Science.gov

Sample records for degraded area planted

  1. Surface Soil Preparetion for Leguminous Plants Growing in Degraded Areas by Mining Located in Amazon Forest-Brazil

    NASA Astrophysics Data System (ADS)

    Irio Ribeiro, Admilson; Hashimoto Fengler, Felipe; Araújo de Medeiros, Gerson; Márcia Longo, Regina; Frederici de Mello, Giovanna; José de Melo, Wanderley

    2015-04-01

    The revegetation of areas degraded by mining usually requires adequate mobilization of surface soil for the development of the species to be implemented. Unlike the traditional tillage, which has periodicity, the mobilization of degraded areas for revegetation can only occur at the beginning of the recovery stage. In this sense, the process of revegetation has as purpose the establishment of local native vegetation with least possible use of inputs and superficial tillage in order to catalyze the process of natural ecological succession, promoting the reintegration of areas and minimizing the negative impacts of mining activities in environmental. In this context, this work describes part of a study of land reclamation by tin exploitation in the Amazon ecosystem in the National Forest Jamari- Rondonia Brazil. So, studied the influence of surface soil mobilization in pit mine areas and tailings a view to the implementation of legumes. The results show that the surface has areas of mobilizing a significant effect on the growth of leguminous plants, areas for both mining and to tailings and pit mine areas.

  2. Plant biomass degradation by fungi.

    PubMed

    Mäkelä, Miia R; Donofrio, Nicole; de Vries, Ronald P

    2014-11-01

    Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.

  3. Complex plant facilitation-competition mechanisms and co-evolution of semiarid areas: are shrubs always guilty for degradation?

    NASA Astrophysics Data System (ADS)

    Saco, P. M.; Moreno de las Heras, M.

    2011-12-01

    Arid and semi-arid areas function as tightly coupled ecohydrological systems with strong feedbacks occurring across at a variety of spatial and temporal scales. The vegetation of these regions usually consists of patches with mixed herbaceous and woody plant species that display both negative (competition) and positive (facilitation) interactions. Though the role of facilitative interactions in plant communities has received considerable attention in the last two decades, their effects on hydrologic connectivity and landscape function are yet unclear. Here we investigate various vegetation-induced mechanisms that lead to facilitative interactions among vegetation species, and their effects on water redistribution, soil moisture availability, hydrologic connectivity, and ecosystem function. For this purpose we adapt a dynamic vegetation-landform model that captures the dynamic evolution of Australian banded vegetation patterns, to simulate coexisting grasses and shrubs under varying competition-facilitation conditions. The abiotic facilitation effects that we explore are those more relevant to dryer environments, and therefore associated to changes in microenvironmental conditions for water availability. That is, we explore facilitation effects induced by one of the species (ecosystem engineer) that results in enhanced water availability for the other species. (i.e., preferential enhancement of infiltration by one or both species, and shading effects by shrubs). Though it is clear that vegetation enhances infiltration, it is still unclear from field observations available in the literature, which is the species (herbaceous or woody) that is mainly responsible for this enhancement. We therefore test alternative hypothesis (varying relative contributions to total infiltration by both species) and analyse the results of the simulations in terms of dynamic spatial patterns of biomass density, soil moisture and hydrologic connectivity. Results indicate that pattern

  4. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation.

    PubMed

    Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M

    2017-03-01

    River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.

  5. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions.

    PubMed

    Armada, Elisabeth; Azcón, Rosario; López-Castillo, Olga M; Calvo-Polanco, Mónica; Ruiz-Lozano, Juan Manuel

    2015-05-01

    Studies have shown that some microorganisms autochthonous from stressful environments are beneficial when used with autochthonous plants, but these microorganisms rarely have been tested with allochthonous plants of agronomic interest. This study investigates the effectiveness of drought-adapted autochthonous microorganisms [Bacillus thuringiensis (Bt) and a consortium of arbuscular mycorrhizal (AM) fungi] from a degraded Mediterranean area to improve plant growth and physiology in Zea mays under drought stress. Maize plants were inoculated or not with B. thuringiensis, a consortium of AM fungi or a combination of both microorganisms. Plants were cultivated under well-watered conditions or subjected to drought stress. Several physiological parameters were measured, including among others, plant growth, photosynthetic efficiency, nutrients content, oxidative damage to lipids, accumulation of proline and antioxidant compounds, root hydraulic conductivity and the expression of plant aquaporin genes. Under drought conditions, the inoculation of Bt increased significantly the accumulation of nutrients. The combined inoculation of both microorganisms decreased the oxidative damage to lipids and accumulation of proline induced by drought. Several maize aquaporins able to transport water, CO2 and other compounds were regulated by the microbial inoculants. The impact of these microorganisms on plant drought tolerance was complementary, since Bt increased mainly plant nutrition and AM fungi were more active improving stress tolerance/homeostatic mechanisms, including regulation of plant aquaporins with several putative physiological functions. Thus, the use of autochthonous beneficial microorganisms from a degraded Mediterranean area is useful to protect not only native plants against drought, but also an agronomically important plant such as maize.

  6. Draft Genome Sequence of Textile Azo Dye-Decolorizing and -Degrading Pseudomonas aeruginosa Strain PFK10, Isolated from the Common Effluent Treatment Plant of the Ankleshwar Industrial Area of Gujarat, India.

    PubMed

    Faldu, P R; Kothari, V V; Kothari, C R; Rawal, C M; Domadia, K K; Patel, P A; Bhimani, H D; Raval, V H; Parmar, N R; Nathani, N M; Koringa, P G; Joshi, C G; Kothari, R K

    2014-02-06

    Here, we report the draft genome sequence of Pseudomonas aeruginosa strain PFK10, isolated from the common effluent treatment plant (CETP) of the Ankleshwar industrial area of Gujarat, India. The 6.04-Mb draft genome sequence of strain PFK10 provides information about the genes encoding enzymes that enable the strain to decolorize and degrade textile azo dye.

  7. Draft Genome Sequence of Textile Azo Dye-Decolorizing and -Degrading Pseudomonas aeruginosa Strain PFK10, Isolated from the Common Effluent Treatment Plant of the Ankleshwar Industrial Area of Gujarat, India

    PubMed Central

    Faldu, P. R.; Kothari, V. V.; Kothari, C. R.; Rawal, C. M.; Domadia, K. K.; Patel, P. A.; Bhimani, H. D.; Raval, V. H.; Parmar, N. R.; Nathani, N. M.; Koringa, P. G.; Joshi, C. G.

    2014-01-01

    Here, we report the draft genome sequence of Pseudomonas aeruginosa strain PFK10, isolated from the common effluent treatment plant (CETP) of the Ankleshwar industrial area of Gujarat, India. The 6.04-Mb draft genome sequence of strain PFK10 provides information about the genes encoding enzymes that enable the strain to decolorize and degrade textile azo dye. PMID:24503984

  8. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    PubMed Central

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  9. Lignin degradation during plant litter photodegradation

    NASA Astrophysics Data System (ADS)

    Lin, Y.; King, J. Y.

    2014-12-01

    Lignin is the second most abundant compound, after cellulose, synthesized by plants. Numerous studies have demonstrated that initial lignin concentration is negatively correlated with litter decomposition rate under both laboratory and field conditions. Thus lignin is commonly considered to be a "recalcitrant" compound during litter decomposition. However, lignin can also serve as a radiation-absorbing compound during photodegradation, the process through which solar radiation breaks down organic matter. Here, we synthesize recent studies concerning lignin degradation during litter photodegradation and report results from our study on how photodegradation changes lignin chemistry at a molecular scale. Recent field studies have found that litter with high initial lignin concentration does not necessarily exhibit high mass loss during photodegradation. A meta-analysis (King et al. 2012) even found a weak negative correlation between initial lignin concentration and photodegradation rate. Contradicting results have been reported with regard to the change in lignin concentration during photodegradation. Some studies have found significant loss of lignin during photodegradation, while others have not. In most studies, loss of lignin only accounts for a small proportion of the overall mass loss. Using NMR spectroscopy, we found significant loss of lignin structural units containing beta-aryl ether linkages during photodegradation of a common grass litter, Bromus diandrus, even though conventional forage fiber analysis did not reveal changes in lignin concentration. Both our NMR and fiber analyses supported the idea that photodegradation induced loss of hemicellulose, which was mainly responsible for the litter mass loss during photodegradation. Our results suggest that photodegradation induces degradation, but not necessarily complete breakdown, of lignin structures and consequently exposes hemicellulose and cellulose to microbial decomposition. We conclude that lignin

  10. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia's headwaters.

    PubMed

    Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun

    2014-10-01

    A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.

  11. Role of plant growth-promoting Ochrobactrum sp. MC22 on triclocarban degradation and toxicity mitigation to legume plants.

    PubMed

    Sipahutar, Merry Krisdawati; Vangnai, Alisa S

    2017-05-05

    Triclocarban (TCC) is an emerging and persistent pollutant once released into environment. In this study, TCC-degrading Ochrobactrum sp. MC22, was isolated and characterized. This is the first report on plant-growth promoting bacterium with versatile capability of TCC degradation under aerobic and anaerobic conditions. The aerobic degradation of TCC occurred completely of which the kinetic analysis revealed a non-self-inhibitive substrate effect, and broad-concentration-range degradation efficiency (ranging from 0.16-30mgL(-1)). Anaerobic TCC degradation was feasible, but was significantly enhanced up to 40-50% when ferric, or acetate was provided as electron donor, or acceptor, respectively. TCC biodegradation under both conditions was proposed to initially occur through hydrolysis leading to transient accumulation of chloroanilines, which could be completely metabolized and detoxified. With concern on TCC adverse effect to plants, role of MC22 on toxicity mitigation was investigated using two legume plants: Vigna radiata and Glycine max (L.) Merr. Upon TCC exposure, damage of both plant structures, especially root system was observed, but was substantially mitigated by MC22 bioaugmentation. This study not only provides thorough TCC degradation characteristic and kinetics of MC22, but also suggests a potential role of this bacterial strain for a rhizoremediation in crop area with TCC contamination.

  12. Methods for degrading or converting plant cell wall polysaccharides

    DOEpatents

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  13. Land degradation analysis based on the land use changes and land degradation evaluation in the Huan Beijing area

    NASA Astrophysics Data System (ADS)

    Guo, Xudong; Wang, Jing; Xie, Junqi; He, Ting; Lian, Gang; Lv, Chunyan

    2005-10-01

    Using remote sensing data of TM and ETM+ in 1992 and 2002, land degradation based on land use changes, especially sand changes were analyzed and land degradation status in 2002 was evaluated in the Huan Beijing Area. The area of sand in 2002 is 6669.6 km2, increased 716.2 km2 compared to that in 1991, and most of the newly-produced sand came from grassland. Land degradation status in 2002 was evaluated by the combination of vegetation, soil and topography information and the region was divided by 1km ×1km cell as the evaluation unit by the application of the GIS. The indicators of land degradation evaluation included soil organic, soil depth, vegetation cover (NDVI) and slope. Land degradation index (DI) was computed, considering the contribution of different indicators to land degradation. The land degradation status was divided into four types according to DI, no-degradation (DI > = 55), slight degradation (50 = < DI < 55), moderate degradation (40 = < DI < 50) and severe degradation (DI < 40). The results showed that the area of degraded land is 132900 km2, which occupied the percent 58.2 of the whole Huan Beijing Area and the proportion of slightly-degraded land to degraded land is about 0.47. The political county taken as an evaluation unit, the partition of land degradation in this area was also analyzed based on land degradation area proportion and degree. Six types of land degradation partition were got.

  14. Defects and statistical degradation analysis of photovoltaic power plants

    NASA Astrophysics Data System (ADS)

    Sundarajan, Prasanna

    As the photovoltaic (PV) power plants age in the field, the PV modules degrade and generate visible and invisible defects. A defect and statistical degradation rate analysis of photovoltaic (PV) power plants is presented in two-part thesis. The first part of the thesis deals with the defect analysis and the second part of the thesis deals with the statistical degradation rate analysis. In the first part, a detailed analysis on the performance or financial risk related to each defect found in multiple PV power plants across various climatic regions of the USA is presented by assigning a risk priority number (RPN). The RPN for all the defects in each PV plant is determined based on two databases: degradation rate database; defect rate database. In this analysis it is determined that the RPN for each plant is dictated by the technology type (crystalline silicon or thin-film), climate and age. The PV modules aging between 3 and 19 years in four different climates of hot-dry, hot-humid, cold-dry and temperate are investigated in this study. In the second part, a statistical degradation analysis is performed to determine if the degradation rates are linear or not in the power plants exposed in a hot-dry climate for the crystalline silicon technologies. This linearity degradation analysis is performed using the data obtained through two methods: current-voltage method; metered kWh method. For the current-voltage method, the annual power degradation data of hundreds of individual modules in six crystalline silicon power plants of different ages is used. For the metered kWh method, a residual plot analysis using Winters' statistical method is performed for two crystalline silicon plants of different ages. The metered kWh data typically consists of the signal and noise components. Smoothers remove the noise component from the data by taking the average of the current and the previous observations. Once this is done, a residual plot analysis of the error component is

  15. Degradation of phenanthrene on plant leaves by phyllosphere bacteria.

    PubMed

    Waight, Karen; Pinyakong, Onruthai; Luepromchai, Ekawan

    2007-10-01

    The activity of phyllosphere bacteria in the degradation of phenanthrene was investigated as a mechanism for the removal of atmospheric phenanthrene after its deposition on plant leaves. Initially, leaf samples of six plant species were collected from two roadsides in Bangkok to determine the presence of phenanthrene-degrading bacteria. The numbers of phenanthrene-degrading phyllosphere bacteria were varied and ranged from 3.5 x 10(4) to 1.95 x 10(7) CFU/g, in which the highest number was found from Ixora sp. Further studies were carried out in the laboratory by spraying phenanthrene on Ixora sp. leaves and then monitoring the amount of deposited phenanthrene and number of phenanthrene-degrading bacteria after incubation. The results showed that the amount of phenanthrene was significantly reduced on leaves containing phenanthrene-degrading bacteria. These were detected along with a rapid increase in the number of bacteria on leaves. The results indicated that many phyllosphere bacteria could utilize phenanthrene to support their growth and thereby reduce the amount of deposited phenanthrene on leaf surfaces. Several phenanthrene-degrading bacteria were later isolated from the leaves and identified with a high 16S rDNA sequence similarity to the genera Pseudomonas, Microbacterium, Rhizobium, and Deinococcus.

  16. Role of proteolytic enzymes in degradation of plant tissues

    SciTech Connect

    Lewosz, J.; Kelman, A.; Sequeira, L.

    1991-01-01

    Strain SR 394 of Erwinia carotovora (Ecc) produced proteases constitutively in all media tested. Growth of Ecc and production of protease were enhanced significantly by the presence of poetic materials and/or plant call walls in the test media. After electrofocusing, one major and one minor protease bands, at PI 4.8 and PI 5.1, respectively, were detected. Only one band of 43 kDa was detected on SDS gels. Only one protease band was detected in SDS gels of infected plant extracts. This protease was purified to homogeneity. It in a highly thermostable metal protease; it degrades gelatin, soluble collagen and hide powderazure, shows weak activity on casein and azocasein, but does not degrade insoluble collagen or elastin.

  17. Efficient Plant Biomass Degradation by Thermophilic Fungus Myceliophthora heterothallica

    PubMed Central

    van den Brink, Joost; van Muiswinkel, Gonny C. J.; Theelen, Bart; Hinz, Sandra W. A.

    2013-01-01

    Rapid and efficient enzymatic degradation of plant biomass into fermentable sugars is a major challenge for the sustainable production of biochemicals and biofuels. Enzymes that are more thermostable (up to 70°C) use shorter reaction times for the complete saccharification of plant polysaccharides compared to hydrolytic enzymes of mesophilic fungi such as Trichoderma and Aspergillus species. The genus Myceliophthora contains four thermophilic fungi producing industrially relevant thermostable enzymes. Within this genus, isolates belonging to M. heterothallica were recently separated from the well-described species M. thermophila. We evaluate here the potential of M. heterothallica isolates to produce efficient enzyme mixtures for biomass degradation. Compared to the other thermophilic Myceliophthora species, isolates belonging to M. heterothallica and M. thermophila grew faster on pretreated spruce, wheat straw, and giant reed. According to their protein profiles and in vitro assays after growth on wheat straw, (hemi-)cellulolytic activities differed strongly between M. thermophila and M. heterothallica isolates. Compared to M. thermophila, M. heterothallica isolates were better in releasing sugars from mildly pretreated wheat straw (with 5% HCl) with a high content of xylan. The high levels of residual xylobiose revealed that enzyme mixtures of Myceliophthora species lack sufficient β-xylosidase activity. Sexual crossing of two M. heterothallica showed that progenies had a large genetic and physiological diversity. In the future, this will allow further improvement of the plant biomass-degrading enzyme mixtures of M. heterothallica. PMID:23241981

  18. Degradation of textile dyes mediated by plant peroxidases.

    PubMed

    Shaffiqu, T S; Roy, J Jegan; Nair, R Aswathi; Abraham, T Emilia

    2002-01-01

    The peroxidase enzyme from the plants Ipomea palmata (1.003 IU/g of leaf) and Saccharum spontaneum (3.6 IU/g of leaf) can be used as an alternative to the commercial source of horseradish and soybean peroxidase enzyme for the decolorization of textile dyes, mainly azo dyes. Eight textiles dyes currently used by the industry and seven other dyes were selected for decolorization studies at 25-200 mg/L levels using these plant enzymes. The enzymes were purified prior to use by ammonium sulfate precipitation, and ion exchange and gel permeation chromatographic techniques. Peroxidase of S. spontaneum leaf (specific activity of 0.23 IU/mg) could completely degrade Supranol Green and Procion Green HE-4BD (100%) dyes within 1 h, whereas Direct Blue, Procion Brilliant Blue H-7G and Chrysoidine were degraded >70% in 1 h. Peroxidase of Ipomea (I. palmata leaf; specific activity of 0.827 U/mg) degraded 50 mg/L of the dyes Methyl Orange (26%), Crystal Violet (36%), and Supranol Green (68%) in 2-4 h and Brilliant Green (54%), Direct Blue (15%), and Chrysoidine (44%) at the 25 mg/L level in 1 to 2 h of treatment. The Saccharum peroxidase was immobilized on a hydrophobic matrix. Four textile dyes, Procion Navy Blue HER, Procion Brilliant Blue H-7G, Procion Green HE-4BD, and Supranol Green, at an initial concentration of 50 mg/L were completely degraded within 8 h by the enzyme immobilized on the modified polyethylene matrix. The immobilized enzyme was used in a batch reactor for the degradation of Procion Green HE-4BD and the reusability was studied for 15 cycles, and the half-life was found to be 60 h.

  19. Physiological and molecular aspects of degradation of plant polysaccharides by fungi: what have we learned from Aspergillus?

    PubMed

    Culleton, Helena; McKie, Vincent; de Vries, Ronald P

    2013-08-01

    Plant biomass is the most abundant and usable carbon source for many fungal species. Due to its diverse and complex structure, fungi need to produce a large range of enzymes to degrade these polysaccharides into monomeric components. The fine-tuned production of such diverse enzyme sets requires control through a set of transcriptional regulators. Aspergillus has a strong potential for degrading biomass, thus this genus has become the most widely studied group of filamentous fungi in this area. This review examines Aspergillus as a successful degrader of plant polysaccharides, and reviews its potential in many industries such as biofuel and as a production host of homologous and heterologous proteins.

  20. Expanding marine protected areas to include degraded coral reefs.

    PubMed

    Abelson, A; Nelson, P A; Edgar, G J; Shashar, N; Reed, D C; Belmaker, J; Krause, G; Beck, M W; Brokovich, E; France, R; Gaines, S D

    2016-12-01

    Marine protected areas (MPAs) are a commonly applied solution to coral reef degradation, yet coral reefs continue to decline worldwide. We argue that expanding the range of MPAs to include degraded reefs (DR-MPA) could help reverse this trend. This approach requires new ecological criteria for MPA design, siting, and management. Rather than focusing solely on preserving healthy reefs, our approach focuses on the potential for biodiversity recovery and renewal of ecosystem services. The new criteria would help identify sites with the highest potential for recovery and the greatest resistance to future threats (e.g., increased temperature and acidification) and sites that contribute to MPA connectivity. The DR-MPA approach is a compliment rather than a substitute for traditional MPA design approaches. We believe that the DR-MPA approach can enhance the natural, or restoration-assisted, recovery of DRs and their ecosystem services; increase total reef area available for protection; promote more resilient and better-connected MPA networks; and improve conditions for human communities dependent on MPA ecosystem services.

  1. Absorption and degradation of metalaxyl in mustard plant (Brassica juncea).

    PubMed

    Mehta, N; Saharan, G S; Kathpal, T S

    1997-07-01

    Absorption and degradation of metalaxyl were studied in mustard (Brassica juncea) plants after application as a seed dresser, a foliar spray, and a combination of both under subtropical conditions in India. Results indicated that absorption of metalaxyl increased up to 30 days when it was applied as a seed dresser; thereafter, it started declining and was not detectable after 60 days of sowing. The maximum residues (average, 9.03 ppm) of metalaxyl were found after 1 day of spraying. The dissipation of metalaxyl after initial deposits on mustard plants was almost complete after 15 days of spraying. The safe waiting period of metalaxyl was calculated to be 62 and 8 days for seed dresser and foliar application, respectively. The seeds raised through treatments under study were completely free from any detectable amount of metalaxyl residues.

  2. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly c...

  3. Proactive Management of Materials Degradation for Nuclear Power Plant Systems

    SciTech Connect

    Bond, Leonard J.; Taylor, Theodore T.; Doctor, Steven R.; Hull, Amy; Malik, Shah

    2008-09-01

    There are approximately 440 operating reactors in the global nuclear power plant (NPP) fleet, and these have an average age greater than 20 years. These NPPs had design lives of 30 or 40 years. The United States is currently implementing license extensions of 20 years on many plants and consideration is now being given to the concept of “life-beyond-60,” a further period of license extension from 60 to 80 years, and potentially longer. In almost all countries with NPPs, authorities are looking at some form of license renewal program. There is a growing urgency as a number of plants face either approvals for license extension or shut down, which will require deployment of new power plants. In support of NPP license extension over the past decade, various national and international programs have been initiated. This paper reports part of the work performed in support of the U.S. Nuclear Regulatory Commission’s (NRC’s) Proactive Management of Materials Degradation (PMMD) program. The paper concisely explains the basic principles of PMMD, its relationship to advanced diagnostics and prognostics and provides an assessment of some the technical gaps in PMMD and prognostics that need to be addressed.

  4. Biostimulation of PCB-degrading bacteria by compounds released from plant roots

    SciTech Connect

    Fletcher, J.S.; Hegde, R.S.; Donnelly, P.K.

    1995-12-31

    Flavonoid and coumarin compounds produced by plants supported the growth of polychlorinated biphenyl (PCB)-degrading bacteria, and the bacteria retained their PCB-degrading properties. Root leachates and washings from mulberry trees also supported the growth of a PCB-degrading bacterium. These results indicate that chemicals released by some plant roots may serve as cometabolites for PCB-degrading bacteria. Identification of the right plant species and development of appropriate cultivation practices promises to lead to an ecologically sound means to achieve sustained in situ degradation of PCBs at contaminated terrestrial sites.

  5. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates

    USGS Publications Warehouse

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; `Ohukani`ohi`a Gon, Sam; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with 0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  6. Mountain pastures of Qilian Shan: plant communities, grazing impact and degradation status (Gansu province, NW China)

    NASA Astrophysics Data System (ADS)

    Baranova, Alina; Schickhoff, Udo; Shunli, Wang; Ming, Jin

    2015-04-01

    Qilian Mountains are the water source region for the low arid reaches of HeiHe river basin (Gansu province, NW China). Due to overstocking and overgrazing during the last decades adverse ecological ef¬fects, in particular on soil properties and hydrological cycle, are to be expected in growing land areas. Vegetation cover is very important to prevent erosion process and to sustain stable subsurface runoff and ground water flow. The aim of this research is to identify plant communities, detecting grazing-induced and spatially differentiated changes in vegetation patterns, and to evaluate status of pasture land degradation.The study area is located in the spring/autumn pasture area of South Qilian Mountains between 2600-3600 m a.s.l., covering five main vegetation types: spruce forest, alpine shrubland, shrubby grassland, mountain grassland, degraded mountain grassland. In order to analyze gradual changes in vegetation patterns along altitudinal and grazing gradients and to classify related plant communities, quantitative and qualitative relevé data were collected (coverage, species composition, abundance of unpalatable plants, plant functional types, etc.). Vegetation was classified using hierarchical cluster analyses. Indirect Detrended Correspondence Analysis (DCA) was used to analyze variation in relationships between vegetation, environmental factors, and grazing impact. According to DCA results, distribution of the plant communities was strongly affected by altitude and exposition. Grassland floristic gradients showed greater dependence on grazing impact, which correlated contrarily with soil organic content, soil moisture and pH. Highest numbers of species richness and alpha diversity were detected in alpine shrubland vegetation type. Comparing the monitoring data for the recent nine years, a trend of deterioration, species successions and shift in dominant species becomes obvious. Species indicating degrading site environmental conditions were identified

  7. S Plant Aggregate Area management study report

    SciTech Connect

    Not Available

    1992-11-01

    The US Department of Energy (DOE) Hanford Site in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989, included the 200 Areas of the Hanford Site on the National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act 1980. Inclusion on the NPL initiates the Remedial investigation (RI) and (FS) process for characterizing the nature and extent of condition to human health and the environment, and selection of remedial actions. This report presents the results of an aggregate area management study (AAMS) for the S plant Aggregate Area located in the 200 Areas. The study provides the basis for initiating RI/FS under CERCLA or under the Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS). This report also integrates RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past-Practice investigations.

  8. Molecular Mechanisms Associated with Xylan Degradation by Xanthomonas Plant Pathogens*

    PubMed Central

    Santos, Camila Ramos; Hoffmam, Zaira Bruna; de Matos Martins, Vanesa Peixoto; Zanphorlin, Leticia Maria; de Paula Assis, Leandro Henrique; Honorato, Rodrigo Vargas; Lopes de Oliveira, Paulo Sérgio; Ruller, Roberto; Murakami, Mario Tyago

    2014-01-01

    Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses. PMID:25266726

  9. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens.

    PubMed

    Santos, Camila Ramos; Hoffmam, Zaira Bruna; de Matos Martins, Vanesa Peixoto; Zanphorlin, Leticia Maria; de Paula Assis, Leandro Henrique; Honorato, Rodrigo Vargas; Lopes de Oliveira, Paulo Sérgio; Ruller, Roberto; Murakami, Mario Tyago

    2014-11-14

    Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses.

  10. Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates.

    PubMed

    Vorsino, Adam E; Fortini, Lucas B; Amidon, Fred A; Miller, Stephen E; Jacobi, James D; Price, Jonathan P; Gon, Sam 'ohukani'ohi'a; Koob, Gregory A

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.

  11. Modeling Hawaiian Ecosystem Degradation due to Invasive Plants under Current and Future Climates

    PubMed Central

    Vorsino, Adam E.; Fortini, Lucas B.; Amidon, Fred A.; Miller, Stephen E.; Jacobi, James D.; Price, Jonathan P.; Gon, Sam 'Ohukani'ohi'a; Koob, Gregory A.

    2014-01-01

    Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective potential distributions. The combinations of all species models using both binary and continuous habitat suitability projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility metric. The invasibility metric was defined from species distribution models with <0.7 niche overlap (Warrens I) and relatively discriminative distributions (Area Under the Curve >0.8; True Skill Statistic >0.75) as evaluated per species. Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions. PMID:24805254

  12. [Degradation process and plant diversity of alfalfa grassland in North Loess Plateau of China].

    PubMed

    Li, Yuyua; Shao, Ming'an

    2005-12-01

    Vegetation recovery and reconstruction is the key of ecosystem restoration in the North Loess Plateau. With the Liudaogou catchment of Shenmu County, Shaanxi Province as test area, this paper studied the dynamics of the plant diversity of artificial alfalfa (Medicago sativa) grassland during its degradation process. The results showed that the degradation process of the grassland could be divided into three stages, i.e., artificial alfalfa grassland stage (1-6 yrs), transitional stage from artificial to natural grassland (6-10 yrs), and secondary natural grassland stage dominated by Stipa bungeana ( >10 yrs). In the whole degradation process from 1-to 30-yrs, 32 species belonging to 13 families and 28 genera were found, of which, 90% appeared in the initial 6-yrs. The dynamics of accumulatively appeared family, genus, and species in the vegetation succession process were well described by logarithmic function. During the process of community succession, the species richness (Gleason index and Margalef index),plant diversity (Shannon-Wiener index), and Pielou evenness index were changed with a similar tendency, i.e., increased more rapidly at the first stage, and the climax phase appeared in the second stage. The plant diversity and evenness decreased slightly, and gradually became stable later. Planting alfalfa could markedly accelerate the natural vegetation succession process in the forest-steppe ecotone of Loess Plateau, mainly due to the intensive soil water consumption of artificial grassland, which accelerated the process of soil aridification. To develop artificial grasslands in the Loess Plateau is an optimal joint between accelerating natural vegetation recovery and increasing farmers' income by stockbreeding, and is also a favorable paradigm both for the ecological and for the economic benefits in the eco-environmental construction in West China.

  13. Plant cell walls: Protecting the barrier from degradation by microbial enzymes.

    PubMed

    Lagaert, Stijn; Beliën, Tim; Volckaert, Guido

    2009-12-01

    Plant cell walls are predominantly composed of polysaccharides, which are connected in a strong, yet resilient network. They determine the size and shape of plant cells and form the interface between the cell and its often hostile environment. To penetrate the cell wall and thus infect plants, most phytopathogens secrete numerous cell wall degrading enzymes. Conversely, as a first line of defense, plant cell walls contain an array of inhibitors of these enzymes. Scientific knowledge on these inhibitors significantly progressed in the past years and this review is meant to give a comprehensive overview of plant inhibitors against microbial cell wall degrading enzymes and their role in plant protection.

  14. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape.

    PubMed

    Cole, R J; Holl, K D; Zahawi, R A

    2010-07-01

    Planting native tree seedlings is the predominant restoration strategy for accelerating forest succession on degraded lands. Planting tree "islands" is less costly and labor intensive than establishing larger plantations and simulates the nucleation process of succession. Assessing the role of island size in attracting seed dispersers, the potential of islands to expand through enhanced seed deposition, and the effect of planting arrangements on seed dispersal by birds and bats informs restoration design. Determining the relative importance of local restoration approach vs. landscape-level factors (amount of surrounding forest cover) helps prioritize methods and locations for restoration. We tested how three restoration approaches affect the arrival of forest seeds at 11 experimental sites spread across a gradient of surrounding forest cover in a 100-km2 area of southern Costa Rica. Each site had three 50 x 50 m treatments: (1) control (natural regeneration), (2) island (planting tree seedlings in patches of three sizes: 16 m2, 64 m2, and 144 m2), and (3) plantation (planting entire area). Four tree species were used in planting (Terminalia amazonia, Vochysia guatemalensis, Erythrina poeppigiana, and Inga edulis). Seed rain was measured for 18 months beginning approximately 2 years after planting. Plantations received the most zoochorous tree seeds (266.1 +/- 64.5 seeds x m(-2) x yr(-1) [mean +/- SE]), islands were intermediate (210.4 +/- 52.7 seeds x m(-2) x yr(-1)), and controls were lowest (87.1 +/- 13.9 seeds x m(-2) x yr(-1)). Greater tree seed deposition in the plantations was due to birds (0.51 +/- 0.18 seeds x m(-2) x d(-1)), not bats (0.07 +/- 0.03 seeds x m(-2) x d(-1)). Seed rain was primarily small-seeded, early-successional species. Large and medium islands received twice as many zoochorous tree seeds as small islands and areas away from island edges, suggesting there is a minimum island size necessary to increase seed deposition and that seed rain

  15. Soiling degradation by atmospheric aerosols in an urban industrial area

    SciTech Connect

    Creighton, P.J. ); Lioy, P.J. ); Haynie, F.C.; Lemons, T.J; Miller, J.L; Gerhart, J. )

    1988-01-01

    The gradual and progressive soiling of structures exposed to the atmosphere is commonplace. Wooden homes required painting every few years for aesthetic purposes as well as for preservation, while public buildings, houses of worship, and statuary require occasional cleaning of their exterior because of gradual soiling. The soilant is usually a component of atmospheric aerosols. This paper presents the results of a study that attempts to identify the components of the atmospheric aerosol primarily responsible for the observed soiling of exposed materials. The site chosen for the study was in Elizabeth, N.J., an urban area with a mix of residential, commercial, and industrial facilities. the test site was close to various sources of aerosols. Since the site is close to major highways on three sides automobile and diesel truck traffic abounds, and road dust is prevalent. Oil refineries and chemical plants lie to the south and south-west, and an international airport is located about 3 1/2 miles away.

  16. Remediation of blowouts by clonal plants in Maqu degraded alpine grasslands of northwest China.

    PubMed

    Kang, JianJun; Zhao, WenZhi; Zhao, Ming

    2017-03-01

    The sand-fixation of plants is considered to be the most effective and fundamental measure in desertification control in many arid and semi-arid regions. Carex brunnescens (Carex spp) and Leymus secalinus (Leymus), two perennial clonal herbs native to the Maqu degraded alpine areas of northwest China, are dominant and constructive species in active sand dunes that have excellent adaptability to fix sand dunes found to date. In order to study the ability and mechanism of sandland blowout remediation by two clone plants C. brunnescens and L. secalinus, the artificially emulated blowouts were set up in the populations of two clonal plants in the field. The results showed that both C. brunnescens and L. secalinus produced more new ramets in the artificially emulated blowouts than in the natural conditions, suggesting that the two clonal plants had strong ability in blowouts remediation; while the biomass, number of leaves and height of new ramets in the artificially emulated blowouts were less than in the natural conditions due to the restriction of poor nutrients in the artificially emulated blowouts. The ability of blowouts remediation by C. brunnescens was stronger than L. secalinus, as it generated more new ramets than L. secalinus in the process of blowouts remediation. The new ramets of L. secalinus in the blowouts remediation were mainly generated by the buds in the rhizomes which spread from outside of the blowouts; while those of C. brunnescens were generated both by the buds in the rhizomes which spread from outside, and by the buds in the rhizomes inside which were freed from dormancy in the deeper soil under wind erosion conditions. These findings suggest that through rapid clonal expansion capability, C. brunnescens and L. secalinus exhibited strong ability in blowouts remediation which can be one of the most effective strategies to restore and reconstruct degraded vegetations in Maqu alpine areas of northwest China.

