Science.gov

Sample records for degradation products application

  1. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    NASA Astrophysics Data System (ADS)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  2. Pharmaceutical impurities and degradation products: uses and applications of NMR techniques.

    PubMed

    Maggio, Rubén M; Calvo, Natalia L; Vignaduzzo, Silvana E; Kaufman, Teodoro S

    2014-12-01

    Current standards and regulations demand the pharmaceutical industry not only to produce highly pure drug substances, but to achieve a thorough understanding of the impurities accompanying their manufactured drug substances and products. These challenges have become important goals of process chemistry and have steadily stimulated the search of impurities after accelerated or forced degradation procedures. As a result, impurity profiling is one of the most attractive, active and relevant fields of modern pharmaceutical analysis. This activity includes the identification, structural elucidation and quantitative determination of impurities and degradation products in bulk drugs and their pharmaceutical formulations. Nuclear magnetic resonance (NMR) spectroscopy has evolved into an irreplaceable approach for pharmaceutical quality assessment, currently playing a critical role in unequivocal structure identification as well as structural confirmation (qualitative detection), enabling the understanding of the underlying mechanisms of the formation of process and/or degradation impurities. NMR is able to provide qualitative information without the need of standards of the unknown compounds and multiple components can be quantified in a complex sample without previous separation. When coupled to separative techniques, the resulting hyphenated methodologies enhance the analytical power of this spectroscopy to previously unknown levels. As a result, and by enabling the implementation of rational decisions regarding the identity and level of impurities, NMR contributes to the goal of making better and safer medicines. Herein are discussed the applications of NMR spectroscopy and its hyphenated derivate techniques to the study of a wide range pharmaceutical impurities. Details on the advantages and disadvantages of the methodology and well as specific challenges with regards to the different analytical problems are also presented. PMID:24853620

  3. Enhancement of PVA-degrading enzyme production by the application of pH control strategy.

    PubMed

    Li, Min; Zhang, Dongxu; Du, Guocheng; Chen, Jian

    2012-02-01

    In batch culture for Poly(vinyl alcohol) (PVA)-degrading enzyme (PVAase) production by a mixed culture, higher pH (pH 7.5) was favorable for PVAase production at the prophase of cultivation, but lower pH (pH 7.0) was favorable at the anaphase. This situation was caused by the fact that the optimum pH for different key enzymes [PVA dehydrogenase (PVADH) and oxidized PVA hydrolase (OPH)] production is various. The activity and average specific production rate of PVADH reached the highest values at constant pH 7.5, whereas those of OPH appeared at pH 7.0. A two-stage pH control strategy was therefore developed and compared for its potential in improving PVAase production. By using this strategy, the maximal PVAase activity reached 2.05 U/ml, which increased by 15.2% and 24.2% over the fermentation at constant pH 7.5 and 7.0.

  4. A Test House Study of Pesticides and PesticideDegradation Products Following an Indoor Application

    EPA Science Inventory

    Preexisting pesticide degradates are a concern for pesticide biomonitoring studies as exposure to them may result in overestimation of pesticide exposure. The purpose of this research was to determine whether there was significant formation and movement, of pesticide degradates o...

  5. Derivative spectrophotometry for the determination of faropenem in the presence of degradation products: an application for kinetic studies.

    PubMed

    Cielecka-Piontek, Judyta

    2013-07-01

    A simple and selective derivative spectrophotometric method was developed for the quantitative determination of faropenem in pure form and in pharmaceutical dosage. The method is based on the zero-crossing effect of first-derivative spectrophotometry (λ = 324 nm), which eliminates the overlapping effect caused by the excipients present in the pharmaceutical preparation, as well as degradation products, formed during hydrolysis, oxidation, photolysis, and thermolysis. The method was linear in the concentration range 2.5-300 μg/mL (r = 0.9989) at λ = 341 nm; the limits of detection and quantitation were 0.16 and 0.46 μg/mL, respectively. The method had good precision (relative standard deviation from 0.68 to 2.13%). Recovery of faropenem ranged from 97.9 to 101.3%. The first-order rate constants of the degradation of faropenem in pure form and in pharmaceutical dosage were determined by using first-derivative spectrophotometry. A statistical comparison of the validation results and the observed rate constants for faropenem degradation with these obtained with the high-performance liquid chromatography method demonstrated that both were compatible. PMID:23816120

  6. Derivative spectrophotometry for the determination of faropenem in the presence of degradation products: an application for kinetic studies.

    PubMed

    Cielecka-Piontek, Judyta

    2013-07-01

    A simple and selective derivative spectrophotometric method was developed for the quantitative determination of faropenem in pure form and in pharmaceutical dosage. The method is based on the zero-crossing effect of first-derivative spectrophotometry (λ = 324 nm), which eliminates the overlapping effect caused by the excipients present in the pharmaceutical preparation, as well as degradation products, formed during hydrolysis, oxidation, photolysis, and thermolysis. The method was linear in the concentration range 2.5-300 μg/mL (r = 0.9989) at λ = 341 nm; the limits of detection and quantitation were 0.16 and 0.46 μg/mL, respectively. The method had good precision (relative standard deviation from 0.68 to 2.13%). Recovery of faropenem ranged from 97.9 to 101.3%. The first-order rate constants of the degradation of faropenem in pure form and in pharmaceutical dosage were determined by using first-derivative spectrophotometry. A statistical comparison of the validation results and the observed rate constants for faropenem degradation with these obtained with the high-performance liquid chromatography method demonstrated that both were compatible.

  7. Use of LC-MS/TOF, LC-MS(n), NMR and LC-NMR in characterization of stress degradation products: Application to cilazapril.

    PubMed

    Narayanam, Mallikarjun; Sahu, Archana; Singh, Saranjit

    2015-01-01

    Forced degradation studies on cilazapril were carried out according to ICH and WHO guidelines. Significant degradation of the drug was observed in acid and base conditions, resulting primarily in cilazaprilat. In neutral condition, five degradation products were formed, while under oxidative condition, two degradation products were generated. In total, seven degradation products were formed, which were separated on an Inertsil C-18 column using a stability-indicating HPLC method. Structure elucidation of the degradation products was done by using sophisticated and hyphenated tools like, LC-MS/TOF, LC-MS(n), on-line H/D exchange, LC-NMR and NMR. Initially, comprehensive mass fragmentation pathway of the drug was laid down. Critical comparison of mass fragmentation pathways of the drug and its hydrolytic degradation products allowed structure characterization of the latter. 1D and 2D proton LC-NMR studies further confirmed the proposed structures of hydrolytic degradation products. The oxidative degradation products could not be characterized using LC-MS and LC-NMR tools. Hence, these degradation products were isolated using preparative HPLC and extensive 1D ((1)H, (13)C, DEPT) and 2D (COSY, TOCSY, HETCOR and HMBC) NMR studies were performed to ascertain their structures. Finally, degradation pathways and mechanisms of degradation of the drug were outlined. PMID:25890215

  8. Critical practical aspects in the application of liquid chromatography-mass spectrometric studies for the characterization of impurities and degradation products.

    PubMed

    Narayanam, Mallikarjun; Handa, Tarun; Sharma, Parul; Jhajra, Shalu; Muthe, Praveen Kumar; Dappili, Pavan Kumar; Shah, Ravi P; Singh, Saranjit

    2014-01-01

    Liquid chromatography-mass spectrometry (LC-MS) is considered today as a mainstay tool for the structure characterization of minor components like impurities (IMPs) and degradation products (DPs) in drug substances and products. A multi-step systematic strategy for the purpose involves high resolution mass and multi-stage mass studies on both the drug and IMPs/DPs, followed by comparison of their fragmentation profiles. Its successful application requires consideration of many practical aspects at each step. The same are critically discussed in this review. PMID:23706957

  9. Applications and extensions of degradation modeling

    SciTech Connect

    Hsu, F.; Subudhi, M.; Samanta, P.K. ); Vesely, W.E. )

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  10. Applications and extensions of degradation modeling

    SciTech Connect

    Hsu, F.; Subudhi, M.; Samanta, P.K.; Vesely, W.E.

    1991-12-31

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  11. Structural elucidation of gemifloxacin mesylate degradation product.

    PubMed

    Paim, Clésio Soldateli; Führ, Fernanda; Martins, Magda Targa; Gnoatto, Simone; Bajerski, Lisiane; Garcia, Cássia Virginia; Steppe, Martin; Schapoval, Elfrides Eva Scherman

    2016-03-01

    Gemifloxacin mesylate (GFM), chemically (R,S)-7-[(4Z)-3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl]-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylic acid methanesulfonate, is a synthetic broad-spectrum antibacterial agent. Although many papers have been published in the literature describing the stability of fluorquinolones, little is known about the degradation products of GFM. Forced degradation studies of GFM were performed using radiation (UV-A), acid (1 mol L(-1) HCl) and alkaline conditions (0.2 mol L(-1) NaOH). The main degradation product, formed under alkaline conditions, was isolated using semi-preparative LC and structurally elucidated by nuclear magnetic resonance (proton - (1) H; carbon - (13) C; correlate spectroscopy - COSY; heteronuclear single quantum coherence - HSQC; heteronuclear multiple-bond correlation - HMBC; spectroscopy - infrared, atomic emission and mass spectrometry techniques). The degradation product isolated was characterized as sodium 7-amino-1-pyrrolidinyl-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-1,8-naphthyridine-3-carboxylate, which was formed by loss of the 3-(aminomethyl)-4-(methoxyimino)-1-pyrrolidinyl ring and formation of the sodium carboxylate. The structural characterization of the degradation product was very important to understand the degradation mechanism of the GFM under alkaline conditions. In addition, the results highlight the importance of appropriate protection against hydrolysis and UV radiation during the drug-development process, storage, handling and quality control.

  12. Genome Sequence of an Efficient Indole-Degrading Bacterium, Cupriavidus sp. Strain IDO, with Potential Polyhydroxyalkanoate Production Applications

    PubMed Central

    Ma, Qiao; Zhang, Zhaojing; Li, Pengpeng

    2015-01-01

    Cupriavidus sp. strain IDO has been shown to efficiently transform indole, and the genus of Cupriavidus has been described as a promising cell factory for polyhydroxyalkanoate synthesis from low-cost wastes. Here, we report the draft genome sequence of strain IDO, which may provide useful genetic information on indole metabolism and polyhydroxyalkanoate production. PMID:25767238

  13. Degradable vinyl polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Delplace, Vianney; Nicolas, Julien

    2015-10-01

    Vinyl polymers have been the focus of intensive research over the past few decades and are attractive materials owing to their ease of synthesis and their broad diversity of architectures, compositions and functionalities. Their carbon-carbon backbones are extremely resistant to degradation, however, and this property limits their uses. Degradable polymers are an important field of research in polymer science and have been used in a wide range of applications spanning from (nano)medicine to microelectronics and environmental protection. The development of synthetic strategies to enable complete or partial degradation of vinyl polymers is, therefore, of great importance because it will offer new opportunities for the application of these materials. This Review captures the most recent and promising approaches to the design of degradable vinyl polymers and discusses the potential of these materials for biomedical applications.

  14. Degradable vinyl polymers for biomedical applications.

    PubMed

    Delplace, Vianney; Nicolas, Julien

    2015-10-01

    Vinyl polymers have been the focus of intensive research over the past few decades and are attractive materials owing to their ease of synthesis and their broad diversity of architectures, compositions and functionalities. Their carbon-carbon backbones are extremely resistant to degradation, however, and this property limits their uses. Degradable polymers are an important field of research in polymer science and have been used in a wide range of applications spanning from (nano)medicine to microelectronics and environmental protection. The development of synthetic strategies to enable complete or partial degradation of vinyl polymers is, therefore, of great importance because it will offer new opportunities for the application of these materials. This Review captures the most recent and promising approaches to the design of degradable vinyl polymers and discusses the potential of these materials for biomedical applications.

  15. [Degradation pathways and main degradation products of tetracycline antibiotics: research progress].

    PubMed

    Li, Wei-Ming; Bao, Yan-Yu; Zhou, Qi-Xing

    2012-08-01

    Tetracycline antibiotics (TCs) can produce a series of abiotic degradation reactions in the process of production and storage, and some of the degradation products have lower antibacterial activity but higher toxicity, as compared to the parent antibiotics. TCs can enter the environment via the disposal of livestock and poultry wastes, and then degrade in one or more ways according to the external conditions. Besides abiotic degradation, bio-degradation also happens. This paper reviewed the degradation pathways and main degradation products of TCs in different ecological environments, and discussed the future research directions, aimed to provide valuable reference for the ecological risk assessment of the antibiotics.

  16. Physiology, biochemistry and possible applications of microbial caffeine degradation.

    PubMed

    Gummadi, Sathyanarayana N; Bhavya, B; Ashok, Nandhini

    2012-01-01

    Caffeine, a purine alkaloid is a constituent of widely consumed beverages. The scientific evidence which has proved the harm of this alkaloid has paved the way for innumerable research in the area of caffeine degradation. In addition to this, the fact that the by-products of the coffee and tea industry pollute the environment has called for the need of decaffeinating coffee and tea industry's by-products. Though physical and chemical methods for decaffeination are available, the lack of specificity for removal of caffeine in these techniques and their non-eco-friendly nature has opened the area of microbial and enzymatic degradation of caffeine. Another important application of microbial caffeine degradation apart from its advantages like specificity, eco-friendliness and cost-effectiveness is the fact that this process will enable the production of industrially and medically useful components of the caffeine degradation pathway like theobromine and theophylline. This is a comprehensive review which mainly focuses on caffeine degradation, large-scale degradation of the same and its applications in the industrial world.

  17. Physiology, biochemistry and possible applications of microbial caffeine degradation.

    PubMed

    Gummadi, Sathyanarayana N; Bhavya, B; Ashok, Nandhini

    2012-01-01

    Caffeine, a purine alkaloid is a constituent of widely consumed beverages. The scientific evidence which has proved the harm of this alkaloid has paved the way for innumerable research in the area of caffeine degradation. In addition to this, the fact that the by-products of the coffee and tea industry pollute the environment has called for the need of decaffeinating coffee and tea industry's by-products. Though physical and chemical methods for decaffeination are available, the lack of specificity for removal of caffeine in these techniques and their non-eco-friendly nature has opened the area of microbial and enzymatic degradation of caffeine. Another important application of microbial caffeine degradation apart from its advantages like specificity, eco-friendliness and cost-effectiveness is the fact that this process will enable the production of industrially and medically useful components of the caffeine degradation pathway like theobromine and theophylline. This is a comprehensive review which mainly focuses on caffeine degradation, large-scale degradation of the same and its applications in the industrial world. PMID:22139018

  18. Production of lignin peroxidase by Phanerochaete chrysosporium immobilized on porous poly(styrene-divinylbenzene) carrier and its application to the degrading of 2-chlorophenol.

    PubMed

    Ruckenstein, E; Wang, X B

    1994-06-01

    Porous poly(styrene-divinylbenzene) carriers, for the immobilization of white rot fungus Phanerochaete chrysosporium have been prepared by the concentrated emulsion polymerization method. The concentrated emulsion consists of a mixture of styrene and divinylbenzene containing a suitable surfactant and an initiator as the continuous phase, and water as the dispersed phase. The polymerization of the monomers of the continuous phase generated the polymer carrier with a porcus structure. The white rot fungus Phanerochaete chrysosporium has been immobilized on porous poly(styrene-divinylbenzene) carriers and used for the batch production and the repeated batch production of lignin peroxidase in shake cultures based on a carbon-limited medium containing veratryl alcohol. The best results were achieved when a spore inoculum was used for immobilization instead of 1-day-old mycelial pellets, for both the batch production and the repeated batch production. The porous poly(styrene-divinylbenzene) immobilized Phanerochaete chrysosporium and freely suspended mycelial pellets were used as biocatalysts for the degradation of 2-chilorophenol in a 2-L bioreactor. The porous poly(styrene-divinylbenzene) particle (diameter congruent with 0.2 cm) immobilized spores exhibited a much higher activity in the degradation of 2-chlorophenol than the freely suspended mycelial pellets.

  19. Advice on Degradation Products in Pharmaceuticals: A Toxicological Evaluation.

    PubMed

    Melo, Sâmia Rocha de Oliveira; Homem-de-Mello, Maurício; Silveira, Dâmaris; Simeoni, Luiz Alberto

    Degradation products are unwanted chemicals that can develop during the manufacturing, transportation, and storage of drug products and can affect the efficacy of pharmaceutical products. Moreover, even small amounts of degradation products can affect pharmaceutical safety because of the potential to cause adverse effects in patients. Consequently, it is crucial to focus on mechanistic understanding, formulation, storage conditions, and packaging to prevent the formation of degradation products that can negatively affect the quality and safety of the drug product. In this sense, databases and software that help predict the reactions involving the pharmaceutically active substance in the presence of degradation conditions can be used to obtain information on major degradation routes and the main degradation products formed during pharmaceutical product storage. In some cases, when the presence of a genotoxic degradation product is verified, it is necessary to conduct more thorough assessments. It is important to consider the chemical structure to distinguish between compounds with toxicologically alerting structures with associated toxic/genotoxic risks and compounds without active structures that can be treated as ordinary impurities. Evaluating the levels of degradation products based on a risk/benefit analysis is mandatory. Controlling critical variables during early development of drug products and conducting a follow-up study of these impurities can prevent degradation impurities present at concentrations greater than threshold values to ensure product quality. The definition of the impurity profile has become essential per various regulatory requirements. Therefore, this review includes the international regulatory perspective on impurity documents and the toxicological evaluation of degradation products. Additionally, some techniquesused in the investigation of degradation products and stability-indicating assay methods are highlighted.

  20. Advice on Degradation Products in Pharmaceuticals: A Toxicological Evaluation.

    PubMed

    Melo, Sâmia Rocha de Oliveira; Homem-de-Mello, Maurício; Silveira, Dâmaris; Simeoni, Luiz Alberto

    Degradation products are unwanted chemicals that can develop during the manufacturing, transportation, and storage of drug products and can affect the efficacy of pharmaceutical products. Moreover, even small amounts of degradation products can affect pharmaceutical safety because of the potential to cause adverse effects in patients. Consequently, it is crucial to focus on mechanistic understanding, formulation, storage conditions, and packaging to prevent the formation of degradation products that can negatively affect the quality and safety of the drug product. In this sense, databases and software that help predict the reactions involving the pharmaceutically active substance in the presence of degradation conditions can be used to obtain information on major degradation routes and the main degradation products formed during pharmaceutical product storage. In some cases, when the presence of a genotoxic degradation product is verified, it is necessary to conduct more thorough assessments. It is important to consider the chemical structure to distinguish between compounds with toxicologically alerting structures with associated toxic/genotoxic risks and compounds without active structures that can be treated as ordinary impurities. Evaluating the levels of degradation products based on a risk/benefit analysis is mandatory. Controlling critical variables during early development of drug products and conducting a follow-up study of these impurities can prevent degradation impurities present at concentrations greater than threshold values to ensure product quality. The definition of the impurity profile has become essential per various regulatory requirements. Therefore, this review includes the international regulatory perspective on impurity documents and the toxicological evaluation of degradation products. Additionally, some techniquesused in the investigation of degradation products and stability-indicating assay methods are highlighted. PMID:25188345

  1. Two and three way spectrophotometric-assisted multivariate determination of linezolid in the presence of its alkaline and oxidative degradation products and application to pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha Abd El-Monem; Eissa, Maya Shaaban; Abd El-Sattar, Osama Ibrahim; Abd El-Kawy, Mohammad

    2014-07-01

    Linezolid (LIN) is determined in the presence of its alkaline (ALK) and oxidative (OXD) degradation products without preliminary separation based on ultraviolet spectrophotometry using two-way chemometric methods; principal component regression (PCR) and partial least-squares (PLS), and three-way chemometric methods; parallel factor analysis (PARAFAC) and multi-way partial least squares (N-PLS). A training set of mixtures containing LIN, ALK and OXD; was prepared in the concentration ranges of 12-18, 2.4-3.6 and 1.2-1.8 μg mL-1, respectively according to a multilevel multifactor experimental design. The multivariate calibrations were obtained by measuring the zero-order absorbance from 220 to 320 nm using the training set. The validation of the multivariate methods was realized by analyzing their synthetic mixtures. The capabilities of the chemometric analysis methods for the analysis of real samples were evaluated by determination of LIN in its pharmaceutical preparation with satisfactory results. The accuracy of the methods, evaluated through the root mean square error of prediction (RMSEP), was 0.058, 0.026, 0.101 and 0.026 for LIN using PCR, PLS, PARAFAC and N-PLS, respectively. Protolytic equilibria of LIN and its degradation products were evaluated using the corresponding absorption spectra-pH data obtained with PARAFAC. The obtained pKa values of LIN, ALK and OXD are 5.70, 8.90 and 6.15, respectively. The results obtained were statistically compared to that of a reported HPLC method, and there was no significant difference between the proposed methods and the reported method regarding both accuracy and precision.

  2. Hydrogen production: two stage processes for waste degradation.

    PubMed

    Gómez, X; Fernández, C; Fierro, J; Sánchez, M E; Escapa, A; Morán, A

    2011-09-01

    The dark fermentation process generates hydrogen by biological means. It presents two main advantages: fulfilling requirements for mild operational conditions and gaining benefit from the residual biomass. The process itself may be seen as a pre-treatment step in a complete stabilisation chain, with the aim of attaining the valorisation of residual biomass. However, increasing the yield of H2 production is an imperative task. In this manuscript, a review of recent work in the field of fermentative hydrogen production is presented. As dark fermentation has a maximum yield of 33% (on sugars), a description is also presented of possible second stage processes for the degradation of dark fermentation effluents. Alternatives considered were photofermentation and bioelectrochemical systems (BES) as processes capable of converting fermentation sub-products into H2. Anaerobic digestion as a final stabilisation stage was also considered owing to the wide application of this technology in the treatment of bio-wastes.

  3. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca.

    PubMed

    Gouda, Mona K; Kleeberg, Ilona; van den Heuvel, Joop; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter

    2002-01-01

    The production of a polyester-degrading hydrolase from the thermophilic actinomycete Thermomonospora fusca was investigated with regard to its potential technical application. Only in the presence of a polyester (random aliphatic-aromatic copolyester from 1,4-butanediol, terephthalic acid, and adipic acid with around 40-50 mol % terephthalic acid in the acid component), the excretion of the extracellular enzyme could be achieved with an optimized synthetic medium using pectin and NH(4)Cl as nitrogen source. Compared to complex media, a significantly higher specific activity at comparable volumetric yields could be obtained, thus reducing the expenditure for purification. The activity profile in the medium is controlled by a complex process involving (1) induction of enzyme excretion, (2) enzyme adsorption on the hydrophobic polyester surface, (3) inhibition of enzyme generation by monomers produced by polyester cleavage, and (4) enzyme denaturation. Diafiltration with cellulose acetate membranes as the sole downstream processing step led to a product of high purity and with sufficient yield (60% of total activity). Scaling-up from shaking flasks to a fermentor scale of 100 L revealed no specific problems. However, the excretion of the hydrolase by the actinomycete turned out to be inhibited by the degradation products (monomers) of the aliphatic-aromatic copolyester used as inductor for the enzyme production. The crude enzyme exhibited generally similar properties (temperature and pH optimum) as the highly purified hydrolase described previously; however, the storage capability and thermal stability is improved when the crude enzyme solution is diafiltrated.

  4. Application of modulus degradation model of clays.

    USGS Publications Warehouse

    Chen, A.T.F.

    1982-01-01

    A degradation model is applied in conjunction with different soil models and stress-strain relations to site response analyses during earthquakes. To evaluate the effects of degradation, computations on two clay deposits subjected to both high and low-level input excitations are conducted. Where surface response differs, the use of degradation with strength reduction is less conservative when compared to the use of degradation without strength reduction.- from ASCE Publications Abstracts

  5. Reflectance model for quantifying chlorophyll a in the presence of productivity degradation products

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Hawes, S. K.; Steward, R. G.; Baker, K. A.; Smith, R. C.; Mitchell, B. G.

    1991-01-01

    A reflectance model developed to estimate chlorophyll a concentrations in the presence of marine colored dissolved organic matter, pheopigments, detritus, and bacteria is presented. Nomograms and lookup tables are generated to describe the effects of different mixtures of chlorophyll a and these degradation products on the R(412):R(443) and R(443):R(565) remote-sensing reflectance or irradiance reflectance ratios. These are used to simulate the accuracy of potential ocean color satellite algorithms, assuming that atmospheric effects have been removed. For the California Current upwelling and offshore regions, with chlorophyll a not greater than 1.3 mg/cu m, the average error for chlorophyll a retrievals derived from irradiance reflectance data for degradation product-rich areas was reduced from +/-61 percent to +/-23 percent by application of an algorithm using two reflectance ratios rather than the commonly used algorithm applying a single reflectance ratio.

  6. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    PubMed

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. PMID:27507471

  7. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications.

    PubMed

    Xu, Cancan; Huang, Yihui; Wu, Jinglei; Tang, Liping; Hong, Yi

    2015-09-16

    Tissue engineered and bioactive scaffolds with different degradation rates are required for the regeneration of diverse tissues/organs. To optimize tissue regeneration in different tissues, it is desirable that the degradation rate of scaffolds can be manipulated to comply with various stages of tissue regeneration. Unfortunately, the degradation of most degradable polymers relies solely on passive controlled degradation mechanisms. To overcome this challenge, we report a new family of reduction-sensitive biodegradable elastomeric polyurethanes containing various amounts of disulfide bonds (PU-SS), in which degradation can be initiated and accelerated with the supplement of a biological product: antioxidant-glutathione (GSH). The polyurethanes can be processed into films and electrospun fibrous scaffolds. Synthesized materials exhibited robust mechanical properties and high elasticity. Accelerated degradation of the materials was observed in the presence of GSH, and the rate of such degradation depends on the amount of disulfide present in the polymer backbone. The polymers and their degradation products exhibited no apparent cell toxicity while the electrospun scaffolds supported fibroblast growth in vitro. The in vivo subcutaneous implantation model showed that the polymers prompt minimal inflammatory responses, and as anticipated, the polymer with the higher disulfide bond amount had faster degradation in vivo. This new family of polyurethanes offers tremendous potential for directed scaffold degradation to promote maximal tissue regeneration. PMID:26312436

  8. Triggerable Degradation of Polyurethanes for Tissue Engineering Applications.

    PubMed

    Xu, Cancan; Huang, Yihui; Wu, Jinglei; Tang, Liping; Hong, Yi

    2015-09-16

    Tissue engineered and bioactive scaffolds with different degradation rates are required for the regeneration of diverse tissues/organs. To optimize tissue regeneration in different tissues, it is desirable that the degradation rate of scaffolds can be manipulated to comply with various stages of tissue regeneration. Unfortunately, the degradation of most degradable polymers relies solely on passive controlled degradation mechanisms. To overcome this challenge, we report a new family of reduction-sensitive biodegradable elastomeric polyurethanes containing various amounts of disulfide bonds (PU-SS), in which degradation can be initiated and accelerated with the supplement of a biological product: antioxidant-glutathione (GSH). The polyurethanes can be processed into films and electrospun fibrous scaffolds. Synthesized materials exhibited robust mechanical properties and high elasticity. Accelerated degradation of the materials was observed in the presence of GSH, and the rate of such degradation depends on the amount of disulfide present in the polymer backbone. The polymers and their degradation products exhibited no apparent cell toxicity while the electrospun scaffolds supported fibroblast growth in vitro. The in vivo subcutaneous implantation model showed that the polymers prompt minimal inflammatory responses, and as anticipated, the polymer with the higher disulfide bond amount had faster degradation in vivo. This new family of polyurethanes offers tremendous potential for directed scaffold degradation to promote maximal tissue regeneration.

  9. Screening of nerve agent degradation products by MALDI-TOFMS.

    PubMed

    Shu, You-Ren; Su, An-Kai; Liu, Ju-Tsung; Lin, Cheng-Huang

    2006-07-01

    A novel method for the rapid screening of degradation products derived from nerve agents by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is described. Five standard products were selected as model compounds, including isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PMPA), ethyl methylphosphonic acid (EMPA), isobutyl methylphosphonic acid (i-BuMPA), and cyclohexyl methylphosphonic acid (CHMPA), which are degradation products of Sarin (GB), Soman (GD), VX, Russian VX (RVX), and GF, respectively. For comparison, CHCA (alpha-cyano-4-hydroxycinnamic acid) and DCCA (7-(diethylamino)coumarin-3-carboxylic acid) were used as the MALDI-matrix when the third harmonic generation (355 nm) of a Nd:YAG laser and a hydrogen Raman laser (multifrequency laser) were used, respectively. The method permitted the five nerve agent degradation products to be screened rapidly and successfully, suggesting that it has the potential for use as a routine monitoring tool. PMID:16808484

  10. Production of Insecticide Degradates in Juices: Implications for Risk Assessment.

    PubMed

    Radford, Samantha A; Panuwet, Parinya; Hunter, Ronald E; Barr, Dana Boyd; Ryan, P Barry

    2016-06-01

    This study was designed to observe the production of degradates of two organophosphorus insecticides and one pyrethroid insecticide in beverages. Purified water, white grape juice, apple juice, and red grape juice were fortified with 500 ng/g malathion, chlorpyrifos, and permethrin, and aliquots were extracted for malathion dicarboxylic acid (MDA), 3,5,6-trichloro-2-pyridinol (TCPy), and 3-phenoxybenzoic acid (3-PBA) several times over a 15 day period of being stored in the dark at 2.5 °C. Overall, first-order kinetics were observed for production of MDA, and statistically significant production of TCPy was also observed. Statistically significant production of 3-phenoxybenzoic acid was not observed. Results indicate that insecticides degrade in food and beverages, and this degradation may lead to preexisting insecticide metabolites in the beverages. Therefore, it is suggested that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk. PMID:27213611

  11. Screening of nerve agent degradation products by MALDI-TOFMS.

    PubMed

    Shu, You-Ren; Su, An-Kai; Liu, Ju-Tsung; Lin, Cheng-Huang

    2006-07-01

    A novel method for the rapid screening of degradation products derived from nerve agents by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is described. Five standard products were selected as model compounds, including isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PMPA), ethyl methylphosphonic acid (EMPA), isobutyl methylphosphonic acid (i-BuMPA), and cyclohexyl methylphosphonic acid (CHMPA), which are degradation products of Sarin (GB), Soman (GD), VX, Russian VX (RVX), and GF, respectively. For comparison, CHCA (alpha-cyano-4-hydroxycinnamic acid) and DCCA (7-(diethylamino)coumarin-3-carboxylic acid) were used as the MALDI-matrix when the third harmonic generation (355 nm) of a Nd:YAG laser and a hydrogen Raman laser (multifrequency laser) were used, respectively. The method permitted the five nerve agent degradation products to be screened rapidly and successfully, suggesting that it has the potential for use as a routine monitoring tool.

  12. Qualitative Profiling of Polyglucose Degradation Products in Peritoneal Dialysis Fluids.

    PubMed

    Gensberger, Sabrina; Knabner, Carina; Waibel, Reiner; Huppert, Jochen; Pischetsrieder, Monika

    2015-06-16

    Heat sterilization of peritoneal dialysis (PD) fluids leads to partial degradation of the osmotic agent to form reactive carbonyl structures, which significantly reduce the biocompatibility of PD fluids and impair long-term PD therapy. Hence, it is important to know the exact composition of the degradation products to improve biocompatibility of PD fluids. Our study conducted targeted screening for degradation products in polyglucose (icodextrin)-containing PD fluids (pGDPs) by applying o-phenylenediamine (OPD) to form stable derivatives, which were analyzed by ultrahigh-performance liquid chromatography with hyphenated diode array tandem mass spectrometry (UHPLC-DAD-MS/MS). For the first time, specific degradation products of polyglucose, namely, 4-deoxyglucosone (4-DG) and 3,4-dideoxypentosone (3,4-DDPS), could be identified in PD fluids. Further, a reaction product of 5-hydroxymethylfurfural (5-HMF) and OPD could be characterized to be (5-(1H-benzo[d]imidazol-2-yl)furan-2-yl)methanol. Additionally, 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal), both known to be present in glucose-based PD fluids, were also detected in polyglucose-containing fluids. Trapping a hitherto unknown degradation product with OPD yielded 1,4-bis(1H-benzo[d]imidazol-2-yl)-3,4-dihydroxybutan-1-one, which was present in heat- as well as filter-sterilized PD fluids.

  13. Qualitative Profiling of Polyglucose Degradation Products in Peritoneal Dialysis Fluids.

    PubMed

    Gensberger, Sabrina; Knabner, Carina; Waibel, Reiner; Huppert, Jochen; Pischetsrieder, Monika

    2015-06-16

    Heat sterilization of peritoneal dialysis (PD) fluids leads to partial degradation of the osmotic agent to form reactive carbonyl structures, which significantly reduce the biocompatibility of PD fluids and impair long-term PD therapy. Hence, it is important to know the exact composition of the degradation products to improve biocompatibility of PD fluids. Our study conducted targeted screening for degradation products in polyglucose (icodextrin)-containing PD fluids (pGDPs) by applying o-phenylenediamine (OPD) to form stable derivatives, which were analyzed by ultrahigh-performance liquid chromatography with hyphenated diode array tandem mass spectrometry (UHPLC-DAD-MS/MS). For the first time, specific degradation products of polyglucose, namely, 4-deoxyglucosone (4-DG) and 3,4-dideoxypentosone (3,4-DDPS), could be identified in PD fluids. Further, a reaction product of 5-hydroxymethylfurfural (5-HMF) and OPD could be characterized to be (5-(1H-benzo[d]imidazol-2-yl)furan-2-yl)methanol. Additionally, 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal), both known to be present in glucose-based PD fluids, were also detected in polyglucose-containing fluids. Trapping a hitherto unknown degradation product with OPD yielded 1,4-bis(1H-benzo[d]imidazol-2-yl)-3,4-dihydroxybutan-1-one, which was present in heat- as well as filter-sterilized PD fluids. PMID:25970747

  14. Analysis of atrazine and four degradation products in the pore water of the vadose zone, central Indiana

    USGS Publications Warehouse

    Panshin, S.Y.; Carter, D.S.; Bayless, E.R.

    2000-01-01

    A new method is described for the analysis of atrazine and four of its degradation products (desethylatrazine, deisopropylatrazine, didealkylatrazine, and hydroxyatrazine) in water. This method uses solid- phase extraction on a graphitized carbon black cartridge, derivatization of the eluate with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), and analysis by gas chromatography/mass spectrometry (GC/MS). This method was used to analyze lysimeter samples collected from a field in central Indiana in 1994 and 1995. Atrazine and its degradation products were transported rapidly through the vadose zone. Maximum values of atrazine ranged from 2.61 to 8.44 ??g/L and occurred from 15 to 57 days after application. Maximum concentrations of the degradation products occurred from 11 to 140 days after atrazine application. The degradation products were more persistent than atrazine in pore water. Desethylatrazine was the dominant degradation product detected in the first year, and didealkylatrazine was the dominant degradation product detected in the second year. Concentrations of atrazine and the degradation products sorbed onto soil were estimated; maximum concentrations ranged from 7.3 to 24 ??g/kg for atrazine and were less than 5 ??g/kg for all degradation products. Degradation of atrazine and transport of all five compounds were simulated by the vadose zone flow model LEACHM. LEACHM was run as a Darcian-flow model and as a non-Darcian-flow model.

  15. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  16. [Cellulose degradation and ethanol production of different Clostridium strain].

    PubMed

    Fang, Zhi-guo; Ouyang, Zhi-yun

    2010-08-01

    Cellulose degradation and ethanol production of two types of cellulosic materials with different concentration were evaluated in batch system of mono-cultures of cellulolytic ethanol producing strains (Clostridium thermocellum strain LQRI and Clostridium thermocellum strain VPI), and co-cultures of LQRI or VPI in combination with one of the non-cellulolytic ethanol producing strains (Thermoanaerobacter ethanolicus strains X514 or Thermoanaerobacter ethanolicus 39E). Results demonstrated that higher cellulose degradation abilities about 1.2 times were detected in LQRI mono-culture than in VPI mono-culture, while no significant difference of ethanol yields was found between the two mono-cultures. Abilities of cellulose degradation and ethanol production decreased significantly with the increasing of substrate cellulose concentration (1%, 2%, 5%). In the co-culture system, cellulose degradation abilities of LQRI were also significantly higher than VPI, the former is 1.28-1.58 times of the latter. Cellulose degradation rate of LQRI + Thermoanaerobacter and VPI + Thermoanaerobacter decreased gradually with the increasing of substrate cellulose concentration, while the absolute value of cellulose degradation was also affected by the partner Thermoanaerobacter strain. Additionally, the ethanol yields in the co-cultures of LQRI + Thermoanaerobacter were significantly higher than that in the co-cultures of VPI + Thermoanaerobacter with same Thermoanaerobaeter partner, the former is 1.27-1.77 times of the latter. However, ethanol yields in the co-cultures have not significantly declined with the increasing of substrate cellulose concentration.

  17. Degradation of net primary production in a semiarid rangeland

    NASA Astrophysics Data System (ADS)

    Jackson, Hasan; Prince, Stephen D.

    2016-08-01

    Anthropogenic land degradation affects many biogeophysical processes, including reductions of net primary production (NPP). Degradation occurs at scales from small fields to continental and global. While measurement and monitoring of NPP in small areas is routine in some studies, for scales larger than 1 km2, and certainly global, there is no regular monitoring and certainly no attempt to measure degradation. Quantitative and repeatable techniques to assess the extent of deleterious effects and monitor changes are needed to evaluate its effects on, for example, economic yields of primary products such as crops, lumber, and forage, and as a measure of land surface properties which are currently missing from dynamic global vegetation models, assessments of carbon sequestration, and land surface models of heat, water, and carbon exchanges. This study employed the local NPP scaling (LNS) approach to identify patterns of anthropogenic degradation of NPP in the Burdekin Dry Tropics (BDT) region of Queensland, Australia, from 2000 to 2013. The method starts with land classification based on the environmental factors presumed to control (NPP) to group pixels having similar potential NPP. Then, satellite remotely sensing data were used to compare actual NPP with its potential. The difference in units of mass of carbon and percentage loss were the measure of degradation. The entire BDT (7.45 × 106 km2) was investigated at a spatial resolution of 250 × 250 m. The average annual reduction in NPP due to anthropogenic land degradation in the entire BDT was -2.14 MgC m-2 yr-1, or 17 % of the non-degraded potential, and the total reduction was -214 MgC yr-1. Extreme average annual losses of 524.8 gC m-2 yr-1 were detected. Approximately 20 % of the BDT was classified as "degraded". Varying severities and rates of degradation were found among the river basins, of which the Belyando and Suttor were highest. Interannual, negative trends in reductions of NPP occurred in 7 % of the

  18. Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment.

    PubMed

    Bijlsma, Lubertus; Boix, Clara; Niessen, Wilfried M A; Ibáñez, María; Sancho, Juan V; Hernández, Félix

    2013-01-15

    In this work, ultra-high-performance liquid chromatography (UHPLC) coupled to a hybrid quadrupole time-of-flight mass spectrometer (QTOF MS) has allowed the discovery and elucidation of degradation products of cocaine and its main metabolite benzoylecgonine (BE) in water. Spiked surface water was subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet irradiation and simulated sunlight). After degradation of cocaine, up to sixteen compounds were detected and tentatively identified (1 resulting from hydrolysis; 8 from chlorination; 7 from photo-degradation), three of which are well known cocaine metabolites (BE, norbenzoylecgonine and norcocaine). Regarding BE degradation, up to ten compounds were found (3 from chlorination; 7 from photo-degradation), including one known metabolite (norbenzoylecgonine). Since reference standards were available for the major metabolites, they could be confirmed using information on retention time and fragment ions. The other degradates resulted from chlorination, dealkylation, hydroxylation and nitration, or from a combination of these processes. Several influent and effluent sewage water, and surface water samples were then screened for the identified compounds (known and unknown) using UHPLC-tandem MS with triple quadrupole. BE, norcocaine and norbenzoylecgonine were identified in these samples as major metabolites. Four previously unreported degradates were also found in some of the samples under study, illustrating the usefulness and applicability of the degradation experiments performed in this work.

  19. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    PubMed

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment.

  20. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    PubMed

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. PMID:27459151

  1. Development of a sensor for polypropylene degradation products.

    SciTech Connect

    Sawyer, Patricia Sue; Howell, Stephen Wayne; Hochrein, James Michael; Dirk, Shawn M.; Bernstein, Robert; Washburn, Cody M.; Graf, Darin C.

    2009-04-01

    This paper presents the development of a sensor to detect the oxidative and radiation induced degradation of polypropylene. Recently we have examined the use of crosslinked assemblies of nanoparticles as a chemiresistor-type sensor for the degradation products. We have developed a simple method that uses a siloxane matrix to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. These sensors were exposed with the use of a gas chromatography system to three previously identified polypropylene degradation products including 4-methyl-2-pentanone, acetone, and 2-pentanone. The limits of detection 210 ppb for 4-methy-2-pentanone, 575 ppb for 2-pentanone, and the LoD was unable to be determined for acetone due to incomplete separation from the carbon disulfide carrier.

  2. ANALYSIS OF THE FLUX OF AN ENDOCRINE DISRUPTING DICARBOXIMIDE AND ITS DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    EPA Science Inventory

    A method for measuring the atmospheric flux of the antiandrogenic dicarboxirnide, vinclozolin, and its degradation products was investigated. A nitric oxide laboratory chamber was modified to measure the flux of semi-volatile compounds. Pesticide application systems and soil in...

  3. Management practices influence productivity of degraded or eroded soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices influence the productivity of eroded or degraded soil. This study investigates the influence of beef manure amendment compared with commercial fertil¬izer (urea) applied at two rates (60 and 120 lb N/a) with two tillage practices (conven¬tional tillage, CT, and no-tillage, NT). ...

  4. Management Practices to Improve Productivity of Degraded/Eroded Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Productivity of degraded/eroded soils can be restored by using organic amendment, such as manure, and improved soil management. A study is being conducted near Hays, KS, to investigate and compare restorative potential of two nitrogen (N) sources. Dried beef manure and urea fertilizer were each appl...

  5. Sonochemical degradation of ethylbenzene in aqueous solution: a product study.

    PubMed

    De Visscher, A; Van Langenhove, H; Van Eenoo, P

    1997-04-01

    The degradation of ethylbenzene in aqueous solution by 520 kHz ultrasound was investigated. The products formed were analysed using solid phase microextraction (SPME), a sampling technique that allows convenient GC-MS and GC-FID analysis in the micromolar range. A broad range of monosubstituted monocyclic and dicyclic aromatic hydrocarbons was found as well as some oxygenated products. The results clearly indicate that pyrolysis is an important pathway of ethylbenzene degradation. The side chain is dehydrogenated, forming styrene, or cleaved. The radicals formed upon cleavage are subsequently added to the double bond of the styrene side chain or recombined. This mechanism explains the formation of most of the products. Formation and breakdown of the reaction products follow first-order kinetics in spite of the fact that the selectivity of the reactions depends on the initial ethylbenzene concentration considerably. Changes in the temperature and the pressure of cavitation are expected to cause this dependence. PMID:11237033

  6. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products

    PubMed Central

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274

  7. Production and degradation of polyhydroxyalkanoates in waste environment

    SciTech Connect

    Lee, S.Y.; Choi, J.

    1999-06-01

    Polyhydroxyalkanoates (PHAs) are energy/carbon storage materials accumulated under unfavorable growth condition in the presence of excess carbon source. PHAs are attracting much attention as substitute for non-degradable petrochemically derived plastics because of their similar material properties to conventional plastics and complete biodegradability under natural environment upon disposal. In this paper, PHA production and degradation in waste environment as well as its role in biological phosphorus removal are reviewed. In biological phosphorus removal process, bacteria accumulating polyphosphate (poly P) uptake carbon substrates and accumulate these as PHA by utilizing energy from breaking down poly P under anaerobic conditions. In the following aerobic condition, accumulated PHA is utilized for energy generation and for the regeneration of poly P. PHA production from waste has been investigated in order to utilize abundant organic compounds in waste water. Since PHA content and PHA productivity that can be obtained are rather low, PHA production from waste product should be considered as a coupled process for reducing the amount of organic waste. PHAs can be rapidly degraded to completion in municipal anaerobic sludge by various microorganisms.

  8. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products.

    PubMed

    Zhong, Yuanhong; Liang, Xiaoliang; Zhong, Yin; Zhu, Jianxi; Zhu, Sanyuan; Yuan, Peng; He, Hongping; Zhang, Jing

    2012-10-01

    Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant, could negatively affect various aspects of mammalian and human physiology, which triggers effective techniques for its removal. In this work, the degradation characteristics of TBBPA in heterogeneous UV/Fenton reaction catalyzed by titanomagnetite (Fe(3-x)Ti(x)O₄) were studied. Batch tests were conducted to evaluate the effects of titanomagnetite dosage, H₂O₂ concentration and titanium content in magnetite on TBBPA degradation. In the system with 0.125 g L⁻¹ of Fe₂.₀₂Ti₀.₉₈O₄ and 10 mmol L⁻¹) of H₂O₂, almost complete degradation of TBBPA (20 mg L⁻¹) was accomplished within 240 min UV irradiation at pH 6.5. The titanium incorporation obviously enhanced the catalytic activity of magnetite. As shown by the XRD and XANES results, titanomagnetite had a spinel structure with Ti⁴⁺ occupying the octahedral sites. On the basis of the degradation products identified by GC-MS, the degradation pathways of TBBPA were proposed. TBBPA possibly underwent the sequential debromination to form TriBBPA, DiBBPA, MonoBBPA and BPA, and β-scission to generate seven brominated compounds. All of these products were finally completely removed from reaction solution. In addition, the reused catalyst Fe₂.₀₂Ti₀.₉₈O₄ still retained the catalytic activity after three cycles, indicating that titanomagnetite had good stability and reusability. These results demonstrated that heterogeneous UV/Fenton reaction catalyzed by titanomagnetite is a promising advanced oxidation technology for the treatment of wastewater containing TBBPA. PMID:22784808

  9. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products.

    PubMed

    Zhong, Yuanhong; Liang, Xiaoliang; Zhong, Yin; Zhu, Jianxi; Zhu, Sanyuan; Yuan, Peng; He, Hongping; Zhang, Jing

    2012-10-01

    Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant, could negatively affect various aspects of mammalian and human physiology, which triggers effective techniques for its removal. In this work, the degradation characteristics of TBBPA in heterogeneous UV/Fenton reaction catalyzed by titanomagnetite (Fe(3-x)Ti(x)O₄) were studied. Batch tests were conducted to evaluate the effects of titanomagnetite dosage, H₂O₂ concentration and titanium content in magnetite on TBBPA degradation. In the system with 0.125 g L⁻¹ of Fe₂.₀₂Ti₀.₉₈O₄ and 10 mmol L⁻¹) of H₂O₂, almost complete degradation of TBBPA (20 mg L⁻¹) was accomplished within 240 min UV irradiation at pH 6.5. The titanium incorporation obviously enhanced the catalytic activity of magnetite. As shown by the XRD and XANES results, titanomagnetite had a spinel structure with Ti⁴⁺ occupying the octahedral sites. On the basis of the degradation products identified by GC-MS, the degradation pathways of TBBPA were proposed. TBBPA possibly underwent the sequential debromination to form TriBBPA, DiBBPA, MonoBBPA and BPA, and β-scission to generate seven brominated compounds. All of these products were finally completely removed from reaction solution. In addition, the reused catalyst Fe₂.₀₂Ti₀.₉₈O₄ still retained the catalytic activity after three cycles, indicating that titanomagnetite had good stability and reusability. These results demonstrated that heterogeneous UV/Fenton reaction catalyzed by titanomagnetite is a promising advanced oxidation technology for the treatment of wastewater containing TBBPA.

  10. Counteraction of antibiotic production and degradation stabilizes microbial communities

    PubMed Central

    Kelsic, Eric D.; Zhao, Jeffrey; Vetsigian, Kalin; Kishony, Roy

    2015-01-01

    Summary A major challenge in theoretical ecology is understanding how natural microbial communities support species diversity1-8, and in particular how antibiotic producing, sensitive and resistant species coexist9-15. While cyclic “rock-paper-scissors” interactions can stabilize communities in spatial environments9-11, coexistence in unstructured environments remains an enigma12,16. Here, using simulations and analytical models, we show that the opposing actions of antibiotic production and degradation enable coexistence even in well-mixed environments. Coexistence depends on 3-way interactions where an antibiotic degrading species attenuates the inhibitory interactions between two other species. These 3-way interactions enable coexistence that is robust to substantial differences in inherent species growth rates and to invasion by “cheating” species that cease producing or degrading antibiotics. At least two antibiotics are required for stability, with greater numbers of antibiotics enabling more complex communities and diverse dynamical behaviors ranging from stable fixed-points to limit cycles and chaos. Together, these results show how multi-species antibiotic interactions can generate ecological stability in both spatial and mixed microbial communities, suggesting strategies for engineering synthetic ecosystems and highlighting the importance of toxin production and degradation for microbial biodiversity. PMID:25992546

  11. Development and application of a validated stability-indicating high-performance liquid chromatographic method using photodiode array detection for simultaneous determination of granisetron, methylparaben, propylparaben, sodium benzoate, and their main degradation products in oral pharmaceutical preparations.

    PubMed

    Hewala, Ismail; El-Fatatry, Hamed; Emam, Ehab; Mabrouk, Mokhtar

    2011-01-01

    A simple, rapid, and sensitive RP-HPLC method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron), sodium benzoate, methylparaben, propylparaben, and 4-hydroxybenzoic acid (the main degradation product of parabens) in granisetron oral drops and solutions. The separation of the compounds was achieved within 8 min on a SymmetryShield RP18 column (100 x 4.6 mm id, 3.5 microm particle size) using the mobile phase acetonitrile--0.05 M KH2PO4 buffered to pH 3 using H3PO4 (3+7, v/v). The photodiode array detector was used to test the purity of the peaks, and the chromatograms were extracted at 240 nm. The method was validated, and validation acceptance criteria were met in all cases. The robust method was successfully applied to the determination of granisetron and preservatives, as well as their degradation products in different batches of granisetron oral drops and solutions. The method proved to be sensitive for determination down to 0.04% (w/w) of granisetron degradation product relative to granisetron and 0.03% (w/w) 4-hydroxybenzoic acid relative to total parabens.

  12. Spectroscopic detection and quantification of heme and heme degradation products.

    PubMed

    Neugebauer, U; März, A; Henkel, T; Schmitt, M; Popp, J

    2012-12-01

    Heme and heme degradation products play critical roles in numerous biological phenomena which until now have only been partially understood. One reason for this is the very low concentrations at which free heme, its complexes and the partly unstable degradation products occur in living cells. Therefore, powerful and specific detection methods are needed. In this contribution, the potential of nondestructive Raman spectroscopy for the detection, quantification and discrimination of heme and heme degradation products is investigated. Resonance Raman spectroscopy using different excitation wavelengths (413, 476, 532, and 752 nm) is employed to estimate the limit of detection for hemin, myoglobin, biliverdin, and bilirubin. Concentrations in the low micromolar range (down to 3 μmol/L) could be reliably detected when utilizing the resonance enhancement effect. Furthermore, a systematic study on the surface-enhanced Raman spectroscopy (SERS) detection of hemin in the presence of other cellular components, such as the highly similar cytochrome c, DNA, and the important antioxidant glutathione, is presented. A microfluidic device was used to reproducibly create a segmented flow of aqueous droplets and oil compartments. Those aqueous droplets acted as model chambers where the analytes have to compete for the colloid. With the help of statistical analysis, it was possible to detect and differentiate the pure substances as well as the binary mixtures and gain insights into their interaction.

  13. Thiram: degradation, applications and analytical methods.

    PubMed

    Sharma, Vaneet Kumar; Aulakh, J S; Malik, Ashok Kumar

    2003-10-01

    In this review a brief introduction to thiram (tetramethylthiuram disulfide; TMTD) pesticide has been given along with other applications. All the important methods available are systematically arranged and are listed under various techniques. Some of these methods have been applied for the determination of thiram in commercial formulations, synthetic mixtures in grains, vegetables and fruits. A comparison of different methods is the salient feature of this review.

  14. Fate of products of degradation processes: consequences for climatic change.

    PubMed

    Slanina, J; ten Brink, H M; Khlystov, A

    1999-03-01

    The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m-2 and an indirect effect of as large as -5 watt m-2. About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions.

  15. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product.

    PubMed

    Kauffman, Kevin J; Do, Clement; Sharma, Sadhana; Gallovic, Matthew D; Bachelder, Eric M; Ainslie, Kristy M

    2012-08-01

    In the field of drug delivery, pH-sensitive polymeric microparticles can be used to release therapeutic payloads slowly in extracellular conditions (pH 7.4) and faster in more acidic areas in vivo, such as sites of inflammation, tumors, or intracellular conditions. Our group currently uses and is further developing the pH-sensitive polymer acetalated dextran (Ac-DEX), which is a biodegradable polymer with highly tunable degradation kinetics. Ac-DEX has displayed enhanced delivery of vaccine and drug components to immune and other cells, making it an extremely desirable polymer for immune applications. Currently, one of the degradation products of Ac-DEX is methanol, which may cause toxicity issues if applied at high concentrations with repeated doses. Therefore, in this manuscript we report the first synthesis and characterization of an Ac-DEX analog which, instead of a methanol degradation product, has a much safer ethanol degradation product. We abbreviate this ethoxy acetal derivatized acetalated dextran polymer as Ace-DEX, with the 'e' to indicate an ethanol degradation product. Like Ac-DEX, Ace-DEX microparticles have tunable degradation rates at pH 5 (intracellular). These rates range from hours to several days and are controlled simply by reaction time. Ace-DEX microparticles also show minimal cytotoxicity compared to commonly used poly(lactic-co-glycolic acid) (PLGA) microparticles when incubated with macrophages. This study aims to enhance the biocompatibility of acetalated dextran-type polymers to allow their use in high volume clinical applications such as multiple dosing and tissue engineering.

  16. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains

    PubMed Central

    Arakaki, R.L.; Monteiro, D.A.; Boscolo, M.; Dasilva, R.; Gomes, E.

    2013-01-01

    Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L−1 of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase. PMID:24688513

  17. Adverse effects of air pollutants on wood products and a method for preventing resulting degradation

    SciTech Connect

    Chao, W.Y.

    1992-01-01

    A study of wood surface in hostile environments was undertaken to elucidate the degradation mechanism and develop a method to protect wood in outdoor applications. In this investigation, wood was exposed to SO[sub 2] and NO[sub 2] in the presence and absence of ultraviolet light for up to 4 weeks. The effect of the simulated acid rain on wood with and without an epoxy film was evaluated by intermittent spraying of the wood with either sulfuric, nitric acid or water and irradiated with and without the xenon light in a weatherometer for up to 8 weeks. The surface properties of degraded wood and protective epoxy films were analyzed. UV light changed the wood color. The samples lost weight and generated water-soluble degradation products after the photoirradiation. Sulfur dioxide lighted the wood color; nitrogen dioxide changed wood color to brown. Wood increased its weight during the exposure of SO[sub 2] and NO[sub 2], however, the presence of such gases triggered photo-induced degradation. Lignin was degraded and carbonyl groups were formed at irradiated wood. Sulfur and nitrogen dioxides reduced the intensity of carbonyl groups due to degradative hydrolysis. Water-soluble products were derived from polysaccharides and lignin, nitric acid, sulfuric acid and its dissociated ions. During the simulated acidic weathering, xenon light changed the wood color. The color change rate of earlywood was greater than latewood. The presence of acids and water facilitated the wood degradation, and eventually caused leaching. The primary photodegradation phenomena of lignin was confirmed by the FTIR and UV analyses of the irradiated samples. Transparent anhydride-cured epoxy films partially protected wood against the acidic degradation and photoirradiation. Epoxy film cracked, yellowed and had O-ring shapes cavities after the exposure. Salol-added film provided the best protection for wood, followed by a film without an UV stabilizer and Tinuvin 770-added film last.

  18. Nattokinase: production and application.

    PubMed

    Dabbagh, Fatemeh; Negahdaripour, Manica; Berenjian, Aydin; Behfar, Abdolazim; Mohammadi, Fatemeh; Zamani, Mozhdeh; Irajie, Cambyz; Ghasemi, Younes

    2014-11-01

    Nattokinase (NK, also known as subtilisin NAT) (EC 3.4.21.62) is one of the most considerable extracellular enzymes produced by Bacillus subtilis natto. The main interest about this enzyme is due to its direct fibrinolytic activity. Being stable enough in the gastrointestinal tract makes this enzyme a useful agent for the oral thrombolytic therapy. Thus, NK is regarded as a valuable dietary supplement or nutraceutical. Proven safety and ease of mass production are other advantages of this enzyme. In addition to these valuable advantages, there are other applications attributed to NK including treatment of hypertension, Alzheimer's disease, and vitreoretinal disorders. This review tends to bring a brief description about this valuable enzyme and summarizes the various biotechnological approaches used in its production, recovery, and purification. Some of the most important applications of NK, as well as its future prospects, are also discussed.

