrict the effective use of the electromagnetic spectrum by the opponent. The most widespread means of disorganizing the operation of electronic devices is to create active and passive radio-electronic jamming. The paper presents the way of jamming efficiency calculations for protecting ground objects against the radars mounted on the airborne platforms. The basic mathematical formulas for calculating the efficiency of active radar jamming are presented. The numerical calculations for ground object protection are made for two different electronic warfare scenarios: the jammer is placed very closely and in a determined distance from the protecting object. The results of these calculations are presented in the appropriate figures showing the minimal distance of effective jamming. The realization of effective radar jamming in electronic warfare systems depends mainly on the precise knowledge of radar and the jammer's technical parameters, the distance between them, the assumed value of the degradation coefficient, the conditions of electromagnetic energy propagation and the applied jamming method. The conclusions from these calculations facilitate making a decision regarding how jamming should be conducted to achieve high efficiency during the electronic warfare training.
Guo, Sujuan; Pridham, Kevin J; Sheng, Zhi
2016-01-01
Autophagy is a catabolic process whereby cellular components are degraded to fuel cells for longer survival during stress. Hence, autophagy plays a vital role in determining cell fate and is central for homeostasis and pathogenesis of many human diseases including chronic myeloid leukemia (CML). It has been well established that autophagy is important for the leukemogenesis as well as drug resistance in CML. Thus, autophagy is an intriguing therapeutic target. However, current approaches that detect autophagy lack reliability and often fail to provide quantitative measurements. To overcome this hurdle and facilitate the development of autophagy-related therapies, we have recently developed an autophagy assay termed as the Cyto-ID fluorescence spectrophotometric assay. This method uses a cationic fluorescence dye, Cyto-ID, which specifically labels autophagic compartments and is detected by a spectrophotometer to permit a large-scale and quantitative analysis. As such, it allows rapid, reliable, and quantitative detection of autophagy and estimation of autophagy flux. In this chapter, we further provide technical details of this method and step-by-step protocols for measuring autophagy or autophagy flux in CML cell lines as well as primary hematopoietic cells.
[Ecological design of ditches in agricultural land consolidation: a review].
Ye, Yan-mei; Wu, Ci-fang; Yu, Jing
2011-07-01
Agricultural land consolidation is a strong disturbance to farmland ecosystem. In traditional agricultural land consolidation, the main technical and economic indices for the design of ditches include the convenience for production and transportation, the allocation of water resources, and the improvement of water utilization, but short of ecological consideration, which has already affected the spread of agricultural species, caused the degradation of bio-habitat, and given obvious negative effects on the bio-competition mechanism, buffering and compensation capacity, and insect pests-resistance of farmland ecosystem. This paper summarized the functions of ecological ditches, and introduced the recent progress on the formations and construction designs of ecological ditches, tests of ecological engineering methods, and technologies and methods of choosing correct ecological materials. It was suggested that the future research should focus on the different functional requirements and specifications for different roads and ditches, and the characteristics and habitats of all the organisms and animals should be considered by the designers and constructors. Moreover, a comprehensive design which meets the ecological demands for the ditches' formations, structures, and regulatory sizes should be taken into account to solve the most of the problems listed above.
NASA Astrophysics Data System (ADS)
Abd El-Rahman, Mohamed K.; Riad, Safaa M.; Abdel Gawad, Sherif A.; Fawaz, Esraa M.; Shehata, Mostafa A.
2015-02-01
Three sensitive, selective, and precise stability indicating methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA), in the presence of its acidic degradation product (highly cytotoxic 3,5 diamino metabolite) and in pharmaceutical formulation were developed and validated. The first method is a first derivative (D1) spectrophotometric one, which allows the determination of DTA in the presence of its degradate at 231.2 nm (corresponding to zero crossing of the degradate) over a concentration range of 2-24 μg/mL with mean percentage recovery 99.95 ± 0.97%. The second method is the first derivative of the ratio spectra (DD1) by measuring the peak amplitude at 227 nm over the same concentration range as D1 spectrophotometric method, with mean percentage recovery 99.99 ± 1.15%. The third method is a TLC-densitometric one, where DTA was separated from its degradate on silica gel plates using chloroform:methanol:ammonium hydroxide (20:10:2 by volume) as a developing system. This method depends on quantitative densitometric evaluation of thin layer chromatogram of DTA at 238 nm over a concentration range of 4-20 μg/spot, with mean percentage recovery 99.88 ± 0.89%. The selectivity of the proposed methods was tested using laboratory-prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.
Jadhav, Sushant B; Reddy, P Sunil; Narayanan, Kalyanaraman L; Bhosale, Popatrao N
2017-06-27
The novel reverse phase-high performance liquid chromatography (RP-HPLC), stability indicating method was developed for determination of linagliptin (LGP) and its related substances in linagliptin and metformin HCl (MET HCl) tablets by implementing design of experiment to understand the critical method parameters and their relation with critical method attributes; to ensure robustness of the method. The separation of nine specified impurities was achieved with a Zorbax SB-Aq 250 × 4.6 mm, 5 µm column, using gradient elution and a detector wavelength of 225 nm, and validated in accordance with International Conference on Harmonization (ICH) guidelines and found to be accurate, precise, reproducible, robust, and specific . The drug was found to be degrading extensively in heat, humidity, basic, and oxidation conditions and was forming degradation products during stability studies. After slight modification in the buffer and the column, the same method was used for liquid chromatography-mass spectrometry (LC-MS) and ultra-performance liquid chromatography -time-of-flight/mass spectrometry UPLC-TOF/MS analysis, to identify m/z and fragmentation of maximum unspecified degradation products i.e., Impurity-VII ( 7 ), Impurity-VIII ( 8 ), and Impurity-IX ( 9 ) formed during stability studies. Based on the results, a degradation pathway for the drug has been proposed and synthesis of Impurity-VII ( 7 ) is also discussed to ensure an in-depth understanding of LGP and its related degradation products and optimum performance during the lifetime of the product.
Stability-Indicating HPTLC Method for Studying Stress Degradation Behavior of Sulbutiamine HCl.
Farid, Nehal F; Abdelwahab, Nada S
2016-04-01
Sulbutiamine (SUL) is an ester of thiazides with neurotropic action. A new stability indicating HPTLC method has been developed and validated for the determination of SUL in the presence of different degradation products. The drug was subjected to different stress conditions following ICH strategy such as hydrolytic degradation (neutral, alkaline and acidic hydrolysis), oxidation, photodegradation and dry heat degradation. The drug demonstrated degradation under all decomposition conditions except neutral hydrolysis and dry heat, where the drug was completely degraded with 0.1 N NaOH, 1 N HCl and 30% H2O2 while it was partially degradaed by 0.1 N HCl, 3% H2O2 and UV light. Structure elucidation of the resulting degradation products was performed using ESI-Q-MS-MS. A well-defined peak for SUL was obtained at Rf = 0.46 and was completely separated from all obtained degradation products. Chromatographic separation was carried out on HPTLC aluminum plates precoated with silica gel 60 F254 using acetone-methylene chloride-ammonia buffer (pH 8.5 ± 0.2) (7:3:0.5, v/v) as a developing system. Densitometric scanning of the separated peaks was performed at 254 nm. System suitability testing parameters were calculated to ascertain the quality performance of the developed method. The method was validated with respect to USP guidelines regarding accuracy, precision, specificity, robustness and ruggedness. Good correlation coefficients were achieved in the range of 0.4-5.0 µg/band, and the limit of detection and limit of quantitation were found to be 0.11 and 0.33 µg/band, respectively. The utility of the suggested method was verified by application to Arcalion forte® tablets where no interference from additives was found. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ahmad, Abdel Kader S; Kawy, M Abdel; Nebsen, M
2002-10-15
Three methods are presented for the determination of Nicergoline in presence of its hydrolysis-induced degradation product. The first method was based on measurement of the first derivative of ratio spectra amplitude of Nicergoline at 291 nm. The second method was based on separation of Nicergoline from its degradation product followed by densitometric measurement of the spots at 287 nm. The separation was carried out on HPTLC silica gel F(254) plates, using methanol-ethyl acetate-glacial acetic acid (5:7:3, v/v/v) as mobile phase. The third method was based on high performance liquid chromatographic (HPLC) separation and determination of Nicergoline from its degradation product on a reversed phase, nucloesil C(18) column using a mobile phase of methanol-water-glacial acetic acid (80:20:0.1, v/v/v) with UV detection at 280 nm. Chlorpromazine hydrochloride was used as internal standard. Laboratory prepared mixtures containing different percentages of the degradation product were analysed by the proposed methods and satisfactory results were obtained. These methods have been successfully applied to the analysis of Nicergoline in Sermion tablets. The validities of these methods were ascertained by applying standard addition technique, the mean percentage recovery +/- R.S.D.% was found to be 99.47 +/- 0.752, 100.01 +/- 0.940, 99.75 +/- 0.740 for the first derivative of ratio spectra method, the HPTLC method and the HPLC method, respectively. The proposed methods were statistically compared with the manufacturer's HPLC method of analysis of Nicergoline and no significant difference was found with respect to both precision and accuracy. They have the advantage of being stability indicating. Therefore, they can be used for routine analysis of the drug in quality control laboratories. Copyright 2002 Elsevier Science B.V.
Chemotactic selection of pollutant degrading soil bacteria
Hazen, T.C.
1991-03-04
A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.
Li, Jinlong; Zhang, Yidan; Zhou, Xin; Ji, Wenjie; Zhao, Jihong; Wei, Luqing; Li, Yuming
2014-09-01
To evaluate a novel method for in vitro generation and degradation of neutrophil extracellular traps (NETs), which are a newly recognized structure that is involved in the pathogenesis of autoimmune diseases and thrombosis. Neutrophils from peripheral blood of healthy donors were obtained by Ficoll-Histopaque gradient separation. NET release was initiated by phorbol myristate acetate (PMA) and validated by immunofluorescence staining and agarose gel electrophoresis. NETs degraded by DNase I and healthy human plasma were quantified by fluorescence spectrometry after staining with PicoGreen. HE staining showed that the purity of neutrophils was up to 95% after Ficoll-Histopaque gradient separation. NET immunofluorescent staining revealed that the network structure was mainly composed of DNA and histones, with molecular length more than 10 kb as demonstrated by agarose gel electrophoresis. Moreover, both DNase and healthy human plasma could induce the degradation of NETs, in varying degrees. This work established an efficient method for in vitro generation and degradation of human NETs.
Zhang, Zhen; Wang, Bao-Jie; Guan, Hong-Yu; Pang, Hao; Xuan, Jin-Feng
2009-11-01
Reducing amplicon sizes has become a major strategy for analyzing degraded DNA typical of forensic samples. However, amplicon sizes in current mini-short tandem repeat-polymerase chain reaction (PCR) and mini-sequencing assays are still not suitable for analysis of severely degraded DNA. In this study, we present a multiplex typing method that couples ligase detection reaction with PCR that can be used to identify single nucleotide polymorphisms and small-scale insertion/deletions in a sample of severely fragmented DNA. This method adopts thermostable ligation for allele discrimination and subsequent PCR for signal enhancement. In this study, four polymorphic loci were used to assess the ability of this technique to discriminate alleles in an artificially degraded sample of DNA with fragment sizes <100 bp. Our results showed clear allelic discrimination of single or multiple loci, suggesting that this method might aid in the analysis of extremely degraded samples in which allelic drop out of larger fragments is observed.
Peraman, Ramalingam; Nayakanti, Devanna; Dugga, Hari Hara Theja; Kodikonda, Sudhakara
2013-01-01
A validated stability-indicating RP-HPLC method for etofenamate (ETF) was developed by separating its degradation products on a C18 (250 mm × 4.6 mm 5 μm) Qualisil BDS column using a phosphate buffer (pH-adjusted to 6.0 with orthophosphoric acid) and methanol in the ratio of 20:80 % v/v as the mobile phase at a flow rate of 1.0 mL/min. The column effluents were monitored by a photodiode array detector set at 286 nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit, and robustness. Forced degradation of etofenamate was carried out under acidic, basic, thermal, photo, and peroxide conditions and the major degradation products of acidic and basic degradation were isolated and characterized by 1H-NMR, 13C-NMR, and mass spectral studies. The mass balance of the method varied between 92–99%. PMID:24482770
Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao
2016-01-01
Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product’s performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner’s ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters. PMID:27509499
Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao
2016-08-06
Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product's performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner's ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters.
Murphy, Thomas; Schwedock, Julie; Nguyen, Kham; Mills, Anna; Jones, David
2015-01-01
New recommendations for the validation of rapid microbiological methods have been included in the revised Technical Report 33 release from the PDA. The changes include a more comprehensive review of the statistical methods to be used to analyze data obtained during validation. This case study applies those statistical methods to accuracy, precision, ruggedness, and equivalence data obtained using a rapid microbiological methods system being evaluated for water bioburden testing. Results presented demonstrate that the statistical methods described in the PDA Technical Report 33 chapter can all be successfully applied to the rapid microbiological method data sets and gave the same interpretation for equivalence to the standard method. The rapid microbiological method was in general able to pass the requirements of PDA Technical Report 33, though the study shows that there can be occasional outlying results and that caution should be used when applying statistical methods to low average colony-forming unit values. Prior to use in a quality-controlled environment, any new method or technology has to be shown to work as designed by the manufacturer for the purpose required. For new rapid microbiological methods that detect and enumerate contaminating microorganisms, additional recommendations have been provided in the revised PDA Technical Report No. 33. The changes include a more comprehensive review of the statistical methods to be used to analyze data obtained during validation. This paper applies those statistical methods to analyze accuracy, precision, ruggedness, and equivalence data obtained using a rapid microbiological method system being validated for water bioburden testing. The case study demonstrates that the statistical methods described in the PDA Technical Report No. 33 chapter can be successfully applied to rapid microbiological method data sets and give the same comparability results for similarity or difference as the standard method. © PDA, Inc. 2015.
Nondestructive testing methods to predict effect of degradation on wood : a critical assessment
J. Kaiserlik
1978-01-01
Results are reported for an assessment of methods for predicting strength of wood, wood-based, or related material. Research directly applicable to nondestructive strength prediction was very limited. In wood, strength prediction research is limited to vibration decay, wave attenuation, and multiparameter "degradation models." Nonwood methods with potential...
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Arafa, Reham M.; Abbas, Samah S.; Amer, Sawsan M.
2016-01-01
Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL- 1. Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method.
Efficient Safety and Degradation Modeling of Automotive Lithium-ion Cells and Packs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao-Yang
2017-09-07
This document is intended to give an overall synopsis of the activities and accomplishments of the EC Power CAEBAT2 project over the course of four years. The reader is referred to the previously submitted quarterly reports, review presentations, and AMR presentations for further technical details. As highlighted by the numerous results shown herein and the volume and quality of the publications and presentations made in the course of this project, we feel that we have made a strong impact in the community.
Thermoelectric materials evaluation program. Technical summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderman, J.D.
1979-04-01
Research progress on the thermoelectric materials evaluation program is reported covering the period January 1, 1976 to September 30, 1978. Topical reports are presented on (1) hot and cold end ..delta..T's, (2) hardware mobility, (3) p-leg sublimation suppression, (4) thermodynamic stability of p-legs, (5) n-leg material process improvements to reduce extraneous resistance, (6) n-leg cracking, (7) dynamic evaluation of converter, and (8) data base and degradation modes. Twenty attachments are included which present supporting drawings, specifications, procedures, and data. (WHK)
Criteria for evaluation of reflective surface for parabolic dish concentrators
NASA Technical Reports Server (NTRS)
Bouquet, F.
1980-01-01
Commercial, second surface glass mirror are emphasized, but aluminum and metallized polymeric films are also included. Criteria for sealing solar mirrors in order to prevent environmental degradation and criteria for bonding sagged or bent mirrors to substrate materials are described. An overview of the technical areas involved in evaluating small mirror samples, sections, and entire large gores is presented. A basis for mirror criteria was established that eventually may become part of inspection and evaluation techniques for three dimensional parabolic reflective surfaces.
DCS (Defense Communications System) Technical Control Engineering Criteria. Revision 1
1981-05-01
Switched Network 5-9-14 5.9.6(g) Application of Principle of Time-Slot Interchange for Alt-Routing 5-9-15 5.9.6(h) Digital Interface (typical...is an approximate chart and does not take into account signal degradations which may be caused by frame cross-connects, patch jacks, or splices...Manual, TSEC/KG-30/30A/33A/34/34A Volume I - Description, Installation, and Principles of Operation KAM-238/TSEC Maintenance Maliual TSEC/KG-30/30A/33/33A
NASA Astrophysics Data System (ADS)
Helsen, Jef A.; Jürgen Breme, H.
1998-10-01
Biomaterials is a field that continues to attract a significant amount of attention from researchers, industry, educationalists and regulators. This book is the first to provide readers with an understanding of fundamental theory relating to the use of metals in biomedical applications in addition to comprehensively covering applied aspects encompassing practical and technical advantages and disadvantages. Topics highlighted in the book include guidelines for selecting materials; shape memory alloys; degradation and surface modification; adhesion to ceramics and polymers; biocompartibility and tissue-implant interactions; and European and North American regulatory issues.
Basic Technical Data on Transmission Systems and Equipment Using Communications Lines. Part 1.
1978-08-01
without noticeable degradation of the speech quality. - 219 - The maximum number of repeater sections: For the KNK-6s For the KNK-6t for multiquad...power circuit 1]; 15. Low frequency amplifier for direction B - Aj 16. Low frequency amplifier; 17. KNN [initial slope network]; 18. LVN-2...frequency Voice frequency ringing at 3,800 Hz with a level 0.4 - 0.8 Np lower than the speech channel level. The system for service
Crawford, Charles G.; Martin, Jeffrey D.
2017-07-21
In October 2012, the U.S. Geological Survey (USGS) began measuring the concentration of the pesticide fipronil and three of its degradates (desulfinylfipronil, fipronil sulfide, and fipronil sulfone) by a new laboratory method using direct aqueous-injection liquid chromatography tandem mass spectrometry (DAI LC–MS/MS). This method replaced the previous method—in use since 2002—that used gas chromatography/mass spectrometry (GC/MS). The performance of the two methods is not comparable for fipronil and the three degradates. Concentrations of these four chemical compounds determined by the DAI LC–MS/MS method are substantially lower than the GC/MS method. A method was developed to correct for the difference in concentrations obtained by the two laboratory methods based on a methods comparison field study done in 2012. Environmental and field matrix spike samples to be analyzed by both methods from 48 stream sites from across the United States were sampled approximately three times each for this study. These data were used to develop a relation between the two laboratory methods for each compound using regression analysis. The relations were used to calibrate data obtained by the older method to the new method in order to remove any biases attributable to differences in the methods. The coefficients of the equations obtained from the regressions were used to calibrate over 16,600 observations of fipronil, as well as the three degradates determined by the GC/MS method retrieved from the USGS National Water Information System. The calibrated values were then compared to over 7,800 observations of fipronil and to the three degradates determined by the DAI LC–MS/MS method also retrieved from the National Water Information System. The original and calibrated values from the GC/MS method, along with measures of uncertainty in the calibrated values and the original values from the DAI LC–MS/MS method, are provided in an accompanying data release.
Research study on high energy radiation effect and environment solar cell degradation methods
NASA Technical Reports Server (NTRS)
Horne, W. E.; Wilkinson, M. C.
1974-01-01
The most detailed and comprehensively verified analytical model was used to evaluate the effects of simplifying assumptions on the accuracy of predictions made by the external damage coefficient method. It was found that the most serious discrepancies were present in heavily damaged cells, particularly proton damaged cells, in which a gradient in damage across the cell existed. In general, it was found that the current damage coefficient method tends to underestimate damage at high fluences. An exception to this rule was thick cover-slipped cells experiencing heavy degradation due to omnidirectional electrons. In such cases, the damage coefficient method overestimates the damage. Comparisons of degradation predictions made by the two methods and measured flight data confirmed the above findings.
NASA Astrophysics Data System (ADS)
Saksono, Nelson; Puspita, Indah; Sukreni, Tulus
2017-03-01
Contact Glow Discharge Electrolysis (CGDE) has been shown to degrade much weight organic compounds such as dyes because the production of hydroxil radical (•OH) is excess. This research aims to degrade batik dye waste Remazol Red, using CGDE method with the addition of Fe2+ ion. The addition of iron salt compounds has proven to increase process efficiency. Dye degradation is known by measure its absorbances with Spectrophotometer UV-Vis. The result of study showed that percentage degradation was 99.92% in 20 minutes which obtained by using Na2SO4 0.01 M, with addition FeSO4 0,1 gram, applied voltage 860 volt, and 1 wolfram anode 5 mm depth.
Abdelraheem, Wael H M; He, Xuexiang; Duan, Xiaodi; Dionysiou, Dionysios D
2015-01-23
Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0μM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Tyndall, Richard L.; Vass, Arpad
1995-01-01
Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates include is deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.
Observation method to predict meander migration and vertical degradation of rivers.
DOT National Transportation Integrated Search
2014-05-01
Meander migration and vertical degradation of river bed are processes that have been studied for years. : Different methods have been proposed to make predictions of the behavior of rivers with respect to these : processes. These two erosion controll...
Tyndall, R.L.; Vass, A.
1995-09-12
Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates are deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.
Blind estimation of blur in hyperspectral images
NASA Astrophysics Data System (ADS)
Zhang, Mo; Vozel, Benoit; Chehdi, Kacem; Uss, Mykhail; Abramov, Sergey; Lukin, Vladimir
2017-10-01
Hyperspectral images acquired by remote sensing systems are generally degraded by noise and can be sometimes more severely degraded by blur. When no knowledge is available about the degradations present on the original image, blind restoration methods can only be considered. By blind, we mean absolutely no knowledge neither of the blur point spread function (PSF) nor the original latent channel and the noise level. In this study, we address the blind restoration of the degraded channels component-wise, according to a sequential scheme. For each degraded channel, the sequential scheme estimates the blur point spread function (PSF) in a first stage and deconvolves the degraded channel in a second and final stage by means of using the PSF previously estimated. We propose a new component-wise blind method for estimating effectively and accurately the blur point spread function. This method follows recent approaches suggesting the detection, selection and use of sufficiently salient edges in the current processed channel for supporting the regularized blur PSF estimation. Several modifications are beneficially introduced in our work. A new selection of salient edges through thresholding adequately the cumulative distribution of their corresponding gradient magnitudes is introduced. Besides, quasi-automatic and spatially adaptive tuning of the involved regularization parameters is considered. To prove applicability and higher efficiency of the proposed method, we compare it against the method it originates from and four representative edge-sparsifying regularized methods of the literature already assessed in a previous work. Our attention is mainly paid to the objective analysis (via ݈l1-norm) of the blur PSF error estimation accuracy. The tests are performed on a synthetic hyperspectral image. This synthetic hyperspectral image has been built from various samples from classified areas of a real-life hyperspectral image, in order to benefit from realistic spatial distribution of reference spectral signatures to recover after synthetic degradation. The synthetic hyperspectral image has been successively degraded with eight real blurs taken from the literature, each of a different support size. Conclusions, practical recommendations and perspectives are drawn from the results experimentally obtained.
Inugala, Ugandar Reddy; Pothuraju, Nageswara Rao; Vangala, Ranga Reddy
2013-01-01
This paper describes the development of a rapid, novel, stability-indicating gradient reversed-phase high-performance liquid chromatographic method and associated system suitability parameters for the analysis of naproxcinod in the presence of its related substances and degradents using a quality-by-design approach. All of the factors that affect the separation of naproxcinod and its impurities and their mutual interactions were investigated and robustness of the method was ensured. The method was developed using an Ascentis Express C8 150 × 4.6 mm, 2.7 µm column with a mobile phase containing a gradient mixture of two solvents. The eluted compounds were monitored at 230 nm, the run time was 20 min within which naproxcinod and its eight impurities were satisfactorily separated. Naproxcinod was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Naproxcinod was found to degrade significantly in acidic and basic conditions and to be stable in thermal, photolytic, oxidative and aqueous degradation conditions. The degradation products were satisfactorily resolved from the primary peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness.
Gravimetric screening method for fungal decay of paper: inoculation with Trametes versicolor.