  17. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria.

    PubMed

    Oliveira, Vanessa; Gomes, Newton C M; Almeida, Adelaide; Silva, Artur M S; Simões, Mário M Q; Smalla, Kornelia; Cunha, Ângela

    2014-03-01

    Salt marsh sediments are sinks for various anthropogenic contaminants, giving rise to significant environmental concern. The process of salt marsh plant survival in such environment is very intriguing and at the same time poorly understood. The plant–microbe interactions may play a key role in the process of environment and in planta detoxification.In this study, a combination of culture-dependent and culture-independent molecular approaches [enrichment cultures, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), DNA sequencing] were used to investigate the effect of petroleum hydrocarbons (PH) contamination on the structure and function[polycyclic aromatic hydrocarbon (PAH) dioxygenase genes] of endophytic bacterial communities of salt marsh plant species (Halimione portulacoides and Sarcocornia perennis)in the estuarine system Ria de Aveiro (Portugal). Pseudomonads dominated the cultivable fraction of the endophytic communities in the enrichment cultures. In a set of fifty isolates tested, nine were positive for genes encoding for PAH dioxygenases (nahAc)and four were positive for plasmid carrying genes encoding PAH degradation enzymes(nahAc). Interestingly, these plasmids were only detected in isolates from most severely PH-polluted sites. The results revealed site-specific effects on endophytic communities,related to the level of PH contamination in the sediment, and plant-species-specific ‘imprints’ in community structure and in genes encoding for PAH dioxygenases. These results suggest a potential ecological role of bacterial plant symbiosis in the process of plant colonization in urban estuarine areas exposed to PH contamination.

  18. Can post-wildfire Burned Area Emergency Response treatments mitigate watershed degradation?

    NASA Astrophysics Data System (ADS)

    Neary, D.; Ffolliott, P.; Bautista, S.; Wittenberg, L.

    2009-04-01

    Wildfire is a natural phenomenon that began with the development of terrestrial vegetation in a lightning-filled atmosphere 350 million years ago. As human populations developed in the Pleistocene and Holocene epochs, mankind transformed fire into one of its oldest tools. A negative impact of prime concern in the 21st Century is desertification. This term refers to land degradation, not the immediate creation of classical deserts. It is about the loss of the land's proper hydrologic function and biological productivity as a result of human activities and climate change. It affects 33% of the earth's surface and over a billion people. Fire-related desertification has a number of environmental, social, and economic consequences. The two key environmental consequences are soil erosion and exotic plant invasions. Wildfires typically have exotic plant species abundances ten times that of undisturbed forests (Neary et al. 2003). Seeding has been used for many years in the USA as a prime Burned Area Emergency Response (BAER) treatment. Until recently, this seeding contributed to exotic plant invasions since fast-growing, but non native plants seeds were used. The use of native plant seeds and sterile hybrids has reduced this problem somewhat. Erosion after wildfires documented in the USA can be in the range of <1 to 370 Mg/ha, depending on fire severity, degree of water repellency, slope, and post-fire rainfall events. Soil losses in the high end of that range definitely exceed soil loss tolerances and contribute to desertification. Soil disturbance and degradation after wildfires is a function of fire severity, and the impacts can range from the minimal to catastrophic and long-lasting. The most obvious impact is the loss of organic matter from combustion of the forest floor. Changes in soil physical and chemical properties with high-severity wildfire can produce water repellency, aggravating rainfall runoff and erosion. Since soils take long times to form (50 to 75

  19. Results of a screening programme to identify plants or plant extracts that inhibit ruminal protein degradation.

    PubMed

    Selje, N; Hoffmann, E M; Muetzel, S; Ningrat, R; Wallace, R J; Becker, K

    2007-07-01

    One aim of the EC Framework V project, 'Rumen-up' (QLK5-CT-2001-00 992), was to find plants or plant extracts that would inhibit the nutritionally wasteful degradation of protein in the rumen. A total of 500 samples were screened in vitro using 14C-labelled casein in a 30-min incubation with ruminal digesta. Eight were selected for further investigation using a batch fermentation system and soya protein and bovine serum albumin as proteolysis substrates; proteolysis was monitored over 12 h by the disappearance of soluble protein and the production of branched SCFA and NH3. Freeze-dried, ground foliage of Peltiphyllum peltatum, Helianthemum canum, Arbutus unedo, Arctostaphylos uva-ursi and Knautia arvensis inhibited proteolysis (P < 0.05), while Daucus carota, Clematis vitalba and Erica arborea had little effect. Inhibition by the first four samples appeared to be caused by the formation of insoluble tannin-protein complexes. The samples were rich in phenolics and inhibition was reversed by polyethyleneglycol. In contrast, K. arvensis contained low concentrations of phenolics and no tannins, had no effect in the 30-min assay, yet inhibited the degradation rate of soluble protein (by 14 %, P < 0.0001) and the production of branched SCFA (by 17 %, P < 0.05) without precipitating protein in the 12-h batch fermentation. The effects showed some resemblance to those obtained in parallel incubations containing 3 mum-monensin, suggesting that K. arvensis may be a plant-derived feed additive that can suppress growth and activity of key proteolytic ruminal micro-organisms in a manner similar to that already well known for monensin.

  20. ENZYMATIC PROCESSES USED BY PLANTS TO DEGRADE ORGANIC COMPOUNDS

    EPA Science Inventory

    This is a review of recent plant enzyme systems that have been studied in uptake and transformation of organic contaminants. General procedures of plant preparation and enzyme isolation are covered. Six plant enzyme systems have been investigated for activity with selected pollut...

  1. Soil degradation and amendment effects on soil properties, microbial communities, and plant growth

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2015-12-01

    Human activities that disrupt soil properties are fundamentally changing ecosystems. Soil degradation, caused by anthropogenic disturbance can decrease microbial abundance and activity, leading to changes in nutrient availability, soil organic matter, and plant establishment. The addition of amendments to disturbed soils have the potential ameliorate these negative consequences. We studied the effects of soil degradation, via an autoclave heat shock method, and the addition of amendments (biochar and woodchips) on microbial activity, soil carbon and nitrogen availability, microbial biomass carbon and nitrogen content, and plant growth of ten plant species native to the semi-arid southwestern US. Relative to non-degraded soils, microbial activity, measured via extracellular enzyme assays, was significantly lower for all seven substrates assayed. These soils also had significantly lower amounts of carbon assimilated into microbial biomass but no change in microbial biomass nitrogen. Soil degradation had no effect on plant biomass. Amendments caused changes in microbial activity: biochar-amended soils had significant increases in potential activity with five of the seven substrates measured; woodchip amended soils had significant increases with two. Soil carbon increased with both amendments but this was not reflected in a significant change in microbial biomass carbon. Biochar-amended soils had increases in soil nitrogen availability but neither amendment caused changes in microbial biomass nitrogen. Biochar amendments had no significant effect on above- or belowground plant biomass while woodchips significantly decreased aboveground plant biomass. Results show that soil degradation decreases microbial activity and changes nutrient dynamics, but these are not reflected in changes in plant growth. Amendments provide nutrient sources and change soil pore space, which cause microbial activities to fluctuate and may, in the case of woodchips, increase plant drought

  2. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation.

    PubMed

    Zhang, Xiaoyang; Rogowski, Artur; Zhao, Lei; Hahn, Michael G; Avci, Utku; Knox, J Paul; Gilbert, Harry J

    2014-01-24

    Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.

  3. Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid.

    PubMed

    Yi, Haakrho; Crowley, David E

    2007-06-15

    Many plant species enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs), but there is little understanding of the mechanisms by which this occurs. This research identified phytochemicals that stimulate pyrene degradation using crushed roottissues from 43 plants that were screened in soil spiked with 100 ppm pyrene. Among the plants tested, root tissues from Apium graveolens (celery), Raphanus sativus (radish), Solanum tuberosum (potato), and Daucus carota (carrot) were most effective for promoting disappearance of pyrene within 40 days. Experiments with A. graveolens showed that plant culture in soil contaminated with pyrene or benzo[a]pyrene was as effective as addition of crushed root tissues. Comparison of the chemical compositions of the effective plants suggested that linoleic acid was the major substance that stimulated PAH degradation. This hypothesis was supported in experiments examining degradation of pyrene and benzo[a]pyrene in soil amended with linoleate, whereas linolenic and palmitic acids did not stimulate degradation within a 20 day period. Antibiotic inhibitor studies implicated gram positive bacteria as a predominant group responding to linoleic acid. These findings provide insight into the mechanisms by which plants enhance degradation of PAHs, and have practical application for remediation of PAH contaminated soils.

  4. Naturally occurring phenanthrene degrading bacteria associated with seeds of various plant species.

    PubMed

    Fernet, Jennifer L; Lawrence, John R; Germida, James J

    2016-01-01

    Seeds of 11 of 19 plant species tested yielded naturally occurring phenanthrene degrading bacteria when placed on phenanthrene impression plates. Seed associated phenanthrene degrading bacteria were mostly detected on caragana, Canada thistle, creeping red fescue, western wheatgrass, and tall wheat grass. Based on 16S rRNA analysis the most common bacteria isolated from these seeds were strains belonging to the genera Enterobacteria, Erwinia, Burkholderia, Pantoea, Pseudomonas, and Sphingomonas. These plants may provide an excellent source of pre-adapted bacterial-plant associations highly suitable for use in remediation of contaminated soil environments.

  5. [Research progress on plant diversity conservation in sand dune areas].

    PubMed

    Liu, Zhi-min; Ma, Jun-ling

    2008-01-01

    The landscape in sand dune areas is characterized by the alternate distribution of sand dune and interdune lowland, and the unique floras in these areas are some endemic or rare plant species. In recent years, the decrease in plant species richness and the disappearance of some endemic or rare plant species in these areas have been received special attention, which were listed in the Program of International Biodiversity Conservation, and studied in many countries and districts. In this paper, the research progress in these fields was summarized from the aspects of significance of plant diversity conservation, formation mechanisms of plant diversity, ways of plant diversity conservation, roles of plant diversity research in the development of ecological theories, and important issues in operating plant diversity conservation project. To conserve plant diversity in sand dune areas, attentions should be paid to the differences in conservation goals (to maintain high species richness or to conserve endemic or rare species) among different regions, and the balances between the stabilization of active sand and the conservation of endemic or rare species, and the maintenance of high species richness and the conservation of endemic or rare species. It needed also to consider the sand dune and the interdune lowland as a unified landscape unit to explore the impacts of disturbances and habitat fragment on plant diversity.

  6. Degradation of a peptide in pitcher fluid of the carnivorous plant Nepenthes alata Blanco.

    PubMed

    An, Chung-Il; Takekawa, Shoji; Okazawa, Atsushi; Fukusaki, Ei-Ichiro; Kobayashi, Akio

    2002-07-01

    Carnivorous plants acquire substantial amounts of nitrogen from insects. The tropical carnivorous plant Nepenthes produces trapping organs called pitchers at the tips of tendrils elongated from leaf ends. Acidic fluid is secreted at the bottoms of the pitchers. The pitcher fluid includes several hydrolytic enzymes, and some, such as aspartic proteinase, are thought to be involved in nitrogen acquisition from insect proteins. To understand the nitrogen-acquisition process, it is essential to identify the protein-degradation products in the pitcher fluid. To gain insight into protein degradation in pitcher fluid, we used the oxidized B-chain of bovine insulin as a model substrate, and its degradation by the pitcher fluid of N. alata was investigated using liquid chromatography-mass spectrometry (LC-MS). LC-MS analysis of the degradation products revealed that the oxidized B-chain of bovine insulin was initially cleaved at aromatic amino acids such as phenylalanine and tyrosine. These cleavage sites are similar to those of aspartic proteinases from other plants and animals. The presence of a series of peptide fragments as degradation products suggests that exopeptidase(s) is also present in the pitcher fluid. Amino acid analysis and peptide fragment analysis of the degradation products demonstrated that three amino acids plus small peptides were released from the oxidized B-chain of bovine insulin, suggesting that insect proteins are readily degraded to small peptides and amino acids in the pitcher fluid of N. alata.

  7. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle.

    PubMed

    Patyshakuliyeva, Aleksandrina; Post, Harm; Zhou, Miaomiao; Jurak, Edita; Heck, Albert J R; Hildén, Kristiina S; Kabel, Mirjam A; Mäkelä, Miia R; Altelaar, Maarten A F; de Vries, Ronald P

    2015-08-01

    The economically important edible basidiomycete mushroom Agaricus bisporus thrives on decaying plant material in forests and grasslands of North America and Europe. It degrades forest litter and contributes to global carbon recycling, depolymerizing (hemi-)cellulose and lignin in plant biomass. Relatively little is known about how A. bisporus grows in the controlled environment in commercial production facilities and utilizes its substrate. Using transcriptomics and proteomics, we showed that changes in plant biomass degradation by A. bisporus occur throughout its life cycle. Ligninolytic genes were only highly expressed during the spawning stage day 16. In contrast, (hemi-)cellulolytic genes were highly expressed at the first flush, whereas low expression was observed at the second flush. The essential role for many highly expressed plant biomass degrading genes was supported by exo-proteome analysis. Our data also support a model of sequential lignocellulose degradation by wood-decaying fungi proposed in previous studies, concluding that lignin is degraded at the initial stage of growth in compost and is not modified after the spawning stage. The observed differences in gene expression involved in (hemi-)cellulose degradation between the first and second flushes could partially explain the reduction in the number of mushrooms during the second flush.

  8. Degradation kinetics and pathways of spirotetramat in different parts of spinach plant and in the soil.

    PubMed

    Chen, Xiaojun; Meng, Zhiyuan; Zhang, Yanyan; Gu, Haotian; Ren, Yajun; Lu, Chunliang

    2016-08-01

    Spirotetramat is a new pesticide against a broad spectrum of sucking insects and exhibits a unique property with a two-way systemicity. In order to formulate a scientific rationale for a reasonable spray dose and the safe interval period of 22.4 % spirotetramat suspension concentrate on controlling vegetable pests, we analyzed degradation dynamics and pathways of spirotetramat in different parts of spinach plant (leaf, stalk, and root) and in the soil. We conducted experimental trials under field conditions and adopted a simple and reliable method (dispersive solid phase extraction) combined with liquid chromatography-triple quadrupole tandem mass spectrometry to evaluate the dissipation rates of spirotetramat residue and its metabolites. The results showed that the spirotetramat was degraded into different metabolite residues in different parts of spinach plant (leaf, stalk, and root) and in the soil. Specifically, spirotetramat was degraded into B-keto, B-glu, and B-enol in the leaf; B-glu and B-enol in the stalk; and only B-enol in the root. In the soil where the plants grew, spirotetramat followed a completely different pathway compared to the plant and degraded into B-keto and B-mono. Regardless of different degradation pathways, the dissipation dynamic equations of spirotetramat in different parts of spinach plant and in the soil were all based on the first-order reaction dynamic equations. This work provides guidelines for the safe use of spirotetramat in spinach fields, which would help prevent potential health threats to consumers.

  9. Site-specific proteolytic degradation of IgG monoclonal antibodies expressed in tobacco plants.

    PubMed

    Hehle, Verena K; Lombardi, Raffaele; van Dolleweerd, Craig J; Paul, Mathew J; Di Micco, Patrizio; Morea, Veronica; Benvenuto, Eugenio; Donini, Marcello; Ma, Julian K-C

    2015-02-01

    Plants are promising hosts for the production of monoclonal antibodies (mAbs). However, proteolytic degradation of antibodies produced both in stable transgenic plants and using transient expression systems is still a major issue for efficient high-yield recombinant protein accumulation. In this work, we have performed a detailed study of the degradation profiles of two human IgG1 mAbs produced in plants: an anti-HIV mAb 2G12 and a tumour-targeting mAb H10. Even though they use different light chains (κ and λ, respectively), the fragmentation pattern of both antibodies was similar. The majority of Ig fragments result from proteolytic degradation, but there are only a limited number of plant proteolytic cleavage events in the immunoglobulin light and heavy chains. All of the cleavage sites identified were in the proximity of interdomain regions and occurred at each interdomain site, with the exception of the VL /CL interface in mAb H10 λ light chain. Cleavage site sequences were analysed, and residue patterns characteristic of proteolytic enzymes substrates were identified. The results of this work help to define common degradation events in plant-produced mAbs and raise the possibility of predicting antibody degradation patterns 'a priori' and designing novel stabilization strategies by site-specific mutagenesis.

  10. De novo prediction of the genomic components and capabilities for microbial plant biomass degradation from (meta-)genomes

    PubMed Central

    2013-01-01

    Background Understanding the biological mechanisms used by microorganisms for plant biomass degradation is of considerable biotechnological interest. Despite of the growing number of sequenced (meta)genomes of plant biomass-degrading microbes, there is currently no technique for the systematic determination of the genomic components of this process from these data. Results We describe a computational method for the discovery of the protein domains and CAZy families involved in microbial plant biomass degradation. Our method furthermore accurately predicts the capability to degrade plant biomass for microbial species from their genome sequences. Application to a large, manually curated data set of microbial degraders and non-degraders identified gene families of enzymes known by physiological and biochemical tests to be implicated in cellulose degradation, such as GH5 and GH6. Additionally, genes of enzymes that degrade other plant polysaccharides, such as hemicellulose, pectins and oligosaccharides, were found, as well as gene families which have not previously been related to the process. For draft genomes reconstructed from a cow rumen metagenome our method predicted Bacteroidetes-affiliated species and a relative to a known plant biomass degrader to be plant biomass degraders. This was supported by the presence of genes encoding enzymatically active glycoside hydrolases in these genomes. Conclusions Our results show the potential of the method for generating novel insights into microbial plant biomass degradation from (meta-)genome data, where there is an increasing production of genome assemblages for uncultured microbes. PMID:23414703

  11. Protected-Area Boundaries as Filters of Plant Invasions

    PubMed Central

    Foxcroft, Llewellyn C; JaroŠÍK, Vojtěch; Pyšek, Petr; Richardson, David M; Rouget, Mathieu

    2011-01-01

    Abstract Human land uses surrounding protected areas provide propagules for colonization of these areas by non-native species, and corridors between protected-area networks and drainage systems of rivers provide pathways for long-distance dispersal of non-native species. Nevertheless, the influence of protected-area boundaries on colonization of protected areas by invasive non-native species is unknown. We drew on a spatially explicit data set of more than 27,000 non-native plant presence records for South Africa's Kruger National Park to examine the role of boundaries in preventing colonization of protected areas by non-native species. The number of records of non-native invasive plants declined rapidly beyond 1500 m inside the park; thus, we believe that the park boundary limited the spread of non-native plants. The number of non-native invasive plants inside the park was a function of the amount of water runoff, density of major roads, and the presence of natural vegetation outside the park. Of the types of human-induced disturbance, only the density of major roads outside the protected area significantly increased the number of non-native plant records. Our findings suggest that the probability of incursion of invasive plants into protected areas can be quantified reliably. PMID:21166715

  12. Red List of vascular plants of the Wadden Sea Area

    NASA Astrophysics Data System (ADS)

    Wind, P.; van der Ende, M.; Garve, E.; Schacherer, A.; Thissen, J. B. M.

    1996-10-01

    In the Wadden Sea area, a total of 248 (sub)species of vascular plants are threatened in at least one subregion. Of these, 216 (sub)species are threatened in the entire area and are therefore placed on the trialteral Red List. 17 (sub)species of the listed vascular plants are (probably) extinct in the entire Wadden Sea area. The status of 47 (sub)species of vascular plants is (probably) critical; 61 (sub)species are (probably) endangered; the status of 65 (sub)species is (probably) vulnerable and that of 26 (sub)species susceptible.

  13. Shifts in Microbial Community and Its Correlation with Degradative Efficiency in a Wastewater Treatment Plant.

    PubMed

    Kapley, Atya; Liu, Ruyin; Jadeja, Niti B; Zhang, Yu; Yang, Min; Purohit, Hemant J

    2015-08-01

    A wastewater treatment plant controls the level of pollution reaching the environment. Yet, despite being the most common aerobic route for treatment of wastewater, the activated sludge process is not utilized to its full potential. This is mainly due to the lack of knowledge base correlating the microbial community in the activated sludge to its degradative performance. In this study, the activated biomass at the treatment site was monitored for five consecutive months. Even though operational parameters were kept constant, the microbial community was observed to change after 3 months. This shift was seen to correlate with 25 % loss of degradative efficiency. Target oxygenases were monitored at two time points, and results indicated that the dominating pathway operating in the common effluent treatment plant (CETP) is the degradation of chlorinated aromatics. This study demonstrates the change in degradative efficiency in a CETP with the change in microbial community and analyzes the parameters influencing the microbial community of activated sludge.

  14. The History and Future of NDE in the Management of Nuclear Power Plant Materials Degradation

    SciTech Connect

    Doctor, Steven R.

    2009-04-01

    The author has spent more than 25 years conducting engineering and research studies to quantify the performance of nondestructive evaluation (NDE) in nuclear power plant (NPP) applications and identifying improvements to codes and standards for NDE to manage materials degradation. This paper will review this fundamental NDE engineering/research work and then look to the future on how NDE can be optimized for proactively managing materials degradation in NPP components.

  15. Safety analysis, 200 Area, Savannah River Plant: Separations area operations

    SciTech Connect

    Perkins, W.C.; Lee, R.; Allen, P.M.; Gouge, A.P.

    1991-07-01

    The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of {sup 238}Pu to plutonium oxide (PuO{sub 2}) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance.

  16. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production.

    PubMed

    de Vries, R P

    2003-03-01

    The genus Aspergillus is widely used for the production of plant cell wall polysaccharide-degrading enzymes. The range of enzymes purified from these fungi covers nearly every function required for the complete degradation of cellulose, xyloglucan, xylan, galacto(gluco)mannan and pectin. This paper describes the Aspergillus enzymes involved in the degradation of these polysaccharides and discusses the regulatory systems involved in the expression of the genes encoding these proteins. The latter is of major importance in the large-scale production of these enzymes for industrial applications.

  17. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    SciTech Connect

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  18. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    PubMed Central

    Suen, Garret; Scott, Jarrod J.; Aylward, Frank O.; Adams, Sandra M.; Tringe, Susannah G.; Pinto-Tomás, Adrián A.; Foster, Clifton E.; Pauly, Markus; Weimer, Paul J.; Barry, Kerrie W.; Goodwin, Lynne A.; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T.; Slater, Steven C.; Donohue, Timothy J.; Currie, Cameron R.

    2010-01-01

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy. PMID:20885794

  19. An insect herbivore microbiome with high plant biomass-degrading capacity.

    PubMed

    Suen, Garret; Scott, Jarrod J; Aylward, Frank O; Adams, Sandra M; Tringe, Susannah G; Pinto-Tomás, Adrián A; Foster, Clifton E; Pauly, Markus; Weimer, Paul J; Barry, Kerrie W; Goodwin, Lynne A; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy T; Slater, Steven C; Donohue, Timothy J; Currie, Cameron R

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  20. Traits of Heracleum sosnowskyi Plants in Monostand on Invaded Area

    PubMed Central

    2015-01-01

    The ability of giant hogweeds to form monodominant communities and even pure monostands in invaded areas has been well documented. Understanding of the mechanisms leading to monostand formation can aid in determining the limitations of existing community ecology models and establishing an effective management plan for invasive species elimination. The aim of this observational study was to investigate traits of Heracleum sosnowskyi plants (demography, canopy structure, morphology and physiology) of the plants in a pure stand in an invaded area useful for understanding potential monostand formation mechanisms. All measurements were performed in one typical Heracleum sosnowskyi monostand located in an abandoned agriculture field located in Syktyvkar city suburb (North-east Russia). This monostand consisted of five main plant growth stages: seed, seedling, juvenile, vegetative adult, and generative adult. Plants of all stages began to grow simultaneously shortly after the snowmelt, at the same time as spring ephemeral plant species grew. The density of generative plants did not change during the vegetation period, but the density of the other plant stages rapidly decreased after the formation of a tall (up to 2–2.5 m) and dense (Leaf area index up to 6.5) canopy. The canopy captured approximately 97% of the light. H. sosnowskyi showed high (several orders of magnitude higher than average taiga zone grasses) photosynthetic water use efficiency (6–7 μM CO2/μM H2O). Formation of H. sosnowskyi monostands occurs primarily in disturbed areas with relatively rich and well-moistened soils. Early commencement of growth, rapid formation of a dense canopy, high efficiency of light and water use during photosynthesis, ability of young plants to survive in low light conditions, rapid recovery of above-ground plant parts after damage, and the high density of the soil seed bank are the most important traits of H. sosnowskyi plants for monostand formation in invaded areas. PMID

  1. Traits of Heracleum sosnowskyi Plants in Monostand on Invaded Area.

    PubMed

    Dalke, Igor V; Chadin, Ivan F; Zakhozhiy, Ilya G; Malyshev, Ruslan V; Maslova, Svetlana P; Tabalenkova, Galina N; Golovko, Tamara K

    2015-01-01

    The ability of giant hogweeds to form monodominant communities and even pure monostands in invaded areas has been well documented. Understanding of the mechanisms leading to monostand formation can aid in determining the limitations of existing community ecology models and establishing an effective management plan for invasive species elimination. The aim of this observational study was to investigate traits of Heracleum sosnowskyi plants (demography, canopy structure, morphology and physiology) of the plants in a pure stand in an invaded area useful for understanding potential monostand formation mechanisms. All measurements were performed in one typical Heracleum sosnowskyi monostand located in an abandoned agriculture field located in Syktyvkar city suburb (North-east Russia). This monostand consisted of five main plant growth stages: seed, seedling, juvenile, vegetative adult, and generative adult. Plants of all stages began to grow simultaneously shortly after the snowmelt, at the same time as spring ephemeral plant species grew. The density of generative plants did not change during the vegetation period, but the density of the other plant stages rapidly decreased after the formation of a tall (up to 2-2.5 m) and dense (Leaf area index up to 6.5) canopy. The canopy captured approximately 97% of the light. H. sosnowskyi showed high (several orders of magnitude higher than average taiga zone grasses) photosynthetic water use efficiency (6-7 μM CO2/μM H2O). Formation of H. sosnowskyi monostands occurs primarily in disturbed areas with relatively rich and well-moistened soils. Early commencement of growth, rapid formation of a dense canopy, high efficiency of light and water use during photosynthesis, ability of young plants to survive in low light conditions, rapid recovery of above-ground plant parts after damage, and the high density of the soil seed bank are the most important traits of H. sosnowskyi plants for monostand formation in invaded areas.

  2. A Procedure for Determination of Degradation Acceptance Criteria for Structures and Passive Components in Nuclear Power Plants

    SciTech Connect

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Hahm, D.; Choi, I-K.

    2012-01-30

    The Korea Atomic Energy Research Institute (KAERI) has been collaborating with Brookhaven National Laboratory since 2007 to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). This collaboration program aims at providing technical support to a five-year KAERI research project, which includes three specific areas that are essential to seismic probabilistic risk assessment: (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. The understanding and assessment of age-related degradations of structures, systems, and components and their impact on plant safety is the major goal of this KAERI-BNL collaboration. Four annual reports have been published before this report as a result of the collaboration research.

  3. A global synthesis of plant extinction rates in urban areas.

    PubMed

    Hahs, Amy K; McDonnell, Mark J; McCarthy, Michael A; Vesk, Peter A; Corlett, Richard T; Norton, Briony A; Clemants, Steven E; Duncan, Richard P; Thompson, Ken; Schwartz, Mark W; Williams, Nicholas S G

    2009-11-01

    Plant extinctions from urban areas are a growing threat to biodiversity worldwide. To minimize this threat, it is critical to understand what factors are influencing plant extinction rates. We compiled plant extinction rate data for 22 cities around the world. Two-thirds of the variation in plant extinction rates was explained by a combination of the city's historical development and the current proportion of native vegetation, with the former explaining the greatest variability. As a single variable, the amount of native vegetation remaining also influenced extinction rates, particularly in cities > 200 years old. Our study demonstrates that the legacies of landscape transformations by agrarian and urban development last for hundreds of years, and modern cities potentially carry a large extinction debt. This finding highlights the importance of preserving native vegetation in urban areas and the need for mitigation to minimize potential plant extinctions in the future.

  4. Model of succession in degraded areas based on carabid beetles (Coleoptera, Carabidae)

    PubMed Central

    Schwerk, Axel; Szyszko, Jan

    2011-01-01

    Abstract Degraded areas constitute challenging tasks with respect to sustainable management of natural resources. Maintaining or even establishing certain successional stages seems to be particularly important. This paper presents a model of the succession in five different types of degraded areas in Poland based on changes in the carabid fauna. Mean Individual Biomass of Carabidae (MIB) was used as a numerical measure for the stage of succession. The run of succession differed clearly among the different types of degraded areas. Initial conditions (origin of soil and origin of vegetation) and landscape related aspects seem to be important with respect to these differences. As characteristic phases, a ‘delay phase’, an ‘increase phase’ and a ‘stagnation phase’ were identified. In general, the runs of succession could be described by four different parameters: (1) ‘Initial degradation level’, (2) ‘delay’, (3) ‘increase rate’ and (4) ‘recovery level’. Applying the analytic solution of the logistic equation, characteristic values for the parameters were identified for each of the five area types. The model is of practical use, because it provides a possibility to compare the values of the parameters elaborated in different areas, to give hints for intervention and to provide prognoses about future succession in the areas. Furthermore, it is possible to transfer the model to other indicators of succession. PMID:21738419

  5. Model of succession in degraded areas based on carabid beetles (Coleoptera, Carabidae).

    PubMed

    Schwerk, Axel; Szyszko, Jan

    2011-01-01

    Degraded areas constitute challenging tasks with respect to sustainable management of natural resources. Maintaining or even establishing certain successional stages seems to be particularly important. This paper presents a model of the succession in five different types of degraded areas in Poland based on changes in the carabid fauna. Mean Individual Biomass of Carabidae (MIB) was used as a numerical measure for the stage of succession. The run of succession differed clearly among the different types of degraded areas. Initial conditions (origin of soil and origin of vegetation) and landscape related aspects seem to be important with respect to these differences. As characteristic phases, a 'delay phase', an 'increase phase' and a 'stagnation phase' were identified. In general, the runs of succession could be described by four different parameters: (1) 'Initial degradation level', (2) 'delay', (3) 'increase rate' and (4) 'recovery level'. Applying the analytic solution of the logistic equation, characteristic values for the parameters were identified for each of the five area types. The model is of practical use, because it provides a possibility to compare the values of the parameters elaborated in different areas, to give hints for intervention and to provide prognoses about future succession in the areas. Furthermore, it is possible to transfer the model to other indicators of succession.

  6. Areas of increasing agricultural abandonment overlap the distribution of previously common, currently threatened plant species.

    PubMed

    Osawa, Takeshi; Kohyama, Kazunori; Mitsuhashi, Hiromune

    2013-01-01

    Human-driven land-use changes increasingly threaten biodiversity. In agricultural ecosystems, abandonment of former farmlands constitutes a major land-use shift. We examined the relationships between areas in which agriculture has been abandoned and the distribution records of threatened plant species across Japan. We selected 23 plant species that are currently identified as threatened but were previously common in the country as indicators of threatened plant species. The areas of abandoned farmlands within the distribution ranges of the indicator species were significantly larger than the proportion of abandoned farmland area across the whole country. Also, abandoned farmland areas were positively correlated with the occurrence of indicator species. Therefore, sections of agricultural landscape that are increasingly becoming abandoned and the distribution ranges of indicator species overlapped. These results suggest that abandoned farmland areas contain degraded or preferred habitats of threatened plant species. We propose that areas experiencing increased abandonment of farmland can be divided into at least two categories: those that threaten the existence of threatened species and those that provide habitats for these threatened species.

  7. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  8. Argan woodlands in South Morocco as an area of conflict between degradation and sustainable land use

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Mario; Kagermeier, Andreas; Ries, Johannes B.

    2016-04-01

    The Argan woodlands are endemic for South Morocco and prone to degradation through expanding and intensifying agriculture and overgrazing. Unvegetated areas extend further due to degradation of soil and vegetation. Here infiltration is less than on vegetated areas, while runoff and soil erosion increase. The sale of the highly valuable oil, gained from the seeds of the argan tree, can be seen as an economic alternative for the region and a chance of survival for the argan woodlands. With the introduction of women's cooperatives for the production and sale of the oil, the Gesellschaft für Technische Zusammenarbeit (GTZ, Association for Technical Cooperation) hoped to halt argan degradation from 1995 to 2002. The effects of this approach shall be studied in a proposed DFG-project. The erosion gradient between soils under canopy cover and intertree areas in varying stages of degradation will be at the center of the analysis. Insight into onsite and offsite degradation shall be gained through the measurement of runoff and erosion rates, which lead to rill and gully erosion downslope. Measurements of soil chemical and physical properties might also help indicate when an argan woodland can be classified as natural. Furthermore to be studied are the effects of the new found value of the Argan woodlands among the local population with focus on regional tourism and a possible reduction of grazing pressure. Sustainable soil management in combination with the needs of the local population is essential for a sustainable land use in the region.