  19. Structure elucidation of degradation products of Z-ligustilide by UPLC-QTOF-MS and NMR spectroscopy.

    PubMed

    Zuo, Ai-Hua; Cheng, Meng-Chun; Zhuo, Rong-Jie; Wang, Li; Xiao, Hong-Bin

    2013-06-01

    Z-Ligustilide, a major phthalide isolated from a widely used traditional Chinese medicine Ligusticum chuanxiong, possesses various pharmacological activities including neuroprotective, anti-inflammatory, antiproliferative and vasorelaxing effects. However, it is unstable and inclined to degrade in natural conditions, which limits its study and application greatly. In this study, degradation behavior of Z-ligustilide and its degradation products stored at room temperature under direct sunlight were investigated and structure elucidated by HPLC-UV, UPLC-QTOF-MS and NMR. Z-ligustilide degradation and total five degradation products were generated and detected. Two degradation products were unequivocally identified as senkyunolide I and senkyunolide H by comparison with reference compounds. Another two degradation products were further isolated by semi-preparative HPLC and structure elucidated as (E)-6, 7-trans-dihydroxyligustilide and (Z)-6, 7-epoxyligustilide by 1H and 13C NMR, respectively. The degradation pathways of Z-ligustilide were finally proposed. Oxidation, hydrolysis and isomerization are the major degradation reactions. PMID:23984528

  20. ANALYTICAL METHOD DEVELOPMENT FOR ALACHLOR ESA AND OTHER ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    In 1998, USEPA published a Drinking Water Contaminant Candidate List (CCL) of 50 chemicals and 10 microorganisms. "Alachlor ESA and other acetanilide herbicide degradation products" is listed on the the 1998 CCL. Acetanilide degradation products are generally more water soluble...

  1. DETERMINATION OF INTERFERING TRIAZINE DEGRADATION PRODUCTS BY GAS CHROMATOGRAPHY-ION TRAP MASS SPECTROMETRY

    EPA Science Inventory

    Deethyl atrazine (DEA), along with other triazine degradation products, has been added to the US Environmental Protection Agency's Drinking Water Contaminant Candidate List (CCL). In its gas chromatographic (GC) analysis, deethyl atrazine, a degradation product of atrazine, can ...

  2. Penetration of hydrogen peroxide and degradation rate of different bleaching products.

    PubMed

    Marson, F C; Gonçalves, R S; Silva, C O; Cintra, L T Â; Pascotto, R C; Santos, P H Dos; Briso, A L F

    2015-01-01

    This study's aim was to evaluate the degradation rate of hydrogen peroxide (H2O2) and to quantify its penetration in tooth structure, considering the residence time of bleaching products on the dental enamel. For this study, bovine teeth were randomly divided according to the bleaching product received: Opalescence Xtra Boost 38%, White Gold Office 35%, Whiteness HP Blue 35%, Whiteness HP Maxx 35%, and Lase Peroxide Sensy 35%. To analyze the degradation of H2O2, the titration of bleaching agents with potassium permanganate was used, while the penetration of H2O2 was measured via spectrophotometric analysis of the acetate buffer solution, collected from the artificial pulp chamber. The analyses were performed immediately as well as 15 minutes, 30 minutes, and 45 minutes after product application. The data of degradation rate of H2O2 were submitted to analysis of variance (ANOVA) and Tukey tests, while ANOVA and Fisher tests were used for the quantification of H2O2, at the 5% level. The results showed that all products significantly reduced the concentration of H2O2 activates at the end of 45 minutes. It was also verified that the penetration of H2O2 was enhanced by increasing the residence time of the product on the tooth surface. It was concluded that the bleaching gels retained substantial concentrations of H2O2 after 45 minutes of application, and penetration of H2O2 in the dental structure is time-dependent. PMID:24828134

  3. Bacteria-based polythene degradation products: GC-MS analysis and toxicity testing.

    PubMed

    Shahnawaz, Mohd; Sangale, Manisha K; Ade, Avinash B

    2016-06-01

    Polythene degradation leads to the production of various by-products depending upon the type of degradation process. The polythene degradation products (PEDP) in the culture supernatant of the two bacteria (Lysinibacillus fusiformis strain VASB14/WL and Bacillus cereus strain VASB1/TS) were analyzed with GC-MS technique. The major by-products in the PEDP in the culture supernatant of L. fusiformis strain VASB14/WL (1,2,3,4 tetra methyl benzene) and B. cereus strain VASB1/TS (1,2,3 trimethyl benzene, 1 ethyl 3,5-dimethyl benzene, 1,4 di methyl 2 ethyl benzene, and dibutyl phthalate) dissolved in diethyl ether were recorded. To assess the environmental applicability of polythene degradation using L. fusiformis strain VASB14/WL and B. cereus strain VASB1/TS at in vitro level. The effect of PEDP produced after 2 months of regular shaking at room temperature on both plants and animal system was studied. No significant decrease in the percent seed germination was recorded with the PEDP of both the bacteria. PEDP produced by L. fusiformis strain VASB14/WL did not report any significant change in germination index (GI) at 10 and 25 %, but least GI (39.66 ± 13.94) was documented at 50 % concentration of PEDP. Highest elongation inhibition rate (53.83 ± 15.71) of Sorghum was also recorded with L. fusiformis and at the same concentration. PMID:26888528

  4. Fungal degradation of coal as a pretreatment for methane production

    USGS Publications Warehouse

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  5. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties. PMID:25748518

  6. Vibrational spectroscopy for online monitoring of extraction solvent degradation products

    SciTech Connect

    Peterson, J.; Robinson, T.; Bryan, S.A.; Levitskaia, T.G.

    2013-07-01

    In our research, we are exploring the potential of online monitoring of the organic solvents for the flowsheets relevant to the used nuclear fuel reprocessing and tributyl phosphate (TBP)- based extraction processes in particular. Utilization of vibrational spectroscopic techniques permits the discrimination of the degradation products from the primary constituents of the loaded extraction solvent. Multivariate analysis of the spectral data facilitates development of the regression models for their quantification in real time and potentially enables online implementation of a monitoring system. Raman and FTIR spectral databases were created and used to develop the regression partial least squares (PLS) chemometric models for the quantitative prediction of HDBP (dibutyl phosphoric acid) degradation product, TBP, and UO{sub 2}{sup 2+} extraction organic product phase. It was demonstrated that both these spectroscopic techniques are suitable for the quantification of the Purex solvent components in the presence of UO{sub 2}(NO{sub 3}){sub 2}. Developed PLS models successfully predicted HDBP and TBP organic concentrations in simulated Purex solutions.

  7. NPAR- products, applications and closure

    SciTech Connect

    Vora, J.P.

    1995-04-01

    Almost a decade ago the Office of Nuclear Regulatory Research (RES) developed and implemented a comprehensive research program (NUREG-1144) widely known as NPAR or Nuclear Plant Aging Research. The NPAR program is a structured research program specifically oriented to understanding significant age-related degradation mechanisms and their long term effects on properties and performance of important components and systems and ways to mitigate detrimental effects of aging. It provided a road map and a phased approach to research that is applicable to any structure, system, or component of interest. This hardware-oriented engineering research program led the industry worldwide and communicated a need to understand and manage age-related degradation effects in selected but important structures and components. At the conclusion (1995) of the NPAR program, 22 electrical and mechanical components, 13 safety-related systems, and 10 special topics will have been studied and results summarized in 160 technical reports. This reference library of information listed and summarized in NUREG-1377, Rev. No. 4 provides a foundation upon which individual programs can be built for the specific needs of a utility, a regulator, or equipment manufacturers. During the life of the NPAR program, it has provided technical bases and support for license renewal, codes and standards, resolution of generic safety issues, information notices, regulatory guides and the standard Review Plan, as well as the Office of Nuclear Reactor Regulation and The NRC Regions. All ongoing NPAR activities will either be completed or terminated by the end of 1995. No new initiative will be undertaken. This paper summarizes NPAR products and accomplishments, application of the research results, and its status and closure.

  8. Fibrinogen Degradation Products and Periodontitis: Deciphering the Connection

    PubMed Central

    2015-01-01

    Introduction Fibrinogen degradation products (e.g. D-dimer) arise from digested fibrin clots and fibrinogen. Elevated concentrations accompany activation of coagulation and fibrinolysis and indicate chronic inflammatory diseases. D-Dimer tests are a quick, noninvasive method to rule out abnormal clotting. Periodontitis strongly affects the haemostatic system and evokes a procoagulant state. Correlation of chronic periodontitis with early indicators of disease (biomarkers) might be useful. Aim The aim of the study was to examine whether the plasma D-dimer concentration reflects the progression of chronic periodontitis and the beneficial effect of periodontal therapy. Materials and Methods Forty randomly selected subjects were divided into four groups, Group I: 10 healthy subjects, Group II: 10 with mild periodontitis, Group III: 10 with moderate periodontitis, Group IV: 10 with severe periodontitis. After thorough dental and periodontal examination, 3 mL of venous blood was collected for measurement of fibrinogen degradation products. Results The patients with moderate and chronic periodontitis exhibited high concentrations of D-dimer (mean value 434.98–535.52 mcg/mL), whereas subjects with mild or no periodontitis exhibited values of 329.78–211.29 mcg/mL. Concentrations of D-dimer were significantly reduced after therapy of all classes of periodontitis. Conclusion Periodontal treatment can reduce amount of D-dimer in the plasma. A higher than normal concentration is observed in chronic periodontitis. PMID:26816985

  9. Determination of rosuvastatin in the presence of its degradation products by a stability-indicating LC method.

    PubMed

    Mehta, Tushar N; Patel, Atul K; Kulkarni, Gopal M; Suubbaiah, Gunta

    2005-01-01

    A forced degradation study was successfully applied for the development of a stability-indicating assay method for determination of rosuvastatin Ca in the presence of its degradation products. The method was developed and optimized by analyzing the forcefully degraded samples. Degradation of the drug was done at various pH values. Moreover, the drug was degraded under oxidative, photolytic, and thermal stress conditions. Mass balance between assay values of degraded samples and generated impurities was found to be satisfactory. The proposed method was able to resolve all of the possible degradation products formed during the stress study. The developed method was successfully applied for an accelerated stability study of the tablet formulation. The major impurities generated during the accelerated stability study of the tablet formulation were matches with those of the forced degradation study. The developed method was validated for determination of rosuvastatin Ca, and the method was found to be equally applicable to study the impurities formed during routine and forced degradation of rosuvastatin Ca.

  10. Magnesium degradation products: effects on tissue and human metabolism.

    PubMed

    Seitz, J-M; Eifler, R; Bach, Fr-W; Maier, H J

    2014-10-01

    Owing to their mechanical properties, metallic materials present a promising solution in the field of resorbable implants. The magnesium metabolism in humans differs depending on its introduction. The natural, oral administration of magnesium via, for example, food, essentially leads to an intracellular enrichment of Mg(2+) . In contrast, introducing magnesium-rich substances or implants into the tissue results in a different decomposition behavior. Here, exposing magnesium to artificial body electrolytes resulted in the formation of the following products: magnesium hydroxide, magnesium oxide, and magnesium chloride, as well as calcium and magnesium apatites. Moreover, it can be assumed that Mg(2+) , OH(-) ions, and gaseous hydrogen are also present and result from the reaction for magnesium in an aqueous environment. With the aid of physiological metabolic processes, the organism succeeds in either excreting the above mentioned products or integrating them into the natural metabolic process. Only a burst release of these products is to be considered a problem. A multitude of general tissue effects and responses from the Mg's degradation products is considered within this review, which is not targeting specific implant classes. Furthermore, common alloying elements of magnesium and their hazardous potential in vivo are taken into account.

  11. Capillary electrophoresis separation of the desamino degradation products of oxytocin.

    PubMed

    Creamer, Jessica S; Krauss, Shannon T; Lunte, Susan M

    2014-02-01

    Oxytocin (OT) is an endogenous and therapeutic hormone necessary for maternal health. It is also the subject of fast growing research in the field of behavioral science. This article describes a rapid CE method using UV detection at 214 nm for the determination of the deamidation products of OT. Deamidation is the most common degradation pathway of peptides and proteins and can lead to reduced therapeutic efficiency of biopharmaceuticals. To achieve a separation of the seven structurally similar desamino peptides from OT, 11 mM sulfobutyl ether β-CD and 10% v/v MeOH were added to a BGE of 50 mM phosphate buffer at pH 6.0. The assay is linear within ≤5-100 μM for all species with a total analysis time of 12 min. The method was then applied to monitor the heat-stress degradation of OT at 70°C, where all seven desamino species were observed over a 96 h period.

  12. Capillary electrophoresis separation of the desamino degradation products of oxytocin

    PubMed Central

    Creamer, Jessica S.; Krauss, Shannon T.; Lunte, Susan M.

    2014-01-01

    Oxytocin is an endogenous and therapeutic hormone necessary for maternal health. It is also the subject of fast growing research in the field of behavioral science. This article describes a rapid capillary electrophoresis method using UV detection at 214 nm for the determination of the deamidation products of oxytocin. Deamidation is the most common degradation pathway of peptides and proteins and can lead to reduced therapeutic efficiency of biopharmaceuticals. To achieve a separation of the seven structurally similar desamino peptides from oxytocin, 11 mM sulfobutyl ether β-cyclodextrin and 10% v/v MeOH were added to a background electrolyte of 50 mM phosphate buffer at pH 6.0. The assay is linear within ≤5-100 μM for all species with a total analysis time of 12 min. The method was then applied to monitor the heat-stress degradation of oxytocin at 70°C, where all seven desamino species were observed over a 96 h period. PMID:24166826

  13. Structural elucidation of two photolytic degradation products of tetrabenazine.

    PubMed

    Bourezg, Zouaoui; Cartiser, Nathalie; Ettouati, Laurent; Guillon, Jean; Lacoudre, Aline; Pinaud, Noël; Le Borgne, Marc; Fessi, Hatem

    2014-03-01

    During solution formulation study of tetrabenazine (TBZ), a dopamine depleting agent, used in chorea associated with Huntington's disease and symptomatic treatment of hyperkinetic movement disorder it was observed a strong discoloration upon storage. We investigated this physico-chemical behavior by implementing forced degradation studies. It was observed yellowing only under Suntest(®) light exposure of TBZ solution. LC-MS (liquid chromatography coupled to mass spectrometer detection) analysis of light exposed TBZ samples allowed us to propose 1,11b-dedihydrotetrabenazine (DTBZ) and 1,3,4,11b-detetrahydrotetrabenazine (TTBZ) as the main TBZ impurities. Synthesis and complete structural determination of DTBZ and TTBZ·HCl by NMR and X-ray crystallography were carried out. They were identical in LC-MS with polar impurities found in light exposed TBZ samples. However, even if these TBZ degradation products are correlated with discoloration of TBZ solution there is no evidence they are directly responsible of it. PMID:24457996

  14. Toxicology of atmospheric degradation products of selected hydrochlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Kaminsky, Laurence S.

    1990-01-01

    Trifluoroacetic acid (TFA) is a liquid with a sharp biting odor. It has been proposed as the product of environmental degradation of the hydrochlorofluorocarbons HCFC-123, HCFC-124, HFC-134a, and HFC-125. Compounds HCFC-141b and HCFC-142b could yield mixed fluorochloroacetic acids, for which there is no available toxicologic data. The release of hydrochlorofluorocarbons into the environment could also give rise to HF, but the additional fluoride burden (1 to 3 ppb) in rainwater is trivial compared to levels in fluoridated drinking water (1 ppm), and would provide an insignificant risk to humans. Thus, in this paper only the toxocologic data on TFA is reviewed to assess the potential risks of environmental exposure.

  15. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  16. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.; Avens, L.

    1999-03-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas.

  17. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  18. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  19. Identifying high production, low production and degraded rangelands in Senegal with normalized difference vegetation index data

    USGS Publications Warehouse

    Tappan, G. Gray; Wood, Lynette; Moore, Donald G.

    1993-01-01

    Seasonal herbaceous vegetation production on Senegal's native rangelands exhibits high spatial and temporal variability. This variability can be monitored using normalized difference vegetation index (NDVI) data computed from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) image data. Although annual fluctuations in rainfall account for some of the variability, numerous long-term production patterns are evident in the AVHRR time-series data. Different n productivity reflect variations in the region's climate, topography, soils, and land use. Areas of overgrazing and intensive cultivation have caused long-term soil and vegetation degradation. Rangelands of high and low productivity, and degraded rangelands were identified using NDVI. Time-series image data from 1987 though 1992 were used to map relative rangeland productivity. The results were compared to detailed resource maps on soils, vegetation and land use. Much of the variation in rangeland productivity correlated well to the known distribution of resources. The study developed an approach that identified a number of areas of degraded soils and low vegetation production.

  20. Specific identification of fibrin polymers, fibrinogen degradation products, and crosslinked fibrin degradation products in plasma and serum with a new sensitive technique.

    PubMed

    Connaghan, D G; Francis, C W; Lane, D A; Marder, V J

    1985-03-01

    A new method is described for identifying low concentrations of circulating derivatives of fibrinogen and fibrin, even when present in heterogeneous mixtures. This technique is applicable to plasma and serum and uses electrophoresis in 2% agarose in the presence of sodium dodecyl sulfate (SDS) followed by immunological identification of separated derivatives, using radiolabeled antifibrinogen antiserum and autoradiography. Unique electrophoretic patterns distinguish plasmic derivatives of crosslinked fibrin from those of fibrinogen and also identify crosslinked fibrin polymers produced by the combined action of thrombin and factor XIII on fibrinogen. The assay is sensitive to a concentration of 0.1 micrograms/mL of fibrinogen in serum or plasma. Fibrin polymers, plasmic degradation products of fibrinogen, and plasmic degradation products of crosslinked fibrin were detected in the plasma or serum of a patient with disseminated intravascular coagulation. Plasmic derivatives of both fibrinogen and crosslinked fibrin appeared in serum in the course of fibrinolytic therapy for pulmonary embolism, whereas during acute myocardial infarction a marked increase in the proportion of fibrin polymers in plasma was found in comparison with normal controls. Thus, the procedure can distinguish between the simultaneous processes of fibrin polymer formation, fibrinogenolysis, and fibrinolysis, and is sufficiently sensitive to detect relevant quantities of derivatives in pathologic conditions.

  1. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms.

    PubMed

    Onneby, Karin; Jonsson, Anders; Stenström, John

    2010-02-01

    Pesticide residues and their transformation products are frequently found in groundwater and surface waters. This study examined whether adding pesticide-degrading microorganisms simultaneously with the pesticide at application could significantly reduce diffuse contamination from pesticide use. Degradation of the phenoxyacetic acid herbicides MCPA (4-chloro-2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) was studied in soil microcosm experiments after simultaneous spraying of herbicide and herbicide-degrading bacteria on an agricultural soil and on a sand with low degradation potential. The latter represented pesticide use on non-agricultural soils poor in microbial activity. Degradation and possible loss of herbicidal effect were also tested in a system with plants and the amounts of bacteria needed to give satisfactory MCPA-degradation rate and the survival of degrading bacteria in formulated MCPA were determined. The results showed >80-99% degradation of 2,4-D and MCPA in soil within 1 day and >99% within 3 days after inoculation with 10(5)-10(7) herbicide-degrading bacteria g(-1) dry weight of soil. Enhanced degradation of MCPA was also obtained in the presence of winter wheat and white mustard without loss of the intended herbicidal effect on white mustard. The survival of an isolated MCPA-degrading Sphingomonas sp. in three realistic concentrations of formulated MCPA was very poor, showing that in practical applications direct contact between the microorganisms and the pesticide formulation must be precluded. The applicability and economic feasibility of the method and the information needed to obtain a useable product for field use are discussed.

  2. MEASURING THE TRANSPORT OF ENDOCRINE DISRUPTING DICARBOXIMIDES AND DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    EPA Science Inventory

    A method for measuring the atmospheric flux of a dicarboximide and its degradation products was investigated. A volatile gas laboratory chamber was modified to measure the flux of semi-volatile fungicides. Pesticide application systems and soil incorporation systems were desig...

  3. Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles.

    PubMed

    Haberl, R L; Decker, P J; Einhäupl, K M

    1991-06-01

    This study demonstrates that the hexapeptide angiotensin II-(3-8) and L-arginine, generated through enzymatic degradation of angiotensin, mediate endothelium-dependent dilation in rabbit brain arterioles. Topical application of angiotensin II (10(-5) M) on the brain surface of anesthetized rabbits caused 21.6 +/- 4.5% (mean +/- SEM) cerebral arteriolar dilation. The cyclooxygenase inhibitor indomethacin did not change this dilation. The natural degradation product of angiotensin II in the brain, angiotensin III, also induced vasodilation at concentrations of 10(-7) to 10(-5) M. The dilation to angiotensin II and angiotensin III was eliminated in the presence of 10(-5) M methylene blue, a known inhibitor of endothelium-dependent vasodilation. Amastatin, an aminopeptidase inhibitor and blocker of enzymatic angiotensin degradation, also inhibited the response to angiotensin II and angiotensin III. The angiotensin fragment angiotensin II-(3-8), which lacks the amino-terminal L-arginine residue of angiotensin III, did not elicit an arteriolar response. When angiotensin II-(3-8) was topically applied subsequent to L-arginine, a 21.2 +/- 2.9% vasodilation was observed. L-Arginine itself induced only moderate vasodilation with a maximum of 4.0 +/- 0.9% at 10(-5) M L-arginine. The dilating response to angiotensin II-(3-8) after L-arginine was inhibited by methylene blue. It was not affected by amastatin. It is concluded that degradation products of angiotensin, rather than angiotensin II itself, induce endothelium-dependent dilation in rabbit brain arterioles without involvement of cyclooxygenase products.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. The role of degradant profiling in active pharmaceutical ingredients and drug products.

    PubMed

    Alsante, Karen M; Ando, Akemi; Brown, Roland; Ensing, Janice; Hatajik, Todd D; Kong, Wei; Tsuda, Yoshiko

    2007-01-10

    Forced degradation studies are used to facilitate the development of analytical methodology, to gain a better understanding of active pharmaceutical ingredient (API) and drug product (DP) stability, and to provide information about degradation pathways and degradation products. In order to fulfill development and regulatory needs, this publication provides a roadmap for when and how to perform studies, helpful tools in designing rugged scientific studies, and guidance on how to record and communicate results. PMID:17187892

  5. Detection of explosives and their degradation products in soil environments.

    PubMed

    Halasz, A; Groom, C; Zhou, E; Paquet, L; Beaulieu, C; Deschamps, S; Corriveau, A; Thiboutot, S; Ampleman, G; Dubois, C; Hawari, Jalal

    2002-07-19

    Polynitro organic explosives [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT)] are typical labile environmental pollutants that can biotransform with soil indigenous microorganisms, photodegrade by sunlight and migrate through subsurface soil to cause groundwater contamination. To be able to determine the type and concentration of explosives and their (bio)transformation products in different soil environments, a comprehensive analytical methodology of sample preparation, separation and detection is thus required. The present paper describes the use of supercritical carbon dioxide (SC-CO2), acetonitrile (MeCN) (US Environmental Protection Agency Method 8330) and solid-phase microextraction (SPME) for the extraction of explosives and their degradation products from various water, soil and plant tissue samples for subsequent analysis by either HPLC-UV, capillary electrophoresis (CE-UV) or GC-MS. Contaminated surface and subsurface soil and groundwater were collected from either a TNT manufacturing facility or an anti-tank firing range. Plant tissue samples were taken fromplants grown in anti-tank firing range soil in a greenhouse experiment. All tested soil and groundwater samples from the former TNT manufacturing plant were found to contain TNT and some of its amino reduced and partially denitrated products. Their concentrations as determined by SPME-GC-MS and LC-UV depended on the location of sampling at the site. In the case of plant tissues, SC-CO2 extraction followed by CE-UV analysis showed only the presence of HMX. The concentrations of HMX (<200 mg/kg) as determined by supercritical fluid extraction (SC-CO2)-CE-UV were comparable to those obtained by MeCN extraction, although the latter technique was found to be more efficient at higher concentrations (>300 mg/kg). Modifiers such as MeCN and water enhanced the SC-CO2 extractability of HMX from plant tissues.

  6. Structural elucidation of degradation products of a benzopyridooxathiazepine under stress conditions using electrospray orbitrap mass spectrometry - study of degradation kinetic.

    PubMed

    Lecoeur, Marie; Vérones, Valérie; Vaccher, Claude; Bonte, Jean-Paul; Lebegue, Nicolas; Goossens, Jean-François

    2012-04-11

    1-(4-Methoxyphenylethyl)-11H-benzo[f]-1,2-dihydro-pyrido[3,2,c][1,2,5]oxathiazepine 5,5 dioxide (BZN) is a cytotoxic derivative with very promising in vitro activity. Regulatory authority for registration of pharmaceuticals for human use requires to evaluate the stability of active compound under various stress conditions. Forced degradation of BZN was investigated under hydrolytic (0.1M NaOH, 0.1M HCl, neutral), oxidative (3.3% H(2)O(2)), photolytic (visible light) and thermal (25 °C, 70 °C) settings. Relevant degradation took place under thermal acidic (0.1M HCl, 70 °C) and oxidative (3.3% H(2)O(2)) conditions. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed the presence of ten degradation products whose structures were characterized by electrospray ionization-orbitrap mass spectrometry. The full scan accurate mass analysis of degradation products was confirmed or refuted using three tools furnished by the MS software: (1) predictive chemical formula and corresponding mass error; (2) double bond equivalent (DBE) calculation; and (3) accurate mass product ion spectra of degradation products. The structural elucidation showed that the tricycle moiety was unstable under thermal acidic and oxidative conditions since four degradation products possess an opened oxathiazepine ring. Then, a simple and fast HPLC-UV method was developed and validated for the determination of the degradation kinetic of BZN under acidic and oxidative conditions. The method was linear in the 5-100 μg mL(-1) concentration range with a good precision (RSD=2.2% and 2.7% for the repeatability and the intermediate precision, respectively) and a bias which never exceeded 1.6%, whatever the quality control level. With regards to the BZN concentration, a first-order degradation process was determined, with t(1/2)=703 h and 1140 h, under oxidative and acidic conditions, respectively.

  7. Impact of repeated chlorotoluron application on its degradation in soil

    NASA Astrophysics Data System (ADS)

    Kocarek, Martin; Kodesova, Radka; Drabek, Ondrej; Kozak, Josef

    2010-05-01

    The effect of repeated chlorotoluron application on its degradation was studied under the field condition in Haplic Chernozem. Chlorotoluron was applied repeatedly (dose of 0.025 mg.m-2) on the top of the soil profile in years 2006, 2008 and 2009. Climatic data as a daily minimal and maximal temperature and daily rainfall were collected during the experiment. Pressure heads at 4 depths (10, 25, 50, 80 cm) were measured using tensiometers. Soil-water contents and temperatures at 5 depths (5, 10, 25, 50, 80 cm) were monitored using the ECH20 EC-TE sensors. The suction cups were used to take soil-water samples at various depths (5, 10, 25, 50 cm) to indentify presence of the herbicide during 140 days period. In addition, soil samples were taken from layers 2 cm thick (to the depth of 50 cm) 35, 50 and 140 day after the herbicide application to measure a total content of the applied herbicide in each layer within the soil profile. Herbicide concentrations in soil extracts and soil water samples were analyzed using the HPLC technology. The total chlorotoluron content within the monitored soil profile was evaluated, and the herbicide field degradation rate and half-life were calculated. Chlorotoluron was not detected below the depth of 32 cm during the entire experimental periods. Chlorotoluron field half-lives estimated in this study were 28.4, 33.4 and 32.3 days in 2006, 2008 and 2009, respectively. The herbicide half-lives were also measured in the laboratory under the controlled soil-water content and temperature conditions: 20.6 days (28 C, 40% soil-water content per mass), 33.16 days (28 C, 20% soil-water content per mass); 27.76 days (20 C, 40% soil-water content per mass); 39.85 days (20 C, 20% soil-water content per mass); 32.27 days (10 C, 40% soil-water content per mass); 45.7 days (10 C, 20% soil-water content per mass). The field herbicide half-lives (obtained under the similar average temperature and soil-water content conditions) corresponded to half

  8. Characterization and application of a novel bioemulsifier in crude oil degradation by Acinetobacter beijerinckii ZRS.

    PubMed

    Zhao, Yi-He; Chen, Li-Yuan; Tian, Zi-Jing; Sun, Yue; Liu, Jin-Biao; Huang, Lei

    2016-02-01

    Bioemulsifiers can be applicated in a variety of areas such as bioremediation and microbial-enhanced oil recovery. The present study was aimed at bioemulsifier production, optimization, stability studies, and applications of the bioemulsifier produced by one of these strains, Acinetobacter beijerinckii ZRS. When Acinetobacter beijerinckii ZRS is cultured with hexadecane as a carbon source, it produces a novel extracellular emulsifying agent that does not cause remarkable reductions in surface tension. In order to enhance bioemulsifier production, response surface methodology was applied to optimize the culture medium. The bioemulsifier was subjected to thin-layer chromatography, Fourier transform infrared spectroscopy (FTIR), gel filtration chromatography, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), and nuclear magnetic resonance (NMR), which allowed for the identification of a novel polymeric bioemulsifier. The bioemulsifier retained its properties at a wide range of pH values, high temperatures and high salinities (up to 5% [w⁄v] Na(+) and 24% Ca(2+)). To deduce the role of this bioemulsifier in a coastal zone oil spill, the propagation of oil-degrading bacteria on oil-coated grains of gravel immersed in seawater was investigated in beach-simulating tanks. The bioemulsifier played a positive role in the degradation of these hydrocarbons and increasing the light crude oil degradation rate of the bacterial strain from 37.5 to 58.3% within 56 days. Therefore, this bioemulsifier shows strong potential to be used for bioremediation of oil pollution in marine environments.

  9. Investigation of sorbic acid volatile degradation products in pharmaceutical formulations using static headspace gas chromatography.

    PubMed

    Yarramraju, Sitaramaraju; Akurathi, Vamsidhar; Wolfs, Kris; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin

    2007-06-28

    An analytical method that allows simultaneous analysis of sorbic acid and its degradation products was developed using static headspace gas chromatography (HS-GC). AT-Aquawax-DA, the capillary column used, showed good selectivity and separation towards sorbic acid and its degradation products. Sorbic acid degradation was investigated in both acidic and aqueous media at room and elevated temperatures. In total 12 sorbic acid degradation products were found, 8 of which could be characterized. The method was investigated for its accuracy towards estimation of degradation products. Using the HS-GC method different batches of pharmaceutical preparations such as cold cream, cetomacrogol cream and vaseline were investigated for sorbic acid degradation products which were estimated by applying the standard addition method. Acetaldehyde was found to be the major degradation product. The other identified degradation products were: acetone; 2-methylfuran; crotonaldehyde; alfa-angelicalactone; 2-acetyl, 5-methylfuran; toluene and 2,5-dimethylfuran. Both mass spectrometeric (MS) and flame ionization detection (FID) were used. The qualitative investigation was done on HS-GC-MS and the quantitative work on HS-GC-FID. PMID:17306494

  10. Production of enzymes by Alteromonas sp. A321 to degrade polysaccharides from Enteromorpha prolifera.

    PubMed

    Li, Yinping; Wang, Jin; Yu, Yuan; Li, Xiang; Jiang, Xiaolu; Hwang, Hueymin; Wang, Peng

    2013-10-15

    Polysaccharides from Enteromorpha prolifera (PE) are becoming increasingly popular due to its bioactivity and abundant source. Screening novel microorganisms which could secrete enzymes to degrade PE efficiently for oligosaccharides production is a promising solution to improve its application. In this study, a marine bacterium that can produce enzymes to degrade PE specifically was selected. It was identified as Alteromonas sp. A321, based on the biochemical properties and 16S rDNA gene sequencing. In order to maximize the activity of degradase for polysaccharides from E. prolifera (DPE), the effects of medium composition and culture conditions were investigated. The highest DPE production was obtained in the medium consisting of K2HPO4 0.15%, PE 0.9%, NaNO3 0.4%, NaCl 1.0% and MgSO4 0.05%. The degradase activity was enhanced from original 0.391 U/ml to 0.744 U/ml. DPE show high efficiency and substrate specificity to PE with 63.53% of reducing sugar production in the 7 h hydrolysis. PMID:23987438

  11. Selective determination of ertapenem in the presence of its degradation product

    NASA Astrophysics Data System (ADS)

    Hassan, Nagiba Y.; Abdel-Moety, Ezzat M.; Elragehy, Nariman A.; Rezk, Mamdouh R.

    2009-06-01

    Stability-indicative determination of ertapenem (ERTM) in the presence of its β-lactam open-ring degradation product, which is also the metabolite, is investigated. The degradation product has been isolated, via acid-degradation, characterized and elucidated. Selective quantification of ERTM, singly in bulk form, pharmaceutical formulations and/or in the presence of its major degradant is demonstrated. The indication of stability has been undertaken under conditions likely to be expected at normal storage conditions. Among the spectrophotometric methods adopted for quantification are first derivative ( 1D), first derivative of ratio spectra ( 1DD) and bivariate analysis.

  12. Separation and characterization of forced degradation products of abacavir sulphate by LC-MS/MS.

    PubMed

    Rao, R Nageswara; Vali, R Mastan; Ramachandra, Bondigalla; Raju, S Satyanarayana

    2011-01-25

    Abacavir sulphate was subjected to forced degradation under the conditions of hydrolysis (acid, alkali and neutral), oxidation, photolysis and thermal stress as prescribed by ICH. Eight degradation products were formed and their separation was accomplished on Waters XTerra C₁₈ (250 mm x 4.6 mm, 5 μm) column using 20 mM ammonium acetate:acetonitrile as a mobile phase in gradient elution mode by LC. The degradation products were characterized by LC-MS/MS and its fragmentation pathways were proposed. No previous reports were found in the literature regarding the degradation behavior of abacavir sulphate.

  13. The role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii

    SciTech Connect

    DeMoll, E.

    1990-10-22

    Research continues on the role of purine degradation in methane biosynthesis and energy production in Methanococcus vannielii. This report summarizes current progress of the research. Topics include: A survey of other methanogens for the purine degradation pathway; isolate and characterize the enzyme and products of formiminoglycine cleavage; ascertain the fate of glycine from the formiminoglycine cleavage; elucidate the route of incorporation of the formyl moiety of formiminoglycine into methane biosynthesis; determine the percent methane and amino acid synthesis from purine degradation; and related studies on xanthine dehydrogenase and pyrimidine degradation of M. Vannielii. (SM)

  14. Degradation process of grease due to SF/sub 6/ gas dissociation products

    SciTech Connect

    Suzuki, T.; Koyama, A.; Tomimuro, S.; Yoshiba, H.

    1982-08-01

    It is known that some insulating materials are degraded due to dissociation products of SF/sub 6/ gas. Many studies related to the degradation of insulating materials have been accomplished. But no studies related to sealing materials, for instance (lubricating) grease and rubber have been made. This paper presents the degradation process of grease as follows. Properties of Lithium grease easily change in SF/sub 6/ gas including dissociation products owing to the degradation of Lithium soap used as thickner of grease. However, in the case of Bentonite grease and Urea grease, any changes of properties are not observed.

  15. The Production of Solid Dosage Forms from Non-Degradable Polymers.

    PubMed

    Major, Ian; Fuenmayor, Evert; McConville, Christopher

    2016-01-01

    Non-degradable polymers have an important function in medicine. Solid dosage forms for longer term implantation require to be constructed from materials that will not degrade or erode over time and also offer the utmost biocompatibility and biostability. This review details the three most important non-degradable polymers for the production of solid dosage forms - silicone elastomer, ethylene vinyl acetate and thermoplastic polyurethane. The hydrophobic, thermoset silicone elastomer is utilised in the production of a broad range of devices, from urinary catheter tubing for the prevention of biofilm to intravaginal rings used to prevent HIV transmission. Ethylene vinyl acetate, a hydrophobic thermoplastic, is the material of choice of two of the world's leading forms of contraception - Nuvaring® and Implanon®. Thermoplastic polyurethane has such a diverse range of building blocks that this one polymer can be hydrophilic or hydrophobic. Yet, in spite of this versatility, it is only now finding utility in commercialised drug delivery systems. Separately then one polymer has a unique ability that differentiates it from the others and can be applied in a specific drug delivery application; but collectively these polymers provide a rich palette of material and drug delivery options to empower formulation scientists in meeting even the most demanding of unmet clinical needs. Therefore, these polymers have had a long history in controlled release, from the very beginning even, and it is pertinent that this review examines briefly this history while also detailing the state-of-the-art academic studies and inventions exploiting these materials. The paper also outlines the different production methods required to manufacture these solid dosage forms as many of the processes are uncommon to the wider pharmaceutical industry.

  16. Study of acaricide stability in honey. Characterization of amitraz degradation products in honey and beeswax.

    PubMed

    Korta, E; Bakkali, A; Berrueta, L A; Gallo, B; Vicente, F; Kilchenmann, V; Bogdanov, S

    2001-12-01

    A study on the possible degradation of amitraz, bromopropylate, coumaphos, chlordimeform, cymiazole, flumethrin, and tau-fluvalinate during the storage of honey was carried out by HPLC. Except amitraz, the other acaricides are stable in this medium for at least 9 months. Degradation studies of amitraz in honey and beeswax were carried out; the degradation products detected in both matrices were 2,4-dimethylphenylformamide (DMF) and N-(2,4-dimethylphenyl)-N'-methylformamidine (DPMF). The reaction rate constants and the half-lives of the amitraz degradation in honey and wax were calculated. Amitraz was nearly completely degraded within 1 day in beeswax and within 10 days in honey. When amitraz-spiked combs are recycled into new beeswax, DMF was found to be the principal degradation product left in pure wax. PMID:11743771

  17. Effect of self-degradation products on crystallization of protease thermolysin

    NASA Astrophysics Data System (ADS)

    Sazaki, Gen; Aoki, Satoshi; Ooshima, Hiroshi; Kato, Jyoji

    1994-05-01

    The effect of self-degradation products of protease thermolysin on the crystallization of thermolysin was investigated. Crystallizations were carried out at the concentration of the self-degradation products of 0 to 0.622 mg/ml, 5 C, and pH 7.0. The initial concentration of thermolysin was constant (1.70 +/- 0.01 mg/ml). Crystallizations were monitored by dynamic light scattering and photomicroscopy. The crystallization of thermolysin in the presence of the self-degradation products proceeded through two successive steps: the formation of primary particles and the formation of large crystals by the aggregation of the primary particles. Low concentration of the self-degradation products (0.212 mg/ml) accelerated the formation of the primary particles and also the formation of the large crystals. High concentration of the self-degradation products, however, inhibited the formation of the primary particles and their aggregation to the large crystals. As the result, a large number of small aggregates which had not grown to the large crystals were observed by photomicroscopy. An analysis of the crystals and the primary particles formed in the presence of the self-degradation products by gel filtration high performance liquid chromatography revealed that the self-degradation products are not incorporated in the primary particles, but are incorporated probably in the openings between the primary particles during the crystallization.

  18. Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products.

    PubMed

    Feng, Mingbao; Wang, Xinghao; Chen, Jing; Qu, Ruijuan; Sui, Yunxia; Cizmas, Leslie; Wang, Zunyao; Sharma, Virender K

    2016-10-15

    The degradation of five fluoroquinolone (FQ) antibiotics (flumequine (FLU), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL) and marbofloxacin (MAR)) by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was examined to demonstrate the potential of this iron-based chemical oxidant to treat antibiotics in water. Experiments were conducted at different molar ratios of Fe(VI) to FQs at pH 7.0. All FQs, except FLU, were degraded within 2 min at [Fe(VI)]:[FQ] ≤ 20.0. Multiple additions of Fe(VI) improved the degradation efficiency, and provided greater degradation than a single addition of Fe(VI). The effects of anions, cations, and humic acid (HA), usually present in source waters and wastewaters, on the removal of FLU were investigated. Anions (Cl(-), SO4(2-), NO3(-), and HCO3(-)) and monovalent cations (Na(+) and K(+)) had no influence on the removal of FLU. However, multivalent cations (Ca(2+), Mg(2+), Cu(2+), and Fe(3+)) in water decreased the efficiency of FLU removal by Fe(VI). An increase in the ionic strength of the solution, and the presence of HA in the water, also decreased the percentage of FLU removed by Fe(VI). Experiments on the removal of selected FQs, present as co-existing antibiotics in pure water, river water, synthetic water and wastewater, were also conducted to demonstrate the practical application of Fe(VI) to remove the antibiotics during water treatment. The seventeen oxidized products (OPs) of FLU were identified using solid phase extraction-liquid chromatography-high-resolution mass spectrometry. The reaction pathways are proposed, and are theoretically confirmed by molecular orbital calculations.

  19. Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products.

    PubMed

    Feng, Mingbao; Wang, Xinghao; Chen, Jing; Qu, Ruijuan; Sui, Yunxia; Cizmas, Leslie; Wang, Zunyao; Sharma, Virender K

    2016-10-15

    The degradation of five fluoroquinolone (FQ) antibiotics (flumequine (FLU), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL) and marbofloxacin (MAR)) by ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) was examined to demonstrate the potential of this iron-based chemical oxidant to treat antibiotics in water. Experiments were conducted at different molar ratios of Fe(VI) to FQs at pH 7.0. All FQs, except FLU, were degraded within 2 min at [Fe(VI)]:[FQ] ≤ 20.0. Multiple additions of Fe(VI) improved the degradation efficiency, and provided greater degradation than a single addition of Fe(VI). The effects of anions, cations, and humic acid (HA), usually present in source waters and wastewaters, on the removal of FLU were investigated. Anions (Cl(-), SO4(2-), NO3(-), and HCO3(-)) and monovalent cations (Na(+) and K(+)) had no influence on the removal of FLU. However, multivalent cations (Ca(2+), Mg(2+), Cu(2+), and Fe(3+)) in water decreased the efficiency of FLU removal by Fe(VI). An increase in the ionic strength of the solution, and the presence of HA in the water, also decreased the percentage of FLU removed by Fe(VI). Experiments on the removal of selected FQs, present as co-existing antibiotics in pure water, river water, synthetic water and wastewater, were also conducted to demonstrate the practical application of Fe(VI) to remove the antibiotics during water treatment. The seventeen oxidized products (OPs) of FLU were identified using solid phase extraction-liquid chromatography-high-resolution mass spectrometry. The reaction pathways are proposed, and are theoretically confirmed by molecular orbital calculations. PMID:27429354

  20. Ozonation of ofloxacin in water: by-products, degradation pathway and ecotoxicity assessment.

    PubMed

    Tay, Kheng Soo; Madehi, Norfazrina

    2015-07-01

    Application of ozonation in water treatment involves complex oxidation pathways that could lead to the formation of various by-products, some of which may be harmful to living organisms. In this work, ozonation by-products of ofloxacin (OFX), a frequently detected pharmaceutical pollutant in the environment, were identified and their ecotoxicity was estimated using the Ecological Structure Activity Relationships (ECOSAR) computer program. In order to examine the role of ozone (O3) and hydroxyl radicals (∙OH) in the degradation of ofloxacin, ozonation was performed at pH2, 7 and 12. In this study, 12 new structures have been proposed for the ozonation by-products detected during the ozonation of ofloxacin. According to the identified ozonation by-products, O3 and ∙OH were found to react with ofloxacin during ozonation. The reaction between ofloxacin and O3 proceeded via hydroxylation and breakdown of heterocyclic ring with unsaturated double-bond. The reaction between ofloxacin and ·OH generated various by-products derived from the breakdown of heterocyclic ring. Ecotoxicity assessment indicated that ozonation of OFX could yield by-products of greater toxicity compared with parent compounds.

  1. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  2. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay. PMID:16703628

  3. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.

  4. Isolation of dimethyl sulfone-degrading microorganisms and application to odorless degradation of dimethyl sulfoxide.

    PubMed

    Kino, Kuniki; Murakami-Nitta, Takako; Oishi, Masashi; Ishiguro, Seiji; Kirimura, Kohtaro

    2004-01-01

    With the objective of developing an odorless biodegradation process for dimethyl sulfoxide (DMSO), Hyphomicrobium sp. WU-OM3 was isolated. During the cultivation of strain WU-OM3 cells with 20 mM dimethyl sulfone (DMSO2) as the sole carbon source, DMSO2 was completely consumed within 48 h and sulfate ion accumulated in the culture broth. Methanesulfonate was also detected as an intermediate of DMSO2 degradation. By combining the DMSO-oxidizing microorganism and strain WU-OM3 cells, 0.64 mM (50 mg/l) DMSO was degraded to sulfate ion with 80% molar conversion ratio. PMID:16233595

  5. The behavior of tetracyclines and their degradation products during swine manure composting.

    PubMed

    Wu, Xiaofeng; Wei, Yuansong; Zheng, Jiaxi; Zhao, Xin; Zhong, Weike

    2011-05-01

    The purposes of this study were to investigate the behavior of three tetracyclines including chlortetracycline (CTC), oxytetracycline (OTC) and tetracycline (TC) and their degradation products in a pilot scale swine manure composting, and also to study the degradation kinetics of CTC, OTC and TC. During the pilot scale composting, CTC, OTC and TC were degraded by 74%, 92% and 70%, respectively. Several degradation products were found like 4-epitetracycline (ETC), 4-epioxytetracycline (EOTC), 4-epichlortetracycline (ECTC), demeclocycline (DMCTC) and anhydrotetracycline (ATC). Both the simple and the adjusted first-order kinetic models successfully fit the degradation process of CTC, OTC and TC during the composting, but the adjusted first-order kinetic model fit much better with the calculated half-lives of 8.2, 1.1 and 10.0 days, respectively.

  6. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    SciTech Connect

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  7. Solid supported in situ derivatization extraction of acidic degradation products of nerve agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Dubey, D K; Pardasani, Deepak

    2014-09-12

    This study deals with the solid supported in situ derivatization extraction of acidic degradation products of nerve agents present in aqueous samples. Target analytes were alkyl alkylphosphonic acids and alkylphosphonic acids, which are important environmental signatures of nerve agents. The method involved tert-butyldimethylchlorosilane mediated in situ silylation of analytes on commercially available diatomaceous solid phase extraction cartridges. Various parameters such as derivatizing reagent, its concentration, reaction time, temperature and eluting solvent were optimized. Recoveries of the analytes were determined by GC-MS which ranged from 60% to 86%. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes were achieved down to 78 and 213ngmL(-1) respectively, in selected ion monitoring mode. The successful applicability of method was also demonstrated on samples of biological origin such as plasma and to the samples received in 34th official proficiency test conducted by the Organization for Prohibition the of Chemical Weapons. PMID:25103280

  8. The production and testing of staphylococci with clumping factor activity for use in the assay of fibrinogen degradation products

    PubMed Central

    Richardson, G.

    1973-01-01

    A method for the large-scale production of a staphylococcal preparation for use in the assay of fibrinogen degradation products is described. The material is assayed against a fibrinogen standard and is shown to be stable over long periods and of high sensitivity. The possibility of production on an occasional basis in a routine laboratory is discussed. PMID:4577031

  9. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.

    PubMed

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C; Tuerk, Jochen

    2016-08-01

    Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP.

  10. Maleimides in recent sediments - Using chlorophyll degradation products for palaeoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Naeher, Sebastian; Schaeffer, Philippe; Adam, Pierre; Schubert, Carsten J.

    2013-10-01

    Maleimides (transformation products of chlorophylls and bacteriochlorophylls) were studied in recent sediments from the Swiss lake Rotsee and the Romanian Black Sea Shelf to investigate chlorophyll degradation, the role of oxygen in maleimide formation, and to identify their sources. Naturally occurring maleimides (i.e. "free" maleimides) and maleimides obtained after chromic acid oxidation of sediment extracts (i.e. "bound" maleimides) were analysed. 2-Methyl-maleimide (Me,H maleimide), 2,3-dimethyl-maleimide (Me,Me maleimide), 2-methyl-3-vinyl-maleimide (Me,vinyl maleimide), 2-methyl-3-ethyl-maleimide (Me,Et maleimide) and traces of 2-methyl-3-iso-butyl-maleimide (Me,i-Bu maleimide) occurred naturally in the sediment with a large predominance of the Me,Et homologue. Tetrapyrrolic pigments related to chlorophylls were the main source of maleimides, although variable contributions of other sources such as cytochromes and/or phycobilins cannot be completely ruled out. The predominant Me,Et maleimide and Me,vinyl maleimide most likely originate mainly from chlorophyll a related pigments. The same holds for Me,H maleimide, which might be formed following degradation of ring E from the tetrapyrrolic nucleus. Alternatively, Me,H maleimide and Me,Me maleimides might be formed by a recently discovered transformation pathway involving the oxidation of vinylic chlorophyll substituents and the formation of an aldehyde intermediate. 2-Methyl-3-n-propyl-maleimide (Me,n-Pr maleimide) and Me,i-Bu maleimide arising from bacteriochlorophyll related pigments traced the presence of phototrophic sulfur bacteria (Chlorobi), indicating photic zone euxinic and anoxic conditions in Rotsee during the last 150 years and throughout the Black Sea history, including the limnic phase of the Black Sea (Unit 3). Some other minor maleimides with specific alkylation pattern also originate from bacteriochlorophylls, while the source of others could not be identified. Free maleimides were mainly

  11. Chemical-radiation degradation of natural oligoamino-polysaccharides for agricultural application

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Migdal, W.; Swietoslawski, J.; Swietoslawski, J.; Jakubaszek, U.; Tarnowski, T.

    2007-11-01

    The main objective of the research was to elaborate the method of degradation of natural aminopolysaccharides to obtain a product applicable as biospecimen in protection and stimulation of the plants growth. Depolymerization of chitosan can be carried out by radiation or chemical degradation combined with irradiation method. The efficiency of these methods was verified by viscometric analysis. The chemical-radiation method was much more appropriate from economical point of view. By application of this method it was possible to obtain product with lower crystalline phase content than initial one, what was proved by X-ray diffraction studies. Finally preliminary agricultural tests on spring rape seeds were performed. The results show that the biggest growth was observed for chitosan (molecular weight 47,000 Da) in concentration of 0.1 g/kg of seeds. The higher concentration did not affect plant's growth. The average growth over-ground plant parts was about 16-22%, diameter of roots was about 11-13%, and mass of roots was about 51-65% higher in comparison to the control.

  12. Mechanism driven structural elucidation of forced degradation products from hydrocortisone in solution.

    PubMed

    Zhang, Fa; Zhou, Jay; Shi, Yiqun; Tavlarakis, Panagiotis; Karaisz, Kenneth

    2016-09-01

    Hydrocortisone degradation products 1, 2, 3, and 4 along with hemiacetal derivatives 5, 6, 7, and 8 were observed through stressed hydrocortisone in solution. Their structures were identified based on HPLC-UV, HPLC-MS, and HPLC-HRMS (high resolution/high accuracy mass spectrometry) analyses as well as reaction mechanistic investigation and synthesis for structural confirmation. 1 and 2 are a pair of E/Z isomers and they were generated through acid catalyzed tautomerization/dehydration of hydrocortisone. Incorporation of water to 1 and 2 resulted in the formation of 3. We also discovered new degradation product 4 which was converted from 3 by oxidation. The degradation products were synthesized by stressing hydrocortisone under the optimized conditions and their structures were characterized by NMR ((1)H/(13)C, COSY, HMBC, HSQC, NOESY) and HRMS analyses. The degradation pathway of hydrocortisone is postulated.

  13. Mechanism driven structural elucidation of forced degradation products from hydrocortisone in solution.

    PubMed

    Zhang, Fa; Zhou, Jay; Shi, Yiqun; Tavlarakis, Panagiotis; Karaisz, Kenneth

    2016-09-01

    Hydrocortisone degradation products 1, 2, 3, and 4 along with hemiacetal derivatives 5, 6, 7, and 8 were observed through stressed hydrocortisone in solution. Their structures were identified based on HPLC-UV, HPLC-MS, and HPLC-HRMS (high resolution/high accuracy mass spectrometry) analyses as well as reaction mechanistic investigation and synthesis for structural confirmation. 1 and 2 are a pair of E/Z isomers and they were generated through acid catalyzed tautomerization/dehydration of hydrocortisone. Incorporation of water to 1 and 2 resulted in the formation of 3. We also discovered new degradation product 4 which was converted from 3 by oxidation. The degradation products were synthesized by stressing hydrocortisone under the optimized conditions and their structures were characterized by NMR ((1)H/(13)C, COSY, HMBC, HSQC, NOESY) and HRMS analyses. The degradation pathway of hydrocortisone is postulated. PMID:27328360

  14. Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle.

    PubMed

    Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2012-01-01

    The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer. PMID:22297224

  15. Genetic characterization of caffeine degradation by bacteria and its potential applications

    PubMed Central

    Summers, Ryan M; Mohanty, Sujit K; Gopishetty, Sridhar; Subramanian, Mani

    2015-01-01

    The ability of bacteria to grow on caffeine as sole carbon and nitrogen source has been known for over 40 years. Extensive research into this subject has revealed two distinct pathways, N-demethylation and C-8 oxidation, for bacterial caffeine degradation. However, the enzymological and genetic basis for bacterial caffeine degradation has only recently been discovered. This review article discusses the recent discoveries of the genes responsible for both N-demethylation and C-8 oxidation. All of the genes for the N-demethylation pathway, encoding enzymes in the Rieske oxygenase family, reside on 13.2-kb genomic DNA fragment found in Pseudomonas putida CBB5. A nearly identical DNA fragment, with homologous genes in similar orientation, is found in Pseudomonas sp. CES. Similarly, genes for C-8 oxidation of caffeine have been located on a 25.2-kb genomic DNA fragment of Pseudomonas sp. CBB1. The C-8 oxidation genes encode enzymes similar to those found in the uric acid metabolic pathway of Klebsiella pneumoniae. Various biotechnological applications of these genes responsible for bacterial caffeine degradation, including bio-decaffeination, remediation of caffeine-contaminated environments, production of chemical and fuels and development of diagnostic tests have also been demonstrated. PMID:25678373

  16. Genetic characterization of caffeine degradation by bacteria and its potential applications.

    PubMed

    Summers, Ryan M; Mohanty, Sujit K; Gopishetty, Sridhar; Subramanian, Mani

    2015-05-01

    The ability of bacteria to grow on caffeine as sole carbon and nitrogen source has been known for over 40 years. Extensive research into this subject has revealed two distinct pathways, N-demethylation and C-8 oxidation, for bacterial caffeine degradation. However, the enzymological and genetic basis for bacterial caffeine degradation has only recently been discovered. This review article discusses the recent discoveries of the genes responsible for both N-demethylation and C-8 oxidation. All of the genes for the N-demethylation pathway, encoding enzymes in the Rieske oxygenase family, reside on 13.2-kb genomic DNA fragment found in Pseudomonas putida CBB5. A nearly identical DNA fragment, with homologous genes in similar orientation, is found in Pseudomonas sp. CES. Similarly, genes for C-8 oxidation of caffeine have been located on a 25.2-kb genomic DNA fragment of Pseudomonas sp. CBB1. The C-8 oxidation genes encode enzymes similar to those found in the uric acid metabolic pathway of Klebsiella pneumoniae. Various biotechnological applications of these genes responsible for bacterial caffeine degradation, including bio-decaffeination, remediation of caffeine-contaminated environments, production of chemical and fuels and development of diagnostic tests have also been demonstrated.

  17. Genetic characterization of caffeine degradation by bacteria and its potential applications.

    PubMed

    Summers, Ryan M; Mohanty, Sujit K; Gopishetty, Sridhar; Subramanian, Mani

    2015-05-01

    The ability of bacteria to grow on caffeine as sole carbon and nitrogen source has been known for over 40 years. Extensive research into this subject has revealed two distinct pathways, N-demethylation and C-8 oxidation, for bacterial caffeine degradation. However, the enzymological and genetic basis for bacterial caffeine degradation has only recently been discovered. This review article discusses the recent discoveries of the genes responsible for both N-demethylation and C-8 oxidation. All of the genes for the N-demethylation pathway, encoding enzymes in the Rieske oxygenase family, reside on 13.2-kb genomic DNA fragment found in Pseudomonas putida CBB5. A nearly identical DNA fragment, with homologous genes in similar orientation, is found in Pseudomonas sp. CES. Similarly, genes for C-8 oxidation of caffeine have been located on a 25.2-kb genomic DNA fragment of Pseudomonas sp. CBB1. The C-8 oxidation genes encode enzymes similar to those found in the uric acid metabolic pathway of Klebsiella pneumoniae. Various biotechnological applications of these genes responsible for bacterial caffeine degradation, including bio-decaffeination, remediation of caffeine-contaminated environments, production of chemical and fuels and development of diagnostic tests have also been demonstrated. PMID:25678373

  18. Quantifying the impact of land degradation on crop production: the case of Senegal

    NASA Astrophysics Data System (ADS)

    Sonneveld, B. G. J. S.; Keyzer, M. A.; Ndiaye, D.

    2016-01-01

    Land degradation has been a persistent problem in Senegal for more than a century and by now has become a serious impediment to long-term development. In this paper, we quantify the impact of land degradation on crop yields using the results of a nationwide land degradation assessment. For this, the study needs to address two issues. First, the land degradation assessment comprises qualitative expert judgements that have to be converted into more objective, quantitative terms. We propose a land degradation index and assess its plausibility. Second, observational data on soils, land use, and rainfall do not provide sufficient information to isolate the impact of land degradation. We, therefore, design a pseudo-experiment that for sites with otherwise similar circumstances compares the yield of a site with and one without land degradation. This pairing exercise is conducted under a gradual refining of the classification of circumstances, until a more or less stable response to land degradation is obtained. In this way, we hope to have controlled sufficiently for confounding variables that will bias the estimation of the impact of land degradation on crop yields. A small number of shared characteristics reveal tendencies of "severe" land degradation levels being associated with declining yields as compared to similar sites with "low" degradation levels. However, as we zoom in at more detail some exceptions come to the fore, in particular in areas without fertilizer application. Yet, our overall conclusion is that yield reduction is associated with higher levels of land degradation, irrespective of whether fertilizer is being applied or not.

  19. MONITORING AND MODELLING OF RADIOLYTIC DEGRADATION PRODUCTS OF TBP/n-DODECANE

    SciTech Connect

    Peterson, James M.; Levitskaia, Tatiana G.; Bryan, Samuel A.