Råberg, Ulrika; Hafrén, Jonas
2009-10-01
The European standard test EN 113 for fungal degradation of solid wood has been adapted for degradation of paper by white rot fungus (Trametes versicolor). Fungal degradation of paper sheets may potentially be used for screening different wood preservatives on paper instead of solid wood. The paper samples showed higher relative mass losses compared to wood, and samples pretreated with boric acid, copper sulfate and polymerized linseed oil were successfully tested for biodegradation using the paper sheet method. The results on paper degradation were compared with wood, both as wood blocks (according to standard test) and wood cut in sections forming layered structures mimicking paper layers.
NASA Astrophysics Data System (ADS)
Choiri, S.; Ainurofiq, A.; Ratri, R.; Zulmi, M. U.
2018-03-01
Nifedipin (NIF) is a photo-labile drug that easily degrades when it exposures a sunlight. This research aimed to develop of an analytical method using a high-performance liquid chromatography and implemented a quality by design approach to obtain effective, efficient, and validated analytical methods of NIF and its degradants. A 22 full factorial design approach with a curvature as a center point was applied to optimize of the analytical condition of NIF and its degradants. Mobile phase composition (MPC) and flow rate (FR) as factors determined on the system suitability parameters. The selected condition was validated by cross-validation using a leave one out technique. Alteration of MPC affected on time retention significantly. Furthermore, an increase of FR reduced the tailing factor. In addition, the interaction of both factors affected on an increase of the theoretical plates and resolution of NIF and its degradants. The selected analytical condition of NIF and its degradants has been validated at range 1 – 16 µg/mL that had good linearity, precision, accuration and efficient due to an analysis time within 10 min.
ERIC Educational Resources Information Center
Matveeva, Natalia
2008-01-01
This research article reports the results of an online survey distributed among technical writing instructors in 2006. The survey aimed to examine how we teach intercultural communication in basic technical writing courses: our current practices and methods. The article discusses three major challenges that instructors may face when teaching about…
University-government relationships in the training of technical writers-editors
NASA Technical Reports Server (NTRS)
Stohrer, Freda F.; Pinelli, Thomas E.
1979-01-01
Traditional and nontraditional methods of training technical writers-editors are reviewed. Combining work experience with classroom instruction in the form of cooperative education provides a method of strengthening the Federal career service in professional occupations. The NASA Langley experience that successfully introduced students to the special demands of technical writing and editing is described.
Methodology for Planning Technical Education: With a Case Study of Polytechnics in Bangladesh.
ERIC Educational Resources Information Center
Ritzen, Jozef M.; Balderston, Judith B.
A product of research first begun by one of the authors in Bangladesh, this book develops a comprehensive set of methods for planning technical education. Wherever possible, the authors draw on existing tools, fitting them to the specific context of technical education. When faced with planning problems for which existing methods are ill suited…
Environment Canada's approach to the control of emissions from in-use vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polak, J.
1980-01-01
A study (begun in 1979 by a Technical Advisory Committee of federal and provincial environment and transport representatives and others) of in-use vehicles in Canada shows that automobile manufacturers were producing vehicles having emissions that were 30% better on the average than the regulated standard; cars in consumers' hands are very poorly tuned, particularly with respect to idle mixture, to the extent that the per cent idle carbon monoxide, carbon monoxide pollution, and fuel consumption in 1979 cars were improved 70, 36 and 4%, respectively, after tuning; emission performance makes a step function degradation during the first year of usemore » due to carburetor maladjustment; in the absence of maladjustment, emissions degrade only slightly with age or use; and emission-oriented maintenance reduces fuel consumption. Principles for an effective emissions inspection program and recommendations for future study are discussed.« less
Improving anaerobic and aerobic degradation by ultrasonic disintegration of biomass.
Neis, Uwe; Nickel, Klaus; Lundén, Anna
2008-11-01
Biological cell lysis is known to be the rate-limiting step of anaerobic biosolids degradation. Due to the slow pace by which this reaction occurs, it is necessary to equip treatment plants with large digesters or alternatively incorporate technological aids. High-power ultrasound used to disintegrate bacterial cells has been utilized as a pre-treatment process prior to anaerobic digestion. Through this application, as seen on pilot- and full-scales, it is possible to attain up to 30% more biogas, an increase in VS-destruction of up to 30% and a reduced sludge mass for disposal. Utilizing ultrasound technology in aerobic applications is a new and innovative approach. Improved denitrification through a more readily available internal carbon source, and less excess sludge mass can be traced to the positive effects that sonication of sludge has on the overall biological wastewater treatment process. Reference full-scale installations suggest that the technology is both technically feasible and economically sound.
Humidity Data for 9975 Shipping Packages with Softwood Fiberboard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W. L.
The 9975 surveillance program is developing a technical basis to support extending the storage period of 9975 packages in K-Area Complex beyond the currently approved 15 years. A key element of this effort is developing a better understanding of degradation of the fiberboard assembly under storage conditions. This degradation is influenced greatly by the moisture content of the fiberboard, which is not well characterized on an individual package basis. Direct measurements of humidity and fiberboard moisture content have been made on two test packages with softwood fiberboard and varying internal heat levels from 0 up to 19W. Comparable measurements withmore » cane fiberboard have been reported previously. With an internal heat load, a temperature gradient in the fiberboard assembly leads to varying relative humidity in the air around the fiberboard. However, the absolute humidity tends to remain approximately constant throughout the package, especially at lower heat loads.« less
Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A
2018-05-01
Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for preliminary separation.
NASA Astrophysics Data System (ADS)
Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro
2011-02-01
Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c0nr00720j
CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, M. Parans
2016-07-18
The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm 3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm 3 were demonstrated. Magnetic measurements indicate that theremore » is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm 3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH) max = 5.47 MGOe (43.50 kJ/m 3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.« less
NASA Technical Reports Server (NTRS)
Gentz, Steven J.; Pandipati, Radha; Ling, Jerri; Miller, Thomas; Jeevarajan, Judith; Halpert, Gerald; Zimmerman, Albert
2005-01-01
The purpose of the GSFC position paper is to identify critical HST milestone dates for continued science studies followed by the attachment of a re-entry module or a robotic servicing mission. The paper examines the viability of the HST with respect to the NiH2 continued battery charge capacity. In the course of the assessment, it was recognized that the HST battery thermal control system has an average heat dissipation limitation of 30 W per bay per orbit cycle. This thermal constraint will continue to govern options for battery capacity maintenance. In addition, the HST usage represents the longest exposure ofNiH2 batteries to Low Earth Orbit (LEO) at the current level of Depth of Discharge (DOD). Finally, the current battery life is at the limit predicted by the manufacturer, Eaglepicher. Therefore, given these factors, the potential exists that the HST battery capacities could radically degrade at any point. Given this caveat on any life extrapolations, the conservative model proposed in the GSFC position paper was viewed by the NESC as having several technical assumptions such as limited utilization of flight battery capacity data, the susceptibility of the proposed prediction method to large variations when supplemented with additional information, and the failure to qualitatively or quantitatively assess life prediction sensitivities. The NESC conducted an independent evaluation of the supporting information and assumptions to generate the predictions for battery capacity loss and practicality of on-orbit battery conditioning.
Assessing Technical Competence in Surgical Trainees: A Systematic Review.
Szasz, Peter; Louridas, Marisa; Harris, Kenneth A; Aggarwal, Rajesh; Grantcharov, Teodor P
2015-06-01
To systematically examine the literature describing the methods by which technical competence is assessed in surgical trainees. The last decade has witnessed an evolution away from time-based surgical education. In response, governing bodies worldwide have implemented competency-based education paradigms. The definition of competence, however, remains elusive, and the impact of these education initiatives in terms of assessment methods remains unclear. A systematic review examining the methods by which technical competence is assessed was conducted by searching MEDLINE, EMBASE, PsychINFO, and the Cochrane database of systematic reviews. Abstracts of retrieved studies were reviewed and those meeting inclusion criteria were selected for full review. Data were retrieved in a systematic manner, the validity and reliability of the assessment methods was evaluated, and quality was assessed using the Grading of Recommendations Assessment, Development and Evaluation classification. Of the 6814 studies identified, 85 studies involving 2369 surgical residents were included in this review. The methods used to assess technical competence were categorized into 5 groups; Likert scales (37), benchmarks (31), binary outcomes (11), novel tools (4), and surrogate outcomes (2). Their validity and reliability were mostly previously established. The overall Grading of Recommendations Assessment, Development and Evaluation for randomized controlled trials was high and low for the observational studies. The definition of technical competence continues to be debated within the medical literature. The methods used to evaluate technical competence predominantly include instruments that were originally created to assess technical skill. Very few studies identify standard setting approaches that differentiate competent versus noncompetent performers; subsequently, this has been identified as an area with great research potential.
EPA Method 535 has been developed in order to provide a method for the analysis of "Alachlor ESA and other acetanilide degradation products" which are listed on U.S. EPA's 1998 Drinking Water Contaminant Candidate List. Method 535 uses solid phase extraction with a nonporous gr...
Balcha, Abebe; Yadav, Om Prakash; Dey, Tania
2016-12-01
Zinc oxide (ZnO) nanoparticles were synthesized by precipitation and sol-gel methods. The aim of this study was to understand how different synthetic methods can affect the photocatalytic activity of ZnO nanoparticles. As-synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD) and UV-Visible spectroscopic techniques. XRD patterns of ZnO powders synthesized by precipitation and sol-gel methods revealed their hexagonal wurtzite structure with crystallite sizes of 30 and 28 nm, respectively. Their photocatalytic activities were evaluated by photocatalytic degradation of methylene blue, a common water pollutant, under UV radiation. The effects of operational parameters such as photocatalyst load and initial concentration of the dye on photocatalytic degradation of methylene blue were investigated. While the degradation of dye decreased over the studied dye concentration range of 20 to 100 mg/L, an optimum photocatalyst load of 250 mg/L was needed to achieve dye degradation as high as 81 and 92.5 % for ZnO prepared by precipitation and sol-gel methods, respectively. Assuming pseudo first-order reaction kinetics, this corresponded to rate constants of 8.4 × 10 -3 and 12.4 × 10 -3 min -1 , respectively. Hence, sol-gel method is preferred over precipitation method in order to achieve higher photocatalytic activity of ZnO nanostructures. Photocatalytic activity is further augmented by better choice of capping ligand for colloidal stabilization, starch being more effective than polyethylene glycol (PEG).
Gradient RP-HPLC method for the determination of potential impurities in atazanavir sulfate.
Chitturi, Sreenivasa Rao; Somannavar, Yallappa Somappa; Peruri, Badarinadh Gupta; Nallapati, Sreenivas; Sharma, Hemant Kumar; Budidet, Shankar Reddy; Handa, Vijay Kumar; Vurimindi, Hima Bindu
2011-04-28
This paper proposes a simple and selective RP-HPLC method for the determination of process impurities and degradation products (degradants) of atazanavir sulfate (ATV) drug substance. Chromatographic separation was achieved on Ascentis(®) Express C8, (150mm×4.6mm, 2.7μm) column thermostated at 30°C under gradient elution by a binary mixture of potassium dihydrogen phosphate (pH 3.5, 0.02M) and ACN at a flow rate of 1.0ml/min. A photodiode array (PDA) detector set at 250nm was used for detection. Stress testing (forced degradation) of ATV was carried out under acidic, alkaline, oxidative, photolytic, thermal and humidity conditions. In presence of alkali, ATV transformed into cyclized products and the order of degradation reaction is determined by the method of initial rates. The unknown process impurities and alkaline degradants are isolated by preparative LC and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectral data. The developed method is validated with respect to sensitivity (lod and loq), linearity, precision, accuracy and robustness and can be implemented for routine quality control analysis and stability testing of ATV. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai
2018-06-01
Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment
. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.
NASA Astrophysics Data System (ADS)
Sergey Vasilievich, Buharin; Aleksandr Vladimirovich, Melnikov; Svetlana Nikolaevna, Chernyaeva; Lyudmila Anatolievna, Korobova
2017-08-01
The method of dip of the underlying computational problem of comparing technical object in an expert shell in the class of data mining methods is examined. An example of using the proposed method is given.
Method for determination of methyl tert-butyl ether and its degradation products in water
Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.
1997-01-01
An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.
78 FR 5133 - Technical Corrections Regarding the Methods of Collection of Certain User Fees by CBP
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
...] Technical Corrections Regarding the Methods of Collection of Certain User Fees by CBP AGENCY: U.S. Customs... electronic payments through the DTOPS. While CBP's preferred method of receiving user fee prepayment requests...
Berard, Veronique; Fiala, Christian; Cameron, Sharon; Bombas, Teresa; Parachini, Mirella; Gemzell-Danielsson, Kristina
2014-01-01
Introduction Misoprostol (Cytotec) is recognised to be effective for many gynaecological indications including termination of pregnancy, management of miscarriage and postpartum haemorrhage. Although not licensed for such indications, it has been used for these purposes by millions of women throughout the world. Misoprostol tablets are most often packaged as multiple tablets within an aluminium strip, each within an individual alveolus. When an alveolus is opened, tablets will be exposed to atmospheric conditions. Objective To compare the pharmaco technical characteristics (weight, friability), water content, misoprostol content and decomposition product content (type A misoprostol, type B misoprostol and 8-epi misoprostol) of misoprostol tablets Cytotec (Pfizer) exposed to air for periods of 1 hour to 720 hours (30 days), to those of identical non exposed tablets. Methods Four hundred and twenty (420) tablets of Cytotec (Pfizer) were removed from their alveoli blister and stored at 25°C/60% relative humidity. Water content, and misoprostol degradation products were assayed in tablets exposed from 1 to 720 hours (30 days). Comparison was made with control tablets (N = 60) from the same batch stored in non-damaged blisters. Statistical analyses were carried out using Fisher’s exact test for small sample sizes. Results By 48 hours, exposed tablets demonstrated increased weight (+4.5%), friability (+1 300%), and water content (+80%) compared to controls. Exposed tablets also exhibited a decrease in Cytotec active ingredient dosage (−5.1% after 48 hours) and an increase in the inactive degradation products (+25% for type B, +50% for type A and +11% for 8-epi misoprostol after 48 hours) compared to controls. Conclusion Exposure of Cytotec tablets to ‘typical’ European levels of air and humidity results in significant time-dependent changes in physical and biological composition that could impact adversely upon clinical efficacy. Health professionals should be made aware of the degradation of misoprostol with inappropriate storage of misoprostol tablets. PMID:25502819
NASA Astrophysics Data System (ADS)
Gazzarri, J. I.; Kesler, O.
In the first part of this two-paper series, we presented a numerical model of the impedance behaviour of a solid oxide fuel cell (SOFC) aimed at simulating the change in the impedance spectrum induced by contact degradation at the interconnect-electrode, and at the electrode-electrolyte interfaces. The purpose of that investigation was to develop a non-invasive diagnostic technique to identify degradation modes in situ. In the present paper, we appraise the predictive capabilities of the proposed method in terms of its robustness to uncertainties in the input parameters, many of which are very difficult to measure independently. We applied this technique to the degradation modes simulated in Part I, in addition to anode sulfur poisoning. Electrode delamination showed the highest robustness to input parameter variations, followed by interconnect oxidation and interconnect detachment. The most sensitive degradation mode was sulfur poisoning, due to strong parameter interactions. In addition, we simulate several simultaneous two-degradation-mode scenarios, assessing the method's capabilities and limitations for the prediction of electrochemical behaviour of SOFC's undergoing multiple simultaneous degradation modes.
40 CFR 265.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (iii) Mixtures of these non-bio-degrad-a-ble materials. (2) Tests for non-bio-degrad-a-ble sorbents. (i) The sorbent material is determined to be non-bio-degrad-a-ble under ASTM Method G21-70 (1984a...
40 CFR 265.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (iii) Mixtures of these non-bio-degrad-a-ble materials. (2) Tests for non-bio-degrad-a-ble sorbents. (i) The sorbent material is determined to be non-bio-degrad-a-ble under ASTM Method G21-70 (1984a...
40 CFR 265.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (iii) Mixtures of these non-bio-degrad-a-ble materials. (2) Tests for non-bio-degrad-a-ble sorbents. (i) The sorbent material is determined to be non-bio-degrad-a-ble under ASTM Method G21-70 (1984a...
40 CFR 265.314 - Special requirements for bulk and containerized liquids.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (iii) Mixtures of these non-bio-degrad-a-ble materials. (2) Tests for non-bio-degrad-a-ble sorbents. (i) The sorbent material is determined to be non-bio-degrad-a-ble under ASTM Method G21-70 (1984a...
NASA Astrophysics Data System (ADS)
Marušáková, Daniela; Bublíková, Petra; Berka, Jan; Vávrovcová, Zuzana; Burda, Jaroslav
2017-09-01
To understand the degradation process of metal materials which are used in power engineering, appropriate evaluation procedure is necessary to ensure. In that order, the degradation of alloy 800H during the first period of test operation in High Temperature Helium Loop (HTHL) was tested. Experiment was carried out in atmosphere of pure technical helium with purity 4.6 containing only residual concentration of moisture up to 300 vppm. Parameters during the operation test were not constant, process was interrupted several times. The maximum temperature on specimens during this period was 750 °C, average temperature was 460 °C, gas pressure ranged from 3 to 6 MPa and gas flow from 3 to 9 gs-1. Total duration of the test was 264 h. After the exposure the degradation of specimens was investigated by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Using the technique of Focused Ion Beam (FIB) integrated within SEM the transparent samples with quality surface parameters were obtained for TEM analysis. FIB technique in combination with High Resolution TEM ensured the guaranteed methodology of exposed sample preparation and precise description of changes in this kind of material.
NASA Astrophysics Data System (ADS)
Heerspink, B. P.; Wang, D.; Ware, D.; Marina, O.; Perkins, G.; WoldeGabriel, G. W.; Goering, T.; Boukhalfa, H.
2017-12-01
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL) in Los Alamos, NM. Liquid effluents containing RDX released at LANL's Technical Area 16 (TA-16) resulted in the contamination of alluvial, perched-intermediate, and regional groundwater bodies. Past investigations have shown persistent RDX contamination in the perched-intermediate zone located between 225 to 311 m below ground surface, where transport studies have shown that RDX and its degradation products transport conservatively. In this study, we compared RDX degradation by chemical treatments using reduction by sodium dithionite, oxidation by potassium permanganate, and alkaline hydrolysis by carbonate/bicarbonate buffering, with microbial degradation under biostimulated conditions. The experiments were conducted using groundwater and sediments representative of the contaminated aquifer beneath TA-16. Batch testing showed that all chemical treatments degraded RDX very rapidly, with half-lives ranging from 50 minutes to 22 hours. Comparatively, RDX degradation in biostimulated reactors under strict anaerobic conditions was significantly slower, with half-lives of about 3 weeks. Results from column experiments with chemically treated sediments deviated from the results of the batch testing. Dithionite treated sediments reduced RDX with no breakthrough observed before clogging occurred at 50 pour volumes. Treatments by oxidation using potassium permanganate, and hydrolysis under buffered alkaline conditions, were less effective with complete RDX breakthrough after 2 pore volumes. No known degradation products were observed in the column effluents. RDX degradation in biostimulated columns was very effective initially for both treatments. However, the column biostimulated with safflower oil clogged very rapidly. The column biostimulated with molasses was very effective when molasses was continuously supplied but less effective after molasses injection stopped. Degradation products (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine [MNX]; hexahydro-1,3-dinitro-5-nitro-1,3,5-triazine [DNX]; 2,4,6-trinitroxylene [TNX]) were visible in the effluents from the biostimulated columns.
NASA Astrophysics Data System (ADS)
Raghu, M. S.; Basavaiah, K.; Ramesh, P. J.; Abdulrahman, Sameer A. M.; Vinay, K. B.
2012-03-01
A sensitive, precise, and cost-effective UV-spectrophotometric method is described for the determination of pheniramine maleate (PAM) in bulk drug and tablets. The method is based on the measurement of absorbance of a PAM solution in 0.1 N HCl at 264 nm. As per the International Conference on Harmonization (ICH) guidelines, the method was validated for linearity, accuracy, precision, limits of detection (LOD) and quantification (LOQ), and robustness and ruggedness. A linear relationship between absorbance and concentration of PAM in the range of 2-40 μg/ml with a correlation coefficient (r) of 0.9998 was obtained. The LOD and LOQ values were found to be 0.18 and 0.39 μg/ml PAM, respectively. The precision of the method was satisfactory: the value of relative standard deviation (RSD) did not exceed 3.47%. The proposed method was applied successfully to the determination of PAM in tablets with good accuracy and precision. Percentages of the label claims ranged from 101.8 to 102.01% with the standard deviation (SD) from 0.64 to 0.72%. The accuracy of the method was further ascertained by recovery studies via a standard addition procedure. In addition, the forced degradation of PAM was conducted in accordance with the ICH guidelines. Acidic and basic hydrolysis, thermal stress, peroxide, and photolytic degradation were used to assess the stability-indicating power of the method. A substantial degradation was observed during oxidative and alkaline degradations. No degradation was observed under other stress conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Jason; Bernstein, Robert; White, II, Gregory Von
In a submerged environment, power cables may experience accelerated insulation degradation due to water - related aging mechanisms . Direct contact with water or moisture intrusion in the cable insulation s ystem has been identified in the literature as a significant aging stressor that can affect performance and lifetime of electric cables . Progressive reduction of the dielectric strength is commonly a result of water treeing which involves the development of permanent hydrophilic structures in the insulation coinciding with the absorption of water into the cable . Water treeing is a phenomenon in which dendritic microvoids are formed in electricmore » cable insulation due to electrochemic al reactions , electromechanical forces , and diffusion of contaminants over time . These reactions are caused by the combined effect s of water presence and high electrical stress es in the material . Water tree growth follow s a tree - like branching pattern , i ncreasing in volume and length over time . Although these cables can be "dried out," water tree degradation , specifically the growth of hydrophilic regions, is believed to be permanent and typically worsens over time. Based on established research , water treeing or water induced damage can occur in a variety of electric cables including XLPE, TR - XLPE and other insulating materials, such as EPR and butyl rubber . Once water trees or water induced damage form, the dielectric strength of an insulation materia l will decrease gradually with time as the water trees grow in length, which could eventually result in failure of the insulating material . Under wet conditions or i n submerged environments , several environmental and operational parameters can influence w ater tree initiation and affect water tree growth . These parameters include voltage cycling, field frequency, temperature, ion concentration and chemistry, type of insula tion material , and the characteristics of its defects. In this effort, a review of academic and industrial literature was performed to identify : 1) findings regarding the degradation mechanisms of submerged cabling and 2) condition monitoring methods that may prove useful in predict ing the remaining lifetime of submerged medium voltage p ower cables . The re search was conducted by a multi - disciplinary team , and s ources includ ed official NRC reports, n ational l aboratory reports , IEEE standards, conference and journal proceedings , magazine articles , PhD dissertations , and discussions with experts . The purpose of this work was to establish the current state - of - the - art in material degradation modeling and cable condition monitoring techniques and to identify research gaps . Subsequently, future areas of focus are recommended to address these research gaps and thus strengthen the efficacy of the NRC's developing cable condition monitoring program . Results of this literature review and details of the test ing recommendations are presented in this report . FOREWORD To ensure the safe, re liable, and cost - effective long - term operation of nuclear power plants, many systems, structures, and components must be continuously evaluated. The Nuclear Regulatory Commission (NRC) has identified that cables in submerged environments are of concern, particularly as plants are seeking license renewal. To date, there is a lack of consensus on aging and degradation mechanisms even though the area of submerged cables has been extensively studied. Consequently, the ability to make lifetime predictions for submerged cable does not yet exist. The NRC has engaged Sandia National Laboratories (SNL) to lead a coordinated effort to help elucidate the aging and degradation of cables in submerged environments by collaborating with cable manufacturers, utilities, universities, and other government agencies. A team of SNL experts was assembled from the laboratories including electrical condition monitoring, mat erial science, polymer degradation, plasma physics, nuclear systems, and statistics. An objective of this research program is to perform a l iterature r eview to gather a body of knowledge on prior research projects, technical papers, and literature related to cable degradation in a submerged environment. In addition, the information gathered from the literature review will be employed to gain insights for developing an aging coefficient, and to determine which condition monitoring techniques are capable of tracking cable degradation in a submerged environment. Moreover, the information gathered from the l iterature r eview will also be used to determine which approach or approaches are best suited to develop test methods for accelerated aging and condition m onitoring of medium voltage cables. In summary of this initial effort, s ignificant work has been performed on submerged cable insulation degradation; however, there is a lack of uniform theories and acceptance of chemical and physical pathways. This lack of fundamental understanding is coupled with the inability to make predictive statements about material performance in wet or submerged environments. S elect condition monitoring methods known to the industry are discussed in this report and a dditional co ndition monitoring methods were added in this effort based on recommendations from the Nuclear Energy Standards Coordinating Collaborative and available literature. This NUREG review provides additional clarity on the use of condition monitoring methods t o detect water - related damage to medium voltage cable and new methods and approaches proposed in academia and industry. In order t o ensure continued improvement in the efficacy of a cable condition monitoring program, continued research and development (R&D) efforts are necessary. R&D efforts should complement operations, iteratively improving condition monitoring policies, procedures and outcomes. Ideally, field and laboratory data enable improved understanding of material science which in turn inform s the development of new or improved condition monitoring methods and lifetime models. Finally, these improved methods and models aid in the refinement of condition monitoring policies and procedures.« less
These technical contacts are available to help with questions regarding method deviations, modifications, sample problems or interferences, quality control requirements, the use of alternative methods, or the need to address analytes or sample types.