  9. Failure Prevention For Nuclear Power Plants Through Proactive Management of Materials Degradation (PMMD)

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Bruemmer, Stephen M.; Cumblidge, Stephen E.; Hull, Amy; Malik, Shah

    2009-05-01

    Failure prevention is central to the operation of nuclear power plants. To meet this goal there is growing interest in new and improved philosophies and methodologies for plant life management (PLiM), which include the migration from reliance on periodic inservice inspection to include condition-based maintenance. A further step in the development of plant management is the move from reactive responses based on ISI to become proactive, through the investigation of the potential for implementation of a proactive management of materials degradation (PMMD) program and its potential impact on the management of LWRs.

  10. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    SciTech Connect

    Nie,J.; Braverman, J.; Hofmayer, C.; Kim, M. K.; Choi, I-K.

    2009-04-27

    When performing seismic safety assessments of nuclear power plants (NPPs), the potential effects of age-related degradation on structures, systems, and components (SSCs) should be considered. To address the issue of aging degradation, the Korea Atomic Energy Research Institute (KAERI) has embarked on a five-year research project to develop a realistic seismic risk evaluation system which will include the consideration of aging of structures and components in NPPs. Three specific areas that are included in the KAERI research project, related to seismic probabilistic risk assessment (PRA), are probabilistic seismic hazard analysis, seismic fragility analysis including the effects of aging, and a plant seismic risk analysis. To support the development of seismic capability evaluation technology for degraded structures and components, KAERI entered into a collaboration agreement with Brookhaven National Laboratory (BNL) in 2007. The collaborative research effort is intended to continue over a five year period with the goal of developing seismic fragility analysis methods that consider the potential effects of age-related degradation of SSCs, and using these results as input to seismic PRAs. In the Year 1 scope of work BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations that will be performed in the subsequent evaluations in the years that follow. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. This report

  11. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    PubMed

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  12. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    PubMed

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  13. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman

    PubMed Central

    Karimi, Maryam; Hassanshahian, Mehdi

    2016-01-01

    Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater) was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11) that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275) mg L−1 was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11. PMID:26887222

  14. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    NASA Astrophysics Data System (ADS)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  15. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    PubMed

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  16. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil.

    PubMed

    Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas

    2013-10-01

    The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites

  17. Monitoring of Land degradation in the mining impacted areas of Mongolia

    NASA Astrophysics Data System (ADS)

    Amar, T.; Renchin, T.

    2012-12-01

    Nowadays, environmental issue is very important and complicated problem in Mongolia. Mongolia has long suffered from poor mining legislation and almost no regulation of its production . There is a need to undertake analyses of land degradation and land use in Mongolia as an important factor of Environment. Land degradation has been identified as one the priority concerns. Causes of land degradation can be divided into two categories natural and human induced in Mongolia. The second hand level mining contributes to land degradation increased small to large-scale mining, as well as illicit activity resulting in exploitation of the country's mineral resources. In the last decade Mongolia has been developing the mining sector and due to the great number of exploitations the related territories were ecologically damaged. The rivers and lakes are drained, the earth is defiled and all these damages brought the environmental problems. This study aims to monitor land degradation processes in the study area Ongi River Basin of the central region of Mongolia. This area is affected by mining activities and desertification processes. The main reason of drying up Ongiriver and Ulaannuur is definitely changed the Onggi riverbed due to the mining of gold placer deposit and never making technical and biological reclamation. About 60 thousand people and over one million livestock who one living around Onggi river one getting defective of drink water and pasture because of Onggi river and UlaanLake's evaporation. We applied change detection technique and supervised classification using Satellite data. This study contributes to the research which involves policy makers and stakeholders to define and negotiate relevant scenarios in participatory approaches in the local area and to the studies about linking people to pixels. This case study will enable our researchers to plan for the future by making more educated decisions in issues stemming from mining, land degradation, water

  18. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    PubMed

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  19. The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance

    PubMed Central

    Liu, Lijing; Cui, Feng; Li, Qingliang; Yin, Bojiao; Zhang, Huawei; Lin, Baoying; Wu, Yaorong; Xia, Ran; Tang, Sanyuan; Xie, Qi

    2011-01-01

    Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca2+ release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway. PMID:21187857

  20. Level area surrounding Facility 314 showing the planted ring that ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Level area surrounding Facility 314 showing the planted ring that contains the radial ground wires, note the ring beneath the antenna circles is cleared of vegetation and covered with gravel, view facing southwest - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI

  1. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas

    NASA Astrophysics Data System (ADS)

    Metzger, Jürgen O.; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO2 content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  2. Sustainable global energy supply based on lignocellulosic biomass from afforestation of degraded areas.

    PubMed

    Metzger, Jürgen O; Hüttermann, Aloys

    2009-02-01

    An important aspect of present global energy scenarios is the assumption that the amount of biomass that can be grown on the available area is so limited that a scenario based on biomass as the major source of energy should be unrealistic. We have been investigating the question whether a Biomass Scenario may be realistic. We found that the global energy demand projected by the International Energy Agency in the Reference Scenario for the year 2030 could be provided sustainably and economically primarily from lignocellulosic biomass grown on areas which have been degraded by human activities in historical times. Moreover, other renewable energies will contribute to the energy mix. There would be no competition with increasing food demand for existing arable land. Afforestation of degraded areas and investment for energy and fuel usage of the biomass are not more expensive than investment in energy infrastructure necessary up to 2030 assumed in the fossil energy based Reference Scenario, probably much cheaper considering the additional advantages such as stopping the increase of and even slowly reducing the CO(2) content of the atmosphere, soil, and water conservation and desertification control. Most importantly, investment for a Biomass Scenario would be actually sustainable, in contrast to investment in energy-supply infrastructure of the Reference Scenario. Methods of afforestation of degraded areas, cultivation, and energetic usage of lignocellulosic biomass are available but have to be further improved. Afforestation can be started immediately, has an impact in some few years, and may be realized in some decades.

  3. Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within.

    PubMed

    Fan, Zhanmin; Yuan, Ling

    2010-04-01

    Multifunctional chimaeric hydrolases can be created by covalently linking heterologous catalytic and functional domains in a single polypeptide. Previously, we have generated a number of chimaeric lignocellulosic hydrolases that contain two to five modules [Biotechnol Bioeng (2009) 102: 1045; Appl Environ Microbiol (2009) 75: 1754]. These chimaeras closely resemble the parental enzymes in kinetics and other enzymatic properties, and some exhibit improved synergy in degrading natural substrates when compared to mixtures of parental enzymes. In addition to the applications in fermentative enzyme production, the chimaeric genes can be used in the construction of a single plant transformation binary vector carrying several genes that encode a complete set of lignocellulosic hydrolase activities. The advantages of this approach include ease in vector construction and transformation, as well as downstream plant analysis and breeding. The hydrolases sequestered in biomass feedstock can potentially assist enzymatic pretreatment and sugar conversion. Here, we report the gene expression and functional characterization of a chimaeric hemicellulase in transgenic tobacco plants. T1 transgenic plants produced up to 19-mg active enzymes per gram of total-soluble leaf proteins. The results demonstrate the feasibility of producing multifunctional lignocellulosic hydrolases in plants. Key considerations in the design, construction and plant expression of the chimaeric genes are discussed.

  4. Plant species influence on soil C after afforestation of Mediterranean degraded soils

    NASA Astrophysics Data System (ADS)

    Dominguez, Maria T.; García-Vargas, Carlos; Madejón, Engracia; Marañón, Teodoro

    2015-04-01

    Increasing C sequestration in terrestrial ecosystems is one of the main current environmental challenges to mitigate climate change. Afforestation of degraded and contaminated lands is one of the key strategies to achieve an increase in C sequestration in ecosystems. Plant species differ in their mechanisms of C-fixation, C allocation into different plant organs, and interaction with soil microorganisms, all these factors influencing the dynamics of soil C following the afforestation of degraded soils. In this work we examine the influence of different woody plant species on soil C dynamics in degraded and afforested Mediterranean soils. The soils were former agricultural lands that were polluted by a mining accident and later afforested with different native plant species. We analysed the effect of four of these species (Olea europaea var. sylvestris Brot., Populus alba L., Pistacia lentiscus L. and Retama sphaerocarpa (L.) Boiss.) on different soil C fractions, soil nutrient availability, microbial activity (soil enzyme activities) and soil CO2 fluxes 15 years after the establishment of the plantations. Results suggest that the influence of the planted trees and shrubs is still limited, being more pronounced in the more acidic and nutrient-poor soils. Litter accumulation varied among species, with the highest C accumulated in the litter under the deciduous species (Populus alba L.). No differences were observed in the amount of total soil organic C among the studied species, or in the concentrations of phenols and sugars in the dissolved organic C (DOC), which might have indicated differences in the biodegradability of the DOC. Microbial biomass and activity was highly influenced by soil pH, and plant species had a significant influence on soil pH in the more acidic site. Soil CO2 fluxes were more influenced by the plant species than total soil C content. Our results suggest that changes in total soil C stocks after the afforestation of degraded Mediterranean

  5. Predictive based monitoring of nuclear plant component degradation using support vector regression

    SciTech Connect

    Agarwal, Vivek; Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.

    2015-02-01

    Nuclear power plants (NPPs) are large installations comprised of many active and passive assets. Degradation monitoring of all these assets is expensive (labor cost) and highly demanding task. In this paper a framework based on Support Vector Regression (SVR) for online surveillance of critical parameter degradation of NPP components is proposed. In this case, on time replacement or maintenance of components will prevent potential plant malfunctions, and reduce the overall operational cost. In the current work, we apply SVR equipped with a Gaussian kernel function to monitor components. Monitoring includes the one-step-ahead prediction of the component’s respective operational quantity using the SVR model, while the SVR model is trained using a set of previous recorded degradation histories of similar components. Predictive capability of the model is evaluated upon arrival of a sensor measurement, which is compared to the component failure threshold. A maintenance decision is based on a fuzzy inference system that utilizes three parameters: (i) prediction evaluation in the previous steps, (ii) predicted value of the current step, (iii) and difference of current predicted value with components failure thresholds. The proposed framework will be tested on turbine blade degradation data.

  6. Riverine Dissolved Organic Matter Degradation Modeled Through Microbial Incubations of Vascular Plant Leachates

    NASA Astrophysics Data System (ADS)

    Harfmann, J.; Hernes, P.; Chuang, C. Y.

    2015-12-01

    Dissolved organic matter (DOM) contains as much carbon as is in the atmosphere, provides the main link between terrestrial and marine carbon reservoirs, and fuels the microbial food web. The fate and removal of DOM is a result of several complex conditions and processes, including photodegradation, sorption/desorption, dominant vascular plant sources, and microbial abundance. In order to better constrain factors affecting microbial degradation, laboratory incubations were performed using Sacramento River water for microbial inoculums and vascular plant leachates. Four vascular plant sources were chosen based on their dominance in the Sacramento River Valley: gymnosperm needles from Pinus sabiniana (foothill pine), angiosperm dicot leaves from Quercus douglassi (blue oak), angiosperm monocot mixed annual grasses, and angiosperm monocot mixed Schoenoplectus acutus (tule) and Typha spp. (cattails). Three concentrations of microbial inoculum were used for each plant material, ranging from 0.2% to 10%. Degradation was monitored as a function of time using dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescent dissolved organic matter (fDOM), and was compared across vascular plant type and inoculum concentration.

  7. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

    PubMed

    Martens, Eric C; Lowe, Elisabeth C; Chiang, Herbert; Pudlo, Nicholas A; Wu, Meng; McNulty, Nathan P; Abbott, D Wade; Henrissat, Bernard; Gilbert, Harry J; Bolam, David N; Gordon, Jeffrey I

    2011-12-01

    Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of

  8. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  9. Genomic characterization of plant cell wall degrading enzymes and in silico analysis of xylanses and polygalacturonases of Fusarium virguliforme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell wall degrading enzymes (PCWDEs) are important effectors for plant pathogens to invade plants. In this study, the composition of PCWDEs in Fusarium virguliforme that were grown for 5-days and 20 days in liquid medium was determined by RNA-Seq. Differential expression analysis showed more P...

  10. Traditional uses of plants in a rural community of Mozambique and possible links with Miombo degradation and harvesting sustainability

    PubMed Central

    2014-01-01

    Background Miombo woodlands play an important role in the livelihood of people living in sub-equatorial African countries, contributing to satisfy basic human needs such as food, medicine, fuelwood and building materials. However, over-exploitation of plant resources and unsustainable harvest practices can potentially degrade forests. The aim of this study was to document the use of Miombo plant products, other than medicinal plants, in local communities, within a wider framework in which we discussed possible links between traditional uses and conservation status of the used species and of the whole Miombo environment. Methods Fieldwork took place in four communities of Muda-Serração, central Mozambique. We conducted semi-structured interviews with 52 informants about their knowledge, use and harvesting practices of useful plants. A survey on local Miombo vegetation was also carried out in order to assess abundance and distribution of useful woody plants cited in the interviews in areas exposed to different exploitation rates. A Conservation Priority index was also applied to rank conservation values of each used woody species. Results Ninety-eight plants cited by the informants were botanically identified. The most relevant general category was represented by food plants (45 species), followed by handicraft plants (38 species) and domestic plants (37 species). Among the 54 woody species observed in vegetation plots, 52% were cited as useful in the interviews. Twenty-six woody species found in ‘natural’ Miombo areas were not found in ‘degraded’ ones: of these, 46% were cited in the interviews (58% in the food category, 50% in the handicraft category, 25% in the domestic category and 8% in the fishing category). Results of conservation ranking showed that 7 woody species deserve conservation priority in the investigated area. Conclusions This study shows that the communities investigated rely heavily on local forest products for their daily subsistence

  11. Long-term mode shape degradation in large mode area Yb-doped pulsed fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Bobkov, K. K.; Bubnov, M. M.; Aleshkina, S. S.; Likhachev, M. E.

    2017-01-01

    Experimental observation of long-term output mode shape degradation in pulsed Yb-doped fiber amplifiers is reported for the first time. The process occurs in large mode area Yb-doped fibers and is caused by the formation of the long period grating responsible for power transfer from the fundamental mode to the first high-order mode. The linkage between the process and photodarkening was revealed.

  12. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation.

    PubMed

    Beale, Colin M; Baker, Neil E; Brewer, Mark J; Lennon, Jack J

    2013-08-01

    The extent to which climate change might diminish the efficacy of protected areas is one of the most pressing conservation questions. Many projections suggest that climate-driven species distribution shifts will leave protected areas impoverished and species inadequately protected while other evidence suggests that intact ecosystems within protected areas will be resilient to change. Here, we tackle this problem empirically. We show how recent changes in distribution of 139 Tanzanian savannah bird species are linked to climate change, protected area status and land degradation. We provide the first evidence of climate-driven range shifts for an African bird community. Our results suggest that the continued maintenance of existing protected areas is an appropriate conservation response to the challenge of climate and environmental change.

  13. An Extensive Alien Plant Inventory from the Inhabited Areas of Galapagos

    PubMed Central

    Guézou, Anne; Trueman, Mandy; Buddenhagen, Christopher Evan; Chamorro, Susana; Guerrero, Ana Mireya; Pozo, Paola; Atkinson, Rachel

    2010-01-01

    Background Plant invasions are causing habitat degradation in Galapagos. Problems are concentrated on the four inhabited islands. Plants introduced to rural areas in the humid highlands and urban areas on the arid coast act as foci for invasion of the surrounding Galapagos National Park. Methodology/Principal Findings Here we present results of the most comprehensive inventory to date of alien vascular plants in the inhabited areas of Galapagos. The survey was conducted between 2002 and 2007, in 6031 properties (97% of the total) on Floreana, Isabela, San Cristobal and Santa Cruz Islands. In total 754 alien vascular plant taxa were recorded, representing 468 genera in 123 families. Dicotyledons represented 554 taxa, monocotyledons 183, there were 7 gymnosperms and 10 pteridophytes. Almost half (363) of the taxa were herbaceous. The most represented families were Fabaceae (sensu lato), Asteraceae and Poaceae. The three most recorded species in the humid rural areas were Psidium guajava, Passiflora edulis and Bryophyllum pinnatum, and in the dry urban areas, Aloe vera, Portulaca oleracea and Carica papaya. In total, 264 (35%) taxa were recorded as naturalized. The most common use for taxa was ornamental (52%). Conclusions/Significance This extensive survey has increased the known alien vascular flora of Galapagos by 257 species, giving a ratio of alien to native taxa of 1.57∶1. It provides a crucial baseline for plant invasion management in the archipelago and contributes data for meta analyses of invasion processes worldwide. A repeat of the survey in the future would act as an effective early detection tool to help avoid further invasion of the Galapagos National Park. PMID:20421999

  14. E-Area Vault Concrete Material Property And Vault Durability/Degradation Projection Recommendations

    SciTech Connect

    Phifer, M. A.

    2014-03-11

    Subsequent to the 2008 E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) (WSRC 2008), two additional E-Area vault concrete property testing programs have been conducted (Dixon and Phifer 2010 and SIMCO 2011a) and two additional E-Area vault concrete durability modeling projections have been made (Langton 2009 and SIMCO 2012). All the information/data from these reports has been evaluated and consolidated herein by the Savannah River National Laboratory (SRNL) at the request of Solid Waste Management (SWM) to produce E-Area vault concrete hydraulic and physical property data and vault durability/degradation projection recommendations that are adequately justified for use within associated Special Analyses (SAs) and future PA updates. The Low Activity Waste (LAW) and Intermediate Level (IL) Vaults structural degradation predictions produced by Carey 2006 and Peregoy 2006, respectively, which were used as the basis for the 2008 ELLWF PA, remain valid based upon the results of the E-Area vault concrete durability simulations reported by Langton 2009 and those reported by SIMCO 2012. Therefore revised structural degradation predictions are not required so long as the mean thickness of the closure cap overlying the vaults is no greater than that assumed within Carey 2006 and Peregoy 2006. For the LAW Vault structural degradation prediction (Carey 2006), the mean thickness of the overlying closure cap was taken as nine feet. For the IL Vault structural degradation prediction (Peregoy 2006), the mean thickness of the overlying closure cap was taken as eight feet. The mean closure cap thicknesses as described here for both E-Area Vaults will be included as a key input and assumption (I&A) in the next revision to the closure plan for the ELLWF (Phifer et al. 2009). In addition, it has been identified as new input to the PA model to be assessed in the ongoing update to the new PA Information UDQE (Flach 2013). Once the UDQE is approved, the SWM Key I

  15. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    SciTech Connect

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are

  16. Effects of a coal-fired power plant on the rock lichen Rhizoplaca melanophthalma: chlorophyll degradation and electrolyte leakage

    USGS Publications Warehouse

    Belnap, Jayne; Harper, Kimball T.

    1990-01-01

    Chlorophyll degradation and electrolyte leakage were measured for the umbilicate desert lichen Rhizoplaca melanophthalma (Ram.) Leuck. & Poelt in the vicinity of a coal-fired power plant near Page, Arizona. Patterns of lichen damage indicated by chlorophyll degradation were similar to those indicated by electrolyte leakage. Regression analyses of chlorophyll degradation as well as electrolyte leakage on distance from the power plant were significant (p < 0.001), suggesting that lichen damage decreased with increasing distance from the power plant. Mean values for both variables at the two sites closest to the power plant (7 and 12 km) differed significantly from values for the two sites farthest from the plant (21 and 42 km; p < 0.001). Mean values within each group (7 and 12 km; 21 and 42 km) do not differ significantly for either parameter. It is suggested that effluents from the power plant combine with local weather factors to produce the observed levels of damage.

  17. Designation of less favorable areas by the regionalization of soil degradation on various spatial scales

    NASA Astrophysics Data System (ADS)

    Pásztor, L.; Szabó, J.; Bakacsi, Zs.; Laborczi, A.

    2009-04-01

    One of the main objectives of the EU's Common Agricultural Policy is to encourage maintaining agricultural production in less favorable areas (LFA) in order (among others) to sustain agricultural production and use natural resources, in such a way to secure both stable production and income to farmers and to protect the environment. LFA assignment has both ecological and severe economical aspects. Delimitation of LFAs can be carried out by using biophysical diagnostic criteria on low soil productivity and poor climate conditions. Identification of low-productivity areas requires regionalization of soil functions related to food and other biomass production. This process can be carried out in different scales from national to local level, but always requires map-based pedological and further environmental information with appropriate spatial resolution. For the regionalization of less productive areas in national scale a functional approach was used which integrates the knowledge on soil degradation processes in nationwide level. Specific soil threats were classified into ranked categories. Supposing (quasi)uniform distribution of vulnerability measure along these classes, we introduced a "standardized" value as a ratio of the class order to the maximum class order expressed in percentage. For the overall spatial characterization of degradation status, spatial information was integrated in a result map by summarizing the degradation specific "standardized" cell values. This map in one hand has been used for the delineation of soil degradation regions. On the other hand appropriate spatial aggregation of index values on geographical and administrative regions is suitable for their quantitative comparison thus they can be ranked and this feature can be used for the identification of less favorable areas. At the more detailed, county level the Digital Kreybig Soil Information System was used as a tool of the regionalization of soil functions related to soil

  18. Oxidative Stress in Fungi: Its Function in Signal Transduction, Interaction with Plant Hosts, and Lignocellulose Degradation

    PubMed Central

    Breitenbach, Michael; Weber, Manuela; Rinnerthaler, Mark; Karl, Thomas; Breitenbach-Koller, Lore

    2015-01-01

    In this review article, we want to present an overview of oxidative stress in fungal cells in relation to signal transduction, interaction of fungi with plant hosts, and lignocellulose degradation. We will discuss external oxidative stress which may occur through the interaction with other microorganisms or plant hosts as well as internally generated oxidative stress, which can for instance originate from NADPH oxidases or “leaky” mitochondria and may be modulated by the peroxiredoxin system or by protein disulfide isomerases thus contributing to redox signaling. Analyzing redox signaling in fungi with the tools of molecular genetics is presently only in its beginning. However, it is already clear that redox signaling in fungal cells often is linked to cell differentiation (like the formation of perithecia), virulence (in plant pathogens), hyphal growth and the successful passage through the stationary phase. PMID:25854186

  19. Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil

    PubMed Central

    McGuinness, Martina; Dowling, David

    2009-01-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review. PMID:19742157

  20. Sodium Accumulation at Potential-Induced Degradation Shunted Areas in Polycrystalline Silicon Modules

    SciTech Connect

    Harvey, Steven P.; Aguiar, Jeffery A.; Hacke, Peter; Guthrey, Harvey; Johnston, Steve; Al-Jassim, Mowafak

    2016-11-01

    We investigated potential-induced degradation (PID) in silicon mini-modules that were subjected to accelerated stressing to induce PID conditions. Shunted areas on the cells were identified with photoluminescence and dark lock-in thermography (DLIT) imaging. The identical shunted areas were then analyzed via time-of-flight secondary-ion mass spectrometry (TOFSIMS) imaging, 3-D tomography, and high-resolution transmission electron microscopy. The TOF-SIMS imaging indicates a high concentration of sodium in the shunted areas, and 3-D tomography reveals that the sodium extends more than 2 um from the surface below shunted regions. Transmission electron microscopy investigation reveals that a stacking fault is present at an area identified as shunted by DLIT imaging. After the removal of surface sodium, tomography reveals persistent sodium present around the junction depth of 300 nm and a drastic difference in sodium content at the junction when comparing shunted and nonshunted regions.

  1. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa

    PubMed Central

    Tian, Chaoguang; Beeson, William T.; Iavarone, Anthony T.; Sun, Jianping; Marletta, Michael A.; Cate, Jamie H. D.; Glass, N. Louise

    2009-01-01

    The filamentous fungus Neurospora crassa is a model laboratory organism, but in nature is commonly found growing on dead plant material, particularly grasses. Using functional genomics resources available for N. crassa, which include a near-full genome deletion strain set and whole genome microarrays, we undertook a system-wide analysis of plant cell wall and cellulose degradation. We identified approximately 770 genes that showed expression differences when N. crassa was cultured on ground Miscanthus stems as a sole carbon source. An overlap set of 114 genes was identified from expression analysis of N. crassa grown on pure cellulose. Functional annotation of up-regulated genes showed enrichment for proteins predicted to be involved in plant cell wall degradation, but also many genes encoding proteins of unknown function. As a complement to expression data, the secretome associated with N. crassa growth on Miscanthus and cellulose was determined using a shotgun proteomics approach. Over 50 proteins were identified, including 10 of the 23 predicted N. crassa cellulases. Strains containing deletions in genes encoding 16 proteins detected in both the microarray and mass spectrometry experiments were analyzed for phenotypic changes during growth on crystalline cellulose and for cellulase activity. While growth of some of the deletion strains on cellulose was severely diminished, other deletion strains produced higher levels of extracellular proteins that showed increased cellulase activity. These results show that the powerful tools available in N. crassa allow for a comprehensive system level understanding of plant cell wall degradation mechanisms used by a ubiquitous filamentous fungus. PMID:20018766

  2. Plant phenological observations in rural and industrial central Italy areas.

    PubMed

    Orlandi, Fabio; Ruga, L; Bonofiglio, T; Aguilera, F; Ranfa, A; Bodesmo, M; Fornaciari, M

    2016-12-01

    The physiological stress caused by particular pollution conditions can result in phenological phase shifts that can include a block in vegetative or reproductive development. The main aim of the present study was to determine and analyse the mean development trends of some winter deciduous species in comparison to the climate tendencies, as calculated within two phenological gardens in the Arezzo and Perugia areas of central Italy. Moreover, a phenological comparison between the guide species of the two phenological gardens, one located in an industrial area, and the other in a farming area, was carried out. The phenological evidences showed significant phase displacements for the common guide species present in both the gardens which however may be explained by the meteorological performances above all in the Perugia not polluted area. In these terms, there were no evident phenological effects on the plants from the industrial area pollutants in the Arezzo garden. Moreover, also the temperature reduction tendencies at the end of spring not influenced significantly the phenological behaviours of the plant species not inducing them toward a predictable delay of reproductive and adult leaves phases.

  3. Plant development controls leaf area expansion in alfalfa plants competing for light

    PubMed Central

    Baldissera, Tiago Celso; Frak, Ela; Carvalho, Paulo Cesar de Faccio; Louarn, Gaëtan

    2014-01-01

    Background and Aims The growth of crops in a mixture is more variable and difficult to predict than that in pure stands. Light partitioning and crop leaf area expansion play prominent roles in explaining this variability. However, in many crops commonly grown in mixtures, including the forage species alfalfa, the sensitivity and relative importance of the physiological responses involved in the light modulation of leaf area expansion are still to be established. This study was designed to assess the relative sensitivity of primary shoot development, branching and individual leaf expansion in alfalfa in response to light availability. Methods Two experiments were carried out. The first studied isolated plants to assess the potential development of different shoot types and growth periods. The second consisted of manipulating the intensity of competition for light using a range of canopies in pure and mixed stands at two densities so as to evaluate the relative effects on shoot development, leaf growth, and plant and shoot demography. Key Results Shoot development in the absence of light competition was deterministic (constant phyllochrons of 32·5 °Cd and 48·2 °Cd for primary axes and branches, branching probability of 1, constant delay of 1·75 phyllochron before axillary bud burst) and identical irrespective of shoot type and growth/regrowth periods. During light competition experiments, changes in plant development explained most of the plant leaf area variations, with average leaf size contributing to a lesser extent. Branch development and the number of shoots per plant were the leaf area components most affected by light availability. Primary axis development and plant demography were only affected in situations of severe light competition. Conclusions Plant leaf area components differed with regard to their sensitivity to light competition. The potential shoot development model presented in this study could serve as a framework to integrate light responses

  4. Characterization of 4-nonylphenol-degrading bacterial consortium obtained from a textile wastewater pretreatment plant.

    PubMed

    Di Gioia, Diana; Salvadori, Laura; Zanaroli, Giulio; Coppini, Ester; Fava, Fabio; Barberio, Claudia

    2008-12-01

    4-Nonylphenol (4-NP) isomers are toxic and recalcitrant compounds often resulting, together with short-chain ethoxylated nonylphenol (NPnEO, where n is the number of ethylene oxide units), from NPnEO biodegradation in conventional activated sludge plants. In this work, a microbial consortium, defined as Consortium A, capable of removing 100 mg/L of 4-NP with no accumulation of metabolites with aromatic moiety was isolated from textile wastewaters after enrichment with 4-NP. The consortium showed remarkable degradation activities toward several short-chain NPnEO congeners. Culture-dependent techniques were used to isolate from the consortium twenty-six strains assigned to seven different amplified ribosomal DNA restriction analysis groups. Two- and three-member cocultures were prepared with the strains showing highest 4-NP-degrading capabilities, but neither the single strains nor the cocultures were as efficient in 4-NP degradation as Consortium A. FISH was used to characterize the microbial composition of Consortium A: it evidenced a strong occurrence of Proteobacteria and, in particular, of Gammaproteobacteria along with a relevant stability of the culture. Therefore, the isolated consortium has the potential of being used in the development of a biotechnological process for the tertiary treatment of effluents of activated sludge plants fed with NPnEO-contaminated wastewaters.

  5. Variability of land degradation along topographic transects in two Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Kotb Abd-Elmabod, Sameh; Anaya-Romero, María; Phillips, Jonathan D.; Jordán, Antonio; Muñoz-Rojas, Miriam; de la Rosa, Diego

    2013-04-01

    This study aims to investigate the influence of topography, soil factors and climate conditions on land degradation along topographic transects in two Mediterranean areas: Seville (southern Spain) and El-Fayoum (northern Egypt). Elevation and slope gradient information from both study sites were obtained from Shuttle Radar Topography Mission (SRTM) data, processed using ENVI 4.7. Additionally, topographic transects were developed using ArcGIS 10 software. To represent the highest variability in elevation, lithology, soil and land use in each site, one representative topographic transect from El-Fayoum and two topographic transects from Seville were selected. Soil characteristics along each of the topographic transect were obtained by mapping land surveying and laboratory analyses data. MicroLEIS DSS (Pantanal and Raizal submodels) was used to assess soil contamination with phosphorus, nitrogen, heavy metals and pesticides and water erosion vulnerability along the topographic transects for each study site using soil data, including depth, texture, drainage, carbonate content, salinity, sodium saturation, organic matter content and acidity (pH). Additionally, monthly average values of climate variables (mean temperature, maximum and minimum rainfall and number of rainy days) have been used. The results obtained by Raizal and Pantanal models suggest that lower elevation areas from transects show low vulnerability classes in both degradation processes (water erosion and soil contamination), when compared to uplands. The variation of climate conditions and soil factors along the Seville and El-Fayoum transects were responsible for the observed variability in both soil degradation processes (erosion and contamination). Key words: MicroLEIS DSS, soil degradation, soil factors, topography, DEM

  6. Anaerobic Methyl tert-Butyl Ether-Degrading Microorganisms Identified in Wastewater Treatment Plant Samples by Stable Isotope Probing

    PubMed Central

    Sun, Weimin; Sun, Xiaoxu

    2012-01-01

    Anaerobic methyl tert-butyl ether (MTBE) degradation potential was investigated in samples from a range of sources. From these 22 experimental variations, only one source (from wastewater treatment plant samples) exhibited MTBE degradation. These microcosms were methanogenic and were subjected to DNA-based stable isotope probing (SIP) targeted to both bacteria and archaea to identify the putative MTBE degraders. For this purpose, DNA was extracted at two time points, subjected to ultracentrifugation, fractioning, and terminal restriction fragment length polymorphism (TRFLP). In addition, bacterial and archaeal 16S rRNA gene clone libraries were constructed. The SIP experiments indicated bacteria in the phyla Firmicutes (family Ruminococcaceae) and Alphaproteobacteria (genus Sphingopyxis) were the dominant MTBE degraders. Previous studies have suggested a role for Firmicutes in anaerobic MTBE degradation; however, the putative MTBE-degrading microorganism in the current study is a novel MTBE-degrading phylotype within this phylum. Two archaeal phylotypes (genera Methanosarcina and Methanocorpusculum) were also enriched in the heavy fractions, and these organisms may be responsible for minor amounts of MTBE degradation or for the uptake of metabolites released from the primary MTBE degraders. Currently, limited information exists on the microorganisms able to degrade MTBE under anaerobic conditions. This work represents the first application of DNA-based SIP to identify anaerobic MTBE-degrading microorganisms in laboratory microcosms and therefore provides a valuable set of data to definitively link identity with anaerobic MTBE degradation. PMID:22327600

  7. B Plant source aggregate area management study report

    SciTech Connect

    Not Available

    1993-03-01

    The US Department of Energy (DOE) Hanford Site in Washington state is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 100 Areas (Figure 1--1). The US Environmental Protection Agency (EPA), in November 1989, included the 200 Areas of the Hanford KLSite on the National Priorities List (NPL), included the 200 Areas of the Hanford Site on the National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of Feasibility Study (FS) process for characterizing the nature and extent of contamination, assessing risks to human health and the environment, and selection of remedial actions. This report presents the results of an aggregate area management study (AIMS) for the B Plant Aggregate Area located in the 200 Areas. The study provides the basis for initiating RI/FS under CERCLA or under the Resource which contain reactor fuel processing and waste management Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS). This report also integrates RCRA treatment, storage or disposal (TSD) closure activities with CERCLA and RCRA past-practice investigations.