    2011-10-03

    The Plutonium Uranium Extraction (PUREX) solvent system was developed for the separation of plutonium and uranium from irradiated fuel. Since the implementation of this process, the degradation chemistry associated with the irradiated solvent system, tributyl phosphate (TBP)/n-dodecane/nitric acid has been extensively studied as the integrity of the organic solvent is paramount for reproducible performance of the separation flowsheet (extraction/scrub/strip) during multiple cycles. In PUREX-like processes, the extent of decomposition is dependent not only upon the solvent, but also upon the presence of constituents, such as nitric acid, that interact with TBP and increase its susceptibility to radiolytic degradation. The build-up of degradation products in the organic phase alters process flowsheet performance via modification of the metal ions speciation, loss of solvent components, and enhanced water transport into the organic phase. On-line identification and quantification of the solvent degradation products would provide the necessary information for more detailed process control as well as providing the basis for timing solvent washing or replacement. In our research, we are exploring the potential of on-line monitoring for the PUREX solvent radiolytic degradation products. To identify degradation products, TBP/n-dodecane solvent, contacted with aqueous nitric acid solutions of variable concentrations are subjected to various gamma radiation external doses then analyzed by electro-spray ionization mass spectrometry (ESMS). In addition, vibrational spectroscopy is utilized to monitor and quantify major degradation products including dibutyl phosphoric acid (HDBP) and monobutyl phosphoric acid (H2MBP) in TBP/n-dodecane solvent. The compiled spectroscopic databases serve for developing interpretive and predictive chemometric models for the quantification of the PUREX solvent degradation products.

  20. [Analysis of characteristics and products of chlorobenzene degradation with dielectric barrier discharge].

    PubMed

    Jiang, Li-Ying; Cao, Shu-Ling; Zhu, Run-Ye; Chen, Jian-Meng; Su, Fei

    2015-03-01

    For non-biodegradable volatile organic compounds (VOCs) with low water solubility, the tradition biological method can not achieve a satisfactory removal efficiency, so development of high efficiency pre-treatment technology is a hot issue of research. In this experiment, using poor biodegradable chlorobenzene as the target pollutant and dielectric barrier discharge (DBD) non-thermal plasma as the pretreatment technology for biotrickling filter (BTF) , the effect of DBD on the degradation of chlorobenzene was studied by adjusting the technical parameters of DBD. The effects of the inlet concentration, residence time, humidity and peak voltage on decomposition efficiency were investigated and the decomposition products of chlorobenzene were analyzed. Experimental results showed that DBD could effectively remove waste gaseous chlorobenzene, the removal rate of chlorobenzene increased with the increasing peak voltage. When the peak voltage was ≥ 12kV, less effect of residence time on the degradation of chlorobenzene was found. The optimal humidity range of degradation chlorobenzene was 65% - 75%. Through the analysis of degradation products, the species and concentrations of degradation products increased with the increase of discharge voltage. The products were mainly consisted of organic acids and chlorinated hydrocarbons. The water solubility of degradation products was preferable. Furthermore, with the increase of discharge voltage, the biodegradability of degradation products became higher and higher and the biological toxicity was reduced. It had a promoting effect on the degradation of chlorobenzene when the voltage reached 20 kV. Meanwhile, the O3 concentration increased with the increasing discharge voltage and also enhanced with the rising humidity under the same voltage.

  1. Thermal degradation products formed from carotenoids during a heat-induced degradation process of paprika oleoresins (Capsicum annuum L.).

    PubMed

    Pérez-Gálvez, Antonio; Rios, José J; Mínguez-Mosquera, María Isabel

    2005-06-15

    The high-temperature treatment of paprika oleoresins (Capsicum annuum L.) modified the carotenoid profile, yielding several degradation products, which were analyzed by HPLC-APCI-MS. From the initial MS data, compounds were grouped in two sets. Set 1 grouped compounds with m/z 495, and set 2 included compounds with m/z 479, in both cases for the protonated molecular mass. Two compounds of the first set were tentatively identified as 9,10,11,12,13,14,19,20-octanor-capsorubin (compound II) and 9,10,11,12,13,14,19,20-octanor-5,6-epoxide-capsanthin (compound IV), after isolation by semipreparative HPLC and analysis by EI-MS. Compounds VII, VIII, and IX from set 2 were assigned as 9,10,11,12,13,14,19,20-octanor-capsanthin and isomers, respectively. As these compounds were the major products formed in the thermal process, it was possible to apply derivatization techniques (hydrogenation and silylation) to analyze them by EI-MS, before and after chemical derivatization. Taking into account structures of the degradation products, the cyclization of polyolefins could be considered as the general reaction pathway in thermally induced reactions, yielding in the present study xylene as byproduct and the corresponding nor-carotenoids.

  2. Identification by CI-mass spectrometry of an unexpected benzodiazepine degradation product

    NASA Astrophysics Data System (ADS)

    Buret, D.; Breton, D.; Clair, P.; Lafosse, M.

    2006-01-01

    The French Military Health Service (SSA) has developed an innovative drug product, as a treatment against neurotoxic organophosphate poisoning (NOP). It contains three drug substances: an anticholinergic, an anticonvulsant and a cholinesterase reactivator. Testing stability study, in normal conditions, over 18 months, for this speciality, has given unexpected results. Indeed, one of the drug substances, avizafone (pro-drug of diazepam), breaks down partially into a compound which migrates into the plastic container where this degradation product is demethylated after absorption. Mass spectrometry with negative chemical ionisation (negative CI-MS) was used, to monitor decomposition of the drug substance. This method first showed migration of the degradation product and has been used to monitor its evolution during the stability testing study. The demethylation seems to be due to an additive product present in the plastic. The degradation products remain trapped in the container holding the pharmaceutical formulation.

  3. FTIR study of degradation products of aliphatic polyesters carbon fibres composites

    NASA Astrophysics Data System (ADS)

    Pamuła, Elżbieta; Błażewicz, Marta; Paluszkiewicz, Czesława; Dobrzyński, Piotr

    2001-09-01

    Biodegradable polymer composites based on polylactides and polyglycolides constitute a group of materials characterised by good biocompatibility. They are considered in tissue engineering as scaffolds for cells proliferation and controlled tissue regeneration. Two types of biodegradable polymers possessing different chemical structure, molecular weights and crystallinity degrees and two composite materials made up of them and carbon fibres were analysed in this study. The samples were incubated in aqueous media for 8 weeks and analysed by means of Fourier transform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR). Infrared spectroscopy enabled identification of degradation products and estimation of the influence of carbon fibres on hydrolytic degradation of analysed polymers. Analysis of the infrared spectra showed that hydrolytic degradation process depends on chemical structure, molecular weight and crystallinity of polymers. Catalytic effect of carbon fibres at the initial stage of polymer degradation was observed. Further degradation is dependent on the properties of polymer.

  4. Product analysis for polyethylene degradation by radiation and thermal ageing

    NASA Astrophysics Data System (ADS)

    Sugimoto, Masaki; Shimada, Akihiko; Kudoh, Hisaaki; Tamura, Kiyotoshi; Seguchi, Tadao

    2013-01-01

    The oxidation products in crosslinked polyethylene for cable insulation formed during thermal and radiation ageing were analyzed by FTIR-ATR. The products were composed of carboxylic acid, carboxylic ester, and carboxylic anhydride for all ageing conditions. The relative yields of carboxylic ester and carboxylic anhydride increased with an increase of temperature for radiation and thermal ageing. The carboxylic acid was the primary oxidation product and the ester and anhydride were secondary products formed by the thermally induced reactions of the carboxylic acids. The carboxylic acid could be produced by chain scission at any temperature followed by the oxidation of the free radicals formed in the polyethylene. The results of the analysis led to formulation of a new oxidation mechanism which was different from the chain reactions via peroxy radicals and peroxides.

  5. 76 FR 38160 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... AGENCY Pesticide Products; Registration Applications AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA has received applications to register pesticide products containing an active ingredient not included in any previously registered pesticide products. Pursuant to...

  6. 75 FR 80490 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-22

    ... AGENCY Pesticide Products; Registration Applications AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA has received applications to register pesticide products containing active ingredients not included in any previously registered pesticide products. Pursuant to the provisions...

  7. 75 FR 24694 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... AGENCY Pesticide Products; Registration Applications AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA has received applications to register pesticide products containing an active ingredient not included in any previously registered pesticide product. Pursuant to the...

  8. 75 FR 19388 - Pesticide Product; Registration Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... AGENCY Pesticide Product; Registration Application AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA has received an application to register a pesticide product containing an active ingredient not included in any previously registered pesticide products. Pursuant to the provisions...

  9. LC-MS/MS characterization of forced degradation products of zofenopril.

    PubMed

    Ramesh, Thippani; Nageswara Rao, Pothuraju; Nageswara Rao, Ramisetti

    2014-01-01

    A rapid, specific and reliable isocratic LC-MS/MS method has been developed and validated for the identification and characterization of stressed degradation products of Zofenopril. Zofenopril, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and base hydrolysis stress conditions. However, it was stable to thermal, acid, neutral and photolysis stress conditions. A total of 6 degradation products were observed and the chromatographic separation of the drug and its degradation products were achieved on Phenomenex (Luna) C18 (250mm×4.6mm, i.d., 5μm) column using 20mM ammonium acetate: acetonitrile (50:50, v/v) as a mobile phase. The degradation products were characterized by LC-MS/MS and its fragmentation pathways were proposed. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision. No previous reports were found in the literature regarding the degradation behavior of zofenopril. PMID:24211724

  10. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength.

  11. Forced degradation studies of rapamycin: identification of autoxidation products.

    PubMed

    Oyler, Alan R; Segmuller, Brigitte E; Sun, Yanqiu; Polshyna, Ann; Dunphy, Richard; Armstrong, Barbara L; Achord, Patrick; Maryanoff, Cynthia A; Alquier, Lori; Il'ichev, Yuri V

    2012-02-01

    The immunosuppressant drug rapamycin, also known as Sirolimus, underwent autoxidation under mild conditions to give numerous monomeric and oligomeric compounds, which were generally characterized by size-exclusion chromatography and NP-HPLC with UV and MS detection. Some of the more predominant products, epoxides and ketones, were isolated and identified. Two epoxides and 10S-epimer of rapamycin were described for the first time. Observed rapamycin isomers were also addressed. Computational chemistry was used to provide mechanistic insights. Formation of the majority of the rapamycin products could be rationalized with free radical-mediated autoxidation reactions involving alkene and alcohol sites. Methodological aspects of oxidative stress testing are discussed. PMID:22088479

  12. Acid-catalyzed hydrolysis of BMS-582664: degradation product identification and mechanism elucidation.

    PubMed

    Zhao, Fang; Derbin, George; Miller, Scott; Badawy, Sherif; Hussain, Munir

    2012-09-01

    BMS-582664 is an investigational drug intended for cancer treatment through oral administration. The preformulation studies revealed two unexpected degradation products under acidic conditions by reversed-phase high-performance liquid chromatography with ultraviolet detection. Additional liquid chromatography-mass spectrometry results suggested that these were cleavage (hydrolysis) products of a diaryl ether. To further understand the degradation mechanism, the reaction was carried out in (18) O-labeled water. The (18) O was found to be incorporated in only one of the two hydrolysis products. The results suggest that the corresponding α carbon in the heterocycle was unusually eletrophilic in acidic conditions probably because of the protonation of the neighboring nitrogen. This led to the selective attack by water and the consequent hydrolysis products. The study provides a new example of hydrolytic degradation of pharmaceutical compounds, and the reaction center is an aromatic heterocyclic carbon with an aryloxy substitution. PMID:22189636

  13. [Intensification of microbial degradation of crude oil and oil products in the presence of perfluorodecalin].

    PubMed

    Bakulin, M K; Zakharov, V Iu; Chebotarev, E V

    2004-01-01

    The possibility of using perfluorinated organic compounds for growing microorganisms and degrading xenobiotics has been demonstrated for the first time with perfluorodecalin (PFD), a gas-transporting component of the blood substitute Perftoran. In particular, this is promising for intensifying microbial degradation of oil and oil products and production of biodegrader biomass in synthetic mineral media. Addition of PFD to a mineral medium with crude oil and masut increased 4.5-10.2 times maximum concentrations and growth rates of all bacterial strains under study (Pseudomonas, Rhodococcus, and Bacillus genera). The degree of oil product consumption was increased 8.7-12.7 times.

  14. Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Qi, Feng; Zhou, Junhu; Cen, Kefa

    2015-06-01

    The competitive reactions of reducing sugar production and degradation in the subcritical water hydrolysis of rice straw were investigated to optimise reducing sugar yield. The optimised conditions (280°C, 20 MPa, rice straw concentration of 5 wt.% and agitation speed of 200 rpm) resulted in a reducing sugar yield of 0.346 g/g rice straw because of the enhanced reducing sugar production and decreased sugar degradation. The sugar yield increased when the temperature increased from 250°C to 280°C, but it decreased when the temperature further increased to 300°C because of the degradation of monosaccharides (e.g. glucose and xylose) into by-products (e.g. 2-methyltetrahydrofuran and acetic acid). A first-order reaction model was developed to elucidate the competitive reaction kinetics of sugar production and degradation at various temperatures. The highest reducing sugar yield based on the model was achieved at 280°C with the highest production and lowest degradation rates.

  15. Remediation/Restoration of Degraded Soil to Improve Productivity In The Central Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quality and productivity of some farmlands in the central Great Plains Region (CGPR) have been lost through wind and water erosion induced by tillage and poor soil management. Productivity of degraded/eroded soils can be restored using organic amendments such as manure and improved crop and soil...

  16. Degradation products of cyanidin glycosides from tart cherries and their bioactivities.

    PubMed

    Seeram, N P; Bourquin, L D; Nair, M G

    2001-10-01

    The bioactive anthocyanins present in tart cherries, Prunus cerasus L. (Rosaceae) cv. Balaton, are cyanidin 3-glucosylrutinoside (1), cyanidin 3-rutinoside (2), and cyanidin 3-glucoside (3). Cyanidin (4) is the major anthocyanidin in tart cherries. In our continued evaluation of the in vivo and in vitro efficacy of these anthocyanins to prevent inflammation and colon cancer, we have added these compounds to McCoy's 5A medium in an effort to identify their degradation products during in vitro cell culture studies. This resulted in the isolation and characterization of protocatechuic acid (5), the predominant degradation product. In addition, 2,4-dihydroxybenzoic acid (6) and 2,4,6-trihydroxybenzoic acid (7) were identified as degradation products. However, these degradation products were not quantified. Compounds 5-7 were also identified as degradation products when anthocyanins were subjected to varying pH and thermal conditions. In cyclooxygenase (COX)-I and -II enzyme inhibitory assays, compounds 5-7 did not show significant activities when compared to the NSAIDs Naproxen, Celebrex, and Vioxx, or Ibuprofen, at 50 microM concentrations. However, at a test concentration of 50 microM, the antioxidant activity of protocatechuic acid (5) was comparable to those of the commercial antioxidants tert-butylhydroquinone (TBHQ), butylated hydroxytoluene (BHT), and butylated hydroxyanisole (BHA), and superior to that of vitamin E at 10 microM concentrations. PMID:11600045

  17. The impact of charcoal production on forest degradation: a case study in Tete, Mozambique

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Silva, J. A.; Machoco, R.; Meque, C. H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z. A.; Baule, S. H.; Tucker, C. J.

    2016-09-01

    Charcoal production for urban energy consumption is a main driver of forest degradation in sub Saharan Africa. Urban growth projections for the continent suggest that the relevance of this process will increase in the coming decades. Forest degradation associated to charcoal production is difficult to monitor and commonly overlooked and underrepresented in forest cover change and carbon emission estimates. We use a multitemporal dataset of very high-resolution remote sensing images to map kiln locations in a representative study area of tropical woodlands in central Mozambique. The resulting maps provided a characterization of the spatial extent and temporal dynamics of charcoal production. Using an indirect approach we combine kiln maps and field information on charcoal making to describe the magnitude and intensity of forest degradation linked to charcoal production, including aboveground biomass and carbon emissions. Our findings reveal that forest degradation associated to charcoal production in the study area is largely independent from deforestation driven by agricultural expansion and that its impact on forest cover change is in the same order of magnitude as deforestation. Our work illustrates the feasibility of using estimates of urban charcoal consumption to establish a link between urban energy demands and forest degradation. This kind of approach has potential to reduce uncertainties in forest cover change and carbon emission assessments in sub-Saharan Africa.

  18. New microbiological assay for determination of caspofungin in the presence of its degradation products and its measurement uncertainty.

    PubMed

    Ghisleni, Daniela Dal Molim; Okamoto, Rogério Takao; De Oliveira, Amaral Cleide Maria; Lourenço, Felipe Rebello; De Jesus, Andreoli Pinto Terezinha

    2014-01-01

    Caspofungin is an echinocandin antifungal used in the treatment of invasive fungal infections. Several methods have been reported for the quantitative analysis of echinocandins; however, there is no microbiological assay for determination of caspofungin potency in the presence of its degradation products. This study aimed to develop and validate a microbiological method for quantitative analysis of caspofungin in lyophilized powder, evaluate the stability, and determinate the degradation kinetics of the drug when the finished product is submitted to heat stress. A procedure was established to estimate measurement uncertainty for routine analysis. The validation was performed as recommended in the current official guidelines. The agar diffusion method is based on the inhibitory effect of caspofungin on Candida albicans. Results showed selectivity, linearity, precision, and accuracy of the method. Statistical analysis demonstrated that method is linear (in the range 2.5 to 16 microg/mL, y= 15.73 + 6.4x, r2 = 0.9965), precise (intermediate precision: 2.54%), and accurate (recovery range: 95.01-102.46%). The proposed method allowed evaluation of the thermal stability of the drug at 80 degreesC for 120 min and determination of first order degradation kinetics. The variability of inhibition zone sizes was the most important source of uncertainty at about 87% of the overall uncertainty (103.0+/-1.7%). These results show that the proposed method is applicable to routine laboratory testing, and is sensitive to thermal degradation of caspofungin.

  19. Effect of ferric iron on siderophore production and pyrene degradation by Pseudomonas fluorescens 29L.

    PubMed

    Husain, Saleha

    2008-10-01

    The effect of ferric iron [Fe(III)] on pyrene degradation and siderophore production was studied in Pseudomonas fluorescens 29L. In the presence of 0.5 microM of Fe(III) and 50 mg of pyrene per liter of medium as a carbon source, 2.2 mg of pyrene was degraded per liter of medium per day and 25.3 microM of 2,3-DHBA (2,3-dihydroxybenzoic acid) equivalent of siderophores was produced per day. However, the pyrene degradation rate was 1.3 times higher and no siderophores were produced with the addition of 1 microM of Fe(III). Similar trends were seen with 50 mg of succinate per liter of medium as a carbon source, although the growth of strain 29L and the succinate degradation rate were higher. In the absence of siderophore production, pyrene and succinate continued to be biodegraded. This indicates that Fe(III) and not siderophore production affects the hydrocarbon degradation rate. Only 18% of strain 29L mutants capable of growth on pyrene produced siderophores, while among the mutants capable of growth on succinate, only 10% produced siderophores. This indicates that siderophores are not required for pyrene biodegradation. Fe(III) enhances pyrene degradation in Pseudomonas fluorescens 29L but it may be utilized by mechanisms other than siderophores. PMID:18626691

  20. Toxicity of thermal degradation products of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Lawrence, W. H.; Turner, J. E.; Sanford, C.; Foster, S.; Baldwin, E.; Oconnor, J.

    1982-01-01

    Three polymeric materials were evaluated for relative toxicity of their pyrolysis products to rats by inhalation: Y-7683 (LS 200), Y-7684 (Vonar 3 on Fiberglass), and Y-7685 (Vonar 3 on N W Polyester). Criteria employed for assessing relative toxicity were (1) lethality from in-chamber pyrolysis, (2) lethality from an outside-of-chamber pyrolysis MSTL Procedure, and (3) disruption of trained rats' shock-avoidance performance during sub-lethal exposures to in-chamber pyrolysis of the materials.

  1. Development and validation of a stability-indicating LC-UV method for the determination of pantethine and its degradation product based on a forced degradation study.

    PubMed

    Canavesi, Rossana; Aprile, Silvio; Varese, Elena; Grosa, Giorgio

    2014-08-01

    Pantethine (d-bis-(N-pantothenyl-β-aminoethyl)-disulfide, PAN), the stable disulfide form of pantetheine, has beneficial effects in vascular diseases being able to decrease the hyperlipidaemia, moderate the platelet function and prevent the lipid peroxidation. Furthermore, recent studies suggested that PAN may be an effective therapeutic agent for cerebral malaria and, possibly, for neurodegenerative processes. Interestingly, in the literature, there were no data dealing with the chemical stability and the analytical aspects of PAN. Hence, in the present work the chemical stability of PAN was for the first time established through a forced degradation study followed by liquid chromatography tandem mass spectrometry investigation showing the formation of three degradation products of PAN (PD1, PD2 and POx) arising from hydrolytic, thermal and oxidative stresses. Based on these data a stability-indicating LC-UV method for simultaneous estimation of PAN, and its most relevant degradation product (PD1) was developed and validated; moreover the method allowed also the separation and the quantification of the preservative system, constituted by a paraben mixture. The method showed linearity for PAN (0.4-1.2mgmL(-1)), MHB, PHB (0.4-1.2μgmL(-1)) and PD1 (2.5-100μgmL(-1)); the precision, determined in terms of intra-day and inter-day precision, expressed as RSDs, were in the ranges 0.4-1.2 and 0.7-1.4, respectively. The method demonstrated to be accurate and robust; indeed the average recoveries were 100.2, 99.9, and 100.0% for PAN, MHB and PHB, respectively, and 99.9% for PD1. By applying small variations of the mobile phase composition, counter-ion concentration and pH the separation of analytes was not affected. Finally, the applicability of this method was evaluated analyzing the available commercial forms at release as well as during stability studies. PMID:24863372

  2. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    PubMed

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. PMID:26946439

  3. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    PubMed

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose.

  4. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    PubMed

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. PMID:22324779

  5. Mannosylerythritol lipids: production and applications.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2015-01-01

    Mannosylerythritol lipids (MELs) are a glycolipid class of biosurfactants produced by a variety yeast and fungal strains that exhibit excellent interfacial and biochemical properties. MEL-producing fungi were identified using an efficient screening method for the glycolipid production and taxonomical classification on the basis of ribosomal RNA sequences. MEL production is limited primarily to the genus Pseudozyma, with significant variability among the MEL structures produced by each species. Outside of Pseudozyma, one recently isolated strain, Ustilago scitaminea, has been shown to exhibit abundant MEL-B production from sugarcane juice. Structural analyses of these compounds suggest a role for MELs in numerous cosmetic applications. MELs act as effective topical moisturizers and can repair damaged hair. Furthermore, these compounds have been shown to exhibit both protective and healing activities, to activate fibroblasts and papilla cells, and to act as natural antioxidants. In this review, we provide a brief summary of MEL research over the past few decades, focusing on the identification of MEL-producing fungi, the structural characterization of MELs, the use of alternative compounds as a primary carbon source, and the use of these compounds in cosmetic applications. PMID:25748373

  6. The sources, fate, and toxicity of chemical warfare agent degradation products.

    PubMed Central

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an

  7. Nonsedimentable Microvesicles from Senescing Bean Cotyledons Contain Gel Phase-Forming Phospholipid Degradation Products 1

    PubMed Central

    Yao, Kening; Paliyath, Gopinadhan; Thompson, John E.

    1991-01-01

    A mixture of liquid-crystalline and gel-phase lipid domains is detectable by wide angle x-ray diffraction in smooth microsomal membranes isolated from senescent 7-day-old cotyledons, whereas corresponding membranes from young 2-day-old cotyledons are exclusively liquid-crystalline. The gel-phase domains in the senescent membranes comprise phospholipid degradation products including diacylglycerols, free fatty acids, long-chain aldehydes, and long-chain hydrocarbons. The same complement of phospholipid degradation products is also present in nonsedimentable microvesicles isolated from senescent 7-day-old cotyledons by filtration of a 250,000g, 12-hour supernatant through a 300,000 dalton cut-off filter. The phospholipid degradation products in the microvesicles form gel-phase lipid domains when reconstituted into phospholipid liposomes. Nonsedimentable microvesicles of a similar size, which are again enriched in the same gel-phase-forming phospholipid degradation products, are also generated in vitro from smooth microsomal membranes isolated from 2-day-old cotyledons when Ca2+ is added to activate membrane-associated lipolytic enzymes. The Ca2+-treated membranes do not contain detectable gel-phase domains, suggesting that the phospholipid degradation products are completely removed by microvesiculation. The observations collectively indicate that these nonsedimentable microvesicles serve as a vehicle for moving phospholipid degradation products out of membrane bilayers into the cytosol. As noted previously (Yao K, Paliyath G, Humphrey RW, Hallett FR, Thompson JE [1991] Proc Natl Acad Sci USA 88: 2269-2273), the term “deteriosome” connotes this putative function and would serve to distinguish these microvesicles from other cytoplasmic microvesicles unrelated to deterioration. ImagesFigure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:16668427

  8. Cytotoxicity of corrosion products of degradable Fe-based stents: relevance of pH and insoluble products.

    PubMed

    Fagali, Natalia S; Grillo, Claudia A; Puntarulo, Susana; Fernández Lorenzo de Mele, Mónica A

    2015-04-01

    Fe-based biodegradable metallic materials (Fe-BMMs) have been proposed for cardiovascular applications and are expected to disappear via corrosion after an appropriate period. However, in vivo studies showed that Fe ions release leads to accumulation of orange and brownish insoluble products at the biomaterial/cell interface. As an additional consequence, sharp changes in pH may affect the biocompatibility of these materials. In the present work, the experimental protocols were designed with the aim of evaluating the relative importance that these factors have on biocompatibility evaluation of BMMs. Mitochondrial activity (MTT assay) and thiobarbituric acid reactive substances (TBARS) assay on mammalian cells, exposed to 1-5 mM of added Fe3+ salt, were assessed and compared with results linked exclusively to pH effects. Soluble Fe concentration in culture medium and intracellular Fe content were also determined. The results showed that: (i) mitochondrial activity was affected by pH changes over the entire range of concentrations of added Fe3+ assayed, (ii) at the highest added Fe3+ concentrations (≥3 mM), precipitation was detected and the cells were able to incorporate the precipitate, that seems to be linked to cell damage, (iii) the extent of precipitation depends on the Fe/protein concentration ratio; and (iv) lipid peroxidation products were detected over the entire range of concentrations of added Fe3+. Hence, a new approach opens in the biocompatibility evaluation of Fe-based BMMs, since the cytotoxicity would not be solely a function of released (and soluble) ions but of the insoluble degradation product amount and the pH falling at the biomaterial/cell interface. The concentration of Fe-containing products at the interface depends on diffusional conditions in a very complex way that should be carefully analyzed in the future.

  9. Degradation of glass artifacts: application of modern surface analytical techniques.

    PubMed

    Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred

    2010-06-15

    A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric

  10. Modeling of competitive mutualistic relationships. Application to cellulose degradation by Streptomyces sp. strains.

    PubMed

    Thierie, Jacques; Penninckx, Michel J

    2007-12-01

    A "cascade" model depicts microbial degradation of a complex nutrient/substrate through a succession of intermediate compounds. Each stage is characterized by a particular species producing a typical degradation enzyme induced by its own degradation product. The final compound of the cascade consists of a single assimilable substrate used by all species. This results in a competition situation, whereas the contribution of all strains to the production of a complete set of efficient enzymes generates a mutualistic relationship. The model was shown to be appropriate to describe degradation of cellulose by a consortium of Streptomyces sp. strains. The simplicity and the model capacity for generalization are promising and could be used for various degradation processes both at laboratory and environmental scales.

  11. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.

    PubMed

    Yang, Sheng; Yuan, Tong-Qi; Li, Ming-Fei; Sun, Run-Cang

    2015-01-01

    Corncob lignin was treated with pressurized hot water in a cylindrical autoclave in current investigation. With the aim of investigating the effect of reaction temperature and retention time on the distribution of degradation products, the products were divided into five fractions including gas, volatile organic compounds, water-soluble oil, heavy oil, and solid residue. It was found that hydrothermal degradation of corncob lignin in pressurized hot water produced a large amount of phenolic compounds with lower molecular weight than the raw lignin. Some phenolic and benzene derivatives monomers such as vanillin, 2-methoxy-phenol, 2-ethyl-phenol, p-xylene, and 1, 3-dimethyl-benzene were also identified in the degradation products. The products were further analyzed by GC-MS, GPC, 2D-HSQC, and (31)P-NMR to investigate their suitability for partial incorporation into phenol formaldehyde adhesive as a substitution of phenol. The results indicated that the reaction temperature had more effect on the products distribution than the retention time. The optimal condition for heavy oil production appeared at 290 °C with retention time 0 min. The compounds of heavy oil had more active sites than the raw lignin, suggesting that the heavy oil obtained from hydrothermal degradation of lignin is a promising material for phenol formaldehyde adhesive synthesis.

  12. Assessing the potential for algae and macrophytes to degrade crop protection products in aquatic ecosystems.

    PubMed

    Thomas, Kevin A; Hand, Laurence H

    2011-03-01

    Rates of pesticide degradation in aquatic ecosystems often differ between those observed within laboratory studies and field trials. Under field conditions, a number of additional processes may well have a significant role, yet are excluded from standard laboratory studies, for example, metabolism by aquatic plants, phytoplankton, and periphyton. These constituents of natural aquatic ecosystems have been shown to be capable of metabolizing a range of crop protection products. Here we report the rate of degradation of six crop protection products assessed in parallel in three systems, under reproducible, defined laboratory conditions, designed to compare aquatic sediment systems which exclude macrophytes and algae against those in which macrophytes and/or algae are included. All three systems remained as close as possible to the Organisation for Economic Co-operation and Development (OECD) 308 guidelines, assessing degradation of parent compound in the total system in mass balanced studies using ((14) C) labeled compounds. We observed, in all cases where estimated, significant increases in the rate of degradation in both the algae and macrophyte systems when compared to the standard systems. By assessing total system degradation within closed, mass balanced studies, we have shown that rates of degradation are enhanced in water/sediment systems that include macrophytes and algae. The contribution of these communities should therefore be considered if the aquatic fate of pesticides is to be fully understood. PMID:21298708

  13. Determination of interfering triazine degradation products by gas chromatography-ion trap mass spectrometry.

    PubMed

    Magnuson, M L; Speth, T F; Kelty, C A

    2000-01-28

    Deethylatrazine (DEA), an atrazine degradation product, has been added to the US Environmental Protection Agency's Drinking Water Contaminant Candidate List (CCL). In its gas chromatographic analysis, DEA can coelute with deisopropylatrazine (DIA), another degradation product. The present work demonstrates that the coelution of DEA and DIA can induce a significant (up to approximately 50%) positive bias in the DEA determination, when using an ion-trap mass spectrometer as the detector. The DIA determination is unaffected by the coelution within experimental error. This may be explained in terms of gas-phase ion fragment populations. A correction factor to the observed DEA concentration may be developed based on the measured DIA concentration.

  14. Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates.

    PubMed

    George, V; Arora, S; Wadhwa, B K; Singh, A K

    2010-08-01

    A solid phase extraction method using C18 cartridges was standardized for the isolation of multiple sweeteners (aspartame, acesulfame-K and saccharin) and their degradation products (diketopiperazine, Lphenylalanine, acetoacetamide and 2-sulfobenzoic acid) from lassi. Analytical conditions for HPLC were standardized over C18 column using UV detector for the simultaneous separation and estimation of multiple sweeteners and their degradation products in lassi sample isolates. A simple cartridge free method was developed for the isolation of sucralose from lassi. Method was also standardized for qualitative detection and quantitative estimation of sucralose over amino and silica gel plates of HPTLC.

  15. Evaluating limiting steps of anaerobic degradation of food waste based on methane production tests.

    PubMed

    Ortega, Luis; Husser, Céline; Barrington, Suzelle; Guiot, Serge R

    2008-01-01

    This research adapted a batch test for biochemical methane production (BMP) to follow the degradation of complex compounds such as proteins and vegetable oils. The test measured the transformation of albumin and olive oil into methane under mesophilic and thermophilic conditions and assess limiting step in the overall degradation process. The thermophilic sludge used for the BMP tests was adapted during ten month from mesophilic sludge while being fed food waste. As compared to acetic acid, the specific rate of transformation of albumin and olive oil into methane reached 22 and 51%, respectively, under mesophilic conditions. Acetoclastic methanogenesis was not the limiting step in the presence of albumin or olive oil (and its monomer-like molecules such as amino acids, glycerol and oleic acid). Rather, the degradation of albumin was restricted by the presence of proteins. The thermophilically adapted sludge showed good proteolytic activity, but its acetoclastic methanogens were unable to degrade olive oil, because of the inhibitory effect of oleic acid.

  16. Lectins: production and practical applications

    PubMed Central

    2010-01-01

    Lectins are proteins found in a diversity of organisms. They possess the ability to agglutinate erythrocytes with known carbohydrate specificity since they have at least one non-catalytic domain that binds reversibly to specific monosaccharides or oligosaccharides. This articles aims to review the production and practical applications of lectins. Lectins are isolated from their natural sources by chromatographic procedures or produced by recombinant DNA technology. The yields of animal lectins are usually low compared with the yields of plant lectins such as legume lectins. Lectins manifest a diversity of activities including antitumor, immunomodulatory, antifungal, HIV-1 reverse transcriptase inhibitory, and anti-insect activities, which may find practical applications. A small number of lectins demonstrate antibacterial and anti-nematode activities. PMID:20890754

  17. Depleted zinc: Properties, application, production.

    PubMed

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  18. [Biodiversity of mesophilic microbial community BYND-8 capability of lignocellulose degradation and its effect on biogas production].

    PubMed

    Wang, Wei-Dong; Song, Ya-Bin; Wang, Yan-Jie; Gao, Ya-Mei; Jing, Rui-Yong; Cui, Zong-Jun

    2011-01-01

    The biodiversity of a mesophilic microbial community BYND-8 capable of degrading lignocellulose at 30 degrees C was detected using denaturing gradient gel electrophoresis (DGGE) and the isolation of pure cultures, and the effect of the liquid of rice straw degradation by BYND-8 on biogas production was measured. Six bacterial strains were isolated using peptone cellulose solution medium, and the highest similarities of their 16S rDNA gene sequences to Serratia sp. PSGB 13, S. marcescens strain UFLA-25LS, S. marcescens strain DAP33, Alcaligenes sp. YcX-20, Stenotrophomonas maltophilia strain C6, Bacillus cereus isolate BRL02-71 were 99%, 100%, 96%, 100%, 100% and 99%, respectively. In addition, one band was detected besides six bands of cultured isolates on the DGGE gel, and it showed 100% sequence similarity to uncultured bacterium clone ATB-KS-1446. The cumulative biogas and methane productions of biogas fermentation system added with the liquid of rice straw degraded by BYND-8 were 13 167 mL and 7 248 mL, 44.5% and 95.3% higher than those of the control, respectively, in the early 15 days of fermentation. The results showed that the biodiversity of microbial community BYND-8 was very high, and the time of producing biogas was put forward and biogas production was increased with application of microbial community for rice straw pretreatment during the biogas fermentation.

  19. Electrochemical degradation of crystal violet with BDD electrodes: effect of electrochemical parameters and identification of organic by-products.

    PubMed

    Palma-Goyes, Ricardo E; Guzmán-Duque, Fernando L; Peñuela, Gustavo; González, Ignacio; Nava, Jose L; Torres-Palma, Ricardo A

    2010-09-01

    This paper explores the applicability of electrochemical oxidation on a triphenylmethane dye compound model, hexamethylpararosaniline chloride (or crystal violet, CV), using BDD anodes. The effect of the important electrochemical parameters: current density (2.5-15 m A cm(-2)), dye concentration (33-600 mg L(-1)), sodium sulphate concentration (7.1-50.0 g L(-1)) and initial pH (3-11) on the efficiency of the electrochemical process was evaluated. The results indicated that while the current density was lower than the limiting current density, no side products (hydrogen peroxide, peroxodisulphate, ozone and chlorinated oxidizing compounds) were generated and the degradation, through OH radical attack, occurred with high efficiency. Analysis of intermediates using GC-MS investigation identified several products: N-methylaniline, N,N-dimethylaniline, 4-methyl-N,N-dimethylaniline, 4-methyl-N-methylaniline, 4-dimethylaminophenol, 4-dimethylaminobenzoic acid, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) diphenylmethane, 4-(4-dimethylaminophenyl)-N,N-dimethylaniline, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) benzophenone. The presence of these aromatic structures showed that the main CV degradation pathway is related to the reaction of CV with the OH radical. Under optimal conditions, practically 100% of the initial substrate and COD were eliminated in approximately 35 min of electrolysis; indicating that the early CV by-products were completely degraded by the electrochemical system. PMID:20709357

  20. Retrospective analysis for the identification of 4-aminocarminic acid photo-degradation products in beverages.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mastroianni, Rita; Mazzucco, Eleonora; Manfredi, Marcello; Marengo, Emilio

    2015-01-01

    This article deals with the identification of the photo-degradation products of 4-aminocarminic acid potentially present in commercial beverages. Sixteen beverages of different composition but all containing the E120 dye were previously analysed by ultra-high-performance liquid chromatography (UHPLC) coupled with quadrupole-time of flight mass spectrometry to identify the common degradation products of the E120 dye. Since it is plausible to find unauthorised 4-aminocarminic acid in beverages which report generic E120 dye on the label, retrospective analysis was employed here not only to search for the possible presence of 4-aminocarminic acid but also to investigate the potential formation of photo-degradation products derived from this compound. For this purpose, a statistical approach based on Student's t-test was used to compare the degraded beverages containing 4-aminocarminic acid with all the others. Five degradation products were identified and their structures were elucidated on the basis of the high-accuracy and high-resolution of mass and mass/mass spectra. The toxicity of the degradation products was evaluated through the Ames Salmonella/microsome mutagenicity assay. No evidence of mutagenicity was obtained for the beverages subjected or not to irradiation, whereas a toxic effect of the 4-aminocarminic acid standard solution already at 100.0 µg l(-1) was found. This leads, once again, to the conclusion that the toxicity study must be carried out on the beverages in order to take into account of all the possible masking/protection interactions among the ingredients. PMID:25562586

  1. 75 FR 4383 - Pesticide Products: Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... AGENCY Pesticide Products: Registration Applications AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces receipt of applications to register pesticide products... comments. Mail: Office of Pesticide Programs (OPP) Regulatory Public Docket (7502P),...

  2. 75 FR 71695 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... AGENCY Pesticide Products; Registration Applications AGENCY: Environmental Protection Agency ACTION: Notice. SUMMARY: EPA has received applications to register new uses for pesticide products containing... Pesticide Programs (OPP) Regulatory Public Docket (7502P), Environmental Protection Agency,...

  3. 77 FR 38285 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... AGENCY Pesticide Products; Registration Applications AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces receipt of applications to register pesticide products...), Office of Pesticide Programs, Environmental Protection Agency, 1200 Pennsylvania Ave. NW., Washington,...

  4. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia's headwaters.

    PubMed

    Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun

    2014-10-01

    A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland. PMID:25023744

  5. Identification of heat-induced degradation products from purified betanin, phyllocactin and hylocerenin by high-performance liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Herbach, Kirsten M; Stintzing, Florian C; Carle, Reinhold

    2005-01-01

    Betanin, phyllocactin (malonylbetanin) and hylocerenin (3-hydroxy-3-methylglutarylbetanin) were isolated from purple pitaya (Hylocereus polyrhizus [Weber] Britton and Rose) juice, and their degradation products generated by heating at 85 degrees C were subsequently monitored by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Thermal degradation of phyllocactin and hylocerenin in purified solution excluding the alleged protective effects by the juice matrix is reported for the first time. Betanin was predominantly degraded by hydrolytic cleavage, while decarboxylation and dehydrogenation were of minor relevance. In contrast, hylocerenin showed a strong tendency to decarboxylation and dehydrogenation, hydrolytic cleavage of the aldimine bond occurring secondarily. Phyllocactin degradation was most complex because of additional decarboxylation of the malonic acid moiety as well as generation and subsequent degradation of betanin due to phyllocactin demalonylation. Upon prolonged heating, all betacyanins under observation formed degradation products characterized by an additional double bond at C2-C3. Hydrolytic cleavage of the aldimine bond of phyllocactin and hylocerenin yielded previously unknown acylated cyclo-dopa derivatives traceable by positive ionization, while application of ESI(-) facilitated the detection of a glycosylated aminopropanal derivative and dopamine, which have never been described before as betanin degradation products.

  6. Bacterial secondary production on vascular plant detritus: relationships to detritus composition and degradation rate.

    PubMed Central

    Moran, M A; Hodson, R E

    1989-01-01

    Bacterial production at the expense of vascular plant detritus was measured for three emergent plant species (Juncus effusus, Panicum hemitomon, and Typha latifolia) degrading in the littoral zone of a thermally impacted lake. Bacterial secondary production, measured as tritiated thymidine incorporation into DNA, ranged from 0.01 to 0.81 microgram of bacterial C mg of detritus-1 day-1. The three plant species differed with respect to the amount of bacterial productivity they supported per milligram of detritus, in accordance with the predicted biodegradability of the plant material based on initial nitrogen content, lignin content, and C/N ratio. Bacterial production also varied throughout the 22 weeks of in situ decomposition and was positively related to the nitrogen content and lignin content of the remaining detritus, as well as to the temperature of the lake water. Over time, production was negatively related to the C/N ratio and cellulose content of the degrading plant material. Bacterial production on degrading plant material was also calculated on the basis of plant surface area and ranged from 0.17 to 1.98 micrograms of bacterial C cm-2 day-1. Surface area-based calculations did not correlate well with either initial plant composition or changing composition of the remaining detritus during decomposition. The rate of bacterial detritus degradation, calculated from measured production of surface-attached bacteria, was much lower than the actual rate of weight loss of plant material. This discrepancy may be attributable to the importance of nonbacterial organisms in the degradation and loss of plant material from litterbags or to the microbially mediated solubilization of particulate material prior to bacterial utilization, or both. PMID:2802603

  7. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs.

  8. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. PMID:25190594

  9. Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface--a critical review.

    PubMed

    Scheutz, Charlotte; Durant, Neal D; Hansen, Maria H; Bjerg, Poul L

    2011-04-01

    1,1,1-Trichloroethane (TCA) in groundwater is susceptible to a variety of natural degradation mechanisms. Evidence of intrinsic decay of TCA in aquifers is commonly observed; however, TCA remains a persistent pollutant at many sites and some of the daughter products that accumulate from intrinsic decay of TCA have been determined to be more toxic than the parent compound. Research advances from the past decade indicate that in situ enhanced reductive dechlorination (ERD) offers promise as a cost-effective solution toward the cleanup of groundwater contaminated with TCA and its transformation daughter products. Laboratory studies have demonstrated that pure or mixed cultures containing certain Dehalobacter (Dhb) bacteria can catalyze respiratory dechlorination of TCA and 1,1-dichloroethane (1,1-DCA) to monochloroethane (CA) in groundwater systems. 16S rRNA Dhb gene probes have been used as biomarkers in groundwater samples to both assess ERD potential and quantify growth of Dhb in ERD applications at TCA sites. Laboratory findings suggest that iron-bearing minerals and methanogenic bacteria that co-occur in reduced aquifers may synergistically affect dechlorination of TCA. Despite these advances, a number of significant challenges remain, including an inability of any known cultures to completely dechlorinate TCA to ethane. CA is commonly observed as a terminal product of the biological reductive dechlorination of TCA and 1,1-DCA. Also important is the lack of rigorous field studies demonstrating the utility of bioaugmentation with Dhb cultures for remediation of TCA in the field. In this paper we review the state-of-the-science of TCA degradation in aquifers, examining results from both laboratory experiments and twenty-two field case studies, focusing on the capabilities and limits of ERD technology, and identifying aspects of the technology that warrant further development.

  10. Degradation of blood group antigens in human colon ecosystems. I. In vitro production of ABH blood group-degrading enzymes by enteric bacteria.

    PubMed Central

    Hoskins, L C; Boulding, E T

    1976-01-01

    Human feces contain enzymes produced by enteric bacteria that degrade the A, B, and H blood group antigens of gut mucin glycoproteins. We have studied their production in fecal cultures to determine if such cultures can be a source for enzyme purification and to explore how blood group antigen-degrading enzymes are adapted in individual human colon ecosystems. They were present in fecal cultures from each of 27 healthy subjects, including ABH nonsecretors. Heat-sensitive obligate anaerobes are their major source. From 39 to 85% of the total enzyme activity produced by growing cultures was extracellular. Commercial hog gastric mucin and salivary glycoproteins, including Lea saliva which lacks A, B, and H antigens, enhance production of A-, B-, and H-degrading activity in anaerobic fecal cultures irrespective of the glycoprotein's blood group specificity. There is evidence that the host's ABO blood type and secretor status affects the specificity of blood group-degrading enzymes produced by his fecal bacteria in vitro. Thus, fecal inocula from B secretors incubated with hog gastric mucin (A and H specificity) or with Lea saliva produced greater levels of B-degrading than A- or H-degrading activity, and inocula from A secretors in similar media produced greater levels of A-degrading than B- or H-degrading activity. Blood group-degrading enzymes produced in fecal cultures are glycosidases and not proteases. The B-degrading enzyme cleaves the B antigenic determinant alpha-D-galactose from the oligosaccharide side chains of mucin glycoproteins with B specificity. Anaerobic fecal cultures containing blood group substances are a feasible source for purifying blood group antigen-degrading enzymes. Prior adaptation to blood group antigens in the gut mucins of type A and type B secretors affects the specificity of the enzymes produced in vitro. PMID:54365

  11. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  12. Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products.

    PubMed

    Quek, Eugene; Ting, Yen-Peng; Tan, Hai Meng

    2006-01-01

    This work reports on the immobilization and performance of a hydrocarbon-degrading microorganism on polyurethane foam (PUF) in the bioremediation of petroleum hydrocarbons. The ability of four different microorganisms to immobilize on PUF and to degrade various petroleum products (Arabian light crude (ALC), Al-Shaheen crude (ASC), diesel and oil slops) was assessed by measuring the n-alkane fraction remaining in the petroleum products over time. A Rhodococcus sp. (designated as F92) had the highest number of immobilized viable cells (10(9) cells per cm3 PUF) and a maximum attachment efficiency of 90% on PUF of a density of 14 kg/m3. Scanning electron microscopy showed the presence of extracellular structures that could play an important role in the immobilization of F92 on PUF. Analysis by GC-MS revealed that both free and immobilized F92 cells were able to degrade approximately 90% of the total n-alkanes in the petroleum products tested within 1 week at 30 degrees C. Rhodococcus sp. F92 was efficiently immobilized onto PUF and the immobilized cells were able to degrade a variety of petroleum products such as ALC, ASC, diesel and oil slops. The results suggest the potential of using PUF-immobilized Rhodococcus sp. F92 to bioremediate petroleum hydrocarbons in an open marine environment.

  13. Particulate and gas-phase products from the atmospheric degradation of chlorpyrifos and chlorpyrifos-oxon

    NASA Astrophysics Data System (ADS)

    Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia

    2015-12-01

    The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.

  14. Identification of a new degradation product of the antifouling agent Irgarol 1051 in natural samples

    USGS Publications Warehouse

    Ferrer, I.; Barcelo, D.

    2001-01-01

    A main degradation product of Irgarol [2-(methylthio)-4-(tert-butylamino)-6-(cyclopropylamino)-s-triazine], one of the most widely used compounds in antifouling paints, was detected at trace levels in seawater and sediment samples collected from several marinas on the Mediterranean coast. This degradation product was identified as 2-methylthio-4-tert-butylamino-s-triazine. The unequivocal identification of this compound in seawater samples was carried out by solid-phase extraction (SPE) coupled on-line with liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS). SPE was carried out by passing 150 ml of seawater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 92 to 108% (n=5). Using LC-MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of this compound in natural samples. Method detection limits were in the range of 0.002 to 0.005 ??g/l. Overall, the combination of on-line SPE and LC-APCI-MS represents an important advance in environmental analysis of herbicide degradation products in seawater, since it demonstrates that trace amounts of new polar metabolites may be determined rapidly. This paper reports the LC-MS identification of the main degradation product of Irgarol in seawater and sediment samples. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. Detecting and quantifying lewisite degradation products in environmental samples using arsenic speciation

    SciTech Connect

    Bass, D.A.; Yaeger, J.S.; Kiely, J.T.; Crain, J.S.; Shem, L.M.; O`Neill, H.J.; Gowdy, M.J.; Besmer, M.; Mohrman, G.B.

    1995-12-31

    This report describes a unique method for identifying and quantifying lewisite degradation products using arsenic (III) and arsenic (IV) speciation in solids and in solutions. Gas chromatographic methods, as well as high-performance liquid chromatographic methods are described for separation of arsenic species. Inductively coupled plasma-mass spectrographic methods are presented for the detection of arsenic.

  16. HYDROLOGIC CONDITIONS AFFECTING THE TROPOSPHERIC FLUX OF VINCLOZOLIN AND ITS DEGRADATION PRODUCTS

    EPA Science Inventory

    A laboratory chamber was used to determine hydrologic conditions that lead to the tropospheric flux of a suspected anti-androgenic dicarboximide fungicide, vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2,4-dione) and three degradation products from sterilized...

  17. Biogenic Amines Degradation by Lactobacillus plantarum: Toward a Potential Application in Wine

    PubMed Central

    Capozzi, Vittorio; Russo, Pasquale; Ladero, Victor; Fernández, María; Fiocco, Daniela; Alvarez, Miguel A.; Grieco, Francesco; Spano, Giuseppe

    2012-01-01

    Biogenic amines (BA) in wine represent a toxicological risk for the health of the consumer, with several trade implications. In this study 26 strains of Lactobacillus plantarum were analyzed for their ability to degrade BA commonly found during wine fermentation. Two strains of L. plantarum were selected in reason of their ability to degrade putrescine and tyramine. The degradation was assessed in vitro, both in presence of the BA and in presence of the specific chemical precursor and of producer bacteria. The two L. plantarum biotypes were found capable to work synergically. In addition, the survival in wine-like medium and the aptitude to degrade malic acid after alcoholic fermentation of the selected L. plantarum strains was analyzed. Our results suggest the potential application of wine L. plantarum strains to design malolactic starter cultures able to degrade BA in wine. PMID:22485114

  18. Study on degradation kinetics of 2-(2-hydroxypropanamido) benzoic acid in aqueous solutions and identification of its major degradation product by UHPLC/TOF-MS/MS.

    PubMed

    Zhang, Qili; Guan, Jiao; Rong, Rong; Zhao, Yunli; Yu, Zhiguo

    2015-08-10

    A RP-HPLC method was developed and validated for the degradation kinetic study of 2-(2-hydroxypropanamido) benzoic acid (HPABA), a promising anti-inflammatory drug, which would provide a basis for further studies on HPABA. The effects of pH, temperature, buffer concentration and ionic strength on the degradation kinetics of HPABA were discussed. Experimental parameters such as degradation rate constants (k), activation energy (Ea), acid and alkali catalytic constants (k(ac), k(al)), shelf life (t1/2) and temperature coefficient (Q10) were calculated. The results indicated that degradation kinetics of HPABA followed zero-order reaction kinetics; degradation rate constants (k) of HPABA at different pH values demonstrated that HPABA was more stable in neutral and near-neutral conditions; the function of temperature on k obeyed the Arrhenius equation (r = 0.9933) and HPABA was more stable at lower temperature; with the increase of ionic strength and buffer concentration, the stability of HPABA was decreased. The major unknown degradation product of HPABA was identified by UHPLC/TOF-MS/MS with positive electrospray ionization. Results demonstrated that the hydrolysis product was the primary degradation product of HPABA and it was deduced as anthranilic acid.

  19. RP-HPLC stability-indicating assay method for talinolol and characterization of its degradation products.

    PubMed

    Sinha, V R; Ghai, Damanjeet

    2011-01-01

    A reversed-phase high-performance liquid chromatographic method is developed and validated for the quantitative determination of talinolol and to characterize its degradation products. A very good resolution between peaks is achieved using a C18 column at 40°C. The mobile phase comprises of a mixture of acetonitrile and potassium dihydrogen orthophosphate buffer (pH 4.4) in the ratio of 27:73 (v/v). The method is validated with respect to linearity, accuracy, precision, robustness, and forced degradation studies, which further proved the stability indicating power. During the forced degradation studies, talinolol is observed to be labile to hydrolytic stress and thermal stress (in the solution form). However, it is stable to the oxidative, photolytic, and thermal stress (in the solid form). The degraded products formed are investigated by electrospray ionization (ESI), time-of-flight mass spectrometry, nuclear magnetic resonance, and infrared spectroscopy. A possible degradation pathway is outlined based on the results. The method is found to be sensitive with a detection limit of 0.125 μg/mL and a quantitation limit of 0.378 μg/mL. The method is also demonstrated to be robust, as it is resistant to small variations of chromatographic variables such as pH, mobile phase composition, flow rate, and column temperature.

  20. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    PubMed

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant.

  1. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl.

    PubMed

    Fang, Guo-Dong; Zhou, Dong-Mei; Dionysiou, Dionysios D

    2013-04-15

    Increasing attention has been paid to magnetite nanoparticles (MNPs) due to their highly reductive reactivity toward environmental contaminants. However, there is little information related to the generation of reactive oxygen species (ROS) by MNPs, which in fact plays a vital role for the transformation of contaminants. In this paper, the degradation of 2-chlorobiphenyl (2-CB) by MNPs was investigated. The role of ROS generated by MNPs in this process was elucidated. The results demonstrated that hydroxyl radicals (OH) generated by MNPs at low pH could efficiently degrade 2-CB. The mechanism of the formation of OH by MNPs was divided into two steps: (i) the superoxide radical anion (O2(-)) mediated production of hydrogen peroxide (H2O2), and (ii) the reaction of formed H2O2 with Fe(II) dissolved from MNPs to produce OH through Fenton reaction. Comparison of the degradation products of 2-CB by MNPs with MNPs/ethanol and Fenton reagents further supported the involvement of OH in the degradation of 2-CB. The degradation efficiency of 2-CB by MNPs under acidic conditions was higher than that in alkaline solution. These findings provide a new insight into the understanding of reactivity of MNPs for the transformation of 2-CB and possibly other relevant environmental contaminants. PMID:23434481

  2. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    PubMed

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant. PMID:26938496

  3. Analysis of degradation products of chemical warfare agents using capillary electrophoresis.

    PubMed

    Aleksenko, Svetlana S; Gareil, Pierre; Timerbaev, Andrei R

    2011-10-21

    Analysis of chemical warfare agents (CWAs), their precursors and degradation products (DPs) is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. Considering a growing number of papers presented in the last years in the field of capillary electrophoresis (CE) of DPs, this review article gives an overview on CE techniques which are feasible for the determination of DPs with the advantages of using relatively simple and inexpensive research instrumentation, reduced consumption of potentially toxic samples, shorter sample preparation times, etc. A brief introduction is provided into the chemical background of CWAs followed by a documented appraisal that the CE method is well suited to deal with polar, acidic DPs mostly occurring in aqueous samples or extracts. Applications of CE to the separation of DPs are described, complemented by a critical discussion of the detection techniques, including mostly conductivity, laser-induced fluorescence, UV absorption and mass spectrometry. This review also includes actual development regarding the challenges of CE in analyses of different DPs from real samples, often avoided by in- and off-line pre-concentration techniques or the coupling of CE to selective detection methods. Special emphasis is placed on the miniaturised CE systems that have the potential of being before long developed into a field deployable and potentially disposable platform for routine DP monitoring in environmental samples. PMID:21858300

  4. Analysis of degradation products of chemical warfare agents using capillary electrophoresis.

    PubMed

    Aleksenko, Svetlana S; Gareil, Pierre; Timerbaev, Andrei R

    2011-10-21

    Analysis of chemical warfare agents (CWAs), their precursors and degradation products (DPs) is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. Considering a growing number of papers presented in the last years in the field of capillary electrophoresis (CE) of DPs, this review article gives an overview on CE techniques which are feasible for the determination of DPs with the advantages of using relatively simple and inexpensive research instrumentation, reduced consumption of potentially toxic samples, shorter sample preparation times, etc. A brief introduction is provided into the chemical background of CWAs followed by a documented appraisal that the CE method is well suited to deal with polar, acidic DPs mostly occurring in aqueous samples or extracts. Applications of CE to the separation of DPs are described, complemented by a critical discussion of the detection techniques, including mostly conductivity, laser-induced fluorescence, UV absorption and mass spectrometry. This review also includes actual development regarding the challenges of CE in analyses of different DPs from real samples, often avoided by in- and off-line pre-concentration techniques or the coupling of CE to selective detection methods. Special emphasis is placed on the miniaturised CE systems that have the potential of being before long developed into a field deployable and potentially disposable platform for routine DP monitoring in environmental samples.

  5. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis.

    PubMed

    Mittelmaier, Stefan; Niwa, Toshimitsu; Pischetsrieder, Monika

    2012-01-01

    Fibrosis and vascular sclerosis are main complications that limit the long-term application of peritoneal dialysis (PD). Low biocompatibility has been largely attributed to the presence of glucose degradation products (GDPs), which are formed during the heat sterilization of PD fluids. GDPs readily modify proteins in the peritoneum, leading to a decline of their biological function. After absorption, GDPs can also promote systemic protein glycation. Additionally, GDPs may augment DNA glycation, a process enhanced in uremia. Apart from their glycating activity, GDPs induce cytotoxicity and interfere with cell signaling in peritoneal mesothelial cells. Targeted screening revealed the nature of the 6 major GDPs with α-dicarbonyl structure as 3-deoxyglucosone, 3-deoxygalactosone, glucosone, glyoxal, methylglyoxal, and 3,4-dideoxyglucosone-3-ene. Valid quantification of these GDPs was achieved by ultrahigh-performance liquid chromatography/diode array detector/tandem mass spectrometry. Identification and quantification of single GDPs allow a structure-dependent risk evaluation. As a consequence, PD fluids and processes can be improved to reduce the GDP burden of patients undergoing PD.