Human Exploration and Development in the Solar System
NASA Astrophysics Data System (ADS)
Mendell, Wendell
2017-05-01
Emergence of ballistic missile technology after the Second World War enabled human flight into Earth's orbit, fueling the imagination of those fascinated with science, technology, exploration, and adventure. The performance of astronauts in the early flights assuaged concerns about the functioning of "the human system" in the absence of normal gravity. However, researchers in space medicine have observed degradation of crews after longer exposure to the space environment and have developed countermeasures for most of them, although significant challenges remain. With the dawn of the 21st century, well-financed and technically competent commercial entities began to provide more affordable alternatives to historically expensive and risk-averse government-funded programs. Space's growing accessibility has encouraged entrepreneurs to pursue plans for potentially autarkic communities beyond Earth, exploiting natural resources on other worlds. Should such dreams prove to be technically and economically feasible, a new era will open for humanity with concomitant societal issues of a revolutionary nature.
Computer-aided diagnosis based on enhancement of degraded fundus photographs.
Jin, Kai; Zhou, Mei; Wang, Shaoze; Lou, Lixia; Xu, Yufeng; Ye, Juan; Qian, Dahong
2018-05-01
Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images. A new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement. The study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier. The relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Determination of LEDs degradation with entropy generation rate
NASA Astrophysics Data System (ADS)
Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos
2017-10-01
We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.
Testing Method of Degrading Heavy Oil Pollution by Microorganisms
NASA Astrophysics Data System (ADS)
Wu, Qi; Zhao, Lin; Ma, Aijin
2018-01-01
With the development of human society, we are more and more relying on the petrochemical energy. The use of petrochemical energy not only brings us great convenience, but is also accompanied by a series of environmental pollution problems, especially oil pollution. Since it is impractical to restore all pollution problems, the proper use of some remedial measures, under the guidance of functional orientation, may be sufficient to minimize the risk of persistent and diffusing pollutants. In recent years, bioremediation technology has been gradually developed into a promising stage and has played a crucial role in the degradation of heavy oil pollution. Specially, microbes in the degradation of heavy oil have made a great contribution. This paper mainly summarizes the different kinds of microorganisms for degrading heavy oil and the detection method for degradation efficiency of heavy oil pollution.
An assessment of individualized technical ear training for audio production.
Kim, Sungyoung
2015-07-01
An individualized technical ear training method is compared to a non-individualized method. The efficacy of the individualized method is assessed using a standardized test conducted before and after the training period. Participants who received individualized training improved better than the control group on the test. Results indicate the importance of individualized training for acquisition of spectrum-identification and spectrum-matching skills. Individualized training, therefore, should be implemented by default into technical ear training programs used in audio production industry and education.
NASA Technical Reports Server (NTRS)
Sitterley, T. E.; Berge, W. A.
1972-01-01
Manual flight control and emergency procedure task skill degradation was evaluated after time intervals of from 1 to 6 months. The tasks were associated with a simulated launch through the orbit insertion flight phase of a space vehicle. The results showed that acceptable flight control performance was retained for 2 months, rapidly deteriorating thereafter by a factor of 1.7 to 3.1 depending on the performance measure used. Procedural task performance showed unacceptable degradation after only 1 month, and exceeded an order of magnitude after 4 months. The effectiveness of static rehearsal (checklists and briefings) and dynamic warmup (simulator practice) retraining methods were compared for the two tasks. Static rehearsal effectively countered procedural skill degradation, while some combination of dynamic warmup appeared necessary for flight control skill retention. It was apparent that these differences between methods were not solely a function of task type or retraining method, but were a function of the performance measures used for each task.
Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme
2016-05-01
Due to lipid oxidation, off-flavors, characterized by a fishy odor, are emitted during the heating of rapeseed oil in a fryer and affect the flavor of rapeseed oil even at low concentrations. Thus, there is a need for analytical methods to identify and quantify these products. To study the headspace composition of degraded rapeseed oil, and more specifically the compounds responsible for the fishy odor, a headspace trap gas chromatography with mass spectrometry method was developed and validated. Six volatile compounds formed during the degradation of rapeseed oil were quantified: 1-penten-3-one, (Z)-4-heptenal, hexanal, nonanal, (E,E)-heptadienal, and (E)-2-heptenal. Validation using accuracy profiles allowed us to determine the valid ranges of concentrations for each compound, with acceptance limits of 40% and tolerance limits of 80%. This method was then successfully applied to real samples of degraded oils. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An overview of state-of-the-art image restoration in electron microscopy.
Roels, J; Aelterman, J; Luong, H Q; Lippens, S; Pižurica, A; Saeys, Y; Philips, W
2018-06-08
In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Cielecka-Piontek, Judyta
2013-07-01
A simple and selective derivative spectrophotometric method was developed for the quantitative determination of faropenem in pure form and in pharmaceutical dosage. The method is based on the zero-crossing effect of first-derivative spectrophotometry (λ = 324 nm), which eliminates the overlapping effect caused by the excipients present in the pharmaceutical preparation, as well as degradation products, formed during hydrolysis, oxidation, photolysis, and thermolysis. The method was linear in the concentration range 2.5-300 μg/mL (r = 0.9989) at λ = 341 nm; the limits of detection and quantitation were 0.16 and 0.46 μg/mL, respectively. The method had good precision (relative standard deviation from 0.68 to 2.13%). Recovery of faropenem ranged from 97.9 to 101.3%. The first-order rate constants of the degradation of faropenem in pure form and in pharmaceutical dosage were determined by using first-derivative spectrophotometry. A statistical comparison of the validation results and the observed rate constants for faropenem degradation with these obtained with the high-performance liquid chromatography method demonstrated that both were compatible.
ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE HERBICIDE DEGRADATION PRODUCTS
In 1998, USEPA published a Drinking Water Contaminant Candidate List (CCL) of 50 chemicals and 10 microorganisms. "Alachlor ESA and other acetanilide herbicide degradation products" is listed on the the 1998 CCL. Acetanilide degradation products are generally more water soluble...
[Mitigative effect of micribial degradation on autotoxicity of Panax ginseng].
Li, Yong; Long, Qi-Liang; Ding, Wan-Long; Zhao, Dong-Yue
2014-08-01
Continuously cropping obstacle restricts ginseng production and rational use of land resource severely, and autotoxicity is one of the most important factors. In our previous work, ginseng autotoxin degrading bacteria were isolated, in the present re- search, plate culturing method and traditional physiological and biochemical method were used to analyze biological indices and protective enzyme activities, in order to elucidate the mitigative effect of autotoxin degrading bacteria on autotoxicity of P. ginseng. Results indicated that, except for palmitic acid, autotoxicity of benzonic acid, diisobutyl phthalate, diisobutyl succinate, and 2,2-bis (4- hydroxyphenyl) propane on the growth of ginseng seeds was significantly alleviated after autotoxins degrading bacteria was inoculated, and which have no evident difference with control. Except for benzoic acid, enzyme activity of SOD, POD and CAT in other autotoxin degrading treatments decreased significantly. The present research showed that, microbial degradation could alleviate the autotoxicity of autotoxins on ginseng seeds effectively, and which will be helpful for the resolution of ginseng continuously cropping obstacle problem.
Multistage degradation modeling for BLDC motor based on Wiener process
NASA Astrophysics Data System (ADS)
Yuan, Qingyang; Li, Xiaogang; Gao, Yuankai
2018-05-01
Brushless DC motors are widely used, and their working temperatures, regarding as degradation processes, are nonlinear and multistage. It is necessary to establish a nonlinear degradation model. In this research, our study was based on accelerated degradation data of motors, which are their working temperatures. A multistage Wiener model was established by using the transition function to modify linear model. The normal weighted average filter (Gauss filter) was used to improve the results of estimation for the model parameters. Then, to maximize likelihood function for parameter estimation, we used numerical optimization method- the simplex method for cycle calculation. Finally, the modeling results show that the degradation mechanism changes during the degradation of the motor with high speed. The effectiveness and rationality of model are verified by comparison of the life distribution with widely used nonlinear Wiener model, as well as a comparison of QQ plots for residual. Finally, predictions for motor life are gained by life distributions in different times calculated by multistage model.
Polymer scaffold degradation control via chemical control
Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten
2016-01-05
A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.
A thin film degradation study of a fluorinated polyether liquid lubricant using an HPLC method
NASA Technical Reports Server (NTRS)
Morales, W.
1986-01-01
A High Pressure Liquid Chromatography (HPLC) separation method was developed to study and analyze a fluorinated polyether fluid which is promising liquid lubricant for future applications. This HPLC separation method was used in a preliminary study investigating the catalytic effect of various metal, metal alloy, and ceramic engineering materials on the degradation of this fluid in a dry air atmosphere at 345 C. Using a 440 C stainless steel as a reference catalytic material it was found that a titanium alloy and a chromium plated material degraded the fluorinated polyether fluid substantially more than the reference material.
Zimmerman, L.R.; Schneider, R.J.; Thurman, E.M.
2002-01-01
Dimethenamid [2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)acetamide] and flufenacet [N-(4-fluorophenyl)-N-(1-methylethyl)-2-(5-(trifluoromethyl)-1,3,4- thiadiazol-2-yl)oxy] were isolated by C-18 solid-phase extraction and separated from their ethanesulfonic acid (ESA) and oxanilic acid (OXA) degradates during their elution using ethyl acetate for the parent compound, followed by methanol for the polar degradates. The parent compounds were detected using gas chromatography-mass spectrometry in selected-ion mode. The ESA and OXA degradates were detected using high-performance liquid chromatography-electrospray mass spectrometry (HPLC-ESPMS) in negative-ion mode. The method detection limits for a 123-mL sample ranged from 0.01 to 0.07 μg/L. These methods are compatible with existing methods and thus allow for analysis of 17 commonly used herbicides and 18 of their degradation compounds with one extraction. In a study of herbicide transport near the mouth of the Mississippi River during 1999 and 2000, dimethenamid and its ESA and OXA degradates were detected in surface water samples during the annual spring flushes. For flufenacet, the only detections at the study site were for the ESA degradates in samples collected at the peak of the herbicide spring flush in 2000. The low frequency of detections in surface water likely is due to dimethenamid and flufenacet being relatively new herbicides. In addition, detectable amounts of the stable degradates have not been detected in ground water.
Youssef, Nadia F
2005-10-04
Stability-indicating high performance liquid chromatography (HPLC), thin-layer chromatography (TLC) and first-derivative of ratio spectra (1DD) methods are developed for the determination of piretanide in presence of its alkaline induced degradates. HPLC method depends on separation of piretanide from its degradates on mu-Bondapak C18 column using methanol:water:acetic acid (70:30:1, v/v/v) as a mobile phase at flow rate 1.0 ml/min and UV detector at 275 nm. TLC densitometic method is based on the difference in Rf-values between the intact drug and its degradates on thin-layer silica gel. Iso-propanol:ammonia 33% (8:2, v/v) was used as a developing mobile phase and the chromatogram was scanned at 275 nm. The derivative of ratio spectra method (1DD) depends on the measurement of the absorbance at 288 nm in the first-derivative of ratio spectra for the determination of the cited drug in the presence of its degradates. Calibration graphs of the three suggested methods are linear in the concentration ranges 0.02-0.3 microg/20 microl, 0.5-10 microg/spot and 5-50 microg/ml, with mean percentage recovery 99.27+/-0.52, 99,17+/-1.01 and 99.65+/-1.01%, respectively. The three proposed methods were successfully applied for the determination of piretanide in bulk powder, laboratory-prepared mixtures and pharmaceutical dosage form with good accuracy and precision. The results were statistically analyzed and compared with those obtained by the official method. Validation of the method was determined with favourable specificity, linearity, precision, and accuracy was assessed by applying the standard addition technique.
Implementation of the geoethics principal to environmental technologies by Biogeosystem Technique
NASA Astrophysics Data System (ADS)
Batukaev, Abdulmalik; Kalinitchenko, Valery; Minkina, Tatiana; Mandzhieva, Saglara; Sushkova, Svetlana
2017-04-01
The uncertainty and degradation of biosphere is a result of outdated industrial technologies. The incorrect principals of the nature resources use paradigm are to be radically changed corresponding to principals of Geoethics. Technological dead-end is linked to Philosophy of Technology. The organic protection and imitation of natural patterns are till now the theoretical base of technology. The technological and social determinism are proposed as the "inevitable" for humankind. One is forced to believe that the only way for humanity is to agree that the outdated way of technical development is the only possibility for humankind to survive. But rough imitation as a method of outdated technological platform is fruitless now. Survival under practice of industrial technology platform now has become extremely dangerous. The challenge for humanity is to overcome the chain of environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere, which awkwardly imitate the natural processes: plowing leads to degradation of soil and greenhouse gases emission; irrigation leads to excessive moistening and degradation of soil, landscape, greenhouse gases emission, loss of freshwater - the global deficit; waste utilization leads to greenhouse gases emission, loss of oxigen and other ecological hazards. The fundamentally new technologies are to be generates for development of biosphere, food and resources renewing. Aristotle told that technique can go beyond nature and implement "what nature can't bring to a finish." To overcome fundamental shortcomings of industrial technologies, incorrect land use we propose the Biogeosystem Technique (BGT*) for biosphere sustainability. The BGT* key point is transcendent approach (not imitating of the natural processes) - new technical solutions for biosphere - soil construction, the fluxes of energy, matter, and water control and biological productivity of terrestrial systems. Intra-soil milling which provides the new soil dispersed system synthesis - biological productivity of soil increases twice; intra-soil pulse discrete plants watering which permits to save the freshwater - global deficit - up to 20 times, protect the soil and landscape from excess water, and optimize soil water regime for higher plant's productivity; environmentally safe return of the substances into the active stage of biosphere during synthesis of soil dispersed system and (or) intra-soil pulse discrete plant watering for proper waste recycling. BGT* optimizes an anthropogenic carbon cycle of the Earth, reduces the greenhouse gases emission, implements conditions for green economy, provides an extension of the active area of the biosphere on Earth, water saving, soil and land health. The additional biological product, including food, raw materials and biofuels will be obtained. BGT* can be implemented on the basis of robotics providing cost savings compared to existing industrial technologies of agronomy and environment management. BGT* is the implementation of Geoethics in environmentally safe, productive and low cost technologies of Biosphere at the stage of Noosphere.
Yehia, Ali M; Arafa, Reham M; Abbas, Samah S; Amer, Sawsan M
2016-01-15
Spectral resolution of cefquinome sulfate (CFQ) in the presence of its degradation products was studied. Three selective, accurate and rapid spectrophotometric methods were performed for the determination of CFQ in the presence of either its hydrolytic, oxidative or photo-degradation products. The proposed ratio difference, derivative ratio and mean centering are ratio manipulating spectrophotometric methods that were satisfactorily applied for selective determination of CFQ within linear range of 5.0-40.0 μg mL(-1). Concentration Residuals Augmented Classical Least Squares was applied and evaluated for the determination of the cited drug in the presence of its all degradation products. Traditional Partial Least Squares regression was also applied and benchmarked against the proposed advanced multivariate calibration. Experimentally designed 25 synthetic mixtures of three factors at five levels were used to calibrate and validate the multivariate models. Advanced chemometrics succeeded in quantitative and qualitative analyses of CFQ along with its hydrolytic, oxidative and photo-degradation products. The proposed methods were applied successfully for different pharmaceutical formulations analyses. These developed methods were simple and cost-effective compared with the manufacturer's RP-HPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.
Methods for locating ground faults and insulation degradation condition in energy conversion systems
Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja
2015-08-11
Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.
Hewala, Ismail; El-Fatatry, Hamed; Emam, Ehab; Mabrouk, Mokhtar
2011-01-01
A simple, rapid, and sensitive RP-HPLC method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron), sodium benzoate, methylparaben, propylparaben, and 4-hydroxybenzoic acid (the main degradation product of parabens) in granisetron oral drops and solutions. The separation of the compounds was achieved within 8 min on a SymmetryShield RP18 column (100 x 4.6 mm id, 3.5 microm particle size) using the mobile phase acetonitrile--0.05 M KH2PO4 buffered to pH 3 using H3PO4 (3+7, v/v). The photodiode array detector was used to test the purity of the peaks, and the chromatograms were extracted at 240 nm. The method was validated, and validation acceptance criteria were met in all cases. The robust method was successfully applied to the determination of granisetron and preservatives, as well as their degradation products in different batches of granisetron oral drops and solutions. The method proved to be sensitive for determination down to 0.04% (w/w) of granisetron degradation product relative to granisetron and 0.03% (w/w) 4-hydroxybenzoic acid relative to total parabens.
Solar/UV-induced photocatalytic degradation of three commercial textile dyes.
Neppolian, B; Choi, H C; Sakthivel, S; Arabindoo, Banumathi; Murugesan, V
2002-01-28
The photocatalytic degradation of three commercial textile dyes with different structure has been investigated using TiO(2) (Degussa P25) photocatalyst in aqueous solution under solar irradiation. Experiments were conducted to optimise various parameters viz. amount of catalyst, concentration of dye, pH and solar light intensity. Degradation of all the dyes were examined by using chemical oxygen demand (COD) method. The degradation efficiency of the three dyes is as follows: Reactive Yellow 17(RY17) > Reactive Red 2(RR2) > Reactive Blue 4 (RB4), respectively. The experimental results indicate that TiO(2) (Degussa P25) is the best catalyst in comparison with other commercial photocatalysts such as, TiO(2) (Merck), ZnO, ZrO(2), WO(3) and CdS. Though the UV irradiation can efficiently degrade the dyes, naturally abundant solar irradiation is also very effective in the mineralisation of dyes. The comparison between thin-film coating and aqueous slurry method reveals that slurry method is more efficient than coating but the problems of leaching and the requirement of separation can be avoided by using coating technique. These observations indicate that all the three dyes could be degraded completely at different time intervals. Hence, it may be a viable technique for the safe disposal of textile wastewater into the water streams.
Hara, Shintaro; Saito, Masanori
2016-01-01
Phytate (inositol hexaphosphate; IHP)-degrading microbes have been suggested to contribute to arbuscular mycorrhizal fungi (AMF)-mediated P transfer from IHP to plants; however, no IHP degrader involved in AMF-mediated P transfer has been isolated to date. We herein report the isolation of IHP-degrading bacteria using a modified baiting method. We applied alginate beads as carriers of IHP powder, and used them as recoverable IHP in the AM fungal compartment of plant cultivation experiments. P transfer from IHP in alginate beads via AMF was confirmed, and extracted DNA from alginate beads was analyzed by denaturing gradient gel electrophoresis targeting the 16S rRNA gene and a clone library method for the beta-propeller phytase (BPP) gene. The diversities of the 16S rRNA and BPP genes of microbes growing on IHP beads were simple and those of Sphingomonas spp. and Caulobacter spp. dominated. A total of 187 IHP-utilizing bacteria were isolated and identified, and they were consistent with the results of DNA analysis. Furthermore, some isolated Sphingomonas spp. and Caulobacter sp. showed IHP-degrading activity. Therefore, we successfully isolated dominant IHP-degrading bacteria from IHP in an AMF hyphal compartment. These strains may contribute to P transfer from IHP via AMF. PMID:27383681
Owen, Benjamin C; Haupert, Laura J; Jarrell, Tiffany M; Marcum, Christopher L; Parsell, Trenton H; Abu-Omar, Mahdi M; Bozell, Joseph J; Black, Stuart K; Kenttämaa, Hilkka I
2012-07-17
In the search for a replacement for fossil fuel and the valuable chemicals currently obtained from crude oil, lignocellulosic biomass has become a promising candidate as an alternative biorenewable source for crude oil. Hence, many research efforts focus on the extraction, degradation, and catalytic transformation of lignin, hemicellulose, and cellulose. Unfortunately, these processes result in the production of very complex mixtures. Further, while methods have been developed for the analysis of mixtures of oligosaccharides, this is not true for the complex mixtures generated upon degradation of lignin. For example, high-performance liquid chromatography/multiple stage tandem mass spectrometry (HPLC/MS(n)), a tool proven to be invaluable in the analysis of complex mixtures derived from many other biopolymers, such as proteins and DNA, has not been implemented for lignin degradation products. In this study, we have developed an HPLC separation method for lignin degradation products that is amenable to negative-ion-mode electrospray ionization (ESI doped with NaOH), the best method identified thus far for ionization of lignin-related model compounds without fragmentation. The separated and ionized compounds are then analyzed by MS(3) experiments to obtain detailed structural information while simultaneously performing high-resolution measurements to determine their elemental compositions in the two parts of a commercial linear quadrupole ion trap/Fourier-transform ion cyclotron resonance mass spectrometer. A lignin degradation product mixture was analyzed using this method, and molecular structures were proposed for some components. This methodology significantly improves the ability to analyze complex product mixtures that result from degraded lignin.
Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang
2016-09-01
The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes.
Vogl, Gregory W; Weiss, Brian A; Donmez, M Alkan
2015-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a 'sensor box' to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes
Vogl, Gregory W.; Weiss, Brian A.; Donmez, M. Alkan
2017-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a ‘sensor box’ to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality. PMID:28691039
DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. S. Sohal; J. E. O'Brien; C. M. Stoots
2012-02-01
Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.« less
DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. E. O'Brien; C. M. Stoots; V. I. Sharma
2010-06-01
Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problemsmore » between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.« less
Wang, Weitao; Wang, Yinghui; Zhang, Ruijie; Wang, Shaopeng; Wei, Chaoshuai; Chaemfa, Chakra; Li, Jun; Zhang, Gan; Yu, Kefu
2016-01-15
Passive air samplers (PAS) were deployed concurrently at 15 locations (nine urban sites and six rural sites) in Vietnam and exposed for approximately 6 weeks from June 26, 2012 to August 26, 2012 and from December 8, 2012 to February 8, 2013. The concentration, composition and enantiomeric signatures of the target compound and Air Mass Backward Trajectories of the 15 sampling sites are presented and discussed in this study. Relatively clean air mass from ocean and similar concentrations and composition of POPs between the south and north of Vietnam indicate that local emissions is most likely the major source of POPs in Vietnam. Technical DDT and technical HCH were widely used in Vietnam and corresponding quantitative data suggests the sporadic use. The preferential degradation of (+)-α-HCH was found in all sampling sites, which could be a regional characteristic of Vietnam. High trans-/cis-chlordane (TC/CC) ratios indicate the current use of technical chlordane for termite control. PCA estimated that main source of PCBs present in the atmosphere of Vietnam was uncontrolled discarded e-waste. Copyright © 2015 Elsevier B.V. All rights reserved.
Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.
Alexandrino, M; Knief, C; Lipski, A
2001-10-01
Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.
Li, Qian; Wang, Yan; Zou, Yong-De; Liao, Xin-Di; Liang, Juan-Boo; Xin, Wen; Wu, Yin-Bao
2015-09-15
The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil. Copyright © 2015. Published by Elsevier B.V.