  8. Sediment and nutrient loading from non-degraded and degraded watershed area in to a tropical water body: a case study using remote sensing

    NASA Astrophysics Data System (ADS)

    Gupta, Mool Chandra

    2006-12-01

    The present study deals with the works relating to integrated watershed management on sustainable basis for evolving tractable operational package so that nutrient, sediment and runoff losses from catchment could be minimized. Study area lies between latitudes 22°5' and 22°12' and longitudes 77°17' and 77°23' covering an area of 6357.5 hectares. Physically it is divided into two different parts, hills and plains. The height of elevation of study area is in between 518 to 630 meters above m.s.l. The thematic maps were generated using satellite data. The present tropical catchment possessing diverse forest ecosystem and agriculture land characterized by weathered black cotton soil derived from basalt with the slope ranging from nearly level to moderately steep to steep sloping and receiving average annual rainfall 1150 mm. The annual return of carbon and nutrient (N, P, K, Ca, Na and Mg) in non degraded and degraded forest and nutrient concentrations in runoff flow and sediment output (sediment loss) during monsoon period from non-degraded forest, degraded forest and agriculture lands were worked out. The sediment and nutrient losses from the catchment to the tropical water body are alarming particularly from agricultural land. The nutrient losses in both the forms (runoff water plus sediment movement) are in the order of agriculture > degraded forest > non-degraded forest. The loss of soil in the form of sediment loss follows the same pattern. The results were alarming when the value of sediment loss of forest was compared to the agriculture land of the catchment. The soil loss as sediment is 33.5 times greater in agriculture land compared to non-degraded forest and 10.2 times greater in agriculture land compared to degraded forest.

  9. Microbial degradation of polycyclic aromatic hydrocarbon and cyanide in soils from manufactured gas plant sites

    SciTech Connect

    Ho, YiFong.

    1993-01-01

    The microbial clean-up of cyanide and polycyclic aromatic hydrocarbon (PAH) in soils from manufactured gas plant (MGP) sites is the subject of this study. Cyanide was examined for its inhibition on microbial PAH degradation by an MGP-soil isolate identified as a strain of Pseudomonas aeruginosa by classical differential methods as well as 16S rRNA oligonucleotide probes. A strong cyanide-degrading Bacillus pumilus (ATCC No. 7061) strain was used for facilitating cyanide degradation thereby enhancing PAH biodegradation in this soil. This research has validated cyanide interference with the PAH degrader and shown that adding Bacillus pumilus accomplishes the removal of cyanide which subsequently allows Pseudomonas aeruginosa to metabolize PAHs. In addition to the biodegradation of cyanide and lower ring numbered PAHs, the microbial degradation of 4-ring polycyclic aromatic hydrocarbons (PAHs) by using a mixed culture obtained from another former coal tar contaminated site was also studied. The rate of biotransformation and the abiotic loss due to volatilization were monitored. The 3-ring PAH used in this project was phenanthrene and the 4-ring PAHs used were fluoranthene and pyrene. The results showed that volatilization loss of naphthalene in the control system was substantial while volatilization of higher molecular weight PAH compounds (fluoranthene and pyrene) was negligible. The biodegradation rates of phenanthrene, fluoranthene and pyrene are 6.56, 1.59 and 0.82 mg/L/day, respectively or 65.6, 15.9, 8.2 mg/gram of cells/day assuming 100 mg cells/L in the system. This study indicates that biodegradation of 3- and 4-ring PAHs by mixed cultures obtained from PAH contaminated sites is very promising. These studies will contribute to the understanding of PAH and cyanide removal from MGP and provide information for the design of a bioremediation project to reclaim unusable land that was contaminated through the previous coal gasification process.

  10. U Plant source aggregate area management study report

    SciTech Connect

    Not Available

    1992-09-01

    The US Department of Energy (DOE) Hanford Site in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989, included the 200 Areas of the Hanford Site on the National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980. Inclusion on the NPL initiates the Remedial Investigation (RI) and Feasibility Study (FS) process for characterizing the nature and extent of contamination, assessing risks to human health and the environment, and selection of remedial actions. This report presents the results of an aggregate area management study (AAMS) for the U Plant Aggregate Area located in the 200 Areas. The study provides the basis for initiating RI/FS under CERCLA or under the Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS). This report also integrates RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past-practice investigations.

  11. T Plant source aggregate area management study report

    SciTech Connect

    Not Available

    1992-11-01

    The US Department of Energy (DOE) Hanford Site in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989, included the 200 Areas of the Hanford Site on the National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980. Inclusion on the NPL initiates the Remedial Investigation (RI) and Feasibility Study (FS) process for characterizing the nature and extent of contamination, assessing risks to human health and the environment, and selection of remedial actions. This report presents the results of an aggregate area management study (AAMS) for the T Plant Aggregate Area located in the 200 Areas. The study provides the basis for initiating RI/FS under CERCLA or under the Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS). This report also integrates RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past-practice investigations.

  12. Z Plant source aggregate area management study report

    SciTech Connect

    Not Available

    1992-10-01

    The US Department of Energy (DOE) Hanford Site in Washington State is or into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989, included the 200 Areas of the Hanford Site on the National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980. Inclusion on the NPL initiates the Remedial Investigation (RI) and Feasibility Study (FS) process for characterizing the nature and extent of contamination, assessing risks to human health and the environment, and selection of remedial actions. This report presents the insults of an aggregate area management study (AAMS) for the Z Plant Aggregate Area located m the 200 Areas. The study provides the basis for initiating RIIFS under CERCLA or under the Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS). This report also integrates RCRA treatment, storage, or disposed (TSD) closure activities with CERCLA and RCRA past-practice investigations.

  13. Steam generator tube degradation at the Doel 4 plant influence on plant operation and safety

    SciTech Connect

    Scheveneels, G.

    1997-02-01

    The steam generator tubes of Doel 4 are affected by a multitude of corrosion phenomena. Some of them have been very difficult to manage because of their extremely fast evolution, non linear evolution behavior or difficult detectability and/or measurability. The exceptional corrosion behavior of the steam generator tubes has had its drawbacks on plant operation and safety. Extensive inspection and repair campaigns have been necessary and have largely increased outage times and radiation exposure to personnel. Although considerable effort was invested by the utility to control corrosion problems, non anticipated phenomena and/or evolution have jeopardized plant safety. The extensive plugging and repairs performed on the steam generators have necessitated continual review of the design basis safety studies and the adaptation of the protection system setpoints. The large asymmetric plugging has further complicated these reviews. During the years many preventive and recently also defence measures have been implemented by the utility to manage corrosion and to decrease the probability and consequences of single or multiple tube rupture. The present state of the Doel 4 steam generators remains troublesome and further examinations are performed to evaluate if continued operation until June `96, when the steam generators will be replaced, is justified.

  14. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    PubMed Central

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  15. Plant processes important for the transformation and degradation of explosives contaminants.

    PubMed

    Best, Elly P H; Kvesitadze, G K; Khatisahvili, G; Sadunishvili, T

    2005-01-01

    Environmental contamination by explosives is a worldwide problem. Of the 20 energetic compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are the most powerful and commonly used. Nitroamines are toxic and considered as possible carcinogens. The toxicity and persistence of nitroamines requires that their fate in the environment be understood and that contaminated soil and groundwater be remediated. This study, written as a minireview, provides further insights for plant processes important for the transformation and degradation of explosives. Plants metabolize TNT and the distribution of the transformation products, conjugates, and bound residues appears to be consistent with the green liver model concept. Metabolism of TNT in plants occurs by reduction as well as by oxidation. Reduction probably plays an important role in the tolerance of plants towards TNT, and, therefore a high nitroreductase capacity may serve as a biochemical criterion for the selection of plant species to remediate TNT. Because the activities and the inducibilities of the oxidative enzymes are far lower than of nitroreductase, reducing processes may predominate. However, oxidation may initiate the route to conjugation and sequestration leading ultimately to detoxification of TNT, and, therefore, particularly the oxidative pathway deserves more study. It is possible that plants metabolize RDX also according to the green liver concept. In the case of plant metabolism of HMX, a conclusion regarding compliance with the green liver concept was not reached due to the limited number of available data.

  16. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    USGS Publications Warehouse

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  17. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors.

    PubMed

    Pellerin, Brian A; Hernes, Peter J; Saraceno, JohnFranco; Spencer, Robert G M; Bergamaschi, Brian A

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)-a regulated class of DBPs-before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA(254)) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C(-1). However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA(254) suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  18. Diversity of Beetle Genes Encoding Novel Plant Cell Wall Degrading Enzymes

    PubMed Central

    Pauchet, Yannick; Wilkinson, Paul; Chauhan, Ritika; ffrench-Constant, Richard H.

    2010-01-01

    Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs) are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent “disappearance” of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology. PMID:21179425

  19. Material balance areas and frequencies for large reprocessing plants

    SciTech Connect

    Burr, T.

    1994-08-01

    It has long been recognized that facilities with a large nuclear material throughput will probably not meet the International Atomic Energy Agency (IAEA) goal for detecting trickle diversion of plutonium over periods of about one year. The reason is that measurement errors for plutonium concentration and for liquid volume are often approximately relative over a fairly wide range of true values. Therefore, large throughput facilities will tend to have large uncertainties assigned to their annual throughput. By the same argument, if frequent balances are performed over small material balance areas, then the uncertainty associated with each balance period for each balance area will be small. However, trickle diversion would still be difficult to detect statistically. Because the IAEA will soon be faced with safeguarding a new large-scale reprocessing plant in Japan, it is timely to reconsider the advantages and disadvantages of performing frequent material balances over small balance areas (individual tanks where feasible). Therefore, in this paper the authors present some simulation results to study the effect of balance frequency on loss detection probability, and further simulation results to study possibilities introduced by choosing small balance areas. They conclude by recommending frequent balances over small areas.

  20. Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant

    NASA Astrophysics Data System (ADS)

    Durant, Neal D.; Wilson, Liza P.; Bouwer, Edward J.

    1995-01-01

    A study was conducted to evaluate the potential for natural in situ biodegradation of polycyclic aromatic hydrocarbons (PAH's) in the subsurface at the site of a former manufactured gas plant. Fifty-seven samples of unconsolidated subsurface sediments were aseptically obtained from five boreholes across the site. Bacteria capable of aerobically degrading PAH's without an acclimation period were detected throughout shallow (2.7 m) and deep (24.7 m) areas of the subsurface in both relatively clean (<20 μg L -1 naphthalene) and contaminated (4400 μg L -1 naphthalene) zones. Significant ( p < 0.05) quantities of naphthalene (8±3% to 43±7%) and/or phenanthrene (3±1% to 31±3%) were mineralized in sediment-groundwater microcosms during 4 weeks of aerobic incubation at 22°C. Three samples out of 11 were able to aerobically mineralize significant quantities of benzene (6±2% to 24±1%). Of 11 samples tested for anaerobic mineralization, naphthalene biodegradation (7±1% to 13±2%) in the presence of N03 was observed in two samples. Compound removals were first order with respect to substrate concentration during the first 10-15 days of incubation. Compound biodegradation plateaued in the later stages of incubation (15-40 days), most likely from diminishing bioavailability and nutrient and oxygen depletion. Population densities in the sediments were typically low, with viable aerobic counts ranging from 0 to 10 5 CFU gdw -1, viable anaerobic counts ranging from 0 to 104 CFU gdw -1, and total counts (AODC) usually 10-fold greater than viable counts. Total counts exhibited a strong ( p < 0.01) positive correlation with sample grain size. Viable aerobic and anaerobic populations commonly occurred in the same sample, suggesting the presence of facultative anaerobes. Bacteria were metabolically active in samples from groundwaters with low pH (3.7) and high naphthalene concentrations (11,000 μg L -1). Data from these enumeration and microcosm studies suggest that natural

  1. Assessing and Understanding Trail Degradation: Results from Big South Fork National River and Recreational Area

    USGS Publications Warehouse

    Marion, J.L.; Olive, N.

    2006-01-01

    This report describes results from a comprehensive assessment of resource conditions on a large (24%) sample of the trail system within Big South Fork National River and Recreational Area (BSF). Components include research to develop state-of-knowledge trail impact assessment and monitoring methods, application of survey methods to BSF trails, analysis and summary of results, and recommendations for trail management decision making and future monitoring. Findings reveal a trail system with some substantial degradation, particularly soil erosion, which additionally threatens water quality in areas adjacent to streams and rivers. Factors that contribute to or influence these problems are analyzed and described. Principal among these are trail design factors (trail topographic position, soil texture, grade and slope alignment angle), use-related factors (type and amount of use), and maintenance factors (water drainage). Recommendations are offered to assist managers in improving the sustainability of the trails system to accommodate visitation while enhancing natural resource protection.

  2. Land degradation monitoring in Braila agricultural area using RADARSAT2 data

    NASA Astrophysics Data System (ADS)

    Poenaru, Violeta; Badea, Alexandru; Dana Negula, Iulia; Moise, Cristian; Cimpeanu, Sorin

    2016-08-01

    The estimation of degradation in agricultural lands from fully polarimetric synthetic aperture radar (SAR) data at C-band using differential SAR interferometry is investigated. To this aim, we used a dataset of high resolution SAR images collected in the joint ESA-CSA SOAR Europe-16605 scientific proposal framework that have been processed through the persistent scattering - DInSAR technique. Moreover, to improve PSInSAR analysis, we used polarimetric optimization method on multi-temporal polarimetric SAR data. Optimization is based on the selection of the most stable scattering mechanism over time since the unitary complex column vector is related to the geometric and electromagnetic features of the target. We applied this method on a dataset including 14 compact polarization SAR data (HH/HV/VV) acquired by RADARSAT2 from August 2014 to November 2015 over Braila agricultural area. The area has been affected by land degradation due to salinization and irrigation water overexploitation. The results reveal that the use of an optimum scattering mechanism provides a significant improvement in increasing the PS density and hence the density of the pixels with valid deformation results with respect to single-pol data (about 50% more than single channel datasets).

  3. Status of the steam generator tube circumferential ODSCC degradation experienced at the Doel 4 plant

    SciTech Connect

    Roussel, G.

    1997-02-01

    Since the 1991 outage, the Doel Unit 4 nuclear power plant is known to be affected by circumferential outside diameter intergranular stress corrosion cracking at the hot leg tube expansion transition. Extensive non destructive examination inspections have shown the number of tubes affected by this problem as well as the size of the cracks to have been increasing for the three cycles up to 1993. As a result of the high percentage of tubes found non acceptable for continued service after the 1993 in-service inspection, about 1,700 mechanical sleeves were installed in the steam generators. During the 1994 outage, all the tubes sleeved during the 1993 outage were considered as potentially cracked to some extent at the upper hydraulic transition and were therefore not acceptable for continued service. They were subsequently repaired by laser welding. Furthermore all the tubes not sleeved during the 1993 outage were considered as not acceptable for continued service and were repaired by installing laser welded sleeves. During the 1995 outage, some unexpected degradation phenomena were evidenced in the sleeved tubes. This paper summarizes the status of the circumferential ODSCC experienced in the SG tubes of the Doel 4 plant as well as the other connected degradation phenomena.

  4. Socioeconomic baseline characterization for the Savannah River Plant area

    SciTech Connect

    Not Available

    1981-09-01

    This report presents the social and economic characteristics of the environs of the Savannah River Plant (SRP). The characterization is keyed to those areas of the social and economic environment that could be impacted by the construction and operation of major facilities at SRP. The data consists of past trends and existing characteristics of the area's land use; its demographic, social, and economic profile; regional government; community services; housing, transportation; and historical, scenic, and archeological resources. Published documents, reports, and brochures were the primary sources of all the data presented in this document. When current published data was unavailable, representatives of federal, state, and local agencies were contacted by telephone. Conversations were followed by letters of verification, which were reviewed and verified by the agency representative.

  5. Metatranscriptomic Analyses of Plant Cell Wall Polysaccharide Degradation by Microorganisms in the Cow Rumen

    PubMed Central

    Dai, Xin; Tian, Yan; Li, Jinting; Su, Xiaoyun; Wang, Xuewei; Zhao, Shengguo; Liu, Li; Luo, Yingfeng; Liu, Di; Zheng, Huajun; Wang, Jiaqi; Dong, Zhiyang

    2014-01-01

    The bovine rumen represents a highly specialized bioreactor where plant cell wall polysaccharides (PCWPs) are efficiently deconstructed via numerous enzymes produced by resident microorganisms. Although a large number of fibrolytic genes from rumen microorganisms have been identified, it remains unclear how they are expressed in a coordinated manner to efficiently degrade PCWPs. In this study, we performed a metatranscriptomic analysis of the rumen microbiomes of adult Holstein cows fed a fiber diet and obtained a total of 1,107,083 high-quality non-rRNA reads with an average length of 483 nucleotides. Transcripts encoding glycoside hydrolases (GHs) and carbohydrate binding modules (CBMs) accounted for ∼1% and ∼0.1% of the total non-rRNAs, respectively. The majority (∼98%) of the putative cellulases belonged to four GH families (i.e., GH5, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus and Fibrobacter. Notably, transcripts for GH48 cellobiohydrolases were relatively abundant compared to the abundance of transcripts for other cellulases. Two-thirds of the putative hemicellulases were of the GH10, GH11, and GH26 types and were produced by members of the genera Ruminococcus, Prevotella, and Fibrobacter. Most (∼82%) predicted oligosaccharide-degrading enzymes were GH1, GH2, GH3, and GH43 proteins and were from a diverse group of microorganisms. Transcripts for CBM10 and dockerin, key components of the cellulosome, were also relatively abundant. Our results provide metatranscriptomic evidence in support of the notion that members of the genera Ruminococcus, Fibrobacter, and Prevotella are predominant PCWP degraders and point to the significant contribution of GH48 cellobiohydrolases and cellulosome-like structures to efficient PCWP degradation in the cow rumen. PMID:25501482

  6. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    NASA Astrophysics Data System (ADS)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power

  7. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14LR in two soils.

    PubMed

    Chouychai, Waraporn; Thongkukiatkul, Amporn; Upatham, Suchart; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Lee, Hung

    2012-07-01

    A study was undertaken to assess if corn (Zea mays L.) can enhance phenanthrene degradation in two soils inoculated with Pseudomonas sp. UG14Lr. Corn increased the number of UG14Lr cells in both soils, especially in the acidic soiL Phenanthrene was degraded to a greater extent in UG14Lr-inoculated or corn-planted soils than uninoculated and unplanted soils. The spiked phenanthrene was completely removed within 70 days in all the treatments in slightly alkaline soil. However, in acidic soil, complete phenanthrene removal was found only in the corn-planted treatments. The shoot and root lengths of corn grown in UG14Lr-inoculated soils were not different from those in non-inoculated soil between the treatments. The results showed that in unplanted soil, low pH adversely affected the survival and phenanthrene degradation ability of UG14Lr. Planting of corn significantly enhanced the survival of UG14Lr cells in both the bulk and rhizospheric soil, and this in turn significantly improved phenanthrene degradation in acidic soil. Re-inoculation of UG14Lr in the acidic soil increased the number of UG14Lr cells and enhanced phenanthrene degradation in unplanted soil. However, in corn-planted acidic soils, re-inoculation of UG14Lr did not further enhance the already active phenanthrene degradation occurring in both the bulk or rhizospheric soils.

  8. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    SciTech Connect

    Aylward, Frank O.; Burnum-Johnson, Kristin E.; Tringe, Susannah G.; Teiling, Clotilde; Tremmel, Daniel; Moeller, Joseph; Scott, Jarrod J.; Barry, Kerrie W.; Piehowski, Paul D.; Nicora, Carrie D.; Malfatti, Stephanie; Monroe, Matthew E.; Purvine, Samuel O.; Goodwin, Lynne A.; Smith, Richard D.; Weinstock, George; Gerardo, Nicole; Suen, Garret; Lipton, Mary S.; Currie, Cameron R.

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  9. Leucoagaricus gongylophorus produces diverse enzymes for the degradation of recalcitrant plant polymers in leaf-cutter ant fungus gardens.

    PubMed

    Aylward, Frank O; Burnum-Johnson, Kristin E; Tringe, Susannah G; Teiling, Clotilde; Tremmel, Daniel M; Moeller, Joseph A; Scott, Jarrod J; Barry, Kerrie W; Piehowski, Paul D; Nicora, Carrie D; Malfatti, Stephanie A; Monroe, Matthew E; Purvine, Samuel O; Goodwin, Lynne A; Smith, Richard D; Weinstock, George M; Gerardo, Nicole M; Suen, Garret; Lipton, Mary S; Currie, Cameron R

    2013-06-01

    Plants represent a large reservoir of organic carbon comprised primarily of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous fungus that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and, using genomic and metaproteomic tools, we investigate its role in lignocellulose degradation in the gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in ant gardens and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that likely play an important role in lignocellulose degradation. Our study provides a detailed analysis of plant biomass degradation in leaf-cutter ant fungus gardens and insight into the enzymes underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  10. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    NASA Astrophysics Data System (ADS)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  11. Environmental assessment for the salvage/demolition of 200 West Area, 200 East Area, and 300 Area steam plants

    SciTech Connect

    1996-10-01

    This environmental assessment has been prepared to assess potential environmental impacts associated with the US Department of Energy`s proposed action: the salvage/demolition of the 200 West Area, 200 East Area, and 300 Area Steam Plants and steam distribution piping. Impact information will be used by the US Department of Energy, Richland Operations Office Manager, to determine if the proposed action is a major federal action significantly affecting the quality of the human environment. If the proposed action is determined to be major and significant, an environmental impact statement will be prepared. If the proposed action is determined not to be major and significant, a Finding of No Significant Impact (FONSI) will be issued and the action can proceed. The proposed action involves the salvage and demolition of the 200 West Area, 200 East Are, and 300 Area steam plants and their associated steam distribution piping, equipment, and ancillary facilities. Activities include the salvaging and recycling of all materials, wastes, and equipment where feasible, with waste minimization efforts utilized.

  12. Effects of ephemeral gully erosion on soil degradation in a cultivated area in Sicily

    NASA Astrophysics Data System (ADS)

    La Spada, Carmelo; Capra, Antonina; Gelsomino, Antonio; Ollobarren del Barrio, Paul

    2015-04-01

    Water erosion is the main cause of soil degradation on cultivated lands under Mediterranean climate. In this conditions, gully erosion is a major contributor to loss of soil productivity due to the big amounts of soil removed from the most productive top-layer. However, only few studies on the effects of gully erosion and artificial controlling measures on soil degradation are available. The study analyzes the effects of the ephemeral gully erosion and infilling by tillage operations on several physical-chemical soil properties influencing the soil productivity. The study area is located in the center of Sicily, in an agricultural context characterized by ephemeral gully erosion. Five fields with different crops and soil characteristics affected by this type of erosion were selected. Currently, local farmers adopt the artificial measure to gully filling activities to control gully erosion and continue the same agricultural management practice. Therefore, the studied ephemeral gullies show a cyclic behavior. They appear during the rainy season, are erased from July to October by soil infill from areas adjacent to the channel using ordinary tillage equipment, and, in most years, they reappear in the same position during the following rainy season. For each situation, 20 samples were taken, located on 5 transects in the direction perpendicular to the ephemeral gully, in specific positions: 2 outside the erosive channel (one in the valley-deposit area and one upstream of the basin in the undisturbed area), and 3 along the same. For each transect, the samples were collected in 4 different positions: one inside the ephemeral gully, the other 3 in external points spaced to represent the areas affected by the annual process of erosion and infilling of the gully. For each sample, a set of the main chemical and physical soil characteristics which influence the soil fertility were determined: particle size, pH, electrical conductivity, total content of carbonates, nitrates

  13. Cometabolic Degradation of Trichloroethene by Rhodococcus sp. Strain L4 Immobilized on Plant Materials Rich in Essential Oils▿ †

    PubMed Central

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-01-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to 68 μM TCE and degraded TCE continuously. The activity of immobilized cells, which had been inactivated partially during TCE degradation, could be reactivated by incubation in mineral salts medium without TCE. These findings demonstrate that immobilization of Rhodococcus sp. L4 on plant materials rich in essential oils is a promising method for efficient cometabolic degradation of TCE. PMID:20472723

  14. Effect of radiation-degraded chitosan on plants stressed with vanadium

    NASA Astrophysics Data System (ADS)

    Xuan Tham, Le; Nagasawa, Naotsugu; Matsuhashi, Shinpei; Ishioka, Noriko S.; Ito, Takehito; Kume, Tamikazu

    2001-05-01

    The toxicity of vanadium (V) and the effect of chitosan has been investigated on soybean, rice, wheat and barley. Wheat and barley were sensitive to V than rice and soybean but all seedlings of these plants were damaged at 2.5 μg/ml V (in VCl 3). These damages were reduced by application of radiation-degraded chitosan. The recovery of growth and reduction of V levels in seedlings were obtained by the treatments with 10-100 μg/ml chitosan irradiated at 70-200 kGy of γ-rays in 1% solution. The reductions of V and Fe contents in plants were due to the ability of chitosan to form chelate complexes with metals in solution. The result of BAS analysis shows that the absorption and transportation of 48V to the leaf from root was suppressed with irradiated chitosan. Therefore, it can be concluded that chitosan irradiated at suitable doses (ca. 100 kGy) is effective as plant growth promoters and heavy metal eliminators in crop production.

  15. Can salt marsh plants influence levels and distribution of DDTs in estuarine areas?

    NASA Astrophysics Data System (ADS)

    Carvalho, Pedro N.; Rodrigues, Pedro Nuno R.; Evangelista, Rafael; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2011-07-01

    Sediments are depositories of toxic substances such as organochlorine pesticides and there is a global need for their removal in contaminated environments. Studies that combine contaminated sediments and phytoremediation are relatively recent and their number has been increasing. This work aimed to investigate whether salt marsh plants (sea club-rush Scirpus maritimus, sea rush Juncus maritimus and sea purslane Halimione portulacoides) can favor DDT and metabolites remediation in estuarine environment. For this purpose the levels of DDT, DDE and DDD were compared in vegetated and non-vegetated sediments from an estuary in the North of Portugal ( in-situ study) and from another in the South of Portugal ( ex-situ study). Results obtained both in the in-situ study, involving S. maritimus and J. maritimus, and in the ex-situ study, involving H. portulacoides, indicated that these plants did not have a significant role in DDTs removal and/or degradation. Therefore, it seems that the tested plants cannot influence levels and distribution of DDTs in estuarine areas.

  16. Expanding Kenya's protected areas under the Convention on Biological Diversity to maximize coverage of plant diversity.

    PubMed

    Scherer, Laura; Curran, Michael; Alvarez, Miguel

    2017-04-01

    Biodiversity is highly valuable and critically threatened by anthropogenic degradation of the natural environment. In response, governments have pledged enhanced protected-area coverage, which requires scarce biological data to identify conservation priorities. To assist this effort, we mapped conservation priorities in Kenya based on maximizing alpha (species richness) and beta diversity (species turnover) of plant communities while minimizing economic costs. We used plant-cover percentages from vegetation surveys of over 2000 plots to build separate models for each type of diversity. Opportunity and management costs were based on literature data and interviews with conservation organizations. Species richness was predicted to be highest in a belt from Lake Turkana through Mount Kenya and in a belt parallel to the coast, and species turnover was predicted to be highest in western Kenya and along the coast. Our results suggest the expanding reserve network should focus on the coast and northeastern provinces of Kenya, where new biological surveys would also fill biological data gaps. Meeting the Convention on Biological Diversity target of 17% terrestrial coverage by 2020 would increase representation of Kenya's plant communities by 75%. However, this would require about 50 times more funds than Kenya has received thus far from the Global Environment Facility.

  17. Review of Recent Aging-Related Degradation Occurrences of Structures and Passive Components in U.S. Nuclear Power Plants

    SciTech Connect

    Nie,J.; Braverman, J.; Hofmayer, C.; Choun, Y.-S.; Kim, M.K.; Choi, I.-K.

    2009-04-02

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic capability evaluation technology for degraded structures and passive components (SPCs) under a multi-year research agreement. To better understand the status and characteristics of degradation of SPCs in nuclear power plants (NPPs), the first step in this multi-year research effort was to identify and evaluate degradation occurrences of SPCs in U.S. NPPs. This was performed by reviewing recent publicly available information sources to identify and evaluate the characteristics of degradation occurrences and then comparing the information to the observations in the past. Ten categories of SPCs that are applicable to Korean NPPs were identified, comprising of anchorage, concrete, containment, exchanger, filter, piping system, reactor pressure vessel, structural steel, tank, and vessel. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

  18. Degradation, dechlorination, and decolorization of chlorolignins in bleach plant effluent by the white-rot fungus Phanerochaete chrysosporium

    SciTech Connect

    Joyce, T.W.; Yin, C.F.; Chang, H.M. . Dept. of Wood and Paper Science)

    1988-01-01

    A white-rot fungus Phanerochaete chrysosporium effectively removes COD, color, and TOCl from bleach plant effluents due to its enzymatic ligninolytic system. The effects of glucose, a required cosubstrate, and Tween 80, a surfactant, on the degradation of chlorolignins, and thereby, the COD, color, TOCl are studied. A glucose concentration exceeding 2,000 mg/1 during the fungal treatment does not adversely effect the decolorization rate. However, it does effect the rate of degradation and dechlorination of chlorolignins. Tween 80 appears to have an effect on color removal, but not on degradation and dechlorination. However, the addition of 0.1% Tween 80 during fungal treatment prolongs the fungal lifetime.

  19. Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant.

    PubMed

    Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba

    2016-05-01

    An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade.

  20. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls

    PubMed Central

    Bauer, Stefan; Vasu, Prasanna; Persson, Staffan; Mort, Andrew J.; Somerville, Chris R.

    2006-01-01

    To facilitate analysis of plant cell wall polysaccharide structure and composition, we cloned 74 genes encoding polysaccharide-degrading enzymes from Aspergillus nidulans, Aspergillus fumigatus, and Neurospora crassa and expressed the genes as secreted proteins with C-terminal Myc and 6× His tags. Most of the recombinant enzymes were active in enzyme assays, and optima for pH and temperature were established. A subset of the enzymes was used to fragment polysaccharides from the irregular xylem 9 (irx9) mutant of Arabidopsis. The analysis revealed a decrease in the abundance of xylan in the mutant, indicating that the IRX9 gene, which encodes a putative family 43 glycosyltransferase, is required for xylan synthesis. PMID:16844780

  1. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls.

    PubMed

    Bauer, Stefan; Vasu, Prasanna; Persson, Staffan; Mort, Andrew J; Somerville, Chris R

    2006-07-25

    To facilitate analysis of plant cell wall polysaccharide structure and composition, we cloned 74 genes encoding polysaccharide-degrading enzymes from Aspergillus nidulans, Aspergillus fumigatus, and Neurospora crassa and expressed the genes as secreted proteins with C-terminal Myc and 6x His tags. Most of the recombinant enzymes were active in enzyme assays, and optima for pH and temperature were established. A subset of the enzymes was used to fragment polysaccharides from the irregular xylem 9 (irx9) mutant of Arabidopsis. The analysis revealed a decrease in the abundance of xylan in the mutant, indicating that the IRX9 gene, which encodes a putative family 43 glycosyltransferase, is required for xylan synthesis.

  2. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    SciTech Connect

    Remec, Igor; Rosseel, Thomas M; Field, Kevin G; Pape, Yann Le

    2016-01-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete with a particular focus on radiation-induced effects. Based on the projected neutron fluence (E > 0.1 MeV) values in the concrete biological shields of the US PWR fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to assure reliable risk assessment for NPPs extended operation.

  3. Relationship soil-water-plant after the dry season in dry Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.

    2012-04-01

    Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the

  4. Effects of resource addition on recovery of production and plant functional composition in degraded semiarid grasslands.

    PubMed

    Chen, Qing; Hooper, David U; Li, Hui; Gong, Xiao Ying; Peng, Fei; Wang, Hong; Dittert, Klaus; Lin, Shan

    2017-02-28

    Degradation of semiarid ecosystems from overgrazing threatens a variety of ecosystem services. Rainfall and nitrogen commonly co-limit production in semiarid grassland ecosystems; however, few studies have reported how interactive effects of precipitation and nitrogen addition influence the recovery of grasslands degraded by overgrazing. We conducted a 6-year experiment manipulating precipitation (natural precipitation and simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha(-1)) addition at two sites with different histories of livestock grazing (moderately and heavily grazed) in Inner Mongolian steppe. Our results suggest that recovery of plant community composition and recovery of production can be decoupled. Perennial grasses provide long-term stability of high-quality forage production in this system. Supplemental water combined with exclosures led, in the heavily grazed site, to the strongest recovery of perennial grasses, although widespread irrigation of rangeland is not a feasible management strategy in many semiarid and arid regions. N fertilization combined with exclosures, but without water addition, increased dominance of unpalatable annual species, which in turn retarded growth of perennial species and increased inter-annual variation in primary production at both sites. Alleviation of grazing pressure alone allowed recovery of desired perennial species via successional processes in the heavily grazed site. Our experiments suggest that recovery of primary production and desirable community composition are not necessarily correlated. The use of N fertilization for the management of overgrazed grassland needs careful and systematic evaluation, as it has potential to impede, rather than aid, recovery.

  5. Functional microbial diversity dynamics in common effluent treatment plants of South Gujarat and hydrocarbon degradation.

    PubMed

    Zaveri, Purvi; Munshi, Nasreen; Vaidya, Alok; Jha, Sanjay; Kumar, G Naresh

    2015-06-01

    Common effluent treatment plants (CETPs) of South Gujarat region, India, process wastewater generated by more than 2500 industries because of the nonfeasibility of processing at the individual industrial unit. This study assessed functional microbial diversity in wastewater samples of CETPs over a geological belt using Ecoplate®, isolation of the most abundant bacteria, and screening for hydrocarbon degradation. The high evenness (EPielou) values (0.9) in almost all samples indicated a highly even community structure. Principal component analysis of carbon source utilization showed a cluster of all inlet samples except E1 and another cluster of all outlet samples; aeration tank community samples were dispersed. In spite of the high richness found in microbial communities, 60 morphologically similar organisms were observed and isolated; 46 out of them were subjected to amplified ribosomal DNA restriction analysis with MboI, HaeIII, and TaqI enzyme, followed by UPGMA clustering. In screening the most abundant bacteria from each cluster, one of the cultures showed a high potential for hydrocarbon degradation and was identified as Pseudomonas citronellolis by 16S rDNA sequencing. Because of its highly adapted inherent nature, this bacterium may help augment the conventional procedure in wastewater treatment and efficiently decrease the organic load.