  6. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions.

    PubMed

    Poirier-Larabie, S; Segura, P A; Gagnon, C

    2016-07-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4days, while its concentration only decreased by 42% after 57days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11days of exposure to light, while biodegradation decreased its concentration by 33% after 58days of exposure under aerobic conditions and 5% after 70days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental samples

  7. Relationship between lignin degradation and production of reduced oxygen species by Phanerochaete chrysosporium

    SciTech Connect

    Faison, B.D.; Kirk, T.K.

    1983-11-01

    The relationship between the production of reduced oxygen species, hydrogen peroxide (H/sub 2/O/sub 2/), superoxide (O/sub 2//sup -/), and hydroxyl radical (.OH), and the oxidation of synthetic lignin to CO/sub 2/ was studied in whole cultures of the white-rot fungus Phanerochaete chrysosporium Burds. The kinetics of the synthesis of H/sub 2/O/sub 2/ coincided with the appearance of the ligninolytic system; also, H/sub 2/O/sub 2/ production was markedly enhanced by growth under 100% O/sub 2/, mimicing the increase in ligninolytic activity characteristic of cultures grown under elevated oxygen tension. Lignin degradation by whole cultures was inhibited by a specific H/sub 2/O/sub 2/ scavenger, catalase, implying a role for H/sub 2/O/sub 2/ in the degradative process. Superoxide dismutase also inhibited lignin degradation, suggesting that O/sub 2//sup -/ is also involved in the breakdown of lignin. The production of .OH was assayed in whole cultures by a benzoate decarboxylation assay. Neither the kinetics of .OH synthesis nor the final activity of its producing system obtained under 100% O/sub 2/ correlated with that of the lignin-degrading system. However, lignin degradation was inhibited by compounds which react with .OH. It is concluded that H/sub 2/O/sub 2/, and perhaps O/sub 2//sup -/, are involved in lignin degradation; because these species are relatively unreactive per se, their role must be indirect. Conclusions about a role for .OH in ligninolysis could not be reached. (Refs. 28).

  8. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products.

    PubMed

    Kong, Xiujuan; Jiang, Jin; Ma, Jun; Yang, Yi; Liu, Weili; Liu, Yulei

    2016-03-01

    In this work, the degradation of atrazine by the combination of UV and chlorine (UV/chlorine) due to the formation of radicals during chlorine photolysis was systematically investigated in terms of efficiency, factors that influence the degradation kinetics, as well as oxidation products. It was found that the degradation efficiency of atrazine was enhanced by UV/chlorine compared to UV or chlorine alone. The degradation efficiency of atrazine was favorable at a lower pH, but was inhibited in the presence of natural organic matters. Meanwhile, the initial chlorine dosage, alkalinity, and chloride barely influenced the degradation efficiency under neutral pH conditions. The degradation of atrazine by UV/chlorine was inhibited in real waters (i.e., surface water and ground water) compared to in deionized water but was still more effective than UV alone. The oxidation products of atrazine resulting from de-alkylation, dechlorination-hydroxylation, alkylic-hydroxylation, alkylic-oxidation, alkylic-hydroxylation-dehydration, deamination-hydroxylation, and dechlorination-hydrogenation in UV/chlorine process were detected, which were slightly different from those formed in UV/H2O2 (commonly used UV-based advanced oxidation process). Particularly, the yields of three primary transformation products (desethyl-atrazine (DEA), desisopropyl-atrazine (DIA), and desethyl-desisopropyl-atrazine (DEIA)) were comparatively quantified in these two processes. The different trend of them formed in UV/chlorine system (DEA:DIA≈4) compared to that formed in UV/H2O2 system (DEA:DIA≈1) could be ascribed to the different reaction reactivities and mechanisms between HO• and Cl• with atrazine.

  9. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    PubMed

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.

  10. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    PubMed

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. PMID:22309478

  11. Characterization and degradation studies on synthetic polymers for aerospace application

    NASA Technical Reports Server (NTRS)

    Hsu, M. T. S.

    1982-01-01

    The anti-misting additive for jet fuels known as FM-9 (proprietary polymer) was characterized by elemental analysis, solubility studies and molecular weight determination. Physical properties of surface tension, viscosity, specific gravity and other physical parameters were determined. These results are compared with properties of polyisobutylene and fuels modified with the same; the misting characteristics of polyisobutylene and FM-9 in Jet A fuel are included. Characterization and degradation of phthalocyanine and its derivatives were accomplished by use of a mass spectrometer and a pyroprobe solid pyrolyzer. Metal phthalocyanine tetracarboxylic acids and phthalocyanine-tetraamine cured epoxies were studied. Epoxy/graphite composite panels were exposed to a NASA-Ames radiant panel fire simulator in the flaming and non-flaming modes; toxic gases of HCN and HZS were measured along with oxygen, Co2, Co, and organic gases.

  12. Catabolism and biotechnological applications of cholesterol degrading bacteria

    PubMed Central

    García, J. L.; Uhía, I.; Galán, B.

    2012-01-01

    Summary Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. PMID:22309478

  13. Isolation and characterization of process-related impurities and degradation products in larotaxel.

    PubMed

    Che, Xin; Shen, Li; Xu, Hui; Liu, Ke

    2011-07-15

    The isolation and characterization of the process related impurities and degradation products of larotaxel drug substance were described. Forced degradation of larotaxel was carried out under acidic, basic, oxidation, light and thermal conditions to assess the nature of the impurities. The pure impurities were obtained by semi-preparative LC isolation and analyzed by NMR and MS. The structures of impurities were confirmed as 7,8-cyclopropyl baccatin III, 10-deacetyl larotaxel, 10-deacetyl-7, 8-cyclopropyl baccatin III, 7-acetyl-8-methyl larotaxel and 2',13-bissidechain larotaxel.

  14. Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet

    SciTech Connect

    Dean R. Peterman; Lonnie G. Olson; Gary S. Groenewold; Rocklan G. McDowell; Richard D. Tillotson; Jack D. Law

    2013-08-01

    This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

  15. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    PubMed

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  16. Formation of chlorinated breakdown products during degradation of sunscreen agent, 2-ethylhexyl-4-methoxycinnamate in the presence of sodium hypochlorite.

    PubMed

    Gackowska, Alicja; Przybyłek, Maciej; Studziński, Waldemar; Gaca, Jerzy

    2016-01-01

    In this study, a new degradation path of sunscreen active ingredient, 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-methoxycinnamic acid (MCA) in the presence of sodium hypochlorite (NaOCl), was discussed. The reaction products were detected using gas chromatography-mass spectrometry (GC-MS). Since HOCl treatment leads to more polar products than EHMC, application of polar extracting agents, dichloromethane and ethyl acetate/n-hexane mixture, gave better results in terms of chlorinated breakdown products identification than n-hexane. Reaction of EHMC with HOCl lead to the formation of C=C bridge cleavage products such as 2-ethylhexyl chloroacetate, 1-chloro-4-methoxybenzene, 1,3-dichloro-2-methoxybenzene, and 3-chloro-4-methoxybenzaldehyde. High reactivity of C=C bond attached to benzene ring is also characteristic for MCA, since it can be converted in the presence of HOCl to 2,4-dichlorophenole, 2,6-dichloro-1,4-benzoquinone, 1,3-dichloro-2-methoxybenzene, 1,2,4-trichloro-3-methoxybenzene, 2,4,6-trichlorophenole, and 3,5-dichloro-2-hydroxyacetophenone. Surprisingly, in case of EHMC/HOCl/UV, much less breakdown products were formed compared to non-UV radiation treatment. In order to describe the nature of EHMC and MCA degradation, local reactivity analysis based on the density functional theory (DFT) was performed. Fukui function values showed that electrophilic attack of HOCl to the C=C bridge in EHMC and MCA is highly favorable (even more preferable than phenyl ring chlorination). This suggests that HOCl electrophilic addition is probably the initial step of EHMC degradation.

  17. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant.

    PubMed

    Lalitha Devi, M; Chandrasekhar, K B

    2009-12-01

    The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).

  18. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products.

    PubMed

    Gomi, Nichina; Yoshida, Shuji; Matsumoto, Kazutsugu; Okudomi, Masayuki; Konno, Hiroki; Hisabori, Toru; Sugano, Yasushi

    2011-11-01

    We examined the degradation of amaranth, a representative azo dye, by Bjerkandera adusta Dec 1. The degradation products were analyzed by high performance liquid chromatography (HPLC), visible absorbance, and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). At the primary culture stage (3 days), the probable reaction intermediates were 1-aminonaphthalene-2,3,6-triol, 4-(hydroxyamino) naphthalene-1-ol, and 2-hydroxy-3-[2-(4-sulfophenyl) hydrazinyl] benzenesulfonic acid. After 10 days, the reaction products detected were 4-nitrophenol, phenol, 2-hydroxy-3-nitrobenzenesulfonic acid, 4-nitrobenzene sulfonic acid, and 3,4'-disulfonyl azo benzene, suggesting that no aromatic amines were created. Manganese-dependent peroxidase activity increased sharply after 3 days culture. Based on these results, we herein propose, for the first time, a degradation pathway for amaranth. Our results suggest that Dec 1 degrades amaranth via the combined activities of peroxidase and hydrolase and reductase action.

  19. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products.

    PubMed

    Gao, Tong-Guo; Jiang, Feng; Yang, Jin-Shui; Li, Bao-Zhen; Yuan, Hong-Li

    2012-03-01

    In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, (13)C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer.

  20. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    SciTech Connect

    Vlasova, Irina I.; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.; Kostevich, Valeria A.; Gusev, Alexandr A.; Gusev, Sergey A.; Melnikova, Viktoriya I.; Lobach, Anatolii S.

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  1. Effect of application rate on fumigant degradation in five agricultural soils.

    PubMed

    Qin, Ruijun; Gao, Suduan; Ajwa, Husein; Hanson, Bradley D

    2016-01-15

    Soil fumigation is an important pest management tool for many high value crops. To address the knowledge gap of how fumigant concentration in soil impacts dissipation, and thereby efficacy, this research determined the degradation characteristics of four fumigants as affected by application rate. Laboratory incubation experiments were conducted to determine degradation rates of 1,3-dichloropropene (both cis- and trans isomers), chloropicrin (CP), dimethyl disulfide (DMDS), and methyl iodide (MeI) in five agricultural soils. Fitted to pseudo first-order kinetics, the degradation rate constant (k) of CP, DMDS, and MeI decreased significantly as application rate increased while the 1,3-D isomers were the least affected by rate. Half-lives increased 12, 17, and 6-fold for CP, DMDS, and MeI, respectively, from the lowest to the highest application rate. At low application rates, the degradation rate of all fumigants in the Hueneme sandy loam soil was reduced by 50-95% in sterilized soil compared to the biologically active controls. However, this difference became much smaller or disappeared at high application rates indicating that biodegradation dominates at low concentrations but chemical degradation is more important at high concentrations. When co-applied, CP degradation was enhanced with biodegradation remained above 50%, while 1,3-D degradation was either reduced or not changed. Among the fumigants tested, the relative importance of biodegradation was DMDS>CP>MeI>1,3-D. These results are useful for determining effective fumigation rates and for informing regulatory decisions on emission controls under different fumigation scenarios. PMID:26439645

  2. Production of lignocellulose-degrading enzymes employing Fusarium solani F-552.

    PubMed

    Obruca, Stanislav; Marova, Ivana; Matouskova, Petra; Haronikova, Andrea; Lichnova, Andrea

    2012-05-01

    In this work, capability of Fusarium solani F-552 of producing lignocellulose-degrading enzymes in submerged fermentation was investigated. The enzyme cocktail includes hydrolases (cellulases, xylanases, and proteinases) as well as ligninolytic enzymes: manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), and laccase (Lac). To our knowledge, this is the first report on production of MnP, LiP, and Lac together by one F. solani strain. The enzyme productions were significantly influenced by application of either lignocellulosic material or chemical inducers into the fermentation medium. Among them, corn bran significantly enhanced especially productions of cellulases and xylanases (248 and 170 U/mL, respectively) as compared to control culture (11.7 and 29.2 U/mL, respectively). High MnP activity (9.43 U/mL, control 0.45 U/mL) was observed when (+)-catechin was applied into the medium, the yield of LiP was maximal (33.06 U/mL, control 2.69 U/mL) in gallic acid, and Lac was efficiently induced by, 2,2'-azino-bis-[3-ethyltiazoline-6-sulfonate] (6.74 U/mL, not detected in control). Finally, in order to maximize the ligninolytic enzymes yields, a novel strategy of introduction of mild oxidative stress conditions caused by hydrogen peroxide into the fermentation broth was tested. Hydrogen peroxide significantly increased activities of MnP, LiP, and Lac which may indicate that these enzymes could be partially involved in stress response against H(2)O(2). The concentration of H(2)O(2) and the time of the stress application were optimized; hence, when 10 mmol/L H(2)O(2) was applied at the second and sixth day of cultivation, the MnP, LiP, and Lac yields reached 21.67, 77.42, and 12.04 U/mL, respectively.

  3. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  4. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  5. Non-UV light influences the degradation rate of crop protection products.

    PubMed

    Davies, Lawrence O; Bramke, Irene; France, Emma; Marshall, Samantha; Oliver, Robin; Nichols, Carol; Schäfer, Hendrik; Bending, Gary D

    2013-08-01

    Crop protection products (CPPs) are subject to strict regulatory evaluation, including laboratory and field trials, prior to approval for commercial use. Laboratory tests lack environmental realism, while field trials are difficult to control. Addition of environmental complexity to laboratory systems is therefore desirable to mimic a field environment more effectively. We investigated the effect of non-UV light on the degradation of eight CPPs (chlorotoluron, prometryn, cinosulfuron, imidacloprid, lufenuron, propiconazole, fludioxonil, and benzovindiflupyr) by addition of non-UV light to standard OECD 307 guidelines. Time taken for 50% degradation of benzovindiflupyr was halved from 373 to 183 days with the inclusion of light. Similarly, time taken for 90% degradation of chlorotoluron decreased from 79 to 35 days under light conditions. Significant reductions in extractable parent compound occurred under light conditions for prometryn (4%), imidacloprid (8%), and fludioxonil (24%) compared to dark controls. However, a significantly slower rate of cinosulfuron (14%) transformation was observed under light compared to dark conditions. Under light conditions, nonextractable residues were significantly higher for seven of the CPPs. Soil biological and chemical analyses suggest that light stimulates phototroph growth, which may directly and/or indirectly impact CPP degradation rates. The results of this study strongly suggest that light is an important parameter affecting CPP degradation, and inclusion of light into regulatory studies may enhance their environmental realism. PMID:23819841

  6. Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal

    PubMed Central

    Rout, Simon P.; Radford, Jessica; Laws, Andrew P.; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J.; Humphreys, Paul N.

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility. PMID:25268118

  7. Acetamide herbicides and their degradation products in ground water and surface water of the United States, 1993-2003

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Dietze, Julie E.; Thurman, Michael

    2004-01-01

    During 1993 through 2003, the U.S. Geological Survey conducted a number of studies to investigate and document the occurrence, fate, and transport of acetamide herbicides and their degradation products in ground and surface water. As part of these studies, approximately 5,100 water samples were collected and analyzed for the acetamide parent herbicides acetochlor, alachlor, dimethenamid, flufenacet, and metolachlor and their degradation products ethanesulfonic acid, oxanilic acid, and sulfinyl acetic acid. During this period, various analytical methods were developed to detect and measure concentrations of acetamide herbicides and their degradation products in ground water and surface water. Results showed that the degradation products of acetamide herbicides in ground water were detected more frequently and occurred at higher concentrations than their parent compounds. Further study showed that the acetamide herbicides and their degradation products were detected more frequently in surface water than in ground water. In general, the parent compounds were detected at similar or greater frequencies than the degradation products in surface water. The developed methods and data were valuable for acquiring information about the occurrence, fate, and transport of the herbicides and their degradation products and the importance of analyzing for both parent compounds and their degradate products in water-quality studies.

  8. Method for determination of methyl tert-butyl ether and its degradation products in water

    USGS Publications Warehouse

    Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.

    1997-01-01

    An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method

  9. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    PubMed

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time. PMID:26615815

  10. Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation.

    PubMed

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH(2)=N-C(=N-NO(2))-CH=N-CHO or its isomer N(NO(2))=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil.

  11. Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation.

    PubMed

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH(2)=N-C(=N-NO(2))-CH=N-CHO or its isomer N(NO(2))=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil. PMID:18801604

  12. Spectrophotometric and liquid chromatographic determination of trimebutine maleate in the presence of its degradation products.

    PubMed

    El-Gindy, Alaa; Emara, Samy; Hadad, Ghada M

    2003-09-19

    Three methods are presented for the determination of trimebutine maleate (TM) in the presence of its degradation products. The first method was based on a high performance liquid chromatographic (HPLC) separation of TM from its degradation products using an ODS column at ambient temperature with a mobile phase consisting of acetonitrile-5 mM heptane sulfonic acid disodium salt (45:55, v/v, pH 4) with UV detection at 215 nm. The second method depends on using first derivative spectrophotometry (1D) by measurement of the amplitude at 252.2 nm. The third method depends on using first derivative of the ratio spectrophotometry (1DD) by measurement of the amplitude at 282.4 nm where a normalized spectrum of 3,4,5-trimethoxy benzoic acid is used as divisor. The proposed HPLC and 1D methods were used to investigate the kinetics of acidic and alkaline degradation processes. The pH-rate profile of degradation of TM in Britton-Robinson buffer solutions within the pH range 2-11.9 was studied. PMID:12972088

  13. Light Induced Degradation of Eight Commonly Used Pesticides Adsorbed on Atmospheric Particles: Kinetics and Product Study

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Durand, A.; Gligorovski, S.; Wortham, H.; Quivet, E.

    2014-12-01

    Pesticides are widely used all over the world whether in agricultural production or in non-agricultural settings. They may pose a potential human health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. Pesticides are found in the atmosphere removed from the target area by volatilization or wind erosion, and carried over long distances. These compounds are partitioned between the gaseous and particulate atmospheric phases. The increasingly used pesticides are semi-volatile compounds which are usually adsorbed on the surface of the atmospheric particles. These pesticides may undergo chemical and photo-chemical transformation. New compounds may then be formed that could be more hazardous than the primary pesticides. The atmospheric fate and lifetime of adsorbed pesticides on particles are controlled by the these (photo)chemical processes. However, there is a lack of kinetic data regarding the pesticides in the particle phase. This current work focuses on the photolytic degradation of commonly used pesticides in particulate phase. It aims at estimating the photolytic rates and thus the lifetimes of pesticides adsorbed on silica particles as a proxy of atmospheric particles. The following eight commonly used pesticides, cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole, were chosen because of their physico-chemical properties. The photolysis rates of tetraconazole and permethrin were extremely slow ≤ 1.2 · 10-6 s-1. The photolysis rates for the other pesticides were determined in the range of: (5.9 ± 0.3) · 10-6 < k < (1.7 ± 0.1) · 10-4 s-1 from slowest to the fastest: pendimethalin < cyprodinil < deltamethrin < difenoconazole < oxadiazon < fipronil. Finally, the identification of the surface products upon light irradiation was performed, using GC-(QqQ)-MS/MS and LC-(Q-IMS-ToF)-MS/MS. The potentially formed gas-phase products during

  14. Butachlor degradation in tropical soils: effect of application rate, biotic-abiotic interactions and soil conditions.

    PubMed

    Pal, R; Das, P; Chakrabarti, K; Chakraborty, A; Chowdhury, A

    2006-01-01

    The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.

  15. Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production.

    PubMed

    Mathew, Gincy Marina; Mathew, Dony Chacko; Lo, Shou-Chen; Alexios, Georgy Mathew; Yang, Jia-Cih; Sashikumar, Jagathala Mahalingam; Shaikh, Tanveer Mahamadali; Huang, Chieh-Chen

    2013-10-01

    In this work, gut microbes from the macrotermitine termite Odontotermes formosanus the cellulolytic Bacillus and fermentative Clostridium were studied in batch experiments using different carbon substrates to bio-mimic the termite gut for hydrogen production. Their fungus comb aging and the in vitro lignocellulosic degradation of the mango tree substrates by the synergistic interaction of Bacillus, Clostridium and Termitomyces were detected by Solid-state NMR. From the results, Bacillus species acted as a mutualist, by initiating an anaerobic environment for the growth of Clostridium, for bio-hydrogen production and the presence of Termitomyces enhanced the lignocellulosic degradation of substrates in vitro and in vivo. Thus, the synergistic collaboration of these three microbes can be used for termite-derived bio-fuel processing technology.

  16. Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage.

    PubMed

    Ciska, Ewa; Drabińska, Natalia; Narwojsz, Agnieszka; Honke, Joanna

    2016-07-15

    The aim of the study was to investigate the effect of storage on the contents of glucosinolates (GLS) and their degradation products in a boiled white cabbage. A 24h storage at 4 °C resulted in a decrease in GLS content (20-40%, depending on the cooking time applied) in the edible parts. The most significant losses were observed for sinigrin (20-45%), and the least for glucobrassicin (12-32%). Storage had a diversified effect on GLS breakdown products (indole-3-acetonitrile, indole-3-carbinol, ascorbigen and 3,3'-diindolylmethane released from glucobrassicin and 4-methylsulfinylbutanenitrile released from glucoiberin) in the boiled cabbage. The increase in the content of indole-3-acetonitrile, especially considerable within the first 24h of storage (and a simultaneous decrease in glucobrassicin) clearly indicates that degradation of GLS may occur during storage or cooling to 4 °C.

  17. Determination of nitrogen mustard degradation products in water samples using a portable capillary electrophoresis instrument.

    PubMed

    Sáiz, Jorge; Mai, Thanh Duc; Hauser, Peter C; García-Ruiz, Carmen

    2013-07-01

    In this work, a new purpose-made portable CE instrument with a contactless conductivity detector was used for the determination of degradation products of nitrogen mustards in different water samples. The capillary was coated with poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) to avoid analyte-wall interactions. The coating procedure was studied to obtain the best repeatability of the migration time of the analytes. Four different coating procedures were compared; flushing the capillary with the copolymer at 100 psi for 2 min at 60°C provided the best RSD values (<4%). The analytical method was also optimized. The use of 20 mM of MES adjusted to pH 6.0 with His as running buffer allowed a good baseline separation of the three analytes in different water samples without matrix interferences. The method permitted the detection of the three degradation products down to 5 μM. PMID:23686627

  18. [Determination of main degradation products of lignin using reversed-phase high performance liquid chromatography].

    PubMed

    Jiang, Zhijing; Zhu, Junjun; Li, Xin; Lian, Zhina; Yu, Shiyuan; Yong, Qiang

    2011-01-01

    An analytical method using reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the separation and quantitative determination of main degradation products of lignin (4-hydroxybenzoic acid, vanillic acid, syringic acid, 4-hydroxybenzaldehyde, vanillin and syringaldehyde) during the steam exploded pretreatment for corn stovers. The separation was carried out on a C18 column with the mobile phase of acetonitrile-water (containing 1.5% acetic acid) at 30 degrees C at a flow rate of 0.8 mL/min and the detection wavelengths of 254 and 280 nm. Under the optimized conditions, the correlation coefficients of the 6 compounds were between 0.999 9 and 1.000 0. The recoveries of the 6 compounds were all above 96% and the relative standard deviations (n = 6) were less than 2.5%. This method is suitable for the determination of the main degradation products of lignin during the steam exploded pretreatment of lignocellulosics.

  19. 75 FR 32767 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... AGENCY Pesticide Products; Registration Applications AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces receipt of applications to register new uses for pesticide...: Office of Pesticide Programs (OPP) Regulatory Public Docket (7502P), Environmental Protection...

  20. Production of Biomass-Degrading Multienzyme Complexes under Solid-State Fermentation of Soybean Meal Using a Bioreactor

    PubMed Central

    Vitcosque, Gabriela L.; Fonseca, Rafael F.; Rodríguez-Zúñiga, Ursula Fabiola; Bertucci Neto, Victor; Couri, Sonia; Farinas, Cristiane S.

    2012-01-01

    Biomass-degrading enzymes are one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels. This work evaluates the effects of operational conditions on biomass-degrading multienzyme production by a selected strain of Aspergillus niger. The fungus was cultivated under solid-state fermentation (SSF) of soybean meal, using an instrumented lab-scale bioreactor equipped with an on-line automated monitoring and control system. The effects of air flow rate, inlet air relative humidity, and initial substrate moisture content on multienzyme (FPase, endoglucanase, and xylanase) production were evaluated using a statistical design methodology. Highest production of FPase (0.55 IU/g), endoglucanase (35.1 IU/g), and xylanase (47.7 IU/g) was achieved using an initial substrate moisture content of 84%, an inlet air humidity of 70%, and a flow rate of 24 mL/min. The enzymatic complex was then used to hydrolyze a lignocellulosic biomass, releasing 4.4 g/L of glucose after 36 hours of saccharification of 50 g/L pretreated sugar cane bagasse. These results demonstrate the potential application of enzymes produced under SSF, thus contributing to generate the necessary technological advances to increase the efficiency of the use of biomass as a renewable energy source. PMID:23365723

  1. Production of Biomass-Degrading Multienzyme Complexes under Solid-State Fermentation of Soybean Meal Using a Bioreactor.

    PubMed

    Vitcosque, Gabriela L; Fonseca, Rafael F; Rodríguez-Zúñiga, Ursula Fabiola; Bertucci Neto, Victor; Couri, Sonia; Farinas, Cristiane S

    2012-01-01

    Biomass-degrading enzymes are one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels. This work evaluates the effects of operational conditions on biomass-degrading multienzyme production by a selected strain of Aspergillus niger. The fungus was cultivated under solid-state fermentation (SSF) of soybean meal, using an instrumented lab-scale bioreactor equipped with an on-line automated monitoring and control system. The effects of air flow rate, inlet air relative humidity, and initial substrate moisture content on multienzyme (FPase, endoglucanase, and xylanase) production were evaluated using a statistical design methodology. Highest production of FPase (0.55 IU/g), endoglucanase (35.1 IU/g), and xylanase (47.7 IU/g) was achieved using an initial substrate moisture content of 84%, an inlet air humidity of 70%, and a flow rate of 24 mL/min. The enzymatic complex was then used to hydrolyze a lignocellulosic biomass, releasing 4.4 g/L of glucose after 36 hours of saccharification of 50 g/L pretreated sugar cane bagasse. These results demonstrate the potential application of enzymes produced under SSF, thus contributing to generate the necessary technological advances to increase the efficiency of the use of biomass as a renewable energy source.

  2. Reduction of the enniatins A, A₁, B, B₁ by an in vitro degradation employing different strains of probiotic bacteria: identification of degradation products by LC-MS-LIT.

    PubMed

    Roig, M; Meca, G; Ferrer, E; Mañes, J

    2013-08-01

    The degradation of the Fusarium mycotoxins ENs by 9 bacterial strains characteristic of the gastrointestinal tract like Bb. longum, Bb. bifidum, Bb. breve, Bb. adolescentes, Lb. rhamnosus, Lb. casei-casei, S. termofilus, Lb. ruminis, Lb. casei and twenty two strains of Saccharomyces cerevisiae was studied. The fermentations were carried out in the liquid medium of De Man Rogosa Sharpe (MRS) under anaerobic conditions for Bifidobacteria Streptococcus and Lactobacillus, and in Potato Dextrose Broth (PDB) for Saccharomyces strains, during 48 h. The degradation of the bioactive compounds ENs was also studied in a food system composed by wheat flour naturally contaminated by ENs through fermentation by a strain of Fusarium tricinctum. The determination of the ENs in the fermentation mediums was performed using the technique of the liquid chromatography coupled to the mass spectrometry detector in tandem (LC-MS/MS), whereas the identification of the degradation products produced by microbial fermentation was carried out using the technique of the LC coupled to the linear ion trap (LIT). All the bacteria analyzed in this study showed a significant ENs reduction in vitro during the fermentation processes, with degradation data ranging from 5 to the 99%. In the food system, the ENs degradation data evidenced ranged from 1.3 to 49.2%. Also three ENs degradation products were identified.

  3. Toxicity of degradation products of the antifouling biocide pyridine triphenylborane to marine organisms.

    PubMed

    Onduka, Toshimitsu; Ojima, Daisuke; Ito, Mana; Ito, Katsutoshi; Mochida, Kazuhiko; Fujii, Kazunori

    2013-11-01

    We evaluated the acute toxicities of the main degradation products of pyridine triphenylborane (PTPB), namely, diphenylborane hydroxide (DPB), phenylborane dihydroxide (MPB), phenol, and biphenyl, to the alga Skeletonema costatum, the crustacean Tigriopus japonicus, and two teleosts, the red sea bream Pagrus major and the mummichog Fundulus heteroclitus. DPB was the most toxic of the degradation products to all four organisms. The acute toxicity values of DPB for S. costatum, T. japonicus, red sea bream, and mummichog were 55, 70, 100, and 200-310 μg/L, respectively. The degradation products were less toxic than PTPB to S. costatum and T. japonicus; however, the toxicities of DPB and PTPB to the fish species were similar. We also examined changes in the inhibition of growth rate of S. costatum as well as the percentage of immobilization of T. japonicus as end points of toxicity of PTPB after irradiation of PTPB with 432 ± 45 W/m(2) of 290-700 nm wavelength light. After 7 days of irradiation with this light, the concentration of PTPB in the test solutions decreased markedly. A decrease in toxic effects closely coincided with the decrease in the concentration of PTPB caused by the irradiation. PTPB probably accounted for most of the toxicity in the irradiation test solutions. Because the concentrations of PTPB that were acutely toxic to S. costatum and T. japonicus were <10 % of the corresponding concentrations of its degradation products, PTPB probably accounted for most of the toxicity in the irradiation test solutions. PMID:23929384

  4. Primary magnesium production costs for automotive applications

    NASA Astrophysics Data System (ADS)

    Das, Sujit

    2008-11-01

    Focusing on primary magnesium production cost estimates, this paper provides a forecast of the long-term competitiveness of magnesium in automotive applications. Competing magnesium production technologies are considered, with particular emphasis on the long-term viability of cheap supplies using Chinese production technology. Also considered are two yet-to-be commercialized production processes.

  5. Determination and characterization of degradation products of anastrozole by LC-MS/MS and NMR spectroscopy.

    PubMed

    Sitaram, Cheekatla; Rupakula, Ravichandrababu; Reddy, B N

    2011-12-15

    Two new degradation products for Anastrozole active pharmaceutical ingredient (ANZ) have been identified and reported in this paper. The ANZ was subjected to thermal, photolytic, oxidative and base stress conditions prescribed by ICH guidelines. Separation of ANZ from its existing impurities and the two new impurities was achieved by using on Oyster ODS-3 (100 mm×4.6 mm×3.0 μm) column with an isocratic mixture of 10 mM ammonium formate and acetonitrile in the ratio 60:40 (v/v). The flow rate was 0.5 ml min(-1). The elution was monitored at 215 nm. An isocratic stability indicating reverse phase liquid chromatographic (RP-LC) and LC-MS/MS method was developed for the determination of purity and assay of ANZ through forced degradation studies. The two new impurities detected were further subjected to spectroscopic studies. Based on the results obtained from the different spectroscopic studies, these impurities have been characterized as 2,2'-(5-((1H-1,2,4-triazol-1-yl)methyl)-1,3-phenylene)bis(2-methylpropanoicacid) (Diacid) and 2-(3-((1H-1,2,4-triazol-1-yl)methyl)-5-(2-cyanopropan-2-yl)phenyl)-2-methylpropanoicacid (Monoacid). ANZ was found to degrade in base, slightly in oxidative degradation conditions. The degradation products were well resolved from main peak and its impurities thus proved the stability, indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantitation, precision, linearity, accuracy, robustness and system suitability.

  6. Degradation products of 2,4,6-Trinitrotoluene by a microbial consortia

    SciTech Connect

    Ortiz, O.; Parker, C.; Bender, J.

    1995-12-01

    Remediation of contaminated soils can be accomplished using microbial species. Of particular interest is the remediation of explosive contaminated soils. A microbial consortia has been developed which removes TNT by an unexplained mechanism. Our goal is to understand the degradation of TNT by this microbial mat. Constructed mats have been generated in our laboratory by enriching water with ensiled grass and adding specific microbial components for organic degradation. Microbial mats are natural mixed microbial communities dominated by cyanobacterias (blue-green algae). In this research, degradation products of TNT have been identified using GC/MS. Ninety-seven percent of TNT (1000 mg/L), was removed in < 1 day by floating mats placed over TNT-contaminated water in quiescent ponds. Metabolites of TNT, 2, 4-Dinitro-6 amminotoluene and 2-Nitro-4,6 diaminotoluene has been observed after 1 day of mat treatment. A mechanism is postulated for this degradation showing that two of the nitro groups of the TNT molecule are being reduced to amino groups systematically. Anoxic zones in the mat, containing sulfur-reducing bacteria, may account for the reduction of TNT. GC/MS shows significant decreases in metabolite concentrations in 4-7 days, indicating continued degradation of TNT. It has been found by toxicity assays that these metabolites appeared to be nontoxic and nonmutagenic. These results suggest that floating microbial mats may be useful for the decontamination of sites in the environment contaminated with TNT. Further studies using {sup 13}C TNT will focus on the fate of the carbon, to determine the intermediates products prior to transformations into hydrocarbons or utilization by the bacteria consortia.

  7. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI).

    PubMed

    Wang, Hongyu; Liu, Yibing; Jiang, Jia-Qian

    2016-07-01

    This paper investigates the degradation of acetaminophen (AAP) in aqueous solutions by ferrate (VI), aiming to propose the kinetics, pathways and the oxidation products' formation in the AAP degradation. A series of jar tests were undertaken over ferrate (VI) dosages (molar ratios of ferrate (VI):AAP, 5:1 to 25:1) and pH values (4-11). The effects of co-existing ions (0.2-5 mM) and humic acid (10-50 mg l(-1)) on the AAP removal were investigated. Ferrate (VI) can remove 99.6% AAP (from 1000 μg l(-1)) in 60 min under study conditions when majority of the AAP reduction occurred in the first 5 min. The treatment performance depended on the ferrate(VI) dosage, pH and the type and strength of co-existing ions and humic acid. Raising ferrate (VI) dosage with optimal pH 7 improved the AAP degradation. In the presence of humic acid, the AAP degradation by ferrate (VI) was promoted in a short period (<30 min) but then inhibited with increasing in humic acid contents. The presence of Al(3+), CO3(2-) and PO4(3-) ions declined but the existence of K(+), Na(+), Mg(2+) and Ca(2+) ions can improve the AAP removal. The catalytic function of Al(3+) on the decomposition of ferrate (VI) in aqueous solution was found. The kinetics of the reaction between ferrate (VI) and AAP was pseudo first-order for ferrete (VI) and pseudo second-order for AAP. The pseudo rate constant of ferrate (VI) with AAP was 1.4 × 10(-5) L(2) mg(-2) min(-1). Three oxidation products (OPs) were identified and the AAP degradation pathways were proposed.

  8. Degradation of trichloroethene by siderite-catalyzed hydrogen peroxide and persulfate: Investigation of reaction mechanisms and degradation products

    PubMed Central

    Yan, Ni; Liu, Fei; Xue, Qiang; Brusseau, Mark L.; Liu, Yali; Wang, Junjie

    2015-01-01

    A binary catalytic system, siderite-catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82−), was investigated for the remediation of trichloroethene (TCE) contamination. Batch experiments were conducted to investigate reaction mechanisms, oxidant decomposition rates, and degradation products. By using high performance liquid chromatography (HPLC) coupled with electron paramagnetic resonance (EPR), we identified four radicals (hydroxyl (HO·), sulfate (SO4−·), hydroperoxyl (HO2·), and superoxide (O2−·)) in the siderite-catalyzed H2O2-S2O82− system. In the absence of S2O82− (i.e., siderite-catalyzed H2O2), a majority of H2O2 was decomposed in the first hour of the experiment, resulting in the waste of HO·. The addition of S2O82− moderated the H2O2 decomposition rate, producing a more sustainable release of hydroxyl radicals that improved the treatment efficiency. Furthermore, the heat released by H2O2 decomposition accelerated the activation of S2O82−, and the resultant SO4−· was the primary oxidative agent during the first two hours of the reaction. Dichloroacetic acid was firstly detected by ion chromatography (IC). The results of this study indicate a new insight to the reaction mechanism for the catalytic binary H2O2-S2O82− oxidant system, and the delineation of radicals and the discovery of the chlorinated byproduct provide useful information for efficient treatment of chlorinated-solvent contamination in groundwater. PMID:26236152

  9. DEVELOPMENT OF A PRODUCT MODEL FOR CUT-AND-COVER TUNNELS INCLUDING DEGRADATIONS

    NASA Astrophysics Data System (ADS)

    Aruga, Takashi; Yabuki, Nobuyoshi; Arai, Yasushi

    Cut-and-Cover tunnels are constructed on site. The various conditions of environments and techniques of construction make a significant influence on the quality of the tunnel. It is extremely difficult to rebuild the tunnel even if a structural trouble is found once the construction is completed. Thus, suitable maintenance is needed to ensure the tunnel is in a healthy condition. To execute better maintenance, the information on design and construction of the tunnel is vital for inspection of degradation, estimation of occurrence factors and planning of repair or refurbishing works. In this paper, we developed a product model for representing cut-and-cover tunnels including degradations for effective information use in maintenance work. As its first step, we investigated the characteristics of cut-and-cover tunnels and degradations about reinforced concrete members and developed a conceptual model. Then, we implemented the conceptual product model by expanding Industry Foundation Classes (IFC). Finally, we verified the product model by applying it to a simple tunnel.

  10. Anticataractogenesis Mechanisms of Curcumin and a Comparison of Its Degradation Products: An in Vitro Study.

    PubMed

    Liao, Jiahn-Haur; Huang, Yi-Shiang; Lin, Yu-Ching; Huang, Fu-Yung; Wu, Shih-Hsiung; Wu, Tzu-Hua

    2016-03-16

    Curcumin (Cur) exhibits anticataractogenesis activity. This study aimed to compare the activities of Cur with those of its degradation products in a series of in vitro lens protein turbidity assays. The results show that Cur (200 μM) ameliorates selenite-induced crystallin aggregation, and the mean OD value was 0.10 ± 0.02 (p < 0.05), which was significantly different from controls (0.15 ± 0.01) after incubating for 3 days. However, Cur did not significantly inhibit calcium-induced proteolysis after incubating for 3 days. Such results were supported by isothermal titration calorimetry observation that Cur binds with selenite but not with calcium. Presence of Cur and the degradation products examined (ferulic acid, cinnamic acid, vanillin, and vanillic acid) indicates significantly protective activities on lens γ-crystallins after UVC exposure for 3 h. Among the compounds examined, only ferulic acid exhibited a significant inhibitory effect against UVB-induced turbidity with a mean OD of 0.32 ± 0.01 (p < 0.05), which was significantly different from controls (0.49 ± 0.02). The previously reported anticataract effects of Cur may stem not only from Cur but also from its degradation products through various cataractogenesis mechanisms in vitro. PMID:26905955

  11. Photo-assisted electrochemical detection (PAED) following HPLC-UV for the determination of nitro explosives and degradation products

    NASA Astrophysics Data System (ADS)

    Fedorowski, J.; LaCourse, William R.; Lorah, Michelle M.

    2012-06-01

    Continuous efforts implemented by government agencies such as the United States Geological Survey (USGS) aim to manage and protect the integrity of the environment's natural resources. RDX is one of the most frequently utilized nitramine explosives for mining, demolition and munitions purposes in the United States (US). The degradation of RDX in natural environments is of particular importance as a result of the accumulation of consequential degradation products in nature. Specifically, RDX has the potential to be degraded by microorganisms resulting in hazardous levels of harmful degradation products in soil and groundwater. The necessity for the detection of these particular degradation products is emphasized as a consequence of their toxicity as these products are recognized as potential mutagens. Photo-assisted electrochemical detection (PAED) following HPLC-UV is used to develop an analytical method qualified for the assessment of RDX and degradation products. The technique offers unique selectivity possessed by the photochemical reactor coupled to EC detection serving to eliminate the need for repetitive analysis using different column technologies. Furthermore, on-line sample pretreatment is developed and optimized specifically for the preparation of samples consisting of RDX and degradation products. Analytical figures of merit determined for all target analytes using on-line SPE-HPLC-UV-PAED revealed detection limits in the sub part per billion range for RDX and degradation product MEDINA. The effectiveness of the method is exemplified in collaborative studies with the USGS in monitoring the degradation of RDX and formation of degradation products once the nitro explosive is subject to anaerobic microorganisms WBC-2.

  12. Identification of degradation products of thiram in water, soil and plants using LC-MS technique.

    PubMed

    Gupta, Bina; Rani, Manviri; Kumar, Rahul; Dureja, Prem

    2012-09-01

    In order to evaluate the deleterious effects of exposure to pesticides on a target population, a comprehensive study on their degradation in the various segments of ecosystem under varying environmental conditions is needed. In view of this, a study has been carried out on the metabolic pathways of thiram, a dithiocarbamate fungicide, in a variety of matrices namely water and soil under controlled conditions and plants in field conditions. The identification of degradation products was carried out in samples collected at various time points using LC-MS. The degradation products identified can be rationalized as originating by a variety of processes like hydrolysis, oxidation, N-dealkylation and cyclization. As a result of these processes the presence of some metabolites like dimethyl dithiocarbamate, bis(dimethyl carbamoyl) disulphide, bis(dimethyl dithiocarbamoyl) trisulphide and N-methyl-amino-dithiocarbamoyl sulphide was observed in all the cases. However, some different metabolites were observed with the change in the matrix or its characteristics such as cyclised products 2(N, N-dimethyl amino)thiazoline carboxylic acid and 2-thioxo-4-thiazolidine were observed only in plants. The investigations reflect that degradation initiates with hydrolysis, subsequently oxidation/dealkylation, followed by different types of reactions. The pathways seem to be complex and dependent on the matrices. Dimethyl dithiocarbamate and oxon metabolites, which are more toxic than parent compound, seem to persist for a longer time. Results indicate persistence vis-a-vis toxicity of pesticide and its metabolites and also provide a data bank of metabolites for forensic and epidemiological investigations.

  13. Field degradation of aminopyralid and clopyralid and microbial community response to application in Alaskan soils.

    PubMed

    Tomco, Patrick L; Duddleston, Khrystyne N; Schultz, Emily Jo; Hagedorn, Birgit; Stevenson, Timothy J; Seefeldt, Steven S

    2016-02-01

    High-latitude regions experience unique conditions that affect the degradation rate of agrochemicals in the environment. In the present study, data collected from 2 field sites in Alaska, USA (Palmer and Delta) were used to generate a kinetic model for aminopyralid and clopyralid degradation and to describe the microbial community response to herbicide exposure. Field plots were sprayed with herbicides and sampled over the summer of 2013. Quantification was performed via liquid chromatrography/tandem mass spectrometry, and microbial diversity was assessed via next-generation sequencing of bacterial 16S ribosomal ribonucleic acid (rRNA) genes. Both compounds degraded rapidly via pseudo-first-order degradation kinetics between 0 d and 28 d (t1/2  = 9.1-23.0 d), and then degradation slowed thereafter through 90 d. Aminopyralid concentration was 0.048 μg/g to 0.120 μg/g at 90 d post application, whereas clopyralid degraded rapidly at the Palmer site but was recovered in Delta soil at a concentraction of 0.046 μg/g. Microbial community diversity was moderately impacted by herbicide treatment, with the effect more pronounced at Delta. These data predict reductions in crop yield when sensitive plants (potatoes, tomatoes, marigolds, etc.) are rotated onto treated fields. Agricultural operations in high-latitude regions, both commercial and residential, rely heavily on cultivation of such crops and care must be taken when rotating.

  14. On the Oxidative Degradation of Nadic End-Capped Polyimides. 3; Synthesis and Characterization of Model Compounds for End-Cap Degradation Products

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Johnston, J. Christopher; Frimer, Aryeh A.; Gilinsky-Sharon, Pessia

    1999-01-01

    The oxidative degradation of PMR (for polymerization of monomeric reactants) polyimides at elevated temperatures was followed by cross-polarized magic angle spinning (CP-MAS) NMR. Labeling of selected sites in the polymers with C-13 allowed for direct observation of the transformations arising from oxidation processes. The formation of several degradation products has been proposed to be occurring in the cross-links derived from the nadic end caps on oxidation. Model compounds have been synthesized and characterized by CPMAS NMR with both normal and delayed decoupling to distinguish between protonated and unprotonated carbons. Comparison of these spectra to predicted chemical shifts of proposed products for the aged polymer provides further insight to degradation occurring in the cross-linked moieties.

  15. Phosphorus, carbon- and nitrogen interactions in productive and degraded tropical pastures

    NASA Astrophysics Data System (ADS)

    Oberson, A.; Hegglin, D. D.; Nesper, M.; Rao, I.; Fonte, S.; Ramirez, B.; Velasquez, J.; Tamburini, F.; Bünemann, E. K.; Frossard, E.

    2011-12-01

    Pastures are the main land use in deforested areas of tropical South America. The highly weathered soils of these regions usually have low total and available phosphorus (P) contents. Low P availability can strongly limit plant and animal productivity and other soil ecosystem functions. Most introduced pastures of Brachiaria spp. are grass-alone (GA) while some are grass-legume (GL) pastures. The majority of the introduced pastures, particularly the grass-alone are at some state of degradation (GD). Pasture degradation induces severe loss of plant biomass production, with drastic ecological and economic implications. Although the importance of P deficiency in pasture degradation has been recognized, the knowledge generated on stoichiometry of carbon (C), nitrogen (N) and P along pathways of the nutrient cycles of pastures, with different botanical composition and productivity, has been very limited. We will present results of a case study realized during 2010 to 2011 in the forest margins agro-ecosystem of the department of Caquetá, Colombia. Our objectives were to determine: i) whether P availability is lower in degraded compared to productive pastures, and ii) whether the introduction of legumes in the pasture increases P availability through enhanced biological P cycling through plant growth, plant litter decomposition and the soil microbial biomass; and iii) whether pasture types (GA vs GL) and the state of pasture degradation affect the C:N:P ratios in nutrient pools of the soil-plant system. An on-farm study was conducted on nine farms in the department of Caquetá, Colombia. On every farm three different pasture types were studied: degraded grass alone pastures (GD), productive grass-alone pastures (GA) and productive grass-legume pastures (GL). Basic soil characteristics and indicators on soil P status, microbial P cycling, plant biomass production, plant litter deposition and nutrient concentrations in plant tissue were determined. Analysis of P, C and N

  16. Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria

    SciTech Connect

    Kazunga, C.; Aitken, M.D.

    2000-05-01

    Pyrene is a regulated pollutant at sites contaminated with polycyclic aromatic hydrocarbons (PAH). It is mineralized by some bacteria but is also transformed to nonmineral products by a variety of other PAH-degrading bacteria. The authors examined the formation of such products by four bacterial strains and identified and further characterized the most apparently significant of these metabolites. Pseudomonas stutzeri strain P16 and Bacillus cereus strain P21 transformed pyrene primarily to cis-4,5-dihydro-4,5-dihydroxypyrene (PYRdHD), the first intermediate in the known pathway for aerobic bacterial mineralization of pyrene. Sphingomonas yanoikuyae strain R1 transformed pyrene to PYRdHD and pyrene-4,5-dione (PYRQ). Both strain R1 and Pseudomonas saccharophila strain P15 transform PYRdHD to PYRQ nearly stoichiometrically, suggesting that PYRQ is formed by oxidation of PYRdHD to 4,5-dihydroxypyrene and subsequent autoxidation of this metabolite. A pyrene-mineralizing organism, Mycobacterium strain PYR-1, also transforms PYRdHD to PYRQ at high initial concentrations of PYRdHD. However, strain PYR-1 is able to use both PYRdHD and PYRQ as growth substrates. PYRdHD strongly inhibited phenanthrene degradation by strains P15 and R1 but had only a minor effect on strains P16 and P21. At their aqueous saturation concentrations, both PYRdHD and PYRQ severely inhibited benzo[a]pyrene mineralization by strains P15 and R1. Collectively, these findings suggest that products derived from pyrene transformation have the potential to accumulate in PAH-contaminated systems and that such products can significantly influence the removal of other PAH. However, these products may be susceptible to subsequent degradation by organisms able to metabolize pyrene more extensively if such organisms are present in the system.

  17. 75 FR 71697 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ...-RR) was published in a separate notice (see 75 FR 11175; March 10, 2010; FRL-8811-6). File symbol... AGENCY Pesticide Products; Registration Applications AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA has received applications to register pesticide products containing...

  18. Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples.

    PubMed

    Alvarez-Rodríguez, María Luisa; Belloch, Carmela; Villa, Mercedes; Uruburu, Federico; Larriba, Germán; Coque, Juan José R

    2003-03-14

    The presence of guaiacol in cork stoppers is responsible for some cases of cork taint causing unpleasant alterations to wine. We have performed a characterization of the cork-associated microbiota by isolating 55 different microorganisms: eight yeast, 14 filamentous fungi or molds, 13 actinomycetes and 20 non-filamentous bacteria. A screening for degradation of vanillic acid and guaiacol production showed that none of the filamentous fungi could achieve any of these processes. By contrast, five of the eight yeast strains isolated were able to degrade vanillic acid, although it was not converted to guaiacol. Guaiacol production was only detected in four bacterial strains: one isolate of Bacillus subtilis and three actinomycetes, Streptomyces sp. A3, Streptomyces sp. A5 and Streptomyces sp. A13, were able to accumulate this compound in both liquid media and cultures over cork. These results suggest that guaiacol-mediated cork taint should be attributed to the degradative action of vanillic acid by bacterial strains growing on cork.

  19. Advanced oxidation kinetics and mechanism of preservative propylparaben degradation in aqueous suspension of TiO2 and risk assessment of its degradation products.

    PubMed

    Fang, Hansun; Gao, Yanpeng; Li, Guiying; An, Jibin; Wong, Po-Keung; Fu, Haiying; Yao, Side; Nie, Xiangping; An, Taicheng

    2013-03-19

    The absolute kinetic rate constants of propylparaben (PPB) in water with different free radicals were investigated, and it was found that both hydroxyl radicals (HO(•)) and hydrated electrons could rapidly react with PPB. The advanced oxidation kinetics and mechanisms of PPB were investigated using photocatalytic process as a model technology, and the degradation was found to be a pseudo-first-order model. Oxidative species, particularly HO(•), were the most important reactive oxygen species mediating photocatalytic degradation of PPB, and PPB degradation was found to be significantly affected by pH because it was controlled by the radical reaction mechanism and was postulated to occur primarily via HO(•)-addition or H-abstraction reactions on the basis of pulse radiolysis measurements and observed reaction products. To investigate potential risk of PPB to humans and aqueous organisms, the estrogenic assays and bioassays were performed using 100 μM PPB solution degraded by photocatalysis at specific intervals. The estrogenic activity decreased as PPB was degraded, while the acute toxicity at three trophic levels first increased slowly and then decreased rapidly as the total organic carbon decreased during photocatalytic degradation.

  20. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  1. Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils.

    PubMed

    Yu, Yong; Liu, Yin; Wu, Laosheng

    2013-06-01

    Pharmaceuticals and personal care products (PPCPs) are one class of the most urgent emerging contaminants, which have drawn much public and scientific concern due to widespread contamination in aquatic environment. Most studies on the environmental fate and behavior of PPCPs have focused on nonsteroidal anti-inflammatory drugs. Some other compounds with high concentrations were less mentioned. In this study, sorption and degradation of five selected PPCPs, including bisphenol A (BPA), carbamazepine (CBZ), gemfibrozil (GFB), octylphenol (OP), and triclosan (TCS) have been investigated using three different soils. Sorption isotherms of all tested PPCPs in soils were well described by Freundlich equation. TCS and OP showed moderate to strong sorption, while the sorption of GFB and CBZ in soils was negligible. Degradation of PPCPs in three soils was generally fitted first-order exponential decay model, with half-lives (t 1/2) varying from 9.8 to 39.1 days. Sterilization could prolong the t 1/2 of PPCPs in soil, indicating that microbial activity played an important role in the degradation of these chemicals in soils. Degradation of PPCPs in soils was also influenced by the soil organic carbon (f oc) contents. Results from our data show that sorption to the soils varied among the different PPCPs, and their sorption affinity on soil followed the order of TCS > OP > BPA > GFB > CBZ. The degradation of the selected PPCPs in soil was influenced by the microbial activity and soil type. The poor sorption and relative persistence of CBZ suggest that it may pose a high leaching risk for groundwater contamination when recycled for irrigation.

  2. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    PubMed

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. PMID:27062241

  3. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    PubMed

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications.

  4. A novel UV degradation product of Ebastine: isolation and characterization using Q-TOF, NMR, IR and computational chemistry.

    PubMed

    Rapolu, Ravi; Pandey, Avadhesh Kumar; Raju, Ch Krishnam; Ghosh, Kaushik; Srinivas, Kolupula; Awasthi, Atul; Navalgund, Sameer G; Surendranath, Koduru V

    2015-03-25

    Forced degradation of Ebastine (1-(4-(1,1-dimethylethyl)phenyl)-4-(4-(diphenylmethoxy) piperidin-1-yl)butan-1-one) drug substance in ultraviolet light condition resulted into an unknown significant degradation product. This degradation product was analyzed using a newly developed reverse-phase HPLC, where it was eluted at 2.73 relative retention time to Ebastine peak. UV degradation product was isolated from reaction mass using preparative HPLC and its structure was elucidated using high resolution MS, multidimensional NMR and FTIR spectroscopic techniques. UV degradation product has been characterized as 2-(4-(benzhydryloxy)piperidin-1-yl)-1-(4-(tert-butyl)phenyl)-2-methylcyclopropanol. (1)H and (13)C NMR chemical shift values were generated using computational chemistry for possible two diastereomers (7R10S and 7R10R) and later 7R10R was confirmed (and its enantiomer) as final structure given it showed close agreement with experimental NMR data. Formation of UV degradation product as a recemic mixture was further verified by computational chemistry evaluation, chiral HPLC and polarimetery. To best of our knowledge, this is a novel degradation product which is not discussed at any form of publication yet. PMID:25679093

  5. Isolation of oxidative degradation products of atorvastatin with supercritical fluid chromatography.

    PubMed

    Klobčar, Slavko; Prosen, Helena

    2015-12-01

    The isolation of four oxidative degradation products of atorvastatin using preparative high-performance liquid chromatography applying at least two chromatographic steps is known from the literature. In this paper it is shown that the same four impurities could be isolated from similarly prepared mixtures in only one step using supercritical fluid chromatography. The methods for separation were developed and optimized. The preparation of the mixtures was altered in such a way as to enhance the concentration of desired impurities. Appropriate solvents were applied for collection of separated impurities in order to prevent degradation. The structures of the isolated impurities were confirmed and their purity determined. The preparative supercritical fluid chromatography has proven to be superior to preparative HPLC regarding achieved purity of standards applying fewer chromatographic as well as isolation steps.

  6. Identification and Characterization of Two New Degradation Products of Saikosaponin A under Acid Hydrolytic Conditions.

    PubMed

    Li, Jun; Xu, Qiang; Jiang, Hua

    2016-01-01

    Saikosaponin (SS) A is a compound with various pharmacological properties and is easily degraded into SS-B1 and SS-G under acid conditions. In the present work, two new degradation products of SS-A, formed under acid hydrolytic conditions, were detected and isolated using analytical and semi-preparative liquid chromatography technology; furthermore, their structures were characterized as hydroxy-saikosaponin A and SS-B2 by spectral analysis, which is not only essential in stability-indicating method development and validation, but also could be used as a worst case scenario to assess the analytical method performance of SS-A. Moreover, their structural transformation pathways are also proposed. PMID:27649123

  7. Lignin degradation, ligninolytic enzymes activities and exopolysaccharide production by Grifola frondosa strains cultivated on oak sawdust

    PubMed Central

    Fernandes, Nona A.; Isikhuemhen, Omoanghe S.; Ohimain, Elijah I.

    2011-01-01

    Fourteen strains of Grifola frondosa (Dicks.) S. F. Gray, originating from different regions (Asia, Europe and North America) were tested for lignin degradation, ligninolytic enzyme activities, protein accumulation and exopolysaccharide production during 55 days of cultivation on oak sawdust. Lignin degradation varied from 2.6 to7.1 % of dry weight of the oak sawdust substrate among tested strains. The loss of dry matter in all screened fungi varied between 11.7 and 33.0%, and the amount of crude protein in the dry substrate varied between 0.94 to 2.55%. The strain, MBFBL 596, had the highest laccase activity (703.3 U/l), and the maximum peroxidase activity of 22.6 U/l was shown by the strain MBFBL 684. Several tested strains (MBFBL 21, 638 and 662) appeared to be good producers of exopolysaccharides (3.5, 3.5 and 3.2 mg/ml respectively). PMID:24031728

  8. Forced degradation of fingolimod: effect of co-solvent and characterization of degradation products by UHPLC-Q-TOF-MS/MS and 1H NMR.

    PubMed

    Patel, Prinesh N; Kalariya, Pradipbhai D; Gananadhamu, S; Srinivas, R

    2015-11-10

    Fingolimod (FGL), an immunomodulator drug for treating multiple sclerosis, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per International Conference on Harmonization specified conditions. The drug showed extensive degradation under base hydrolysis, however, it was stable under all other conditions. A total of three degradation products (DPs) were observed. The chromatographic separation of the drug and its degradation products was achieved on a Fortis C18 (100×2.1mm, 1.7μm) column with a mobile phase composed of 0.1% formic acid (Solvent A) and acetonitrile (Solvent B) in gradient mode. All the DPs were identified and characterized by liquid chromatography-quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) in combination with accurate mass measurements. The major DP was isolated and characterized by Nuclear Magnetic resonance spectroscopy. This is a typical case of degradation where acetonitrile used as co-solvent in stress studies, reacts with FGL in base hydrolytic conditions to produce acetylated DPs. Hence, it can be suggested that acetonitrile is not preferable as a co-solvent for stress degradation of FGL. The developed UHPLC method was validated as per ICH guidelines.