Yang, Xiaochao; You, Xiaoxiao; Zhang, Bin; Guo, Chuigen; Yu, Chaosheng
2017-10-01
Magnetic imprinted N-doped P25/Fe 3 O 4 -graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize Fe 3 O 4 -GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one. Moreover, the effect factors on degradation efficiency of CR, such as the initial concentration of CR, catalysis time, pH of the solution and temperature, were investigated. The MIGNT was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, a physical property measurement system and a thermal gravimetric analyzer. The degradation products of CR were detected with high performance liquid chromatography and a mass spectrometer. The MIGNT was a brand-new imprinted composite and had high degradation efficiency for CR under dark ambient conditions. The MIGNT could be recycled conveniently, due to its magnetic property, and could be used as an effective, environmentally friendly and low-cost catalytic degradation material for the treatment of water contaminated by CR.
Disruption of cell walls for enhanced lipid recovery
Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose
2015-03-24
Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.
Comparative efficacy of multimodal digital methods in assessing trail/resource degradation
Logan O. Park
2014-01-01
Outdoor recreation can cause both positive and negative impacts on associated forest ecosystems. Forest recreation trails localize negative impacts to a controlled spatial extent while providing recreation access beyond developed areas and transportation networks. Current methods for assessing extent and severity of trail and proximal resource degradation require...
An improved method for determination of fumigant degradation half-life in soil
USDA-ARS?s Scientific Manuscript database
Using the current approach, measurement of fumigant degradation half-lives under realistic soil conditions is problematic due to the large headspace that is necessary above the soil during incubation. This results in a poor degree of contact between the fumigant and the soil’s degrading surfaces; di...
Xue, Jianliang; Yu, Yang; Bai, Yu; Wang, Liping; Wu, Yanan
2015-08-01
Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61-66, 2001). This review introduces an important remedial method for marine oil pollution treatment-bioremediation technique-which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed.
Classifying Degraded Modern Polymeric Museum Artefacts by Their Smell.
Curran, Katherine; Underhill, Mark; Grau-Bové, Josep; Fearn, Tom; Gibson, Lorraine T; Strlič, Matija
2018-02-05
The use of VOC analysis to diagnose degradation in modern polymeric museum artefacts is reported. Volatile organic compound (VOC) analysis is a successful method for diagnosing medical conditions but to date has found little application in museums. Modern polymers are increasingly found in museum collections but pose serious conservation difficulties owing to unstable and widely varying formulations. Solid-phase microextraction gas chromatography/mass spectrometry and linear discriminant analysis were used to classify samples according to the length of time they had been artificially degraded. Accuracies in classification of 50-83 % were obtained after validation with separate test sets. The method was applied to three artefacts from collections at Tate to detect evidence of degradation. This approach could be used for any material in heritage collections and more widely in the field of polymer degradation. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Shi, Yan
2014-02-01
Degradation of fermentable monosaccharides is one of the primary concerns for acid prehydrolysis of lignocellulosic biomass. Recently, in our research on degradation of pure monosaccharides in aqueous SO₂ solution by gas chromatography (GC) analysis, we found that detected yield was not actual yield of each monosaccharide due to the existence of sugar-bisulfite adducts, and a new method was developed by ourselves which led to accurate detection of recovery yield of each monosaccharide in aqueous SO₂ solution by GC analysis. By the use of this method, degradation of each monosaccharide in aqueous SO₂ was investigated and results showed that sugar-bisulfite adducts have different inhibiting effect on degradation of each monosaccharide in aqueous SO₂ because of their different stability. In addition, NMR testing also demonstrated possible existence of reaction between conjugated based HSO₃(-) and aldehyde group of sugars in acid system.
Bacterial degradation of chlorophenols and their derivatives
2014-01-01
Chlorophenols (CPs) and their derivatives are persistent environmental pollutants which are used in the manufacture of dyes, drugs, pesticides and other industrial products. CPs, which include monochlorophenols, polychlorophenols, chloronitrophenols, chloroaminophenols and chloromethylphenols, are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Several physico-chemical and biological methods have been used for removal of CPs from the environment. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing CPs from the environment. Several bacteria that use CPs as their sole carbon and energy sources have been isolated and characterized. Additionally, the metabolic pathways for degradation of CPs have been studied in bacteria and the genes and enzymes involved in the degradation of various CPs have been identified and characterized. This review describes the biochemical and genetic basis of the degradation of CPs and their derivatives. PMID:24589366
Identification of land degradation evidences in an organic farm using probability maps (Croatia)
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Bogunovic, Igor; Estebaranz, Ferran
2017-04-01
Land degradation is a biophysical process with important impacts on society, economy and policy. Areas affected by land degradation do not provide services in quality and with capacity to full-field the communities that depends on them (Amaya-Romero et al., 2015; Beyene, 2015; Lanckriet et al., 2015). Agricultural activities are one of the main causes of land degradation (Kraaijvanger and Veldkamp, 2015), especially when they decrease soil organic matter (SOM), a crucial element for soil fertility. In temperate areas, the critical level of SOM concentration in agricultural soils is 3.4%. Below this level there is a potential decrease of soil quality (Loveland and Weeb, 2003). However, no previous work was carried out in other environments, such as the Mediterranean. The spatial distribution of potential degraded land is important to be identified and mapped, in order to identify the areas that need restoration (Brevik et al., 2016; Pereira et al., 2017). The aim of this work is to assess the spatial distribution of areas with evidences of land degradation (SOM bellow 3.4%) using probability maps in an organic farm located in Croatia. In order to find the best method, we compared several probability methods, such as Ordinary Kriging (OK), Simple Kriging (SK), Universal Kriging (UK), Indicator Kriging (IK), Probability Kriging (PK) and Disjunctive Kriging (DK). The study area is located on the Istria peninsula (45°3' N; 14°2' E), with a total area of 182 ha. One hundred eighty-two soil samples (0-30 cm) were collected during July of 2015 and SOM was assessed using wet combustion procedure. The assessment of the best probability method was carried out using leave one out cross validation method. The probability method with the lowest Root Mean Squared Error (RMSE) was the most accurate. The results showed that the best method to predict the probability of potential land degradation was SK with an RMSE of 0.635, followed by DK (RMSE=0.636), UK (RMSE=0.660), OK (RMSE=0.660), IK (RMSE=0.722) and PK (RMSE=1.661). According to the most accurate method, it is observed that the majority of the area studied has a high probability to be degraded. Measures are needed to restore this area. References Amaya-Romero, M., Abd-Elmabod, S., Munoz-Rojas, M., Castellano, G., Ceacero, C., Alvarez, S., Mendez, M., De la Rosa, D. (2015) Evaluating soil threats under climate change scenarios in the Andalusia region, Southern Spain. Land Degradation and Development, 26, 441-449. Beyene, F. (2015) Incentives and challenges in community based rangeland management: Evidence from Eastern Ethiopia. Land Degradation and Development, 26, 502-509. Brevik, E., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Baumgarten, A., Jordán, A. (2016) Historical perspectives and future needs in soil mapping, classification and pedological modelling, Geoderma, 264, Part B, 256-274. Kraaijvanger, R., Veldkamp, T. (2015) Grain productivity, fertilizer response and nutrient balance of farming systems in Tigray, Ethiopia: A Multiprespective view in relation do soil fertility degradation. Land Degradation and Development, 26, 701-710. Lanckriet, S., Derudder, B., Naudts, J., Bauer, H., Deckers, J., Haile, M., Nyssen, J. (2015) A political ecology perspective of land degradation in the North Ethiopian Highlands. Land Degradation and Development, 26, 521-530. Loveland, P., Weeb, J. (2003) Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil & Tillage Research, 70, 1-18. Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A. Soil mapping and process modelling for sustainable land management. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (Eds.) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006
Planning a DSN support section technical library
NASA Technical Reports Server (NTRS)
Bailey, T.; Chatburn, C. C.
1980-01-01
The planning procedure being used to establish a technical library for the Deep Space Network support section is described. The inventory and survey methods employed are described and the preliminary results of these methods are discussed.
Training and Maintaining System-Wide Reliability in Outcome Management.
Barwick, Melanie A; Urajnik, Diana J; Moore, Julia E
2014-01-01
The Child and Adolescent Functional Assessment Scale (CAFAS) is widely used for outcome management, for providing real time client and program level data, and the monitoring of evidence-based practices. Methods of reliability training and the assessment of rater drift are critical for service decision-making within organizations and systems of care. We assessed two approaches for CAFAS training: external technical assistance and internal technical assistance. To this end, we sampled 315 practitioners trained by external technical assistance approach from 2,344 Ontario practitioners who had achieved reliability on the CAFAS. To assess the internal technical assistance approach as a reliable alternative training method, 140 practitioners trained internally were selected from the same pool of certified raters. Reliabilities were high for both practitioners trained by external technical assistance and internal technical assistance approaches (.909-.995, .915-.997, respectively). 1 and 3-year estimates showed some drift on several scales. High and consistent reliabilities over time and training method has implications for CAFAS training of behavioral health care practitioners, and the maintenance of CAFAS as a global outcome management tool in systems of care.
Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim; Ware, Doug S; Marina, Oana; Perkins, George; Vesselinov, Velimir V; WoldeGabriel, Giday
2017-09-01
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extent of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d ) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Results also showed no measurable differences between the transport properties of RDX and its degradation products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim; ...
2017-05-02
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extentmore » of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments in this paper were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Finally, results also showed no measurable differences between the transport properties of RDX and its degradation products.« less
Differential Degradation of Nonylphenol Isomers by Sphingomonas xenophaga Bayram
Gabriel, Frédéric L. P.; Giger, Walter; Guenther, Klaus; Kohler, Hans-Peter E.
2005-01-01
Sphingomonas xenophaga Bayram, isolated from the activated sludge of a municipal wastewater treatment plant, was able to utilize 4-(1-ethyl-1,4-dimethylpentyl)phenol, one of the main isomers of technical nonylphenol mixtures, as a sole carbon and energy source. The isolate degraded 1 mg of 4-(1-ethyl-1,4-dimethylpentyl)phenol/ml in minimal medium within 1 week. Growth experiments with five nonylphenol isomers showed that the three isomers with quaternary benzylic carbon atoms [(1,1,2,4-tetramethylpentyl)phenol, 4-(1-ethyl-1,4-dimethylpentyl)phenol, and 4-(1,1-dimethylheptyl)phenol] served as growth substrates, whereas the isomers containing one or two hydrogen atoms in the benzylic position [4-(1-methyloctyl)phenol and 4-n-nonylphenol] did not. However, when the isomers were incubated as a mixture, all were degraded to a certain degree. Differential degradation was clearly evident, as isomers with more highly branched alkyl side chains were degraded much faster than the others. Furthermore, the C9 alcohols 2,3,5-trimethylhexan-2-ol, 3,6-dimethylheptan-3-ol, and 2-methyloctan-2-ol, derived from the three nonylphenol isomers with quaternary benzylic carbon atoms, were detected in the culture fluid by gas chromatography-mass spectrometry, but no analogous metabolites could be found originating from 4-(1-methyloctyl)phenol and 4-n-nonylphenol. We propose that 4-(1-methyloctyl)phenol and 4-n-nonylphenol were cometabolically transformed in the growth experiments with the mixture but that, unlike the other isomers, they did not participate in the reactions leading to the detachment of the alkyl moiety. This hypothesis was corroborated by the observed accumulation in the culture fluid of an as yet unidentified metabolite derived from 4-(1-methyloctyl)phenol. PMID:15746308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heerspink, Brent Porter; Pandey, Sachin; Boukhalfa, Hakim
High-explosive compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were used extensively in weapons research and testing at Los Alamos National Laboratory (LANL). Liquid effluents containing RDX were released to an outfall pond that flowed to Cañon de Valle at LANL's Technical Area 16 (TA-16), resulting in the contamination of the alluvial, intermediate and regional groundwater bodies. Monitoring of groundwater within Cañon de Valle has shown persistent RDX in the intermediate perched zone located between 225 and 311 m below ground surface. Monitoring data also show detectable levels of RDX putative anaerobic degradation products. Batch and column experiments were conducted to determine the extentmore » of adsorption-desorption and transport of RDX and its degradation products (MNX, DNX, and TNX) in major rock types that are within the RDX plume. All experiments in this paper were performed in the dark using water obtained from a well located at the center of the plume, which is fairly oxic and has a neutral pH of 7.5. Retardation factors and partitioning coefficient (K d) values for RDX were calculated from batch experiments. Additionally, retardation factors and K d values for RDX and its degradation products were calibrated from column experiments using a one-dimensional transport model with equilibrium sorption (linear isotherm). Results from the column and batch experiments showed little to no sorption of RDX to the aquifer materials tested, with retardation factors ranging from 1.0 to 1.8 and K d values varying from 0 to 0.70 L/kg. Finally, results also showed no measurable differences between the transport properties of RDX and its degradation products.« less
Magnetic heterogeneous catalytic ozonation: a new removal method for phenol in industrial wastewater
2014-01-01
In this study, a new strategy in catalytic ozonation removal method for degradation of phenol from industrial wastewater was investigated. Magnetic carbon nano composite as a novel catalyst was synthesized, characterized and then used in the catalytic ozonation process (COP) and compared with the single ozonation process (SOP). The influential parameters were all investigated. The results showed that the removal efficiency of phenol and COD (chemical oxygen demand) in COP (98.5%, 69.8%) was higher than those of SOP (78.7%, 50.5%) and the highest catalytic potential was achieved at optimal neutral pH. First order modeling demonstrated that the reactions were dependent on the concentration of catalyst, with kinetic constants varying from 0.023 1/min (catalyst = 0 g/L) to 0.071 1/min (catalyst = 4 g/L), whereby the optimum dosage of catalyst was found to be 2 g/L. Furthermore, the catalytic properties of the catalyst remained almost unchanged after 5-time reuse. The results regarding the biodegradability of the effluent showed that a 5-min reaction time in COP reduced the concentrations of phenol and COD to the acceptable levels for the efficient post-treatment in the SBR in a 4-h cycle period. Finally, this combined system is proven to be a technically effective method for treating phenolic contaminants. PMID:24572145
Mining the archives: a cross-platform analysis of gene ...
Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for genomic research into the molecular basis of disease. However, use of FFPE samples in gene expression studies has been limited by technical challenges resulting from degradation of nucleic acids. Here we evaluated gene expression profiles derived from fresh-frozen (FRO) and FFPE mouse liver tissues using two DNA microarray protocols and two whole transcriptome sequencing (RNA-seq) library preparation methodologies. The ribo-depletion protocol outperformed the other three methods by having the highest correlations of differentially expressed genes (DEGs) and best overlap of pathways between FRO and FFPE groups. We next tested the effect of sample time in formalin (18 hours or 3 weeks) on gene expression profiles. Hierarchical clustering of the datasets indicated that test article treatment, and not preservation method, was the main driver of gene expression profiles. Meta- and pathway analyses indicated that biological responses were generally consistent for 18-hour and 3-week FFPE samples compared to FRO samples. However, clear erosion of signal intensity with time in formalin was evident, and DEG numbers differed by platform and preservation method. Lastly, we investigated the effect of age in FFPE block on genomic profiles. RNA-seq analysis of 8-, 19-, and 26-year-old control blocks using the ribo-depletion protocol resulted in comparable quality metrics, inc
Degradation data analysis based on a generalized Wiener process subject to measurement error
NASA Astrophysics Data System (ADS)
Li, Junxing; Wang, Zhihua; Zhang, Yongbo; Fu, Huimin; Liu, Chengrui; Krishnaswamy, Sridhar
2017-09-01
Wiener processes have received considerable attention in degradation modeling over the last two decades. In this paper, we propose a generalized Wiener process degradation model that takes unit-to-unit variation, time-correlated structure and measurement error into considerations simultaneously. The constructed methodology subsumes a series of models studied in the literature as limiting cases. A simple method is given to determine the transformed time scale forms of the Wiener process degradation model. Then model parameters can be estimated based on a maximum likelihood estimation (MLE) method. The cumulative distribution function (CDF) and the probability distribution function (PDF) of the Wiener process with measurement errors are given based on the concept of the first hitting time (FHT). The percentiles of performance degradation (PD) and failure time distribution (FTD) are also obtained. Finally, a comprehensive simulation study is accomplished to demonstrate the necessity of incorporating measurement errors in the degradation model and the efficiency of the proposed model. Two illustrative real applications involving the degradation of carbon-film resistors and the wear of sliding metal are given. The comparative results show that the constructed approach can derive a reasonable result and an enhanced inference precision.
Lai, Bo; Zhou, Yuexi; Wang, Juling; Yang, Zhishan; Chen, Zhiqiang
2013-11-01
Oxidative degradation of Alizarin Red S (ARS) in aqueous solutions by using electro-Fenton was studied. At first, effect of operating parameters such as current density, aeration rate and initial pH on the degradation of ARS were studied by using UV-vis spectrum, respectively. Then, under the optimal operating conditions (current density: 10.0mAcm(-2), aeration rate: 1000mLmin(-1), initial pH: 2.8), the identification of degradation products of ARS was carried out by using GC-MS and HPLC, meanwhile its degradation pathway was proposed according to the intermediates. Considering the location, intensity and intensity ratio of fluorescence center peak of the ARS in aqueous solution, a convenient and quick monitoring method by using excitation-emission matrix fluorescence spectrum technology was developed to monitor the degradation degree of ARS through electro-Fenton process. Furthermore, it is suggested that the developed method would be promising for the quick analysis and evaluation of the degradation degree of the pollutants with π-conjugated system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sharma, Teenu; Khurana, Rajneet Kaur; Jain, Atul; Katare, O P; Singh, Bhupinder
2018-05-01
The current research work envisages an analytical quality by design-enabled development of a simple, rapid, sensitive, specific, robust and cost-effective stability-indicating reversed-phase high-performance liquid chromatographic method for determining stress-induced forced-degradation products of sorafenib tosylate (SFN). An Ishikawa fishbone diagram was constructed to embark upon analytical target profile and critical analytical attributes, i.e. peak area, theoretical plates, retention time and peak tailing. Factor screening using Taguchi orthogonal arrays and quality risk assessment studies carried out using failure mode effect analysis aided the selection of critical method parameters, i.e. mobile phase ratio and flow rate potentially affecting the chosen critical analytical attributes. Systematic optimization using response surface methodology of the chosen critical method parameters was carried out employing a two-factor-three-level-13-run, face-centered cubic design. A method operable design region was earmarked providing optimum method performance using numerical and graphical optimization. The optimum method employed a mobile phase composition consisting of acetonitrile and water (containing orthophosphoric acid, pH 4.1) at 65:35 v/v at a flow rate of 0.8 mL/min with UV detection at 265 nm using a C 18 column. Response surface methodology validation studies confirmed good efficiency and sensitivity of the developed method for analysis of SFN in mobile phase as well as in human plasma matrix. The forced degradation studies were conducted under different recommended stress conditions as per ICH Q1A (R2). Mass spectroscopy studies showed that SFN degrades in strongly acidic, alkaline and oxidative hydrolytic conditions at elevated temperature, while the drug was per se found to be photostable. Oxidative hydrolysis using 30% H 2 O 2 showed maximum degradation with products at retention times of 3.35, 3.65, 4.20 and 5.67 min. The absence of any significant change in the retention time of SFN and degradation products, formed under different stress conditions, ratified selectivity and specificity of the systematically developed method. Copyright © 2017 John Wiley & Sons, Ltd.
Analysis of External Treatment Methods and Technical Characteristics of External Treatment
NASA Astrophysics Data System (ADS)
Zhang, Rui; Miao, Mingsan; Bai, Ming
2018-01-01
Chinese medicine external therapy is a treatment method of Chinese medicine with Chinese characteristics. The effect of traditional Chinese medicine external treatment, convenient operation, external treatment and technology has great prospects for development. The traditional Chinese medicine external treatment method and technical characteristics were analyzed.
Hewala, Ismail; El-Fatatre, Hamed; Emam, Ehab; Mubrouk, Mokhtar
2010-06-30
A simple, rapid and sensitive reversed phase high performance liquid chromatographic method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, benzyl alcohol, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron) and benzaldehyde (the main degradation product of benzyl alcohol) in granisetron injections. The separation was achieved on Hypersil BDS C8 (250 mm x 4.6 mm i.d., 5 microm particle diameter) column using a mobile phase consisted of acetonitrile:0.05 M KH(2)PO(4):triethylamine (22:100:0.15) adjusted to pH 4.8. The column was maintained at 25 degrees C and 20 microL of solutions was injected. Photodiode array detector was used to test the peak purity and the chromatograms were extracted at 210 nm. Naphazoline hydrochloride was used as internal standard. The method was validated with respect to specificity, linearity, accuracy, precision, limit of quantitation and limit of detection. The validation acceptance criteria were met in all cases. Identification of the pure peaks was carried out using library match programmer and wavelengths of derivative optima of the spectrograms of the peaks. The method was successfully applied to the determination of the investigated drugs and their degradation products in different batches of granisetron injections. The method was proved to be sensitive for the determination down to 0.03 and 0.01% of granisetron degradation product and benzaldehyde, respectively, which are far below the compendia limits for testing these degradation products in their corresponding intact drugs. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honeycutt, M.E.; Jarvis, A.S.; McFarland, V.A.
1995-07-01
This technical note is the third in a series of three that outline and describe the principal methods that have been developed to test the potential of environmental contaminants to cause mutagenic, carcinogenic, and teratogenic effects. The first in this series (EEDP-04-24) describes methods used to discern genotoxic effects at the sub cellular level, while the second (EEDP-04-25) describes methods used to discern genotoxic effects at the cellular and organ/organism level. Recent literature citations for each topic referenced in this series of technical notes are provided in this technical note, in addition to a glossary of terms. The information inmore » these technical notes is intended to provide Corps of Engineers personnel with a working knowledge of the terminology and conceptual basis of genotoxicity testing. To develop an improved understanding of the concepts of genotoxicity, readers are encouraged to review A Primer in Genotoxicity (Jarvis, Reilly, and Lutz 1993), presented in Volume D-93-3 of the Environmental Effects of Dredging information exchange bulletin.« less
NASA Astrophysics Data System (ADS)
Kuzin, Evgeny G.; Gerike, Boris L.; Drozdenko, Yuriy V.; Lupiy, Michael G.; Grigoryeva, Natalya V.
2017-10-01
The article reviews the issues of complex use of methods of technical diagnostics of gearboxes for belt conveyors, with the aim of creating an effective system of maintenance. The article is showing the results of the evaluation of the technical condition of the drives of belt conveyors based on vibration monitoring and thermal parameters, and analysis of lubricating oil.
Modeling of ultrasonic degradation of non-volatile organic compounds by Langmuir-type kinetics.
Chiha, Mahdi; Merouani, Slimane; Hamdaoui, Oualid; Baup, Stéphane; Gondrexon, Nicolas; Pétrier, Christian
2010-06-01
Sonochemical degradation of phenol (Ph), 4-isopropylphenol (4-IPP) and Rhodamine B (RhB) in aqueous solutions was investigated for a large range of initial concentrations in order to analyze the reaction kinetics. The initial rates of substrate degradation and H(2)O(2) formation as a function of initial concentrations were determined. The obtained results show that the degradation rate increases with increasing initial substrate concentration up to a plateau and that the sonolytic destruction occurs mainly through reactions with hydroxyl radicals in the interfacial region of cavitation bubbles. The rate of H(2)O(2) formation decreases with increasing substrate concentration and reaches a minimum, followed by almost constant production rate for higher substrate concentrations. Sonolytic degradation data were analyzed by the models of Okitsu et al. [K. Okitsu, K. Iwasaki, Y. Yobiko, H. Bandow, R. Nishimura, Y. Maeda, Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration OH radicals and azo dyes, Ultrason. Sonochem. 12 (2005) 255-262.] and Seprone et al. [N. Serpone, R. Terzian, H. Hidaka, E. Pelizzetti, Ultrasonic induced dehalogenation and oxidation of 2-, 3-, and 4-chlorophenol in air-equilibrated aqueous media. Similarities with irradiated semiconductor particulates, J. Phys. Chem. 98 (1994) 2634-2640.] developed on the basis of a Langmuir-type mechanism. The five linearized forms of the Okitsu et al.'s equation as well as the non-linear curve fitting analysis method were discussed. Results show that it is not appropriate to use the coefficient of determination of the linear regression method for comparing the best-fitting. Among the five linear expressions of the Okitsu et al.'s kinetic model, form-2 expression very well represent the degradation data for Ph and 4-IPP. Non-linear curve fitting analysis method was found to be the more appropriate method to determine the model parameters. An excellent representation of the experimental results of sonolytic destruction of RhB was obtained using the Serpone et al.'s model. The Serpone et al.'s model gives a worse fit for the sonolytic degradation data of Ph and 4-IPP. These results indicate that Ph and 4-IPP undergo degradation predominantly at the bubble/solution interface, whereas RhB undergoes degradation at both bubble/solution interface and in the bulk solution. (c) 2010 Elsevier B.V. All rights reserved.