  6. Enhancement of Micropollutant Degradation at the Outlet of Small Wastewater Treatment Plants

    PubMed Central

    Rossi, Luca; Queloz, Pierre; Brovelli, Alessandro; Margot, Jonas; Barry, D. A.

    2013-01-01

    The aim of this work was to evaluate low-cost and easy-to-operate engineering solutions that can be added as a polishing step to small wastewater treatment plants to reduce the micropollutant load to water bodies. The proposed design combines a sand filter/constructed wetland with additional and more advanced treatment technologies (UV degradation, enhanced adsorption to the solid phase, e.g., an engineered substrate) to increase the elimination of recalcitrant compounds. The removal of five micropollutants with different physico-chemical characteristics (three pharmaceuticals: diclofenac, carbamazepine, sulfamethoxazole, one pesticide: mecoprop, and one corrosion inhibitor: benzotriazole) was studied to evaluate the feasibility of the proposed system. Separate batch experiments were conducted to assess the removal efficiency of UV degradation and adsorption. The efficiency of each individual process was substance-specific. No process was effective on all the compounds tested, although elimination rates over 80% using light expanded clay aggregate (an engineered material) were observed. A laboratory-scale flow-through setup was used to evaluate interactions when removal processes were combined. Four of the studied compounds were partially eliminated, with poor removal of the fifth (benzotriazole). The energy requirements for a field-scale installation were estimated to be the same order of magnitude as those of ozonation and powdered activated carbon treatments. PMID:23484055

  7. Ruderal plants in remaining Cerrado areas: floristic survey, origin and mycorrhization

    NASA Astrophysics Data System (ADS)

    José Neto, Maria; de Cássia Brassaloti Otsubo, Helena; Luciene Maltoni, Kátia; Rodrigues Cassiolato, Ana Maria

    2015-04-01

    The urbanization process creates new ecosystems that harbor flora which has specialized in living in anthropogenically altered environments, since the advent of agriculture and urbanization. Plant specialization in new ecosystems has been due to accelerated population growth and extensive occupied spaces on the planet surface. This study was looking at the floristic survey and origin, as well as arbuscular mycorrhization of ruderal plants, in remaining Cerrado areas in the city of Três Lagoas-MS, Brazil. It was also to expand knowledge about native and introduced vegetation in anthropogenic environments. The survey was conducted for a year. From all species ruderal plants founded, plants from 49 species were collected with the purpose of this study and report the occurrence or not of AM colonization, by classifying root colonization, of the species as: very high; high; medium; low and absent when presented a index of colonization> 80%, 79-50%, 49-20%, 19-1% and 0%, respectively. Two hundred sixty-six species, distributed into 53 botanical families were found. The flora of Três Lagoas-MS is composed of native and exotic plants (82.72% from the Americas and 17.28% from the Old World and Australia). There were 220 species native to the America's, but the largest amount (60.45%) were Brazil native growing plants. Smaller percentage of this (28.63%) was found to come from the cerrado, which indicates that the ruderal vegetation was well represented by native species. Of the 49 species chosen for verification of arbuscular mycorrhizal colonization, 27 exhibited very high colonization; two were high; two were medium; eleven were low and seven species showed no mycorrhizal colonization, leading to the conclusion that most ruderal plants showed mycorrhizal colonization. The soil fertility, for both area, were considered higher than the typical cerrado, and by the average number of AMF spores (152 per 100 g of dry soil-1) may not even be considered degraded. This urban

  8. Novel ideas for maximising dew collection to aid plant establishment to combat desertification and restore degraded dry and arid lands

    NASA Astrophysics Data System (ADS)

    Kotzen, Benz

    2014-05-01

    This paper focuses on the potential of dew to provide water to plants and potentially to people as well in remote and difficult to reach areas where rainfall and underground water cannot be harvested. The combat of desertification and the restoration of degraded and desertified dry and arid lands has never been more urgent. A key practical component of this strategy is the restoration of habitat with planting. But for habitat and planting to survive there needs to be an adequate supply of water. In most cases providing water to the plant's roots is vital. In some areas where habitats have been destroyed, sufficient water is immediately available, for example through seasonal rainfall, or it can be harvested to concentrate adequate supplies of water to the roots. However, in arid and hyper arid areas, as well as in some dryland areas, a consistent and adequate supply of water cannot be provided by any conventional proven method. Thus, as the need to combat desertification and to restore desertified dry and arid land increases, so the need to find novel methods of establishing and maintaining planting and thus habitat increases. In more traditional land management scenarios this can be achieved through manipulating landform on a micro and macro scale, for example, by creating catchments, thereby collecting precipitation and directing it to the plants. Where this cannot be done, other means of water supply are usually required. Bainbridge (2007) and others have shown that supplying water to plants is possible through a number of traditional methods, for example, using clay pots. But most of these techniques require an introduced source of water, for example, obtained through water harvesting methods or by delivering water to site in tanks and by water bowser. This can work but requires continuous manpower. It is expensive and can be physically prohibitive in areas where access is difficult and/or remote. The concept of using dew to supply water in drylands is not new

  9. Species area relationships in mediterranean-climate plant communities

    USGS Publications Warehouse

    Keeley, Jon E.; Fotheringham, C.J.

    2003-01-01

    Aim To determine the best-fit model of species–area relationships for Mediterranean-type plant communities and evaluate how community structure affects these species–area models.Location Data were collected from California shrublands and woodlands and compared with literature reports for other Mediterranean-climate regions.Methods The number of species was recorded from 1, 100 and 1000 m2 nested plots. Best fit to the power model or exponential model was determined by comparing adjusted r2 values from the least squares regression, pattern of residuals, homoscedasticity across scales, and semi-log slopes at 1–100 m2 and 100–1000 m2. Dominance–diversity curves were tested for fit to the lognormal model, MacArthur's broken stick model, and the geometric and harmonic series.Results Early successional Western Australia and California shrublands represented the extremes and provide an interesting contrast as the exponential model was the best fit for the former, and the power model for the latter, despite similar total species richness. We hypothesize that structural differences in these communities account for the different species–area curves and are tied to patterns of dominance, equitability and life form distribution. Dominance–diversity relationships for Western Australian heathlands exhibited a close fit to MacArthur's broken stick model, indicating more equitable distribution of species. In contrast, Californian shrublands, both postfire and mature stands, were best fit by the geometric model indicating strong dominance and many minor subordinate species. These regions differ in life form distribution, with annuals being a major component of diversity in early successional Californian shrublands although they are largely lacking in mature stands. Both young and old Australian heathlands are dominated by perennials, and annuals are largely absent. Inherent in all of these ecosystems is cyclical disequilibrium caused by periodic fires. The

  10. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  11. [Numerical taxonomy of medicinal plants from Areae in Zhejiang Province].

    PubMed

    Sun, H; Xue, X; Ye, Y

    2000-12-01

    Numerical taxonomic studies were done on 13 species from 3 genera of tribe Areae in Zhejiang, used as 13 operational taxonomic units (OTUS). 40 morphological characters were used for analysis. Euclid distance coefficients used to show quantitative index of similarity among OTUS were computed by standardized data. The dendrograms from 8 systematic cluster methods including single linkage method, complete linkage method, median method (beta = 0 WPGMA) and (beta = -0.25 WPGMA), centroid method, group average method, variable group average method (beta = -0.25) and variable method (beta = 0.25) were constructed respectively. WPGMA was slected as the optimal one by computing the comparative coefficients of every cluster result and the boundary of taxa in its dendrogram determined by a method to treated IBM computer with the program by BASIC language. The Results showed that 13 OTUs were classified as 3 clusters by broken line L2, namely, cluster I: Typhonium; cluster II: Arisaema; cluster III: Pinellia, and cluster II further as 4 groups by L1, which belong to Section Pistillata, Arisaema, Sinarisaema and Tortuosa respectively. Being consistent with those from classical taxonomy, the results in this study may be helpful to the classification and identification of the medicinal plants from tribe Areae in Zhejiang Privince.

  12. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco

    PubMed Central

    Lowe-Power, Tiffany M.; Jacobs, Jonathan M.; Ailloud, Florent; Fochs, Brianna; Prior, Philippe

    2016-01-01

    ABSTRACT Plants use the signaling molecule salicylic acid (SA) to trigger defenses against diverse pathogens, including the bacterial wilt pathogen Ralstonia solanacearum. SA can also inhibit microbial growth. Most sequenced strains of the heterogeneous R. solanacearum species complex can degrade SA via gentisic acid to pyruvate and fumarate. R. solanacearum strain GMI1000 expresses this SA degradation pathway during tomato pathogenesis. Transcriptional analysis revealed that subinhibitory SA levels induced expression of the SA degradation pathway, toxin efflux pumps, and some general stress responses. Interestingly, SA treatment repressed expression of virulence factors, including the type III secretion system, suggesting that this pathogen may suppress virulence functions when stressed. A GMI1000 mutant lacking SA degradation activity was much more susceptible to SA toxicity but retained the wild-type colonization ability and virulence on tomato. This may be because SA is less important than gentisic acid in tomato defense signaling. However, another host, tobacco, responds strongly to SA. To test the hypothesis that SA degradation contributes to virulence on tobacco, we measured the effect of adding this pathway to the tobacco-pathogenic R. solanacearum strain K60, which lacks SA degradation genes. Ectopic addition of the GMI1000 SA degradation locus, including adjacent genes encoding two porins and a LysR-type transcriptional regulator, significantly increased the virulence of strain K60 on tobacco. Together, these results suggest that R. solanacearum degrades plant SA to protect itself from inhibitory levels of this compound and also to enhance its virulence on plant hosts like tobacco that use SA as a defense signal molecule. PMID:27329752

  13. Enhanced cytokinin synthesis in tobacco plants expressing PSARK::IPT prevents the degradation of photosynthetic protein complexes during drought.

    PubMed

    Rivero, Rosa M; Gimeno, Jacinta; Van Deynze, Allen; Walia, Harkamal; Blumwald, Eduardo

    2010-11-01

    To identify genes associated with the cytokinin-induced enhanced drought tolerance, we analyzed the transcriptome of wild-type and transgenic tobacco (Nicotiana tabacum 'SR1') plants expressing P(SARK)::IPT (for senescence-associated receptor kinase::isopentenyltransferase) grown under well-watered and prolonged water deficit conditions using the tomato GeneChip. During water deficit, the expression of genes encoding components of the carotenoid pathway leading to ABA biosynthesis was enhanced in the wild-type plants, but repressed in the transgenic plants. On the other hand, transgenic plants displayed higher transcript abundance of genes involved in the brassinosteroid biosynthetic pathways. Several genes coding for proteins associated with Chl synthesis, light reactions, the Calvin-Benson cycle and photorespiration were induced in the transgenic plants. Notably, increased transcript abundance of genes associated with PSII, the cytochrome b(6)/f complex, PSI, NADH oxidoreductase and the ATP complex was found in the P(SARK)::IPT plants. The increased transcript abundance was assessed by quantitative PCR and the increased protein levels were confirmed by Western blots. Our results indicated that while the photosynthetic apparatus in the wild-type plants was degraded, photosynthesis in the transgenic plants was not affected and photosynthetic proteins were not degraded. During water deficit, wild-type plants displayed a significant reduction in electron transfer and photochemical quenching, with a marked increase in non-photochemical quenching, suggesting a decrease in energy transfer to the PSII core complexes and an increase in cyclic electron transfer reactions.

  14. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    NASA Astrophysics Data System (ADS)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  15. Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen

    PubMed Central

    Brunner, Patrick C.; Torriani, Stefano F.F.; Croll, Daniel; Stukenbrock, Eva H.; McDonald, Bruce A.

    2013-01-01

    Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle. PMID:23515261

  16. Hydrological character of the soil of a degraded area: comparison of analysis physical, chemical and floristic vegetational

    NASA Astrophysics Data System (ADS)

    Manfredi, Paolo; Cassinari, Chiara; Giupponi, Luca; Sichel, Giorgio Maria; Trevisan, Marco

    2013-04-01

    Extractor (Piastre di Richards): were carried out from water retention curves and calculated the values of percolating water (water circulation) and the useful water (maximum available water) were also determined physical and chemical parameters that most affect the hydrological characteristics of the soil such as texture, organic carbon, salinity and total limestone. The same soils were subjected to a floristic and vegetational analysis with relative comparison of the biological spectrum of the site with the spectra of other territories taken in comparison (Piacenza, Emilia Romagna, northern Italy, southern Italy). The 40% of the plants of the area is represented by Therophytes, species that are adapted to live in environments disturbed by human activities or climate. The high frequency of this species does not seem motivated either by the ombrothermic diagram elaborated with the help of the climatic data of the meteorological station of Piacenza, which was observed for a brief period the appearance of water deficit, neither linked to the interference from human activities which turns out to be low. Keywords: degraded soils, hydrological character, floristic vegetation analysis

  17. Micropore surface area of alkali-soluble plant macromolecules (humic acids) drives their decomposition rates in soil.

    PubMed

    Papa, Gabriella; Spagnol, Manuela; Tambone, Fulvia; Pilu, Roberto; Scaglia, Barbara; Adani, Fabrizio

    2010-02-01

    Previous studies suggested that micropore surface area (MSA) of alkali-soluble bio-macromolecules of aerial plant residues of maize constitutes an important factor that explains their humification in soil, that is, preservation against biological degradation. On the other hand, root plant residue contributes to the soil humus balance, as well. Following the experimental design used in a previous paper published in this journal, this study shows that the biochemical recalcitrance of the alkali-soluble acid-insoluble fraction of the root plant material, contributed to the root maize humification of both Wild-type maize plants and its corresponding mutant brown midrib (bm3), this latter characterized by reduced lignin content. Humic acids (HAs) existed in root (root-HAs) were less degraded in soil than corresponding HAs existed in shoot (shoot-HAs): shoot-HAs bm3 (48%)>shoot-HAs Wild-type (37%)>root-HAs Wild-type (33%)>root-HAs bm3 (22%) (degradability shown in parenthesis). These differences were related to the MSA of HAs, that is, root-HAs having a higher MSA than shoot-HAs: shoot-HAs bm3 (41.43+/-1.2m(2)g(-1))degradability of HAs and HA-MSAs (r=-0.88, P<0.08, n=4), confirming that MSA was able to explain bio-macromolecules recalcitrance in soil.

  18. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale

    SciTech Connect

    Vargas, Ronald; Nunez, Oswaldo

    2010-02-15

    Photodegradation/mineralization (TiO{sub 2}/UV Light) of the hydrocarbons: p-nitrophenol (PNP), naphthalene (NP) and dibenzothiophene (DBT) at three different reactors: batch bench reactor (BBR), tubular bench reactor (TBR) and tubular pilot-plant (TPP) were kinetically monitored at pH = 3, 6 and 10, and the results compared using normalized UV light exposition times. The results fit the Langmuir-Hinshelwood (LH) model; therefore, LH adsorption equilibrium constants (K) and apparent rate constants (k) are reported as well as the apparent pseudo-first-order rate constants, k{sub obs}{sup '} = kK/(1 + Kc{sub r}). The batch bench reactor is the most selective reactor toward compound and pH changes in which the reactivity order is: NP > DBT > PNP, however, the catalyst adsorption (K) order is: DBT > NP > PNP at the three pH used but NP has the highest k values. The tubular pilot-plant (TPP) is the most efficient of the three reactors tested. Compound and pH photodegradation/mineralization selectivity is partially lost at the pilot plant where DBT and NP reaches ca. 90% mineralization at the pH used, meanwhile, PNP reaches only 40%. The real time, in which these mineralization occur are: 180 min for PNP and 60 min for NP and DBT. The mineralization results at the TPP indicate that for the three compounds, the rate limiting step is the same as the degradation one. So that, there is not any stable intermediate that may accumulate during the photocatalytic treatment. (author)

  19. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination.

    PubMed

    Liu, Juan; Liu, Shuang; Sun, Kai; Sheng, Yuehui; Gu, Yujun; Gao, Yanzheng

    2014-01-01

    A phenanthrene-degrading endophytic bacterium, Pn2, was isolated from Alopecurus aequalis Sobol grown in soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Based on morphology, physiological characteristics and the 16S rRNA gene sequence, it was identified as Massilia sp. Strain Pn2 could degrade more than 95% of the phenanthrene (150 mg · L(-1)) in a minimal salts medium (MSM) within 48 hours at an initial pH of 7.0 and a temperature of 30 °C. Pn2 could grow well on the MSM plates with a series of other PAHs, including naphthalene, acenaphthene, anthracene and pyrene, and degrade them to different degrees. Pn2 could also colonize the root surface of ryegrass (Lolium multiflorum Lam), invade its internal root tissues and translocate into the plant shoot. When treated with the endophyte Pn2 under hydroponic growth conditions with 2 mg · L(-1) of phenanthrene in the Hoagland solution, the phenanthrene concentrations in ryegrass roots and shoots were reduced by 54% and 57%, respectively, compared with the endophyte-free treatment. Strain Pn2 could be a novel and useful bacterial resource for eliminating plant PAH contamination in polluted environments by degrading the PAHs inside plants. Furthermore, we provide new perspectives on the control of the plant uptake of PAHs via endophytic bacteria.

  20. Degradation of plant cuticles in soils: impact on formation and sorptive ability of humin-mineral matrices.

    PubMed

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2015-05-01

    Plant cuticles are important precursors for soil organic matter, in particular for soil humin, which is considered an efficient sorbent for organic pollutants. In this study, we examined degradation and transformation of cuticles isolated from fruit and leaves in loamy sand and sandy clay loessial arid brown soils. We then studied sorption of phenanthrene and carbamazepine to humin-mineral matrices isolated from the incubated soils. Low degradation (22%) was observed for agave cuticle in a sandy clay soil system, whereas high degradation (68-78%) was obtained for agave cuticle in a loamy sand soil system and for loamy sand and sandy clay soils amended with tomato cuticle. During incubation, most of the residual organic matter was accumulated in the humin fraction. Sorption of phenanthrene was significantly higher for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with soils without cuticle application. Sorption of carbamazepine to humin-mineral matrices was not affected by cuticle residues. Cooperative sorption of carbamazepine on humin-mineral matrices isolated from sandy clay soil is suggested. Sorption-desorption hysteresis of both phenanthrene and carbamazepine was lower for humin-mineral matrices obtained from soils incubated with plant cuticles as compared with nonamended soils. Our results show that cuticle composition significantly affects the rate and extent of cuticle degradation in soils and that plant cuticle application influences sorption and desorption of polar and nonpolar pollutants by humin-mineral matrices.

  1. Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass

    PubMed Central

    Hirano, Katsuaki; Kurosaki, Masahiro; Nihei, Satoshi; Hasegawa, Hiroki; Shinoda, Suguru; Haruki, Mitsuru; Hirano, Nobutaka

    2016-01-01

    The cellulosome is a supramolecular multienzyme complex comprised of a wide variety of polysaccharide-degrading enzymes and scaffold proteins. The cellulosomal enzymes that bind to the scaffold proteins synergistically degrade crystalline cellulose. Here, we report in vitro reconstitution of the Clostridium thermocellum cellulosome from 40 cellulosomal components and the full-length scaffoldin protein that binds to nine enzyme molecules. These components were each synthesized using a wheat germ cell-free protein synthesis system and purified. Cellulosome complexes were reconstituted from 3, 12, 30, and 40 components based on their contents in the native cellulosome. The activity of the enzyme-saturated complex indicated that greater enzymatic variety generated more synergy for the degradation of crystalline cellulose and delignified rice straw. Surprisingly, a less complete enzyme complex displaying fewer than nine enzyme molecules was more efficient for the degradation of delignified rice straw than the enzyme-saturated complex, despite the fact that the enzyme-saturated complex exhibited maximum synergy for the degradation of crystalline cellulose. These results suggest that greater enzymatic diversity of the cellulosome is crucial for the degradation of crystalline cellulose and plant biomass, and that efficient degradation of different substrates by the cellulosome requires not only a different enzymatic composition, but also different cellulosome structures. PMID:27759119

  2. Genetic structure of Pilosocereus gounellei (Cactaceae) as revealed by AFLP marker to guide proposals for improvement and restoration of degraded areas in Caatinga biome.

    PubMed

    Monteiro, E R; Strioto, D K; Meirelles, A C S; Mangolin, C A; Machado, M F P S

    2015-12-15

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate DNA polymorphism in Pilosocereus gounellei with the aim of differentiating samples grown in different Brazilian semiarid regions. Seven primer pairs were used to amplify 703 AFLP markers, of which 700 (99.21%) markers were polymorphic. The percentage of polymorphic markers ranged from 95.3% for the primer combination E-AAG/M-CTT to 100% for E-ACC/M-CAT, E-ACC/M-CAA, E-AGC/M-CAG, E-ACT/M-CTA, and E-AGG/M-CTG. The largest number of informative markers (126) was detected using the primer combination E-AAC/M-CTA. Polymorphism of the amplified DNA fragments ranged from 72.55% (in sample from Piauí State) to 82.79% (in samples from Rio Grande Norte State), with an average of 75.39%. Despite the high genetic diversity of AFLP markers in xiquexique, analysis using the STRUCTURE software identified relatively homogeneous clusters of xiquexique from the same location, indicating a differentiation at the molecular level, among the plant samples from different regions of the Caatinga biome. The AFLP methodology identified genetically homogeneous and contrasting plants, as well as plants from different regions with common DNA markers. Seeds from such plants can be used for further propagation of plants for establishment of biodiversity conservation units and restoration of degraded areas of the Caatinga biome.

  3. The Brazilian research contribution to knowledge of the plant communities from Antarctic ice free areas.

    PubMed

    Pereira, Antonio B; Putzke, Jair

    2013-09-01

    This work aims to summarize the results of research carried out by Brazilian researchers on the plant communities of Antarctic ice free areas during the last twenty five years. Since 1988 field work has been carried out in Elephant Island, King George Island, Nelson Island and Deception Island. During this period six papers were published on the chemistry of lichens, seven papers on plant taxonomy, five papers on plant biology, two studies on UVB photoprotection, three studies about the relationships between plant communities and bird colonies and eleven papers on plant communities from ice free areas. At the present, Brazilian botanists are researching the plant communities of Antarctic ice free areas in order to understand their relationships to soil microbial communities, the biodiversity, the distribution of the plants populations and their relationship with birds colonies. In addition to these activities, a group of Brazilian researchers are undertaking studies related to Antarctic plant genetic diversity, plant chemistry and their biotechnological applications.

  4. Accelerating the degradation of green plant waste with chemical decomposition agents.

    PubMed

    Kejun, Sun; Juntao, Zhang; Ying, Chen; Zongwen, Liao; Lin, Ruan; Cong, Liu

    2011-10-01

    Degradation of green plant waste is often difficult, and excess maturity times are typically required. In this study, we used lignin, cellulose and hemicellulose assays; scanning electron microscopy; infrared spectrum analysis and X-ray diffraction analysis to investigate the effects of chemical decomposition agents on the lignocellulose content of green plant waste, its structure and major functional groups and the mechanism of accelerated degradation. Our results showed that adding chemical decomposition agents to Ficus microcarpa var. pusillifolia sawdust reduced the contents of lignin by 0.53%-11.48% and the contents of cellulose by 2.86%-7.71%, and increased the contents of hemicellulose by 2.92%-33.63% after 24 h. With increasing quantities of alkaline residue and sodium lignosulphonate, the lignin content decreased. Scanning electron microscopy showed that, after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, lignocellulose tube wall thickness increased significantlyIncreases of 29.41%, 3.53% and 34.71% were observed after treatment with NaOH, alkaline residue and sodium lignosulphonate, respectively. Infrared spectroscopy showed that CO and aromatic skeleton stretching absorption peaks were weakened and the C-H vibrational absorption peak from out-of-plane in positions 2 and 6 (S units) (890-900 cm(-1)) was strengthened after F. microcarpa var. pusillifolia sawdust was treated with chemical decomposition agents, indicating a reduction in lignin content. Several absorption peaks [i.e., C-H deformations (asymmetry in methyl groups, -CH(3)- and -CH(2)-) (1450-1460 cm(-1)); Aliphatic C-H stretching in methyl and phenol OH (1370-1380 cm(-1)); CO stretching (cellulose and hemicellulose) (1040-1060 cm(-1))] that indicate the presence of a chemical bond between lignin and cellulose was reduced, indicating that the chemical bond between lignin and cellulose had been partially broken. X-ray diffraction analysis showed that Na

  5. Erosion and Land Degradation in Mediterranean areas as a adaptive response to Mediterranean agriiculture

    NASA Astrophysics Data System (ADS)

    Imeson, Anton

    2014-05-01

    The motivation for this session is the statement or claim that Mediterranean areas are sensitive to erosion and desertification. One result of the LEDDRA Approach, which is applying the Complex Adaptive (CAS)paradigm at study sites in Mediterranean Spain, Greece and Italy is that there is just a single socio-environmental system in which land degradation is being caused by the actions of people and the Mediterranean soils have co-eveolved with people under the influence of fire and grazing. They are therefore resilient, and this was demonstrated by Naveh and Thornes. Also the Medalus field sites showed very low rates of erosion. With examples from different Mediterranean landscapes, it is considered that Mediterranean landscapes went through an initial phase of being sensitive to erosion which ended up with the original soils before ploughing or deforestation, being eroded from most of the areas, In some places these are found. LEDDRA The Leddra approach is to consider different states which are separated by transitions. The first state is that of the deforestaion and destruction of the forest that took place 6000 10000 years ago, in the Eastern and Northern Mediterranean, and 2000 to 4,000 years ago in large areas of the Western Mediterranean, and 100 to 400 years ago in California. Australia, New Zealand and Chile. The second state involves appropriating and settling the land from indigenous people and introducing cattle and sheep and Mediterranean crops. The current state of desertification is one in which erosion occurs because of the use of specific cultivation methods and subsidies for irrigating and producing crops outside of their range. In the Mediterranean landscape State, such as found near Santiago in Chile and in Crete, society gains many cultural benefits from grazing. However, the consequences of this are that the whole ecosystem is maintained in an arid state, so that areas in Crete receiving 800-1100 mm rainfall have a semi arid vegetation, instead

  6. [Changes of plant community structure and species diversity in degradation process of Shouqu wetland of Yellow River].

    PubMed

    Hou, Yuan; Guo, Zheng-gang; Long, Rui-jun

    2009-01-01

    Shouqu wetland of Yellow River plays important roles in the ecological security of the lower reaches of Yellow River. By the method of replacing time series with spatial sequence, an investigation was made on the changes of plant species diversity in the process of the natural degradation of the wetland. A comparison was also made to study the effects of artificial drainage on the plant species diversity. The results indicated that in the degradation process of Shouqu wetland, i.e., from swamp to swamp meadow, to alpine meadow, and to steppe meadow, the dominant plants followed the pattern of hygrophytes being gradually replaced by mesophytes and xerophytes, richness index and diversity index were increasing while dominance index was decreasing, and evenness index decreased first and increased then. The species diversity had an overall increasing trend. After artificial drainage, the proportion of poisonous weeds in the plant community increased, resulting in the increase of richness index and diversity index, slight decrease of evenness index and dominance index, and gradual decrease of Sorensen index. Artificial drainage made the habitat drying, which provided a chance for some mesophytes to invade, resulting in the increase of diversity index and richness index and the decrease of evenness index. On the whole, artificial drainage increased the plant diversity in the community, but the increase accompanied with increasing poisonous weeds, and thus, led the Shouqu wetland degraded into weed type wetland.

  7. AtHESPERIN: a novel regulator of circadian rhythms with poly(A)-degrading activity in plants

    PubMed Central

    Delis, Costas; Krokida, Afrodite; Tomatsidou, Anastasia; Tsikou, Daniela; Beta, Rafailia A.A.; Tsioumpekou, Maria; Moustaka, Julietta; Stravodimos, Georgios; Leonidas, Demetres D.; Balatsos, Nikolaos A. A.; Papadopoulou, Kalliope K.

    2016-01-01

    ABSTRACT We report the identification and characterization of a novel gene, AtHesperin (AtHESP) that codes for a deadenylase in Arabidopsis thaliana. The gene is under circadian clock-gene regulation and has similarity to the mammalian Nocturnin. AtHESP can efficiently degrade poly(A) substrates exhibiting allosteric kinetics. Size exclusion chromatography and native electrophoresis coupled with kinetic analysis support that the native enzyme is oligomeric with at least 3 binding sites. Knockdown and overexpression of AtHESP in plant lines affects the expression and rhythmicity of the clock core oscillator genes TOC1 and CCA1. This study demonstrates an evolutionary conserved poly(A)-degrading activity in plants and suggests deadenylation as a mechanism involved in the regulation of the circadian clock. A role of AtHESP in stress response in plants is also depicted. PMID:26619288

  8. Implementation of research results to prevent land degradation in viticultural areas

    NASA Astrophysics Data System (ADS)

    Marqués Pérez, Maria Jose; Bienes, Ramon; de Benito, Alejandro; Velasco, Ana

    2013-04-01

    This study shows the lack of interest of land users to establish contact with scientific institutions and their reluctance to change their traditional way to manage their soils. It is conducted in Madrid and Castilla La Mancha, Spain, where the production of wine is an important source of income. The basic research was dealing with sustainable land management in sloping vineyards to prevent soil degradation. The usual reduced tillage practice in the area is compared with different cover grasses in the inter-rows of vines. The results demonstrate that these managements are able to increase soil organic matter, improve infiltration, reduce runoff and soil loss and increase soil aggregate stability. Nevertheless a decrease in production is noticed in some permanent cover treatments. A survey to know the feasibility of implementation of this sustainable land management was conducted. Less than 5% of vine growers coming to cellars and cooperatives were willing to be interviewed. Finally 64 vine growers answered a questionnaire regarding different aspects of their environmental concerns, age, land management practices and economic situation. The majority of respondents (82%) are worried about erosion problems in their sloping vineyards. They were informed about the results of the abovementioned project but only 32% of them would change the cultivation by grasses in the inter-rows. The respondents were not old (72% below 50 years old), and the agriculture was not their first activity (69% had other different sources of income). It is remarkable that they have some misunderstandings and lack of knowledge in questions regarding soil conservation. Only 3% of them receive some kind of economic aid from the institutions to avoid land degradation. This could be related to the small or medium size of their lands as 87% of them have plots smaller than 50 ha. The extension services and policy makers have to face this situation to achieve the proper implementation of scientific

  9. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling Area, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accelerated erosion caused by deforestation and soil degradation has become the primary factor limiting sustainable utilization of soil resources on the Loess Plateau of Northwestern China. We studied the physical, chemical, and microbiological processes of soil degradation along a chronosequence o...

  10. Effects of Alien Plants on Ecosystem Structure and Functioning and Implications for Restoration: Insights from Three Degraded Sites in South African Fynbos

    NASA Astrophysics Data System (ADS)

    Gaertner, Mirijam; Richardson, David M.; Privett, Sean D. J.

    2011-07-01

    We investigated the type and extent of degradation at three sites on the Agulhas Plain, South Africa: an old field dominated by the alien grass Pennisetum clandestinum Pers . (kikuyu), an abandoned Eucalyptus plantation, and a natural fynbos community invaded by nitrogen fixing—Australian Acacia species. These forms of degradation are representative of many areas in the region. By identifying the nature and degree of ecosystem degradation we aimed to determine appropriate strategies for restoration in this biodiversity hotspot. Vegetation surveys were conducted at degraded sites and carefully selected reference sites. Soil-stored propagule seed banks and macro- and micro-soil nutrients were determined. Species richness, diversity and native cover under Eucalyptus were extremely low compared to the reference site and alterations of the soil nutrients were the most severe. The cover of indigenous species under Acacia did not differ significantly from that in reference sites, but species richness was lower under Acacia and soils were considerably enriched. Native species richness was much lower in the kikuyu site, but soil nutrient status was similar to the reference site. Removal of the alien species alone may be sufficient to re-initiate ecosystem recovery at the kikuyu site, whereas active restoration is required to restore functioning ecosystems dominated by native species in the Acacia thicket and the Eucalyptus plantation. To restore native plant communities we suggest burning, mulching with sawdust and sowing of native species.

  11. Assessment and restoring soil functionality in degraded areas of organic vineyards. The preliminary results of the ReSolVe project in Italy

    NASA Astrophysics Data System (ADS)

    Priori, Simone; Agnelli, Alessandro; Castaldini, Maurizio; D'Avino, Lorenzo; D'Errico, Giada; Gagnarli, Elena; Giudi, Silvia; Goggioli, Donatella; Lagomarsino, Alessandra; Landi, Silvia; Leprini, Marco; Pellegrini, Sergio; Perria, Rita; Puccioni, Sergio; Simoni, Sauro; Storchi, Paolo; Valboa, Giuseppe; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    homogeneous patterns within the experimental plots. Nematode abundance, taxa richness and maturity (MI) and plant parasitic (PPI) indices were higher in non-degraded than degraded areas, but differences were not significant. Grapevines in degraded areas of both farms showed less vegetative vigour and significantly lower values in the SPAD colour index. The yield and the weight of the grape bunches and berries were greater in the not degraded. The grapes of degraded areas at harvest had instead a sugar content significantly higher (on average +2.5°Brix). The restoration techniques and the monitoring methodologies developed and tested during the ReSolVe project will be described in specific final guidelines. The restoration techniques will be accessible for all the European farmers and will be low cost and environmental-friendly. A protocol of analyses and measurements between the all partners will allow an effective and comparable monitoring of vineyard ecosystemic functioning in European countries. Keywords: organic, viticulture, soil functionality, biodiversity, soil management Aknowledgements: Financial support for this project is provided by funding bodies within the FP7 ERA-Net CORE Organic Plus, and cofunds from the European Commission.

  12. Chapter 3.03 - Multifunctional Enzyme Systems for Plant Cell Wall Degradation

    SciTech Connect

    Xu, Qi; Luo, Yonghua; Ding, Shi-You; Himmel, Michael E.; Bu, Lintao; Lamed, Raphael; Bayer, Edward A.