  9. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products.

    PubMed

    Tantis, Iosif; Bousiakou, Leda; Frontistis, Zacharias; Mantzavinos, Dionissios; Konstantinou, Ioannis; Antonopoulou, Maria; Karikas, George-Albert; Lianos, Panagiotis

    2015-08-30

    Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC-MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7×10(-4)min(-1) under low intensity UVA irradiation of 1.5mWcm(-2) in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6×10(-4)min(-1) by applying a forward bias of +0.6V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC-MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  10. Forced degradation of fingolimod: effect of co-solvent and characterization of degradation products by UHPLC-Q-TOF-MS/MS and 1H NMR.

    PubMed

    Patel, Prinesh N; Kalariya, Pradipbhai D; Gananadhamu, S; Srinivas, R

    2015-11-10

    Fingolimod (FGL), an immunomodulator drug for treating multiple sclerosis, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per International Conference on Harmonization specified conditions. The drug showed extensive degradation under base hydrolysis, however, it was stable under all other conditions. A total of three degradation products (DPs) were observed. The chromatographic separation of the drug and its degradation products was achieved on a Fortis C18 (100×2.1mm, 1.7μm) column with a mobile phase composed of 0.1% formic acid (Solvent A) and acetonitrile (Solvent B) in gradient mode. All the DPs were identified and characterized by liquid chromatography-quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) in combination with accurate mass measurements. The major DP was isolated and characterized by Nuclear Magnetic resonance spectroscopy. This is a typical case of degradation where acetonitrile used as co-solvent in stress studies, reacts with FGL in base hydrolytic conditions to produce acetylated DPs. Hence, it can be suggested that acetonitrile is not preferable as a co-solvent for stress degradation of FGL. The developed UHPLC method was validated as per ICH guidelines. PMID:26279369

  11. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products.

    PubMed

    Tantis, Iosif; Bousiakou, Leda; Frontistis, Zacharias; Mantzavinos, Dionissios; Konstantinou, Ioannis; Antonopoulou, Maria; Karikas, George-Albert; Lianos, Panagiotis

    2015-08-30

    Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC-MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7×10(-4)min(-1) under low intensity UVA irradiation of 1.5mWcm(-2) in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6×10(-4)min(-1) by applying a forward bias of +0.6V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC-MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture. PMID:25855613

  12. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  13. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  14. CANE FIBERBOARD DEGRADATION WITHIN THE 9975 SHIPPING PACKAGE DURING LONG-TERM STORAGE APPLICATION

    SciTech Connect

    Daugherty, W.; Dunn, K.; Hackney, B.

    2013-06-19

    The 9975 shipping package is used as part of the configuration for long-term storage of special nuclear materials in the K Area Complex at the Savannah River Site. The cane fiberboard overpack in the 9975 package provides thermal insulation, impact absorption and criticality control functions relevant to this application. The Savannah River National Laboratory has conducted physical, mechanical and thermal tests on aged fiberboard samples to identify degradation rates and support the development of aging models and service life predictions in a storage environment. This paper reviews the data generated to date, and preliminary models describing degradation rates of cane fiberboard in elevated temperature – elevated humidity environments.

  15. Toward Understanding Amines and Their Degradation Products from Postcombustion CO2 Capture Processes with Aerosol Mass Spectrometry

    PubMed Central

    2015-01-01

    Amine-based postcombustion CO2 capture (PCCC) is a promising technique for reducing CO2 emissions from fossil fuel burning plants. A concern of the technique, however, is the emission of amines and their degradation byproducts. To assess the environmental risk of this technique, standardized stack sampling and analytical methods are needed. Here we report on the development of an integrated approach that centers on the application of a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) for characterizing amines and PCCC-relevant species. Molecular characterization is achieved via ion chromatography (IC) and electrospray ionization high-resolution mass spectrometry (ESI-MS). The method has been optimized, particularly, by decreasing the AMS vaporizer temperature, to gain quantitative information on the elemental composition and major nitrogen-containing species in laboratory-degraded amine solvents commonly tested for PCCC applications, including ethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP). The AMS-derived nitrogen-to-carbon (N/C) ratios for the degraded solvent and product mixtures agree well with the results from a total organic carbon and total nitrogen (TOC/TN) analyzer. In addition, marker ions identified in the AMS spectra are used to estimate the mass contributions of individual species. Overall, our results indicate that this new approach is suitable for characterizing PCCC-related mixtures as well as organic nitrogen species in other sample types. As an online instrument, AMS can be used for both real-time characterization of emissions from operating PCCC plants and ambient particles in the vicinity of the facilities. PMID:24617831

  16. Effects of the benzoxazolinone BOA, selected degradation products and structure related pesticides on soil organisms.

    PubMed

    Coja, Tamara; Idinger, Jacqueline; Blümel, Sylvia

    2006-02-01

    The benzoxazolinone BOA and the degradation products APO, AAPO and HPAA, as well as four structure related compounds to BOA, were tested for their lethal and sublethal effects on the collembola Folsomia candida and on the carabid beetle Poecilus cupreus applying validated standard laboratory methods. According to the results of the recommended risk assessment for plant protection products (EPPO, 2003), BOA and its structure related compounds carbendazim, benoxacor and benazolin (and additionally the formulated product Cresopur) were classified as low risk compounds for both test organisms. Phosalone was of high risk for F. candida. APO, AAPO and HPAA were of medium risk for F. candida, but were rated as low risk compounds for P. cupreus at the tested rates of about 2 mg/kg substrate. However, as the BOA degradation products have been found to occur at field rates below 0.2 mg/kg substrate or are often even not detectable, it is assumed that their potential risk for both non-target soil organisms in the field will be acceptable.

  17. Mechanisms of product formation from the pyrolytic thermal degradation of catechol.

    PubMed

    Lomnicki, Slawomir; Truong, Hieu; Dellinger, Barry

    2008-09-01

    Catechol has been identified as one of the most abundant organic products in tobacco smoke and a major molecular precursor for semiquinone type radicals in the combustion of biomass material. The high-temperature gas-phase pyrolysis of catechol under hydrogen-rich and hydrogen-lean conditions was studied using a fused-silica tubular flow reactor coupled to an in-line GC/MS analytical system. Thermal degradation of catechol over temperature range of 250-1000 degrees C with a reaction time of 2.0s yielded a variety products including phenol, benzene, dibenzofuran, dibenzo-p-dioxin, phenylethyne, styrene, indene, anthracene, naphthalene, and biphenylene. Ortho-benzoquinone which is typically associated with the presence of semiquinone radicals was not observed and is proposed to be the result of fast decomposition reactions that lead to a variety of other reaction products. This is in contrast to the decomposition of hydroquinone that produced para-benzoquinone as the major product. A detailed mechanism of the degradation pathway of catechol is proposed.

  18. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum.

    PubMed

    Leite, Giuseppe G F; Figueirôa, Juciane V; Almeida, Thiago C M; Valões, Jaqueline L; Marques, Walber F; Duarte, Maria D D C; Gorlach-Lira, Krystyna

    2016-03-01

    Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016. PMID:26588432

  19. 75 FR 11884 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... affected entities may include, but are not limited to: Crop production (NAICS code 111). Animal production..., Greensboro, NC 27419-8300. Active Ingredient: Fluazifop. Proposed Uses: Bananas, citrus, grapes, plantains...-emergence applications to established seed production grass fields in the states of Idaho, Oregon,...

  20. The preliminary discharging characterization of a novel APGD plume and its application in organic contaminant degradation

    NASA Astrophysics Data System (ADS)

    Chen, Guangliang; Chen, Shihua; Zhou, Mingyan; Feng, Wenran; Gu, Weichao; Yang, Size

    2006-11-01

    An atmospheric pressure glow discharge plume (APGD-p) using a dielectric barrier discharge reactor with one conductive liquid electrode was designed in our study. The preliminary characteristics of the plume and application in the degradation of a dye, methyl violet 5BN (MV-5BN), were presented in this paper. The APGD reactor produced a cold plasma plume with temperature not higher than 320 K at power 5-50 W. The MV-5BN solution as a probe for dye wastewater was treated by the downstream gases of the plasma plume. The results indicated that the active argon (Ar) and nitrogen (N2) gases had little effect on the MV-5BN degradation, but the air and oxygen (O2) gas depleted the organic molecules effectively. In particular, the downstream O2 gas degraded the dye molecules entirely.

  1. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: A typical case of alteration of degradation pathway of one drug by another.

    PubMed

    Handa, Tarun; Singh, Saranjit; Singh, Inder Pal

    2014-02-01

    An increasing interest is being shown throughout the world on the use of fixed-dose combinations of drugs in the therapy of select diseases, like cardiovascular diseases, due to their multiple advantages. Though the main criterion for combining drugs in a single dosage form is the rationale, but consideration like stability of formulation is equally important, due to an added aspect of drug-drug interaction. The objective of this study was to evaluate interaction among the drugs in an antihypertensive combination of nifedipine and atenolol. Nifedipine is a known light sensitive drug, which degrades via intra-molecular mechanisms to nitro- and nitroso-pyridine analogs, along with a few minor secondary products that are formed through inter-molecular interactions amongst primary degradation products and their intermediates. Atenolol is reasonably stable weakly basic drug that is mainly hydrolyzed at acetamide terminal amide moiety to its corresponding carboxylic acid. To the best of our knowledge, there is no known information on chemical compatibility among the two drugs. The present study involved subjecting of nifedipine, atenolol and their combination to a variety of accelerated and stress conditions. HPLC studies revealed formation of a new product in the mixture of two drugs (∼2%), which was also generated from nifedipine alone, but at trace levels (<0.1%). The product was isolated by preparative chromatography and subjected to indepth studies for its characterization. Ultra-violet, FT-IR, mass spectrometric and nuclear magnetic resonance spectroscopic studies highlighted that the principal photo-degradation pathway of nifedipine was modified and diverted in the presence of atenolol. To verify the same, a study was conducted employing two other β-blockers with similar structures to atenolol, and the same product was formed in relatively higher quantity therein also. The new product is postulated to be produced as a result of rearrangement of hydroxylamine

  2. Degradation Kinetics and Mechanism of a β-Lactam Antibiotic Intermediate, 6-Aminopenicillanic Acid, in a New Integrated Production Process.

    PubMed

    Su, Min; Sun, Hua; Zhao, Yingying; Lu, Aidang; Cao, Xiaohui; Wang, Jingkang

    2016-01-01

    In an effort to promote sustainability and to reduce manufacturing costs, the traditional production process for 6-aminopenicillanic acid (6-APA) has been modified to include less processing units. The objectives of this study are to investigate the degradation kinetics of 6-APA, to propose a reasonable degradation mechanism, and to optimize the manufacturing conditions within this new process. A series of degradation kinetic studies were conducted in the presence of impurities, as well as at various chemical and physical conditions. The concentrations of 6-APA were determined by high-performance liquid chromatography. An Arrhenius-type kinetic model was established to give a more accurate prediction on the degradation rates of 6-APA. A hydrolysis degradation mechanism is shown to be the major pathway for 6-APA. The degradation mechanisms and the kinetic models for 6-APA in the new system enable the design of a good manufacturing process with optimized parameters. PMID:26852849

  3. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment.

    PubMed

    Solliec, Morgan; Roy-Lachapelle, Audrey; Gasser, Marc-Olivier; Coté, Caroline; Généreux, Mylène; Sauvé, Sébastien

    2016-02-01

    The fate of antimicrobial active compound residues in the environment, and especially antibiotics used in swine husbandry are of particular interest for their potential toxicity and contribution to antibiotic resistance. The presence of relatively high concentrations of bioactive compounds has been reported in agricultural areas but few information is available on their degradation products. Veterinary antibiotics reach terrestrial environments through many routes, including application of swine manure to soils. The objectives of this project were first, to develop an analytical method able to quantify and identify veterinary antibiotics and their degradation products in manure, soil and water samples; and second, to study the distribution of these target compounds in soils and drainage waters. A brief evaluation of their potential toxicity in the environment was also made. In order to achieve these objectives, liquid chromatography coupled to high-resolution mass spectrometry was used for its ability to quantify contaminants with sensitivity and selectivity, and its capacity to identify degradation products. Samples of manure, soil and water came from a long-term experimental site where swine manure containing veterinary antibiotics has been applied for many years. In this study, tetracycline antibiotics were found at several hundred μg L(-1) in the swine manure slurry used for fertilization, several hundred of ng L(-1) in drainage waters and several ng g(-1) in soils, while degradation products were sometimes found at concentrations higher than the parent compounds.

  4. Isolation, Characterization of a Potential Degradation Product of Aspirin and an HPLC Method for Quantitative Estimation of Its Impurities.

    PubMed

    Acharya, Subasranjan; Daniel, Alex; Gyadangi, Bharath; Ramsamy, Sriramulu

    2015-10-01

    In this work, a new degradation product of Aspirin was isolated, characterized and analyzed along with other impurities. New unknown degradation product referred as UP was observed exceeding the limit of ICH Q3B identification thresholds in the stability study of Aspirin and Dipyridamole capsule. The UP isolated from the thermal degradation sample was further studied by IR, Mass and (1)H NMR spectrometry, revealing structural similarities with the parent molecule. Finally, UP was identified as a new compound generated from the interaction of Aspirin and Salicylic acid to form a dehydrated product. A specific HPLC method was developed and validated for the analysis of UP and other Aspirin impurities (A, B, C, E and other unknown degradation products). The proposed method was successfully employed for estimation of Aspirin impurities in a pharmaceutical preparation of Aspirin (Immediate Release) and Dipyridamole (Extended Release) Capsules.

  5. Preparation, degradation and in vitro release of ciprofloxacin-eluting ureteral stents for potential antibacterial application.

    PubMed

    Ma, Xiaofei; Xiao, Yan; Xu, Heng; Lei, Kun; Lang, Meidong

    2016-09-01

    Drug-eluting stents with biodegradable polymers as reservoirs have shown great potential in the application of interventional therapy due to their capability of local drug delivery. Herein, poly(l-lactide-co-ε-caprolactone) (PLCL) with three different compositions as carriers for ciprofloxacin lactate (CIP) was coated on ureteral stents by the dipping method. To simulate a body environment, degradation behavior of PLCL as both the bulk film and the stent coating was evaluated in artificial urine (AU, pH6.20) respectively at 37°C for 120days by tracing their weight/Mn loss, water absorption and surface morphologies. Furthermore, the release profile of the eluting drug CIP on each stent exhibited a three-stage pattern, which was greatly affected by the degradation behavior of PLCL except for the burst stage. Interestingly, the degradation results on both macroscopic and molecular level indicated that the release mechanism at stage I was mainly controlled by chain scission instead of the weight loss or morphological changes of the coatings. While for stage II, the release profile was dominated by erosion resulting from the hydrolysis reaction autocatalyzed by acidic degradation residues. In addition, ciprofloxacin-loaded coatings displayed a significant bacterial resistance against E. coli and S. aureus without obvious cytotoxicity to Human foreskin fibroblasts (HFFs). Our results suggested that PLCL copolymers with tunable degradation rate as carriers for ciprofloxacin lactate could be used as a promising long-term antibacterial coating for ureteral stents.

  6. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium?

    PubMed

    Shen, Xi-Hui; Zhou, Ning-Yi; Liu, Shuang-Jiang

    2012-07-01

    With the implementation of the well-established molecular tools and systems biology techniques, new knowledge on aromatic degradation and assimilation by Corynebacterium glutamicum has been emerging. This review summarizes recent findings on degradation of aromatic compounds by C. glutamicum. Among these findings, the mycothiol-dependent gentisate pathway was firstly discovered in C. glutamicum. Other important knowledge derived from C. glutamicum would be the discovery of linkages among aromatic degradation and primary metabolisms such as gluconeogenesis and central carbon metabolism. Various transporters in C. glutamicum have also been identified, and they play an essential role in microbial assimilation of aromatic compounds. Regulation on aromatic degradation occurs mainly at transcription level via pathway-specific regulators, but global regulator(s) is presumably involved in the regulation. It is concluded that C. glutamicum is a very useful model organism to disclose new knowledge of biochemistry, physiology, and genetics of the catabolism of aromatic compounds in high GC content Gram-positive bacteria, and that the new physiological properties of aromatic degradation and assimilation are potentially important for industrial applications of C. glutamicum.

  7. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3: efficiency, product and mechanism.

    PubMed

    Xu, Bingbing; Chen, Zhonglin; Qi, Fei; Ma, Jun; Wu, Fengchang

    2010-07-15

    N-nitrosodiethylamine (NDEA) is a member of nitrosamines, which is strong carcinogenic. In order to explore an effective treatment method for NDEA removal from water, sole UV irradiation and UV/O(3) were carried out in this study. The removal efficiency, degradation products and pathways were compared between those two processes. Results showed that NDEA removal efficiency achieved 99% within 15 min by both UV and UV/O(3). Degradation reaction well followed pseudo-first-order kinetics. Water pH had different effect on NDEA degradation in those two processes. Acidic and neutral conditions were good for NDEA degradation by sole UV irradiation. However, NDEA underwent rapid degradation under various pH conditions in the UV/O(3) process. Though the ozone introduction in the UV/O(3) process had little effect on NDEA degradation efficiency, it had significant effect on its degradation products and pathways. Methylamine, dimethylamine, ethylamine and diethylamine were observed as aliphatic amine products of NDEA degradation in both two processes. They were assumed to arise due to N-N bond fission under UV irradiation, or due to the reaction of NDEA and hydroxyl radicals in the UV/O(3) process.

  8. How do polymers degrade?

    NASA Astrophysics Data System (ADS)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  9. Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Roh, Hyungkeun; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2013-07-01

    We employed stable isotope probing (SIP) with (13)C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving (13)C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. PMID:23603473

  10. The quantitative determination of aspirin and its degradation products in a model solution aerosol.

    PubMed

    Blondino, F E; Byron, P R

    1995-02-01

    Formulation of pressurized aerosol solutions in propellants for inhalation requires the use of high quantities of surfactants to solubilize the drug. Due to the lipophilic nature of these surfactants, analytical difficulties are created for those wishing to quantify the drug and its degradation products. In order to quantify drug and degradation products by LC it is necessary to separate surfactant and analytes prior to chromatography. To illustrate a typical situation, a method was developed for the analysis of acetylsalicyclic acid (approximately 2.5 x 10(-3) M) and its major degradation products (salicylic acid, acetylsalicylsalicylic acid and salicylsalicylic acid) solubilized in trichloromonofluoromethane (CFC-11) containing 10(-2) M sorbitan trioleate (Span 85). Surfactant extraction problems were reviewed experimentally. The presentation of all analytes and the surfactant, dissolved in hexane, to silica solid phase extraction columns, followed by elution in a polar solvent, was found to be an efficient way of separating this lipophilic surfactant from the analytes. The final assay employed propellant evaporation, reconstitution of the non-volatiles in hexane, normal phase solid phase extraction (recoveries of 100 +/- 10% were observed for all analytes), elution and dilution with mobile phase, and reversed-phase liquid chromatography (Econosphere C8 5 microns, 4.6 x 250 mm). The assay utilized a mobile phase of water, methanol, tetrahydrofuran and 1 M phosphoric acid with ultraviolet detection at 275 nm. Using external standards, linear calibration curves of peak height versus concentration were obtained for all analytes in the expected concentration ranges (r > 0.991). As it is described, the assay had a relative standard deviation of < or = 3.7% for all analytes.

  11. Evaluating the Potential Importance of Monoterpene Degradation for Global Acetone Production

    NASA Astrophysics Data System (ADS)

    Kelp, M. M.; Brewer, J.; Keller, C. A.; Fischer, E. V.

    2015-12-01

    Acetone is one of the most abundant volatile organic compounds (VOCs) in the atmosphere, but estimates of the global source of acetone vary widely. A better understanding of acetone sources is essential because acetone serves as a source of HOx in the upper troposphere and as a precursor to the NOx reservoir species peroxyacetyl nitrate (PAN). Although there are primary anthropogenic and pyrogenic sources of acetone, the dominant acetone sources are thought to be from direct biogenic emissions and photochemical production, particularly from the oxidation of iso-alkanes. Recent work suggests that the photochemical degradation of monoterpenes may also represent a significant contribution to global acetone production. We investigate that hypothesis using the GEOS-Chem chemical transport model. In this work, we calculate the emissions of eight terpene species (α-pinene, β-pinene, limonene, Δ3-carene, myrcene, sabinene, trans-β-ocimene, and an 'other monoterpenes' category which contains 34 other trace species) and couple these with upper and lower bound literature yields from species-specific chamber studies. We compare the simulated acetone distributions against in situ acetone measurements from a global suite of NASA aircraft campaigns. When simulating an upper bound on yields, the model-to-measurement comparison improves for North America at both the surface and in the upper troposphere. The inclusion of acetone production from monoterpene degradation also improves the ability of the model to reproduce observations of acetone in East Asian outflow. However, in general the addition of monoterpenes degrades the model comparison for the Southern Hemisphere.

  12. Simulation chamber studies of the atmospheric degradation of xylene oxidation products

    NASA Astrophysics Data System (ADS)

    Clifford, G.; Rea, G.; Thuener, L.; Wenger, J.

    2003-04-01

    Aromatic compounds are emitted to the atmosphere from their use in automobile fuels and solvents. In addition to being important primary pollutants, many aromatics, including the xylenes, possess high photochemical reactivity and make a major contribution to the formation of oxidants, such as ozone and nitrates, in the troposphere. The atmospheric oxidation of aromatics produces a wide variety of products and the atmospheric reactivity of many of these species is unknown. The aim of this work was to study the atmospheric degradation processes for dimethylphenols, tolualdehydes and dicarbonyl compounds which are produced from the hydroxyl radical initiated oxidation of the xylenes. Experiments on the hydroxyl (OH) and nitrate radical initiated oxidation of dimethylphenols and tolualdehydes have been performed in a large atmospheric simulation chamber in our laboratory. The chamber is made of FEP foil and has a volume of about 4750 litres. It is equipped with gas chromatography, GC-MS, and in situ FTIR spectroscopy for chemical analysis and a scanning mobility particle sizer for aerosol measurements. Rate coefficients have been determined for the reactions of hydroxyl and nitrate radicals with dimethylphenols and tolualdehydes. Gas-phase products and the yield of secondary organic aerosol have also been determined for the OH-initiated oxidation of these compounds. Mechanisms for the formation of the products are proposed. The photolysis of the unsaturated dicarbonyls, butenedial and 4-oxo-pent-2-enal, has been studied using real sunlight at the European Photoreactor (EUPHORE) in Valencia, Spain. Photolysis rates were measured and indicate that photolysis by sunlight is the major atmospheric degradation process for these compounds. Product studies show the formation of a ketene intermediate that decays to form five membered ring compounds such as furanones and maleic anhydride. Mechanisms for the formation of the products are proposed. Finally, the data obtained in

  13. Analysis of l-DOPA-derived melanin and a novel degradation product formed under alkaline conditions.

    PubMed

    Omotani, Hidetoshi; Yasuda, Makoto; Ishii, Ritsuko; Ikarashi, Tsukasa; Fukuuchi, Tomoko; Yamaoka, Noriko; Mawatari, Ken-Ichi; Kaneko, Kiyoko; Nakagomi, Kazuya

    2016-06-01

    When the therapeutic drug l-DOPA, which is used to treat Parkinson's disease, is combined with magnesium oxide (MgO), a formulation change produces a dark substance. Infrared spectroscopy reveals that this substance is melanin. After allowing the l-DOPA and MgO mixture to stand, the l-DOPA content decreases significantly, and a new degradation product (the final degradation product of l-DOPA, FDP-D) is generated. Formation of this product requires a solution with a pH of >10, and the presence of MgO is not necessary. FDP-D is not produced by tyrosinase decomposition of l-DOPA and is therefore not a melanin-related compound. Pure FDP-D is isolated by adjusting the l-DOPA solution to pH 10 with ammonium hydroxide, allowing it to stand for 3 days at room temperature, adding trifluoroacetic acid (TFA), filtering the precipitate, and separating the supernatant with high-performance liquid chromatography (HPLC). Mass spectrometry indicates that the isolated FDP-D has a molecular formula of C9H9NO7. On the basis of NMR analysis ((1)H NMR, (13)C NMR, DEPT, H-H COSY, HMQC, and HMBC), FDP-D appears to be a substance with the novel structure 7a-hydroxy-5-oxo-1,2,3,5,7,7a-hexahydropyrano [3,4-b]pyrrole-2,7-dicarboxylic acid. PMID:26999318

  14. Sonochemical degradation of perchloroethylene: the influence of ultrasonic variables, and the identification of products.

    PubMed

    Sáez, V; Esclapez, M D; Bonete, P; Walton, D J; Rehorek, A; Louisnard, O; González-García, J

    2011-01-01

    Sonochemistry is a technique that offers promise for pollutant degradation, but earlier studies on various chlorinated substrates do not give a definitive view of the effectiveness of this methodology. We now report a thorough study of ultrasonic operational variables upon perchloroethylene (PCE) degradation in water (variables include ultrasonic frequency, power and system geometry as well as substrate concentration) and we attempt to close the mass balance where feasible. We obtained fractional conversions of >97% showing very effective loss of pollutant starting material, and give mechanistic proposals for the reaction pathway based on cavitational phenomena inducing pyrolytic and free radical processes. We note major products of Cl(-) and CO(2)/CO, and also trichloroethylene (TCE) and dichloroethylene (DCE) at ppm concentrations as reported earlier. The formation at very low (ppb) concentration of small halocompounds (CHCl(3), CCl(4)) and also of higher-mass species, such as pentachloropropene, hexachloroethane, is noteworthy. But of particular importance in our work is the discovery of significant quantities of chloroacetate derivatives at ppm concentrations. Although these compounds have been described as by-products with other techniques such as radiolysis or photochemistry, this is the first time that these products have been identified in the sonochemical treatment of PCE; this allows a much more effective account of the mass balance and may explain earlier inconsistencies. This reaction system is now better identified, but a corollary is that, because these haloacetates are themselves species of some toxicity, the use of ultrasound here may not sufficiently diminish wastewater toxicity. PMID:20403718

  15. Pulmonary effects of acute exposure to degradation products of sulphur hexafluoride during electrical cable repair work.

    PubMed Central

    Kraut, A; Lilis, R

    1990-01-01

    Six electrical workers accidentally exposed to degradation products of sulphur hexafluoride (SF6) during electrical repair work were followed up for one year. One degradation product, sulphur tetrafluoride (SF4), was identified from worksite measurements. Unprotected exposure in an underground enclosed space occurred for six hours over a 12 hour period. Initial symptoms included shortness of breath, chest tightness, productive cough, nose and eye irritation, headache, fatigue, nausea, and vomiting. Symptoms subsided when exposure was interrupted during attempts to identify the cause of the problem. Although exposure ended after several hours, four workers remained symptomatic for between one week and one month. Pulmonary radiographic abnormalities included several discrete areas of transitory platelike atelectasis in one worker, and a slight diffuse infiltrate in the left lower lobe of another. One worker showed transient obstructive changes in tests of pulmonary function. Examination at follow up after one year showed no persistent abnormalities. Preliminary data from this paper were presented at the VIIth international pneumoconioses conference. Pittsburgh, PA, August 1988. PMID:2271390

  16. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A. L. C. H.; Bergaentzle, M.

    2012-08-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters.

  17. Identification and Characterization of Hydrolytic Degradation Products of Cefditoren Pivoxil using LC and LC-MS/TOF

    PubMed Central

    Gawande, V. T.; Bothara, K. G.; Singh, A.; Mahajan, A. A.

    2015-01-01

    The present research work was carried out to determine stability of cefditoren pivoxil, an orally absorbed prodrug that is rapidly hydrolysed by intestinal esterases to the active cephalosporin cefditoren. Cefditoren was subjected to stress conditions recommended by the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use guideline Q1A (R2). Cefditoren pivoxil was susceptible for degradation under acidic, alkaline and neutral hydrolytic conditions while it was stable under photolytic and thermal stress conditions. Separation of cefditoren and degradation products were carried out by using HPLC. The unknown degradation products were characterized by liquid chromatography-mass spectrometry/time of flight studies. Structures were proposed for each fragment based on best possible molecular formula and complete degradation pathways were reported for cefditoren and its degradants. PMID:25767321

  18. Liquid chromatography-fluorescence and liquid chromatography-mass spectrometry detection of tryptophan degradation products of a recombinant monoclonal antibody.

    PubMed

    Nowak, Christine; Ponniah, Gomathinayagam; Cheng, Guilong; Kita, Adriana; Neill, Alyssa; Kori, Yekaterina; Liu, Hongcheng

    2016-03-01

    Light exposure is one of several conditions used to study the degradation pathways of recombinant monoclonal antibodies. Tryptophan is of particular interest among the 20 amino acids because it is the most photosensitive. Tryptophan degradation forms several products, including an even stronger photosensitizer and several reactive oxygen species. The current study reports a specific peptide mapping procedure to monitor tryptophan degradation. Instead of monitoring peptides using UV 214 nm, fluorescence detection with an excitation wavelength of 295 nm and an emission wavelength of 350 nm was used to enable specific detection of tryptophan-containing peptides. Peaks that decreased in area over time are likely to contain susceptible tryptophan residues. This observation can allow further liquid chromatography-mass spectrometry (LC-MS) analysis to focus only on those peaks to confirm tryptophan degradation products. After confirmation of tryptophan degradation, susceptibility of tryptophan residues can be compared based on the peak area decrease. PMID:26717898

  19. Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut.

    PubMed

    Palani, Kalpana; Harbaum-Piayda, Britta; Meske, Diana; Keppler, Julia Katharina; Bockelmann, Wilhelm; Heller, Knut J; Schwarz, Karin

    2016-01-01

    A systematic investigation was carried out on the influence of fermentation on glucosinolates and their degradation products from fresh raw cabbage, throughout fermentation at 20 °C and storage at 4 °C. Glucosinolates were degraded dramatically between Day 2 and 5 of fermentation and by Day 7 there was no detectable amount of glucosinolates left. Fermentation led to formation of potential bioactive compounds ascorbigen (13.0 μmol/100 g FW) and indole-3-carbinol (4.52 μmol/100g FW) with their higher concentrations from Day 5 to Day 9. However, during storage indole-3-carbinol slowly degraded to 0.68 μmol/100 g FW, while ascorbigen was relatively stable from Week 4 until Week 8 at 6.78 μmol/100 g FW. In contrast, the content of indole-3-acetonitrile decreased rapidly during fermentation from 3.6 to 0.14 μmol/100 g FW. The results imply a maximum of health beneficial compounds after fermentation (7-9 days) in contrast to raw cabbage or stored sauerkraut.

  20. Detection of chlorodifluoroacetic acid in precipitation: A possible product of fluorocarbon degradation

    SciTech Connect

    Martin, J.W.; Franklin, J.; Hanson, M.L.; Solomon, K.R.; Mabury, S.A.; Ellis, D.A.; Scott, B.F.; Muri, D.C.G.

    2000-01-15

    Chlorodiffluoroacetic acid (CDFA) was detected in rain and snow samples from various regions of Canada. Routine quantitative analysis was performed using an in-situ derivatization technique that allowed for the determination of CDFA by GC-MS of the anilide derivative. Validation of environmental CDFA was provided by strong anionic exchange chromatography and detection by {sup 19}F NMR. CDFA concentrations ranges from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations ranged from <7.1 to 170 ng L{sup {minus}1} among all samples analyzed. Monthly volume-weighted CDFA concentrations in rain event samples showed a seasonal trend between June and November 1998, peaking in late summer and decreasing in the fall for Guelph and Toronto sites. Preliminary toxicity tests with the aquatic macrophytes Myriophyllum sibiricum and Myriophyllum spicatum suggest that CDFA does not represent a risk of acute toxicity to these aquatic macrophytes at current environmental concentrations. A degradation study suggests that CDFA is recalcitrant to biotic and abiotic degradation relative to dichloroacetic acid (DCA) and may accumulate in the aquatic environment. On the basis of existing experimental data, the authors postulate that CDFA is a degradation product of CFC-113 and, to a lesser extent, HCFC-142b. If CFC-113 is a source, its ozone depletion potential may be lower than previously assumed. Further work is required to identify alternative atmospheric and terrestrial sources of CDFA.

  1. EDS and μ-XRF mapping of amalgam degradation products in ancient mirrors.

    PubMed

    Arizio, E; Orsega, E F; Falcone, R; Vallotto, M

    2014-12-01

    An amalgam mirror is a mirror type, used from the fifteenth century until the end of the nineteenth century, where the reflective layer is constituted by a tin amalgam layer adhered to a glass sheet. In this work, two amalgam mirrors samples were studied by scanning electron microscopy with an energy dispersive spectrometer and by micro-X-ray fluorescence elemental mapping to go deeply into the understanding of the degradation mechanism of the amalgam layer of ancient mirrors. The investigation has been focused for the first time on the reflective surface of the amalgam layer adherent to the glass sheet to better understand the processes of amalgam corrosion. The two amalgam degradation compounds, romarchite and cassiterite, has been spatially differentiated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) maps. SEM images and micro-X-ray fluorescence and EDS maps showed that the amalgam degradation products grow up to form hemispherical stratified calottes. This structure is probably due to a mechanism involves cyclic phases and oxygen radial diffusion from a superficial oxidation nucleus.

  2. [Effects of nitrogen and phosphorous fertilization on community structure and productivity of degraded alpine meadows in northern Tibet, China].

    PubMed

    Zong, Ning; Shi, Pei-li; Niu, Ben; Jiang, Jing; Song, Ming-hua; Zhang, Xian-zhou; He, Yong-tao

    2014-12-01

    Abstract: Fertilization is an effective management measure for recovery of degraded grasslands. To better understand the effects of fertilization on community structure and productivity of lightly and severely degraded alpine meadows, we conducted a fertilization experiment in northern Tibet since 2008. The treatments were addition of nitrogen (N) alone (50 kg N x hm(-2) x a(-1), LN; 100 kg N x hm(-2) x a(-1), HN) or addition of both phosphorus (P) and N (50 kg N x hm(-2) x a(-1) +50 kg P x hm(-2) x a(-1), LN+P; 100 kg N x hm(-2) x a(-1) +50 kg P x hm(-2) x a(-1), HN+P) in each of the two types of degraded alpine meadows. N addition alone significantly affected plant community coverage or productivity in neither the slightly nor the severely degraded alpine meadow, while addition of both N and P significantly increased plant community coverage, aboveground and below- ground biomass of the alpine meadows. This suggested that productivity of this alpine meadow is co-limited by N and P. HN and HN+P significantly decreased species richness and evenness in the lightly degraded grassland, indicating that HN was not beneficial for the lightly degraded grassland to maintain species diversity and community stability. N addition significantly reduced the root to shoot ratio in the severely degraded meadow. In the lightly degraded meadow, N addition alone, especially with a high amount (HN) , enhanced the importance values (IV) and biomass of grasses, while fertilization with both N and P increased those of sedges. In the severely degraded meadow, fertilization had little effect on IV of grasses or sedges, but improved biomass of forbs. The results suggested that LN+P could be employed in recovery of lightly degraded alpine meadows, but other management measures such as fencing and reseeding may be needed for recovery of severely degraded alpine meadows.

  3. Coal conversion products Industrial applications

    NASA Technical Reports Server (NTRS)

    Warren, D.; Dunkin, J.

    1980-01-01

    The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.

  4. Effect of household and industrial processing on the levels of pesticide residues and degradation products in melons.

    PubMed

    Bonnechère, A; Hanot, V; Bragard, C; Bedoret, T; van Loco, J

    2012-01-01

    Two varieties of melons (Cucumis melo) were treated with two fungicides (carbendazim and maneb) and four insecticides (acetamiprid, cyromazin, imazalil and thiamethoxam) to quantify the effect of household processing on the pesticide residues. To ensure sufficiently high levels of residues in flesh and peel, the most concentrated formulations were applied observing good agricultural practice. The peeling step decreased the concentration of pesticide residues for maneb, imazalil and acetamiprid by more than 90%. Cyromazin, carbendazim and thiamethoxam were reduced by approximately 50%. The reduction of the pesticides could not be fully explained by the systemic character of the pesticides. However, the agricultural practices (time of application), solubility and mode of action (systemic versus contact pesticide) of the pesticides could be used to explain the difference in processing factors for the studied pesticides. Degradation products (melamine and ethylenethiourea) were also investigated in this study, but were not detected.

  5. Effect of household and industrial processing on the levels of pesticide residues and degradation products in melons.

    PubMed

    Bonnechère, A; Hanot, V; Bragard, C; Bedoret, T; van Loco, J

    2012-01-01

    Two varieties of melons (Cucumis melo) were treated with two fungicides (carbendazim and maneb) and four insecticides (acetamiprid, cyromazin, imazalil and thiamethoxam) to quantify the effect of household processing on the pesticide residues. To ensure sufficiently high levels of residues in flesh and peel, the most concentrated formulations were applied observing good agricultural practice. The peeling step decreased the concentration of pesticide residues for maneb, imazalil and acetamiprid by more than 90%. Cyromazin, carbendazim and thiamethoxam were reduced by approximately 50%. The reduction of the pesticides could not be fully explained by the systemic character of the pesticides. However, the agricultural practices (time of application), solubility and mode of action (systemic versus contact pesticide) of the pesticides could be used to explain the difference in processing factors for the studied pesticides. Degradation products (melamine and ethylenethiourea) were also investigated in this study, but were not detected. PMID:22489844

  6. Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2016-10-01

    This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed. PMID:27351899

  7. Application of calcium peroxide activated with Fe(II)-EDDS complex in trichloroethylene degradation.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2016-10-01

    This study was conducted to assess the application of calcium peroxide (CP) activated with Fe(II) chelated by (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS) to enhance trichloroethylene (TCE) degradation in aqueous solution. It was indicated that EDDS prevented soluble iron from precipitation, and the optimum molar ratio of Fe(II)/EDDS to accelerate TCE degradation was 1/1. The influences of initial TCE, CP and Fe(II)-EDDS concentration were also investigated. The combination of CP and Fe(II)-EDDS complex rendered the efficient degradation of TCE at near neutral pH range. Chemical probe and scavenger tests identified that TCE degradation mainly owed to the oxidation of HO while O2(-) promoted HO generation. Cl(-), HCO3(-) and humic acid were found to inhibit CP/Fe(II)-EDDS performance on different levels. In conclusion, the application of CP activated with Fe(II)-EDDS complex is a promising technology in chemical remediation of groundwater, while further research in practical implementation is needed.

  8. Photocatalytic degradation of methyl blue by silver ion-doped titania: Identification of degradation products by GC-MS and IC analysis.

    PubMed

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    An anionic triphenyl methane dye, methyl blue ((disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate) was degraded photocatalytically with undoped micro-TiO2- and Ag(+)-doped micro TiO2 in a slurry-type batch reactor under UV irradiation and the efficiency was compared with that obtained using nano-TiO2- and Ag(+)-doped nano-TiO2. The influence of different parameters, i.e., photocatalyst loading, dye concentration, initial pH, temperature, depth of solution, interfering ions and electron acceptors on the dye degradation was investigated. The decolorization and mineralization efficiency was better for Ag(+)-doped micro-TiO2 than undoped micro-TiO2. Nano-TiO2 was more efficient than micro-TiO2, while Ag(+)-doped nano-TiO2 was the most efficient of all. Cost analysis showed degradation using micro-TiO2- and Ag(+)-doped micro-TiO2 are much cheaper than that using nano-TiO2 and Ag(+)-doped nano-TiO2. Therefore Ag(+)-doped micro-TiO2 was used for the detailed study. The degradation products formed were identified using GC-MS analysis after photocatalytic degradation for 180 min with Ag(+) -doped micro TiO2. Ion chromatography analysis was carried out for anions to identify the end products of degradation.

  9. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments. PMID:22629643

  10. Dietary protein level and ruminal degradability for mohair production in Angora goats.

    PubMed

    Sahlu, T; Fernandez, J M; Lu, C D; Manning, R

    1992-05-01

    Twenty-eight Angora goat doelings (average BW 22.1 kg) were used in a 150-d study to examine the effects of dietary CP level and degradability on mohair fiber production. A 2 x 2 factorial arrangement was instituted using conventional, solvent-extracted soybean meal (high degradability) or expelled, heat-treated soybean meal (low degradability) incorporated into low- (12%) or high- (19%) CP diets. Grease and clean mohair weights were greater (P less than .05) in goats fed the diets containing 19% CP. Mohair fiber diameter was not affected (P greater than .10) by dietary CP level. Clean mohair weight tended (P less than .08) to be higher in the goats fed diets containing expelled, heat-treated soybean meal. Body weight gains were not affected (P greater than .10) by CP level or degradability, whereas DMI increased (P less than .01) with increasing CP level. Ruminal fluid pH and total VFA concentrations were not affected (P greater than .10) by diet. Ruminal ammonia N concentration increased (P less than .05) as CP level in the diet increased, and postprandial changes in concentrations were less noticeable in the group fed expelled, heat-treated soybean meal. Plasma urea N (P less than .001) and total protein (P less than .01) concentration increased as dietary CP level increased. Plasma glucose was elevated (P less than .001) 2 h after feeding in the goats fed conventional, solvent-extracted soybean meal, whereas glucagon concentrations were greater at 0 and 4 h in the group fed expelled, heat-treated soybean meal.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1526921

  11. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  12. The Fate and Transport of Glyphosate and its Degradation Product, Aminomethylphosphonic Acid (AMPA), in Water

    NASA Astrophysics Data System (ADS)

    Scribner, E.; Meyer, M. T.

    2006-05-01

    Since 2001, the U.S. Geological Survey (USGS) has investigated the fate and transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), in surface water, and more recently in tile-drain flow, soil, and wet deposition. According to U.S. Environmental Protection Agency sources, glyphosate is among the world's most widely used herbicides. In 2004, glyphosate usage estimates indicated that between 103 and 113 million pounds were applied annually to crops in the United States. The use of glyphosate over a wide geographic area suggests that this herbicide might be a potential concern for air, water, and soil quality as well as measured in high concentrations in streams; therefore, it is important to monitor its fate and transport in ground-water/surface-water systems. National, regional, and field-scale studies conducted by the USGS National Water-Quality Assessment and Toxic Substance Hydrology Programs have studied the fate and transport of glyphosate in overland flow, tile- drain flow, surface water, soil, and wet-deposition samples. The samples were analyzed for glyphosate and AMPA by using derivatization and online solid-phase extraction with liquid chromatography/mass spectrometry (LC/MS) and LC/MS/MS methods developed by the USGS Organic Geochemistry Research Laboratory in Lawrence, Kansas. During spring, summer, and fall 2002 runoff periods in 50 Midwestern streams, glyphosate was detected at or above the 0.10 micrograms per liter detection limit in 35, 41, and 31 percent of samples, respectively. AMPA was detected in 53, 82, and 75 percent of samples, respectively. Results of 128 samples from a field study showed that glyphosate was transported as a narrow high- concentration pulse during the first period of runoff after application and that the concentration of glyphosate in runoff was greater than the concentration of AMPA. In tile-drain flow, glyphosate and AMPA were transported in a broad low-concentration pulse during these same

  13. Synthesis and fabrication of a degradable poly(N-isopropyl acrylamide) scaffold for tissue engineering applications

    PubMed Central

    Galperin, Anna; Long, Thomas J.; Garty, Shai; Ratner, Buddy D.

    2013-01-01

    Biodegradable poly(N-isopropyl acrylamide) (poly-NIPAM) hydrogels with controlled molecular weight of the parent polymer and its degradation products were synthesized by atom transfer radical polymerization in the presence of a polycaprolactone-based di-chlorinated macroinitiator and polycaprolactone dimethacrylate. The phase transition temperature, swelling, hydrolytic degradability, and mechanical properties at 25 and 37°C were explored. A cytocompatibility study showed good NIH3T3 cell response over 5 days culture on the surface of the hydrogels, demonstrated by a consistent increase in cell proliferation detected by an Alamar Blue assay. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide] results suggested that the hydrogels and their degradation products in the concentration range of 1–25 mg/ mL were not cytotoxic to NIH3T3 cells. A sphere-templating technique was utilized to fabricate biodegradable polyNIPAM scaffolds with monodisperse, pore size. Scaffolds with pore diameter of 48 ± 6 μm were loaded with A-10 smooth muscle cells and then warmed to 37°C entrapping cells in pores approximately 40 μm in diameter, a size we have found to be optimal for angiogenesis and biointegration. Due to their degradable nature, tunable molecular weight, highly interconnected morphology, thermally controlled monodisperse pore size, and temperature-induced volume expansion–contraction, the polyNIPAM-based scaffolds developed in this work will be valuable in tissue engineering. PMID:22961921

  14. Leishmania pifanoi amastigotes avoid macrophage production of superoxide by inducing heme degradation.

    PubMed

    Pham, Nam-Kha; Mouriz, Jennifer; Kima, Peter E

    2005-12-01

    Whereas infections of macrophages by promastigote forms of Leishmania mexicana pifanoi induce the production of superoxide, infections by amastigotes barely induce superoxide production. Several approaches were employed to gain insight into the mechanism by which amastigotes avoid eliciting superoxide production. First, in experiments with nitroblue tetrazolium, we found that 25% of parasitophorous vacuoles (PVs) that harbor promastigotes are positive for the NADPH oxidase complex, in contrast to only 2% of PVs that harbor amastigotes. Second, confocal microscope analyses of infected cells labeled with antibodies to gp91phox revealed that this enzyme subunit is found in PVs that harbor amastigotes. Third, in immunoblots of subcellular fractions enriched with PVs from amastigote-infected cells and probed with antibodies to gp91phox, only the 65-kDa premature form of gp91phox was found. In contrast, subcellular fractions from macrophages that ingested zymosan particles contained both the 91- and 65-kDa forms of gp91phox. This suggested that only the immature form of gp91phox is recruited to PVs that harbor amastigotes. Given that gp91phox maturation is dependent on the availability of heme, we found that infections by Leishmania parasites induce an increase in heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation. Infections by amastigotes performed in the presence of metalloporphyrins, which are inhibitors of HO-1, resulted in superoxide production by infected macrophages. Taken together, we propose that Leishmania amastigotes avoid superoxide production by inducing an increase in heme degradation, which results in blockage of the maturation of gp91phox, which prevents assembly of the NADPH oxidase enzyme complex.

  15. Characterization of the degradation products of a color-changed monoclonal antibody: tryptophan-derived chromophores.

    PubMed

    Li, Yiming; Polozova, Alla; Gruia, Flaviu; Feng, Jinhua

    2014-07-15

    We describe the characterization of degradation products responsible for color change in near UV-visible light-irradiated and heat-stressed monoclonal antibody (mAb) drug product in liquid formulation. The treated samples were characterized using reversed-phase HPLC and size-exclusion HPLC with absorption spectroscopy. Both methods showed color change was due to chromophores formed on the mAb but not associated with the formulation excipients in both light-irradiated and heat-stressed mAb samples. These chromophores were further located by a new peptide mapping methodology with a combination of mass spectrometry and absorption spectroscopy. Mass spectrometry identified the major tryptophan oxidation products as kynurenine (Kyn), N-formylkynurenine (NFK), and hydroxytryptophan (OH-Trp). The absorption spectra showed that each of the tryptophan oxidation products exhibited a distinct absorption band above 280 nm shifted to the longer wavelengths in the order of OH-Trp < NFK < Kyn. The Kyn-containing peptide was detected by absorption at 420 nm. No new absorption bands were observed for either methionine or histidine oxidation products. This confirmed that tryptophan oxidation products, but not methionine and histidine oxidation products, were responsible for the color change. It is worth noting that a new oxidation product with the loss of hydrogen (2 Da mass decrease) for Trp-107 of the heavy chain was identified in the heat-stressed mAb sample. This oxidized tryptophan residue exhibited a distinct absorption band at the maximum absorbance wavelength 335 nm, which is responsible for the color change to yellow. This study showed that the new peptide mapping methodology with a combination of mass spectrometry and absorption spectroscopy is useful to identify tryptophan oxidation products as chromophores responsible for color change in stressed mAb drug product.

  16. Degradation and environmental risk of surfactants after the application of compost sludge to the soil

    SciTech Connect

    Gonzalez, M.M.; Martin, J.; Camacho-Munoz, D.; Santos, J.L.; Aparicio, I.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Degradation of surfactants in soil amended with sewage sludge during 100 days. Black-Right-Pointing-Pointer Temperature influences on the degradation of the studied compounds. Black-Right-Pointing-Pointer Overall, the LAS degradation is faster than the NP compounds degradation. Black-Right-Pointing-Pointer Therefore, the LAS presented lower environmental risk than the NP compounds. - Abstract: In this work, the degradation of anionic and non-ionic surfactants in agricultural soil amended with sewage sludge is reported. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds (NPE), including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO and NP2EO). The degradation studies were carried out under winter (12.7 Degree-Sign C) and summer (22.4 Degree-Sign C) conditions in Andalusia region. The concentration of LAS was reduced to 2% of the initial concentration 100 day after sludge-application to the soil. The half-life time measured for LAS homologues were ranged between 4 and 14 days at 12.7 Degree-Sign C and between 4 and 7 days at 22.4 Degree-Sign C. With regard to NPE compounds, after 8 and 4 days from the beginning of the experiment at 12.7 and 22.4 Degree-Sign C, respectively, their concentration levels were increased to 6.5 and 13.5 mg/kg dm (dry matter) as consequence of the degradation of nonylphenol polyethoxylates. These concentration levels were reduced to 5% after 63 and 70 days for 12.7 Degree-Sign C and 22.4 Degree-Sign C, respectively. The half-life times measured for NPEs were from 8 to 16 days at 12.7 Degree-Sign C and from 8 to 18 days at 22.4 Degree-Sign C. Environmental risk assessment revealed that for LAS homologues no environment risk could be expected after 7 and 8 days of sludge application to the soil for 22.4 and 12.7 Degree-Sign C, respectively; however, potential toxic effects could be

  17. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    EPA Science Inventory

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  18. Degradation of Three Aromatic Dyes by White Rot Fungi and the Production of Ligninolytic Enzymes

    PubMed Central

    Jayasinghe, Chandana; Imtiaj, Ahmed; Lee, Geon Woo; Im, Kyung Hoan; Hur, Hyun; Lee, Min Woong; Yang, Hee-Sun

    2008-01-01

    This study was conducted to evaluate the degradation of aromatic dyes and the production of ligninolytic enzymes by 10 white rot fungi. The results of this study revealed that Pycnoporus cinnabarinus, Pleurotus pulmonarius, Ganoderma lucidum, Trametes suaveolens, Stereum ostrea and Fomes fomentarius have the ability to efficiently degrade congo red on solid media. However, malachite green inhibited the mycelial growth of these organisms. Therefore, they did not effectively decolorize malachite green on solid media. However, P. cinnabarinus and P. pulmonarius were able to effectively decolorize malachite green on solid media. T. suaveolens and F. rosea decolorized methylene blue more effectively than any of the other fungi evaluated in this study. In liquid culture, G. lucidum, P. cinnabarinus, Naematoloma fasciculare and Pycnoporus coccineus were found to have a greater ability to decolorize congo red. In addition, P. cinnabarinus, G. lucidum and T. suaveolens decolorized methylene blue in liquid media more effectively than any of the other organisms evaluated in this study. Only F. fomentarius was able to decolorize malachite green in liquid media, and its ability to do so was limited. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in naphthalene supplemented liquid media. P. coccineus, Coriolus versicolor and P. cinnabarinus were found to produce a large amount of laccase when grown in medium that contained napthalene. PMID:23990745

  19. Production and properties of xylan-degrading enzymes from Cellulomonas uda

    SciTech Connect

    Rapp, P,; Wagner, F.

    1986-04-01

    Xylan degradation and production of ..beta..-xylanase and ..beta..-xylosidase activities were studied in cultures of Cellulomonas uda grown on purified xylan from birchwood. Beta-xylanase activity was found to be associated with the cells, although in various degrees. The formation of ..beta..-xylanase activity was induced by xylotriose and repressed by xylose. Beta-xylosidase activity was cell bound. Both constitutive and inducible ..beta..-xylosidase activities were suggested. Beta-xylanase and ..beta..-xylosidase activities were inhibited competitively be xylose. Beta-xylanase activity had a pronounced optimum pH of 5.8, whereas the optimum pH of ..beta..-xylosidase activity ranged from 5.4 to 6.1. The major products of xylan degradation by a crude preparation of ..beta..-xylanase activity, in decreasing order of amount, were xylobiose, xylotriose, xylose and small amounts of xylotetraose. This pattern suggests that ..beta..-xylanase activity secreted by C. uda is of the endosplitting type. Supernatants of cultures grown on cellulose showed not only ..beta..-glucanase byt also ..beta..-xylanase activity. The latter could be attributed to an endo-1,4-..beta..-glucanase activity which had a low ..beta..-xylanase activity. 54 references.

  20. Pesticides and pesticide degradation products in stormwater runoff: Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, J.

    1996-01-01

    Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photodegradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.

  1. Precipitation of organic arsenic compounds and their degradation products during struvite formation.

    PubMed

    Lin, Jin-Biao; Yuan, Shoujun; Wang, Wei; Hu, Zhen-Hu; Yu, Han-Qing

    2016-11-01

    Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH4(+)-N) and phosphate (PO4(3-)-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO4(3-)-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation. PMID:27262276

  2. Production and Properties of Xylan-Degrading Enzymes from Cellulomonas uda

    PubMed Central

    Rapp, Peter; Wagner, Fritz

    1986-01-01

    Xylan degradation and production of β-xylanase and β-xylosidase activities were studied in cultures of Cellulomonas uda grown on purified xylan from birchwood. β-Xylanase activity was found to be associated with the cells, although in various degrees. The formation of β-xylanase activity was induced by xylotriose and repressed by xylose. β-Xylosidase activity was cell bound. Both constitutive and inducible β-xylosidase activities were suggested. β-Xylanase and β-xylosidase activities were inhibited competitively by xylose. β-Xylanase activity had a pronounced optimum pH of 5.8, whereas the optimum pH of β-xylosidase activity ranged from 5.4 to 6.1. The major products of xylan degradation by a crude preparation of β-xylanase activity, in decreasing order of amount, were xylobiose, xylotriose, xylose, and small amounts of xylotetraose. This pattern suggests that β-xylanase activity secreted by C. uda is of the endosplitting type. Supernatants of cultures grown on cellulose showed not only β-glucanase but also β-xylanase activity. The latter could be attributed to an endo-1,4-β-glucanase activity which had a low β-xylanase activity. PMID:16347038

  3. Maize production and land degradation: a Portuguese agriculture field case study

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Pato, João V.; Moreira, Pedro M.; Valério, Luís M.; Guilherme, Rosa; Casau, Fernando J.; Santos, Daniela; Keizer, Jacob J.; Ferreira, António J. D.

    2016-04-01

    While food security is a main challenge faced by human kind, intensive agriculture often leads to soil degradation which then can threaten productivity. Maize is one of the most important crops across the world, with 869 million tons produced worldwide in 2012/2013 (IGC 2015), of which 929.5 thousand tons in Portugal (INE 2014). In Portugal, maize is sown in April/May and harvest occurs generally in October. Conventional maize production requires high inputs of water and fertilizers to achieve higher yields. As Portuguese farmers are typically rather old (on average, 63 years) and typically have a low education level (INE 2014), sustainability of their land management practises is often not a principal concern. This could explain why, in 2009, only 4% of the Portuguese temporary crops were under no-tillage, why only 8% of the farmers performed soil analyses in the previous three years, and why many soils have a low organic matter content (INE 2014). Nonetheless, sustainable land management practices are generally accepted to be the key to reducing agricultural soil degradation, preventing water pollution, and assuring long-term crop production objectives and food security. Sustainable land management should therefore not only be a concern for policy makers but also for farmers, since land degradation will have negative repercussions on the productivity, thus, on their economical income. This paper aims to assess the impact of maize production on soil properties. The study focusses on an 8 ha maize field located in central Portugal, with a Mediterranean climate on a gently sloping terrain (<3%) and with a soil classified as Eutric Fluvisol. On the field, several experiments were carried out with different maize varieties as well as with different fertilizers (solid, liquid and both). Centre pivot irrigation was largely used. Data is available from 2003, and concerns crop yield, fertilization and irrigation practices, as well as soil properties assessed through

  4. The degradation products of aniline in the solutions with ozone and kinetic investigations.

    PubMed

    Turhan, Kadir; Uzman, Suheyla

    2007-10-01

    Aromatic compounds are extensively used in several industries and can cause pollution in water sources. This work aims at examining the degradability of aniline in aqueous solutions by ozone-induced cleavage, and at determining the kinetics of the cited cleavage reactions. Aniline was prepared in four different concentrations and the flow rate of ozone supplied to each solution was selected. Aniline solutions were ozonated at low and high pH, so as to compare both molecular and hydroxyl free radical mechanisms, respectively. The main identified aromatic by-products were nitrobenzene and azobenzene when the experiment was carried out at acidic pH. Formation of nitrobenzene, azobenzene, azoxybenzene and 2-pyridine carboxylic acid (picolinic acid) was observed when the ozonization was carried out at basic pH. All the aromatic by-products found were less toxic than the raw materials. The pseudo-first-order constants in aniline concentrations were calculated.

  5. Megalanthine, a bioactive sesquiterpenoid from Heliotropium megalanthum, its degradation products and their bioactivities.