Clean Heat: A Technical Response to a Policy Innovation
Hernández, Diana
2017-01-01
New York City clean heat policies were enacted to improve air quality, especially reducing exposure to black carbon, particulate matter and sulfur that are linked to environmental degradation and various health risks. This policy measure specifically called for the phase out of residual oil and adoption of cleaner burning fuel sources through boiler conversions in commercial and residential properties throughout the city. This paper describes the process of clean heat technology adoption within the innovative clean heat policy context demonstrating its thorough compliance and discussing implications for scalability in other urban settings. PMID:29657663
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Ashry, M.T.
1993-01-01
Recent experience suggests that poverty and environmental degradation go hand in hand. Economic development, on the other hand, provides the financial and technical resources needed for the protection of human health and natural ecosystems. Balancing economic development and environmental protection in developing countries requires a refocusing of economic activity -- not towards producing less, but producing differently. Strategies for the integration of economic development and environmental protection are outlined here, as is the proposed role that will need to be played by the World Bank. 4 refs., 3 figs.
NASA Astrophysics Data System (ADS)
Jonckheere, I. G.; FAO UN-REDD Team Forestry Department
2011-12-01
Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme, a partnership between UNEP, FAO and UNDP, assists developing countries to prepare and implement national REDD+ strategies. Designed collaboratively by a broad range of stakeholders, national UN-REDD Programmes are informed by the technical expertise of FAO, UNDP and UNEP. For the monitoring, reporting and verification, FAO supports the countries to develop satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV)of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism, also following the COP 16 decisions in Cancun last year. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost-effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the start-up phase for DRC and Papua New Guinea (PNG) in this capacity building effort is the training of technical forest people and IT persons from these two interested REDD+ countries, and to set-up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows countries to adapt it to country needs and the training on the TerraAmazon system is a tool to enhance existing capacity on carbon monitoring systems. The start-up phase of the National Forest Monitoring System for DRC and PNG will allow these countries to follow all actions related to the implementation of its national REDD+ policies and measures. The monitoring system will work as a platform to obtain information on their REDD+ results and actions, related directly or indirectly to national REDD+ strategies and may also include actions unrelated to carbon assessment, such as forest law enforcement. With the technical assistance of FAO, INPE and other stakeholders, the countries will set up an autonomous operational forest monitoring system. An initial version and the methodologies of these syste,s will be launched in Durban, South Africa during COP 17 and is presented here.
Cyclic Polarization Behavior of ASTM A537-Cl.1 Steel in the Vapor Space Above Simulated Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, B
2004-11-01
An assessment of the potential degradation mechanisms of Types I and II High-Level Waste (HLW) Tanks determined that pitting corrosion and stress corrosion cracking were the two most significant degradation mechanisms. Specifically, nitrate induced stress corrosion cracking was determined to be the principal degradation mechanism for the primary tank steel of non-stress relieved tanks. Controls on the solution chemistry have been in place to preclude the initiation and propagation of degradation in the tanks. However, recent experience has shown that steel not in contact with the bulk waste solution or slurry, but exposed to the ''vapor space'' above the bulkmore » waste, may be vulnerable to the initiation and propagation of degradation, including pitting and stress corrosion cracking. A program to resolve the issues associated with potential vapor space corrosion is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion (similar to current evaluations). There are several needs for a technically defensible basis with sufficient understanding to perform these evaluations. These include understanding of the (1) surface chemistry evolution, (2) corrosion response through coupon testing, and (3) mechanistic understanding through electrochemical studies. Experimentation performed in FY02 determined the potential for vapor space and liquid/air interface corrosion of ASTM A285-70 and ASTM A537-Cl.1 steels. The material surface characteristics, i.e. mill-scale, polished, were found to play a key role in the pitting response. The experimentation indicated that the potential for limited vapor space and liquid/air interface pitting exists at 1.5M nitrate solution when using chemistry controls designed to prevent stress corrosion cracking. Experimentation performed in FY03 quantified pitting rates as a function of material surface characteristics, including mill-scale and defects within the mill-scale. Testing was performed on ASTM A537-Cl.1 (normalized) steel, the material of construction of the Type III HLW tanks. The pitting rates were approximately 3 mpy for exposure above inhibited solutions, as calculated from the limited exposure times. This translates to a penetration time of 166 years for a 0.5-in tank wall provided that the pitting rate remains constant and the bulk solution chemistry is maintained within the L3 limit. The FY04 testing consisted of electrochemical testing to potentially lend insight into the surface chemistry and further understand the corrosion mechanism in the vapor space. Electrochemical testing lends insight into the corrosion processes through the determination of current potential relationships. The results of the electrochemical testing performed during FY04 are presented here.« less
Design and Delivery of Technical Module for the Business Intelligence Course
ERIC Educational Resources Information Center
Wang, Shouhong; Wang, Hai
2013-01-01
IS programs are increasingly being called on to offer courses in business intelligence. This article presents the pedagogical design and the delivery method of a practicable technical module for a non-technically oriented Business Intelligence course. It is a tutorial for the instructors who wish to incorporate a practical technical element in…
Analysis of the Technical Writing Profession through the DACUM Process.
ERIC Educational Resources Information Center
Nolan, Timothy; Green, Marc
To help develop a curriculum program for technical writers, Cincinnati Technical College used the Developing a Curriculum (DACUM) method to produce a technical writing skills profile. DACUM develops an occupation analysis through a modified brainstorming process by a panel of expert workers under the direction of a qualified coordinator. This…
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Sangeetha, D.; Kalyanraman, L.
2017-11-01
For determination of process related impurities and degradation products of asenapine maleate in asenapine sublingual Tablets, a reversed phase, stability indicating UPLC method was developed. Acetonitrile, methanol and potassium dihydrogen phosphate buffer with tetra-n- butyl ammonium hydrogen sulphate as ion pair (pH 2.2; 0.01 M) at flow rate of 0.2 ml/min were used in gradient elution mode. Separation was achieved by using acquity BEH Shield RP18 column (1.7 μm, 2.1 mm×100 mm) at 35 ºC. UV detection was performed at 228 nm. Subsequently the liquid chromatography method was validated as per ICH. The drug product was exposed to the stress conditions of acid hydrolysis, base hydrolysis, water hydrolysis, oxidative, thermal, and photolytic. In oxidative stress and thermal stress significant degradation was observed. All the degradation products were well separated from analyte peak and its impurities. Stability indicating nature of the method was proved by demonstrating the peak purity of Asenapine peak in all the stressed samples. The mass balance was found >95% for all the stress conditions. Based on method validation, the method was found specific, linear, accurate, precise, rugged and robust.
Hassan, Mostafa A.; Zaghary, Wafaa A.
2018-01-01
New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm–260.4 nm, amplitudes at 260.4 nm–274.0 nm, and mean-centered values at 287.6 nm–257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5–50 μg/mL and 2.5–25 μg/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD. PMID:29629213
Mowaka, Shereen; Ayoub, Bassam M; Hassan, Mostafa A; Zaghary, Wafaa A
2018-01-01
New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm-260.4 nm, amplitudes at 260.4 nm-274.0 nm, and mean-centered values at 287.6 nm-257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5-50 μ g/mL and 2.5-25 μ g/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD.
Methods and reagents. Degraded DNA and gel tornados.
Hengen, P N
1997-04-01
Methods and reagents is a unique monthly column that highlights current discussions in the newsgroup bionet.molbio.methds-reagnts, available on the Internet. This month's column discusses a case of inexplicable DNA degradation and tornados seen in agarose gels. For details on how to partake in the newsgroup, see the accompanying box.
Aircraft Flight Envelope Determination using Upset Detection and Physical Modeling Methods
NASA Technical Reports Server (NTRS)
Keller, Jeffrey D.; McKillip, Robert M. Jr.; Kim, Singwan
2009-01-01
The development of flight control systems to enhance aircraft safety during periods of vehicle impairment or degraded operations has been the focus of extensive work in recent years. Conditions adversely affecting aircraft flight operations and safety may result from a number of causes, including environmental disturbances, degraded flight operations, and aerodynamic upsets. To enhance the effectiveness of adaptive and envelope limiting controls systems, it is desirable to examine methods for identifying the occurrence of anomalous conditions and for assessing the impact of these conditions on the aircraft operational limits. This paper describes initial work performed toward this end, examining the use of fault detection methods applied to the aircraft for aerodynamic performance degradation identification and model-based methods for envelope prediction. Results are presented in which a model-based fault detection filter is applied to the identification of aircraft control surface and stall departure failures/upsets. This application is supported by a distributed loading aerodynamics formulation for the flight dynamics system reference model. Extensions for estimating the flight envelope due to generalized aerodynamic performance degradation are also described.
Sun, Jianxia; Mei, Zhouxiong; Tang, Yajuan; Ding, Lijun; Jiang, Guichuan; Zhang, Chi; Sun, Aidong; Bai, Weibin
2016-08-24
As an alternative preservation method to thermal treatment, ultrasound is a novel non-thermal processing technology that can significantly avoid undesirable nutritional changes. However, recently literature indicated that anthocyanin degradation occurred when high amplitude ultrasound was applied to juice. This work mainly studied the effect of ultrasound on the stability and antioxidant capacity of pelargonidin-3-glucoside (Pg-3-glu) and the correlation between anthocyanin degradation and •OH generation in a simulated system. Results indicated that the spectral intensities of Pg-3-glu decreased with increasing ultrasound power (200-500 W) and treatment time (0-60 min). The degradation trend was consistent with first-order reaction kinetics (R² > 0.9100). Further study showed that there was a good linear correlation between Pg-3-glu degradation and •OH production (R² = 0.8790), which indicated the important role of •OH in the degradation of anthocyanin during ultrasound exposure. Moreover, a decrease in the antioxidant activity of solution(s) containing Pg-3-glu as evaluated by the DPPH and FRAP methods was observed after ultrasound treatment.
Ada Software Design Methods Formulation.
1982-10-01
Programmer technical 2018 Principle Scientific Programmer technical 2020 Principle Scientif:c Programmer tnchnical 3001 Junior Programns. entry level...0.570 156 6010-. I---. 0.684 7 1031------------- 0.481 77 3119-. 0.620 94 4034-. ----- 0.696 90 4027-. -- ’---- 0.759 31 2018 -. I-’" 0.823 142 5063-. I...1094-2 0-117 cluster 4 2007 Senior Scientific Programmer technical 2016 Scientific Programmer technical 1080 Senior Software Engineer technical 2018
Using case studies to teach an engineering technology technical writing class
NASA Technical Reports Server (NTRS)
Green, M. M.
1981-01-01
The use of the case method in teaching various technical communication skills is described. Features of the method considered include: solving communication problems, identifying an audience, planning written communications, presenting written communications, and using visual aids.
NASA Astrophysics Data System (ADS)
Lv, Haitao; Duan, Ke; Shan, Hu
2018-04-01
Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.
25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil.
Harmsen, Joop; Rietra, René P J J
2018-05-10
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPH) in sediment and soil has been monitored on seven experimental fields during periods up to 25 years. With this unique dataset, we investigated long-term very slow biodegradation under field conditions. . The data show that three biodegradation rates can be distinguished for PAHs: 1) rapid degradation during the first year, 2) slow degradation during the following 6 years and 3), subject of this paper, a very slow degradation after 7 years until at least 25 years. Beside 2-, 3- and 4-ring PAHs, also 5- and 6-ring PAHs (aromatic rings) were degraded, all at the same rate during very slow degradation. In the period of very slow degradation, 6% yr -1 of the PAHs present were removed in five fields and 2% yr -1 in two other fields, while in the same period no very slow degradation of TPH could be observed. The remaining petroleum hydrocarbons were high boiling and non-toxic. Using the calculated degradation rates and the independently measured bioavailability of the PAHs (Tenax-method), the PAHs degradation curves of all seven monitored fields could be modelled. Applying the model and data obtained with the Tenax-method for fresh contaminated material, results of long-term biodegradation can be predicted, which can support the use of bioremediation in order to obtain a legally acceptable residual concentration. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Color transplant for reverse ageing of faded artworks
NASA Astrophysics Data System (ADS)
Del Mastio, A.; Piva, A.; Barni, M.; Cappellini, V.; Stefanini, L.
2008-02-01
Nowadays, photographs are one of the most used media for communication. Images are used for the representation of documents, Cultural goods, and so on: they are used to pass on a wedge of historical memory of the society. Since its origin, the photographic technique has got several improvements; nevertheless, photos are liable to several damages, both concerning the physical support and concerning the colors and figures which are depicted in it: for example, think about scratches or rips happened to a photo, or think about the fading or red (or yellow) toning concerning the colors of a photo. In this paper, we propose a novel method which is able to assess the original beauty of digital reproductions of aged photos, as well as digital reproductions of faded goods. The method is based on the comparison of the degraded image with a not-degraded one showing similar contents; thus, the colors of the not-degraded image can be transplanted in the degraded one. The key idea is a dualism between the analytical mechanics and the color theory: for each of the degraded and not-degraded images we compute first a scatter plot of the x and y normalized coordinates of their colors; these scatter diagrams can be regarded as a system of point masses, thus provided of inertia axes and an inertia ellipsoid. Moving the scatter diagram of the degraded image over the one belonging to the not-degraded image, the colors of the degraded image can be restored.
Eissa, Maya S; Abd El-Sattar, Osama I
2017-04-01
Loxoprofen sodium (LOX) is a recently developed novel propionic acid derivative. Owing to its instability under both hydrolytic and oxidative conditions, the development of simple, rapid and sensitive methods for its determination in the presence of its possible forced degradation products becomes essential. Two simple chromatographic methods, high-performance thin layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC), were developed associated with ultraviolet (UV) detection. In HPTLC-densitometric method, the separation of LOX from its degradation products was achieved using silica gel F254 plates and toluene:acetone:acetic acid (1.8:1.0:0.1, v/v/v) as the developing system followed by densitometric scanning at 220 nm. In the HPLC-UV method, the separation was performed using isocratic elution system with acetonitrile: 0.15% triethylamine (pH 2.2) (50:50, v/v) on C18 analytical column. The flow rate was optimized at 1.0 mL·min-1 and UV detection was achieved at 220 nm. Validation was performed in accordance with the International Conference on Harmonization guidelines and the method was perfectly applied for determination of LOX in its pharmaceutical preparation. The results obtained were statistically compared to those obtained after application of the official HPLC method, where no significant difference was found incompliance with precision and accuracy. Identification and characterization of the possible hydrolytic degradation product under alkaline conditions and that produced during oxidative degradation using hydrogen peroxide were structurally elucidated using infrared and mass spectrometry analyses. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Research on degradation of omethoate with Y2O3:Er3+ and TiO2
NASA Astrophysics Data System (ADS)
Liu, Zhiping; Mai, Yanling; Yan, Aiguo; Fan, Hailu; Yuan, Taidou
2018-06-01
Application of visible light excited photocatalytic degradation reagent of pesticide residues is not only suitable for the farmers, can also be used for city residents for daily use. Up conversion material Y2O3:Er3+ was prepared by sol gel method, then mixed with anatase TiO2 sol solution, to carry out the research of omethoate degradation under visible light. In order to get the higher degradability, it's important to study the technological parameters. Among so many parameters, four parameters were selected. They were vegetable surface omethoate concentration, photocatalytic degradation reagent dosage, pH value and degradation time. Utilizing orthogonal experimental design program, all parameters were optimized. The results showed that: the degradation rate was the largest concerned with the vegetable surface omethoate concentration, and then the degradation time.
Ta, Na; Hong, Jun; Liu, Tingfeng; Sun, Cheng
2006-11-02
The present study investigates the degradation of atrazine (2-chloro-4-(ethyl amino)-6-isopropyl amino-s-triazine) in aqueous solution by a developed new method, namely by means of a microwave-assisted electrodeless discharge mercury lamp (MW-EDML). An experimental design was conducted to assess the influence of various parameters: pH value, initial concentration, amount of EDML, initial volume and coexisted solvent. Atrazine was degraded completely by EDML in a relatively short time (i.e. t(1/2)=1.2 min for 10 mg/l). Additionally, the identification of main degradation products during atrazine degradation process was conducted by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). This study proposes the degradation mechanism including four possible pathways for atrazine degradation according to the degradation products.
Interactive Methods of Teaching Physics at Technical Universities
ERIC Educational Resources Information Center
Krišták, L'uboš; Nemec, Miroslav; Danihelová, Zuzana
2014-01-01
The paper presents results of "non-traditional" teaching of the basic course of Physics in the first year of study at the Technical University in Zvolen, specifically teaching via interactive method enriched with problem tasks and experiments. This paper presents also research results of the use of the given method in conditions of…
Technical Notes on the Multifactor Method of Elementary School Closing.
ERIC Educational Resources Information Center
Puleo, Vincent T.
This report provides preliminary technical information on a method for analyzing the factors involved in the closing of elementary schools. Included is a presentation of data and a brief discussion bearing on descriptive statistics, reliability, and validity. An intercorrelation matrix is also examined. The method employs 9 factors that have a…
Dai, Xin-Xin; Shen, Fei; Su, Shu-Lan; Zhang, Sen; Guo, Sheng; Jiang, Shu; Qian, Da-Wei; Duan, Jin-Ao
2016-09-01
Salviae Miltiorrhizae Radix et Rhizoma residues were pre-treated with acid and alkali, degraded by using cellulose, and the effects of different processing methods on the extraction rate of tanshinones were compared to provide scientific basis for development and utilization of tanshinones from Salviae Miltiorrhizae Radix et Rhizoma residues. The results showed that in the Salviae Miltiorrhizae Radix et Rhizoma residues without pre-treatment, enzymatic hydrolysis time of 4.5 d could make most of the cellulose degraded when the concentration of substrate enzyme concentration was 6 U•mL-1, and the highest glucose concentration was 59.74 mg•g⁻¹. It was found that the best effect was achieved after alkali pre-treatment-cellulose C degradation among the different pre-treatment methods, and the glucose content reached 119.50 mg•g⁻¹, followed by the same concentration of acid pre-treatment-cellulose C degradation. The extraction amount of tanshinone ⅡA was increased by 82.54% after enzyme degradation, with a mass fraction of 2.451 mg•g⁻¹; extraction amount of tanshinone I was increased by 81.82% after enzyme degradation, with a mass fraction of 2.373 mg•g⁻¹; extraction amount of cryptotanshinone was increased by 64.4% after enzyme degradation, with a mass fraction of 1.080 mg•g⁻¹; extraction amount of dihydrotanshinone I was increased by 61.3% after enzyme degradation, with a mass fraction of 0.601 2 mg•g⁻¹. Acid and alkali pre-treatment combined with cellulose degradation could effectively improve the extraction rate of tanshinones from Salviae Miltiorrhizae Radix et Rhizoma residues. This method is operable and practical, and it is beneficial for improving the utilization efficiency of tanshinones (resource based chemicals) from Salviae Miltiorrhizae Radix et Rhizoma residues. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
El-Zahry, Marwa R.; Lendl, Bernhard
2018-03-01
A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.
Degradation of bisphenol A in water by the heterogeneous photo-Fenton.
Jiang, Chuanrui; Xu, Zhencheng; Guo, Qingwei; Zhuo, Qiongfang
2014-01-01
Bisphenol A (BPA) is a kind of a controversial endocrine disruptor, and is ubiquitous in environment. The degradation of BPA with the heterogeneous photo-Fenton system was demonstrated in this study. The Fe-Y molecular sieve catalyst was prepared with the ion exchange method, and it was characterized by X-ray radiation diffraction (XRD). The effects ofpH, initial concentration of H2O2, initial BPA concentration, and irradiation intensity on the degradation of BPA were investigated. The service life and iron solubility of catalyst were also tested. XRD test shows that the major phase of the Fe-Y catalyst was Fe2O3. The method of heterogeneous photo-Fenton with Fe-Y catalyst was superior to photolysis, photo-oxidation with only hydrogen, heterogeneous Fenton, and homogeneous photo-Fenton approaches. pH value had no obvious effects on BPA degradation over the range of 2.2-7.2. The initial concentration of H2O2 had an optimal value of 20 x 10(-4) mol/L. The decrease in initial concentration of BPA was favourable for degradation. The intensity of ultraviolet irradiation has no obvious effect on the BPA removal. The stability tests indicated that the Fe-Y catalyst can be reused and iron solubility concentration ranged from NA to 0.0062 mg/L. Based on the results, the heterogeneous photo-Fenton treatment is the available method for the degradation of BPA.
Modeling the degradation kinetics of ascorbic acid.
Peleg, Micha; Normand, Mark D; Dixon, William R; Goulette, Timothy R
2018-06-13
Most published reports on ascorbic acid (AA) degradation during food storage and heat preservation suggest that it follows first-order kinetics. Deviations from this pattern include Weibullian decay, and exponential drop approaching finite nonzero retention. Almost invariably, the degradation rate constant's temperature-dependence followed the Arrhenius equation, and hence the simpler exponential model too. A formula and freely downloadable interactive Wolfram Demonstration to convert the Arrhenius model's energy of activation, E a , to the exponential model's c parameter, or vice versa, are provided. The AA's isothermal and non-isothermal degradation can be simulated with freely downloadable interactive Wolfram Demonstrations in which the model's parameters can be entered and modified by moving sliders on the screen. Where the degradation is known a priori to follow first or other fixed order kinetics, one can use the endpoints method, and in principle the successive points method too, to estimate the reaction's kinetic parameters from considerably fewer AA concentration determinations than in the traditional manner. Freeware to do the calculations by either method has been recently made available on the Internet. Once obtained in this way, the kinetic parameters can be used to reconstruct the entire degradation curves and predict those at different temperature profiles, isothermal or dynamic. Comparison of the predicted concentration ratios with experimental ones offers a way to validate or refute the kinetic model and the assumptions on which it is based.
Giuraniuc, Claudiu V.; MacPherson, Murray; Saka, Yasushi
2013-01-01
Construction of synthetic genetic networks requires the assembly of DNA fragments encoding functional biological parts in a defined order. Yet this may become a time-consuming procedure. To address this technical bottleneck, we have created a series of Gateway shuttle vectors and an integration vector, which facilitate the assembly of artificial genes and their expression in the budding yeast Saccharomyces cerevisiae. Our method enables the rapid construction of an artificial gene from a promoter and an open reading frame (ORF) cassette by one-step recombination reaction in vitro. Furthermore, the plasmid thus created can readily be introduced into yeast cells to test the assembled gene’s functionality. As flexible regulatory components of a synthetic genetic network, we also created new versions of the tetracycline-regulated transactivators tTA and rtTA by fusing them to the auxin-inducible degron (AID). Using our gene assembly approach, we made yeast expression vectors of these engineered transactivators, AIDtTA and AIDrtTA and then tested their functions in yeast. We showed that these factors can be regulated by doxycycline and degraded rapidly after addition of auxin to the medium. Taken together, the method for combinatorial gene assembly described here is versatile and would be a valuable tool for yeast synthetic biology. PMID:23675537
Feio, M J; Ferreira, J; Buffagni, A; Erba, S; Dörflinger, G; Ferréol, M; Munné, A; Prat, N; Tziortzis, I; Urbanič, G
2014-04-01
Within the Mediterranean region each country has its own assessment method based on aquatic macroinvertebrates. However, independently of the classification system, quality assessments should be comparable across members of the European Commission, which means, among others, that the boundaries between classes should not deviate significantly. Here we check for comparability between High-Good and Good-Moderate classifications, through the use of a common metric. Additionally, we discuss the influence of the conceptual and statistical approaches used to calculate a common boundary within the Mediterranean countries participating in the Intercalibration Exercise (e.g., using individual national type-boundaries, one value for each common type or an average boundary by country; weighted average, median) in the overall outcome. All methods, except for the IBMWP (the Iberian BMWP) when applied to temporary rivers, were highly correlated (0.82
Kawakubo, Kazumichi; Kawakami, Hiroshi; Toyokawa, Yoshihide; Otani, Koichi; Kuwatani, Masaki; Abe, Yoko; Kawahata, Shuhei; Kubo, Kimitoshi; Kubota, Yoshimasa; Sakamoto, Naoya
2015-01-01
Endoscopic double self-expandable metallic stent (SEMS) placement by the partial stent-in-stent (PSIS) method has been reported to be useful for the management of unresectable hilar malignant biliary obstruction. However, it is technically challenging, and the optimal SEMS for the procedure remains unknown. The aim of this study was to identify the risk factors for technical failure of endoscopic double SEMS placement for unresectable malignant hilar biliary obstruction (MHBO). Between December 2009 and May 2013, 50 consecutive patients with MHBO underwent endoscopic double SEMS placement by the PSIS method. We retrospectively evaluated the rate of successful double SEMS placement and identified the risk factors for technical failure. The technical success rate for double SEMS placement was 82.0% (95% confidence interval [CI]: 69.2-90.2). On univariate analysis, the rate of technical failure was high in patients with metastatic disease and unilateral placement. Multivariate analysis revealed that metastatic disease was a significant risk factor for technical failure (odds ratio: 9.63, 95% CI: 1.11-105.5). The subgroup analysis after double guidewire insertion showed that the rate of technical success was higher in the laser-cut type SEMS with a large mesh and thick delivery system than in the braided type SEMS with a small mesh and thick delivery system. Metastatic disease was a significant risk factor for technical failure of double SEMS placement for unresectable MHBO. The laser-cut type SEMS with a large mesh and thin delivery system might be preferable for the PSIS procedure. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Visual Reading Method for Detection of Bacterial Tannase
Osawa, R.; Walsh, T. P.