    2011-10-14

    Multifunctional enzymes refer to proteins that consist of two or more catalytic modules. Many microorganisms use multifunctional enzymes to efficiently break down the recalcitrant polymeric networks that constitute plant cell walls. Future applications of multifunctional enzymes may represent a potential solution to the problem of high enzyme cost for processing lignocellulosic biomass into fermentable sugars. Currently, commercial enzyme mixtures used in simultaneous saccharification fermentation process for biofuel production are derived primarily from free enzyme systems produced by fungi. In this context, we have analyzed the modular structures of 16 937 genes corresponding to 34 glycoside hydrolase families putatively related to the degradation of lignocellulose in the Carbohydrate Active enZyme (CAZy) database. Among these genes, 64 gene sequences have been identified to putatively encode multifunctional enzymes, and up to five catalytic modules have been found in a single polypeptide. Based on their deduced polypeptide sequences, they can be classified into four types, that is, cellulase-cellulase, cellulase-hemicellulase, hemicellulase-hemicellulase, and hemicellulase-carbohydrate esterase. The compositional modules and architectural structures of these enzymes are analyzed here, and their putative activities on breaking down cell walls are discussed. We further discuss the predicted intramolecular synergistic mechanisms between the catalytic modules, including substrate channeling, which is a mechanism often proposed for carbohydrate-binding modules residing in multifunctional enzymes. Furthermore, the potential applications of native and engineered multifunctional enzymes for biomass conversion technology are also reviewed.

  13. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals.

    PubMed

    Rizzo, L; Meric, S; Guida, M; Kassinos, D; Belgiorno, V

    2009-09-01

    Degradation kinetics and mineralization of an urban wastewater treatment plant effluent contaminated with a mixture of pharmaceutical compounds composed of amoxicillin (10 mg L(-1)), carbamazepine (5 mg L(-1)) and diclofenac (2.5 mg L(-1)) by TiO(2) photocatalysis were investigated. The photocatalytic effect was investigated using both spiked distilled water and actual wastewater solutions. The process efficiency was evaluated through UV absorbance and TOC measurements. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum) was performed to evaluate the potential toxicity of the oxidation intermediates. A pseudo-first order kinetic model was found to fit well the experimental data. The mineralization rate (TOC) of the wastewater contaminated with the pharmaceuticals was found to be really slow (t(1/2)=86.6 min) compared to that of the same pharmaceuticals spiked in distilled water (t(1/2)=46.5 min). The results from the toxicity tests of single pharmaceuticals, their mixture and the wastewater matrix spiked with the pharmaceuticals displayed a general accordance between the responses of the freshwater aquatic species (P. subscapitata>D. magna). In general the photocatalytic treatment did not completely reduce the toxicity under the investigated conditions (maximum catalyst loading and irradiation time 0.8 g TiO(2) L(-1) and 120 min respectively).

  14. Application of microchip-CE electrophoresis to follow the degradation of phenolic acids by aquatic plants.

    PubMed

    Ding, Yongsheng; Garcia, Carlos D

    2006-12-01

    In this paper, we describe the separation and detection of six phenolic acids using an electrophoretic microchip with pulsed amperometric detection (PAD). The selected phenolic acids are particularly important because of their biological activity. The analysis of these compounds is typically performed by chromatography or standard CE coupled with a wide variety of detection modes. However, these methods are slow, labor intensive, involve a multistep solvent extraction, require skilled personnel, or use bulky and expensive instrumentation. In contrast, microchip CE offers the possibility of performing simpler, less expensive, and faster analysis. In addition, integrated devices can be custom-fabricated and incorporated with portable computers to perform on-site analysis. In the present report, the effect of the separation potential, buffer pH and composition, injection time and PAD parameters were studied in an effort to optimize both the separation and detection of these phenolic acids. Using the optimized conditions, the analysis can be performed in less than 3 min, with detection limits ranging from 0.73 microM (0.10 microg/mL) for 4-hydroxyphenylacetic acid to 2.12 microM (0.29 microg/mL) for salicylic acid. In order to demonstrate the capabilities of the device, the degradation of a mixture of these acids by two aquatic plants was followed using the optimized conditions.

  15. Isolation and characterization of agar-degrading endophytic bacteria from plants.

    PubMed

    Song, Tao; Zhang, Weijia; Wei, Congchong; Jiang, Tengfei; Xu, Hui; Cao, Yi; Cao, Yu; Qiao, Dairong

    2015-02-01

    Agar is a polysaccharide extracted from the cell walls of some macro-algaes. Among the reported agarases, most of them come from marine environment. In order to better understand different sources of agarases, it is important to search new non-marine native ones. In this study, seven agar-degrading bacteria were first isolated from the tissues of plants, belonging to three genera, i.e., Paenibacillus sp., Pseudomonas sp., and Klebsiella sp. Among them, the genus Klebsiella was first reported to have agarolytic ability and the genus Pseudomonas was first isolated from non-marine environment with agarase activity. Besides, seven strains were characterized by investigating the growth and agarase production in the presence of various polysaccharides. The results showed that they could grow on several polysaccharides such as araban, carrageenan, chitin, starch, and xylan. Besides, they could also produce agarase in the presence of different polysaccharides other than agar. Extracellular agarases from seven strains were further analyzed by SDS-PAGE combined with activity staining and estimated to be 75 kDa which has great difference from most reported agarases.

  16. Assessment of the insulation degradation of cables used in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Bartoníc̆ek, B.; Hnát, V.; Plac̆ek, V.

    1999-05-01

    Cable insulating materials are usually, during their operational lifetime, exposed to a high number of various deteriorative enviromental effects resulting in their degradation. In the case of cables used in the nuclear power plant (NPP) hermetic zone these factors consist predominantly of long-term irradiation (at rather low dose rates, in the presence of oxygen) and enhanced temperature. Hence, all cables assigned for use in NPP have to be qualified for use under such severe conditions. However, not only the initial qualification but also monitoring of the actual state of the installed cables in regular intervals is now recommended. Monitoring of the actual state of the cable insulation and the prediction of their residual service life (i.e., the on-going qualification) consist of the measurement of the properties that are directly proportional to the functionality of the cables (usually the elongation at break is used as the critical parameter). For the cables installed in the NPP hermetic zone a method based on the measurement of the thermo-oxidative stability by the differential scanning calorimetry has been developed.

  17. Material Aging and Degradation Detection and Remaining Life Assessment for Plant Life Management

    SciTech Connect

    Ramuhalli, Pradeep; Henager, Charles H.; Griffin, Jeffrey W.; Meyer, Ryan M.; Coble, Jamie B.; Pitman, Stan G.; Bond, Leonard J.

    2012-12-31

    One of the major factors that may impact long term operations is structural material degradation, Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined, and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided.

  18. Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil.

    PubMed

    Thijs, Sofie; Weyens, Nele; Sillen, Wouter; Gkorezis, Panagiotis; Carleer, Robert; Vangronsveld, Jaco

    2014-07-01

    The presence of explosives in soils and the interaction with drought stress and nutrient limitation are among the environmental factors that severely affect plant growth on military soils. In this study, we seek to isolate and identify the cultivable bacteria of a 2,4-dinitrotoluene (DNT) contaminated soil (DS) and an adjacent grassland soil (GS) of a military training area aiming to isolate new plant growth-promoting (PGP) and 2,4-DNT-degrading strains. Metabolic profiling revealed disturbances in Ecocarbon use in the bare DS; isolation of cultivable strains revealed a lower colony-forming-unit count and a less diverse community associated with DS in comparison with GS. New 2,4-DNT-tolerant strains were identified by selective enrichments, which were further characterized by auxanography for 2,4-DNT use, resistance to drought stress, cold, nutrient starvation and PGP features. By selecting multiple beneficial PGP and abiotic stress-resistant strains, efficient 2,4-DNT-degrading consortia were composed. After inoculation, consortium UHasselt Sofie 3 with seven members belonging to Burkholderia, Variovorax, Bacillus, Pseudomonas and Ralstonia species was capable to successfully enhance root length of Arabidopsis under 2,4-DNT stress. After 9 days, doubling of main root length was observed. Our results indicate that beneficial bacteria inhabiting a disturbed environment have the potential to improve plant growth and alleviate 2,4-DNT stress.

  19. Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil

    PubMed Central

    Thijs, Sofie; Weyens, Nele; Sillen, Wouter; Gkorezis, Panagiotis; Carleer, Robert; Vangronsveld, Jaco

    2014-01-01

    The presence of explosives in soils and the interaction with drought stress and nutrient limitation are among the environmental factors that severely affect plant growth on military soils. In this study, we seek to isolate and identify the cultivable bacteria of a 2,4-dinitrotoluene (DNT) contaminated soil (DS) and an adjacent grassland soil (GS) of a military training area aiming to isolate new plant growth-promoting (PGP) and 2,4-DNT-degrading strains. Metabolic profiling revealed disturbances in Ecocarbon use in the bare DS; isolation of cultivable strains revealed a lower colony-forming-unit count and a less diverse community associated with DS in comparison with GS. New 2,4-DNT-tolerant strains were identified by selective enrichments, which were further characterized by auxanography for 2,4-DNT use, resistance to drought stress, cold, nutrient starvation and PGP features. By selecting multiple beneficial PGP and abiotic stress-resistant strains, efficient 2,4-DNT-degrading consortia were composed. After inoculation, consortium UHasselt Sofie 3 with seven members belonging to Burkholderia, Variovorax, Bacillus, Pseudomonas and Ralstonia species was capable to successfully enhance root length of Arabidopsis under 2,4-DNT stress. After 9 days, doubling of main root length was observed. Our results indicate that beneficial bacteria inhabiting a disturbed environment have the potential to improve plant growth and alleviate 2,4-DNT stress. PMID:24467368

  20. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS.

    SciTech Connect

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-03-22

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits.

  1. [Effects of large-area planting water hyacinth on macro-benthos community structure and biomass].

    PubMed

    Liu, Guo-Feng; Liu, Hai-Qin; Zhang, Zhi-Yong; Zhang, Ying-Ying; Yan, Shao-Hua; Zhong, Ji-Cheng; Fan, Cheng-Xin

    2010-12-01

    The effects on macro-benthos and benthos environment of planting 200 hm2 water hyacinth (E. crassipens) in Zhushan Bay, Lake Taihu, were studied during 8-10 months consecutive surveys. Results indicated that average densities of mollusca (the main species were Bellamya aeruginosa) in far-planting, near-planting and planting area were 276.67, 371.11 and 440.00 ind/m2, respectively, and biomass were 373.15, 486.57 and 672.54 g/m2, respectively, showed that average density and biomass of planting area's were higher than those of others. However, the average density and biomass of Oligochaeta (the main species was Limodrilus hoffmeisteri) and Chironomidae in planting area were lower than that of outside planting area. The density and biomass of three dominant species of benthic animal increased quickly during 8-9 months, decreased quickly in October inside and outside water hyacinth planting area. The reason of this phenomenon could be possible that lots of cyanobacteria cells died and consumed dissolve oxygen in proceed decomposing. Algae cells released lots of phosphorus and nitrogen simultaneously, so macro-benthos died in this environment. The indexes of Shannon-Weaver and Simpson indicated that water environment was in moderate polluted state. On the basis of the survey results, the large-area and high-density planting water hyacinth haven't demonstrated a great impact on macrobenthos and benthos environment in short planting time (about 6 months planting time).

  2. Polysaccharide-degrading Enzymes are Unable to Attack Plant Cell Walls without Prior Action by a "Wall-modifying Enzyme".

    PubMed

    Karr, A L; Albersheim, P

    1970-07-01

    A study of the degradation of plant cell walls by the mixture of enzymes present in Pectinol R-10 is described. A "wall-modifying enzyme" has been purified from this mixture by a combination of diethylaminoethyl cellulose, Bio Gel P-100, and carboxymethyl cellulose chromatography. Treatment of cell walls with the "wall-modifying enzyme" is shown to be a necessary prerequisite to wall degradation catalyzed by a mixture of polysaccharide-degrading enzymes prepared from Pectinol R-10 or by an alpha-galactosidase secreted by the pathogenic fungus Colletotrichum lindemuthianum. The action of the "wall-modifying enzyme" on cell walls is shown to result in both a release of water-soluble, 70% ethanol-insoluble polymers and an alteration of the residual cell wall. A purified preparation of the "wall-modifying enzyme" is unable to degrade a wide variety of polysaccharide, glycoside, and peptide substrates. However, the purified preparation of wall-modifying enzyme has a limited ability to degrade polygalacturonic acid. The fact that polygalacturonic acid inhibits the ability of the "wall-modifying enzyme" to affect cell walls suggests that the "wall-modifying enzyme" may be responsible for the limited polygalacturonic acid-degrading activity present in the purified preparation. The importance of a wall-modifying enzyme in developmental processes and in pathogenesis is discussed.

  3. Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants.

    PubMed

    Yang, Changming; Wang, Mengmeng; Chen, Haiyan; Li, Jianhua

    2011-01-01

    A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis, Zizania aquatica, and Acorus calamus. The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants. A. calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils, as compared with Z. aquatica and P. australis. Half-life time of butachlor degradation in the rhizospheric soils of P. australis, Z. aquatica, and A. calamus were 7.5, 9.8 and 5.4 days, respectively. Residual butachlor concentration in A. calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating that A. calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant. In general, microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition, despite the riparian plant types. However, rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P < 0.05) differed between riparian plant species. Compared to Z. aquatica and P. australis, A. calamus showed significantly larger microbial number, higher enzyme activities and soil respiration rates in the rhizosphere soils. The results indicated that A. calamus have a better alleviative effect on inhibition of microbial growth due to butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butachlor contamination from agricultural nonpoint pollution.

  4. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp.

    PubMed

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-06-26

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg · L(-1)) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination.

  5. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-06-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg.L-1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination.

  6. Effects of warming on chlorophyll degradation and carbohydrate accumulation of Alpine herbaceous species during plant senescence on the Tibetan Plateau.

    PubMed

    Shi, Changguang; Sun, Geng; Zhang, Hongxuan; Xiao, Bingxue; Ze, Bai; Zhang, Nannan; Wu, Ning

    2014-01-01

    Plant senescence is a critical life history process accompanied by chlorophyll degradation and has large implications for nutrient resorption and carbohydrate storage. Although photoperiod governs much of seasonal leaf senescence in many plant species, temperature has also been shown to modulate this process. Therefore, we hypothesized that climate warming would significantly impact the length of the plant growing season and ultimate productivity. To test this assumption, we measured the effects of simulated autumn climate warming paradigms on four native herbaceous species that represent distinct life forms of alpine meadow plants on the Tibetan Plateau. Conditions were simulated in open-top chambers (OTCs) and the effects on the degradation of chlorophyll, nitrogen (N) concentration in leaves and culms, total non-structural carbohydrate (TNC) in roots, growth and phenology were assessed during one year following treatment. The results showed that climate warming in autumn changed the senescence process only for perennials by slowing chlorophyll degradation at the beginning of senescence and accelerating it in the following phases. Warming also increased root TNC storage as a result of higher N concentrations retained in leaves; however, this effect was species dependent and did not alter the growing and flowering phenology in the following seasons. Our results indicated that autumn warming increases carbohydrate accumulation, not only by enhancing activities of photosynthetic enzymes (a mechanism proposed in previous studies), but also by affecting chlorophyll degradation and preferential allocation of resources to different plant compartments. The different responses to warming can be explained by inherently different growth and phenology patterns observed among the studied species. The results implied that warming leads to changes in the competitive balance among life forms, an effect that can subsequently shift vegetation distribution and species composition

  7. Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components

    PubMed Central

    Geiser, Elena; Reindl, Michèle; Blank, Lars M.; Feldbrügge, Michael

    2016-01-01

    ABSTRACT The microbial conversion of plant biomass to valuable products in a consolidated bioprocess could greatly increase the ecologic and economic impact of a biorefinery. Current strategies for hydrolyzing plant material mostly rely on the external application of carbohydrate-active enzymes (CAZymes). Alternatively, production organisms can be engineered to secrete CAZymes to reduce the reliance on externally added enzymes. Plant-pathogenic fungi have a vast repertoire of hydrolytic enzymes to sustain their lifestyle, but expression of the corresponding genes is usually highly regulated and restricted to the pathogenic phase. Here, we present a new strategy in using the biotrophic smut fungus Ustilago maydis for the degradation of plant cell wall components by activating its intrinsic enzyme potential during axenic growth. This fungal model organism is fully equipped with hydrolytic enzymes, and moreover, it naturally produces value-added substances, such as organic acids and biosurfactants. To achieve the deregulated expression of hydrolytic enzymes during the industrially relevant yeast-like growth in axenic culture, the native promoters of the respective genes were replaced by constitutively active synthetic promoters. This led to an enhanced conversion of xylan, cellobiose, and carboxymethyl cellulose to fermentable sugars. Moreover, a combination of strains with activated endoglucanase and β-glucanase increased the release of glucose from carboxymethyl cellulose and regenerated amorphous cellulose, suggesting that mixed cultivations could be a means for degrading more complex substrates in the future. In summary, this proof of principle demonstrates the potential applicability of activating the expression of native CAZymes from phytopathogens in a biocatalytic process. IMPORTANCE This study describes basic experiments that aim at the degradation of plant cell wall components by the smut fungus Ustilago maydis. As a plant pathogen, this fungus contains a

  8. Role of proteolytic enzymes in degradation of plant tissues. Summary of results of studies completed on the prior

    SciTech Connect

    Lewosz, J.; Kelman, A.; Sequeira, L.

    1991-12-31

    Strain SR 394 of Erwinia carotovora (Ecc) produced proteases constitutively in all media tested. Growth of Ecc and production of protease were enhanced significantly by the presence of poetic materials and/or plant call walls in the test media. After electrofocusing, one major and one minor protease bands, at PI 4.8 and PI 5.1, respectively, were detected. Only one band of 43 kDa was detected on SDS gels. Only one protease band was detected in SDS gels of infected plant extracts. This protease was purified to homogeneity. It in a highly thermostable metal protease; it degrades gelatin, soluble collagen and hide powderazure, shows weak activity on casein and azocasein, but does not degrade insoluble collagen or elastin.

  9. The plant hopper Issus coleoptratus can detoxify phloem sap saponins including the degradation of the terpene core.

    PubMed

    Himmelsbach, Markus; Weth, Agnes; Böhme, Christine; Schwarz, Martin; Bräunig, Peter; Baumgartner, Werner

    2016-02-10

    Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo.

  10. The plant hopper Issus coleoptratus can detoxify phloem sap saponins including the degradation of the terpene core

    PubMed Central

    Himmelsbach, Markus; Weth, Agnes; Böhme, Christine; Schwarz, Martin; Bräunig, Peter; Baumgartner, Werner

    2016-01-01

    ABSTRACT Issus coleoptratus is a small plant hopper which mainly feeds on the phloem sap from ivy. Although all parts of ivy are poisonous as the plant contains saponins, especially hederasaponins, I. coleoptratus can cope with the poison. In contrast to other animals like the stick insect Carausius morosus which accumulates saponins in its body, I. coleoptratus can degrade and disintegrate not only the saponins but even the genines, i.e. the triterpene core of the substances. This is perhaps made possible by a specialised midgut and/or the salivary glands. When the glands and the gut are dissected and added to saponins in solution, the saponins, including the genines, are degraded ex vivo. PMID:26863940

  11. Characterization of a Planctomycetal Organelle: a Novel Bacterial Microcompartment for the Aerobic Degradation of Plant Saccharides

    PubMed Central

    Erbilgin, Onur; McDonald, Kent L.

    2014-01-01

    Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae. PMID:24487526

  12. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands.

    PubMed

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  13. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park

    SciTech Connect

    Vishnivetskaya, Tatiana A.; Hamilton-Brehm, Scott D.; Podar, Mircea; Mosher, Jennifer J.; Palumbo, Anthony V.; Phelps, Tommy J.; Keller, Martin; Elkins, James G.

    2014-10-16

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this paper, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55–85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Finally, independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.

  14. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.

    PubMed

    Vishnivetskaya, Tatiana A; Hamilton-Brehm, Scott D; Podar, Mircea; Mosher, Jennifer J; Palumbo, Anthony V; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2015-02-01

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.

  15. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park

    DOE PAGES

    Vishnivetskaya, Tatiana A.; Hamilton-Brehm, Scott D.; Podar, Mircea; ...

    2014-10-16

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this paper, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversitymore » in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55–85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Finally, independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.« less

  16. Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro.

    PubMed

    Dagar, S S; Singh, N; Goel, N; Kumar, S; Puniya, A K

    2015-01-01

    In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.

  17. 75 FR 5314 - Medical Area Total Energy Plant, Inc., New MATEP, Inc.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Medical Area Total Energy Plant, Inc., New MATEP, Inc.; Notice of Filing January 26, 2010. Take notice that on January 15, 2010, Medical Area Total Energy Plant, Inc. and...

  18. Determinants of farmers' tree planting investment decision as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, B.; Bewket, W.; Bräuning, A.

    2015-11-01

    Land degradation due to lack of sustainable land management practices are one of the critical challenges in many developing countries including Ethiopia. This study explores the major determinants of farm level tree planting decision as a land management strategy in a typical framing and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and binary logistic regression model. The model significantly predicted farmers' tree planting decision (Chi-square = 37.29, df = 15, P<0.001). Besides, the computed significant value of the model suggests that all the considered predictor variables jointly influenced the farmers' decision to plant trees as a land management strategy. In this regard, the finding of the study show that local land-users' willingness to adopt tree growing decision is a function of a wide range of biophysical, institutional, socioeconomic and household level factors, however, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system have positively and significantly influence on tree growing investment decisions in the study watershed. Eventually, the processes of land use conversion and land degradation are serious which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, devising sustainable and integrated land management policy options and implementing them would enhance ecological restoration and livelihood sustainability in the study watershed.

  19. Determinants of farmers' tree-planting investment decisions as a degraded landscape management strategy in the central highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Gessesse, Berhan; Bewket, Woldeamlak; Bräuning, Achim

    2016-04-01

    Land degradation due to lack of sustainable land management practices is one of the critical challenges in many developing countries including Ethiopia. This study explored the major determinants of farm-level tree-planting decisions as a land management strategy in a typical farming and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and a binary logistic regression model. The model significantly predicted farmers' tree-planting decisions (χ2 = 37.29, df = 15, P < 0.001). Besides, the computed significant value of the model revealed that all the considered predictor variables jointly influenced the farmers' decisions to plant trees as a land management strategy. The findings of the study demonstrated that the adoption of tree-growing decisions by local land users was a function of a wide range of biophysical, institutional, socioeconomic and household-level factors. In this regard, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system had a critical influence on tree-growing investment decisions in the study watershed. Eventually, the processes of land-use conversion and land degradation were serious, which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, the study recommended that devising and implementing sustainable land management policy options would enhance ecological restoration and livelihood sustainability in the study watershed.

  20. Simultaneous screening of herbicide degradation byproducts in water treatment plants using high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Cheng, Xiaoliang; Shi, Honglan; Adams, Craig D; Timmons, Terry; Ma, Yinfa

    2010-04-28

    Currently, herbicides are widely used in various combinations at many stages of cultivation and during postharvest storage. There are increasing concerns about the public health impact of herbicide degradation byproducts that may be present in water bodies used either as drinking water or for recreational purposes. This work investigated the sulfonic acid and oxanilic acid degradation products of metolachlor, alachlor, acetochlor, and propachlor in a variety of water bodies. The objective was to develop a fast, accurate, and easy method for quantitative analysis of herbicide degradation products using liquid chromatography with tandem mass spectrometry without solid phase extraction, but performing levels of detection lower than those obtained in previous studies with solid phase extraction. This research also screened 68 water samples, both untreated source water and treated water, from 34 water treatment plants in Missouri. Finally, it examined seasonal trends in levels of those degradation products by collecting and testing samples monthly. This highly sensitive method can analyze these degradation products to low ng/L levels. The method limit of quantification ranges from 0.04 to 0.05 ppb for each analyte; and quantitative analyses show a precision with RSDs of around 0.6% to 3% in treated water and 2% to 19% in untreated source water. Concentrations of alachlor ESA, acetochlor OA, metolachlor OA, and metolachlor ESA were detected from the Missouri River and the Mississippi River water bodies in summer time. Occurrences of these compounds in treated water samples are all lower than those in the untreated source water samples.

  1. Degradation of crude oil in a contaminated tidal flat area and the resilience of bacterial community.

    PubMed

    Lee, Jaejin; Han, Il; Kang, Bo Ram; Kim, Seong Heon; Sul, Woo Jun; Lee, Tae Kwon

    2017-01-15

    Crude oil spills, Hebei Spirit in South Korea, is considered as one of the worst environmental disasters of the region. Our understanding on activation of oil-degrading bacteria and resilience of microbial community in oil contaminated sites are limited due to scarcity of such event. In the present study, tidal flat sediment contaminated by the oil spill were investigated for duration of 13months to identify temporal change in microbial community and functional genes responsible for PAH-degradation. The results showed predominance of previously known oil-degrading genera, such as Cycloclasticus, Alcanivorax, and Thalassolituus, displaying significant increase within first four months of the accident. The disturbance caused by the oil spill altered the microbial community and its functional structures, but they were almost restored to the original state after 13months. Present study demonstrated high detoxification capacity of indigenous bacterial populations in the tidal flat sediments and its resilience of microbial community.

  2. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation.

    PubMed

    Somtrakoon, Khanitta; Chouychai, Waraporn; Lee, Hung

    2014-01-01

    The ability of three plant species (sweet corn, cucumber, and winged bean) to remediate soil spiked with 138.9 and 95.9 mg of anthracene and fluorene per kg of dry soil, respectively, by single and double plant co-cultivation was investigated. After 15 and 30 days of transplantation, plant elongation, plant weight, chlorophyll content, and the content of each PAH in soil and plant tissues were determined. Based on PAH removal and plant health, winged bean was the most effective plant for phytoremediation when grown alone; percentage of fluorene and anthracene remaining in the rhizospheric soil after 30 days were 7.8% and 24.2%, respectively. The most effective combination of plants for phytoremediation was corn and winged bean; on day 30, amounts of fluorene and anthracene remaining in the winged bean rhizospheric soil were 3.4% and 14.3%, respectively; amounts of fluorene and anthracene remaining in the sweet corn rhizospheric soil were 4.1% and 8.8%, respectively. Co-cultivation of sweet corn and cucumber could remove fluorene to a higher extent than anthracene from soil within 15 days, but these plants did not survive and died before day 30. The amounts of fluorene remaining in the rhizospheric soil of corn and cucumber were only 14% and 17.3%, respectively, on day 15. No PAHs were detected in plant tissues. This suggests that phytostimulation of microbial degradation in the rhizosphere was most likely the mechanism by which the PAHs were removed from the spiked soil. The results show that co-cultivation of plants has merit in the phytoremediation of PAH-spiked soil.

  3. Impact of soil water regime on degradation and plant uptake behaviour of the herbicide isoproturon in different soil types.

    PubMed

    Grundmann, Sabine; Doerfler, Ulrike; Munch, Jean Charles; Ruth, Bernhard; Schroll, Reiner

    2011-03-01

    The environmental fate of the worldwide used herbicide isoproturon was studied in four different, undisturbed lysimeters in the temperate zone of Middle Europe. To exclude climatic effects due to location, soils were collected at different regions in southern Germany and analyzed at a lysimeter station under identical environmental conditions. (14)C-isoproturon mineralization varied between 2.59% and 57.95% in the different soils. Barley plants grown on these lysimeters accumulated (14)C-pesticide residues from soil in partially high amounts and emitted (14)CO(2) in an extent between 2.01% and 13.65% of the applied (14)C-pesticide. Plant uptake and (14)CO(2) emissions from plants were inversely linked to the mineralization of the pesticide in the various soils: High isoproturon mineralization in soil resulted in low plant uptake whereas low isoproturon mineralization in soil resulted in high uptake of isoproturon residues in crop plants and high (14)CO(2) emission from plant surfaces. The soil water regime was identified as an essential factor that regulates degradation and plant uptake of isoproturon whereby the intensity of the impact of this factor is strongly dependent on the soil type.

  4. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle

    PubMed Central

    2012-01-01

    Background The primary plant cell wall is a complex mixture of polysaccharides and proteins encasing living plant cells. Among these polysaccharides, cellulose is the most abundant and useful biopolymer present on earth. These polysaccharides also represent a rich source of energy for organisms which have evolved the ability to degrade them. A growing body of evidence suggests that phytophagous beetles, mainly species from the superfamilies Chrysomeloidea and Curculionoidea, possess endogenous genes encoding complex and diverse families of so-called plant cell wall degrading enzymes (PCWDEs). The presence of these genes in phytophagous beetles may have been a key element in their success as herbivores. Here, we combined a proteomics approach and transcriptome sequencing to identify PCWDEs present in larval gut contents of the mustard leaf beetle, Phaedon cochleariae. Results Using a two-dimensional proteomics approach, we recovered 11 protein bands, isolated using activity assays targeting cellulose-, pectin- and xylan-degrading enzymes. After mass spectrometry analyses, a total of 13 proteins putatively responsible for degrading plant cell wall polysaccharides were identified; these proteins belong to three glycoside hydrolase (GH) families: GH11 (xylanases), GH28 (polygalacturonases or pectinases), and GH45 (β-1,4-glucanases or cellulases). Additionally, highly stable and proteolysis-resistant host plant-derived proteins from various pathogenesis-related protein (PRs) families as well as polygalacturonase-inhibiting proteins (PGIPs) were also identified from the gut contents proteome. In parallel, transcriptome sequencing revealed the presence of at least 19 putative PCWDE transcripts encoded by the P. cochleariae genome. All of these were specifically expressed in the insect gut rather than the rest of the body, and in adults as well as larvae. The discrepancy observed in the number of putative PCWDEs between transcriptome and proteome analyses could be

  5. Wetland Survey of Selected Areas in the Oak Ridge Y-12 Plant Area of Responsibilty, Oak Ridge, Tennessee

    SciTech Connect

    Rosensteel

    1997-01-01

    This document was prepared to summarize wetland surveys performed in the Y- 1 2 Plant area of responsibility in June and July 1994. Wetland surveys were conducted in three areas within the Oak Ridge Y- 12 Plant area of responsibility in June and July 1994: the Upper East Fork Poplar Creek (UEFPC) Operable Unit (OU), part of the Bear Creek Valley OU (the upper watershed of Bear Creek from the culvert under Bear Creek Road upstream through the Y-12 West End Environmental Management Area, and the catchment of Bear Creek North Tributary 1), and part of Chestnut Ridge OU 2 (the McCoy Branch area south of Bethel Valley Road). Using the criteria and methods set forth in the Wetlands Delineation Manual, 18 wetland areas were identified in the 3 areas surveyed; these areas were classified according to the system developed by Cowardin. Fourteen wetlands and one wetland/pond area that are associated with disturbed or remnant stream channels and seeps were identified in the UEFPC OU. Three wetlands were identified in the Bear Creek Valley OU portion of the survey area. One wetland was identified in the riparian zone of McCoy Branch in the southern portion of Chestnut Ridge OU 2.

  6. Isolation and characterization of benzo[a]pyrene-degrading bacteria from the Tokyo Bay area and Tama River in Japan.

    PubMed

    Okai, Masahiko; Kihara, Ikumi; Yokoyama, Yuto; Ishida, Masami; Urano, Naoto

    2015-09-01

    Benzo[a]pyrene (BaP) is one of the polycyclic aromatic hydrocarbons, and has serious detrimental effects on human health and aquatic environments. In this study, we isolated nine bacterial strains capable of degrading BaP from the Tokyo Bay area and Tama River in Japan. The isolated bacteria belonged to the phyla Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes, indicating that the BaP-degrading bacteria were widely present in the hydrosphere. ITB11, which shared 100% 16S rRNA identity with Mesoflavibacter zeaxanthinifaciens in the phylum Bacteroidetes, showed the highest degradation of BaP (approximately 86%) among the nine isolated strains after 42 days. Moreover, it was found that three of the nine isolated strains collectively removed 50-55% of BaP during the first 7 days. Growth measurement of M. zeaxanthinifaciens revealed that the strain utilized BaP as a sole carbon and energy source and salicylate acted only as an inducer of BaP degradation.

  7. Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    SciTech Connect

    1999-07-14

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are evaluating conditions in groundwater and springs at the DOE chemical plant area and the DA ordnance works area near Weldon Spring, Missouri. The two areas are located in St. Charles County, about 48 km (30 mi) west of St. Louis. The 88-ha (217-acre) chemical plant area is chemically and radioactively contaminated as a result of uranium-processing activities conducted by the U.S. Atomic Energy Commission in the 1950s and 1960s and explosives-production activities conducted by the U.S. Army (Army) in the 1940s. The 6,974-ha (17,232-acre) ordnance works area is primarily chemically contaminated as a result of trinitrotoluene (TNT) and dinitrotoluene (DNT) manufacturing activities during World War II. This baseline risk assessment (BRA) is being conducted as part of the remedial investigation/feasibility study (RUFS) required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended. The purpose of the BRA is to evaluate potential human health and ecological impacts from contamination associated with the groundwater operable units (GWOUs) of the chemical plant area and ordnance works area. An RI/FS work plan issued jointly in 1995 by the DOE and DA (DOE 1995) analyzed existing conditions at the GWOUs. The work plan included a conceptual hydrogeological model based on data available when the report was prepared; this model indicated that the aquifer of concern is common to both areas. Hence, to optimize further data collection and interpretation efforts, the DOE and DA have decided to conduct a joint RI/BRA. Characterization data obtained from the chemical plant area wells indicate that uranium is present at levels slightly higher than background, with a few concentrations exceeding the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 20 {micro}g/L (EPA 1996c). Concentrations of other radionuclides (e

  8. Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant.