    PubMed

    Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis

    2009-01-01

    The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum. PMID:19151929

  6. Insights into the interactions between tetracycline, its degradation products and bovine serum albumin.

    PubMed

    Tong, Xingyu; Mao, Manfei; Xie, Jingqian; Zhang, Kefeng; Xu, Dongmei

    2016-01-01

    Tetracyclines (TCs) are the most widely used antibiotics in the world. Because antibiotics have low bioavailability and are difficult to completely remove using current sewage treatment facilities, residual TCs and their degradation products in the environment, animal and plant foodstuffs and personal care products may enter the body through the food chain, thus causing unpredictable effects on human health. We studied bovine serum albumin (BSA) (a functional protein) as a target of tetracycline-induced toxicity by examining its interactions with TC, anhydrotetracycline (ATC) and epitetracycline (ETC), based on a fluorescence spectroscopy and molecular docking method under simulated physiological conditions. The interaction mechanism was elucidated at the molecular level. The results show that TC, ATC and ETC bind at site II of BSA and interact mainly through hydrogen bonding interactions and van der Waals interactions. The binding affinities can be ranked in the order ATC > TC > ETC. PMID:27462521

  7. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

    PubMed Central

    Shraddha; Shekher, Ravi; Sehgal, Simran; Kamthania, Mohit; Kumar, Ajay

    2011-01-01

    Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields. PMID:21755038

  8. Analysis of the inhibition of PAI-1 by metal theaflavin complexes and their degradation products.

    PubMed

    Jankun, Jerzy; Kondray, Victor; Skrzypczak-Jankun, Ewa

    2013-05-01

    The inhibition of elements of the plasminogen activator system [urokinase (uPA), tissue plasminogen activator (tPA) and plasminogen activator inhibitor-1 (PAI-1)] plays an important role in human diseases. PAI-1 is overexpressed in obesity and diabetes, and the inhibition of this protein has been postulated to alleviate the symptoms of both disorders. We found that two theaflavins (TFs) from black tea inhibit PAI-1 and we suggest that the beneficial effects of drinking tea may be associated with the suppression of PAI-1 activity by theaflavins. Epidemiological studies are controversial; some studies show the beneficial effects of drinking black tea on obesity and diabetes, while others do not. TFs, a family of compounds that can comprise up to 40% the dry weight of black tea, are responsible for the characteristic color, and they are known to chelate metals. We hypothesized that the content/variety of metals present in drinking water may be one of the reasons for such controversies in the population studies. TFs are excellent chelating compounds by trapping metals into complexes; thus, the quality of water used for tea preparation may influence changes in the formation of new products according to TF affinity for different metals, as well as their high molecular weight oxidation products. Our modeling and docking studies suggest that TF/metal complexes have similar affinity to PAI-1 as native TFs. However, analyses using liquid chromatography-mass spectroscopy (LC-MS) revealed the presence of TF degradation products in tea brewed using water containing metal salts. These can further form high molecular weight oxidation products. Thus, metals present in tea could diminish the beneficial effects of black tea by reducing TF concentration via metal-induced degradation and precipitation.

  9. 75 FR 24695 - Pesticide Products; Registration Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... AGENCY Pesticide Products; Registration Applications AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces receipt of applications to register new uses for pesticide....regulations.gov . Follow the on-line instructions for submitting comments. Mail: Office of Pesticide...

  10. Preparation and degradation study of photocurable oligolactide-HA composite: a potential resin for stereolithography application.

    PubMed

    Tanodekaew, Siriporn; Channasanon, Somruethai; Uppanan, Paweena

    2014-04-01

    The merging of stereolithography (SLA) technology to the medical field certainly benefits the manufacturing of parts, especially those patient-specific for the clinical use. This technique, however, has hardly been exploited medically due to a limited number of biodegradable resins for SLA processing. To extend application of SLA in the biomedical field, photocurable oligolactide resins were developed and examined for biodegradation and biocompatibility. The degradation was studied by monitoring the changes in weight loss, and thermal and mechanical properties of the photocured specimens in phosphate buffered saline (PBS) at 37°C. The results demonstrated that a resin composition played an important role in degradation, and the retarded degradation rate was observed for the highly crosslinked resin containing hydroxyapatite (HA). The less cytotoxic sample was also obtained from the resin with higher content of HA. These findings suggest the possible use of the developed photocurable oligolactide resins in SLA manufacturing of biodegradable implants, where their degradation behaviors can be designed by varying the resin composition.

  11. Polymeric endoaortic paving: Mechanical, thermoforming, and degradation properties of polycaprolactone/polyurethane blends for cardiovascular applications.

    PubMed

    Ashton, J H; Mertz, J A M; Harper, J L; Slepian, M J; Mills, J L; McGrath, D V; Vande Geest, J P

    2011-01-01

    Polymeric endoaortic paving (PEAP) is a process by which a polymer is endovascularly delivered and thermoformed to coat or "pave" the lumen of the aorta. This method may offer an improvement to conventional endoaortic therapy in allowing conformal graft application with reduced risk of endoleak and customization to complex patient geometries. Polycaprolactone (PCL)/polyurethane (PU) blends of various blend ratios were assessed as a potential material for PEAP by characterizing their mechanical, thermoforming and degradation properties. Biaxial tension testing revealed that the blends' stiffness is similar to that of aortic tissue, is higher for blends with more PCL content, and may be affected by thermoforming and degradation. Tubes of blends were able to maintain a higher diameter increase after thermoforming at higher PCL content and higher heating temperatures; 50/50 blend tubes heated to 55 °C were able to maintain 90% of the diameter increase applied. Delamination forces of the blends ranged from 41 to 235 N m⁻². In a Pseudomonas lipase solution, the 50/50 blend had a 94% lower degradation rate than pure PCL, and the 10/90 blend exhibited no degradation. These results indicate that PEAP, consisting of a PCL/PU blend, may be useful in developing the next generation of endoaortic therapy.

  12. Effect of compost application rate on carbon degradation and retention in soils.

    PubMed

    Fabrizio, Adani; Tambone, Fulvia; Genevini, Pierluigi

    2009-01-01

    We investigated the effect of a single compost application at two rates (50 and 85Mgha(-1)) on carbon (C) degradation and retention in an agricultural soil cropped with maize after 150d. We used both C mass balance and soil respiration data to trace the fate of compost C. Our results indicated that compost C accumulated in the soil after 150d was 4.24Mgha(-1) and 6.82Mg C ha(-1) for 50 and 85Mg ha(-1) compost rate, respectively. Compost C was sequestered at the rate of 623 and 617g C kg(-1) compost TOC for 50 and 85Mgha(-1) compost dose, respectively. These results point to a linear response between dose of application and both C degradation and retention. The amount of C sequestered was similar to the total recalcitrant C content of compost, which was 586g C kg(-1) compost TOC, indicating that, probably, during the short experiment, the labile C pool of compost (414g C kg(-1) of compost TOC) was completely degraded. Soil respiration measured at different times during the crop growth cycle was stable for soils amended with compost (CO2 flux of 0.96+/-0.11g CO2 m(-2) h(-1) and 1.07+/-0.10g CO2 m(-2) h(-1), respectively, for 50 and 85Mgha(-1)), whereas it increased in the control. The CO2 flux due to compost degradation only, though not statistically significant, was always greatest for the highest compost doses applied (0.22+/-0.40g CO2 m(-2) h(-1) and 0.33+/-0.25g CO2 m(-2) h(-1) for the 50 and 85Mgha(-1) compost dose, respectively). This seems to confirm the highest C degradation for the 85Mgha(-1) compost dose as a consequence of the presence of more labile C. Unlike other studies, the results show a slight increase in the fraction of carbon retained with the increase in compost application rate. This could be due to the highly stable state of the compost prior to application, although it could also be due to sampling uncertainty. Further investigations are needed to better explain how the compost application rate affects carbon sequestration, and how

  13. Entomopathogenic Nematode Production and Application Technology

    PubMed Central

    Shapiro-Ilan, David I.; Han, Richou; Dolinksi, Claudia

    2012-01-01

    Production and application technology is critical for the success of entomopathogenic nematodes (EPNs) in biological control. Production approaches include in vivo, and in vitro methods (solid or liquid fermentation). For laboratory use and small scale field experiments, in vivo production of EPNs appears to be the appropriate method. In vivo production is also appropriate for niche markets and small growers where a lack of capital, scientific expertise or infrastructure cannot justify large investments into in vitro culture technology. In vitro technology is used when large scale production is needed at reasonable quality and cost. Infective juveniles of entomopathogenic nematodes are usually applied using various spray equipment and standard irrigation systems. Enhanced efficacy in EPN applications can be facilitated through improved delivery mechanisms (e.g., cadaver application) or optimization of spray equipment. Substantial progress has been made in recent years in developing EPN formulations, particularly for above ground applications, e.g., mixing EPNs with surfactants or polymers or with sprayable gels. Bait formulations and insect host cadavers can enhance EPN persistence and reduce the quantity of nematodes required per unit area. This review provides a summary and analysis of factors that affect production and application of EPNs and offers insights for their future in biological insect suppression. PMID:23482883

  14. Characterization of stress degradation products of duloxetine hydrochloride employing LC-UV/PDA and LC-MS/TOF studies.

    PubMed

    Chadha, Renu; Bali, Alka; Bansal, Gulshan

    2016-03-20

    Duloxetine HCl was subjected to forced degradation under conditions of hydrolysis (neutral, acidic and alkaline), oxidation, photolysis and thermal stress, as suggested in the ICH guideline Q1A(R2). The drug showed significant degradation under acidic, alkaline and aqueous hydrolytic as well as photolytic conditions. The drug remained stable under thermal and oxidative stress conditions. In total, seventeen degradation products (I-XVII) were formed under varied conditions, which could be separated by chromatography of respective degraded solutions on C18 (250 mm×4.6 mm; 5 μ, Nulceodur) column using isocratic elution method. Detection wavelength was selected as 290 nm. MS/TOF accurate mass studies were carried out to establish the complete fragmentation pathway of the drug and degradation products, which, in turn, was utilized in characterization of the products. The degradation pathway of the drug leading to generation of fifteen products I-X, XII-XIII, XV-XVII was postulated and this has not been reported so far. PMID:26775018

  15. Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

    PubMed Central

    Schmitt, Dominik; Regenbrecht, Carolin; Hartmer, Marius; Stecker, Florian

    2015-01-01

    Summary The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C allowing operation of aqueous electrolytes in simple experimental set-up. Employing ion exchange resins gives rise to a selective removal of low molecular weight phenols from the strongly alkaline electrolyte without acidification and precipitation of remaining lignin. The latter represents a significant advantage compared with conventional work-up protocols of lignin solutions. PMID:25977721

  16. Influencing factors and degradation products of antipyrine chlorination in water with free chlorine.

    PubMed

    Cai, Meiquan; Zhang, Liqiu; Qi, Fei; Feng, Li

    2013-01-01

    Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0. The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after 25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result indicated that ANT is difficult to be mineralized using chlorine.

  17. Erythropoietin Modulates Cerebral and Serum Degradation Products from Excess Calpain Activation following Prenatal Hypoxia-Ischemia.

    PubMed

    Jantzie, Lauren L; Winer, Jesse L; Corbett, Christopher J; Robinson, Shenandoah

    2016-01-01

    Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies. PMID:26551007

  18. Performance degradation of a large production reactor recirculation pump during off-design conditions

    SciTech Connect

    Whitehouse, J.C.

    1993-11-01

    In order to accurately predict reactor hydraulic behavior during a hypothetical Loss-of-Coolant-Accident (LOCA) the performance of reactor coolant pumps under off-design conditions must be understood. The LOCA of primary interest for the Savannah River Site (SRS) production reactors involves the aspiration of air into the recirculated heavy water flow as reactor tank inventory is lost, (system temperatures are too low to result in significant flashing of water coolant into steam). Entrained air causes degradation in the performance of the large recirculation pumps. The amount of degradation is a parameter used in computer codes which predict the course of the accident. This paper describes the analysis of data obtained during in-reactor simulated LOCA tests, and presents the head degradation curve for the SRS reactor recirculation pumps. The greatest challenge of the analysis was to determine a reasonable estimate of mixture density at the pump suction. Specially designed three-beam densitometers were used to determine mixture density. Since it was not feasible to place them in the most advantageous location, measured pump motor power along with other techniques, were used to calculate the average mixture density at the pump impeller. This technique provides a good estimate of pump suction mixture density. Measurements from more conventional instruments were used to arrive at the value of pump two-component head over a wide range of flows. The results were significantly different from previous work with commercial reactor recirculation pumps. Further experimental work using a 1/4 scale model of the SRS pump should provide an opportunity to confirm these results, and is currently in progress.

  19. Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides.

    PubMed

    Dziga, Dariusz; Jagiełło-Flasińska, Dominika

    2015-01-01

    Cellulose is a major component of plant biomass and could be applied in the production of biofuels, especially bioethanol. An alternative approach is production of a clean fuel - hydrogen from cellulosic biomass. In this paper an innovatory model of cellulosic waste degradation has been proposed to verify the possibility of utilization of cellulose derivatives by purple non-sulfur bacteria. The concept is based on a two-step process of wheat straw conversion by bacteria in order to obtain an organic acid mixture. In the next stage such products are consumed by Rhodobacter sphaeroides, the known producer of hydrogen. It has been documented that Cellulomonas uda expresses cellulolytic activity in the presence of wheat straw as an only source of carbon. R. sphaeroides applied in this research can effectively consume organic acids released from straw by C. uda and Lactobacillus rhamnosus and is able to grow in the presence of these substrates. Additionally, an increased nitrogenase activity of R. sphaeroides has been indicated when bacteria were cultivated in the presence of cellulose derivatives which suggests that hydrogen production occurs.

  20. Wheat straw degradation and production of alternative substrates for nitrogenase of Rhodobacter sphaeroides.

    PubMed

    Dziga, Dariusz; Jagiełło-Flasińska, Dominika

    2015-01-01

    Cellulose is a major component of plant biomass and could be applied in the production of biofuels, especially bioethanol. An alternative approach is production of a clean fuel - hydrogen from cellulosic biomass. In this paper an innovatory model of cellulosic waste degradation has been proposed to verify the possibility of utilization of cellulose derivatives by purple non-sulfur bacteria. The concept is based on a two-step process of wheat straw conversion by bacteria in order to obtain an organic acid mixture. In the next stage such products are consumed by Rhodobacter sphaeroides, the known producer of hydrogen. It has been documented that Cellulomonas uda expresses cellulolytic activity in the presence of wheat straw as an only source of carbon. R. sphaeroides applied in this research can effectively consume organic acids released from straw by C. uda and Lactobacillus rhamnosus and is able to grow in the presence of these substrates. Additionally, an increased nitrogenase activity of R. sphaeroides has been indicated when bacteria were cultivated in the presence of cellulose derivatives which suggests that hydrogen production occurs. PMID:26192769

  1. Degradation products from consumer nanocomposites - a case study on quantum dot lighting

    PubMed Central

    Liu, Jingyu; Katahara, John; Li, Guanglai; Coe-Sullivan, Seth; Hurt, Robert H.

    2012-01-01

    Most nanomaterials enter the natural environment as nano-enabled products, which are typically composites with primary nanoparticles bound on substrates or embedded in liquid or solid matrices. The environmental risks associated with these products are expected to differ from those associated with the as-produced particles. This article presents a case study on the end-of-life emission of a commercial prototype polymer/quantum-dot (QD) composite used in solid-state lighting for homes. We report the extent of cadmium release upon exposure to a series of environmental and biological simulant fluids, and track the loss of QD-characteristic fluorescence as a marker for chemical damage to the CdSe/ZnS nanoparticles. Measured cadmium releases after 30-day exposure range from 0.007-1.2 mg/g of polymer, and the higher values arise for low-pH simulants containing nitric or gastric acid. Centrifugal ultrafiltration and ICP was used to distinguish soluble cadmium from particulate forms. The leachate is found to contain soluble metals with no evidence of free QDs or QD-containing polymeric debris. The absence of free nanoparticles suggests that this product does not raise nanotechnology-specific environmental issues associated with degradation and leaching, but is more usefully regarded as a conventional chemical product that is a potential source of small amounts of soluble cadmium. PMID:22352378

  2. Biotechnological production of erythritol and its applications.

    PubMed

    Moon, Hee-Jung; Jeya, Marimuthu; Kim, In-Won; Lee, Jung-Kul

    2010-04-01

    Erythritol, a four-carbon polyol, is a biological sweetener with applications in food and pharmaceutical industries. It is also used as a functional sugar substitute in special foods for people with diabetes and obesity because of its unique nutritional properties. Erythritol is produced by microbial methods using mostly osmophilic yeasts and has been produced commercially using mutant strains of Aureobasidium sp. and Pseudozyma tsukubaensis. Due to the high yield and productivity in the industrial scale of production, erythritol serves as an inexpensive starting material for the production of other sugars. This review focuses on the approaches for the efficient erythritol production, strategies used to enhance erythritol productivity in microbes, and the potential biotechnological applications of erythritol.

  3. Carbon capture and sequestration: an exploratory inhalation toxicity assessment of amine-trapping solvents and their degradation products.

    PubMed

    McDonald, Jacob D; Kracko, Dean; Doyle-Eisele, Melanie; Garner, C Edwin; Wegerski, Chris; Senft, Al; Knipping, Eladio; Shaw, Stephanie; Rohr, Annette

    2014-09-16

    Carbon dioxide (CO2) absorption with aqueous amine solvents is a method of carbon capture and sequestration (CCS) from flue gases. One concern is the possible release of amine solvents and degradation products into the atmosphere, warranting evaluation of potential pulmonary effects from inhalation. The CCS amines monoethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP) underwent oxidative and CO2-mediated degradation for 75 days. C57bl/6N mice were exposed for 7 days by inhalation of 25 ppm neat amine or equivalant concentration in the degraded mixture. The aqueous solutions were nebulized to create the inhalation atmospheres. Pulmonary response was measured by changes in inflammatory cells in bronchoalveolar lavage fluid and cytokine expression in lung tissue. Ames mutagenicity and CHO-K1 micronucleus assays were applied to assess genotoxicity. Chemical analysis of the test atmosphere and liquid revealed complex mixtures, including acids, aldehydes, and other compounds. Exposure to oxidatively degraded MEA increased (p < 0.05) total cells, neutrophils, and lymphocytes compared to control mice and caused inflammatory cytokine expression (statistical increase at p < 0.05). MEA and CO2-degraded MEA were the only atmospheres to show statistical (p < 0.05) increase in oxidative stress. CO2 degradation resulted in a different composition, less degradation, and lower observed toxicity (less magnitude and number of effects) with no genotoxicity. Overall, oxidative degradation of the amines studied resulted in enhanced toxicity (increased magnitude and number of effects) compared to the neat chemicals.

  4. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water. PMID:27164884

  5. Alkylphenol ethoxylate degradation products in land-applied sewage sludge (biosolids).

    PubMed

    La Guardia, M J; Hale, R C; Harvey, E; Mainor, T M

    2001-12-15

    Alkylphenol ethoxylates, widely used in commercial and household detergents in the United States, can degrade during the wastewater treatment process to more toxic, estrogenic, and lipophilic compounds. These include octylphenol (OP), nonylphenols (NPs), nonylphenol monoethoxylates (NP1EOs), and nonylphenol diethoxylates (NP2EOs). These compounds have received considerable attention due to their acute toxicity and ability to disrupt the endocrine system. In Europe, regulations have been established to control their impact on the environment. In this study, biosolids derived from all 11 U.S. wastewater treatment plants examined contained detectable levels of OP, NPs, NP1EOs, and NP2EOs. Nine exceeded the current Danish land application limit (30 mg/kg; sum of NPs, NP1EOs, and NP2EOs) by 6-33x. NPs were the major component, and their concentrations therein ranged from 5.4 to 887 mg/kg (dry weight). OP, reportedly 10-20x more estrogenic than NP, was detected in these same nine biosolids at levels up to 12.6 mg/kg. Three biosolids were also subjected to the U.S. Environmental Protection Agency Toxicity Characteristic Leaching Procedure Method 1311. NPs and NP1EOs were both detected in the leachate; the former at concentrations from 9.4 to 309 microg/L. On the basis of effect levels published in the literature, alkylphenol ethoxylate degradates in U.S. biosolids may cause adverse environmental impacts. PMID:11775155

  6. Selection of phytate-degrading human bifidobacteria and application in whole wheat dough fermentation.

    PubMed

    Palacios, María Consuelo; Haros, Monica; Rosell, Cristina M; Sanz, Yolanda

    2008-02-01

    Lately, whole wheat products are highly recommended from their healthy properties. However, the presence of phytic acid (InsP(6)) could partly limit their benefits because it decreases the mineral bioavailability due to its chelating properties. The objective of this work was to select strains with high phytate-degrading activity from human feces, and evaluate their suitability for the bread making process. Twenty-three different bifidobacterial strains (13 from infants and 10 from adults) were isolated, belonging to the species Bifidobacterium longum, Bifidobacterium breve and Bifidobacterium catenulatum. The phosphatase and phytase activities of these strains were evaluated as well as their ability to degrade InsP(6) during growth. Then, the fermentative ability of the strain showing the highest phytate-degrading activity (B. longum. BIF307) was determined in whole wheat breadmaking. The use of the selected bifidobacterial strain as starter during whole wheat fermentation resulted in bread with similar technological quality than the control (in absence of bifidobacteria) and crumb with lower levels of inositol phosphates. Therefore, the used of the selected Bifidobacterium strain in whole wheat breadmaking process could provide potential nutritional benefits by decreasing the antinutrient content of the product. PMID:17993391

  7. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds

    PubMed Central

    Cornelius, Stefanie; Witz, Sandra; Rolletschek, Hardy; Möhlmann, Torsten

    2011-01-01

    PYD1 (dihydropyrimidine dehydogenase) initiates the degradation of pyrimidine nucleobases and is located in plastids. In this study, a physiological analysis of PYD1 employing T-DNA knockout mutants and overexpressors was carried out. PYD1 knockout mutants were restricted in degradation of exogenously provided uracil and accumulated high uracil levels in plant organs throughout development, especially in dry seeds. Moreover, PYD1 knockout mutants showed delayed germination which was accompanied by low invertase activity and decreased monosaccharide levels. Abscisic acid (ABA) is an important regulator of seed germination, and ABA-responsive genes were deregulated in PYD1 knockout mutants. Together with an observed increased PYD1 expression in wild-type seedlings upon ABA treatment, an interference of PYD1 with ABA signalling can be assumed. Constitutive PYD1 overexpression mutants showed increased growth and higher seed number compared with wild-type and knockout mutant plants. During senescence PYD1 expression increased to allow uracil catabolism. From this it is concluded that early in development and during seed production PYD1 is needed to balance pyrimidine catabolism versus salvage. PMID:21865177

  8. Structural characterization of a degradation product of rocuronium using nanoelectrospray-high resolution mass spectrometry.

    PubMed

    Wegener, Olaf; Harms, Guido; Volmer, Dietrich A; Hayen, Heiko

    2015-09-01

    Rocuronium bromide is a non-depolarizing neuromuscular blocking agent that causes rapid muscle relaxation after intravenous injection. Regulatory authorities for registration of pharmaceuticals for human use require the evaluation of the stability of active compounds under various stress conditions. Forced degradation of rocuronium bromide was performed under hydrolytic, thermal, photolytic, and oxidative settings. HPLC-UV/vis analysis revealed an unknown degradation product under oxidative conditions (1% H2 O2 , reflux for 1 h). Investigation of the respective HPLC fraction by high resolution mass spectrometry indicated a formal loss of CH2 and an addition of one oxygen atom to the intact drug molecule. Additional multistage mass spectrometric structural elucidation experiments aided by complementary information from analysis of the intact drug and known rocuronium-related compounds showed that the morpholine moiety was unstable under oxidative stress. The data demonstrated that the morpholine ring was opened and transformed to an N-ethanoyl-formamide group. The structure was supported by appropriate mechanistic explanations.

  9. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resulting in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.

  10. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    PubMed Central

    Haon, Mireille; Grisel, Sacha; Navarro, David; Gruet, Antoine; Berrin, Jean-Guy; Bignon, Christophe

    2015-01-01

    Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes). This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in P. pastoris. We first used three fungal glycoside hydrolases (GHs) that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (GHs, carbohydrate esterases and auxiliary activity enzyme families) out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community. PMID:26441929

  11. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris.

    PubMed

    Haon, Mireille; Grisel, Sacha; Navarro, David; Gruet, Antoine; Berrin, Jean-Guy; Bignon, Christophe

    2015-01-01

    Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes). This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in P. pastoris. We first used three fungal glycoside hydrolases (GHs) that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (GHs, carbohydrate esterases and auxiliary activity enzyme families) out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users' community.

  12. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; Richards, R.; Dinh, H. N.

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  13. Fate and significance of major degradation products of atrazine in the soil environment

    SciTech Connect

    Coats, J.R.; Kruger, E.L.; Baluch, H.U.

    1995-12-01

    Complete metabolism studies using radiotracers were performed in the laboratory to determine the fate of atrazine and major degradation products, deethylatrazine, deisopropylatrazine, and hydroxyatrazine, in soil as affected by soil type, soil moisture, soil depth, and previous long-term atrazine history. Several soil factors have been shown to significantly affect the fate of these compounds in soil. Persistence of the 4 compounds was significantly increased in subsurface soils. Hydroxyatrazine was the most persistent of the 4 compounds in surface and subsurface soil. Desiopropylatrazine was the most susceptible to mineralization in both surface and subsurface soil. A higher amount of bound residues were formed in deisopropylatrazine-treated soils. Soil moisture significantly affects the persistence of atrazine, deethylatrazine and deisopropylatrazine with decreased persistence under saturated soil moisture conditions. Persistence of deethylatrazine was positively correlated with percent clay and negatively correlated with percent organic matter. In soils with long-term atrazine history, deethylatrazine undergoes enhanced degradation. In soil column studies, the relative movement of deethylatrazine was greater than that of atrazine.

  14. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms.

    PubMed

    Ji, Yuefei; Dong, Changxun; Kong, Deyang; Lu, Junhe

    2015-03-21

    The widespread occurrence of atrazine in waters poses potential risk to ecosystem and human health. In this study, we investigated the underlying mechanisms and transformation pathways of atrazine degradation by cobalt catalyzed peroxymonosulfate (Co(II)/PMS). Co(II)/PMS was found to be more efficient for ATZ elimination in aqueous solution than Fe(II)/PMS process. ATZ oxidation by Co(II)/PMS followed pseudo-first-order kinetics, and the reaction rate constant (k(obs)) increased appreciably with increasing Co(II) concentration. Increasing initial PMS concentration favored the decomposition of ATZ, however, no linear relationship between k(obs) and PMS concentration was observed. Higher efficiency of ATZ oxidation was observed around neutral pH, implying the possibility of applying Co(II)/PMS process under environmental realistic conditions. Natural organic matter (NOM), chloride (Cl(-)) and bicarbonate (HCO3(-)) showed detrimental effects on ATZ degradation, particularly at higher concentrations. Eleven products were identified by applying solid phase extraction-liquid chromatography-mass spectrometry (SPE-LC/MS) techniques. Major transformation pathways of ATZ included dealkylation, dechlorination-hydroxylation, and alkyl chain oxidation. Detailed mechanisms responsible for these transformation pathways were discussed. Our results reveal that Co(II)/PMS process might be an efficient technique for remediation of groundwater contaminated by ATZ and structurally related s-triazine herbicides.

  15. Structural characterization of a degradation product of rocuronium using nanoelectrospray-high resolution mass spectrometry.

    PubMed

    Wegener, Olaf; Harms, Guido; Volmer, Dietrich A; Hayen, Heiko

    2015-09-01

    Rocuronium bromide is a non-depolarizing neuromuscular blocking agent that causes rapid muscle relaxation after intravenous injection. Regulatory authorities for registration of pharmaceuticals for human use require the evaluation of the stability of active compounds under various stress conditions. Forced degradation of rocuronium bromide was performed under hydrolytic, thermal, photolytic, and oxidative settings. HPLC-UV/vis analysis revealed an unknown degradation product under oxidative conditions (1% H2 O2 , reflux for 1 h). Investigation of the respective HPLC fraction by high resolution mass spectrometry indicated a formal loss of CH2 and an addition of one oxygen atom to the intact drug molecule. Additional multistage mass spectrometric structural elucidation experiments aided by complementary information from analysis of the intact drug and known rocuronium-related compounds showed that the morpholine moiety was unstable under oxidative stress. The data demonstrated that the morpholine ring was opened and transformed to an N-ethanoyl-formamide group. The structure was supported by appropriate mechanistic explanations. PMID:25564990

  16. Role of bacteria in the production and degradation of Microcystis cyanopeptides.

    PubMed

    Briand, Enora; Humbert, Jean-François; Tambosco, Kevin; Bormans, Myriam; Gerwick, William H

    2016-06-01

    The freshwater cyanobacteria, Microcystis sp., commonly form large colonies with bacteria embedded in their mucilage. Positive and negative interactions between Microcystis species and their associated bacteria have been reported. However, the potential role of bacteria in the production and degradation of cyanobacterial secondary metabolites has not been investigated. In this study, a Microcystis-associated bacterial community was isolated and added to the axenic M. aeruginosaPCC7806 liquid culture. After 3 years of cocultivation, we studied the bacterial genetic diversity adapted to the PCC7806 strain and compared the intra- and extracellular concentration of major cyanopeptides produced by the cyanobacterial strain under xenic and axenic conditions. Mass spectrometric analyses showed that the intracellular concentration of peptides was not affected by the presence of bacteria. Interestingly, the produced peptides were detected in the axenic media but could not be found in the xenic media. This investigation revealed that a natural bacterial community, dominated by Alpha-proteobacteria, was able to degrade a wide panel of structurally varying cyclic cyanopeptides. PMID:26918405

  17. A study on factors affecting the degradation of magnesium and a magnesium-yttrium alloy for biomedical applications.

    PubMed

    Johnson, Ian; Liu, Huinan

    2013-01-01

    Controlling degradation of magnesium or its alloys in physiological saline solutions is essential for their potential applications in clinically viable implants. Rapid degradation of magnesium-based materials reduces the mechanical properties of implants prematurely and severely increases alkalinity of the local environment. Therefore, the objective of this study is to investigate the effects of three interactive factors on magnesium degradation, specifically, the addition of yttrium to form a magnesium-yttrium alloy versus pure magnesium, the metallic versus oxide surfaces, and the presence versus absence of physiological salt ions in the immersion solution. In the immersion solution of phosphate buffered saline (PBS), the magnesium-yttrium alloy with metallic surface degraded the slowest, followed by pure magnesium with metallic or oxide surfaces, and the magnesium-yttrium alloy with oxide surface degraded the fastest. However, in deionized (DI) water, the degradation rate showed a different trend. Specifically, pure magnesium with metallic or oxide surfaces degraded the slowest, followed by the magnesium-yttrium alloy with oxide surface, and the magnesium-yttrium alloy with metallic surface degraded the fastest. Interestingly, only magnesium-yttrium alloy with metallic surface degraded slower in PBS than in DI water, while all the other samples degraded faster in PBS than in DI water. Clearly, the results showed that the alloy composition, presence or absence of surface oxide layer, and presence or absence of physiological salt ions in the immersion solution all influenced the degradation rate and mode. Moreover, these three factors showed statistically significant interactions. This study revealed the complex interrelationships among these factors and their respective contributions to degradation for the first time. The results of this study not only improved our understanding of magnesium degradation in physiological environment, but also presented the key

  18. Application of fluorescent antibody and enzyme-linked immunosorbent assays for TCE and PAH degrading bacteria

    SciTech Connect

    Brigmon, R.L.; Franck, M.; Brey, J.; Scott, D.; Lanclos, K.; Fliermans, C.

    1996-07-01

    Historically, methods used to identify methanotrophic and polyaromatic hydrocarbon-degrading (PAH) bacteria in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate specific bacteria from other environmental microorganisms. Methanotrophic bacteria have been isolated and characterized from TCE-contaminated soils (Bowman et al. 1993; Fliermans et al., 1988). Fliermans et al., (1988) and others demonstrated that cultures enriched with methane and propane could cometabolically degrade a wide variety of chlorinated aliphatic hydrocarbons including ethylene; 1,2-cisdichloroethylene (c-DCE); 1,2-trans-dichloroethylene (t-DCE); vinyl chloride (VC); toluene; phenol and cresol. Characterization of select microorganisms in the natural setting is important for the evaluation of bioremediation potential and its effectiveness. This realization has necessitated techniques that are selective, sensitive and easily applicable to soils, sediments, and groundwater (Fliermans, et al., 1994). Additionally these techniques can identify and quantify microbial types in situ in real time

  19. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development

    PubMed Central

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron Z.; Berry, John P.

    2016-01-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification. PMID:26861395

  20. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development.

    PubMed

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron; Berry, John P

    2016-02-01

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification. PMID:26861395

  1. Forced degradation study of racecadotril: Effect of co-solvent, characterization of degradation products by UHPLC-Q-TOF-MS/MS, NMR and cytotoxicity assay.

    PubMed

    Chiguru, Vishnuvardhan; Lingesh, Allakonda; R, Srinivas; N, Satheeshkumar

    2016-09-01

    Racecadotril, an enkephalinase inhibitor, was subjected to hydrolysis (acidic and alkaline), oxidation, photolysis and thermal stress, as per ICH specified conditions. The drug showed extensive degradation under acidic, basic hydrolysis and oxidative stress conditions whereas, it was stable under other stress conditions. A total of seven degradation products (DPs) were observed. The chromatographic separation was optimized on Acquity HSS Cyano (100×2.1mm, 1.8μ) column using 0.1% formic acid and acetonitrile as mobile phase in gradient mode. Six DPs were characterised by LC-MS/MS and DP1 by GC-MS. The major DPs (DP 2 and DP 5) were isolated and characterised by NMR. This is a typical case of degradation where co solvent methanol reacts with racecadotril leading to the formation of pseudo DPs, DP 6 and DP 5. Interestingly the MS/MS spectra of protonated drug, DP 4 and DP 7 showed product ions which were formed due to intramolecular benzyl migrations. In vitro cytotoxic activity studies on isolated DP 2 and DP 5 revealed that the former has no cytotoxic nature, whereas the latter has potential pulmonary and hepatic toxicity. PMID:27209450

  2. Selective determination of diclazuril in the presence of its degradation products.

    PubMed

    Rezk, Mamdouh R

    2015-02-01

    A simple stability-indicating high-performance liquid chromatographic method was developed and validated for the determination of diclazuril (DIC) in the presence of its induced degradation products. The drug was subjected to stress stability study including acidic, alkaline, photolytic, thermal and oxidative stress conditions, and the stressed samples were analyzed by the proposed method. The developed method utilized a C18 column (250 × 4.6 mm, i.d., 5 μm) in an isocratic separation mode with mobile phase consisting of acetonitrile and 0.2% phosphoric acid at a flow rate of 1.2 mL/min with UV-detection at 275 nm. The proposed method was validated according to the International Conference on Harmonization guidelines. The method was applied in short term and accelerated stability studies for determination of the DIC in bulk powder and in its pharmaceutical formulation.

  3. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  4. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  5. Peritoneal dialysis solutions low in glucose degradation products: clinical experience and outcomes.

    PubMed

    Diaz-Buxo, Jose A

    2007-01-01

    The latest literature describing clinical experiences with peritoneal dialysis solutions low in glucose degradation products (GDPs) is mostly consistent with previous reports suggesting less inflammation, better peritoneal mesothelial mass preservation, a lower rate of decline of residual renal function, and improved patient survival. The data suggest stable peritoneal transport rates, but no definite evidence has yet emerged of superior membrane preservation. Most studies have reported very low peritonitis rates, but without significant differences as compared with rates in patients exposed to conventional solutions. New, appropriately powered randomized clinical trials are needed to confirm the potential benefits of low-GDP solutions and to establish the role of renal function preservation with regard to those benefits.

  6. Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region

    NASA Astrophysics Data System (ADS)

    Herrero-Hernández, E.; Andrades, M. S.; Álvarez-Martín, A.; Pose-Juan, E.; Rodríguez-Cruz, M. S.; Sánchez-Martín, M. J.

    2013-04-01

    SummaryA multi-residual analytical method based on solid phase extraction (SPE) followed by liquid chromatography-electrospray ionisation-mass spectrometry (LC-MS) was developed to monitor pesticides in natural waters. Fifty-eight compounds, including herbicides, fungicides, insecticides and some of their degradation products, were surveyed to evaluate the quality of natural waters throughout the wine-growing region of La Rioja (Rioja DOCa). Ninety-two sampling points were selected, including surface and ground waters that could be affected by agricultural activities covering the region's three sub-areas. Different parameters that may affect the efficiency of the SPE procedure were optimised (sorbent type, elution solvent and sample volume), and matrix-matched standards were used to eliminate the variable matrix effect and ensure good quantification. The developed method allows the determination of target compounds below the level established by the European Union for waters for human use with suitable precision (relative standard deviations lower than 18%) and accuracy (with recoveries over 61%). Forty compounds included in this study (six insecticides, 12 herbicides, 16 fungicides and six degradation products) were detected in one or more samples. The herbicides terbuthylazine, its metabolite desethyl terbuthylazine, fluometuron and ethofumesate and the fungicides pyrimethanil and tebuconazole were the compounds most frequently detected in water samples (present in more than 60% of the samples). Concentrations above 0.1 μg L-1 were detected for 37 of the compounds studied, and in several cases recorded values of over 18 μg L-1. The results reveal the presence of pesticides in most of the samples investigated. In 64% of groundwaters and 62% of surface waters, the sum of compounds detected was higher than 0.5 μg L-1 (the limit established by EU legislation for the sum of all pesticides detected in waters for human use).

  7. Analytical tools for the analysis of β-carotene and its degradation products

    PubMed Central

    Stutz, H.; Bresgen, N.; Eckl, P. M.

    2015-01-01

    Abstract β-Carotene, the precursor of vitamin A, possesses pronounced radical scavenging properties. This has centered the attention on β-carotene dietary supplementation in healthcare as well as in the therapy of degenerative disorders and several cancer types. However, two intervention trials with β-carotene have revealed adverse effects on two proband groups, that is, cigarette smokers and asbestos-exposed workers. Beside other causative reasons, the detrimental effects observed have been related to the oxidation products of β-carotene. Their generation originates in the polyene structure of β-carotene that is beneficial for radical scavenging, but is also prone to oxidation. Depending on the dominant degradation mechanism, bond cleavage might occur either randomly or at defined positions of the conjugated electron system, resulting in a diversity of cleavage products (CPs). Due to their instability and hydrophobicity, the handling of standards and real samples containing β-carotene and related CPs requires preventive measures during specimen preparation, analyte extraction, and final analysis, to avoid artificial degradation and to preserve the initial analyte portfolio. This review critically discusses different preparation strategies of standards and treatment solutions, and also addresses their protection from oxidation. Additionally, in vitro oxidation strategies for the generation of oxidative model compounds are surveyed. Extraction methods are discussed for volatile and non-volatile CPs individually. Gas chromatography (GC), (ultra)high performance liquid chromatography (U)HPLC, and capillary electrochromatography (CEC) are reviewed as analytical tools for final analyte analysis. For identity confirmation of analytes, mass spectrometry (MS) is indispensable, and the appropriate ionization principles are comprehensively discussed. The final sections cover analysis of real samples and aspects of quality assurance, namely matrix effects and method

  8. Spatial and Temporal Variations in Chitinolytic Gene Expression and Bacterial Biomass Production during Chitin Degradation

    PubMed Central

    Baty, Ace M.; Eastburn, Callie C.; Techkarnjanaruk, Somkiet; Goodman, Amanda E.; Geesey, Gill G.

    2000-01-01

    Growth of the chitin-degrading marine bacterium S91 on solid surfaces under oligotrophic conditions was accompanied by the displacement of a large fraction of the surface-derived bacterial production into the flowing bulk aqueous phase, irrespective of the value of the surface as a nutrient source. Over a 200-h period of surface colonization, 97 and 75% of the bacterial biomass generated on biodegradable chitin and a nonnutritional silicon surface, respectively, detached to become part of the free-living population in the bulk aqueous phase. Specific surface-associated growth rates that included the cells that subsequently detached from the substrata varied depending on the nutritional value of the substratum and during the period of surface colonization. Specific growth rates of 3.79 and 2.83 day−1 were obtained when cells first began to proliferate on a pure chitin film and a silicon surface, respectively. Later, when cell densities on the surface and detached cells as CFU in the bulk aqueous phase achieved a quasi-steady state, specific growth rates decreased to 1.08 and 0.79 day−1 on the chitin and silicon surfaces, respectively. Virtually all of the cells that detached from either the chitin or the silicon surfaces and the majority of cells associated with the chitin surface over the 200-h period of surface colonization displayed no detectable expression of the chitin-degrading genes chiA and chiB. Cells displaying high levels of chiA-chiB expression were detected only on the chitin surface and then only clustered in discrete areas of the surface. Surface-associated, differential gene expression and displacement of bacterial production from surfaces represent adaptations at the population level that promote efficient utilization of limited resources and dispersal of progeny to maximize access to new sources of energy and maintenance of the population. PMID:10919823

  9. Prediction of HPLC retention times of tebipenem pivoxyl and its degradation products in solid state by applying adaptive artificial neural network with recursive features elimination.

    PubMed

    Mizera, Mikołaj; Talaczyńska, Alicja; Zalewski, Przemysław; Skibiński, Robert; Cielecka-Piontek, Judyta

    2015-05-01

    was created. Input parameters for model were calculated from molecular geometries optimized with application of Density Functional Theory. The model was prepared and optimized especially for small data sets such as degradation products of specific compound. Validation of the model with statistical test against requirements for QSAR showed its ability for prediction of retention times within given data set. Mean error of 24.75% (0.8 min) was achieved with utilization of topological, geometrical and electronic descriptors.

  10. Photodegradation of fluorene in aqueous solution: Identification and biological activity testing of degradation products.

    PubMed

    Kinani, Said; Souissi, Yasmine; Kinani, Aziz; Vujović, Svetlana; Aït-Aïssa, Sélim; Bouchonnet, Stéphane

    2016-04-15

    Degradation of fluorene under UV-vis irradiation in water was investigated and structural elucidation of the main photoproducts was achieved using gas chromatography coupled with mass spectrometry. Twenty-six photoproducts were structurally identified, mainly on the basis of electron ionization mass spectra interpretation. The main generated transformation products are hydroxy derivatives. Some secondary photoproducts including fluorenone, hydroxy fluorenone, 2-biphenyl carboxylic acid, biphenylene, methanol fluorene congeners and hydroxy fluorene dimers were also observed. A photodegradation pathway was suggested on the basis of the chemical structures of photoproducts. Fluorene as well as its main photoproducts for which chemical standards were commercially available were tested for their ability to elicit cytotoxic, estrogenic and dioxin-like activity by using in vitro cell-based bioassays. None of the tested compounds was cytotoxic at concentrations up to 100 μM. However, 2-hydroxyfluorene and 3-hydroxyfluorene exerted significant estrogenic and dioxin-like activity on a concentration range of 3-30 μM, while fluorene and 9-hydroxyfluorene were weakly or not active, respectively, in our assays. This supports the view that photodegradation processes can generate by-products of higher toxicological concern than the parent compound and strengthens the need to further identify transformation products in the aquatic environment.

  11. Effect of fiber and dye degradation products (FDP) on burn wound healing.

    PubMed

    Knox, F S; Wachtel, T L; McCahan, G R; Knapp, S C

    1979-10-01

    Upon exposure to the thermal environment of an aircraft fire, many fire retardant fabrics off-gas fiber and dye degradation products (FDP). Condensation of these products on human skin raises questions concerning possible deleterious effects on burn wound healing. A porcine bioassay was used to study the physiological effects of FDP. Selected areas of living skin, protected by dyed aromatic polyamides and polybenzimidazole fabrics, were exposed to a thermal source adjusted to simulate a postcrash JP-4 fuel fire. Burn sites contaminated with FDP were evaluated by clinical observation ane to begin epithelialization, time to closure of an open wound, and the amount and type of cicatrix formation. The experiment showed that each fabric has unique off-gasing products. The greatest amount of FDP was deposited on the skin when the skin was covered by a single layer of shell fabric separated by a 6.35-mm air gap. The presence of an intervening cotton T-shirt decreased the amount of FDP deposited on the skin. We found no evidence that FDP caused alterations in wound healing. PMID:518442

  12. TRIM26 Negatively Regulates Interferon-β Production and Antiviral Response through Polyubiquitination and Degradation of Nuclear IRF3

    PubMed Central

    Wang, Peng; Zhao, Wei; Zhao, Kai; Zhang, Lei; Gao, Chengjiang

    2015-01-01

    Virus infection leads to the activation of transcription factor IRF3 and subsequent production of type I inteferons, which induce the transcription of various antiviral genes called interferon stimulated genes (ISGs) to eliminate viral infection. IRF3 activation requires phosphorylation, dimerization and nuclear translocation. However, the mechanisms for the termination of IRF3 activation in nucleus are elusive. Here we report the identification of TRIM26 to negatively regulate IFN-β production and antiviral response by targeting nuclear IRF3. TRIM26 bound to IRF3 and promoted its K48-linked polyubiquitination and degradation in nucleus. TRIM26 degraded WT IRF3 and the constitutive active mutant IRF3 5D, but not the phosphorylation deficient mutant IRF3 5A. Furthermore, IRF3 mutant in the Nuclear Localization Signal (NLS), which could not move into nucleus, was not degraded by TRIM26. Importantly, virus infection promoted TRIM26 nuclear translocation, which was required for IRF3 degradation. As a consequence, TRIM26 attenuated IFN-β promoter activation and IFN-β production downstream of TLR3/4, RLR and DNA sensing pathways. TRIM26 transgenic mice showed much less IRF3 activation and IFN-β production, while increased virus replication. Our findings delineate a novel mechanism for the termination of IRF3 activation in nucleus through TRIM26-mediated IRF3 ubiquitination and degradation. PMID:25763818

  13. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application

    NASA Astrophysics Data System (ADS)

    Ventorino, Valeria; Aliberti, Alberto; Faraco, Vincenza; Robertiello, Alessandro; Giacobbe, Simona; Ercolini, Danilo; Amore, Antonella; Fagnano, Massimo; Pepe, Olimpia

    2015-02-01

    The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throughput sequencing. A highly complex bacterial community was found, composed of ubiquitous bacteria, with the highest representation by the Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes phyla. The abundances of the major and minor taxa retrieved during the process were determined by the selective pressure produced by the lignocellulosic plant species and degradation conditions. Moreover, cellulolytic bacteria were isolated using differential substrates and screened for cellulase, cellobiase, xylanase, pectinase and ligninase activities. Forty strains that showed multienzymatic activity were selected and identified. The highest endo-cellulase activity was seen in Promicromonospora sukumoe CE86 and Isoptericola variabilis CA84, which were able to degrade cellulose, cellobiose and xylan. Sixty-two percent of bacterial strains tested exhibited high extracellular endo-1,4-ß-glucanase activity in liquid media. These approaches show that the microbiota of lignocellulosic biomasses can be considered an important source of bacterial strains to upgrade the feasibility of lignocellulose conversion for the `greener' technology of second-generation biofuels.

  14. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application

    PubMed Central

    Ventorino, Valeria; Aliberti, Alberto; Faraco, Vincenza; Robertiello, Alessandro; Giacobbe, Simona; Ercolini, Danilo; Amore, Antonella; Fagnano, Massimo; Pepe, Olimpia

    2015-01-01

    The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throughput sequencing. A highly complex bacterial community was found, composed of ubiquitous bacteria, with the highest representation by the Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes phyla. The abundances of the major and minor taxa retrieved during the process were determined by the selective pressure produced by the lignocellulosic plant species and degradation conditions. Moreover, cellulolytic bacteria were isolated using differential substrates and screened for cellulase, cellobiase, xylanase, pectinase and ligninase activities. Forty strains that showed multienzymatic activity were selected and identified. The highest endo-cellulase activity was seen in Promicromonospora sukumoe CE86 and Isoptericola variabilis CA84, which were able to degrade cellulose, cellobiose and xylan. Sixty-two percent of bacterial strains tested exhibited high extracellular endo-1,4-ß-glucanase activity in liquid media. These approaches show that the microbiota of lignocellulosic biomasses can be considered an important source of bacterial strains to upgrade the feasibility of lignocellulose conversion for the ‘greener' technology of second-generation biofuels. PMID:25641069

  15. Release of anti-inflammatory peptides from thermosensitive nanoparticles with degradable cross-links suppresses pro-inflammatory cytokine production.

    PubMed

    Poh, Scott; Lin, Jenny B; Panitch, Alyssa

    2015-04-13

    Pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) are mediators in the development of many inflammatory diseases. To demonstrate that macrophages take up and respond to thermosensitive nanoparticle drug carriers, we synthesized PEGylated poly(N-isopropylacrylamide-2-acrylamido-2-methyl-1-propanesulfonate) particles cross-linked with degradable disulfide (N,N'-bis(acryloyl)cystamine) (NGPEGSS). An anti-inflammatory peptide (KAFAK) was loaded and released from the thermosensitive nanoparticles and shown to suppress levels of TNF-α and IL-6 production in macrophages. Cellular uptake of fluorescent, thermosensitive, and degradable nanoparticles and therapeutic efficacy of free KAFAK peptide compared to that of KAFAK loaded in PEGylated degradable thermosensitive nanoparticles were examined. The data suggests that the degradable, thermosensitive nanoparticles loaded with KAFAK may be an effective tool to treat inflammatory diseases.

  16. Isolation and characterization of a bluegill-degrading microorganism, and analysis of the root hair-promoting effect of the degraded products.

    PubMed

    Sanpa, Sirilak; Sumiyoshi, Sayoko; Kujira, Tadakazu; Matsumiya, Yoshiki; Kubo, Motoki

    2006-02-01

    Bluegill-degrading bacteria were isolated from various environmental sources. Brevibacillus sp. BGM1 degraded bluegill efficiently at 50 degrees C, and its culture supernatant showed the highest peptide and amino acid concentrations as trichloroacetic acid (TCA) soluble fraction (ASF) (10.7 mg/ml) of all supernatants obtained with bluegill as a substrate. Strain BGM1 secreted a protease(s) into the medium, and the concentration of peptides and amino acids gradually increased. The fertile effect of the degraded bluegill products (DGP) on Brassica rapa was also investigated. The root hair density of B. rapa grown with DGP at a concentration of 30 mug peptides and amino acids/ml was about 1.7 times higher than when grown with the same concentration of undegraded bluegill. DGP was shown to increase root hair numbers and adventitious root formation. The results of this study suggest that a specific peptide(s) for promotion of root hair is produced from the order Perciformes with a protease(s) from BGM1.

  17. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3

    PubMed Central

    Wang, Wanpeng; Cai, Bobo; Shao, Zongze

    2014-01-01

    Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL−1, and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m−1. Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal. PMID:25566224

  18. Phenol oxidases production and wood degradation by a thermophilic fungus Thermoascus aurantiacus

    SciTech Connect

    Machuca, A.; Duran, N. )

    1993-10-01

    The ability of a Brazilian strain of Thermoascus aurantiacus, a thermophilic fungus, to produce extracellular phenol oxidases and to degrade Eucalyptus grandis sawdust was studied. T. aurantiacus was capable of good growth in liquid culture containing 1.5% (w/v) of various lignocellulosic substrates (sugar cane bagasse, rice hulls, and chips and sawdust of E. grandis) plus 5 mg/mL of glucose. When lignocellulosic substrates were used, enzymes involved in cellulose and hemicellulose metabolism were stimulated in T. aurantiacus. It was also found that these substrates have an inductive effect on phenol oxidase production. The most effective inducer of phenol oxidase activity was E. grandis sawdust, which led to the production of 0.80 U/mL (o-dianisidine oxidation) on day 12. Low phenol oxidase activity was observed at cultures when only glucose was used. Cultures of T. aurantiacus also exhibited cellobiose-quinone oxidoreductase activity when lignocellulosic materials were used as substrate. However, under the experimental conditions, lignin peroxidase activity was not detected. E. grandis sawdust supplemented with 5 mg/mL of glucose suffered a total weight loss of 6.7% accompanied by 15% lignin loss and 64.4% extractive loss after 21 d incubation with T. aurantiacus. 31 refs., 1 fig., 3 tabs.

  19. Development of enzyme immunoassay for captan and its degradation product tetrahydrophthalimide in foods.

    PubMed

    Newsome, W H; Yeung, J M; Collins, P G

    1993-01-01

    A simple, sensitive, and precise enzyme-linked immunosorbent assay (ELISA) is described for the quantitation of captan as its degradation product tetrahydrophthalimide (THPI) in foods using polyclonal antibodies. Three hapten analogues of THPI with different alkyl spacer arm lengths were synthesized. Immunogens and coating proteins were prepared by coupling these haptens to human serum albumin and ovalbumin, respectively. A 5-carbon spacer arm appeared to be optimum for the production of antibodies. Heterologous coating proteins did not improve the sensitivity, but reduction of homologous coating protein concentration did improve the sensitivity, resulting in a concentration of test compound required to inhibit binding by 50% of 15.5 ng/mL. The antiserum is specific for captan, captafol, and THPI, but not other structurally related compounds. The minimum detection limit was 1 ng/mL; the linearity was 1-200 ng/mL. The overall recoveries of captan and THPI from 11 commodities spiked at 4 levels were 92 and 100%, respectively. The intra-assay and interassay coefficients of variation were 9.1 and 16.8% for apple blanks and 5.9 and 4.2% for apple spiked with 3 ppm THPI, respectively. The ELISA described is suitable for measuring captan and THPI at levels comparable to those typically found in fruit.

  20. Mass production of bacterial communities adapted to the degradation of volatile organic compounds (TEX).

    PubMed

    Lapertot, Miléna; Seignez, Chantal; Ebrahimi, Sirous; Delorme, Sandrine; Peringer, Paul

    2007-06-01

    This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kg(DW)m(-3) d(-1) and 0.59 g(DW)g (C) (-1) , respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.

  1. Peritoneal dialysis solutions low in glucose degradation products--evidence for clinical benefits.

    PubMed

    Tomo, Tadashi

    2008-06-01

    In Japan, two types of new peritoneal dialysis fluid (PDF) are ordinarily used: two-chambered PDF, and icodextrin PDF. Two-chambered PDF has several biocompatible characteristics, one being low glucose degradation products (GDPs). Of the several GDPs in PDF, 3,4-dideoxyglucosone-3-ene (3,4-DGE) is thought to be strongly associated with the cytotoxicity of standard PDF. Using a PDF low in GDPs may reduce exposure of the peritoneum to 3,4-DGE, helping to preserve peritoneal function in PD patients. Additionally, use of a PDF low in GDPs may reduce plasma levels of advanced glycosylation end-products in PD patients, a change that may help to preserve vascular function in PD patients. Peritoneal rest for 24 hours after exposure to a PDF with low GDPs improves the activity of human peritoneal mesothelial cells. As compared with the use of standard PDF, the use of low-GDP PDF in combination therapy (peritoneal dialysis plus hemodialysis) may more effectively preserve peritoneal function. The new PDF low in GDPs has biocompatible characteristics relative to peritoneum and system that may help to preserve peritoneal function or reduce complications such as atherosclerosis or dialysis-related amyloidosis in dialysis patients.

  2. Pyrene degradation by a Mycobacterium sp. : Identification of ring oxidation and ring fission products

    SciTech Connect

    Heitkamp, M.A.; Freeman, J.P.; Miller, D.W.; Cerniglia, C.E. )

    1988-10-01

    The degradation of pyrene, a polycyclic aromatic hydrocarbon containing four aromatic rings, by pure cultures of a Mycobacterium sp. was studied. Over 60% of ({sup 14}C)pyrene was mineralized to CO{sub 2} after 96 h of incubation at 24{degree}C. High-pressure liquid chromatography analyses showed the presence of one major and at least six other metabolites that accounted for 95% of the total organic-extractable {sup 14}C-labeled residues. Analyses by UV, infrared, mass, and nuclear magnetic resonance spectrometry and gas chromatography identified both pyrene cis- and trans-4,5-dihydrodiols and pyrenol as initial microbial ring-oxidation products of pyrene. The major metabolite, 4-phenanthroic acid, and 4-hydroxyperinaphthenone and cinnamic and phthalic acids were identified as ring fission products. {sup 18}O{sub 2} studies showed that the formation of cis- and trans-4,5-dihydrodiols were catalyzed by dioxygenase and monooxygenase enzymes, respectively. This is the first report of the chemical pathway for the microbial catabolism of pyrene.

  3. Production and Ecological Significance of Yeast Cell Wall-Degrading Enzymes from Oerskovia †

    PubMed Central

    Mann, J. W.; Jeffries, T. W.; Macmillan, J. D.

    1978-01-01

    Motile actinomycetes capable of degrading walls of viable yeast cells were isolated from soil and identified as Oerskovia xanthineolytica. A lytic assay based on susceptibility of enzyme-treated cells to osmotic shock was developed, and 10 of 15 strains of O. xanthineolytica, Oerskovia turbata, and nonmotile Oerskovia- like organisms from other collections were found to possess yeast lytic activities. All lytic strains produced laminaranase and α-mannanase, but the amounts, determined by reducing group assays, were not proportional to the observed lytic activities. The Oerskovia isolates demonstrated chemotactic, predatory activity against various yeast strains and killed yeasts in mixed cultures. Of 15 carbon sources tested for production of lytic enzyme, purified yeast cell walls elicited the highest activity. Glucose repressed enzyme production and caused cells to remain in the microfilamentous and motile rod stages of the Oerskovia cell cycle. Crude lytic activity was optimal at pH 5.6 to 7.0 and inactivated by heating for 6 min at 50°C. Partial purification by isoelectric focusing showed that all lytic activity was associated with four β-(1→3)-glucanases. The absence of protein disulfide reductase, N-acetyl-β-d-hexosaminidase, and phosphomannanase in crude preparations indicated that the principal enzyme responsible for yeast wall lysis was a β-(1→3)-glucanase that produced relatively little reducing sugar from yeast glucan. Images PMID:16345321

  4. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3.