1993-01-01
Tannase activity of bacteria capable of degrading tannin-protein complexes was determined by a newly developed visual reading method. The method is based on two phenomena: (i) the ability of tannase to hydrolyze methyl gallate to release free gallic acid and (ii) the green to brown coloration of gallic acid after prolonged exposure to oxygen in an alkaline condition. The method has been successfully used to detect the presence of tannase in the cultures of bacteria capable of degrading tannin-protein complexes. PMID:16348918
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter; Spataru, Sergiu; Johnston, Steve
A progression of potential-induced degradation (PID) mechanisms are observed in CdTe modules, including shunting/junction degradation and two different manifestations of series resistance depending on the stress level and water ingress. The dark I-V method for in-situ characterization of Pmax based on superposition was adapted for the thin-film modules undergoing PID in view of the degradation mechanisms observed. An exponential model based on module temperature and relative humidity was fit to the PID rate for multiple stress levels in chamber tests and validated by predicting the observed degradation of the module type in the field.
Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.
Wallenius, Kaisa; Lappi, Kaisa; Mikkonen, Anu; Wickström, Annika; Vaalama, Anu; Lehtinen, Taru; Suominen, Leena
2012-02-01
We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.
Selective determination of ertapenem in the presence of its degradation product
NASA Astrophysics Data System (ADS)
Hassan, Nagiba Y.; Abdel-Moety, Ezzat M.; Elragehy, Nariman A.; Rezk, Mamdouh R.
2009-06-01
Stability-indicative determination of ertapenem (ERTM) in the presence of its β-lactam open-ring degradation product, which is also the metabolite, is investigated. The degradation product has been isolated, via acid-degradation, characterized and elucidated. Selective quantification of ERTM, singly in bulk form, pharmaceutical formulations and/or in the presence of its major degradant is demonstrated. The indication of stability has been undertaken under conditions likely to be expected at normal storage conditions. Among the spectrophotometric methods adopted for quantification are first derivative ( 1D), first derivative of ratio spectra ( 1DD) and bivariate analysis.
Microbial degradation of an organophosphate pesticide, malathion.
Singh, Baljinder; Kaur, Jagdeep; Singh, Kashmir
2014-05-01
Organophosphorus pesticide, malathion, is used in public health, residential, and agricultural settings worldwide to control the pest population. It is proven that exposure to malathion produce toxic effects in humans and other mammals. Due to high toxicity, studies are going on to design effective methods for removal of malathion and its associated compounds from the environment. Among various techniques available, degradation of malathion by microbes proves to be an effective and environment friendly method. Recently, research activities in this area have shown that a diverse range of microorganisms are capable of degrading malathion. Therefore, we aimed at providing an overview of research accomplishments on this subject and discussed the toxicity of malathion and its metabolites, various microorganisms involved in its biodegradation and effect of various environmental parameters on its degradation.
Solar and Galactic Cosmic Rays Observed by SOHO
NASA Astrophysics Data System (ADS)
Fleck, Bernhard; Curdt, Werner; Olive, Jean-Philippe; van Overbeek, Ton
2015-04-01
Both the Cosmic Ray Flux (CRF) and Solar Energetic Particles (SEPs) have left an imprint on SOHO technical systems. While the solar array efficiency degraded irreversibly down to 75% of its original level over 1 ½ solar cycles, Single Event Upsets (SEUs) in the solid state recorder (SSR) have been reversed by the memory protection mechanism. We compare the daily CRF observed by the Oulu station with the daily SOHO SEU rate and with the degradation curve of the solar arrays. The Oulu CRF and the SOHO SSR SEU rate are both modulated by the solar cycle and are highly correlated, except for sharp spikes in the SEU rate, caused by isolated SEP events, which also show up as discontinuities in the otherwise slowly decreasing solar ray efficiency. This allows to discriminate between effects with solar and non-solar origin and to compare the relative strength of both. We find that the total number of SSR SEUs with solar origin over the 17 ½ years from January 1996 through June 2013 is of the same order as those generated by cosmic ray hits. 49% of the total solar array degradation during that time can be attributed to proton events, i.e. the effect of a series of short-lived, violent events (SEPs) is comparable to the cycle-integrated damage by cosmic rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.
Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less
Minimizing thermal degradation in gas chromatographic quantitation of pentaerythritol tetranitrate.
Lubrano, Adam L; Field, Christopher R; Newsome, G Asher; Rogers, Duane A; Giordano, Braden C; Johnson, Kevin J
2015-05-15
An analytical method for establishing calibration curves for the quantitation of pentaerythriol tetranitrate (PETN) from sorbent-filled thermal desorption tubes by gas chromatography with electron capture detection (TDS-GC-ECD) was developed. As PETN has been demonstrated to thermally degrade under typical GC instrument conditions, peaks corresponding to both PETN degradants and molecular PETN are observed. The retention time corresponding to intact PETN was verified by high-resolution mass spectrometry with a flowing atmospheric pressure afterglow (FAPA) ionization source, which enabled soft ionization of intact PETN eluting the GC and subsequent accurate-mass identification. The GC separation parameters were transferred to a conventional GC-ECD instrument where analytical method-induced PETN degradation was further characterized and minimized. A method calibration curve was established by direct liquid deposition of PETN standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Two local, linear relationships between detector response and PETN concentration were observed, with a total dynamic range of 0.25-25ng. Published by Elsevier B.V.
Methods for degrading lignocellulosic materials
Vlasenko, Elena [Davis, CA; Cherry, Joel [Davis, CA; Xu, Feng [Davis, CA
2008-04-08
The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.
Methods for degrading lignocellulosic materials
Vlasenko, Elena [Davis, CA; Cherry, Joel [Davis, CA; Xu, Feng [Davis, CA
2011-05-17
The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.
NASA Astrophysics Data System (ADS)
Łojewski, Tomasz; Zięba, Katarzyna; Knapik, Arkadiusz; Bagniuk, Jacek; Lubańska, Anna; Łojewska, Joanna
2010-09-01
The study presents an overview of the chromatographic (SEC), spectroscopic (FTIR, UV/VIS), viscometric (DP) and chemical methods (titration, pH) used for the evaluation of the degradation progress of various kinds of paper under various conditions. The methods were chosen to follow different routes of paper degradation. Model paper samples represented boundary paper types from pure cellulose cotton paper, through softwood to low quality acidic, sized groundwood paper The accelerated ageing conditions were adjusted to achieve maximum effect (climatic chamber RH 59%, 90oC) and also to mimic the environment inside books (closed vials). The results were settled on the literature data on the degradation mechanisms and compared in terms of the paper types and ageing conditions. The estimators of coupled de-polymerisation and oxidation have been proposed based on the correlation between SEC, UV/VIS and titrative coppper number determination. The overall oxidation index derived from FTIR results was shown to correlate with the summary -CHO and -COOH concentration determined by titrative methods.
Methods for degrading lignocellulosic materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasenko, Elena; Cherry, Joel; Xu, Feng
2008-04-08
The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolyticmore » enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.« less
Modeling the effect of nano-sized polymer particles on the properties of lipid membranes
NASA Astrophysics Data System (ADS)
Rossi, Giulia; Monticelli, Luca
2014-12-01
The interaction between polymers and biological membranes has recently gained significant interest in several research areas. On the biomedical side, dendrimers, linear polyelectrolytes, and neutral copolymers find application as drug and gene delivery agents, as biocidal agents, and as platforms for biological sensors. On the environmental side, plastic debris is often disposed of in the oceans and gets degraded into small particles; therefore concern is raising about the interaction of small plastic particles with living organisms. From both perspectives, it is crucial to understand the processes driving the interaction between polymers and cell membranes. In recent times progress in computer technology and simulation methods has allowed computational predictions on the molecular mechanism of interaction between polymeric materials and lipid membranes. Here we review the computational studies on the interaction between lipid membranes and different classes of polymers: dendrimers, linear charged polymers, polyethylene glycol (PEG) and its derivatives, polystyrene, and some generic models of polymer chains. We conclude by discussing some of the technical challenges in this area and future developments.
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.
1997-01-01
Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.
National Satellite Forest Monitoring systems for REDD+
NASA Astrophysics Data System (ADS)
Jonckheere, I. G.
2012-12-01
Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification, FAO supports the countries to develop national satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV) of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the support to UN-REDD pilot countries in this capacity building effort is the training of technical forest people and IT persons from interested REDD+ countries, and to set- up the national satellite forest monitoring systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a basis for this initiative, allows countries to adapt it to country needs and the training on the TerraAmazon system is a tool to enhance existing capacity on carbon monitoring systems. The support with the National Forest Monitoring System will allow these countries to follow all actions related to the implementation of its national REDD+ policies and measures. The monitoring system will work as a platform to obtain information on their REDD+ results and actions, related directly or indirectly to national REDD+ strategies and may also include actions unrelated to carbon assessment, such as forest law enforcement. With the technical assistance of FAO, INPE and other stakeholders, the countries will set up an autonomous operational forest monitoring system. An initial version and the methodologies of the system for DRC and PNG has been launched in Durban, South Africa during COP 17 and in 2012 Paraguay, Viet Nam and Zambia will be launched in Doha, Qatar at COP 18. The access to high-quality satellite data for these countries is crucial for the set-up.
Satyanarayana Raju, T; Vishweshwari Kutty, O; Ganesh, V; Yadagiri Swamy, P
2012-08-01
Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm×4.6 mm, 5 μm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.
ERIC Educational Resources Information Center
Overlock, Terrence H., Sr.
To determine the effect of collaborative learning methods on the success rate of physics students at Northern Maine Technical College (NMTC), a study was undertaken to compare the mean final exam scores of a students in a physics course taught by traditional lecture/lab methods to those in a group taught by collaborative techniques. The…
Increasing the technical level of mining haul trucks
NASA Astrophysics Data System (ADS)
Voronov, Yuri; Voronov, Artyom; Grishin, Sergey; Bujankin, Alexey
2017-11-01
Theoretical and methodological fundamentals of mining haul trucks optimal design are articulated. Methods based on the systems approach to integrated assessment of truck technical level and methods for optimization of truck parameters depending on performance standards are provided. The results of using these methods are given. The developed method allows not only assessing the truck technical levels but also choosing the most promising models and providing quantitative evaluations of the decisions to be made at the design stage. These areas are closely connected with the problem of improvement in the industrial output quality, which, being a part of the widely spread in Western world "total quality control" ideology, is one of the major issues for the Russian economy.
Pyrethroid insecticides are used extensively in agriculture and they, as well as their environmental degradates, may remain as residues on food products such as fruits and vegetables. Since pyrethroid degradates can be identical to the urinary markers used in human biomonitoring ...
USDA-ARS?s Scientific Manuscript database
Alternatives to the in situ method for estimating rumen-degradable protein (RDP) in diverse forage legumes should be validated. In this study, RDP in roll conditioned or macerated silages and hays of Medicago, Lotus, and Trifolium species with differing polyphenol compositions were estimated from in...
Calculating the Degradation Rate of Individual Proteins Using Xenopus Extract Systems.
McDowell, Gary S; Philpott, Anna
2018-05-16
The Xenopus extract system has been used extensively as a simple, quick, and robust method for assessing the stability of proteins against proteasomal degradation. In this protocol, methods are provided for assessing the half-life of in vitro translated radiolabeled proteins using Xenopus egg or embryo extracts. © 2019 Cold Spring Harbor Laboratory Press.
Cramer, Benedikt; Königs, Maika; Humpf, Hans-Ulrich
2008-07-23
The mycotoxin ochratoxin A is degraded by up to 90% during coffee roasting. In order to investigate this degradation, model heating experiments with ochratoxin A were carried out, and the reaction products were analyzed by HPLC-DAD and HPLC-MS/MS. Two ochratoxin A degradation products were identified, and their structure and absolute configuration were determined. As degradation reactions, the isomerization to 14-(R)-ochratoxin A and the decarboxylation to 14-decarboxy-ochratoxin A were identified. Subsequently, an analytical method for the determination of these compounds in roasted coffee was developed. Quantification was carried out by HPLC-MS/MS and the use of stable isotope dilution analysis. By using this method for the analysis of 15 coffee samples from the German market, it could be shown that, during coffee roasting, the ochratoxin A diastereomer 14-(R)-ochratoxin A was formed in amounts of up to 25.6% relative to ochratoxin A. The decarboxylation product was formed only in traces. For toxicity evaluations, first preliminary cell culture assays were performed with the two new substances. Both degradation products exhibited higher IC50 values and caused apoptotic effects with higher concentrations than ochratoxin A in cultured human kidney epithelial cells. Thus, these cell culture data suggest that the degradation products are less cytotoxic than ochratoxin A.
NASA Technical Reports Server (NTRS)
Sitterley, T. E.
1974-01-01
The effectivess of an improved static retraining method was evaluated for a simulated space vehicle approach and landing under instrument and visual flight conditions. Experienced pilots were trained and then tested after 4 months without flying to compare their performance using the improved method with three methods previously evaluated. Use of the improved static retraining method resulted in no practical or significant skill degradation and was found to be even more effective than methods using a dynamic presentation of visual cues. The results suggested that properly structured open loop methods of flight control task retraining are feasible.
The Role of Satellite Data for the National Forest Monitoring Systems in the Context of REDD+
NASA Astrophysics Data System (ADS)
Jonckheere, Inge
2012-04-01
Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. “REDD+” goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification (MRV), FAO supports the countries to develop national forest monitoring systems (NFMS) based on satellite data that allow for credible MRV of REDD+ activities through time. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a multi-user basis, allows countries to adapt it to country needs. With the technical assistance of FAO, INPE and other stakeholders, the countries will set up an autonomous operational satellite forest monitoring systems. A beta version and the methodologies of the system for DRC and PNG are launched in Durban (SA) during COP 17, while Paraguay, Zambia and Viet Nam are in development in 2012.
ERIC Educational Resources Information Center
Sanford, Brian A.; McCaslin, N. L.
2004-01-01
This study was designed to describe the frequency of professional development activities provided to part-time occupational and technical program faculty. Additionally, the perceptions of occupational education officers concerning the instructional professional development needs and their appropriate delivery method(s) for these faculty members…
ERIC Educational Resources Information Center
Stuebing, Karla K.; Fletcher, Jack M.; Branum-Martin, Lee; Francis, David J.
2012-01-01
This study used simulation techniques to evaluate the technical adequacy of three methods for the identification of specific learning disabilities via patterns of strengths and weaknesses in cognitive processing. Latent and observed data were generated and the decision-making process of each method was applied to assess concordance in…
Chemotactic selection of pollutant degrading soil bacteria
Hazen, Terry C.
1994-01-01
A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.
Biodegradation of oil refinery wastes under OPA and CERCLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamblin, W.W.; Banipal, B.S.; Myers, J.M.
1995-12-31
Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceededmore » under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).« less
NASA Astrophysics Data System (ADS)
Kurniawan, Raden Ridzki Aditya; Saksono, Nelson
2017-11-01
Phenol and Cr (VI) are an organic waste and dangerous heavy metals which generated from a wide variety of industrial processes such as textiles, paints, dyes, and others. For that reason, we need effective waste treatment technologies, one of them is Contact Glow Discharge Electrolysis (CGDE). This method produce reactive species such as radical hidroxyl so as to be able to degradate phenol and Cr(VI) wastewater effectively. This research aims to obtain the effect of Fe 2+ and air bubbles in degradation of phenol and Cr (VI) waste simultaneously. Waste degradation is measured its absorbance with UV-Vis spectrophotometer. In the conditions of 600 Volt voltage, Na2SO4 0.02 M, anode depth of 1.5 cm, the addition of Fe2+ 40 ppm and the addition of air bubbles for 30 minutes was obtained a percentage degradation of phenol 99.47%, Cr (VI) 76.75% and specific energy of 344.473 kJ / mmol.
Effects of rotor model degradation on the accuracy of rotorcraft real time simulation
NASA Technical Reports Server (NTRS)
Houck, J. A.; Bowles, R. L.
1976-01-01
The effects are studied of degrading a rotating blade element rotor mathematical model to meet various real-time simulation requirements of rotorcraft. Three methods of degradation were studied: reduction of number of blades, reduction of number of blade segments, and increasing the integration interval, which has the corresponding effect of increasing blade azimuthal advance angle. The three degradation methods were studied through static trim comparisons, total rotor force and moment comparisons, single blade force and moment comparisons over one complete revolution, and total vehicle dynamic response comparisons. Recommendations are made concerning model degradation which should serve as a guide for future users of this mathematical model, and in general, they are in order of minimum impact on model validity: (1) reduction of number of blade segments, (2) reduction of number of blades, and (3) increase of integration interval and azimuthal advance angle. Extreme limits are specified beyond which the rotating blade element rotor mathematical model should not be used.
Jung, Sang-Kyu; Parisutham, Vinuselvi; Jeong, Seong Hun; Lee, Sung Kuk
2012-01-01
A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies. PMID:22911272
Recent operating experiences with steam generators in Japanese NPPs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashima, Seiji
1997-02-01
In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation ofmore » SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG.« less
Cai, Lu; Krafft, Thomas; Chen, Tong-Bin; Gao, Ding; Wang, Li
2016-09-01
Biodrying, an economical and energy-saving biomass waste treatment, removes water from waste using the biological heat generated by organic matter degradation. Technical limitations associated with dewatering complicate the biodrying of sewage sludge. This study investigated the sludge alteration associated with its water removal, focusing on sludge form, extracellular polymeric substances, and free water release. An auto-feedback control technology was used for the biodrying; a scanning electron microscope was used to record the morphological change; three-dimensional excitation-emission matrix fluorescence spectroscopy was used to analyze extracellular polymeric substances (EPS) variation, and time domain reflectometry was used to assess the free water release. Over the 20-day biodrying, there was a 62% water removal rate during the first thermophilic phase. Biodrying created a hollow and stratified sludge structure. Aromatic proteins and soluble microbial byproducts in the EPS were significantly degraded. The thermophilic phase was the phase resulting in the greatest free water release. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Turflinger, T.; Schmeichel, W.; Krieg, J.; Titus, J.; Campbell, A.; Reeves, M.; Marshall (P.); Hardage, Donna (Technical Monitor)
2004-01-01
This effort is a detailed analysis of existing microelectronics and photonics test bed satellite data from one experiment, the bipolar test board, looking to improve our understanding of the enhanced low dose rate sensitivity (ELDRS) phenomenon. Over the past several years, extensive total dose irradiations of bipolar devices have demonstrated that many of these devices exhibited ELDRS. In sensitive bipolar transistors, ELDRS produced enhanced degradation of base current, resulting in enhanced gain degradation at dose rates <0.1 rd(Si)/s compared to similar transistors irradiated at dose rates >1 rd(Si)/s. This Technical Publication provides updated information about the test devices, the in-flight experiment, and both flight-and ground-based observations. Flight data are presented for the past 5 yr of the mission. These data are compared to ground-based data taken on devices from the same date code lots. Information about temperature fluctuations, power shutdowns, and other variables encountered during the space flight are documented.
On-Orbit Performance Degradation of the International Space Station P6 Photovoltaic Arrays
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Gustafson, Eric D.
2003-01-01
This paper discusses the on-orbit performance and performance degradation of the International Space Station P6 solar array wings (SAWs) from the period of December 2000 through February 2003. Data selection considerations and data reduction methods are reviewed along with the approach for calculating array performance degradation based on measured string shunt current levels. Measured degradation rates are compared with those predicted by the computational tool SPACE and prior degradation rates measured with the same SAW technology on the Mir space station. Initial results show that the measured SAW short-circuit current is degrading 0.2 to 0.5 percent per year. This degradation rate is below the predicted rate of 0.8 percent per year and is well within the 3 percent estimated uncertainty in measured SAW current levels. General contributors to SAW degradation are briefly discussed.
NASA Astrophysics Data System (ADS)
Folberth, Christian
2010-05-01
The in-situ Mass Distribution Quotient (iMDQ) has recently been shown to reliably describe the bioavailability and mineralization of the widely applied pesticide isoproturon in agricultural soils. It is determined by pore water extraction from previously incubated soil samples and subsequent assessment of the mass distribution between solid and liquid phase. The method was verified by comparing the bioavailability with co-metabolic mineralization in soils under optimum microbial soil conditions (water tension -15 kPa and bulk density 1.3 g cm-3). A comparison of the results with the chemical partitioning assessed by the Kd method has shown a higher accuracy of the new method. By combining the iMDQ/pore water extraction method with mineralization of the pesticide under optimum microbial conditions in the soils, further information about mineralization and degradation processes could be obtained or confirmed: a) Metabolically outstanding soils could be identified due to inconsistency between bioavailability and mineralization when compared to the co-metabolic soils. In a metabolically hampered soil, the mineralization was very low compared to the bioavailability and in a soil with metabolically IPU degrading microorganisms the mineralization was extremely high despite low bioavailability. b) Analysis of metabolite patterns in soil water fractions of a degradation experiment allowed for an additional identification of the metabolic status of the soil. In co-metabolic soils, the diversity of metabolites increased proportionally with the degree of mineralization of the parent compound, whereas in a metabolically hampered soil the metabolite pattern was very diverse despite low mineralization. c) A quite stable fractioning between total mineralization of the parent compound to CO2 and build-up of non-extractable bound residues was found. This is a hint that also during co-metabolic degradation that can up to now not be attributed to a certain group of microorganisms, very similar processes take place in different soils. d) It could be shown that soil parameters governing the bioavailability of the compound differ between soils. Although TOC and pH could again be identified as the most important factors for the sorption strength of soils towards isoproturon, the bioavailability itself was driven by a combination of water content and sorption strength that was unique for each soil sample. f) The partitioning of parent compound and primary metabolites remained quite stable during the degradation and mineralization. Further investigations focusing on the microbial side of co-metabolic degradation are in progress. In the future, the method could be used to investigate more compounds, the effectiveness of methods to increase bioavailability in-situ without the need for degradation experiments, and the identification and analysis of degradation pathways in-situ. Other processes that are important for risk assessment, like leaching, have already been investigated with similar methods.