    PubMed

    Covino, Stefano; Svobodová, Katerina; Cvancarová, Monika; D'Annibale, Alessandro; Petruccioli, Maurizio; Federici, Federico; Kresinová, Zdena; Galli, Emanuela; Cajthaml, Tomás

    2010-05-01

    The objective of the study was to investigate the impact of chopped wheat straw (CWS), ground corn cobs (GCC) and commercial pellets (CP), as inoculum carriers, on both growth and polycyclic aromatic hydrocarbons (PAH) degradation performances of Dichomitus squalens, Pleurotus ostreatus and Coprinus comatus. A historically-contaminated soil (HCS) and creosote-treated shavings (CTS) from the Sobeslav wood preservation plant, characterized by different relative abundances of the PAH bioavailable fractions, were used to assess the contaminated matrix effect and its interaction with both carrier and fungal strain. In HCS, best results were obtained with CP-immobilized P. ostreatus, which was able to deplete benzo[a]anthracene, chrysene, benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF) and benzo[a]pyrene (BaP) by 69.1%, 29.7%, 39.7%, 32.8% and 85.2%, respectively. Only few high-molecular mass PAHs such as BbF, BkF and BaP were degraded beyond their respective bioavailable fractions and this effect was confined to a limited number of inoculants. In CTS, only phenanthrene degradation exceeded its respective bioavailability from 1.42 to 1.86-fold. Regardless of both inoculum carrier and fungal species, degradation was positively and significantly (P<0.001) correlated with bioavailability in fungal microcosms on HCS and CTS and such correlation was very similar in the two matrices (R(adj)(2) equal to 0.60 and 0.59, respectively). The ability of white-rot fungi to degrade certain PAHs beyond their bioavailability was experimentally proven by this study. Although CTS and HCS considerably differed in their physico-chemical properties, PAH contents and contaminant aging, the relationship between degradation and bioavailability was not significantly affected by the type of matrix.

  9. EBS7 is a plant-specific component of a highly conserved endoplasmic reticulum-associated degradation system in Arabidopsis

    PubMed Central

    Liu, Yidan; Zhang, Congcong; Wang, Dinghe; Su, Wei; Liu, Linchuan; Wang, Muyang; Li, Jianming

    2015-01-01

    Endoplasmic reticulum (ER)-associated degradation (ERAD) is an essential part of an ER-localized protein quality-control system for eliminating terminally misfolded proteins. Recent studies have demonstrated that the ERAD machinery is conserved among yeast, animals, and plants; however, it remains unknown if the plant ERAD system involves plant-specific components. Here we report that the Arabidopsis ethyl methanesulfonate-mutagenized brassinosteroid-insensitive 1 suppressor 7 (EBS7) gene encodes an ER membrane-localized ERAD component that is highly conserved in land plants. Loss-of-function ebs7 mutations prevent ERAD of brassinosteroid insensitive 1-9 (bri1-9) and bri1-5, two ER-retained mutant variants of the cell-surface receptor for brassinosteroids (BRs). As a result, the two mutant receptors accumulate in the ER and consequently leak to the plasma membrane, resulting in the restoration of BR sensitivity and phenotypic suppression of the bri1-9 and bri1-5 mutants. EBS7 accumulates under ER stress, and its mutations lead to hypersensitivity to ER and salt stresses. EBS7 interacts with the ER membrane-anchored ubiquitin ligase Arabidopsis thaliana HMG-CoA reductase degradation 1a (AtHrd1a), one of the central components of the Arabidopsis ERAD machinery, and an ebs7 mutation destabilizes AtHrd1a to reduce polyubiquitination of bri1-9. Taken together, our results uncover a plant-specific component of a plant ERAD pathway and also suggest its likely biochemical function. PMID:26371323

  10. Developing Effective Continuous On-Line Monitoring Technologies to Manage Service Degradation of Nuclear Power Plants

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Cumblidge, Stephen E.

    2011-09-30

    Recently, there has been increased interest in using prognostics (i.e, remaining useful life (RUL) prediction) for managing and mitigating aging effects in service-degraded passive nuclear power reactor components. A vital part of this philosophy is the development of tools for detecting and monitoring service-induced degradation. Experience with in-service degradation has shown that rapidly-growing cracks, including several varieties of stress corrosion cracks (SCCs), can grow through a pipe in less than one fuel outage cycle after they initiate. Periodic inspection has limited effectiveness at detecting and managing such degradation requiring a more versatile monitoring philosophy. Acoustic emission testing (AET) and guided wave ultrasonic testing (GUT) are related technologies with potential for on-line monitoring applications. However, harsh operating conditions within NPPs inhibit the widespread implementation of both technologies. For AET, another hurdle is the attenuation of passive degradation signals as they travel though large components, relegating AET to targeted applications. GUT is further hindered by the complexity of GUT signatures limiting its application to the inspection of simple components. The development of sensors that are robust and inexpensive is key to expanding the use of AET and GUT for degradation monitoring in NPPs and improving overall effectiveness. Meanwhile, the effectiveness of AET and GUT in NPPs can be enhanced through thoughtful application of tandem AET-GUT techniques.

  11. Physical, Chemical and Proteomic Evidence of Potato Suberin Degradation by the Plant Pathogenic Bacterium Streptomyces scabiei

    PubMed Central

    Beaulieu, Carole; Sidibé, Amadou; Jabloune, Raoudha; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Monga, Ernest; Bernards, Mark A.

    2016-01-01

    Potato peels consist of a tissue called phellem, which is formed by suberized cell layers. The degradation of suberin, a lipidic and recalcitrant polymer, is an ecological process attributed to soil fungal populations; however, previous studies have suggested that Streptomyces scabiei, the causal agent of potato common scab, possesses the ability to degrade suberin. In the present study, S. scabiei was grown in medium containing suberin-enriched potato phellem as the sole carbon source and its secretome was analyzed periodically (10- to 60-d-old cultures) with a special focus on proteins potentially involved in cell wall degradation. Although the amount and diversity of proteins linked to polysaccharide degradation remained high throughout the experiment, their abundance decreased over time. In contrast, proteins dedicated to lipid metabolism represented a small fraction of the secretome; however, their abundance increased during the experiment. The lipolytic enzymes detected may be involved in the degradation of the aliphatic fraction of suberin because the results of optical and transmission electron microscopy examinations revealed a loss in the integrity of suberized tissues exposed to S. scabiei cells. Chemical analyses identified a time period in which the concentration of aliphatic compounds in potato phellem decreased and the sugar concentration increased; at the end of the 60-d incubation period, the sugar concentration in potato phellem was significantly reduced. This study demonstrated the ability of S. scabiei to degrade the aliphatic portion of suberin. PMID:27853060

  12. Regulatory analysis for the resolution of Generic Safety Issue 29: Bolting degradation or failure in nuclear power plants

    SciTech Connect

    Chang, T.Y.

    1991-09-01

    Generic Safety Issue (GSI)-29 deals with staff concerns about public risk due to degradation or failure of safety-related bolting in nuclear power plants. The issue was initiated in November 1982. Value-impact studies of a mandatory program on safety-related bolting for operating plants were inconclusive: therefore, additional regulatory requirements for operating plants could not be justified in accordance with provisions of 10 CFR 50.109. In addition, based on operating experience with bolting in both nuclear and conventional power plants, the actions already taken through bulletins, generic letters, and information notices, and the industry-proposed actions, the staff concluded that a sufficient technical basis exists for the resolution of GSI-29. The staff further concluded that leakage of bolted pressure joints is possible but catastrophic failure of a reactor coolant pressure boundary joint that will lead to significant accident sequences is highly unlikely. For future plants, it was concluded that a new Standard Review Plant section should be developed to codify existing bolting requirements and industry-developed initiatives. 9 refs., 1 tab.

  13. Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes

    PubMed Central

    2013-01-01

    Background Plant cell wall-degrading enzymes (PCWDEs) play significant roles throughout the fungal life including acquisition of nutrients and decomposition of plant cell walls. In addition, many of PCWDEs are also utilized by biofuel and pulp industries. In order to develop a comparative genomics platform focused in fungal PCWDEs and provide a resource for evolutionary studies, Fungal PCWDE Database (FPDB) is constructed (http://pcwde.riceblast.snu.ac.kr/). Results In order to archive fungal PCWDEs, 22 sequence profiles were constructed and searched on 328 genomes of fungi, Oomycetes, plants and animals. A total of 6,682 putative genes encoding PCWDEs were predicted, showing differential distribution by their life styles, host ranges and taxonomy. Genes known to be involved in fungal pathogenicity, including polygalacturonase (PG) and pectin lyase, were enriched in plant pathogens. Furthermore, crop pathogens had more PCWDEs than those of rot fungi, implying that the PCWDEs analysed in this study are more needed for invading plant hosts than wood-decaying processes. Evolutionary analysis of PGs in 34 selected genomes revealed that gene duplication and loss events were mainly driven by taxonomic divergence and partly contributed by those events in species-level, especially in plant pathogens. Conclusions The FPDB would provide a fungi-specialized genomics platform, a resource for evolutionary studies of PCWDE gene families and extended analysis option by implementing Favorite, which is a data exchange and analysis hub built in Comparative Fungal Genomics Platform (CFGP 2.0; http://cfgp.snu.ac.kr/). PMID:24564786

  14. Regulation of Leaf Starch Degradation by Abscisic Acid Is Important for Osmotic Stress Tolerance in Plants[OPEN

    PubMed Central

    Thalmann, Matthias; Pazmino, Diana; Seung, David; Horrer, Daniel; Nigro, Arianna; Meier, Tiago; Zeeman, Samuel C.; Santelia, Diana

    2016-01-01

    Starch serves functions that range over a timescale of minutes to years, according to the cell type from which it is derived. In guard cells, starch is rapidly mobilized by the synergistic action of β-AMYLASE1 (BAM1) and α-AMYLASE3 (AMY3) to promote stomatal opening. In the leaves, starch typically accumulates gradually during the day and is degraded at night by BAM3 to support heterotrophic metabolism. During osmotic stress, starch is degraded in the light by stress-activated BAM1 to release sugar and sugar-derived osmolytes. Here, we report that AMY3 is also involved in stress-induced starch degradation. Recently isolated Arabidopsis thaliana amy3 bam1 double mutants are hypersensitive to osmotic stress, showing impaired root growth. amy3 bam1 plants close their stomata under osmotic stress at similar rates as the wild type but fail to mobilize starch in the leaves. 14C labeling showed that amy3 bam1 plants have reduced carbon export to the root, affecting osmolyte accumulation and root growth during stress. Using genetic approaches, we further demonstrate that abscisic acid controls the activity of BAM1 and AMY3 in leaves under osmotic stress through the AREB/ABF-SnRK2 kinase-signaling pathway. We propose that differential regulation and isoform subfunctionalization define starch-adaptive plasticity, ensuring an optimal carbon supply for continued growth under an ever-changing environment. PMID:27436713

  15. Hydroxycinnamic acid degradation, a broadly conserved trait, protects Ralstonia solanacearum from chemical plant defenses and contributes to root colonization and virulence

    PubMed Central

    Lowe, Tiffany M.; Ailloud, Florent; Allen, Caitilyn

    2014-01-01

    Plants produce hydroxycinnamic acid defense compounds (HCAs) to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a Δfcs (feruloyl-CoA synthetase) mutant that cannot degrade HCAs was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen (1) grow, as a carbon source; (2) spread, by reducing physical barriers HCA-derived; and (3) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCAs in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCAs are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCAs: caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCAs contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity. PMID:25423265

  16. Hydroxycinnamic Acid Degradation, a Broadly Conserved Trait, Protects Ralstonia solanacearum from Chemical Plant Defenses and Contributes to Root Colonization and Virulence.

    PubMed

    Lowe, Tiffany M; Ailloud, Florent; Allen, Caitilyn

    2015-03-01

    Plants produce hydroxycinnamic acid (HCA) defense compounds to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a feruloyl-CoA synthetase (Δfcs) mutant that cannot degrade HCA was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen i) grow, as a carbon source; ii) spread, by reducing HCA-derived physical barriers; and iii) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCA in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCA are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCA, namely, caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCA contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity.

  17. Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis

    PubMed Central

    2012-01-01

    Background Filamentous fungi are potent biomass degraders due to their ability to thrive in ligno(hemi)cellulose-rich environments. During the last decade, fungal genome sequencing initiatives have yielded abundant information on the genes that are putatively involved in lignocellulose degradation. At present, additional experimental studies are essential to provide insights into the fungal secreted enzymatic pools involved in lignocellulose degradation. Results In this study, we performed a wide analysis of 20 filamentous fungi for which genomic data are available to investigate their biomass-hydrolysis potential. A comparison of fungal genomes and secretomes using enzyme activity profiling revealed discrepancies in carbohydrate active enzymes (CAZymes) sets dedicated to plant cell wall. Investigation of the contribution made by each secretome to the saccharification of wheat straw demonstrated that most of them individually supplemented the industrial Trichoderma reesei CL847 enzymatic cocktail. Unexpectedly, the most striking effect was obtained with the phytopathogen Ustilago maydis that improved the release of total sugars by 57% and of glucose by 22%. Proteomic analyses of the best-performing secretomes indicated a specific enzymatic mechanism of U. maydis that is likely to involve oxido-reductases and hemicellulases. Conclusion This study provides insight into the lignocellulose-degradation mechanisms by filamentous fungi and allows for the identification of a number of enzymes that are potentially useful to further improve the industrial lignocellulose bioconversion process. PMID:22300648

  18. [Feasibility of the use of degraded inedible biomass of plants as a nutrient liquid for hydroponic cultivation].

    PubMed

    Guo, S S; Ai, W D; Hou, W H; Shi, W W

    2001-10-01

    Objective. To demonstrate that the recycled liquid, which originated from lettuce inedible biomass degraded by fixed microorganism (correction of microorgannism) and enzyme, can be used as a nutrient solution for lettuce hydroponic cultivation. Method. After biologically degrading the weighted, oven-dried and milled leaves and roots of lettuce in a biological reactor under aerobic condition, the original effluent and its supplemented effluent were used as nutrients for lettuce hydroponic cultivation. Result. The average dried weight (ADW) of lettuce from the original effluent group was approximately half of that from the control group, and the ADW from supplemented effluent group was about equal to that from the control group; some qualities of the lettuce such as a relatively lower content of NO3- from both the original effluent group and the supplemented effluent one improved, and some of those such as a relatively higher content of NO2- dropped. Conclusion. The biologically-degraded effluent was able to be used as nutrient solution for lettuce hydroponic cultivation, although the effects of the inorganic ion-supplemented effluent were much better; the plants of lettuce from the biologically-degraded effluent were safely edible.

  19. Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradating chlorotetracycline

    NASA Astrophysics Data System (ADS)

    Bu, Dan; Zhuang, Huisheng

    2013-01-01

    Copper-doped titania (Cu/TiO2) hollow microspheres were fabricated using the rape pollen as biotemplates via an improved sol-gel method and a followed calcinations process. In the fabricated process, a titanium(IV)-isopropoxide-based sol directly coated onto the surface of rape pollen. Subsequently, after calcinations, rape pollen was removed by high temperature and the hollow microsphere structure was retained. The average diameter of as-obtained hollow microspheres is 15-20 μm and the thickness of shell is approximately 0.6 μm. Knowing from XRD results, the main crystal phase of microspheres is anatase, coupled with rutile. The specific surface area varied between 141.80 m2/g and 172.51 m2/g. This hollow sphere photocatalysts with high specific surface area exhibited stronger absorption ability and higher photoactivity, stimulated by visible light. The degradation process of chlortetracycline (CTC) solution had been studied. The degradated results indicate that CTC could be effective degradated by fabricated hollow spherical materials. And the intermediate products formed in the photocatalytic process had been identified.

  20. Effect of power plant emission reductions on a nearby wilderness area: a case study in northwestern Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Ely, Daniel

    2013-01-01

    This study evaluates the effect of emission reductions at two coal-fired power plants in northwestern Colorado on a nearby wilderness area. Control equipment was installed at both plants during 1999–2004 to reduce SO2 and NOx emissions. One challenge was separating the effects of local from regional emissions, which also declined during the study period. The long-term datasets examined confirm that emission reductions had a beneficial effect on air and water quality in the wilderness. Despite a 75 % reduction in SO2 emissions, sulfate aerosols measured in the wilderness decreased by only 20 %. Because the site is relatively close to the power plants (2 to sulfate, particularly under conditions of low relative humidity, might account for this less than one-to-one response. On the clearest days, emissions controls appeared to improve visibility by about 1 deciview, which is a small but perceptible improvement. On the haziest days, however, there was little improvement perhaps reflecting the dominance of regional haze and other components of visibility degradation particularly organic carbon and dust. Sulfate and acidity in atmospheric deposition decreased by 50 % near the southern end of the wilderness of which 60 % was attributed to power plant controls and the remainder to reductions in regional sources. Lake water sulfate responded rapidly to trends in deposition declining at 28 lakes monitored in and near the wilderness. Although no change in the acid–base status was observed, few of the lakes appear to be at risk from chronic or episodic acidification.

  1. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  2. An aerial radiological survey of the Pilgrim Station Nuclear Power Plant and surrounding area, Plymouth, Massachusetts

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Pilgrim Station Nuclear Power Plant was measured using aerial radiolog- ical survey techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employs sodium iodide, thallium-activated detectors. Exposure rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the,aerial survey results. Exposure rates in areas surrounding the plant site varied from 6 to 10 microroentgens per hour, with exposure rates below 6 microroentgens per hour occurring over bogs and marshy areas. Man-made radiation was found to be higher than background levels at the plant site. Radation due to nitrogen-1 6, which is produced in the steam cycle of a boiling-water reactor, was the primaty source of activity found at the plant site. Cesium-137 activity at levels slightly above those expected from natural fallout was found at isolated locations inland from the plant site. No other detectable sources of man-made radioactivity were found.

  3. Redmedial Action, Decision Document, Leaseback Area, Alabama Army Ammunition Plant

    DTIC Science & Technology

    1988-02-01

    areas, finishing in January 1946. The government released the constructing and operating contractor in a final settlement in September 1946. During the...SuMDs 102-A Tank Farm 0 102-3 Tank Farm 0 102-C Tank Farm 0 104-A Wood ?ulp Dry House 0 104-3 Coton Dry House 0 I04-C Cotton Dry House 0 105-A

  4. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii.

    PubMed

    Basen, Mirko; Rhaesa, Amanda M; Kataeva, Irina; Prybol, Cameron J; Scott, Israel M; Poole, Farris L; Adams, Michael W W

    2014-01-01

    The thermophilic bacterium Caldicellulosiruptor bescii grows at 78 °C on high concentrations (200 g L(-1)) of both crystalline cellulose and unpretreated switchgrass, while low concentrations (<20 g L(-1)) of acid-pretreated switchgrass inhibit growth. Degradation of crystalline cellulose, but not that of unpretreated switchgrass, was limited by nitrogen and vitamin (folate) availability. Under optimal conditions, C. bescii solubilized approximately 60% of the crystalline cellulose and 30% of the unpretreated switchgrass using initial substrate concentrations of 50 g L(-1). Further fermentation of crystalline cellulose and of switchgrass was inhibited by organic acid end-products and by a specific inhibitor of C. bescii growth that did not affect other thermophilic bacteria, respectively. Soluble mono- and oligosaccharides, organic acids, carbon dioxide, and microbial biomass, quantitatively accounted for the crystalline cellulose and plant biomass carbon utilized. C. bescii therefore degrades industrially-relevant concentrations of lignocellulosic biomass that have not undergone pretreatment thereby demonstrating its potential utility in biomass conversion.

  5. AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production.

    PubMed

    Kõiv, Viia; Andresen, Liis; Mäe, Andres

    2010-06-01

    Plant cell wall degrading enzymes (PCWDE) are the major virulence determinants in phytopathogenic Pectobacterium, and their production is controlled by many regulatory factors. In this study, we focus on the role of the AepA protein, which was previously described to be a global regulator of PCWDE production in Pectobacterium carotovorum (Murata et al. in Mol Plant Microbe Interact 4:239-246, 1991). Our results show that neither inactivation nor overexpression of aepA affects PCWDE production in either Pectobacterium atrosepticum SCRI1043 or Pectobacterium carotovorum subsp. carotovorum SCC3193. The previously published observation based on the overexpression of aepA could be explained by the presence of the adjacent regulatory rsmB gene in the constructs used. Our database searches indicated that AepA belongs to the YtcJ subfamily of amidohydrolases. YtcJ-like amidohydrolases are present in bacteria, archaea, plants and some fungi. Although AepA has 28% identity with the formamide deformylase NfdA in Arthrobacter pascens F164, AepA was unable to catalyze the degradation of NdfA-specific N-substituted formamides. We conclude that AepA is a putative aminohydrolase not involved in regulation of PCWDE production.

  6. Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonated triphenylmethane textile dye Brilliant Blue G.

    PubMed

    Watharkar, Anuprita D; Khandare, Rahul V; Kamble, Apurva A; Mulla, Asma Y; Govindwar, Sanjay P; Jadhav, Jyoti P

    2013-02-01

    Phytoremediation provides an ecofriendly alternative for the treatment of pollutants like textile dyes. The purpose of this study was to explore phytoremediation potential of Petunia grandiflora Juss. by using its wild as well as tissue-cultured plantlets to decolorize Brilliant Blue G (BBG) dye, a sample of dye mixture and a real textile effluent. In vitro cultures of P. grandiflora were obtained by seed culture method. The decolorization experiments were carried out using wild as well as tissue-cultured plants independently. The enzymatic analysis of the plant roots was performed before and after decolorization of BBG. Metabolites formed after dye degradation were analyzed using UV-vis spectroscopy, high-performance liquid chromatography, Fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. Phytotoxicity studies were performed. Characterization of dye mixture and textile effluent was also studied. The wild and tissue-cultured plants of P. grandiflora showed the decolorized BBG up to 86 %. Significant increase in the activities of lignin peroxidase, laccase, NADH-2,6-dichlorophenol-indophenol reductase, and tyrosinase was found in the roots of the plants. Three metabolites of BBG were identified as 3-{[ethyl(phenyl)amino]methyl}benzenesulfonic acid, 3-{[methyl (phenyl)amino]methyl}benzenesulfonic amino acid, and sodium-3-[(cyclohexa-2,5-dien-1-ylideneamino)methyl]benzenesulfonate. Textile effluent sample and a synthetic mixture of dyes were also decolorized by P. grandiflora. Phytotoxicity test revealed the nontoxic nature of metabolites. P. grandiflora showed the potential to decolorize and degrade BBG to nontoxic metabolites. The plant has efficiently treated a sample of dye mixture and textile effluent.

  7. Excess Area Contamination Survey of Indiana Army Ammunition Plant.

    DTIC Science & Technology

    1981-09-25

    DOCUMENTS Unclassified SECURITY CLASSIFICATION OP THIS PAGE ( Whai Dime Sam ___________________ / .REPORT DOCUMENTATION PAGE BEFORECOPEIGFR ; OTNum&" ~ 1.GVT...and hexane , and air dried. Acquisition of labels was part of the Pre-Field Setup procedure, in which sample stations, fractions, sample trip itinerary...turnaround bordered by the service road. The area was densely forested with deciduous and coniferous trees. Ground cover was dense, with leaf litter

  8. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  9. ARCHITECTURAL FLOOR PLAN OF OPERATING AREA HOT PILOT PLANT (CPP640). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL FLOOR PLAN OF OPERATING AREA HOT PILOT PLANT (CPP-640). INL DRAWING NUMBER 200-0640-00-279-111678. ALTERNATE ID NUMBER 8952-CPP-640-A-1. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. Discrimination of planting area of white peach based near-infrared spectra and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Fu, Xiaping; Ying, Yibin; Zhou, Ying; Xu, Huirong; Xie, Lijuan; Jiang, Xuesong

    2007-09-01

    White peach is a famous peach variety for its super-quality and high economic benefit. It is originally planted in Yuandong Villiage, Jinhua County, Zhejiang province. By now, it has been planted in many other places in southeast of China. However, peaches from different planting areas have dissimilar quality and taste, which result in different selling price. The objective of this research was to discriminate peaches from different planting areas by using near-infrared (NIR) spectra and chemometrics methods. Diffuse reflectance spectra were collected by a fiber spectrometer in the range of 800-2500 nm. Discriminant analysis (DA), soft independent modeling of class analogy (SIMCA), and discriminant partial least square regression (DPLS) methods were employed to classify the peaches from three planting areas 'Jinhua', 'Wuyi', and 'Yongkang' of Zhejiang province. 360 samples were used in this study, 120 samples per planting area. The classifying correctness were above 92% for both DA and SIMCA mdoels. And the result of DPLS model was slightly better. By using DPLS method, two 'Jinhua' peaches, three 'Wuyi' peaches, and three 'Yongkang' peaches were misclassified, the accruacy was above 95%. The results of this study indicate that the three chemometrics methods DA, SIMCA, and DPLS are effective for discriminating peaches from different planting areas based on NIR spectroscopy.

  11. A new approach to calculate Plant Area Density (PAD) using 3D ground-based lidar

    NASA Astrophysics Data System (ADS)

    Taheriazad, Leila; Moghadas, Hamid; Sanchez-Azofeifa, Arturo

    2016-10-01

    This paper presents a novel algorithm for calculation of plant area density based on surface and volume convex hull which is applied to each horizontal cut of a point cloud data. This method can be used as an alternative to conventional voxelization approaches to improve accuracy and computation efficiency. The terrestrial data was collected from a boreal forest at Peace River, Alberta, Canada during summer and fall in 2014. This technique can be applied to an arbitrary point cloud data to calculate all other metrics of forests including plant area index, leaf area density, and also leaf area index.

  12. Inhibition of neuropeptide degradation suppresses sweating but increases the area of the axon reflex flare.

    PubMed

    Schlereth, Tanja; Breimhorst, Markus; Werner, Nicolas; Pottschmidt, Katrin; Drummond, Peter D; Birklein, Frank

    2013-04-01

    The neuropeptides CGRP (calcitonin gene-elated peptide) and substance P (SP) mediate neurogenic inflammation. Both are degraded by the neutral endopeptidase (NEP) which can be blocked by phosphoramidon. The aim was to evaluate the effect of NEP inhibition on sweating and vasodilatation. Dermal microdialysis was performed on the skin of 39 subjects. Two fibres were perfused with phosphoramidon (0.01%, 0.02% or 0.2%), two with saline. Acetylcholine (ACh) was either added to the microdialysis perfusate (n = 30, 10(-2)  m) or thermoregulatory sweating was induced (n = 9). Co-application of phosphoramidon reduced cholinergic and thermoregulatory sweating. However, the flare size - a localized increase in superficial blood flow after ACh-application - was significantly increased. The increase in flare size is most probably due to increased CGRP levels. The inhibition of sweating by phosphoramidon may involve an increase in SP, a reduction in CGRP-degradation fragments or a direct inhibitory action of phosphoramidon.

  13. Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants.

    PubMed

    Mackuľak, Tomáš; Mosný, Michal; Škubák, Jaroslav; Grabic, Roman; Birošová, Lucia

    2015-03-01

    In this study we analyzed and characterized 29 psychoactive remedies, illicit drugs and their metabolites in single stages of wastewater treatment plants in the capital city of Slovakia. Psychoactive compounds were present within all stages, and tramadol was detected at a very high concentration (706 ng/L). Significant decreases of codeine, THC-COOH, cocaine and buprenorphine concentration were observed in the biological stage. Consequently, we were interested in the possibility of alternative tertiary post-treatment of effluent water with the following aquatic plants: Cabomba caroliniana, Limnophila sessiliflora, Egeria najas and Iris pseudacorus. The most effective plant for tertiary cleansing was I. pseudacorus which demonstrated the best pharmaceutical removal capacity. After 48 h codeine and citalopram was removed with 87% efficiency. After 96 h were all analyzed compounds were eliminated with efficiencies above 58%.

  14. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey.

    PubMed

    Sasmaz, Merve; Akgül, Bunyamin; Yıldırım, Derya; Sasmaz, Ahmet

    2016-01-01

    This study investigated mercury (Hg) uptake and transport from the soil to different plant parts by documenting the distribution and accumulation of Hg in the roots and shoots of 12 terrestrial plant species, all of which grow naturally in surface soils of the Gumuskoy Pb-Ag mining area. Plant samples and their associated soils were collected and analyzed for Hg content by ICP-MS. Mean Hg values in the soils, roots, and shoots of all plants were 6.914, 460, and 206 µg kg(-1), respectively and lower than 1. The mean enrichment factors for the roots (ECR) and shoots (ECS) of these plants were 0.06 and 0.09, respectively and lower than 1. These results show that the roots of the studied plants prevented Hg from reaching the aerial parts of the plants. The mean translocation factor (TLF) was 1.29 and higher than 1. The mean TLF values indicated that all 12 plant species had the ability to transfer Hg from the roots to the shoots but that transfer was more efficient in plants with higher ECR and ECS. Therefore, these plants could be useful for the biomonitoring of environmental pollution and for rehabilitating areas contaminated by Hg.

  15. Chlorinated Hydrocarbon Degradation in Plants: Mechanisms and Enhancement of Phytoremediation of Groundwater Contamination

    SciTech Connect

    Strand, Stuart E.

    2003-06-01

    Our research objectives are as follows: (1) Transform poplar and other tree species to extend and optimize chlorinated hydrocarbon (CHC) oxidative activities. (2) Determine the mechanisms of CHC oxidation in plants. (3) Isolate the genes responsible for CHC oxidation in plants.

  16. Efficient degradation of lignocellulosic plant biomass without pretreatment by the 9 thermophilic anaerobe, Anaerocellum thermophilum DSM 6725

    SciTech Connect

    Yang, Sung-Jae; Kataeva, Irina; Hamilton-Brehm, Scott; Engle, Nancy L; Tschaplinski, Timothy J; Doeppke, Crissa; Davis, Dr. Mark F.; Westpheling, Janet; Adams, Michael W. W.

    2009-01-01

    Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that 'Anaerocellum thermophilum' DSM 6725, an anaerobic bacterium that grows optimally at 75 C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.

  17. Natural and planted flora of the log mountain surface - mined demonstration area, Bell County, Kentucky

    SciTech Connect

    Thompson, R.L.; Wade, G.L.; Straw, R.A.

    1996-12-31

    A descriptive study of the naturally invading and planted flora was conducted during 1984-1985 on a 14- and 21-year-old contour surface mine the 14.2 ha Log Mountain Demonstration Area (LMDA), in Bell County, Kentucky. Six habitats are designated from areas created from coal mining; the 1963 bench, 1970 bench, bench highwalls, mine outslopes, mine seeps, and coal haul-telephone microwave tower road. Twenty-four of 25 woody and herbaceous species (11 indigenous, 13 non-indigenous) have persisted from plantings by personnel of the Northeastern Forest Experiment Station, USDA Forest Service. We recommend 11 native and exotic woody and herbaceous species for planting on coal surface-mined areas. An annotated list of vascular plants comprises 360 taxa (286 indigenous, 74 non-indigenous) in 224 genera from 82 families. Taxa consist of 1 Lycopodiophyta, 1 Equisetophyta, 8 Polypodiophyta, 7 Pinophyta, and 343 Magnoliophyta. The most species-rich families are the Asteraceae (64), Poaceae (39), Fabaceae (20), Cyperaceae (16), Rosaceae (13), and Lamiaceae (11). A total of 155 Bell County distribution records were documented. Three threatened Kentucky species (Gentiana decora, Liparis loeselii, Silene ovata) were present in refugial habitats created by surface mining. The high species richness has resulted from native and naturalized invading species from the environs, native and exotic planted species, and species from the remnant seed bank. Forest vegetation is a complex mosaic of natural and semi-natural plant communities on the unplanted and planted areas of LMDA.

  18. [Effects of degraded sandy grassland afforestation on soil quality in semi-arid area of northern China].

    PubMed

    Hu, Ya-lin; Zeng, De-hui; Fan, Zhi-ping; Ai, Gui-yan

    2007-11-01

    By the methods of field survey and incubation test, this paper studied the effects of degraded sandy grassland afforestation with Mongolian pine on the soil physical, chemical and biological properties in 0-10 cm layer on Keerqin sandy land. The results showed that after 32 years afforestation, soil organic C, total N and total P decreased by 21%, 42% and 45%, respectively. In May and November, soil NH4+ -N content was significantly higher under Mongolian pine plantation than under grassland (P = 0.001; P = 0.019), but in May, August and November, soil NO3- -N content was in adverse (P < 0.001; P = 0.048; P = 0.031). In May, August and November, soil C mineralization rate was higher under Mongolian pine plantation than under grassland, but the difference in N mineralization rate was not significant (P > 0.05). In May and August, soil microbial biomass C under Mongolian pine plantation and grassland had little difference, but in November, it was significantly higher under Mongolian pine plantation than under grassland. Soil nutrients- and moisture contents were the important factors affecting soil microbial biomass C. Soil urease and invertase activities decreased but catalase activity increased under Mongolian pine plantation, compared with those under grassland. It was suggested that 32 years afforestation of degraded sandy grassland with Mongolian pine on Keerqin sandy land led to a definite degradation of soil quality. Owing to the changes of vegetation, the test indicators of soil quality had different seasonal dynamic characteristics under Mongolian pine plantation and grassland. As a means of degraded ecosystem restoration in semi-arid area of Northern China, afforestation had its definite limitations.

  19. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China.

    PubMed

    Meng, Mei; Li, Bing; Shao, Jun-juan; Wang, Thanh; He, Bin; Shi, Jian-bo; Ye, Zhi-hong; Jiang, Gui-bin

    2014-01-01

    A total of 155 rice plants were collected from ten mining areas in three provinces of China (Hunan, Guizhou and Guangdong), where most of mercury (Hg) mining takes place in China. During the harvest season, whole rice plants were sampled and divided into root, stalk & leaf, husk and seed (brown rice), together with soil from root zone. Although the degree of Hg contamination varied significantly among different mining areas, rice seed showed the highest ability for methylmercury (MeHg) accumulation. Both concentrations of total mercury (THg) and MeHg in rice plants were significantly correlated with Hg levels in soil, indicating soil is still an important source for both inorganic mercury (IHg) and MeHg in rice plants. The obvious discrepancy between the distribution patterns of THg and MeHg reflected different pathways of IHg and MeHg accumulation. Water soluble Hg may play more important role in MeHg accumulation in rice plants.