    PubMed

    Wang, Wanpeng; Cai, Bobo; Shao, Zongze

    2014-01-01

    Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL(-1), and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m(-1). Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal. PMID:25566224

  5. Development of HPLC/ESI-MS and HPLC/1H NMR methods for the identification of photocatalytic degradation products of iodosulfuron.

    PubMed

    Sleiman, Mohamad; Ferronato, Corinne; Fenet, Bernard; Baudot, Robert; Jaber, Farouk; Chovelon, Jean-Marc

    2006-05-01

    In the present study, HPLC/ESI-MS and stopped-flow HPLC/1H NMR methods were developed and applied to separate and characterize the byproducts arising from TiO2-catalyzed photodegradation of the herbicide iodosulfuron methyl ester (IOME) in aqueous solution under UV irradiation. Prior to identification, irradiated solutions of IOME (200 and 1000 mg.L(-1)) were concentrated by solid-phase extraction using two cartridges: Isolute C18 and Isolute ENV+. Analytical separation was achieved on a C18 reversed-phase column with ACN/H2O (HPLC/MS) or ACN/D2O (HPLC/NMR) as mobile phase and a linear gradient with a chromatographic run time of 35 min. The combination of UV and MS data allowed the structural elucidation of more than 20 degradation products, whereas 1H NMR data permitted an unequivocal confirmation of the identities of major products and the differentiation of several positional isomers, in particular, the hydroxylation isomers. The obtained results permitted us to propose a possible degradation scheme and to put in evidence the presence of privileged sites for the attack of OH radicals. This work shows, for the first time, the application of combined HPLC with UV, MS, and NMR detection for complete structural elucidation of photocatalytic degradation products, and it will be of particular value in studies on the elimination of pollutants in aqueous solutions by photocatalysis.

  6. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.; Casella, Amanda J.; Peterman, Dean; Bryan, Samuel A.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  7. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell; Amanda J. Casella; Dean R. Peterman; Samuel A. Bryan

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  8. Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B.

    PubMed

    Jackson, Rosamond G; Rylott, Elizabeth L; Fournier, Diane; Hawari, Jalal; Bruce, Neil C

    2007-10-23

    Widespread contamination of land and groundwater has resulted from the use, manufacture, and storage of the military explosive hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX). This contamination has led to a requirement for a sustainable, low-cost method to remediate this problem. Here, we present the characterization of an unusual microbial P450 system able to degrade RDX, consisting of flavodoxin reductase XplB and fused flavodoxin-cytochrome P450 XplA. The affinity of XplA for the xenobiotic compound RDX is high (K(d) = 58 muM) and comparable with the K(m) of other P450s toward their natural substrates (ranging from 1 to 500 muM). The maximum turnover (k(cat)) is 4.44 per s, only 10-fold less than the fastest self-sufficient P450 reported, BM3. Interestingly, the presence of oxygen determines the final products of RDX degradation, demonstrating that the degradation chemistry is flexible, but both pathways result in ring cleavage and release of nitrite. Carbon monoxide inhibition is weak and yet the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a potent inhibitor. To test the efficacy of this system for the remediation of groundwater, transgenic Arabidopsis plants expressing both xplA and xplB were generated. They are able to remove saturating levels of RDX from liquid culture and soil leachate at rates significantly faster than those of untransformed plants and xplA-only transgenic lines, demonstrating the applicability of this system for the phytoremediation of RDX-contaminated sites. PMID:17940033

  9. Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B

    PubMed Central

    Jackson, Rosamond G.; Rylott, Elizabeth L.; Fournier, Diane; Hawari, Jalal; Bruce, Neil C.

    2007-01-01

    Widespread contamination of land and groundwater has resulted from the use, manufacture, and storage of the military explosive hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX). This contamination has led to a requirement for a sustainable, low-cost method to remediate this problem. Here, we present the characterization of an unusual microbial P450 system able to degrade RDX, consisting of flavodoxin reductase XplB and fused flavodoxin-cytochrome P450 XplA. The affinity of XplA for the xenobiotic compound RDX is high (Kd = 58 μM) and comparable with the Km of other P450s toward their natural substrates (ranging from 1 to 500 μM). The maximum turnover (kcat) is 4.44 per s, only 10-fold less than the fastest self-sufficient P450 reported, BM3. Interestingly, the presence of oxygen determines the final products of RDX degradation, demonstrating that the degradation chemistry is flexible, but both pathways result in ring cleavage and release of nitrite. Carbon monoxide inhibition is weak and yet the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a potent inhibitor. To test the efficacy of this system for the remediation of groundwater, transgenic Arabidopsis plants expressing both xplA and xplB were generated. They are able to remove saturating levels of RDX from liquid culture and soil leachate at rates significantly faster than those of untransformed plants and xplA-only transgenic lines, demonstrating the applicability of this system for the phytoremediation of RDX-contaminated sites. PMID:17940033

  10. Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B.

    PubMed

    Jackson, Rosamond G; Rylott, Elizabeth L; Fournier, Diane; Hawari, Jalal; Bruce, Neil C

    2007-10-23

    Widespread contamination of land and groundwater has resulted from the use, manufacture, and storage of the military explosive hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX). This contamination has led to a requirement for a sustainable, low-cost method to remediate this problem. Here, we present the characterization of an unusual microbial P450 system able to degrade RDX, consisting of flavodoxin reductase XplB and fused flavodoxin-cytochrome P450 XplA. The affinity of XplA for the xenobiotic compound RDX is high (K(d) = 58 muM) and comparable with the K(m) of other P450s toward their natural substrates (ranging from 1 to 500 muM). The maximum turnover (k(cat)) is 4.44 per s, only 10-fold less than the fastest self-sufficient P450 reported, BM3. Interestingly, the presence of oxygen determines the final products of RDX degradation, demonstrating that the degradation chemistry is flexible, but both pathways result in ring cleavage and release of nitrite. Carbon monoxide inhibition is weak and yet the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a potent inhibitor. To test the efficacy of this system for the remediation of groundwater, transgenic Arabidopsis plants expressing both xplA and xplB were generated. They are able to remove saturating levels of RDX from liquid culture and soil leachate at rates significantly faster than those of untransformed plants and xplA-only transgenic lines, demonstrating the applicability of this system for the phytoremediation of RDX-contaminated sites.

  11. Decrease of reduced glutathione in isolated rat hepatocytes caused by acrolein, acrylonitrile, and the thermal degradation products of styrene copolymers.

    PubMed

    Zitting, A; Heinonen, T

    1980-01-01

    Decrease of reduced glutathione (GSH) was induced in isolated rat hepatocytes by incubation with acrolein or acrylonitrile for 120 min or exposure to the products of oxidative thermal degradation of acrylonitrile-butadiene-styrene copolymer (ABS), styrene-acrylonitrile copolymer (SAN), and high impact polystyrene (SB). The decrease of GSH by acrolein was rapid but the cells soon recovered at acrolein concentrations of 0.025--0.25 mM. 0.5 mM acrolein depleted the cells of GSH and they were uncapable of further GSH synthesis. At concentrations of 0.25--0.5 mM concomitant lipid peroxidation impaired the integrity of the cell membranes. Also acrylonitrile induced a dose dependent GSH decrease at concentrations of 0.05--1 mM. Neither membrane damage nor lipid peroxidation was detected during 120-min incubations at these acrylonitrile concentrations. The thermal degradation products of ABS, SAN and SB caused a decrease of GSH in hepatocytes. The extent of the decrease depended on the degradation temperature and the type of the plastic. The membrane integrity was impaired in the cases where GSH was depleted almost completely; ABS degraded at 350 degrees C and SB at 250 degrees C. The measurements of lipid peroxidation by the thiobarbituric acid and the diene conjugation methods were impossible because the degradation products contained compounds which interfered with these tests.

  12. The Inhibitory Effect of Natural Products on Protein Fibrillation May Be Caused by Degradation Products – A Study Using Aloin and Insulin

    PubMed Central

    Lobbens, Eva S.; Foderà, Vito; Nyberg, Nils T.; Andersen, Kirsten; Jäger, Anna K.; Jorgensen, Lene; van de Weert, Marco

    2016-01-01

    Protein fibrillation is the pathological hallmark of several neurodegenerative diseases and also complicates the manufacturing and use of protein drugs. As a case study, the inhibitory activity of the natural compound aloin against insulin fibrillation was investigated. Based on Thioflavin T assays, high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major compounds in the solution were aloin A and aloin B. In addition, 10-hydroxy aloin and elgonica dimers were detected in smaller amounts. The identified compounds were isolated and tested for activity by means of Thioflavin T assays, but no activity was observed. Thus, the actual fibrillation inhibitor is an as yet unidentified and potentially metastable degradation product of aloin. These results suggest that degradation products, and in particular oxidation products, are to be considered thoroughly when natural products are investigated for activity against protein fibrillation. PMID:26882071

  13. Only low methane production and emission in degraded peat extraction sites after rewetting

    NASA Astrophysics Data System (ADS)

    Agethen, Svenja; Waldemer, Carolin; Knorr, Klaus-Holger

    2015-04-01

    In Central Europe rewetting of bogs after peat extraction is a wide spread technique to halt secondary aerobic decomposition and to reestablish plant species such as Sphagnum spp. and Eriophorum spp. that initialize accumulation of organic carbon in peat. Before extraction, such sites are often used for agriculture causing the aerobic degradation of peat and mobilization of phosphorus, ammonia, and dissolved organic matter (DOM). In nutrient poor ecosystems such as bogs, additional supply of P and N does not only trigger the establishment of uncharacteristic vegetation but also the formation of more labile plant litter and DOM that is readily degradable. Therefore, after rewetting and the development of anoxic conditions especially in initial stages high methane (CH4) emissions are reported for these systems compared to pristine bogs. Regarding the potential of methane production and emissions we investigated three common practices to prepare extraction fields for restoration (years since rewetting): i) Filling of drainage ditches, passive rewetting (1 site, Altendorfer Moor, Stade, NW-Germany, ca. 20 yr.), ii) Removal of upper 30 cm peat layer, removed peat used for construction of polder dikes (2 sites, Königsmoor, Leer, NW-Germany, 2 and 3 yr.), iii) Removal upper peat layer down to 50 cm grown peat, not extracted peat used as polder walls (2 sites, Benthullener Moor, Wardenburg, NW-Germany, 3 and 7 yr.). In each site two vegetated replicate mesocosms (diam. 30 cm, depth 40 cm) were sampled and placed in a greenhouse from May-October 2014 to maintain the water table at surface level. Pore water concentrations of ions, fermentation products and DOM, DOM electron acceptor capacity (EAC), soil gas concentrations of CO2, CH4 and H2, gas fluxes as well as element composition and organic matter quality of DOM and SOM were analyzed. We found out that practice i) with least efforts of nutrient removal in the peat produced the highest CH4 emissions (3.5 mmol m-2 d-1

  14. 15 CFR 400.23 - Application for production authority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Application for production authority... Applications To Establish and Modify Authority § 400.23 Application for production authority. In addition to any applicable requirements set forth in § 400.21, an application requesting production...

  15. 15 CFR 400.23 - Application for production authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Application for production authority... Applications To Establish and Modify Authority § 400.23 Application for production authority. In addition to any applicable requirements set forth in § 400.21, an application requesting production...

  16. Stability study of the antihistamine drug azelastine HCl along with a kinetic investigation and the identification of new degradation products.

    PubMed

    El-Shaheny, Rania N; Yamada, Koji

    2014-01-01

    The first stability-indicating HPLC method was developed and validated for azelastine HCl (AZL). The separation of AZL from its degradation products was achieved on a C18 column using acetonitrile-0.04 M phosphate buffer of pH 3.5 (32:68, v/v) as a mobile phase with UV-detection at 210 nm and naftazone as an internal standard. The method was rectilinear over the range of 0.2-20.0 μg mL(-1) with a detection limit of 7.05 ng mL(-1). The degradation behavior of AZL was studied under different ICH-recommended stress conditions along with a kinetic investigation; also, degradation products were identified by mass spectrometry. The method was applied for the quality control and stability assessment of AZL in eye drops and nasal spray. The obtained results were favorably compared with those obtained by a comparison method. PMID:24919676

  17. Imprinted sol-gel materials for monitoring degradation products in automotive oils by shear transverse wave.

    PubMed

    Mujahid, Adnan; Afzal, Adeel; Glanzing, Gerd; Leidl, Anton; Lieberzeit, Peter A; Dickert, Franz L

    2010-08-18

    Titania sol-gel layers imprinted with capric acid have been used as synthetic receptors for highly sensitive detection of oxidized products resulting from degradation of automotive engine oil. These layers have been applied as sensitive coating material on shear transverse wave (STW) resonators of frequencies ranging from 100 MHz to 430 MHz. A relatively small size of STW resonators, i.e. about 2 mm for 430 MHz makes these devices extremely useful while considering the concept of miniaturization. It has been proved experimentally that by increasing fundamental resonance frequency of these devices, a very high sensor response i.e. 22 kHz up to 460 kHz can be generated. The geometry of long chain capric acid fits best as recognition element in the synthesis of imprinted TiO(2) network. The thin titania layers coated on transducer surface provide excellent diffusion pathways to oxidized products of waste engine oil for selective and reversible re-inclusion i.e. recovery time of 30 min. Viscosity effects of oxidized engine oil can be minimized by shear waves which do not dissipate considerable amount of energy that ensure smooth liquid phase operation. Different oxidized products i.e. carbonic acids and esters can be characterized in lubricant via infra-red (IR) spectroscopy. The increasing IR absorbance of different waste oil samples is a clear indication of increasing concentration of carbonyl group. The IR absorbance of carbonyl groups is directly correlated to the age of respective waste engine oil samples and a quantitative relationship between sensor responses from STWs and IR absorbance was also developed.

  18. Contribution of hydroxylated atrazine degradation products to the total atrazine load in midwestern streams

    USGS Publications Warehouse

    Lerch, R.N.; Blanchard, P.E.; Thurman, E.M.

    1998-01-01

    The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites)in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites) in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at

  19. Atmospheric lifetimes, infrared spectra and degradation products of a series of hydrofluoroethers

    NASA Astrophysics Data System (ADS)

    Cavalli, F.; Glasius, M.; Hjorth, J.; Rindone, B.; Jensen, N. R.

    The rate constants of the reactions between the OH radical and a series of hydrofluoroethers (HFE) have been measured. The reaction of OH with CHF 2OCF 2OCHF 2 (1), CHF 2OCF 2CF 2OCHF 2 (2), CHF 2OCF 2CF 2OCF 2OCHF 2 (3) and CH 3OC 4F 9 (4) were investigated at 295±3 K and 740±5 Torr total pressure. The following values of the rate constants were determined for the reaction with the OH radical: k1=(2.4±0.7)×10 -15 cm 3 molecule -1 s -1, k2=(4.7±1.6)×10 -15 cm 3 molecule -1 s -1, k3=(4.6±1.6)×10 -15 cm 3 molecule -1 s -1 and k4=(7.2±1.6)×10 -15 cm 3 molecule -1 s -1. (All values are given with 2 σ uncertainties). Infrared spectra were obtained for all four HFEs in the range from 600 to 4000 cm -1 (3 to 17 μm), with the following IBI-values (integrated band intensities): IBI 1= (5.19±0.23)×10 -16 cm molecule -1 for the 978-1584 cm -1 band, IBI 2=(6.04±0.13)×10 -16 cm molecule -1 for the 930-1501 cm -1 band, IBI 3=(8.49±0.34)×10 -16 cm molecule -1 from the 963-1587 cm -1 band and IBI 4=(4.23±0.14)×10 -16 cm molecule -1 for the 845-1428 cm -1 band. Carbonyl fluoride, CF 2O, was the only fluorine-containing degradation product that was found from the Cl atom-initiated reactions of both CHF 2OCF 2OCF 2CF 2OCHF 2 and CH 3OC 4F 9, with measured product yields of 60-97% and 20-40% (based on carbon atoms), respectively. Due to the high uptake parameter of CF 2O to liquid water, its lifetime in the atmosphere is very short (with an upper limit between 15 and 30 d). It is rapidly incorporated into raindrops/aerosols, where it eventually degrades to HF and CO 2. The GWP of CF 2O is therefore negligible compared to those of CFC-11 and CFC-12.

  20. Degradable/non-degradable polymer composites for in-situ tissue engineering small diameter vascular prosthesis application.

    PubMed

    Wang, Fujun; Mohammed, Abedalwafa; Li, Chaojing; Ge, Peng; Wang, Lu; King, Martin W

    2014-01-01

    Various tissue-engineered vascular grafts have been studied in order to overcome the clinical disadvantages associated with conventional prostheses. However, previous tissue-engineered vascular grafts have possessed insufficient mechanical properties and thus have generally required either preoperative cellular manipulation or the use of bioreactors to improve their performance. In this study, we focused on the concept of in situ cellularization and developed a tissue-engineered vascular graft with degradable/non-degradable polymer composites for arterial reconstruction that would facilitate the renewal of autologous tissue without any pretreatment. Additionally, these composites are designed to improve the mechanical performance of a small-diameter vascular prosthesis scaffold that is made from a flexible membrane of poly(e-caprolactone) (PCL). The PCL scaffold was reinforced by embedding a tubular fabric that was knitted from polyethylene terephthalate (PET) yarns within the freeze-dried composite structure. Adding this knitted fabric component significantly improved the mechanical properties of the composite scaffold, such as its tensile strength and initial modulus, radial compliance, compression recovery, and suture retention force. Finally, this reinforced composite structure is a promising candidate for use as a tissue-engineered scaffold for a future small diameter vascular prosthesis. PMID:25226910

  1. Heme degradation upon production of endogenous hydrogen peroxide via interaction of hemoglobin with sodium dodecyl sulfate.

    PubMed

    Salehi, N; Moosavi-Movahedi, A A; Fotouhi, L; Yousefinejad, S; Shourian, M; Hosseinzadeh, R; Sheibani, N; Habibi-Rezaei, M

    2014-04-01

    In this study the hemoglobin heme degradation upon interaction with sodium dodecyl sulfate (SDS) was investigated using UV-vis and fluorescence spectroscopy, multivariate curve resolution analysis, and chemiluminescence method. Our results showed that heme degradation occurred during interaction of hemoglobin with SDS producing three fluorescent components. We showed that the hydrogen peroxide, produced during this interaction, caused heme degradation. In addition, the endogenous hydrogen peroxide was more effective in hemoglobin heme degradation compared to exogenously added hydrogen peroxide. The endogenous form of hydrogen peroxide altered oxyHb to aquamethemoglobin and hemichrome at low concentration. In contrast, the exogenous hydrogen peroxide lacked this ability under same conditions.

  2. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    NASA Astrophysics Data System (ADS)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  3. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection.

    PubMed

    Richardson, Douglas D; Caruso, Joseph A

    2007-06-01

    Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC-ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC-time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC-ICPMS. PMID:17356819

  4. Review: The occurrence, distribution and mechanism of diisopropyl methylphosphonate (DIMP) formation in the production degradation and demilitarization of sarin

    SciTech Connect

    Luman, F.M.

    1984-05-21

    The presence of (diisopropyl methylphosphonate) with respect to sarin manufacture and degradation is presented in this paper. Much evidence exists to support the presence of DIMP during the manufacturing process of sarin. Similary, DIMP is present in stored solution of GB. Primary literature sources do not support the production of DIMP during the demilitarization process. (Author).

  5. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment.

    PubMed

    Nguyen, Hoa Q; Stamatis, Stephen D; Kirsch, Lee E

    2015-09-01

    Patient safety risk due to toxic degradation products is a potentially critical quality issue for a small group of useful drug substances. Although the pharmacokinetics of toxic drug degradation products may impact product safety, these data are frequently unavailable. The objective of this study is to incorporate the prediction capability of physiologically based pharmacokinetic (PBPK) models into a rational drug degradation product risk assessment procedure using a series of model drug degradants (substituted anilines). The PBPK models were parameterized using a combination of experimental and literature data and computational methods. The impact of model parameter uncertainty was incorporated into stochastic risk assessment procedure for estimating human safe exposure levels based on the novel use of a statistical metric called "PROB" for comparing probability that a human toxicity-target tissue exposure exceeds the rat exposure level at a critical no-observed-adverse-effect level. When compared with traditional risk assessment calculations, this novel PBPK approach appeared to provide a rational basis for drug instability risk assessment by focusing on target tissue exposure and leveraging physiological, biochemical, biophysical knowledge of compounds and species. PMID:25900395

  6. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    PubMed

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. PMID:26051524

  7. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective

    PubMed Central

    Kricka, William; Fitzpatrick, James; Bond, Ursula

    2014-01-01

    This review focuses on current approaches to metabolic engineering of ethanologenic yeast species for the production of bioethanol from complex lignocellulose biomass sources. The experimental strategies for the degradation of the cellulose and xylose-components of lignocellulose are reviewed. Limitations to the current approaches are discussed and novel solutions proposed. PMID:24795706

  8. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant.

    PubMed

    Topal, Murat; Uslu Şenel, Gülşad; Öbek, Erdal; Arslan Topal, E Işıl

    2016-05-15

    Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC. PMID:26950498

  9. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy.

    PubMed

    Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua

    2015-09-01

    In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy.

  10. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    EPA Science Inventory

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  11. Strategies to alleviate poverty and grassland degradation in Inner Mongolia: intensification vs production efficiency of livestock systems.

    PubMed

    Briske, David D; Zhao, Mengli; Han, Guodong; Xiu, Changbai; Kemp, David R; Willms, Walter; Havstad, Kris; Kang, Le; Wang, Zhongwu; Wu, Jianguo; Han, Xingguo; Bai, Yongfei

    2015-04-01

    Semi-nomadic pastoralism was replaced by sedentary pastoralism in Inner Mongolia during the 1960's in response to changes in land use policy and increasing human population. Large increases in numbers of livestock and pastoralist households (11- and 9-fold, respectively) during the past 60 yrs have variously degraded the majority of grasslands in Inner Mongolia (78 M ha) and jeopardize the livelihoods of 24 M human inhabitants. A prevailing strategy for alleviating poverty and grassland degradation emphasizes intensification of livestock production systems to maintain both pastoral livelihoods and large livestock numbers. We consider this strategy unsustainable because maximization of livestock revenue incurs high supplemental feed costs, marginalizes net household income, and promotes larger flock sizes to create a positive feedback loop driving grassland degradation. We offer an alternative strategy that increases both livestock production efficiency and net pastoral income by marketing high quality animal products to an increasing affluent Chinese economy while simultaneously reducing livestock impacts on grasslands. We further caution that this strategy be designed and assessed within a social-ecological framework capable of coordinating market expansion for livestock products, sustainable livestock carrying capacities, modified pastoral perceptions of success, and incentives for ecosystem services to interrupt the positive feedback loop that exists between subsistence pastoralism and grassland degradation in Inner Mongolia.

  12. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant.

    PubMed

    Topal, Murat; Uslu Şenel, Gülşad; Öbek, Erdal; Arslan Topal, E Işıl

    2016-05-15

    Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC.

  13. A Novel Method for Assessing Drug Degradation Product Safety Using Physiologically-Based Pharmacokinetic Models and Stochastic Risk Assessment.

    PubMed

    Nguyen, Hoa Q; Stamatis, Stephen D; Kirsch, Lee E

    2015-09-01

    Patient safety risk due to toxic degradation products is a potentially critical quality issue for a small group of useful drug substances. Although the pharmacokinetics of toxic drug degradation products may impact product safety, these data are frequently unavailable. The objective of this study is to incorporate the prediction capability of physiologically based pharmacokinetic (PBPK) models into a rational drug degradation product risk assessment procedure using a series of model drug degradants (substituted anilines). The PBPK models were parameterized using a combination of experimental and literature data and computational methods. The impact of model parameter uncertainty was incorporated into stochastic risk assessment procedure for estimating human safe exposure levels based on the novel use of a statistical metric called "PROB" for comparing probability that a human toxicity-target tissue exposure exceeds the rat exposure level at a critical no-observed-adverse-effect level. When compared with traditional risk assessment calculations, this novel PBPK approach appeared to provide a rational basis for drug instability risk assessment by focusing on target tissue exposure and leveraging physiological, biochemical, biophysical knowledge of compounds and species.

  14. Sources and Input Pathways of Glyphosate and its Degradation Product AMPA

    NASA Astrophysics Data System (ADS)

    Bischofberger, S.; Hanke, I.; Wittmer, I.; Singer, H.; Stamm, C.

    2009-04-01

    Despite being the pesticide used in the largest quantities worldwide, the environmental relevance of glyphosate has been considered low for many years. Reasons for this assessment were the observations that glyphosate degrades quickly into its degradation product AMPA and that it sorbs strongly to soil particles. Hence, little losses to water bodies had been expected. Research during the last few years however contradicts this expectation. Although glyphosate is a dominant pesticide used in agriculture, recent studies on other pesticides revealed that urban sources may play a significant role for water quality. Therefore this study compares glyphosate input into streams from agricultural and urban sources. For that purpose, a catchment of an area of 25 km2 was selected. It has by about 12'000 inhabitants and about 15 % of the area is used as arable land. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a waste water treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. To analyze the concentration of glyphosate and its degradation product AMPA, the samples were derivatized with FMOC-Cl at low pH conditions and then filtrated. The solid phase extraction was conducted with Strata-X sorbent cartridge. Glyphosate and AMPA were detected with API 4000 after the chromatography with X bridge column C18. To assure the data quality, interne standards of Glyphosate and AMPA were added to every sample. The limit of detection and quantification for glyphosate and AMPA are bellow 1ng/l. We analyzed two rain events at a high resolution for all stations and several events at the outlet of the catchment. We measured high glyphosate concentration in urban and agriculture dominated catchments with up to

  15. Exudate gums: occurrence, production, and applications.

    PubMed

    Verbeken, D; Dierckx, S; Dewettinck, K

    2003-11-01

    This paper presents a review of the industrially most relevant exudate gums: gum arabic, gum karya, and gum tragacanth. Exudate gums are obtained as the natural exudates of different tree species and exhibit unique properties in a wide variety of applications. This review covers the chemical structure, occurrence and production of the different gums. It also deals with the size and relative importance of the various players on the world market. Furthermore, it gives an overview of the main application fields of the different gums, both food and non-food.

  16. Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions.

    PubMed

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, "Shengli Cluster" and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes.

  17. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production.

    PubMed

    Ali Khan, Aqib Hassan; Tanveer, Sundus; Anees, Mariam; Muhammad, Yousaf Shad; Iqbal, Mazhar; Yousaf, Sohail

    2016-07-01

    Biodegradation and biomass production are affected by numerous environmental factors including pH, oxygen availability and presence of pollutants. The present study, for the first time, elucidated the effects of nutrients and light on mycodegradation of petroleum hydrocarbons in diesel oil. Seven fungal strains (Aspergillus terreus FA3, Aspergillus niger FA5, Aspergillus terreus FA6, Penicillium chrysogenum FP4, Aspergillus terreus FP6, Aspergillus flavus FP10, and Candida sp. FG1) were used for hydrocarbon degradation under static conditions, in four combinations of nutrient media and illuminance for 45 days. Highest degradation was achieved by Aspergillus terreus FA6 and Candida sp. FG1 under both conditions of light and dark, with nutrient deprived HAF (Hydrocarbon adopted fungi) broth. Under HAF/Dark diesel oil degradation by FA6 and FG1 was 87.3% and 84.3% respectively, while under HAF/Light both FA6 and FG1 performed 84.3% biodegradation. The highest biomass was produced by Aspergillus flavus FP10 in PDB (Potato dextrose broth)/Dark (109.3 mg). Fungal degradation of petroleum hydrocarbons was negatively affected by the presence of other simpler-to-degrade carbon sources in the medium. The biomass production was enhanced by improved nutrient availability and diminished by illuminance. PMID:27039364

  18. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production.

    PubMed

    Ali Khan, Aqib Hassan; Tanveer, Sundus; Anees, Mariam; Muhammad, Yousaf Shad; Iqbal, Mazhar; Yousaf, Sohail

    2016-07-01

    Biodegradation and biomass production are affected by numerous environmental factors including pH, oxygen availability and presence of pollutants. The present study, for the first time, elucidated the effects of nutrients and light on mycodegradation of petroleum hydrocarbons in diesel oil. Seven fungal strains (Aspergillus terreus FA3, Aspergillus niger FA5, Aspergillus terreus FA6, Penicillium chrysogenum FP4, Aspergillus terreus FP6, Aspergillus flavus FP10, and Candida sp. FG1) were used for hydrocarbon degradation under static conditions, in four combinations of nutrient media and illuminance for 45 days. Highest degradation was achieved by Aspergillus terreus FA6 and Candida sp. FG1 under both conditions of light and dark, with nutrient deprived HAF (Hydrocarbon adopted fungi) broth. Under HAF/Dark diesel oil degradation by FA6 and FG1 was 87.3% and 84.3% respectively, while under HAF/Light both FA6 and FG1 performed 84.3% biodegradation. The highest biomass was produced by Aspergillus flavus FP10 in PDB (Potato dextrose broth)/Dark (109.3 mg). Fungal degradation of petroleum hydrocarbons was negatively affected by the presence of other simpler-to-degrade carbon sources in the medium. The biomass production was enhanced by improved nutrient availability and diminished by illuminance.

  19. Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications

    PubMed Central

    Yildirimer, Lara; Buanz, Asma; Gaisford, Simon; Malins, Edward L.; Remzi Becer, C.; Moiemen, Naiem; Reynolds, Gary M.; Seifalian, Alexander M.

    2015-01-01

    Biodegradable elastomers are a popular choice for tissue engineering scaffolds, particularly in mechanically challenging settings (e.g. the skin). As the optimal rate of scaffold degradation depends on the tissue type to be regenerated, next-generation scaffolds must demonstrate tuneable degradation patterns. Previous investigations mainly focussed on the integration of more or less hydrolysable components to modulate degradation rates. In this study, however, the objective was to develop and synthesize a family of novel biodegradable polyurethanes (PUs) based on a poly(ε-caprolactone urea)urethane backbone integrating polyhedral oligomeric silsesquioxane (POSS-PCLU) with varying amounts of hard segments (24%, 28% and 33% (w/v)) in order to investigate the influence of hard segment chemistry on the degradation rate and profile. PUs lacking POSS nanoparticles served to prove the important function of POSS in maintaining the mechanical structures of the PU scaffolds before, during and after degradation. Mechanical testing of degraded samples revealed hard segment-dependent modulation of the materials’ viscoelastic properties, which was attributable to (i) degradation-induced changes in the PU crystallinity and (ii) either the presence or absence of POSS. In conclusion, this study presents a facile method of controlling degradation profiles of PU scaffolds used in tissue engineering applications. PMID:26463421

  20. Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications.

    PubMed

    Yildirimer, Lara; Buanz, Asma; Gaisford, Simon; Malins, Edward L; Remzi Becer, C; Moiemen, Naiem; Reynolds, Gary M; Seifalian, Alexander M

    2015-10-14

    Biodegradable elastomers are a popular choice for tissue engineering scaffolds, particularly in mechanically challenging settings (e.g. the skin). As the optimal rate of scaffold degradation depends on the tissue type to be regenerated, next-generation scaffolds must demonstrate tuneable degradation patterns. Previous investigations mainly focussed on the integration of more or less hydrolysable components to modulate degradation rates. In this study, however, the objective was to develop and synthesize a family of novel biodegradable polyurethanes (PUs) based on a poly(ε-caprolactone urea)urethane backbone integrating polyhedral oligomeric silsesquioxane (POSS-PCLU) with varying amounts of hard segments (24%, 28% and 33% (w/v)) in order to investigate the influence of hard segment chemistry on the degradation rate and profile. PUs lacking POSS nanoparticles served to prove the important function of POSS in maintaining the mechanical structures of the PU scaffolds before, during and after degradation. Mechanical testing of degraded samples revealed hard segment-dependent modulation of the materials' viscoelastic properties, which was attributable to (i) degradation-induced changes in the PU crystallinity and (ii) either the presence or absence of POSS. In conclusion, this study presents a facile method of controlling degradation profiles of PU scaffolds used in tissue engineering applications.

  1. Detection of simulants and degradation products of chemical warfare agents by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruiz-Pesante, Orlando; Pacheco-Londoño, Leonardo C.; Primera-Pedrozo, Oliva M.; Ortiz, William; Soto-Feliciano, Yadira M.; Nieves, Deborah E.; Ramirez, Michael L.; Hernández-Rivera, Samuel P.

    2007-04-01

    This work was focused in the measurement of spectroscopic signatures of Chemical Warfare Agent Simulants (CWAS) and degradation products of chemical agents using vibrational spectroscopy for the generation of spectroscopic libraries. The chemicals studied were: DMMP, DIMP, 2-CEES, 2-BAET, 1,4-thioxane, thiodiglycol sulfoxide, dihexylamine, cyclohexylamine, among others. Raman microscopy experiments were performed at different excitation wavelengths that spanned from NIR at 1064 and 785 nm to the VIS at 532, 514.5 and 488 nm and even the deep ultraviolet region at 244 nm. For the compounds studied the optimum excitation lines were 488 nm and 532 nm with a laser power of 25 mW. Among the most prominent bands were at these incident wavelengths were located ca. 652 and 1444 cm-1. Fourier Transform Infrared Spectroscopy in liquid and gas phase and Fiber Optics Coupled-Grazing Angle Probe-FTIR (FOCGAP- FTIR) were used to characterize the spectroscopic signature of target threat agents. The surface experiments were performed at detection levels of about 1 μg/cm2 suggest that limits of detection (LOD) achievable could be as low as nanograms/cm2. Remote sensing experiments were performed using a telescope coupled with a Raman spectrophotometer as a function of power and acquisition time. Characterization of compounds by vibrational spectroscopy and the early stages of the transition from the lab based experiments to remote detection experiments will be presented.

  2. Effects of terbuthylazine-desethyl, a terbuthylazine degradation product, on red swamp crayfish (Procambarus clarkii).

    PubMed

    Stara, Alzbeta; Zuskova, Eliska; Kouba, Antonin; Velisek, Josef

    2016-10-01

    Terbuthylazine is a widely used triazine pesticide. This, together with one of its degradation products, terbuthylazine-desethyl (TD), are frequently found in quantities exceeding the EU limit of 0.1μg/L in aquatic ecosystems where they might constitute a serious risk to non-target organisms. The sub-chronic effects of TD at 2.9μg/L (real environmental concentration) and at 580μg/L were investigated in a non-target aquatic species, the red swamp crayfish (Procambarus clarkii). Gill and hepatopancreas histopathology, alterations in biochemical parameters of haemolymph, oxidative damage to hepatopancreas, and changes in antioxidant biomarkers in muscle and hepatopancreas were recorded at both tested concentrations after 14days exposure. A 14day recovery period in TD-free water was not sufficient for restoration of normal parameters. Chronic terbuthylazine-desethyl exposure affected biochemical profile, and the antioxidant system, caused oxidative stress and histopathological changes in hepatopancreas of red swamp crayfish. PMID:27239716

  3. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products.

    PubMed

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs’ characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial. PMID:25764396

  4. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products

    NASA Astrophysics Data System (ADS)

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs' characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial.

  5. Mass spectrometric study of selected precursors and degradation products of chemical warfare agents.

    PubMed

    Papousková, Barbora; Bednár, Petr; Frysová, Iveta; Stýskala, Jakub; Hlavác, Jan; Barták, Petr; Ulrichová, Jitka; Jirkovský, Jaromír; Lemr, Karel

    2007-12-01

    Selected precursors and degradation products of chemical warfare agents namely N,N-dialkylaminoethane-2-ols, N,N-dialkylaminoethyl-2-chlorides and some of related N-quaternary salts were studied by means of electrospray ionization-multiple tandem mass spectrometry (ESI-MS(n)). Proposed structures were confirmed with accurate mass measurement. General fragmentation patterns of these compounds are discussed in detail and suggested processes are confirmed using deuterated standards. The typical processes are elimination of alkene, hydrogen chloride, or water, respectively. Besides, elimination of ethene from propyl chain under specific conditions was observed and unambiguously confirmed using exact mass measurement and labelled standard. The potential of mass spectrometry to distinguish the positional isomers occurring among the studied compounds is reviewed in detail using two different MS instruments (i.e. ion trap and hybrid quadrupole-time of flight (Q-TOF) analyzer). A new microcolumn liquid chromatography (microLC)/MS(n) method was designed for the cases where the resolution based solely on differences in fragmentation is not sufficient. Low retention of the derivatives on reversed phase (RP) was overcome by using addition of less typical ion pairing agent (1 mM/l, 3,5-dinitrobenzoic acid) to the mobile phase (mixture water : acetonitrile). PMID:18085550

  6. Herbicidal Activity of Glucosinolate Degradation Products in Fermented Meadowfoam (Limnanthes alba) Seed Meal

    PubMed Central

    STEVENS, JAN F.; REED, RALPH L.; ALBER, SUSAN; PRITCHETT, LARRY; MACHADO, STEPHEN

    2009-01-01

    Meadowfoam (Limnanthes alba) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate, glucolimnanthin. We investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome (Bromus tectorum) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO4 (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile and the thioamide, as a total, correlated with an increase of herbicidal potency of seed meal (r2 = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  7. Herbicidal activity of glucosinolate degradation products in fermented meadowfoam ( Limnanthes alba ) seed meal.

    PubMed

    Stevens, Jan F; Reed, Ralph L; Alber, Susan; Pritchett, Larry; Machado, Stephen

    2009-03-11

    Meadowfoam ( Limnanthes alba ) is an oilseed crop grown in western Oregon. After extraction of the oil from the seeds, the remaining seed meal contains 2-4% of the glucosinolate glucolimnanthin. This study investigated the effect of fermentation of seed meal on its chemical composition and the effect of the altered composition on downy brome ( Bromus tectorum ) coleoptile emergence. Incubation of enzyme-inactive seed meal with enzyme-active seeds (1% by weight) resulted in complete degradation of glucolimnanthin and formation of 3-methoxybenzyl isothiocyanate in 28% yield. Fermentation in the presence of an aqueous solution of FeSO(4) (10 mM) resulted in the formation of 3-methoxyphenylacetonitrile and 2-(3-methoxyphenyl)ethanethioamide, a novel natural product. The formation of the isothiocyanate, the nitrile, and the thioamide, as a total, correlated with an increase of herbicidal potency of the seed meal (r(2) = 0.96). The results of this study open new possibilities for the refinement of glucosinolate-containing seed meals for use as bioherbicides. PMID:19170637

  8. Mixed-mode sorption of hydroxylated atrazine degradation products to sell: A mechanism for bound residue

    USGS Publications Warehouse

    Lerch, R.N.; Thurman, E.M.; Kruger, E.L.

    1997-01-01

    This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.

  9. First principles calculation of point defects and mobility degradation in bulk AlSb for radiation detection application

    SciTech Connect

    Lordi, V; Aberg, D; Erhart, P; Wu, K J

    2007-07-30

    The development of high resolution, room temperature semiconductor radiation detectors requires the introduction of materials with increased carrier mobility-lifetime ({mu}{tau}) product, while having a band gap in the 1.4-2.2 eV range. AlSb is a promising material for this application. However, systematic improvements in the material quality are necessary to achieve an adequate {mu}{tau} product. We are using a combination of simulation and experiment to develop a fundamental understanding of the factors which affect detector material quality. First principles calculations are used to study the microscopic mechanisms of mobility degradation from point defects and to calculate the intrinsic limit of mobility from phonon scattering. We use density functional theory (DFT) to calculate the formation energies of native and impurity point defects, to determine their equilibrium concentrations as a function of temperature and charge state. Perturbation theory via the Born approximation is coupled with Boltzmann transport theory to calculate the contribution toward mobility degradation of each type of point defect, using DFT-computed carrier scattering rates. A comparison is made to measured carrier concentrations and mobilities from AlSb crystals grown in our lab. We find our predictions in good quantitative agreement with experiment, allowing optimized annealing conditions to be deduced. A major result is the determination of oxygen impurity as a severe mobility killer, despite the ability of oxygen to compensation dope AlSb and reduce the net carrier concentration. In this case, increased resistivity is not a good indicator of improved material performance, due to the concomitant sharp reduction in {mu}{tau}.

  10. Fungal Exopolysaccharide: Production, Composition and Applications

    PubMed Central

    Mahapatra, Subhadip; Banerjee, Debdulal

    2013-01-01

    Fungal exopolysaccharides (EPSs) have been recognized as high value biomacromolecules for the last two decades. These products, including pullulan, scleroglucan, and botryosphaeran, have several applications in industries, pharmaceuticals, medicine, foods etc. Although fungal EPSs are highly relevant, to date information concerning fungal biosynthesis is scarce and an extensive search for new fugal species that can produce novel EPSs is still needed. In most cases, the molecular weight variations and sugar compositions of fungal EPSs are dependent to culture medium composition and different physical conditions provided during fermentation. An inclusive and illustrative review on fungal EPS is presented here. The general outline of the present work includes fungal EPS production, their compositions and applications. An emphasis is also given to listing out different fungal strains that can produce EPSs. PMID:24826070

  11. An enzyme-based DNA preparation method for application to forensic biological samples and degraded stains.

    PubMed

    Lounsbury, Jenny A; Coult, Natalie; Miranian, Daniel C; Cronk, Stephen M; Haverstick, Doris M; Kinnon, Paul; Saul, David J; Landers, James P

    2012-09-01

    Extraction of DNA from forensic samples typically uses either an organic extraction protocol or solid phase extraction (SPE) and these methods generally involve numerous sample transfer, wash and centrifugation steps. Although SPE has been successfully adapted to the microdevice, it can be problematic because of lengthy load times and uneven packing of the solid phase. A closed-tube enzyme-based DNA preparation method has recently been developed which uses a neutral proteinase to lyse cells and degrade proteins and nucleases [14]. Following a 20 min incubation of the buccal or whole blood sample with this proteinase, DNA is polymerase chain reaction (PCR)-ready. This paper describes the optimization and quantitation of DNA yield using this method, and application to forensic biological samples, including UV- and heat-degraded whole blood samples on cotton or blue denim substrates. Results demonstrate that DNA yield can be increased from 1.42 (±0.21)ng/μL to 7.78 (±1.40)ng/μL by increasing the quantity of enzyme per reaction by 3-fold. Additionally, there is a linear relationship between the amount of starting cellular material added and the concentration of DNA in the solution, thereby allowing DNA yield estimations to be made. In addition, short tandem repeat (STR) profile results obtained using DNA prepared with the enzyme method were comparable to those obtained with a conventional SPE method, resulting in full STR profiles (16 of 16 loci) from liquid samples (buccal swab eluate and whole blood), dried buccal swabs and bloodstains and partial profiles from UV or heat-degraded bloodstains on cotton or blue denim substrates. Finally, the DNA preparation method is shown to be adaptable to glass or poly(methyl methacrylate) (PMMA) microdevices with little impact on STR peak height but providing a 20-fold reduction in incubation time (as little as 60 s), leading to a ≥1 h reduction in DNA preparation time.

  12. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    SciTech Connect

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 ÀC. Samples included: two formulations developed at Kansas City Plant (KCP) (#6 and #10), one commercially available formulation (#21), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl #10 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl #10 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  13. Application of organic amendments to restore degraded soil: effects on soil microbial properties.

    PubMed

    Carlson, Jennifer; Saxena, Jyotisna; Basta, Nicholas; Hundal, Lakhwinder; Busalacchi, Dawn; Dick, Richard P

    2015-03-01

    Topsoil removal, compaction, and other practices in urban and industrial landscapes can degrade soil and soil ecosystem services. There is growing interest to remediate these for recreational and residential purposes, and urban waste materials offers potential to improve degraded soils. Therefore, the objective of this study was to compare the effects of urban waste products on microbial properties of a degraded industrial soil. The soil amendments were vegetative yard waste compost (VC), biosolids (BioS), and a designer mix (DM) containing BioS, biochar (BC), and drinking water treatment residual (WTR). The experiment had a completely randomized design with following treatments initiated in 2009: control soil, VC, BioS-1 (202 Mg ha(-1)), BioS-2 (403 Mg ha(-1)), and DM (202 Mg BioS ha(-1) plus BC and WTR). Soils (0-15-cm depth) were sampled in 2009, 2010, and 2011 and analyzed for enzyme activities (arylsulfatase, β-glucosaminidase, β-glucosidase, acid phosphatase, fluorescein diacetate, and urease) and soil microbial community structure using phospholipid fatty acid analysis (PLFA). In general, all organic amendments increased enzyme activities in 2009 with BioS treatments having the highest activity. However, this was followed by a decline in enzyme activities by 2011 that were still significantly higher than control. The fungal PLFA biomarkers were highest in the BioS treatments, whereas the control soil had the highest levels of the PLFA stress markers (P < 0.10). In conclusion, one-time addition of VC or BioS was most effective on enzyme activities; the BioS treatment significantly increased fungal biomass over the other treatments; addition of BioS to soils decreased microbial stress levels; and microbial measures showed no statistical differences between BioS and VC treatments after 3 years of treatment. PMID:25673270

  14. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  15. Aflatoxin Production and Degradation by Aspergillus flavus in 20-Liter Fermentors

    PubMed Central

    Ciegler, A.; Peterson, R. E.; Lagoda, A. A.; Hall, H. H.

    1966-01-01

    Yields of from 200 to 300 mg per liter of aflatoxins B1 and G1 were produced by two strains of Aspergillus flavus in 20-liter fermentors under proper conditions of inoculum (well-dispersed growth) and aeration (0.5 volume per volume per min of air, 300 rev/min, 30 psi back pressure, baffles). Peak yields were usually attained in 72 hr, after which the aflatoxin concentration declined rapidly. Degradation of aflatoxin depended primarily on mycelial lysis and high-aeration conditions. Cultures previously reported not to degrade aflatoxin could be induced to do so under these conditions. The percentage and rate of toxin degradation were independent of toxin concentration, and appeared to be nonenzymatic and nonspecific. Degradation simulating that occurring in the fermentor was achieved by reacting aflatoxin with peroxidized methyl esters of vegetable oil; initial degradation was rapid and appeared to involve a complex series of reactions. PMID:5970470

  16. LC-MS/TOF, LC-MSn, on-line H/D exchange and LC-NMR studies on rosuvastatin degradation and in silico determination of toxicity of its degradation products: a comprehensive approach during drug development.

    PubMed

    Shah, Ravi P; Sahu, Archana; Singh, Saranjit

    2013-04-01

    The present study dealt with the forced degradation behaviour of rosuvastatin under ICH prescribed stress conditions. The drug was found to be labile under acid hydrolytic and photolytic conditions, while it was stable to base/neutral hydrolytic, oxidative and thermal stress. In total, 11 degradation products were formed, which were separated on a C-18 column using a stability-indicating method. LC-MS analyses indicated that five degradation products had the same molecular mass as that of the drug, while the remaining six had 18 Da less than the drug. Structure elucidation of all the degradation products was executed using sophisticated and modern structural characterization tools, viz. LC-MS/TOF, LC-MS(n), on-line H/D exchange and LC-NMR. The degradation pathway and mechanisms of degradation of the drug were delineated. Additionally, in silico toxicity was predicted for all the degradation products using TOPKAT and DEREK software and compared with the drug. This study demonstrates a comprehensive approach of degradation studies during the drug development phase.

  17. Environmental degradation of composites for marine structures: new materials and new applications.

    PubMed

    Davies, Peter

    2016-07-13

    This paper describes the influence of seawater ageing on composites used in a range of marine structures, from boats to tidal turbines. Accounting for environmental degradation is an essential element in the multi-scale modelling of composite materials but it requires reliable test data input. The traditional approach to account for ageing effects, based on testing samples after immersion for different periods, is evolving towards coupled studies involving strong interactions between water diffusion and mechanical loading. These can provide a more realistic estimation of long-term behaviour but still require some form of acceleration if useful data, for 20 year lifetimes or more, are to be obtained in a reasonable time. In order to validate extrapolations from short to long times, it is essential to understand the degradation mechanisms, so both physico-chemical and mechanical test data are required. Examples of results from some current studies on more environmentally friendly materials including bio-sourced composites will be described first. Then a case study for renewable marine energy applications will be discussed. In both cases, studies were performed first on coupons at the material level, then during structural testing and analysis of large components, in order to evaluate their long-term behaviour. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242304

  18. Environmental degradation of composites for marine structures: new materials and new applications.

    PubMed

    Davies, Peter

    2016-07-13

    This paper describes the influence of seawater ageing on composites used in a range of marine structures, from boats to tidal turbines. Accounting for environmental degradation is an essential element in the multi-scale modelling of composite materials but it requires reliable test data input. The traditional approach to account for ageing effects, based on testing samples after immersion for different periods, is evolving towards coupled studies involving strong interactions between water diffusion and mechanical loading. These can provide a more realistic estimation of long-term behaviour but still require some form of acceleration if useful data, for 20 year lifetimes or more, are to be obtained in a reasonable time. In order to validate extrapolations from short to long times, it is essential to understand the degradation mechanisms, so both physico-chemical and mechanical test data are required. Examples of results from some current studies on more environmentally friendly materials including bio-sourced composites will be described first. Then a case study for renewable marine energy applications will be discussed. In both cases, studies were performed first on coupons at the material level, then during structural testing and analysis of large components, in order to evaluate their long-term behaviour. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

  19. Impact of heat and water management on proton exchange membrane fuel cells degradation in automotive application

    NASA Astrophysics Data System (ADS)

    Nandjou, F.; Poirot-Crouvezier, J.-P.; Chandesris, M.; Blachot, J.-F.; Bonnaud, C.; Bultel, Y.

    2016-09-01

    In Proton Exchange Membrane Fuel Cells, local temperature is a driving force for many degradation mechanisms such as hygrothermal deformation and creep of the membrane, platinum dissolution and bipolar plates corrosion. In order to investigate and quantify those effects in automotive application, durability testing is conducted in this work. During the ageing tests, the local performance and temperature are investigated using in situ measurements of a printed circuit board. At the end of life, post-mortem analyses of the aged components are conducted. The experimental results are compared with the simulated temperature and humidity in the cell obtained from a pseudo-3D multiphysics model in order to correlate the observed degradations to the local conditions inside the stack. The primary cause of failure in automotive cycling is pinhole/crack formation in the membrane, induced by high variations of its water content over time. It is also observed that water condensation largely increases the probability of the bipolar plates corrosion while evaporation phenomena induce local deposits in the cell.

  20. Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications.

    PubMed

    Lock, Jaclyn Y; Wyatt, Eric; Upadhyayula, Srigokul; Whall, Andrew; Nuñez, Vicente; Vullev, Valentine I; Liu, Huinan

    2014-03-01

    This article presents an investigation on the effectiveness of magnesium and its alloys as a novel class of antibacterial and biodegradable materials for ureteral stent applications. Magnesium is a lightweight and biodegradable metallic material with beneficial properties for use in medical devices. Ureteral stent is one such example of a medical device that is widely used to treat ureteral canal blockages clinically. The bacterial colony formation coupled with the encrustation on the stent surface from extended use often leads to clinical complications and contributes to the failure of indwelling medical devices. We demonstrated that magnesium alloys decreased Escherichia coli viability and reduced the colony forming units over a 3-day incubation period in an artificial urine (AU) solution when compared with currently used commercial polyurethane stent. Moreover, the magnesium degradation resulted in alkaline pH and increased magnesium ion concentration in the AU solution. The antibacterial and degradation properties support the potential use of magnesium-based materials for next-generation ureteral stents. Further studies are needed for clinical translation of biodegradable metallic ureteral stents.

  1. Degradation products from naturally aged paper leaves of a 16th-century-printed book: a spectrochemical study.

    PubMed

    Bronzato, Maddalena; Calvini, Paolo; Federici, Carlo; Bogialli, Sara; Favaro, Gabriella; Meneghetti, Moreno; Mba, Miriam; Brustolon, Marina; Zoleo, Alfonso

    2013-07-15

    In this work, we present a wide-range spectrochemical analysis of the degradation products from naturally aged paper. The samples obtained from wash waters used during the de-acidification treatment of leaves from a 16th-century-printed book were analysed through NMR, IR, Raman UV/Vis, EPR and X-ray fluorescence (XRF) spectroscopy and HPLC-MS and inductively coupled plasma (ICP) analysis. By these methods we also studied some of the previous samples treated by acidification (sample AP) and catalytic hydrogenation (sample HP). Crossing all the data, we obtained precise indications about the main functional groups occurring on the degraded, water-soluble cellulose oligomers. These results point out that the chromophores responsible for browning are conjugated carbonyl and carboxyl compounds. As a whole, we show that the analysis of wash waters, used in the usual conservation treatments of paper de-acidification, gives much valuable information about both the conservation state of the book and the degradation reactions occurring on the leaves, due to the huge amount of cellulose by-products contained in the samples. We propose therefore this procedure as a new very convenient general method to obtain precious and normally unavailable information on the cellulose degradation by-products from naturally aged paper. PMID:23733361

  2. Stability-Indicating RP-HPLC Method for Simultaneous Estimation of Enrofloxacin and Its Degradation Products in Tablet Dosage Forms.

    PubMed

    Chakravarthy, V Ashok; Sailaja, B B V; Kumar, Avvaru Praveen

    2015-01-01

    The present work was the development of a simple, efficient, and reproducible stability-indicating reverse-phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination enrofloxacin (EFX) and its degradation products including ethylenediamine impurity, desfluoro impurity, ciprofloxacin impurity, chloro impurity, fluoroquinolonic acid impurity, and decarboxylated impurity in tablet dosage forms. The separation of EFX and its degradation products in tablets was carried out on Kromasil C-18 (250 × 4.6 mm, 5 μm) column using 0.1% (v/v) TEA in 10 mM KH2PO4 (pH 2.5) buffer and methanol by linear gradient program. Flow rate was 1.0 mL min(-1) with a column temperature of 35°C and detection wavelength was carried out at 278 nm and 254 nm. The forced degradation studies were performed on EFX tablets under acidic, basic, oxidation, thermal, humidity, and photolytic conditions. The degraded products were well resolved from the main active drug and also from known impurities within 65 minutes. The method was validated in terms of specificity, linearity, LOD, LOQ, accuracy, precision, and robustness as per ICH guidelines. The results obtained from the validation experiments prove that the developed method is a stability-indicating method and suitable for routine analysis. PMID:25705547

  3. Characterization of forced degradation products and in silico toxicity prediction of Sofosbuvir: A novel HCV NS5B polymerase inhibitor.

    PubMed

    Swain, Debasish; Samanthula, Gananadhamu; Bhagat, Shweta; Bharatam, P V; Akula, Venkatakrishna; Sinha, Barij N

    2016-02-20

    Sofosbuvir is a direct acting antiviral medication used to treat Hepatitis C viral infection. The present study focuses on the degradation behavior of the drug under various stress conditions (hydrolysis, oxidative, thermal and photolytic) as per International Conference on Harmonization (ICH Q1A (R2)) guidelines. A high performance liquid chromatographic system (HPLC) was used to develop a selective, precise and accurate method for separating all the degradation products. The separation was achieved on a Sunfire™ C18 (150mm×4.6mm×5μm) stationary phase with a mobile phase of 10mM ammonium acetate (pH 5.0) buffer and acetonitrile in gradient elution mode. A quadrupole-time of flight mass analyzer equipped with an electrospray ionization technique was used to propose the structural information based on the MS/MS and accurate mass measurements. Seven degradation products were identified and characterised by LC-ESI-QTOF-MS/MS. In silico toxicity of the drug and its degradation products was determined using TOPKAT and DEREK toxicity prediction softwares. The proposed method was validated as per the ICH Q2 guidelines. PMID:26771133

  4. Mass spectral studies on vinylic degradation products of sulfur mustards under gas chromatography/mass spectrometry conditions.

    PubMed

    Sai Sachin, L; Karthikraj, R; Kalyan Kumar, K; Sony, T; Prasada Raju, N; Prabhakar, S

    2015-01-01

    Sulfur mustards are a class of vesicant chemical warfare agents that rapidly degrade in environmental samples. The most feasible degradation products of sulfur mustards are chloroethyl vinylic compounds and divinylic compounds, which are formed by the elimination of one and two HCl molecules from sulfur mustards, respectively. The detection and characterization of these degradation products in environmental samples are an important proof for the verification of sulfur mustard usage. In this study, we synthesized a set of sulfur mustard degradation products, i.e., divinylic compounds (1-7) and chloroethyl vinylic compounds (8-14), and characterized using gas chromatography/mass spectrometry (GC/MS) under electron ionization (EI) and chemical ionization (CI) (methane) conditions. The EI mass spectra of the studied compounds mainly included the fragment ions that resulted from homolytic cleavages with or without hydrogen migrations. The divinylic compounds (1-7) showed [M-SH](+) ions, whereas the chloroethylvinyl compounds (8-14) showed [M-Cl](+) and [M-CH2CH2Cl](+) ions. Methane/CI mass spectra showed [M+H](+) ions and provided molecular weight information. The GC retention index (RI) values were also calculated for the studied compounds. The EI and CI mass spectral data together with RI values are extremely useful for off-site analysis for the verification of the chemical weapons convention and also to participate in official Organization for the Prohibition of Chemical Weapons proficiency tests. PMID:26764309

  5. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes.