Technical Feasibility Assessment of Lunar Base Mission Scenarios
NASA Astrophysics Data System (ADS)
Magelssen, Trygve ``Spike''; Sadeh, Eligar
2005-02-01
Investigation of the literature pertaining to lunar base (LB) missions and the technologies required for LB development has revealed an information gap that hinders technical feasibility assessment. This information gap is the absence of technical readiness levels (TRL) (Mankins, 1995) and information pertaining to the criticality of the critical enabling technologies (CETs) that enable mission success. TRL is a means of identifying technical readiness stages of a technology. Criticality is defined as the level of influence the CET has on the mission scenario. The hypothesis of this research study is that technical feasibility is a function of technical readiness and technical readiness is a function of criticality. A newly developed research analysis method is used to identify the technical feasibility of LB mission scenarios. A Delphi is used to ascertain technical readiness levels and CET criticality-to-mission. The research analysis method is applied to the Delphi results to determine the technical feasibility of the LB mission scenarios that include: observatory, science research, lunar settlement, space exploration gateway, space resource utilization, and space tourism. The CETs identified encompasses four major system level technologies of: transportation, life support, structures, and power systems. Results of the technical feasibility assessment show the observatory and science research LB mission scenarios to be more technical ready out of all the scenarios, but all mission scenarios are in very close proximity to each other in regard to criticality and TRL and no one mission scenario stands out as being absolutely more technically ready than any of the other scenarios. What is significant and of value are the Delphi results concerning CET criticality-to-mission and the TRL values evidenced in the Tables that can be used by anyone assessing the technical feasibility of LB missions.
[Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].
Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui
2015-06-01
Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.
Yi, Langbo; Peng, Qingzhong; Liu, Deming; Zhou, Lulu; Tang, Chongjian; Zhou, Yaoyu; Chai, Liyuan
2018-05-02
Perfluorooctanoic acid (PFOA) as an emerging persistent organic pollutant is hard to be degraded by conventional methods because of its stable physical and chemical properties. Microbial transformation is an attractive remediation approach to prevent and clean up PFOA contamination. To date, several strains of wild microbes have been reported to have limited capacity to degrade PFOA, selection of superior strains degrading PFOA become urgently necessary. Here, we report the application of genome shuffling to improve the PFOA-degrading bacterium Pseudomonas Parafulva YAB-1. The initial mutant populations of strain YAB1 were generated by nitrosoguanidine and ultraviolet irradiation mutagenesis respectively, resulting in mutants YM-9 and YM-19 with slightly improved PFOA-degrading ability. YM-9 and YM-19 were used as the starting strains for three rounds of recursive protoplast fusion. The positive mutants were screened on inorganic salt medium plates containing different concentrations of PFOA and selected based on their PFOA degradability in shake-flask fermentation test. The best performing recombinant F3-52 was isolated after three rounds of genome shuffling. In batch fermentation, the PFOA degradation rate of mutant F3-52 was up to 58.6%, which was 1.8-fold higher than that of the parent strain YAB1, and 1.6-fold higher than the initial mutants YM-9 and YM-19. Pass-generation test indicated that the heredity character of F3-52 was stable. The results demonstrated that genome shuffling was an efficient method for improving PFOA degradation of Pseudomonas Parafulva YAB1. The bred mutant F3-52 with 58.6% PFOA-degrading rate could be used for the environmental control of PFOA pollutant.
Sivakumaran, Daryl; Bakaic, Emilia; Campbell, Scott B; Xu, Fei; Mueller, Eva; Hoare, Todd
2018-04-16
While various smart materials have been explored for a variety of biomedical applications (e.g., drug delivery, tissue engineering, bioimaging, etc.), their ultimate clinical use has been hampered by the lack of biologically-relevant degradation observed for most smart materials. This is particularly true for temperature-responsive hydrogels, which are almost uniformly based on polymers that are functionally non-degradable (e.g., poly(N-isopropylacrylamide) (PNIPAM) or poly(oligoethylene glycol methacrylate) (POEGMA)). As such, to effectively translate the potential of thermoresponsive hydrogels to the challenges of remote-controlled or metabolism-regulated drug delivery, cell scaffolds with tunable cell-material interactions, theranostic materials with the potential for both imaging and drug delivery, and other such applications, a method is required to render the hydrogels (if not fully degradable) at least capable of renal clearance following the required lifetime of the material. To that end, this protocol describes the preparation of hydrolytically-degradable hydrazone-crosslinked hydrogels on multiple length scales based on the reaction between hydrazide and aldehyde-functionalized PNIPAM or POEGMA oligomers with molecular weights below the renal filtration limit. Specifically, methods to fabricate degradable thermoresponsive bulk hydrogels (using a double barrel syringe technique), hydrogel particles (on both the microscale through the use of a microfluidics platform facilitating simultaneous mixing and emulsification of the precursor polymers and the nanoscale through the use of a thermally-driven self-assembly and cross-linking method), and hydrogel nanofibers (using a reactive electrospinning strategy) are described. In each case, hydrogels with temperature-responsive properties similar to those achieved via conventional free radical cross-linking processes can be achieved, but the hydrazone cross-linked network can be degraded over time to re-form the oligomeric precursor polymers and enable clearance. As such, we anticipate these methods (which may be generically applied to any synthetic water-soluble polymer, not just smart materials) will enable easier translation of synthetic smart materials to clinical applications.
Dargel, Jens; Koebke, Jürgen; Brüggemann, Gert-Peter; Pennig, Dietmar; Schmidt-Wiethoff, Rüdiger
2009-10-01
This study investigates the influence of various femoral anterior cruciate ligament graft fixation methods on the amount of tension degradation and the initial fixation strength after cyclic flexion-extension loading in a porcine knee model. One hundred twenty porcine digital extensor tendons, used as 4-stranded free tendon grafts, were fixated within porcine femoral bone tunnels by use of extracortical button, cross-pin, or interference screw fixation. One hundred twenty porcine patellar tendon-bone grafts were fixated by use of cross-pin, interference screw, or press-fit fixation. Each femur-graft complex was submitted to cyclic flexion-extension loading for 1,000 cycles throughout different loading ranges, and the total loss of tension was determined. After cyclic testing, the grafts were loaded to failure, and the data were compared with a pullout series without cyclic loading. Tension degradation after 1,000 cycles of flexion-extension loading averaged 62.6% +/- 10.0% in free tendon grafts and 48.9% +/- 13.35% in patellar tendon-bone grafts. There was no influence of the loading range on the total amount of tension degradation. The total amount of tension degradation was the highest with interference screw fixation of free tendon and patellar tendon-bone grafts. Despite excessive loss of tension, the initial fixation strength of the femur-graft complex was not reduced. The method of femoral graft fixation significantly influenced tension degradation during dynamic flexion-extension loading. Femoral graft fixation methods that secure the graft close to the tunnel entrance and that displace the graft substance from the center of the bone tunnel show the largest amount of tension degradation during cyclic flexion-extension loading. The graft substance, not the fixation site, was the weakest link of the graft complex within this investigation. We believe that the graft fixation method should be considered when aiming to improve the precision of femoral graft placement in anterior cruciate ligament reconstruction.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Workshop: June 6-7, 2011--Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board Will Hold a Workshop on Methods for Evaluating Nuclear Waste Streams... 1987, the U.S. Nuclear Waste Technical Review Board will hold a workshop on Monday, June 6, and Tuesday...
Scribner, Elisabeth A.; Orlando, James L.; Battaglin, William A.; Sandstrom, Mark; Kuivila, Kathryn; Meyer, Michael T.
2006-01-01
In accordance with the mission of the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program, a pesticide study was conducted during 2003-04 to determine the occurrence of the fungicide chlorothalonil and its degradation products at 22 surface-water sites in five Southern States. Water-quality samples were collected during the peanut-growing season (June-September) in 2003. During the peanut-growing season in 2004, samples were collected after large storms. An analytical method was developed at the USGS Organic Geochemistry Research Laboratory in Lawrence, Kansas, to measure chlorothalonil and its degradation products by liquid chromatography/mass spectrometry (LC/MS). Chlorothalonil was detected in 4 of the 113 surface-water samples. The primary degradation product of chlorothalonil, 4-hydroxy-chlorothalonil, was detected in 26 of the 113 samples with concentrations ranging from 0.002 to 0.930 microgram per liter. The chlorothalonil degradation products, 1-amide-4-hydroxy-chorothalonil and 1,3-diamide-chlorothalonil, were detected in one water sample each at 0.020 and 0.161 microgram per liter, respectively. The USGS Methods and Research Development Group, Lakewood, Colorado, developed a custom method for chlorothalonil using gas chromatography/mass spectrometry (GC/MS) in an effort to achieve a lower laboratory reporting level (LRL) than the USGS National Water-Quality Laboratory (NWQL) schedule 2060, which analyzes the compound chlorothalonil at a LRL of 0.035 ?g/L. The group succeeded in achieving a lower GC/MS reporting level of 0.01 ?g/L. Chlorothalonil was detected in 5 of 68 water samples analyzed using the custom GC/MS method, whereas chlorothalonil was detected in 2 of 21 water samples analyzed using NWQL schedule 2060. In addition to analysis of chlorothalonil and its degradation products, samples were analyzed using the USGS NWQL schedules 2001 and 2060 for about 114 pesticides and their degradation products. Samples also were analyzed for dissolved organic carbon, suspended sediment, and percentage of silt- and clay-sized particles. Overall, it was found that chlorothalonil was detected only infrequently and at relatively low concentrations. Chlorothalonil's major degradation product, 4-hydroxy-chlorothalonil, was detected most frequently, occurred generally at higher concentrations in water samples than did the parent fungicide, and the data from this study reaffirmed that it is the dominant degradation product of chlorothalonil in the peanut-growing environment.
Photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide.
Liu, Zongkuan; He, Yanling; Li, Feng; Liu, Yonghong
2006-09-01
The polynitramines, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), are important military explosives and regulated toxic hazardous compounds. Production, testing and use of the compounds has resulted in numerous acres of contaminated soils and groundwater near many munitions facilities. Economical and efficient methods for treatment of wastewater and cleanup of soils or groundwater containing RDX and HMX are needed. This study focuses on the photocatalytic treatment of RDX wastewater with nano-sized titanium dioxide (nano-TiO2) under simulated sunlight, whose intensity and wavelength are similar to that of the real sunlight in Xi'an at noon. The objective is to determine the potential for RDX destruction with nano-TiO2 in aqueous solution. An activated carbon fiber (ACF) cloth-loaded with nano-TiO2 was put into the RDX containing solution, and the concentration of RDX was measured (by HPLC-UV) at regular time intervals under simulated sunlight. The RDX degradation percentage of the photocatalytic process is higher than that of Fenton oxidation before 80 min, equivalent after 80 min, and it reaches 95% or above after 120 min. The nano-TiO2 catalyst can be used repeatedly. The photocatalytic degradation kinetics of RDX under simulated sunlight can be described by a first-order reaction kinetics equation. The possible degradation mechanism of RDX was presented and the degradation performance was compared with that of biological method. It was demonstrated that the degradation of RDX wastewater is very effective with nano-TiO2 as the photocatalytic catalyst under simulated sunlight. The efficiency of the nano-TiO2 catalyst for RDX degradation under simulated sunlight is nearly identical to that of Fenton oxidation. To date, a number of catalysts show poor absorption and utilization of sunlight, and still need ultraviolet light irradiation during wastewater degradation. The nano-TiO2 used in the described experiments features very good degradation of RDX under simulated sunlight, and the manufacturing costs are rather low (around 10 Euro/m2). Moreover, the degradation efficiency is higher compared to that of the biological method. This method exhibits great potential for practical applications owing to its easiness and low cost. If it can be applied extensively, the efficiency of wastewater treatment will be enhanced greatly.
Lee, Edward Alan; Strahan, Alex P.; Thurman, Earl Michael
2002-01-01
An analytical method for the determination of 7 triazine and phenylurea herbicides and 12 of their degradation products in natural water samples using solid-phase extraction and liquid chromatography/mass spectrometry is presented in this report. Special consideration was given during the development of the method to prevent the formation of degradation products during the analysis. Filtered water samples were analyzed using 0.5 gram graphitized carbon as the solid-phase extraction media followed by liquid chromatography/mass spectrometry. Three different water-sample matrices?ground-water, surface-water, and reagent-water samples?spiked at 0.2 and 2.0 micrograms per liter were analyzed. Method detection limits ranged from 0.013 to 0.168 microgram per liter for the parent triazine herbicides and the triazine degradation products. Method detection limits ranged from 0.042 to 0.141 microgram per liter for the parent phenylurea herbicides and their degradation products. Mean recoveries for the triazine compounds in the ground- and surface-water samples generally ranged from 72.6 to 117.5 percent, but deethyl-cyanazine amide was recovered at 140.5 percent. Mean recoveries from the ground- and surface-water samples for the phenylurea compounds spiked at the 2.0-micrograms-per-liter level ranged from 82.1 to 114.4 percent. The mean recoveries for the phenylureas spiked at 0.2-microgram per liter were less consistent, ranging from 87.0 to 136.0 percent. Mean recoveries from reagent-water samples ranged from 87.0 to 109.5 percent for all compounds. The triazine compounds and their degradation products are reported in concentrations ranging from 0.05 to 2.0 micrograms per liter, with the exception of deethylcyanazine and deethylcyanazine amide which are reported at 0.20 to 2.0 micrograms per liter. The phenylurea compounds and their degradation products are reported in concentrations ranging from 0.20 to 2.0 micrograms per liter. The upper concentration limit was 2.0 micrograms per liter for all compounds without dilution.
Villagrasa, M; Guillamón, M; Navarro, A; Eljarrat, E; Barceló, D
2008-02-01
A new analytical method for the quantitative determination of benzoxazolinones and their degradation products in agricultural soils based on the use of pressurized liquid extraction (PLE) followed by solid-phase extraction (SPE) and then instrumental determination using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) is described. Using this method, the characterization, separation and quantitative detection of a mixture of two benzoxazolinones, benzoxazolin-2-one (BOA) and 6-methoxybenzoxazolin-2-one (MBOA) and their degradation products, 2-aminophenol (APH), N-(2-hydroxyphenyl)malonamic acid (HMPMA), 2-amino-3-H-phenoxazin-3-one (APO), 9-methoxy-2-amino-3-H-phenoxazin-3-one (AMPO), 2-acetylamino-3-H-phenoxazin-3-one (AAPO) and 2-acetylamino-9-methoxy-2-amino-3-H-phenoxazin-3-one (AAMPO) was achieved. The complete LC-ESI-MS-MS precursor-product ion fragmentation pathways for the degradation products of benzoxazolinones are described for the first time. Quantitative analysis was done in the multiple reaction mode using two specific combinations of precursor-product ion transitions for each compound. The optimized method was quality assessed by the measure of parameter as recovery, linearity, sensitivity, repeatability and reproducibility. Recoveries of the analytes ranged from 53 to 123%. The developed method offered improvements to the sensitivity as compared with our previously LC-MS method, with detection limits down to 2.4-21 ng/g of dry weight. This achievement allows us to identify and quantify for the first time degradation products of benzoxazolinones in real agricultural soil samples. Analytes were found in the range of 20.6-149 ng/g dry weight.
Akhtar, Juber; Fareed, Sheeba; Aqil, Mohd
2013-07-01
A sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic (HPTLC) method for analysis of repaglinide both as a bulk drug and in nanoemulsion formulation was developed and validated. The method employed TLC aluminum plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of chloroform/methanol/ammonia/glacial acetic acid (7.5:1.5:0.9:0.1, v/v/v/v). This system was found to give compact spots for repaglinide (R f value of 0.38 ± 0.02). Repaglinide was subjected to acid and alkali hydrolysis, oxidation, photodegradation and dry heat treatment. Also, the degraded products were well separated from the pure drug. Densitometric analysis of repaglinide was carried out in the absorbance mode at 240 nm. The linear regression data for the calibration plots showed good linear relationship with r (2)= 0.998 ± 0.032 in the concentration range of 50-800 ng. The method was validated for precision, accuracy as recovery, robustness and specificity. The limits of detection and quantitation were 0.023 and 0.069 ng per spot, respectively. The drug undergoes degradation under acidic and basic conditions, oxidation and dry heat treatment. All the peaks of the degraded product were resolved from the standard drug with significantly different R f values. Statistical analysis proves that the method is reproducible and selective for the estimation of the said drug. As the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one. Moreover, the proposed HPTLC method was utilized to investigate the degradation kinetics in 1M NaOH.
Chang, Young-Cheol; Reddy, M. Venkateswar; Umemoto, Honoka; Sato, Yuki; Kang, Mi-Hye; Yajima, Yuka; Kikuchi, Shintaro
2015-01-01
In the present study, a 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacterial strain CY-1 was isolated from the forest soil. Based on physiological, biochemical and 16S rRNA gene sequence analysis it was identified as Cupriavidus sp. CY-1. Further 2,4-D degradation experiments at different concentrations (200 to 800 mg l-1) were carried out using CY-1. Effect of NaCl and KNO3 on 2,4-D degradation was also evaluated. Degradation of 2,4-D and the metabolites produced during degradation process were analyzed using high pressure liquid chromatography (HPLC) and GC-MS respectively. The amount of chloride ions produced during the 2,4-D degradation were analyzed by Ion chromatography (IC) and it is stoichiometric with 2,4-D dechlorination. Furthermore two different types of soils collected from two different sources were used for 2,4-D degradation studies. The isolated strain CY-1 was bio-augmented into 2,4-D contaminated soils to analyze its degradation ability. Culture independent methods like denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP), and culture dependent methods like colony forming units (CFU) and most probable number (MPN) were used to analyze the survivability of strain CY-1 in contaminated soil. Results of T-RFLP were coincident with the DGGE analysis. From the DGGE, T-RFLP, MPN and HPLC results it was concluded that strain CY-1 effectively degraded 2,4-D without disturbing the ecosystem of soil indigenous microorganisms. PMID:26710231
44 CFR 67.6 - Basis of appeal.
Code of Federal Regulations, 2014 CFR
2014-10-01
... technically incorrect. Because scientific and technical correctness is often a matter of degree rather than...), appellants are required to demonstrate that alternative methods or applications result in more correct... due to error in application of hydrologic, hydraulic or other methods or use of inferior data in...
44 CFR 67.6 - Basis of appeal.
Code of Federal Regulations, 2012 CFR
2012-10-01
... technically incorrect. Because scientific and technical correctness is often a matter of degree rather than...), appellants are required to demonstrate that alternative methods or applications result in more correct... due to error in application of hydrologic, hydraulic or other methods or use of inferior data in...
44 CFR 67.6 - Basis of appeal.
Code of Federal Regulations, 2013 CFR
2013-10-01
... technically incorrect. Because scientific and technical correctness is often a matter of degree rather than...), appellants are required to demonstrate that alternative methods or applications result in more correct... due to error in application of hydrologic, hydraulic or other methods or use of inferior data in...
44 CFR 67.6 - Basis of appeal.
Code of Federal Regulations, 2011 CFR
2011-10-01
... technically incorrect. Because scientific and technical correctness is often a matter of degree rather than...), appellants are required to demonstrate that alternative methods or applications result in more correct... due to error in application of hydrologic, hydraulic or other methods or use of inferior data in...
Lau, Hollis; Pace, Danielle; Yan, Boxu; McGrath, Theresa; Smallwood, Scott; Patel, Ketaki; Park, Jihea; Park, Sungae S; Latypov, Ramil F
2010-04-01
A new cation-exchange high-performance liquid chromatography (HPLC) method that separates fragment antigen-binding (Fab) and fragment crystallizable (Fc) domains generated by the limited proteolysis of monoclonal antibodies (mAbs) was developed. This assay has proven to be suitable for studying complex degradation processes involving various immunoglobulin G1 (IgG1) molecules. Assignment of covalent degradations to specific regions of mAbs was facilitated by using Lys-C and papain to generate Fab and Fc fragments with unique, protease-dependent elution times. In particular, this method was useful for characterizing protein variants formed in the presence of salt under accelerated storage conditions. Two isoforms that accumulated during storage were readily identified as Fab-related species prior to mass-spectrometric analysis. Both showed reduced biological activity likely resulting from modifications within or in proximity of the complementarity-determining regions (CDRs). Utility of this assay was further illustrated in the work to characterize light-induced degradations in mAb formulations. In this case, a previously unknown Fab-related species which populated upon light exposure was observed. This species was well resolved from unmodified Fab, allowing for direct and high-purity fractionation. Mass-spectrometric analysis subsequently identified a histidine-related degradation product associated with the CDR2 of the heavy chain. In addition, the method was applied to assess the structural organization of a noncovalent IgG1 dimer. A new species corresponding to a Fab-Fab complex was found, implying that interactions between Fab domains were responsible for dimerization. Overall, the data presented demonstrate the suitability of this cation-exchange HPLC method for studying a wide range of covalent and noncovalent degradations in IgG1 mAbs. 2010 Elsevier B.V. All rights reserved.
Venkateswarlu, Kambham; Rangareddy, Ardhgeri; Narasimhaiah, Kanaka; Sharma, Hemraj; Bandi, Naga Mallikarjuna Raja
2017-01-01
The main objective of present study was to develop a RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product. The method was developed for Armodafinil estimation and base hydrolytic products were characterized. The separation was carried out on C18 column by using mobile phase as mixture of water and methanol (45:55%v/v). Eluents were detected at 220nm at 1ml/min. Stress studies were performed with milder conditions followed by stronger conditions so as to get sufficient degradation around 20%. A total of five degradation products were detected and separated from analyte. The linearity of the proposed method was investigated in the range of 20-120µg/ml for Armodafinil. The detection limit and quantification limit was found to be 0.01183μg/ml and 0.035µg/ml respectively. The precision % RSD was found to be less than 2% and the recovery was between 98-102%. Armodafinil was found to be more sensitive to the base hydrolysis and yielded its carboxylic acid as degradant. The developed method was stability indicating assay, suitable to quantify Armodafinil in presence of possible degradants. The drug was sensitive to acid, base &photolytic stress and resistant to thermal &oxidation.
Patel, Sejal K; Patel, Natvarlal J
2010-01-01
This paper describes the development of a stability-indicating RP-HPLC method for the determination of atomoxetine hydrochloride (ATX) in the presence of its degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of acid, base, oxidation, wet heat, dry heat, and photodegradation. In stability tests, the drug was susceptible to acid, base, oxidation, and dry and wet heat degradation. It was found to be stable under the photolytic conditions tested. The drug was successfully separated from the degradation products formed under stress conditions on a Phenomenex C18 column (250 x 4.6 mm id, 5 microm particle size) by using acetonitrile-methanol-0.032 M ammonium acetate (55 + 05 + 40, v/v/v) as the mobile phase at 1.0 mL/min and 40 degrees C. Photodiode array detection at 275 nm was used for quantitation after RP-HPLC over the concentration range of 0.5-5 microg/mL with a mean recovery of 100.8 +/- 0.4% for ATX. Statistical analysis demonstrated that the method is repeatable, specific, and accurate for the estimation of ATX. Because the method effectively separates the drug from its degradation products, it can be used as a stability-indicating method.
Osman, Afaf Osman; Osman, Afaf; Osman, Mohamed
2009-01-01
The objective of this study is to develop validated stability-indicating spectrofluorometric, TLC-densitometric, and HPLC methods for the determination of rabeprazole sodium and its degradation products. The first method was based on measuring the fluorescence intensity of the drug at 416 and 311 nm for the emission and at 320 and 274 nm for the excitation for acid and oxidized solutions, respectively. The second method was based on the separation of the drug from its acidic and oxidized degradation products followed by densitometric measurement of the intact drug spot at 284 nm. The separation was carried out on Fluka TLC sheets of silica gel 60 F254 using isopropyl alcohol--30% ammonia (80 + 2, v/v) mobile phase. The third method was based on HPLC separation of rabeprazole sodium from its acidic and oxidized degradation products on a reversed-phase Waters Nova-Pak C18 column using 0.05 M potassium dihydrogen phosphate-methanol-acetonitrile (5 + 3 + 2, v/v/v) pH 7 +/- 0.2 mobile phase. The proposed procedures were successfully applied for the determination of rabeprazole sodium in pure form, laboratory-prepared mixtures, tablet, and expired batch. The obtained results were statistically compared with those of a reported method and validated according to United States Pharmacopeia guidelines. Two main acidic degradation products of the drug were separated and subjected to IR spectrometry and MS to confirm their structures, and the schemes for their formation were elucidated.