    PubMed

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-11-01

    The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  6. Application of TAM III to study sensitivity of soil organic matter degradation to temperature

    NASA Astrophysics Data System (ADS)

    Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica

    2014-05-01

    Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal

  7. Air-water transfer of MTBE, its degradation products, and alternative fuel oxygenates: the role of temperature.

    PubMed

    Arp, Hans Peter H; Schmidt, Torsten C

    2004-10-15

    The gasoline oxygenate methyl tert-butyl ether (MTBE) has become one of the world's mostwidespread groundwater and surface water contaminants. As a result, there has been increasing interest in the environmental behavior of MTBE and its degradation products, mainly tert-butyl formate (TBF) and tert-butyl alcohol (TBA). In contrast, the environmental behavior of the proposed alternatives to MTBE, namely ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and diisopropyl ether (DIPE) has hardly been studied yet, although some of them are already in substantial use in various countries. A key parameter for the assessment of the fate, transport, and possible remediation of these contaminants is the air-water partitioning constant (KiH). The KiH is highly temperature dependent, and it is therefore necessary to obtain reliable experimental values at relevant temperatures. Hence, the KiH of MTBE, ETBE, TAME, and DIPE, along with the degradation products, TBF and methyl acetate, were determined from 5 degrees C-40 degrees C. The alternatives to MTBE generally had a higher KiH, which implies that, upon emission into the environment, the alternatives partition more readily into the air phase than MTBE. This may favor their use, as it is in the air phase where dilution and degradation are the most effective. The degradation products of MTBE, with the exception of TBF, have much lower KiH values at all temperatures. Hence, the degradation products will have a stronger affinity for the water phase. The temperature dependency of the kinetics of air-watertransfer is discussed using a boundary layer model. Only for TBA but not for the ethers a significant effect of temperature was found.

  8. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. PMID:25936555

  9. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components.

  10. Quantitative determination of antidepressants and their select degradates by liquid chromatography/electrospray ionization tandem mass spectrometry in biosolids destined for land application.

    PubMed

    Niemi, Lydia M; Stencel, Katherine A; Murphy, Madigan J; Schultz, Melissa M

    2013-08-01

    Antidepressants are one of the most widely dispensed classes of pharmaceuticals in the United States. As wastewater treatment plants are a primary source of pharmaceuticals in the environment, the use of biosolids as fertilizer is a potential route for antidepressants to enter the terrestrial environment. A microsolvent extraction method, utilizing green chemistry, was developed for extraction of the target antidepressants and degradation products from biosolids, or more specifically lagoon biosolids. Liquid chromatography/tandem mass spectrometry was used for quantitative determination of antidepressants in the lagoon biosolid extracts. Recoveries from matrix spiking experiments for the individual antidepressants had an average of 96%. The limits of detection for antidepressant pharmaceuticals and degradates ranged from 0.36 to 8.0 ng/kg wet weight. The method was applied to biosolids destined for land application. A suite of antidepressants was consistently detected in the lagoon biosolid samples, and thus antidepressants are being introduced to terrestrial environments through the land application of these biosolids. Sertraline and norsertraline were the most abundant antidepressant and degradation product detected in the biosolid samples. Detected, individual antidepressant concentrations ranged from 8.5 ng/kg (norfluoxetine) to 420 ng/kg wet weight (norsertraline). PMID:23841685

  11. Flame retardants in the indoor environment -- Part II: release of VOCs (triethylphosphate and halogenated degradation products) from polyurethane.

    PubMed

    Salthammer, T; Fuhrmann, F; Uhde, E

    2003-03-01

    Organophosphate esters, halogenated and non-halogenated, are frequently used for fire protection of building materials. With regard to toxicological profiles it is desired to avoid human exposure in the indoor environment. Moreover, some hazardous volatile organic compounds detected in indoor air are directly linked to the utilization of flame retardants. In this study, different polyurethane (PUR) products for building and indoor use treated with organophosphate flame retardants were tested in 1 m(3) emission test chambers. Emissions of flame retardants and degradation products were measured under living conditions. A PUR hard foam sample showed area-specific emission rates >100 microg/m(2) h for the compound triethylphosphate. During the tests several chlorinated degradation products of organophophorous flame retardants could be identified in the chamber air. PMID:12608925

  12. ATMS Snowfall Rate Product and Its Applications

    NASA Astrophysics Data System (ADS)

    Meng, H.; Kongoli, C.; Dong, J.; Wang, N. Y.; Ferraro, R. R.; Zavodsky, B.; Banghua Yan, B.

    2015-12-01

    A snowfall rate (SFR) algorithm has been developed for the Advanced Technology Microwave Sounder (ATMS) aboard S-NPP and future JPSS satellites. The product is based on the NOAA/NESDIS operational Microwave Humidity Sounder (MHS) SFR but with several key advancements. The algorithm has benefited from continuous development to improve accuracy and snowfall detection efficiency. The enhancements also expand the applicable temperature range for the algorithm and allow significantly more snowfall to be detected than the operational SFR. Another major improvement is the drastically reduced product latency by using Direct Broadcast (DB) data. The new developments have also been implemented in the MHS SFR to ensure product consistency across satellites. Currently, there are five satellites that carry either ATMS or MHS: S-NPP, NOAA-18/-19 and Metop-A/-B. The combined satellites deliver up to ten SFR estimates a day at any location over land in mid-latitudes. The product provides much needed winter precipitation estimates for applications such as weather forecasting and hydrology. Both ATMS and MHS SFR serve as input to a global precipitation analysis product, the NOAA/NCEP CMORPH-Snow. SFR is the sole satellite-based snowfall estimates in the blended product. In addition, ATMS and MHS SFR was assessed at several NWS Weather Forecast Offices (WFOs) and NESDIS/Satellite Analysis Branch (SAB) for its operational values in winter 2015. This is a joint effort among NASA/SPoRT, NOAA/NESDIS, University of Maryland/CICS, and the WFOs. The feedback from the assessment indicated that SFR provides useful information for snowfall forecast. It is especially valuable for areas with poor radar coverage and ground observations. The feedback also identified some limitations of the product such as inadequate detection of shallow snowfall. The algorithm developers will continue to improve product quality as well as developing SFR for new microwave sensors and over ocean in a project

  13. Application of Fenton's reagent as a pretreatment step in biological degradation of polyaromatic hydrocarbons

    SciTech Connect

    Kelley, R.L.; Gauger, W.K.; Srivastava, V.J.

    1990-01-01

    Fenton's reagent (H{sub 2}O{sub 2} and Fe{sup ++}) has been used for chemical oxidation of numerous organic compounds in water treatment schemes. In this study, the Institute of Gas Technology (IGT) applied Fenton's treatment to polynuclear aromatic hydrocarbons (PAHs) and PAH-contaminated soils. Fenton's treatment was very reactive with PAHs, causing rapid modification of the parental compounds to oxidized products and complete degradation to CO{sub 2}. This treatment was more effective on chemically reactive PAHs, such as benzo(a)pyrene and phenanthrene. Important parameters and conditions for Fenton's treatment of PAHs in solution and soil matrices have been identified. As much as 99% of the PAHs on soil matrices can be removed by treatment with Fenton's reagent. 28 refs., 13 figs., 1 tab.

  14. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products.

    PubMed

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-08-01

    The objective of this study was to investigate the effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products (AFPBPs) using the biogas potential test. The AFPBPs were classified based on their chemical compositions (i.e., carbohydrate, protein and fat contents). The biogas and methane potentials of AFPBPs were calculated to range from 450 to 777 mL/g volatile solids (VS) and 260-543 mL/g VS, respectively. AFPBPs with high fat and protein contents produced significantly higher amounts of biogas than AFPBPs with high carbohydrate and low fat contents. The degradation rate was faster for AFPBPs with high carbohydrate contents compared to AFPBPs with high protein and fat contents. The lag phase and biogas production duration were lower when using ensiled AFPBPs than when using nonsilage AFPBPs. Among the four different silages tested, two silages significantly improved biogas production compared to the nonsilage AFPBPs.

  15. Biotechnological production and application of fructooligosaccharides.

    PubMed

    Flores-Maltos, Dulce A; Mussatto, Solange I; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Teixeira, José A; Aguilar, Cristóbal N

    2016-01-01

    Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.

  16. Environmental Fate of the Herbicide Fluazifop-P-butyl and Its Degradation Products in Two Loamy Agricultural Soils: A Combined Laboratory and Field Study.

    PubMed

    Badawi, Nora; Rosenbom, Annette E; Olsen, Preben; Sørensen, Sebastian R

    2015-08-01

    The herbicide fluazifop-P-butyl (FPB) is used against grasses in agricultural crops such as potato, oilseed rape, and sugar beet. Limited information is available in scientific literature on its environmental fate, therefore extensive monitoring at two agricultural test fields was combined with laboratory studies to determine leaching and the underlying degradation and sorption processes. Water samples from drains, suction cups, and groundwater wells showed leaching of the degradation products fluazifop-P (FP) and 2-hydroxy-5-trifluoromethyl-pyridin (TFMP) following FPB treatment. Laboratory experiments with soil from each field revealed a rapid degradation of FPB to FP. The degradation was almost exclusively microbial, and further biodegradation to TFMP occurred at a slower rate. Both degradation products were sorbed to the two soils to a small extent and were fairly persistent to degradation during the two-month incubation period. Together, the field and laboratory results from this study showed that the biodegradation of FPB in loamy soils gave rise to the production of two major degradation products that sorbed to a small extent. In this study, both degradation products leached to drainage and groundwater during precipitation. It is therefore recommended that these degradation products be included in programs monitoring water quality in areas with FPB use.

  17. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production.

    PubMed

    Zhang, Ying-Hua; Xu, Di; Liu, Jia-Qi; Zhao, Xin-Huai

    2014-12-01

    Skimmed milk spiked with five organophosphorus pesticides (OPPs), chlorpyrifos, diazinon, fenitrothion, malathion and methyl parathion, was fermented by ten lactic acid bacteria (LAB) and four strain combinations at 42°C for 24h. OPPs left in the samples at different times were extracted, purified, detected by gas chromatography and calculated for degradation rate constants, based on a first-order reaction model. OPPs degradation was enhanced by the inoculated LAB, resulting in 0.8-225.4% increase in the rate constants. Diazinon and methyl parathion were more stable whereas chlorpyrifos, fenitrothion and malathion were more labile. Lactobacillus brevis 1.0209 showed the strongest acceleration on OPPs degradation while strain combination could bring about a synergy between the strains of lower ability. Phosphatase production of the strains might be one of the key factors responsible for the enhanced OPPs degradation, as the detected phosphatase activities were positively correlated to the measured degradation rate constants of OPPs (r=0.636-0.970, P<0.05). PMID:24996321

  18. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production.

    PubMed

    Zhang, Ying-Hua; Xu, Di; Liu, Jia-Qi; Zhao, Xin-Huai

    2014-12-01

    Skimmed milk spiked with five organophosphorus pesticides (OPPs), chlorpyrifos, diazinon, fenitrothion, malathion and methyl parathion, was fermented by ten lactic acid bacteria (LAB) and four strain combinations at 42°C for 24h. OPPs left in the samples at different times were extracted, purified, detected by gas chromatography and calculated for degradation rate constants, based on a first-order reaction model. OPPs degradation was enhanced by the inoculated LAB, resulting in 0.8-225.4% increase in the rate constants. Diazinon and methyl parathion were more stable whereas chlorpyrifos, fenitrothion and malathion were more labile. Lactobacillus brevis 1.0209 showed the strongest acceleration on OPPs degradation while strain combination could bring about a synergy between the strains of lower ability. Phosphatase production of the strains might be one of the key factors responsible for the enhanced OPPs degradation, as the detected phosphatase activities were positively correlated to the measured degradation rate constants of OPPs (r=0.636-0.970, P<0.05).

  19. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications

    NASA Astrophysics Data System (ADS)

    Torrell, M.; Morata, A.; Kayser, P.; Kendall, M.; Kendall, K.; Tarancón, A.

    2015-07-01

    Micro-tubular SOFCs have shown an astonishing thermal shock resistance, many orders of magnitude larger than planar SOFCs, opening the possibility of being used in portable applications. However, only few studies have been devoted to study the degradation of large-area micro-tubular SOFCs. This work presents microstructural, electrochemical and long term degradation studies of single micro-tubular cells fabricated by high shear extrusion, operating in the intermediate range of temperatures (T∼700 °C). A maximum power of 7 W per cell has been measured in a wide range of fuel utilizations between 10% and 60% at 700 °C. A degradation rate of 360 mW/1000 h (8%) has been observed for cells operated over more than 1500 h under fuel utilizations of 40%. Higher fuel utilizations lead to strong degradations associated to nickel oxidation/reduction processes. Quick thermal cycling with heating ramp rates of 30 °C /min yielded degradation rates of 440 mW/100 cycles (9%). These reasonable values of degradation under continuous and thermal cycling operation approach the requirements for many portable applications including auxiliary power units or consumer electronics opening this typically forbidden market to the SOFC technology.

  20. Effect of glucose degradation products on human peritoneal mesothelial cell function.

    PubMed

    Witowski, J; Korybalska, K; Wisniewska, J; Breborowicz, A; Gahl, G M; Frei, U; Passlick-Deetjen, J; Jörres, A

    2000-04-01

    Bioincompatibility of conventional glucose-based peritoneal dialysis fluids (PDF) has been partially attributed to the presence of glucose degradation products (GDP) generated during heat sterilization of PDF. Most previous studies on GDP toxicity were performed on animal and/or transformed cell lines, and the impact of GDP on peritoneal cells remains obscure. The short-term effects of six identified GDP on human peritoneal mesothelial cell (HPMC) functions were examined in comparison to murine L929 fibroblasts. Exposure of HPMC to acetaldehyde, formaldehyde, glyoxal, methylglyoxal, furaldehyde, but not to 5-hydroxymethyl-furfural, resulted in dose-dependent inhibition of cell growth, viability, and interleukin-1beta (IL-1beta)-stimulated IL-6 release; for several GDP, this suppression was significantly greater compared with L929 cells. Although the addition of GDP to culture medium at concentrations found in PDF had no major impact on HPMC function, the exposure of HPMC to filter-sterilized PDF led to a significantly smaller suppression of HPMC proliferation compared to that induced by heat-sterilized PDF. The growth inhibition mediated by filter-sterilized PDF could be increased after the addition of clinically relevant doses of GDP. These effects were equally evident in L929 cells. In conclusion, GDP reveal a significant cytotoxic potential toward HPMC that may be underestimated in test systems using L929 cells. GDP-related toxicity appears to be particularly evident in experimental systems using proliferating cells and the milieu of dialysis fluids. Thus, these observations may bear biologic relevance in vivo where HPMC are repeatedly exposed to GDP-containing PDF for extended periods of time.

  1. In vitro cytotoxic and genotoxic effects of diphenylarsinic acid, a degradation product of chemical warfare agents.

    PubMed

    Ochi, Takafumi; Suzuki, Toshihide; Isono, Hideo; Kaise, Toshikazu

    2004-10-01

    Diphenylarsinic acid [DPAs(V)], a degradation product of diphenylcyanoarsine or diphenylchloroarsine, both of which were developed as chemical warfare agents, was investigated in terms of its capacity to induce cytotoxic effects, numerical and structural changes of chromosomes, and abnormalities of centrosome integrity and spindle organizations in conjunction with the effects of glutathione (GSH) depletion. DPAs(V) had toxic effects on cultured human hepatocarcinoma HepG2 cells at concentrations more than 0.5 mM. Depletion of GSH reduced the toxic effects of DPAs(V) as well as dimethylarsinic acid [DMAs(V)] toxicity, while toxicity by arsenite [iAs(III)] was enhanced. Exogenously added sulfhydryl (SH) compounds, such as dimercapropropane sulfonate (DMPS), GSH, and dithiothreitol (DTT), enhanced the toxic effects of DPAs(V) while they suppressed iAs(III) toxicity. DPAs(V) caused an increase in the mitotic index, and also structural and numerical changes in chromosomes in V79 Chinese hamster cells. Abnormality of centrosome integrity in mitotic V79 cells and multipolar spindles was also induced by DPAs(V) in a time- and concentration-dependent manner. These results suggested that highly toxic chemicals were generated by the interaction of DPAs(V) with SH compounds. Moreover, enhancements of toxicity by a combination of DPAs(V) and SH compounds suggested a risk in the use of SH compounds as a remedy for intoxication by diphenylarsenic compounds. Investigations on the effects of SH compounds on animals intoxicated with DPAs(V) are warranted.

  2. Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna.

    PubMed Central

    LeBlanc, G A; Mu, X; Rider, C V

    2000-01-01

    Laboratory studies have suggested that some alkylphenols and pesticides elicit developmental toxicity to crustaceans. The purpose of the present study was to evaluate the possibility that the alkylphenol degradation product 4-nonylphenol is embryotoxic to the crustacean Daphnia magna through its known ability to interfere with the metabolic elimination of testosterone. Direct exposure of maternal daphnids to testosterone caused developmental abnormalities in neonates that consisted of partial arrest of early embryonic development and abnormalities in shell spine and first antennae development. Exposure of maternal daphnids to concentrations of 4-nonylphenol also produced developmental abnormalities though the profile of abnormalities was distinct from that observed throughout the testosterone concentration-response curve. Thus, 4-nonylphenol is a developmental toxicant in daphnids, but its toxicity is not consistent with that elicited by elevated testosterone accumulation. Further experiments demonstrated that testosterone was directly toxic to developing embryos, and the maternal organism can serve as the vector for this toxicity. In contrast, neither direct embryo exposure nor early maternal exposure to 4-nonylphenol elicited embryotoxicity consistent with that observed during continuous maternal and gestational exposure. Thus, 4-nonylphenol is not directly embryotoxic at these exposure levels, but rather toxicity is mediated by maternal influences during gestation. The threshold concentration for the occurrence of developmental abnormalities ( approximately 44 microg/L) indicates that typical environmental concentrations of 4-nonylphenol pose no imminent hazard with respect to developmental toxicity. However, these effects do occur at sufficiently low levels to warrant evaluation of the relative susceptibility of other crustacean species to this previously uncharacterized mode of toxicity. PMID:11133392

  3. Exposure to airborne isocyanates and other thermal degradation products at polyurethane-processing workplaces.

    PubMed

    Henriks-Eckerman, Maj-Len; Välimaa, Jarmo; Rosenberg, Christina; Peltonen, Kimmo; Engström, Kerstin

    2002-10-01

    The thermal degradation products of polyurethanes (PURs) and exposure to isocyanates were studied by stationary and personal measurements in five different occupational environments. Isocyanates were collected on glass fibre filters impregnated with 1-(2-methoxyphenyl)piperazine (2MP) and in impingers containing n-dibutylamine (DBA) in toluene. connected to a glass fibre postfilter. The derivatives formed were analysed by liquid chromatography: 2MP derivatives with UV and electrochemical detection and DBA derivatives with mass spectrometric detection. The release of aldehydes and other volatile organic compounds into the air was also studied. In a comparison of the two sampling methods, the 2MP method yielded about 20% lower concentrations for 4,4'-methylenediphenyl diisocyanate (MDI) than did the DBA method. In car repair shops, the median concentration of diisocyanates (given as NCO groups) in the breathing zone was 1.1 microg NCO m(-3) during grinding and 0.3 microg NCO m(-3) during welding, with highest concentrations of 1.7 and 16 pg NCO m(-3), respectively. High concentrations of MDI, up to 25 and 19 microg NCO m(-3), respectively, were also measured in the breathing zone during welding of district heating pipes and turning of a PUR-coated metal cylinder. During installation of PUR-coated floor covering, small amounts of aliphatic diisocyanates were detected in the air. A small-molecular monoisocyanate, methyl isocyanate, and isocyanic acid were detected only during welding and turning operations. The diisocyanate concentrations were in general higher near the emission source than in the workers' breathing zone. A sampling strategy to evaluate the risk of exposure to isocyanates is presented.

  4. Determination of aspartame and its degradation and epimerization products by capillary electrophoresis.

    PubMed

    Sabah, S; Scriba, G K

    1998-02-01

    Two capillary zone electrophoretic assays using run buffers of pH 9.35 and pH 2.70 have been developed for the determination of aspartame (alpha-L-Asp-L-PheOMe) and its potential degradation products including Phe, PheOMe, 5-benzyl-3,6-dioxo-2-piperazineacetic acid (DKP), the dipeptides Asp-Phe and Phe-Asp, as well as the isomeric beta-aspartame (beta-L-Asp-L-PheOMe). As an uncharged species at pH 2.7 DKP could not be determined. Between pH 2.0 and 3.5 the resolution of the diastereomers of aspartame and beta-aspartame was investigated. While the resolution of the epimeric beta-isomers exhibited a plateau between pH 2.3 and 2.7, resolution of the aspartame diastereomers peaked at pH 3.0. Using salicylic acid and Phe-Gly as internal standards at pH 9.35 and 2.70, respectively, linear calibration curves were obtained for a concentration range between 5 micrograms ml-1 and 1 mg ml-1. The R.S.D. for intraday and interday analysis ranged from 1.0 to 3.6% and 1.5% to 9.1%, respectively. The capillary electrophoresis assays were applied to analyze aspartame solutions heated to 70 degrees C. In agreement with the literature data aspartame was found to be less stable at pH 7 compared to pH 3. In contrast to aspartame itself, an approximate 20% epimerization of beta-aspartame was observed in the incubation mixtures.

  5. Determination of degradation products of squalamine lactate using LC/MS.

    PubMed

    Li, Cong-Jun; Kari, U Prasad; Noecker, Lincoln A; Jones, Stephen R; Sabo, Andrew M; McCormick, Timothy J; Johnston, Sean M

    2003-04-24

    Heat, acid and base stress methods were applied to study the stability of squalamine lactate. Liquid chromatography coupled with mass spectrometry was used to analyze the degraded samples and tentative structural identifications were assigned based on their molecular weight measurements, reactivity and MS/MS fragmentation. Solid squalamine lactate generated a new amide, namely lactyl squalamide, when heated to 80 degrees C. Chemical structure for this new compound has been established by NMR and MS data interpretation and confirmed by direct comparison between the degradant and the synthesized compound. Squalamine lactate in pH 4 acetate buffer solution produced more degradants under stressed conditions. These degradants are formed due to the loss of the sulfate functionality. Squalamine lactate is stable in refrigerated conditions as well as in basic solution. PMID:12852451

  6. Sodium persulfate-assisted mechanochemical degradation of tetrabromobisphenol A: Efficacy, products and pathway.

    PubMed

    Liu, Xitao; Zhang, Xiaohui; Zhang, Kunlun; Qi, Chengdu

    2016-05-01

    In recent years, activated persulfate (PS) oxidation has been developed as a new advanced oxidation process for the degradation of organic pollutants. On the other hand, the mechanochemical method has exhibited a unique advantage in dealing with chemical wastes. The degradation of tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant (BFR), in wastes has attracted considerable attention. In this study, the efficacy of a CaO-mechanochemical (CaO-MC) treatment system assisted by the addition of PS for the degradation of TBBPA was investigated. Under the optimum reaction conditions with a mole ratio of PS:CaO = 1:4 and less than 12.5% of TBBPA by mass, the degradation and debromination of TBBPA were completed within 2 h, while the mineralization was completed within 4 h. Characterization of the milled sample by XRD revealed that CaSO4 crystallization occurred. The TG results illustrate that there was little organic matter left after 4 h of milling. Raman and FT-IR spectra exhibited the TBBPA destruction process and disappearance of the organic groups. Through analysis by LC/MS/MS, seventeen intermediates were identified. The mechanism of TBBPA degradation by the PS-assisted CaO-MC treatment system was explained from two aspects, the course of crystallization and the degradation of TBBPA by activated PS, and two parallel initiation pathways were proposed.

  7. Sodium persulfate-assisted mechanochemical degradation of tetrabromobisphenol A: Efficacy, products and pathway.

    PubMed

    Liu, Xitao; Zhang, Xiaohui; Zhang, Kunlun; Qi, Chengdu

    2016-05-01

    In recent years, activated persulfate (PS) oxidation has been developed as a new advanced oxidation process for the degradation of organic pollutants. On the other hand, the mechanochemical method has exhibited a unique advantage in dealing with chemical wastes. The degradation of tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant (BFR), in wastes has attracted considerable attention. In this study, the efficacy of a CaO-mechanochemical (CaO-MC) treatment system assisted by the addition of PS for the degradation of TBBPA was investigated. Under the optimum reaction conditions with a mole ratio of PS:CaO = 1:4 and less than 12.5% of TBBPA by mass, the degradation and debromination of TBBPA were completed within 2 h, while the mineralization was completed within 4 h. Characterization of the milled sample by XRD revealed that CaSO4 crystallization occurred. The TG results illustrate that there was little organic matter left after 4 h of milling. Raman and FT-IR spectra exhibited the TBBPA destruction process and disappearance of the organic groups. Through analysis by LC/MS/MS, seventeen intermediates were identified. The mechanism of TBBPA degradation by the PS-assisted CaO-MC treatment system was explained from two aspects, the course of crystallization and the degradation of TBBPA by activated PS, and two parallel initiation pathways were proposed. PMID:26359264

  8. End-to-end gene fusions and their impact on the production of multifunctional biomass degrading enzymes

    SciTech Connect

    Rizk, Mazen; Antranikian, Garabed; Elleuche, Skander

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Multifunctional enzymes offer an interesting approach for biomass degradation. Black-Right-Pointing-Pointer Size and conformation of separate constructs play a role in the effectiveness of chimeras. Black-Right-Pointing-Pointer A connecting linker allows for maximal flexibility and increased thermostability. Black-Right-Pointing-Pointer Genes with functional similarities are the best choice for fusion candidates. -- Abstract: The reduction of fossil fuels, coupled with its increase in price, has made the search for alternative energy resources more plausible. One of the topics gaining fast interest is the utilization of lignocellulose, the main component of plants. Its primary constituents, cellulose and hemicellulose, can be degraded by a series of enzymes present in microorganisms, into simple sugars, later used for bioethanol production. Thermophilic bacteria have proven to be an interesting source of enzymes required for hydrolysis since they can withstand high and denaturing temperatures, which are usually required for processes involving biomass degradation. However, the cost associated with the whole enzymatic process is staggering. A solution for cost effective and highly active production is through the construction of multifunctional enzyme complexes harboring the function of more than one enzyme needed for the hydrolysis process. There are various strategies for the degradation of complex biomass ranging from the regulation of the enzymes involved, to cellulosomes, and proteins harboring more than one enzymatic activity. In this review, the construction of multifunctional biomass degrading enzymes through end-to-end gene fusions, and its impact on production and activity by choosing the enzymes and linkers is assessed.

  9. [Analysis of alkaline CuO degradation products of acid detergent fiber from tobacco leaves by using liquid chromatography].

    PubMed

    Hao, Weiqiang; Wang, Leijun; Wu, Shun; Yue, Bangyi; Chen, Qiang; Zhang, Peipei

    2015-07-01

    The acid detergent fiber (ADF) from tobacco leaves was obtained by treating the sample with petroleum ether-ethanol (6:4, v/v), 30 g/L sodium dodecylsulfate and 0.5 mol/L sulphuric acid containing 20 g/L hexadecyl trimethyl ammonium bromide successively. The ADF was degraded by the alkaline CuO oxidation procedure. In this work, six samples of ADF degradation products from tobacco leaves were prepared. The samples were analyzed by using gradient liquid chromatography (LC) where an Ultimate XB C18 column was used as stationary phase, with a mixture of methanol and water as mobile phase, at a column temperature of 35 °C and a flow rate of 0.8 mL/min. Dual wavelengths of 280 nm and 320 nm were chosen for the detection. It was found that there were four characteristic peaks for the ADF degradation products. By taking these peaks as research object, the optimum time for the degradation was found to be 5 h and the sample solution could be kept stable within 7 days. The established method may provide a new approach for the studies of the differences between lignin composition in different tobacco leaves and the relationship between lignin content and the smoking quality of tobacco leaves. PMID:26672209

  10. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol.

    PubMed

    Esatbeyoglu, Tuba; Ulbrich, Katrin; Rehberg, Clemens; Rohn, Sascha; Rimbach, Gerald

    2015-03-01

    Curcumin is a secondary plant metabolite present in Curcuma longa L. Since curcumin is widely used as a food colorant in thermally processed food it may undergo substantial chemical changes which in turn could affect its biological activity. In the current study, curcumin was roasted at 180 °C up to 70 minutes and its kinetic of degradation was analyzed by means of HPLC-PDA and LC-MS, respectively. Roasting of curcumin resulted in the formation of the degradation products vanillin, ferulic acid, and 4-vinyl guaiacol. In cultured hepatocytes roasted curcumin as well as 4-vinyl guaiacol enhanced the transactivation of the redox-regulated transcription factor Nrf2, known to be centrally involved in cellular stress response and antioxidant defense mechanisms. The antioxidant enzyme paraoxonase 1 was induced by roasted curcumin and 4-vinyl guaiacol. Furthermore, roasted curcumin and 4-vinyl guaiacol decreased interleukin-6 gene expression in lipopolysaccharide stimulated murine macrophages. Current data suggest that curcumin undergoes degradation due to roasting and its degradation product exhibit significant biological activity in cultured cells.

  11. New findings on degradation of famotidine under basic conditions: identification of a hitherto unknown degradation product and the condition for obtaining the propionamide intermediate in pure form.

    PubMed

    Singh, Saranjit; Kumar, Sanjeev; Sharda, Nishi; Chakraborti, Asit K

    2002-01-01

    The degradation behavior of famotidine (1) was investigated in 25% ammonia solution and in 2 M NaOH. The hydrolysis of the drug in ammonia resulted in separation of [3-[[2-[(diaminomethylene)amino]-4-thiazolyl]methyl]thio]propionamide (3), an impurity listed in British Pharmacopoeia. The treatment with 2 M NaOH resulted in formation of [3-[[[2-[(diaminomethylene)amino]-4-thiazolyl]methyl]thio]propionyl]sulfamide (2) and 3. These products further decomposed to [3-[[2-[(diaminomethylene)amino]-4-thiazolyl]methyl]thio]propionic acid (4) and a heretofore unknown product, 5. The latter separated out in the reaction mixture as brown shiny crystals. Proton and carbon-13 nuclear magnetic resonance spectroscopy, mass spectrometry, and elemental analysis of the charcoal-treated product established the structure. The formation of 5 is postulated to involve abstraction of a proton from the alpha-carbon of intermediates 2 and 3 followed by elimination of the thiol moiety. PMID:11782914

  12. Identification and characterization of stressed degradation products of metoprolol using LC/Q-TOF-ESI-MS/MS and MS(n) experiments.

    PubMed

    Borkar, Roshan M; Raju, B; Srinivas, R; Patel, Prashant; Shetty, Satheesh Kumar

    2012-06-01

    A rapid, specific and reliable isocratic high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed and validated for the identification and characterization of stressed degradation products of metoprolol. Metoprolol, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and hydrolysis (acid and base) stress conditions. However, it was stable to thermal, neutral and photolysis stress conditions. A total of 14 degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on a C(18) column (4.6 × 250 mm, 5 µm). To characterize degradation products, initially the mass spectral fragmentation pathway of the drug was established with the help of MS/MS, MS(n) and accurate mass measurements. Similarly, fragmentation pattern and accurate masses of the degradation products were established by subjecting them to LC-MS/QTOF analysis. Structure elucidation of degradation products was achieved by comparing their fragmentation pattern with that of the drug. The degradation products DP(2) (m/z 153) and DP(14) (m/z 236) were matched with impurity B, listed in European Pharmacopoeia and British Pharmacopoeia, and impurity I, respectively. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision.

  13. Machine intelligence applications to securities production

    SciTech Connect

    Johnson, C.K.

    1987-01-01

    The production of security documents provides a cache of interesting problems ranging across a broad spectrum. Some of the problems do not have rigorous scientific solutions available at this time and provide opportunities for less structured approaches such as AI. AI methods can be used in conjunction with traditional scientific and computational methods. The most productive applications of AI occur when this marriage of methods can be carried out without motivation to prove that one method is better than the other. Fields such as ink chemistry and technology, and machine inspection of graphic arts printing offer interesting challenges which will continue to intrigue current and future generations of researchers into the 21st century.

  14. Biotechnological production of mannitol and its applications.

    PubMed

    Saha, Badal C; Racine, F Michael

    2011-02-01

    Mannitol, a naturally occurring polyol (sugar alcohol), is widely used in the food, pharmaceutical, medical, and chemical industries. The production of mannitol by fermentation has become attractive because of the problems associated with its production chemically. A number of homo- and heterofermentative lactic acid bacteria (LAB), yeasts, and filamentous fungi are known to produce mannitol. In particular, several heterofermentative LAB are excellent producers of mannitol from fructose. These bacteria convert fructose to mannitol with 100% yields from a mixture of glucose and fructose (1:2). Glucose is converted to lactic acid and acetic acid, and fructose is converted to mannitol. The enzyme responsible for conversion of fructose to mannitol is NADPH- or NADH-dependent mannitol dehydrogenase (MDH). Fructose can also be converted to mannitol by using MDH in the presence of the cofactor NADPH or NADH. A two enzyme system can be used for cofactor regeneration with simultaneous conversion of two substrates into two products. Mannitol at 180 g l(-1) can be crystallized out from the fermentation broth by cooling crystallization. This paper reviews progress to date in the production of mannitol by fermentation and using enzyme technology, downstream processing, and applications of mannitol.

  15. Radioisotope Production for Medical and Physics Applications

    NASA Astrophysics Data System (ADS)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  16. Effects of feeding rumen-degradable valine on milk production in late-lactating dairy cows.

    PubMed

    Hultquist, Kayla M; Casper, David P

    2016-02-01

    The study objective was to determine if feeding the rumen-degradable AA Val can increase milk production comparable to recombinant bovine somatotropin (bST). Eight multiparous late-lactating (255±26.4 d in milk) Holstein dairy cows were blocked by milk yield (34.1±8.25 kg/d) and randomly assigned to 1 of 4 treatments in a replicated 4×4 Latin square design with 21-d periods (7 d for dietary adaptation and 14 d for data collection). Treatments were control (CON), a single injection of recombinant bST (rbST), and Val fed at 40 (V40) and 80 g/d (V80). Cows were fed a total mixed ration with a distillers dried grains carrier at 113.4 g/d containing none or added AA. Dry matter intake (21.3, 22.0, 22.8, and 21.5 kg/d for CON, rbST, V40, and V80, respectively) was similar among treatments, except cows receiving V40 had greater dry matter intake than cows receiving V80. Milk yield (22.0, 26.1, 25.2, and 24.9 kg/d), 3.5% fat-corrected milk (22.1, 25.4, 24.4, and 24.3 kg/d), and energy-corrected milk (22.7, 26.1, 25.1, and 24.9 kg/d) were increased at similar amounts for cows receiving rbST, V40, and V80 compared with CON cows. Milk fat percentages (3.51, 3.36, 3.32, and 3.38%) were greatest for CON cows compared with cows receiving V40, whereas cows receiving other treatments were intermediate and similar. Milk protein percentages (3.20, 3.12, 3.15, and 3.13%) were greater for CON cows compared with cows receiving rbST and V40, whereas cows receiving V80 were intermediate and similar. Ruminal isobutyrate (1.19, 1.24, 1.44, and 1.74 mol/100 mol) concentrations were increased for cows receiving V40 and V80 compared with CON and rbST cows, with cows receiving V80 having greater concentrations than cows receiving V40. Plasma growth hormone concentrations (1.78, 1.99, 1.55, and 1.45 ng/mL) were greater for cows receiving rbST compared with cows receiving V40 and V80, whereas CON cows were intermediate and similar. Plasma insulin-like growth factor-1 concentrations (60.4, 106

  17. Effects of feeding rumen-degradable valine on milk production in late-lactating dairy cows.

    PubMed

    Hultquist, Kayla M; Casper, David P

    2016-02-01

    The study objective was to determine if feeding the rumen-degradable AA Val can increase milk production comparable to recombinant bovine somatotropin (bST). Eight multiparous late-lactating (255±26.4 d in milk) Holstein dairy cows were blocked by milk yield (34.1±8.25 kg/d) and randomly assigned to 1 of 4 treatments in a replicated 4×4 Latin square design with 21-d periods (7 d for dietary adaptation and 14 d for data collection). Treatments were control (CON), a single injection of recombinant bST (rbST), and Val fed at 40 (V40) and 80 g/d (V80). Cows were fed a total mixed ration with a distillers dried grains carrier at 113.4 g/d containing none or added AA. Dry matter intake (21.3, 22.0, 22.8, and 21.5 kg/d for CON, rbST, V40, and V80, respectively) was similar among treatments, except cows receiving V40 had greater dry matter intake than cows receiving V80. Milk yield (22.0, 26.1, 25.2, and 24.9 kg/d), 3.5% fat-corrected milk (22.1, 25.4, 24.4, and 24.3 kg/d), and energy-corrected milk (22.7, 26.1, 25.1, and 24.9 kg/d) were increased at similar amounts for cows receiving rbST, V40, and V80 compared with CON cows. Milk fat percentages (3.51, 3.36, 3.32, and 3.38%) were greatest for CON cows compared with cows receiving V40, whereas cows receiving other treatments were intermediate and similar. Milk protein percentages (3.20, 3.12, 3.15, and 3.13%) were greater for CON cows compared with cows receiving rbST and V40, whereas cows receiving V80 were intermediate and similar. Ruminal isobutyrate (1.19, 1.24, 1.44, and 1.74 mol/100 mol) concentrations were increased for cows receiving V40 and V80 compared with CON and rbST cows, with cows receiving V80 having greater concentrations than cows receiving V40. Plasma growth hormone concentrations (1.78, 1.99, 1.55, and 1.45 ng/mL) were greater for cows receiving rbST compared with cows receiving V40 and V80, whereas CON cows were intermediate and similar. Plasma insulin-like growth factor-1 concentrations (60.4, 106

  18. Application of Universal Stress Proteins in Probing the Dynamics of Potent Degraders in Complex Terephthalate Metagenome

    PubMed Central

    Mbah, Andreas N.; Isokpehi, Raphael D.

    2013-01-01

    The culture-independent strategies to study microbial diversity and function have led to a revolution in environmental genomics, enabling fundamental questions about the distribution of microbes and their influence on bioremediation to be addressed. In this research we used the expression of universal stress proteins as a probe to determine the changes in degrading microbial population from a highly toxic terephthalate wastewater to a less toxic activated sludge bioreactor. The impact of relative toxicities was significantly elaborated at the levels of genus and species. The results indicated that 23 similar prokaryotic phyla were represented in both metagenomes irrespective of their relative abundance. Furthermore, the following bacteria taxa Micromonosporaceae, Streptomyces, Cyanothece sp. PCC 7822, Alicyclobacillus acidocaldarius, Bacillus halodurans, Leuconostoc mesenteroides, Lactococcus garvieae, Brucellaceae, Ralstonia solanacearum, Verminephrobacter eiseniae, Azoarcus, Acidithiobacillus ferrooxidans, Francisella tularensis, Methanothermus fervidus, and Methanocorpusculum labreanum were represented only in the activated sludge bioreactor. These highly dynamic microbes could serve as taxonomic biomarkers for toxic thresholds related to terephthalate and its derivatives. This paper, highlights the application of universal stress proteins in metagenomics analysis. Dynamics of microbial consortium of this nature can have future in biotechnological applications in bioremediation of toxic chemicals and radionuclides. PMID:24151583

  19. From Arabidopsis to cereal crops: Conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity

    PubMed Central

    Izumi, Masanori; Hidema, Jun; Ishida, Hiroyuki

    2015-01-01

    Autophagy is an evolutionarily conserved process leading to the degradation of intracellular components in eukaryotes, which is important for nutrient recycling especially in response to starvation conditions. Nutrient recycling is an essential process that underpins productivity in crop plants, such that remobilized nitrogen derived from older organs supports the formation of new organs or grain-filling within a plant. We extended our understanding of autophagy in a model plant, Arabidopsis thaliana, to an important cereal, rice (Oryza sativa). Through analysis of transgenic rice plants stably expressing fluorescent marker proteins for autophagy or chloroplast stroma, we revealed that chloroplast proteins are partially degraded in the vacuole via Rubisco-containing bodies (RCBs), a type of autophagosomes containing stroma. We further reported evidence that the RCB pathway functions during natural leaf senescence to facilitate subsequent nitrogen remobilization into newly expanding leaves. Thus, our recent studies establish the importance of autophagy in biomass production of cereals. PMID:26440746

  20. Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy.

    PubMed

    Pérez-Alonso, M; Castro, K; Martinez-Arkarazo, I; Angulo, M; Olazabal, M A; Madariaga, J M

    2004-05-01

    This work reports the use of a portable Raman microprobe spectrometer for the analysis of bulk and decaying compounds in carbonaceous materials such as stones, mortars and wall paintings. The analysed stones include limestone, dolomite and carbonaceous sandstone, gypsum and calcium oxalate, both mono- and dihydrated, being the main inorganic degradation products detected. Mortars include bulk phases with pure gypsum, calcite and mixtures of both or with sand, soluble salts being the most important degradation products. The pigments detected in several wall paintings include Prussian blue, iron oxide red, iron oxide yellow, vermilion, carbon black and lead white. Three different decaying processes have been characterised in the mortars of the wall paintings: (a) a massive absorption of nitrates that reacted with calcium carbonate and promoted the unbinding of pigment grains, (b) the formation of black crusts in the vault of the presbytery and (c) the thermodecomposition of pigments due to a fire.

  1. Fate and movement of atrazine, cyanazine, metolachlor and selected degradation products in water resources of the deep Loess Hills of Southwestern Iowa, USA.

    PubMed

    Steinheimer, T R; Scoggin, K D

    2001-02-01

    The environmental fate and movement of herbicides widely used for weed control in corn are assessed for a deep loess soil in southwestern Iowa. Beginning in the early 1980s, the herbicide-based weed control program emphasized the application of atrazine (ATR) or cyanazine (CYN) and metolachlor (MET) for both broadleaf and grass control. Between 1992 and 1995, concentrations of ATR, desethylatrazine (DEA), desisopropylatrazine (DIA), CYN and MET were measured in rainwater, both shallow and deep vadose zone water, and well water. Results show that the frequency of herbicide detections and the range and distribution of occurrences are dependent upon both landscape position and temporal inputs of recharge water from rainfall. Generally, DIA was observed more frequently and in higher mean concentration in well water than DEA, while DEA was observed more frequently than DIA in vadose zone groundwater. A chromatographic analogy is suggested to explain the occurrence patterns observed for both parent herbicide and degradation products within the unsaturated zone water. Analysis of rainwater samples collected during this time also revealed low concentrations of ATR, CYN and MET, with the timing of the detections indicative of non-local transport. Results show that the deep loess soil conducts both water and agricultural chemicals relatively rapidly and as such represents a production system which is vulnerable to contamination of shallow groundwater by herbicide-derived chemicals. Results also illustrate the importance of including major herbicide degradation products in water resource impact assessment studies.

  2. Applications of ultrasound in NAPL remediation: sonochemical degradation of TCE in aqueous surfactant solutions.

    PubMed

    Destaillats, H; Alderson, T W; Hoffmann, M R

    2001-07-15

    Surfactant-enhanced pump-and-treat technologies increase the efficiency of nonaqueous-phase liquids (NAPLs) removal from soils. However, high concentrations of surfactants in groundwater impose severe limitations to water treatment. In this paper, we explore the applicability of ultrasonic irradiation as an alternative method for surfactant recovery and contaminant degradation. The combined effects of temperature, initial substrate concentration, and concentration of added surfactant (sodium dodecyl sulfate, SDS) were analyzed for the sonolysis of trichloroethylene (TCE) in batch experiments at an ultrasonic frequency of 500 kHz and 77 W/L applied power density. In the range of 5-30 degrees C, TCE sonolysis becomes faster at higher temperatures, both in the absence and in the presence of surfactant. This indicates that gas-phase pyrolysis prevails over other chemical reactions in the liquid phase. Inhibition of TCE sonolysis was observed in the presence of surfactant at all SDS concentrations. Changes in the initial TCE concentration (from 250 microM to 1.2 mM) showed no effect on the degradation rates in the presence of SDS. For surfactant levels below its critical micelle concentration (cmc), the inhibition of TCE sonolysis exhibited a highly nonlinear dependence with increasing SDS concentration. A correlation was observed in this range between the relative inhibition of sonolysis and the decreasing surface tension of the solutions. Above the cmc up to an SDS concentration of 5%, the reaction rate decreased less markedly. Micellar sequestration of the contaminant seems to be the main reason for this additional inhibition. Bubble growth prior to collapse may incorporate some of the TCE dissolved in the micelles through their adsorption in the expanding bubble walls, thus partially overcoming the scavenging effect due to micellar entrapment of the contaminant.

  3. Degradable, antibiotic releasing poly(propylene fumarate)-based constructs for craniofacial space maintenance applications.

    PubMed

    Henslee, Allan M; Shah, Sarita R; Wong, Mark E; Mikos, Antonios G; Kasper, F Kurtis

    2015-04-01

    Space maintainers (SMs) used for craniofacial reconstruction function to preserve the void space created upon bone loss and promote soft tissue healing over the defect. Polymethylmethacrylate-based SMs present several drawbacks including implant exposure, secondary removal surgeries, and potential bacterial contamination during implantation. To address these issues, a novel composite material comprising poly(propylene fumarate) (PPF) with N-vinyl pyrrolidone (NVP) as the crosslinking agent, carboxymethylcellulose (CMC) hydrogel as a porogen, and antibiotic loaded poly(lactic-co-glycolic acid) (PLGA) microparticles as antibiotic carriers and porogen was fabricated. CMC was incorporated at 40 wt % to impart rapid porosity while PLGA microparticles were incorporated at 30 or 40 wt % to release either clindamycin or colistin. This study was designed to examine the effects of PPF:NVP ratio, PLGA wt %, and the drug dose on the mass loss, temporal porosity change and drug release kinetics of the composite construct. Mass loss decreased significantly in constructs containing 3:2 PPF:NVP ratio with 30 wt % PLGA (63.2 ± 0.8%) compared to the 2:3 PPF:NVP ratio (80.3 ± 1.0% and 85.3 ± 1.3% for 30 and 40 wt % PLGA content, respectively) at 8 weeks. In formulations with 3:2 PPF:NVP ratio, incorporation of 40 versus 30 wt % PLGA significantly increased the porosity at 8 weeks under accelerated degradation conditions. Constructs released clindamycin or colistin at concentrations above the minimum inhibitory concentration for target pathogens for 45 and 77 days, respectively. This study demonstrates that the composition of PPF/CMC/PLGA constructs can be modulated to achieve properties suitable for craniofacial degradable space maintenance applications.

  4. Enzyme research and applications in biotechnological intensification of biogas production.

    PubMed

    Parawira, Wilson

    2012-06-01

    Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the

  5. A high-performance liquid chromatographic assay for clindamycin phosphate and its principal degradation product in bulk drug and formulations.

    PubMed

    Munson, J W; Kubiak, E J

    1985-01-01

    A high-performance liquid chromatography method has been developed for the analysis of clindamycin phosphate and clindamycin, the principal degradation product. The method is quantitative, precise and is able to separate a variety of closely related molecules. The method has been applied to bulk drug, topical and sterile solutions, and experimental cream, lotion and gel formulations. The method gives results that are in good agreement with the official gas chromatographic method but is much less time-consuming.

  6. Study of the forced degradation behavior of prasugrel hydrochloride by liquid chromatography with mass spectrometry and liquid chromatography with NMR detection and prediction of the toxicity of the characterized degradation products.

    PubMed

    Singh, Dilip Kumar; Sahu, Archana; Handa, Tarun; Narayanam, Mallikarjun; Singh, Saranjit

    2015-09-01

    Prasugrel was subjected to forced degradation studies under conditions of hydrolysis (acid, base, and neutral), photolysis, oxidation, and thermal stress. The drug showed liability in hydrolytic as well as oxidative conditions, resulting in a total of four degradation products. In order to characterize the latter, initially mass fragmentation pathway of the drug was established with the help of mass spectrometry/time-of-flight, multiple stage mass spectrometry and hydrogen/deuterium exchange data. The degradation products were then separated on a C18 column using a stability-indicating volatile buffer method, which was later extended to liquid chromatography-mass spectrometry studies. The latter highlighted that three degradation products had the same molecular mass, while one was different. To characterize all, their mass fragmentation pathways were established in the same manner as the drug. Subsequently, liquid chromatography-nuclear magnetic resonance (NMR) spectroscopy data were collected. Proton and correlation liquid chromatography with NMR spectroscopy studies highlighted existence of diastereomeric behavior in one pair of degradation products. Lastly, toxicity prediction by computer-assisted technology (TOPKAT) and deductive estimation of risk from existing knowledge (DEREK) software were employed to assess in silico toxicity of the characterized degradation products.

  7. Phytate-degrading enzyme production by bacteria isolated from Malaysian soil.

    PubMed

    Hussin, Anis Shobirin Meor; Farouk, Abd-ElAziem; Greiner, Ralf; Salleh, Hamzah Mohd; Ismail, Ahmad Faris

    2007-12-01

    Over two hundred bacteria were isolated from the halosphere, rhizosphere and endophyte of Malaysian maize plantation and screened for phytases activity. Thirty isolates with high detectable phytase activity were chosen for media optimization study and species identification. Ten types of bacterial phytase producers have been discovered in this study, which provides opportunity for characterization of new phytase(s) and various commercial and environmental applications. The majority of the bacterial isolates with high detectable phytase activity were of endophyte origin and 1.6% of the total isolates showed phytase activity of more than 1 U/ml. Most of the strains produced extra-cellular phytase and Staphylococcus lentus ASUIA 279 showed the highest phytase activity of 1.913 U/ml. All 30 species used in media optimization study exhibit favorable enzyme production when 1% rice bran was included in the growth media. PMID:27517819

  8. Cephalopod Ink: Production, Chemistry, Functions and Applications

    PubMed Central

    Derby, Charles D.

    2014-01-01

    One of the most distinctive and defining features of coleoid cephalopods—squid, cuttlefish and octopus—is their inking behavior. Their ink, which is blackened by melanin, but also contains other constituents, has been used by humans in various ways for millennia. This review summarizes our current knowledge of cephalopod ink. Topics include: (1) the production of ink, including the functional organization of the ink sac and funnel organ that produce it; (2) the chemical components of ink, with a focus on the best known of these—melanin and the biochemical pathways involved in its production; (3) the neuroecology of the use of ink in predator-prey interactions by cephalopods in their natural environment; and (4) the use of cephalopod ink by humans, including in the development of drugs for biomedical applications and other chemicals for industrial and other commercial applications. As is hopefully evident from this review, much is known about cephalopod ink and inking, yet more striking is how little we know. Towards closing that gap, future directions in research on cephalopod inking are suggested. PMID:24824020

  9. Characterization of degradation products of ivabradine by LC-HR-MS/MS: a typical case of exhibition of different degradation behaviour in HCl and H2SO4 acid hydrolysis.

    PubMed

    Patel, Prinesh N; Borkar, Roshan M; Kalariya, Pradipbhai D; Gangwal, Rahul P; Sangamwar, Abhay T; Samanthula, Gananadhamu; Ragampeta, Srinivas

    2015-02-01

    A validated stability-indicating HPLC method was established, and comprehensive stress testing of ivabradine, a cardiotonic drug, was carried out as per ICH guidelines. Ivabradine was subjected to acidic, basic and neutral hydrolysis, oxidation, photolysis and thermal stress conditions, and the resulting degradation products were investigated by LC-PDA and LC-HR-MS/MS. The drug was found to degrade in acid and base hydrolysis. An efficient and selective stability assay method was developed on Phenomenex Luna C18 (250 × 4.6 mm, 5.0 µm) column using ammonium formate (10 mM, pH 3.0) and acetonitrile as mobile phase at 30 °C in gradient elution mode. The flow rate was 0.7 ml/min and detection wavelength was 286 nm. A total of five degradation products (I-1 to I-5) were identified and characterized by LC-HR-MS/MS in combination with accurate mass measurements. The drug exhibited different degradation behaviour in HCl and H2SO4 hydrolysis conditions. It is a unique example where two of the five degradation products in HCl hydrolysis were absent in H2SO4 acid hydrolysis. The present study provides guidance to revise the stress test for the determination of inherent stability of drugs containing lactam moiety under hydrolytic conditions. Most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation pattern of the drug and its degradation products. In silico toxicity revealed that the degradation products (I-2 to I-5) were found to be severe irritants in case of ocular irritancy. The analytical assay method was validated with respect to specificity, linearity, range, precision, accuracy and robustness.

  10. LC-MS/MS structural characterization of stress degradation products including the development of a stability indicating assay of Darunavir: An anti-HIV drug.

    PubMed

    Rao, R Nageswara; Ramachandra, B; Sravan, B; Khalid, Sara

    2014-02-01

    Darunavir, an anti-HIV drug was subjected to forced degradation under acid, base, thermal and neutral hydrolysis, oxidation and photolysis as prescribed by ICH guidelines. Four major degradation products were formed under acid and base hydrolysis, while stable under neutral and thermal hydrolysis, oxidative and photolysis. The drug and its degradation products were separated on Hiber, LiChrospher® 60, RP-select B, C8 column (250mm×4.6mm i.d., 5μm) using 10mM ammonium acetate: acetonitrile (52:48, v/v) as mobile phase in an isocratic elution mode by LC. The degradation products were characterized by LC-MS/MS and fragmentation pathways were proposed. The proposed structures of degradation products were confirmed by HRMS and the LC method was validated with respect to specificity, linearity, accuracy, recovery, LOD and LOQ. PMID:24252722

  11. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation. PMID:27486708

  12. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    NASA Technical Reports Server (NTRS)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  13. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.

  14. Occurrence, distributions, and transport of herbicides and their degradation products in the lower Mississippi river and its tributaries

    USGS Publications Warehouse

    Pereira, W.E.

    1990-01-01

    The Mississippi River and its tributaries drain extensive agricultural regions of the midcontinental United States, where large amounts of herbicides are applied as weed control agents on crops such as corn and soybeans. Studies being conducted by the U.S. Geological Survey along the lower Mississippi River and its major tributaries, representing a 1930-km river reach, have confirmed that several triazine and chloroacetanilide herbicides and their degradation products are present in this riverine system. These herbicides include atrazine, and its degradation products, desethyl- and desisopropylatrazine; cyanazine; simazine; metolachlor; and alachlor and its degradation products, 2-chloro-2???,6???-diethylacetanilide, and 2-hydroxy-2???,6???-diethylacetanilide. Loads of these compounds were determined at 17 different sampling stations under various seasonal and hydrologic conditions, during five sampling trips from July 1987 to June 1989. Stream loads of herbicides were relatively small during the drought of 1987 and 1988. Stream loads were much greater during the relatively wet year of 1989. Trace levels of atrazine, cyanazine, and metolachlor also were associated with suspended sediments. Distribution coefficients (Koc) of these compounds varied considerably between sites and were much larger than Koc values reported in the literature. The annual transport of atrazine into the Gulf of Mexico was estimated to be less than 2% of the amount of atrazine applied each year in the midwest.

  15. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    PubMed

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and

  16. GC-MS(n) and LC-MS/MS couplings for the identification of degradation products resulting from the ozonation treatment of Acetochlor.

    PubMed

    Bouchonnet, Stéphane; Bourcier, Sophie; Souissi, Yasmine; Genty, Christophe; Sablier, Michel; Roche, Pascal; Boireau, Véronique; Ingrand, Valérie

    2012-04-01

    The degradation of the chloracetamide herbicide acetochlor has been studied under simulated ozonation treatment plant conditions. The degradation of acetochlor included the formation of several degradation products that were identified using GC/ion-trap mass spectrometry with EI and CI and HPLC/electrospray-QqTOF mass spectrometry. Thirteen ozonation products of acetochlor have been identified. Ozonation of the deuterated herbicide combined to MS(n) and high-resolution mass measurement allowed effective characterization of the degradation products. At the exception of one of them, the product B (2-chloro-2', ethyl-6', methyl-acetanilide), none of the identified degradation products has been already reported in the literature. Post-ozonation kinetics studies revealed that the concentrations of most degradation products evolved noticeably with time, particularly during the first hours following the ozonation treatment. This raises concerns about the fate of degradation products in the effluents of treatment plants and suggests the need for a better control on these products if their toxicity was demonstrated. PMID:22689619

  17. p-Tolyl isocyanate derivatization for analysis of CWC-related polar degradation products by mass spectrometry.

    PubMed

    Karthikraj, R; Sridhar, L; Murty, M R V S; Raju, N P; Vairamani, M; Prabhakar, S

    2014-08-01

    Most of the precursors and/or degradation products related to the Chemical Weapons Convention (CWC) are polar. Identification of these molecules in environmental samples provides clues regarding the alleged usage and/or synthesis of the parent toxic chemicals. Such polar compounds need to be derivatized in order to analyze them by gas chromatography-mass spectrometry (GC-MS). In this study, we developed a new derivatizing reagent, para-tolyl isocyanate (PTI), for derivatization of polar CWC-related compounds. The PTI reagent selectively derivatizes the -OH and/or-SH functional groups with high efficiency, but does not react with carboxylic acid (-COOH) or phosphonic acid (-(O)P(OH)2) groups. The PTI derivatives of dialkyl aminoethanols, dialkyl aminoethanol-N-oxides, and 3-quinuclidinol were successfully eluted through GC, and their electron ionization (EI) mass spectra were distinct and provided the structure information by which the isomeric compounds can be easily distinguished. We also calculated the GC-retention index values that can be used for further confirmation of the target compounds. All the studied PTI derivatives can be analyzed by EI-MS with direct insertion probe and/or by direct electrospray ionization mass spectrometry (ESI-MS) together with the MS-MS data; both sets of data provide full structure information. The PTI reagent was found to be better in some respects than the conventional bistrimethylsilyl trifluoroacetamide (BSTFA), a trimethyl silylating reagent. The PTI reagent is commercially available, and the PTI derivatives are highly stable for months and are not sensitive to moisture. The applicability of the PTI derivatization for trace-level determination of the target CWC-related polar compounds in environmental matrices and in human plasma samples is also evaluated.

  18. Visualizing Clogging up of Soil Pores in the Tropical Degraded Soils and Their Impact on Green Water Productivity

    NASA Astrophysics Data System (ADS)

    Tebebu, T.; Baver, C.; Stoof, C.; Steenhuis, T. S.

    2013-12-01

    Abstract Restrictive soil layer