Kim, Stanley E; Case, J Brad; Lewis, Daniel D; Ellison, Gary W
2015-08-01
To determine how American College of Veterinary Surgeons (ACVS) small animal surgery residency programs are teaching and assessing technical skills, and ascertain the perceived value of those methods. Internet-based survey. Residents and Diplomate supervisors of ACVS small animal residency programs. Residents and supervisors were surveyed on their experience of surgery instruction, use of different resources for teaching, type and frequency of feedback, and perceived effectiveness of their programs in imparting technical proficiency. A total of 130 residents (62%) and 119 supervisors (44%) participated. Both residents and supervisors estimated the resident was the primary surgeon for a mean of 64% of cases, although this proportion varied widely between participants. The majority of residents and supervisors considered that direct intraoperative guidance was the most effective way for residents to develop technical skills. Verbal interactions between supervisor and resident occurred frequently and were highly valued. Regular wet laboratories and access to simulation models were uncommon. Despite over 90% of all participants reporting that a sufficient level of technical aptitude would be attained, only 58% of residents were satisfied with their technical skills training. Residents relied on direct interaction with supervisors to develop technical skills. The traditional mode of instruction for veterinary residents is the apprenticeship model, which is partly driven by ACVS requirements of supervisory support. Exposure to other teaching and assessment methods was variable. The current structure of residency programs is successful in imparting technical competency as perceived by supervisors and residents. However, consideration of a more formal method of residency training with structured assessment of technical skills as in human medicine should not be dismissed. © Copyright 2015 by The American College of Veterinary Surgeons.
Li, Tianyu; Chen, Yongmei; Wan, Pingyu; Fan, Maohong; Yang, X Jin
2010-03-03
The candidature of Fe-Si and Mg-Al alloys at millimeter-scale particle sizes for chemical degradation of disinfection byproducts (DBPs) in drinking water systems was substantiated by their enhanced corrosion resistance and catalytic effect on the degradation. The Mg-Al particles supplied electrons for reductive degradation, and the Fe-Si particles acted as a catalyst and provided the sites for the reaction. The alloy particles are obtained by mechanical milling and stable under ambient conditions. The proposed method for chemical degradation of DBPs possesses the advantages of relatively constant degradation performance, long-term durability, no secondary contamination, and ease of handling, storage and maintenance in comparison with nanoparticle systems.
Proteomic researches for lignocellulose-degrading enzymes: A mini-review.
Guo, Hongliang; Wang, Xiao-Dong; Lee, Duu-Jong
2018-05-31
Protective action of lignin/hemicellulose networks and crystalline structures of embedded cellulose render lignocellulose material resistant to external enzymatic attack. To eliminate this bottleneck, research has been conducted in which advanced proteomic techniques are applied to identify effective commercial hydrolytic enzymes. This mini-review summarizes researches on lignocellulose-degrading enzymes, the mechanisms of the responses of various lignocellulose-degrading strains and microbial communities to various carbon sources and various biomass substrates, post-translational modifications of lignocellulose-degrading enzymes, new lignocellulose-degrading strains, new lignocellulose-degrading enzymes and a new method of secretome analysis. The challenges in the practical use of enzymatic hydrolysis process to realize lignocellulose biorefineries are discussed, along with the prospects for the same. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A
2012-11-20
A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.
Pyrethroid insecticides are used extensively in agriculture, and they, as well as their environmental degradates, may remain as residues on foods such as fruits and vegetables. Since pyrethroid degradates can be identical to the urinary markers used in human biomonitoring, it is ...
Method and apparatus to predict the remaining service life of an operating system
Greitzer, Frank L.; Kangas, Lars J.; Terrones, Kristine M.; Maynard, Melody A.; Pawlowski, Ronald A. , Ferryman; Thomas A.; Skorpik, James R.; Wilson, Bary W.
2008-11-25
A method and computer-based apparatus for monitoring the degradation of, predicting the remaining service life of, and/or planning maintenance for, an operating system are disclosed. Diagnostic information on degradation of the operating system is obtained through measurement of one or more performance characteristics by one or more sensors onboard and/or proximate the operating system. Though not required, it is preferred that the sensor data are validated to improve the accuracy and reliability of the service life predictions. The condition or degree of degradation of the operating system is presented to a user by way of one or more calculated, numeric degradation figures of merit that are trended against one or more independent variables using one or more mathematical techniques. Furthermore, more than one trendline and uncertainty interval may be generated for a given degradation figure of merit/independent variable data set. The trendline(s) and uncertainty interval(s) are subsequently compared to one or more degradation figure of merit thresholds to predict the remaining service life of the operating system. The present invention enables multiple mathematical approaches in determining which trendline(s) to use to provide the best estimate of the remaining service life.
A Review of Molecular-Level Mechanism of Membrane Degradation in the Polymer Electrolyte Fuel Cell
Ishimoto, Takayoshi; Koyama, Michihisa
2012-01-01
Chemical degradation of perfluorosulfonic acid (PFSA) membrane is one of the most serious problems for stable and long-term operations of the polymer electrolyte fuel cell (PEFC). The chemical degradation is caused by the chemical reaction between the PFSA membrane and chemical species such as free radicals. Although chemical degradation of the PFSA membrane has been studied by various experimental techniques, the mechanism of chemical degradation relies much on speculations from ex-situ observations. Recent activities applying theoretical methods such as density functional theory, in situ experimental observation, and mechanistic study by using simplified model compound systems have led to gradual clarification of the atomistic details of the chemical degradation mechanism. In this review paper, we summarize recent reports on the chemical degradation mechanism of the PFSA membrane from an atomistic point of view. PMID:24958288
NASA Astrophysics Data System (ADS)
Yuliati, L.; Salleh, A. M.; Hatta, M. H. M.; Lintang, H. O.
2018-04-01
In this study, titanium dioxide-carbon nitride (TiO2-CN) composites were prepared by three methods, which were one pot oxidation, impregnation, and physical mixing. Each series of the photocatalysts was prepared with different ratios of titanium to carbon (Ti/C), i.e., 1, 5, 10, 20, and 50 mol%. All samples were characterized by X-ray diffraction (XRD) and diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopies. The characterization results confirmed the successful preparation of TiO2, CN, and the TiO2-CN composites. Photocatalytic activity tests were carried out for degradation of salicylic acid at room temperature for 6 h under UV and visible light irradiations. It was confirmed that all the prepared TiO2-CN composites showed better photocatalytic activities than the bare TiO2 and the bare CN. Under UV light irradiation, 90.6% of salicylic acid degradation was achieved on the best composite prepared by one pot oxidation with 5 mol% of titanium to carbon (Ti/C) ratio. On the other hand, the highest degradation under visible light irradiation was 94.3%, observed on the composite that was prepared also by one pot oxidation method with the Ti/C ratio of 10 mol%. Therefore, among the investigated methods, the best method to prepare the titanium dioxide-carbon nitride composites with high photocatalytic activity was one pot oxidation method.
NASA Astrophysics Data System (ADS)
Yu, Jianbo
2017-01-01
This study proposes an adaptive-learning-based method for machine faulty detection and health degradation monitoring. The kernel of the proposed method is an "evolving" model that uses an unsupervised online learning scheme, in which an adaptive hidden Markov model (AHMM) is used for online learning the dynamic health changes of machines in their full life. A statistical index is developed for recognizing the new health states in the machines. Those new health states are then described online by adding of new hidden states in AHMM. Furthermore, the health degradations in machines are quantified online by an AHMM-based health index (HI) that measures the similarity between two density distributions that describe the historic and current health states, respectively. When necessary, the proposed method characterizes the distinct operating modes of the machine and can learn online both abrupt as well as gradual health changes. Our method overcomes some drawbacks of the HIs (e.g., relatively low comprehensibility and applicability) based on fixed monitoring models constructed in the offline phase. Results from its application in a bearing life test reveal that the proposed method is effective in online detection and adaptive assessment of machine health degradation. This study provides a useful guide for developing a condition-based maintenance (CBM) system that uses an online learning method without considerable human intervention.
Sreenivasulu, J; Venkata Ramana, P; Sampath Kumar Reddy, G; Nagaraju, Ch V S; Thirumalai Rajan, S; Eswaraiah, S
2015-10-01
A novel, rapid, specific and stability-indicating reverse-phase high-performance liquid chromatography method was developed for the quantitative determination of related compounds, obtained from two different synthetic routes and degradation products of Azilsartan kamedoxomil (AZL). The method was developed by using a YMC-Pack pro C18 (150 × 4.6 mm, 3 µm) column with a mobile phase containing a gradient mobile phase combination. The eluted compounds were measured at wavelength 220 nm. The developed method run time was 25 min, within which AZL and its eight impurities were well separated with minimum 3.0 resolution. The drug substance was subjected to stress conditions of hydrolysis (acid, base and water), oxidation, photolysis, sunlight, 75% relative humidity and thermal degradation as per International Conference on Harmonization (ICH) prescribed stress conditions to ascertain the stability-indicating power of the method. Significant degradation was observed during acid, base, peroxide, water hydrolysis and 75% relative humidity studies. The mass balance of AZL was close to 100% in all the stress condition. The developed method was validated as per the ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pujeri, Sudhakar S.; Khader, Addagadde M. A.; Seetharamappa, Jaldappagari
2012-01-01
A simple, rapid and stability-indicating reversed-phase liquid chromatographic method was developed for the assay of varenicline tartrate (VRT) in the presence of its degradation products generated from forced decomposition studies. The HPLC separation was achieved on a C18 Inertsil column (250 mm × 4.6 mm i.d. particle size is 5 μm) employing a mobile phase consisting of ammonium acetate buffer containing trifluoroacetic acid (0.02M; pH 4) and acetonitrile in gradient program mode with a flow rate of 1.0 mL min−1. The UV detector was operated at 237 nm while column temperature was maintained at 40 °C. The developed method was validated as per ICH guidelines with respect to specificity, linearity, precision, accuracy, robustness and limit of quantification. The method was found to be simple, specific, precise and accurate. Selectivity of the proposed method was validated by subjecting the stock solution of VRT to acidic, basic, photolysis, oxidative and thermal degradation. The calibration curve was found to be linear in the concentration range of 0.1–192 μg mL−1 (R2 = 0.9994). The peaks of degradation products did not interfere with that of pure VRT. The utility of the developed method was examined by analyzing the tablets containing VRT. The results of analysis were subjected to statistical analysis. PMID:22396908
Endogan, T; Ozyaylali, I; Kulacoglu, H; Serbetci, K; Kiyak, G; Hasirci, N
2013-01-01
Prosthetic mesh repair for abdominal wall hernias is widely used because of its technical simplicity and low hernia recurrence rates. The most commonly used material is pure polypropylene mesh, although newer composite materials are recommended by some centers due to their advantages.However, these meshes are more expensive than pure polypropylene meshes. Resterilization of a pure polypropylene mesh has been shown to be quite safe, and many centers prefer slicing a large mesh into smaller pieces, suitable for any hernia type or defect size. Nevertheless there is no data about the safety after resterilization of the composite meshes. The present study was carried out to investigate the effects of resterilization and in vitro degradation in phosphate buffered saline solution on the physical structure and the mechanical properties of partially absorbable lightweight meshes. Two composite meshes were used in the study: One mesh consists of monofilament polypropylene and monofilament polyglecaprone -a copolymer of glycolide and epsilon(ε)- caprolactone - (Ultrapro®, 28 g m2, Ethicon, Hamburg,Germany), and the other one consisted of multifilament polypropylene and multifilament polyglactine (Vypro II®, 30g m2, Ethicon, Hamburg, Germany). Two large meshes were cut into rectangular specimens sized 50 x 20 mm for mechanical testing and 20 x 20 mm for in vitro degradation experiments.Meshes were divided into control group with no resterilization and gas resterilization. Ethylene oxide gas sterilization was performed at 55°C for 4.5 hours. In vitro degradation in 0.01M phosphate buffered saline (PBS, pH 7.4) solution at 37 ± 1°C for 8 weeks was applied to one subgroup in each mesh group. Tensiometric measurements and scanning electronmicroscopic evaluations were completed for control and resterilization specimens. Regardless of resterilization, when the meshes were exposed to in vitro degradation, all mechanical parameters decreased significantly. Highest reduction in mechanical properties was observed for Ultrapro due to the degradation of absorbable polyglecaprone and polyglactin parts of these meshes. It was observed that resterilization by ethylene oxide did not determine significant difference on the degradation characteristics and almost similar physical structures were observed for resterilized and non-resterilized meshes. For VyproII meshes, no significant mechanical difference was observed between resterilized and non-resterilized meshes after degradation while resterilized Ultrapro meshes exhibited stronger characteristics than non-resterilized counterparts, after degradation. Resterilization with ethylene oxide did not affect the mechanical properties of partially absorbable compositemeshes. No important surface changes were observed inscanning electron microscopy after resterilization. Celsius.
A study on technical efficiency of a DMU (review of literature)
NASA Astrophysics Data System (ADS)
Venkateswarlu, B.; Mahaboob, B.; Subbarami Reddy, C.; Sankar, J. Ravi
2017-11-01
In this research paper the concept of technical efficiency (due to Farell) [1] of a decision making unit (DMU) has been introduced and the measure of technical and cost efficiencies are derived. Timmer’s [2] deterministic approach to estimate the Cobb-Douglas production frontier has been proposed. The idea of extension of Timmer’s [2] method to any production frontier which is linear in parameters has been presented here. The estimation of parameters of Cobb-Douglas production frontier by linear programming approach has been discussed in this paper. Mark et al. [3] proposed a non-parametric method to assess efficiency. Nuti et al. [4] investigated the relationships among technical efficiency scores, weighted per capita cost and overall performance Gahe Zing Samuel Yank et al. [5] used Data envelopment analysis to assess technical assessment in banking sectors.
Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng
2016-06-01
Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment.
Method and compositions for the degradation of tributyl phosphate in chemical waste mixtures
Stoner, Daphne L.; Tien, Albert J.
1995-01-01
A method and process for the degradation of tributyl phosphate in an organic waste mixture and a biologically pure, novel bacteria culture for accomplishing the same. A newly-discovered bacteria (a strain of Acinetobacter sp. ATCC 55587) is provided which is combined in a reactor vessel with a liquid waste mixture containing tributyl phosphate and one or more organic waste compounds capable of functioning as growth substrates for the bacteria. The bacteria is thereafter allowed to incubate within the waste mixture. As a result, the tributyl phosphate and organic compounds within the waste mixture are metabolized (degraded) by the bacteria, thereby eliminating such materials which are environmentally hazardous. In addition, the bacteria is capable of degrading waste mixtures containing high quantities of tributyl phosphate (e.g. up to about 1.0% by weight tributyl phosphate).
Jia, Xiangqing; Qin, Chuan; Friedberger, Tobias; Guan, Zhibin; Huang, Zheng
2016-01-01
Polyethylene (PE) is the largest-volume synthetic polymer, and its chemical inertness makes its degradation by low-energy processes a challenging problem. We report a tandem catalytic cross alkane metathesis method for highly efficient degradation of polyethylenes under mild conditions. With the use of widely available, low-value, short alkanes (for example, petroleum ethers) as cross metathesis partners, different types of polyethylenes with various molecular weights undergo complete conversion into useful liquid fuels and waxes. This method shows excellent selectivity for linear alkane formation, and the degradation product distribution (liquid fuels versus waxes) can be controlled by the catalyst structure and reaction time. In addition, the catalysts are compatible with various polyolefin additives; therefore, common plastic wastes, such as postconsumer polyethylene bottles, bags, and films could be converted into valuable chemical feedstocks without any pretreatment. PMID:27386559
2012-01-01
The optimization processes of photo degradation are complicated and expensive when it is performed with traditional methods such as one variable at a time. In this research, the condition of ortho-cresol (o-cresol) photo degradation was optimized by using a semi empirical method. First of all, the experiments were designed with four effective factors including irradiation time, pH, photo catalyst’s amount, o-cresol concentration and photo degradation % as response by response surface methodology (RSM). The RSM used central composite design (CCD) method consists of 30 runs to obtain the actual responses. The actual responses were fitted with the second order algebraic polynomial equation to select a model (suggested model). The suggested model was validated by a few numbers of excellent statistical evidences in analysis of variance (ANOVA). The used evidences include high F-value (143.12), very low P-value (<0.0001), non-significant lack of fit, the determination coefficient (R2 = 0.99) and the adequate precision (47.067). To visualize the optimum, the validated model simulated the condition of variables and response (photo degradation %) be using a few number of three dimensional plots (3D). To confirm the model, the optimums were performed in laboratory. The results of performed experiments were quite close to the predicted values. In conclusion, the study indicated that the model is successful to simulate the optimum condition of o-cresol photo degradation under visible-light irradiation by manganese doped ZnO nanoparticles. PMID:22909072
Audit Technical of Kori Rubber Dam in the River of Keyang District of Ponorogo East Java Province
NASA Astrophysics Data System (ADS)
Murnianto, E.; Suprapto, M.; Ikhsan, C.
2018-03-01
The development of science and technology for the utilization and protection of rivers has embodied various types of river infrastructure. Without proper maintenance, rapid river sediments undergo physical degradation and function. Problems that occur in Kori Rubber Dam, among others, the damage to the body of the rubber dam that is made of rubber, so that the function of flower deflection is not optimal. This happens because of limited operational and maintenance activities (OM). A technical audit is a process of identifying problems, analyzing, and evaluating ones conducted independently, objectively and professionally on the basis of examination, to assess the truth, accuracy, credibility, and reliability of information about a job. In this case an assessment of the Kori Rubber Dam, which is basically a benchmarking activity. Assessment of rubber dam components includes the physical conditions and functions that affect the weir. This research is expected to know the performance of Kori rubber Dam as a recommendation material in the implementation of OM Rubber Dam activities.
Scientific impacts on nuclear strategic policy: Dangers and opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeny S.M. Jr.
1988-12-15
Nuclear weapons have revolutionized warfare, making a mutual capability for assured destruction a fact of life and mutual assured deterrence the underlying nuclear strategy of the superpowers. The program to find a technical solution to the threat of nuclear weapons by creating an impervious defense is fatally flawed by failure to consider responses available to a sophisticated adversary at much lower cost. Responses could involve: exploiting vulnerabilities; increased firepower; technical innovation; and circumvention. Efforts to achieve strategic defense would in fact increase risk of nuclear war by stimulating the nuclear arms race since history demonstrates neither side will allow itsmore » deterrent force to be seriously degraded. Defenses would increase instability in times of a crisis. Science has also reduced the risk of nuclear war by making possible improved control and safety of nuclear forces and predictability of US/Soviet relations, verifiability of arms control agreements, and survivable strategic systems. Science can be a tool for good or evil; mankind must be its masters not its slaves.« less
Scientific impacts on nuclear strategic policy: Dangers and opportunities
NASA Astrophysics Data System (ADS)
Keeny, Spurgeon M.
1988-12-01
Nuclear weapons have revolutionized warfare, making a mutual capability for assured destruction a fact of life and mutual assured deterrence the underlying nuclear strategy of the superpowers. The program to find a technical solution to the threat of nuclear weapons by creating an impervious defense is fatally flawed by failure to consider responses available to a sophisticated adversary at much lower cost. Responses could involve: exploiting vulnerabilities; increased firepower; technical innovation; and circumvention. Efforts to achieve strategic defense would in fact increase risk of nuclear war by stimulating the nuclear arms race since history demonstrates neither side will allow its deterrent force to be seriously degraded. Defenses would increase instability in times of a crisis. Science has also reduced the risk of nuclear war by making possible improved control and safety of nuclear forces and predictability of US/Soviet relations, verifiability of arms control agreements, and survivable strategic systems. Science can be a tool for good or evil; mankind must be its masters not its slaves.
NASA Astrophysics Data System (ADS)
Kalinitchenko, Valery; Batukaev, Abdulmalik; Zinchenko, Vladimir; Zarmaev, Ali; Magomadov, Ali; Chernenko, Vladimir; Startsev, Viktor; Bakoev, Serojdin; Dikaev, Zaurbek
2014-05-01
Modern challenge for humanity is to replace the paradigm of nature use and overcome environmental hazards of agronomy, irrigation, industry, and other human activities in biosphere. It is utterly reasonable to stop dividing biosphere on shares - the human habitat and the environment. In the 21st century it is an outdated anthropocentrism. Contradicting himself to biosphere Humankind has the problems. The new paradigm of biosphere control by methods of Biogeosystem technique is on agenda of Humankind. Key directions of Biogeosystem technique. Tillage. Single rotary milling 20…30-50…60 sm soil layer optimizes the evolution and environment of soil, creates a favorable conditions for the rhizosphere, increases the biological productivity of biosphere by 30-50% compared to the standard agricultural practices for the period up to 40 years. Recycle material. Recycling of mineral and organic substances in soil layer of 20…30-50…60 sm in rotary milling soil processing provides wastes clean return to biosphere. Direct intrasoil substances synthesis. Environmentally friendly robot wasteless nanotechnology provides direct substances synthesis, including fertilizers, inside the soil. It eliminates the prerequisites of the wastes formation under standard industrial technologies. Selective substance's extraction from soil. Electrochemical robotic nanotechnology provides selective substances extraction from soil. The technology provides recovery, collection and subsequent safe industrial use of extracted substances out of landscape. Saving fresh water. An important task is to save fresh water in biosphere. Irrigation spends water 4-5 times more of biological requirements of plants, leads to degradation of soil and landscape. The intrasoil pulse continuous-discrete paradigm of irrigation is proposed. It provides the soil and landscape conservation, increases the biological productivity, save the fresh water up to 10-20 times. The subsurface soil rotary processing and intrasoil pulsed continuous-discrete irrigation provide environmentally safe disposal of municipal, industrial, biological and agricultural wastes. Hazardous chemical and biological agents are under the soil surface. It provided a medical and veterinary safety of environment. Biogeosystem technic controls the equilibria in the soil and soil solution, prevents excessive mineralization of organic matter in the surface layers of soil. Simultaneously a soil chemical reduction excluded, biological substance do not degrade to gases. Products of organic matter decomposition are directed to the food chain, 100% waste recycling is obtained. Biogeosystems technique allows producing more biological products hence to recycle excessive amount of man-made CO2 and other substances. Biogeosystems technique increases the rate of photosynthesis of the biosphere, the degree of air ionization. This enhances the formation of rains over land, ensures stability of the ionosphere, magnetosphere and atmosphere of Earth. The nowadays technologies allow applying technical solutions based on Biogeosystem technique, there is unique opportunity to accelerate the noosphere new technological platform.
Monitoring of Gasoline-ethanol Degradation In Undisturbed Soil
NASA Astrophysics Data System (ADS)
Österreicher-Cunha, P.; Nunes, C. M. F.; Vargas, E. A.; Guimarães, J. R. D.; Costa, A.
Environmental contamination problems are greatly emphasised nowadays because of the direct threat they represent for human health. Traditional remediation methods fre- quently present low efficiency and high costs; therefore, biological treatment is being considered as an accessible and efficient alternative for soil and water remediation. Bioventing, commonly used to remediate petroleum hydrocarbon spills, stimulates the degradation capacity of indigenous microorganisms by providing better subsur- face oxygenation. In Brazil, gasoline and ethanol are mixed (78:22 v/v); some authors indicate that despite gasoline high degradability, its degradation in subsurface is hin- dered by the presence of much more rapidly degrading ethanol. Contaminant distribu- tion and degradation in the subsurface can be monitored by several physical, chemical and microbiological methodologies. This study aims to evaluate and follow the degra- dation of a gasoline-ethanol mixture in a residual undisturbed tropical soil from Rio de Janeiro. Bioventing was used to enhance microbial degradation. Shifts in bacte- rial culturable populations due to contamination and treatment effects were followed by conventional microbiology methods. Ground Penetrating Radar (GPR) measure- ments, which consist of the emission of electro-magnetic waves into the soil, yield a visualisation of contaminant degradation because of changes in soil conductivity due to microbial action on the pollutants. Chemical analyses will measure contaminant residue in soil. Our results disclosed contamination impact as well as bioventing stim- ulation on soil culturable heterotrophic bacterial populations. This multidisciplinary approach allows for a wider evaluation of processes occurring in soil.
Methods of saccharification of polysaccharides in plants
Howard, John; Fake, Gina
2014-04-29
Saccharification of polysaccharides of plants is provided, where release of fermentable sugars from cellulose is obtained by adding plant tissue composition. Production of glucose is obtained without the need to add additional .beta.-glucosidase. Adding plant tissue composition to a process using a cellulose degrading composition to degrade cellulose results in an increase in the production of fermentable sugars compared to a process in which plant tissue composition is not added. Using plant tissue composition in a process using a cellulose degrading enzyme composition to degrade cellulose results in decrease in the amount of cellulose degrading enzyme composition or exogenously applied cellulase required to produce fermentable sugars.