  20. Rice-planted area extraction from multi-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    Shen, Jinxiang; Zhang, Hong; Ma, Yanmei

    2015-12-01

    Rice-planted area and production monitoring has significance for governments to formulate some food related policy. Remote sensing has an obvious advantage for the rice monitoring. As for the rice-planted area, the special growth raw shows different feature in the remote sensing image. In this paper, the multi-temporal Landsat-8 OLI image of Menghun and Mengzhe town in Xishuangbanna autonomous prefecture where planting a large number of rice was used as the test data, the corresponding changes of the difference between NDVI and NDWI was used as the diagnostic feature, and the SAM classification approach was introduced to extract rice-planted area. The experiments shows that the approach could acquire more than 95% of the extraction accuracy.

  1. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds.

    PubMed

    Scheublin, Tanja R; Deusch, Simon; Moreno-Forero, Silvia K; Müller, Jochen A; van der Meer, Jan Roelof; Leveau, Johan H J

    2014-07-01

    Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation.

  2. Effect of genotype on chemical composition, ruminal degradability and in vitro fermentation characteristics of maize residual plants.

    PubMed

    Zeller, F M E; Edmunds, B L; Schwarz, F J

    2014-10-01

    The objective of this study was to determine the changes to residual plant feeding value of early- and late-maturing maize varieties. The influence of the cell wall carbohydrate composition, in terms of neutral and acid detergent fibre (NDF and ADF) content, NDF and dry matter (DM) degradability, and in vitro organic matter digestibility and gas production on the feeding value of a range of maize genotypes, was measured. The different genotypes were allotted into two maturity groups (MG I--early to mid-early: S210-S240; MG II--mid-late to late: S 250-S280) and harvested at four different harvest dates (depending on the DM content of the kernels). The maize varieties of MG I had lower NDF and ADF contents and higher ruminal DM degradability, in vitro digestibility and gas production and thus a higher feeding value than MG II at the same stage of physiological maturity. A strong negative relationship between NDF content and the ruminal DM degradability (r = -0.81) was observed. The data indicate that the early-maturing varieties permit a larger flexibility in harvesting due to a longer period of starch inclusion into the kernel whilst simultaneously maintaining a good supply of rumen-available fibre. Conclusively, the higher feeding value of the early-maturing varieties, based on lower NDF and high DM digestibility, permits more flexibility in the harvesting period over the later-maturing varieties.

  3. Endosperm degradation during seed development of Echinocystis lobata (Cucurbitaceae) as a manifestation of programmed cell death (PCD) in plants.

    PubMed

    Wojciechowska, Marzena; Olszewska, Maria J

    2003-01-01

    Programmed cell death (PCD) is an active, genetically controlled process that ultimately leads to elimination of unnecessary or damaged cells from multicellular organism. It occurs during normal growth and development or in response to a variety of environmental triggers and is indispensable for survival of the organism. In Echinocystis lobata the endosperm, an ephemeral tissue in angiosperm plants, undergoes distinct cytological, physiological and molecular changes during seed development and maturation. As a result, mature seeds are deprived of this tissue. The endosperm was analyzed at the consecutive stages of seed development. The morphological changes of cells were studied at light and electron microscope levels. In this paper we report that endosperm cells undergo morphological and biochemical changes characteristic of apoptosis, a particular type of PCD, i.e. cell shrinkage, chromatin condensation, nuclear fragmentation, and cytoplasm degradation, while the ultrastructure of mitochondria seems to be less changed. Furthermore, the progression of DNA degradation has been shown by agarose gel electrophoresis (ladder pattern of DNA fragmentseparation), TUNEL and comet assay. It isconcluded that during seed maturation, endosperm degradation process is accompanied by typical PCD-related changes of cell morphology and internucleosomal DNA cleavage.

  4. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    SciTech Connect

    Anderson, T.A. ); Walton, B.T. )

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  5. Degradation by Streptomyces viridosporus T7A of plant material grown under elevated CO2 conditions.

    PubMed

    Ball, A S

    1991-11-15

    The biodegradability of plant material derived from wheat grown under different concentrations of atmospheric CO2 was investigated using the lignocarbohydrate solubilising actinomycete, Streptomyces viridosporus. Growth of S. viridosporus and solubilisation of lignocarbohydrate were highest when wheat grown at ambient CO2 concentrations (350 ppm) was used as C-source. Growth of S. viridosporus and solubilisation were reduced when the plant material was derived from wheat grown at 645 ppm CO2. The results suggest that modifications in plant structure occur when wheat is grown under conditions of elevated atmospheric CO2 which make it more resistant to microbial digestion.

  6. How endogenous plant cell-wall degradation mechanisms can help achieve higher efficiency in saccharification of biomass.

    PubMed

    Tavares, Eveline Q P; De Souza, Amanda P; Buckeridge, Marcos S

    2015-07-01

    Cell-wall recalcitrance to hydrolysis still represents one of the major bottlenecks for second-generation bioethanol production. This occurs despite the development of pre-treatments, the prospect of new enzymes, and the production of transgenic plants with less-recalcitrant cell walls. Recalcitrance, which is the intrinsic resistance to breakdown imposed by polymer assembly, is the result of inherent limitations in its three domains. These consist of: (i) porosity, associated with a pectin matrix impairing trafficking through the wall; (ii) the glycomic code, which refers to the fine-structural emergent complexity of cell-wall polymers that are unique to cells, tissues, and species; and (iii) cellulose crystallinity, which refers to the organization in micro- and/or macrofibrils. One way to circumvent recalcitrance could be by following cell-wall hydrolysis strategies underlying plant endogenous mechanisms that are optimized to precisely modify cell walls in planta. Thus, the cell-wall degradation that occurs during fruit ripening, abscission, storage cell-wall mobilization, and aerenchyma formation are reviewed in order to highlight how plants deal with recalcitrance and which are the routes to couple prospective enzymes and cocktail designs with cell-wall features. The manipulation of key enzyme levels in planta can help achieving biologically pre-treated walls (i.e. less recalcitrant) before plants are harvested for bioethanol production. This may be helpful in decreasing the costs associated with producing bioethanol from biomass.

  7. Chlorinated Hydrocarbon Degradation in Plants: Mechanisms and Enhancement of Phytoremediation of Groundwater Contamination

    SciTech Connect

    Strand, Stuart E.

    2002-06-01

    Several varieties of transgenic poplar containing cytochrome P-450 2E1 have been constructed and are undergoing tests. Strategies for improving public acceptance and safety of transgenic poplar for chlorinated hydrocarbon phytoremediation are being developed. We have discovered a unique rhizobium species that lives within the stems of poplar and we are investigating whether this bacterium contributes nitrogen fixed from the air to the plant and whether this endophyte could be used to introduce genes into poplar. Studies of the production of chloride ion from TCE have shown that our present P-450 constructs did not produce chloride more rapidly than wild type plants. Follow-up studies will determine if there are other rate limiting downstream steps in TCE metabolism in plants. Studies of the metabolism of carbon tetrachloride in poplar cells have provided evidence that the native plant metabolism is due to the activity of oxidative enzymes similar to the mammalian cytochrome P-450 2E1.

  8. Integration of remote sensing and ground-based techniques for the study of land degradation phenomena in coastal areas.

    NASA Astrophysics Data System (ADS)

    Imbrenda, Vito; Coluzzi, Rosa; Calamita, Giuseppe; Luigia Giannossi, Maria; D'Emilio, Mariagrazia; Lanfredi, Maria; Makris, John; Palombo, Angelo; Pascucci, Simone; Santini, Federico; Margiotta, Salvatore; Emanuela Bonomo, Agnese; De Martino, Gregory; Perrone, Angela; Rizzo, Enzo; Pignatti, Stefano; Summa, Vito; Simoniello, Tiziana

    2015-04-01

    Land degradation processes, such as salinization and waterlogging, are increasingly affecting extensive areas devoted to agriculture threatening the sustainability of farming practices. Soil salinization typically appears as an excess accumulation of salt generally pronounced at the soil surface. Commonly, soil salinity is defined and measured by means of laboratory measurements of the electrical conductivity of liquid extracted from saturated soil-paste or different soil-water suspensions. Lab measurements are generally time consuming, costly, destructive, untimely for practical situations where the determination of the causes and/or the assessment of management practices are of interest. Recently, emerging survey techniques proved to be powerful tools to support soil salinity appraisal reducing costs and increasing the amount of spatial information. In the frame of PRO-LAND project (PO-FESR Basilicata 2007-2013) the research activities have been focused on the study of a complex salinization phenomenon occurring in a coastal environment of the Basilicata region (Southern Italy) as a result of natural and anthropic disturbances. The study area is located in the southernmost part of the Bradanic Trough along the sandy Ionian coastal plain. The hydrogeological conditions affect shallowness of the aquifer (45-50 cm below the ground) allowing the occurrence of seawater intrusion. Moreover, during last century, human activities, i.e. built-up of dams, the emergence of farms and industries, played a relevant role in the alteration of soil and groundwater quality of the area. In this work, both ground-based and remote sensing data were used. First, a geophysical mapping of electrical conductivity was carried out using a multi-frequency portable electro-magnetic induction (EMI) sensor. Based on the geophysical mapping and on optimization sampling approach, a number of locations were identified to collect soil samples for the geomineralogical characterization. Airborne

  9. The role of proteolytic enzymes in degradation of plant tissues: Summary report

    SciTech Connect

    Lewosz, J.; Kelman, A.; Sequeira, L.

    1989-01-01

    The proteolytic enzymes produced by Erwinia carotovora subsp. carotovora (Ecc-strain SR 394) grown on various media were examined by isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. Proteases from all these sources were similar and had the following properties: pH optimum near 8.0, calcium dependent, insensitive to serine proteinase and SH-proteinase inhibitors, inhibited by EDTA, and highly thermostable. These enzymes degraded gelatin, soluble collagen and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin.

  10. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    PubMed

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  11. Plant invasions in protected areas of tropical pacific islands, with special reference to Hawaii

    USGS Publications Warehouse

    R. Flint Hughes,; Jean-Yves Meyer, jean-yves.meyer@recherche.gov.pf; Loope, Lloyd L.

    2013-01-01

    Isolated tropical islands are notoriously vulnerable to plant invasions. Serious management for protection of native biodiversity in Hawaii began in the 1970s, arguably at Hawaii Volcanoes National Park. Concerted alien plant management began there in the 1980s and has in a sense become a model for protected areas throughout Hawaii and Pacific Island countries and territories. We review the relative successes of their strategies and touch upon how their experience has been applied elsewhere. Protected areas in Hawaii are fortunate in having relatively good resources for addressing plant invasions, but many invasions remain intractable, and invasions from outside the boundaries continue from a highly globalised society with a penchant for horticultural novelty. There are likely few efforts in most Pacific Islands to combat alien plant invasions in protected areas, but such areas may often have fewer plant invasions as a result of their relative remoteness and/or socio-economic development status. The greatest current needs for protected areas in this region may be for establishment of yet more protected areas, for better resources to combat invasions in Pacific Island countries and territories, for more effective control methods including biological control programme to contain intractable species, and for meaningful efforts to address prevention and early detection of potential new invaders.

  12. High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium.

    PubMed

    Pugazhenthiran, N; Murugesan, S; Anandan, S

    2013-12-15

    Titanium dioxide nanotubes (TiO2 NTs) with very high surface area (469 m(2)/g) have been synthesized through a simple hydrothermal method and their surface has been modified using silver nanoparticles (Ag NPs). The Ag NPs deposited TiO2 NTs (Ag-TiO2 NTs) show an extended optical response from UV to visible region coupled with a surface plasmon resonance band and thus can be utilized as a plasmonic photocatalyst. The photoluminescence intensity of TiO2 NTs is lower than that of TiO2 nanoparticles due to the delocalization of photogenerated electrons along the one dimensional nanotubes which reduces the rate of charge recombination. The Langmuir adsorption constant of Ag-TiO2 NTs (for ceftiofur sodium adsorption) is twice that of P25 TiO2. The Ag-TiO2 NTs exhibit excellent photocatalytic activity toward the degradation of ceftiofur sodium (CFS) due to high surface area and mesoporosity of TiO2 NTs. The addition of peroxomonosulfate in the photocatalytic system greatly amplifies the CFS degradation owing to the simultaneous generation of both OH and SO4(-). The catalyst retains its photocatalytic activity at least up to four consecutive cycles.

  13. Small-scale barriers mitigate desertification processes and enhance plant recruitment in a degraded semiarid grassland

    USGS Publications Warehouse

    Fick, Stephen E; Decker, Cheryl E.; Duniway, Michael C.; Miller, Mark E.

    2016-01-01

    Anthropogenic desertification is a problem that plagues drylands globally; however, the factors which maintain degraded states are often unclear. In Canyonlands National Park on the Colorado Plateau of southeastern Utah, many degraded grasslands have not recovered structure and function >40 yr after release from livestock grazing pressure, necessitating active restoration. We hypothesized that multiple factors contribute to the persistent degraded state, including lack of seed availability, surficial soil-hydrological properties, and high levels of spatial connectivity (lack of perennial vegetation and other surface structure to retain water, litter, seed, and sediment). In combination with seeding and surface raking treatments, we tested the effect of small barrier structures (“ConMods”) designed to disrupt the loss of litter, seed and sediment in degraded soil patches within the park. Grass establishment was highest when all treatments (structures, seed addition, and soil disturbance) were combined, but only in the second year after installation, following favorable climatic conditions. We suggest that multiple limiting factors were ameliorated by treatments, including seed limitation and microsite availability, seed removal by harvester ants, and stressful abiotic conditions. Higher densities of grass seedlings on the north and east sides of barrier structures following the summer months suggest that structures may have functioned as artificial “nurse-plants”, sheltering seedlings from wind and radiation as well as accumulating wind-blown resources. Barrier structures increased the establishment of both native perennial grasses and exotic annuals, although there were species-specific differences in mortality related to spatial distribution of seedlings within barrier structures. The unique success of all treatments combined, and even then only under favorable climatic conditions and in certain soil patches, highlights that restoration success (and

  14. Evaluation of areas prepared for planting using LANDSAT data. M.S. Thesis; [Ribeirao Preto, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deassuncao, G. V.; Duarte, V.

    1983-01-01

    Three different algorithms (SINGLE-CELL, MAXVER and MEDIA K) were used to automatically interpret data from LANDSAT observations of an area of Ribeirao Preto, Brazil. Photographic transparencies were obtained, projected and visually interpreted. The results show that: (1) the MAXVER algorithm presented a better classification performance; (2) verification of the changes in cultivated areas using data from the three different acquisition dates was possible; (3) the water bodies, degraded lands, urban areas, and fallow fields were frequently mistaken by cultivated soils; and (4) the use of projected photographic transparencies furnished satisfactory results, besides reducing the time spent on the image-100 system.

  15. Habitat area and climate stability determine geographical variation in plant species range sizes.

    PubMed

    Morueta-Holme, Naia; Enquist, Brian J; McGill, Brian J; Boyle, Brad; Jørgensen, Peter M; Ott, Jeffrey E; Peet, Robert K; Símová, Irena; Sloat, Lindsey L; Thiers, Barbara; Violle, Cyrille; Wiser, Susan K; Dolins, Steven; Donoghue, John C; Kraft, Nathan J B; Regetz, Jim; Schildhauer, Mark; Spencer, Nick; Svenning, Jens-Christian

    2013-12-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~ 85 000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen concerns over the potential effects of future climate change and habitat loss on biodiversity.

  16. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    NASA Astrophysics Data System (ADS)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  17. Reclamation of degraded areas in eastern Amazonian: The potential of Sclerolobium paniculatum Vogel

    SciTech Connect

    Junior, S.B.; Dias, L.E.; Pereira, C.A.

    1996-12-31

    Sclerolobium paniculatum Vogel (taxi-branco) is a legumenous tree native to the Brazilian Amazon region. It occurs in different types of soil and fix atmospheric nitrogen. The mechanical dormancy of the seeds may be overcome by immersing in boiling water and then removing them from the heat until the water cools to room temperature. The seed germination occurs in approximately 30 days. In greenhouse conditions, taxi-branco does not respond to the application of Ca and S. The critical levels in the soil of these two nutrients were 0.37 meq/100 cm{sup 3} and 5.10 mg/cm{sup 3}, respectively. The silvicultural performance of taxi-branco may be considered satisfactory when compared to other native tree species of the Amazon. In homogeneous plantations, taxi-branco trees produce about eight tons of litter per hectare. Its rapid growth accompanied by a high production of litter and its N fixation qualify this species as potentially suitable for the recuperation of degraded soils by human actions.

  18. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Yang, Feiling; Hu, Jinming; Wu, Ruidong

    2016-08-01

    Suitable surrogates are critical for identifying optimal priority conservation areas (PCAs) to protect regional biodiversity. This study explored the efficiency of using endangered plants and animals as surrogates for identifying PCAs at the county level in Yunnan, southwest China. We ran the Dobson algorithm under three surrogate scenarios at 75% and 100% conservation levels and identified four types of PCAs. Assessment of the protection efficiencies of the four types of PCAs showed that endangered plants had higher surrogacy values than endangered animals but that the two were not substitutable; coupled endangered plants and animals as surrogates yielded a higher surrogacy value than endangered plants or animals as surrogates; the plant-animal priority areas (PAPAs) was the optimal among the four types of PCAs for conserving both endangered plants and animals in Yunnan. PAPAs could well represent overall species diversity distribution patterns and overlap with critical biogeographical regions in Yunnan. Fourteen priority units in PAPAs should be urgently considered as optimizing Yunnan’s protected area system. The spatial pattern of PAPAs at the 100% conservation level could be conceptualized into three connected conservation belts, providing a valuable reference for optimizing the layout of the in situ protected area system in Yunnan.

  19. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China

    PubMed Central

    Yang, Feiling; Hu, Jinming; Wu, Ruidong

    2016-01-01

    Suitable surrogates are critical for identifying optimal priority conservation areas (PCAs) to protect regional biodiversity. This study explored the efficiency of using endangered plants and animals as surrogates for identifying PCAs at the county level in Yunnan, southwest China. We ran the Dobson algorithm under three surrogate scenarios at 75% and 100% conservation levels and identified four types of PCAs. Assessment of the protection efficiencies of the four types of PCAs showed that endangered plants had higher surrogacy values than endangered animals but that the two were not substitutable; coupled endangered plants and animals as surrogates yielded a higher surrogacy value than endangered plants or animals as surrogates; the plant-animal priority areas (PAPAs) was the optimal among the four types of PCAs for conserving both endangered plants and animals in Yunnan. PAPAs could well represent overall species diversity distribution patterns and overlap with critical biogeographical regions in Yunnan. Fourteen priority units in PAPAs should be urgently considered as optimizing Yunnan’s protected area system. The spatial pattern of PAPAs at the 100% conservation level could be conceptualized into three connected conservation belts, providing a valuable reference for optimizing the layout of the in situ protected area system in Yunnan. PMID:27538537

  20. Combining endangered plants and animals as surrogates to identify priority conservation areas in Yunnan, China.

    PubMed

    Yang, Feiling; Hu, Jinming; Wu, Ruidong

    2016-08-19

    Suitable surrogates are critical for identifying optimal priority conservation areas (PCAs) to protect regional biodiversity. This study explored the efficiency of using endangered plants and animals as surrogates for identifying PCAs at the county level in Yunnan, southwest China. We ran the Dobson algorithm under three surrogate scenarios at 75% and 100% conservation levels and identified four types of PCAs. Assessment of the protection efficiencies of the four types of PCAs showed that endangered plants had higher surrogacy values than endangered animals but that the two were not substitutable; coupled endangered plants and animals as surrogates yielded a higher surrogacy value than endangered plants or animals as surrogates; the plant-animal priority areas (PAPAs) was the optimal among the four types of PCAs for conserving both endangered plants and animals in Yunnan. PAPAs could well represent overall species diversity distribution patterns and overlap with critical biogeographical regions in Yunnan. Fourteen priority units in PAPAs should be urgently considered as optimizing Yunnan's protected area system. The spatial pattern of PAPAs at the 100% conservation level could be conceptualized into three connected conservation belts, providing a valuable reference for optimizing the layout of the in situ protected area system in Yunnan.

  1. Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth.

    PubMed

    Kukla, M; Płociniczak, T; Piotrowska-Seget, Z

    2014-12-01

    The aim of this study was to assess the ability of twenty-nine endophytic bacteria isolated from the tissues of ryegrass (Lolium perenne L.) to promote plant growth and the degradation of hydrocarbon. Most of the isolates belonged to the genus Pseudomonas and showed multiple plant growth-promoting abilities. All of the bacteria that were tested exhibited the ability to produce indole-3-acetic acid and were sensitive to streptomycin. These strains were capable of phosphate solubilization (62%), cellulolytic enzyme production (62%), a capacity for motility (55%) as well as for the production of siderophore (45%), ammonium (41%) and hydrogen cyanide (38%). Only five endophytes had the emulsification ability that results from the production of biosurfactants. The 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene (acdS) was found in ten strains. These bacteria exhibited ACCD activities in the range from 1.8 to 56.6 μmol of α-ketobutyrate mg(-1)h(-1), which suggests that these strains may be able to modulate ethylene levels and enhance plant growth. The potential for hydrocarbon degradation was assessed by PCR amplification on the following genes: alkH, alkB, C23O, P450 and pah. The thirteen strains that were tested had the P450 gene but the alkH and pah genes were found only in the Rhodococcus fascians strain (L11). Four endophytic bacteria belonging to Microbacterium sp. and Rhodococcus sp. (L7, S12, S23, S25) showed positive results for the alkB gene.

  2. Chlorinated Hydrocarbon Degradation in Plants: Mechanisms and Enhancement of Phytoremediation of Groundwater Contamination

    SciTech Connect

    Stuart Strand

    2004-09-27

    The research objectives for this report are: (1) Transform poplar and other tree species to extend and optimize chlorinated hydrocarbon (CHC) oxidative activities. (2) Determine the mechanisms of CHC oxidation in plants. (3) Isolate the genes responsible for CHC oxidation in plants. We have made significant progress toward an understanding of the biochemical mechanism of CHC transformation native to wild-type poplar. We have identified chloral, trichloroethanol, trichloroacetic acid, and dichloroacetic acid as products of TCE metabolism in poplar plants and in tissue cultures of poplar cells.(Newman et al. 1997; Newman et al. 1999) Use of radioactively labeled TCE showed that once taken up and transformed, most of the TCE was incorporated into plant tissue as a non-volatile, unextractable residue.(Shang et al. 2001; Shang and Gordon 2002) An assay for this transformation was developed and validated using TCE transformation by poplar suspension cells. Using this assay, it was shown that two different activities contribute to the fixation of TCE by poplar cells: one associated with cell walls and insoluble residues, the other associated with a high molecular weight, heat labile fraction of the cell extract, a fixation that was apparently catalyzed by plant enzymes.

  3. 'PANOZA' - gamma irradiator for simulation of harsh environment areas of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Bartoníček, Bohumil; Ďurčík, Miroslav; Pejša, Robert; Plaček, Vít; Vomáčka, Petr; Vlček, Svatopluk; Zahálka, František

    2005-07-01

    Cobalt irradiator 'PANOZA' has been designed and constructed in the Nuclear Research Institute, Řež, Czech Republic, in order to simulate aggressive conditions under the containment of nuclear power plants (NPP). These conditions are characterized by elevated temperatures and ionizing radiation, the synergic effect of which causes degradation of non-metallic materials in various installations and devices. The irradiator 'PANOZA' makes possible to study aging of samples or even entire devices of NPP at temperatures ranging from 30 to 90 °C and at the gamma dose rates from 1 to 10 Gy/h. Continuous measurement of the operational parameters of the device or verification of their operational reliability is also possible. The operational conditions of PANOZA grant the long-term radio-oxidation of non-metallic materials, i.e. the characteristic mechanism of degradation, in order to verify their usability in NPP.

  4. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    PubMed

    Dáttilo, Wesley; Fagundes, Roberth; Gurka, Carlos A Q; Silva, Mara S A; Vieira, Marisa C L; Izzo, Thiago J; Díaz-Castelazo, Cecília; Del-Claro, Kleber; Rico-Gray, Victor

    2014-01-01

    Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available) in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night) at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  5. Photochemical degradation of hydroxy PAHs in ice: Implications for the polar areas.

    PubMed

    Ge, Linke; Li, Jun; Na, Guangshui; Chen, Chang-Er; Huo, Cheng; Zhang, Peng; Yao, Ziwei

    2016-07-01

    Hydroxyl polycyclic aromatic hydrocarbons (OH-PAHs) are derived from hydroxylated PAHs as contaminants of emerging concern. They are ubiquitous in the aqueous and atmospheric environments and may exist in the polar snow and ice, which urges new insights into their environmental transformation, especially in ice. In present study the simulated-solar (λ > 290 nm) photodegradation kinetics, products and pathways of four OH-PAHs (9-Hydroxyfluorene, 2-Hydroxyfluorene, 1-Hydroxypyrene and 9-Hydroxyphenanthrene) in ice were investigated, and the corresponding implications for the polar areas were explored. It was found that the kinetics followed the pseudo-first-order kinetics with the photolysis quantum yields (Φs) ranging from 7.48 × 10(-3) (1-Hydroxypyrene) to 4.16 × 10(-2) (2-Hydroxyfluorene). These 4 OH-PAHs were proposed to undergo photoinduced hydroxylation, resulting in multiple hydroxylated intermediates, particularly for 9-Hydroxyfluorene. Extrapolation of the lab data to the real environment is expected to provide a reasonable estimate of OH-PAH photolytic half-lives (t1/2,E) in mid-summer of the polar areas. The estimated t1/2,E values ranged from 0.08 h for 1-OHPyr in the Arctic to 54.27 h for 9-OHFl in the Antarctic. In consideration of the lower temperature and less microorganisms in polar areas, the photodegradation can be a key factor in determining the fate of OH-PAHs in sunlit surface snow/ice. To the best of our knowledge, this is the first report on the photodegradation of OH-PAHs in polar areas.

  6. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger

    PubMed Central

    van Munster, Jolanda M.; Daly, Paul; Delmas, Stéphane; Pullan, Steven T.; Blythe, Martin J.; Malla, Sunir; Kokolski, Matthew; Noltorp, Emelie C.M.; Wennberg, Kristin; Fetherston, Richard; Beniston, Richard; Yu, Xiaolan; Dupree, Paul; Archer, David B.

    2014-01-01

    Fungi are an important source of enzymes for saccharification of plant polysaccharides and production of biofuels. Understanding of the regulation and induction of expression of genes encoding these enzymes is still incomplete. To explore the induction mechanism, we analysed the response of the industrially important fungus Aspergillus niger to wheat straw, with a focus on events occurring shortly after exposure to the substrate. RNA sequencing showed that the transcriptional response after 6 h of exposure to wheat straw was very different from the response at 24 h of exposure to the same substrate. For example, less than half of the genes encoding carbohydrate active enzymes that were induced after 24 h of exposure to wheat straw, were also induced after 6 h exposure. Importantly, over a third of the genes induced after 6 h of exposure to wheat straw were also induced during 6 h of carbon starvation, indicating that carbon starvation is probably an important factor in the early response to wheat straw. The up-regulation of the expression of a high number of genes encoding CAZymes that are active on plant-derived carbohydrates during early carbon starvation suggests that these enzymes could be involved in a scouting role during starvation, releasing inducing sugars from complex plant polysaccharides. We show, using proteomics, that carbon-starved cultures indeed release CAZymes with predicted activity on plant polysaccharides. Analysis of the enzymatic activity and the reaction products, indicates that these proteins are enzymes that can degrade various plant polysaccharides to generate both known, as well as potentially new, inducers of CAZymes. PMID:24792495

  7. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Rong, Zhang; Li, Ye; Li, Cheng; Zheng, Zheng

    Cotton-stalk activated carbon fibers (CSCFs) with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB) was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area.

  8. Restoration of Degraded Soil in the Nanmangalam Reserve Forest with Native Tree Species: Effect of Indigenous Plant Growth-Promoting Bacteria

    PubMed Central

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy

    2016-01-01

    Restoration of a highly degraded forest, which had lost its natural capacity for regeneration, was attempted in the Nanmangalam Reserve Forest in Eastern Ghats of India. In field experiment, 12 native tree species were planted. The restoration included inoculation with a consortium of 5 native plant growth-promoting bacteria (PGPB), with the addition of small amounts of compost and a chemical fertilizer (NPK). The experimental fields were maintained for 1080 days. The growth and biomass varied depending on the plant species. All native plants responded well to the supplementation with the native PGPB. The plants such as Pongamia pinnata, Tamarindus indica, Gmelina arborea, Wrightia tinctoria, Syzygium cumini, Albizia lebbeck, Terminalia bellirica, and Azadirachta indica performed well in the native soil. This study demonstrated, by using native trees and PGPB, a possibility to restore the degraded forest. PMID:27195310

  9. 300 Area steam plant replacement, Hanford Site, Richland, Washington: Environmental assessment

    SciTech Connect

    1997-03-01

    Steam to support process operations and facility heating is currently produced by a centralized oil-fired plant located in the 300 Area and piped to approximately 26 facilities in the 300 Area. This plant was constructed during the 1940s and, because of tis age, is not efficient, requires a relatively large operating and maintenance staff, and is not reliable. The US Department of Energy is proposing an energy conservation measure for a number of buildings in the 300 Area of the Hanford Site. This action includes replacing the centralized heating system with heating units for individual buildings or groups of buildings, constructing new natural gas pipelines to provide a fuel source for many of these units and constructing a central control building to operate and maintain the system. A new steel-sided building would be constructed in the 300 Area in a previously disturbed area at least 400 m (one-quarter mile) from the Columbia River, or an existing 300 Area building would be modified and used. This Environmental Assessment evaluates alternatives to the proposed actions. Alternatives considered are: (1) the no action alternative; (2) use of alternative fuels, such as low-sulfur diesel oil; (3) construction of a new central steam plant, piping and ancillary systems; (4) upgrade of the existing central steam plant and ancillary systems; and (5) alternative routing of the gas distribution pipeline that is a part of the proposed action. A biological survey and culture resource review and survey were also conducted.

  10. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation.

    PubMed

    Awasthi, Manika; Jaiswal, Nivedita; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N

    2015-09-01

    Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.

  11. A microplate assay for quantitative evaluation of plant cell wall degrading enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Plant pathogenic fungi are a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass convers...

  12. An insect herbivore microbiome with high plant biomass-degrading capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a...

  13. Canola meals from different production plants differ in ruminal protein degradability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lactation trials have shown that production and N efficiency were improved when dietary soybean meal was replaced with equal crude protein (CP) from canola meal. Three or four canola meal samples were collected from each of 12 Canadian production plants (total = 37), and analyzed for differences in ...

  14. RATE OF TCE DEGRADATION IN PASSIVE REACTIVE BARRIERS CONSTRUCTED WITH PLANT MULCH (BIOWALLS)

    EPA Science Inventory

    This presentation reviews a case study at Altus AFB on the extent of treatment of TCE in a passive reactive barrier constructed with plant mulch. It presents data from a tracer test to estimate the rate of ground water flow at the site, and the residence time of water and TCE in...

  15. Plant volatiles in a polluted atmosphere: stress response and signal degradation

    PubMed Central

    Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo

    2014-01-01

    Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697

  16. Role of soil adsorption and microbial degradation on dissipation of mesotrione in plant available soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and post emergent weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant available water (PAW) is important for both the environmental fat...

  17. Enzymatic degradation of endocrine-disrupting chemicals in aquatic plants and relations to biological Fenton reaction.

    PubMed

    Reis, A R; Sakakibara, Y

    2012-01-01

    In order to evaluate the removal performance of trace phenolic endocrine-disrupting chemicals (EDCs) by aquatic plants, batch and continuous experiments were conducted using floating and submerged plants. The EDCs used in this study were bisphenol A, 2,4-dichlorophenol, 4-tert-octylphenol, pentachlorophenol, and nonylphenol. The feed concentration of each EDC was set at 100 μg/L. Continuous experiments showed that every EDC except pentachlorophenol was efficiently removed by different aquatic plants through the following reaction, catalyzed by peroxidases: EDCs+H(2)O(2)→Products+H(2)O(2). Peroxidases were able to remove phenolic EDCs in the presence of H(2)O(2) over a wide pH range (from 3 to 9). Histochemical localization of peroxidases showed that they were located in every part of the root cells, while highly concentrated zones were observed in the epidermis and in the vascular tissues. Although pentachlorophenol was not removed in the continuous treatment, it was rapidly removed by different aquatic plants when Fe(2+) was added, and this removal occurred simultaneously with the consumption of endogenous H(2)O(2). These results demonstrated the occurrence of a biological Fenton reaction and the importance of H(2)O(2) as a key endogenous substance in the treatment of EDCs and refractory toxic pollutants.

  18. Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth.

    PubMed

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian; Druzhinina, Irina; Chenthamara, Komal; Labbé, Jessy; Yuan, Zhilin

    2017-01-01

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for construction of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-α), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant-fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially aboveground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. This work provides a better understanding of the symbiotic relationship between plants and

  19. Diverse plant-associated pleosporalean fungi from saline areas: Ecological tolerance and nitrogen-status dependent effects on plant growth

    DOE PAGES

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian; ...

    2017-02-06

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for constructionmore » of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-a), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially above ground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. Furthermore, this work provides a better understanding of the symbiotic relationship

  20. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  1. Draft Genome Sequence of Triclosan-Degrading Bacterium Sphingomonas sp. Strain YL-JM2C, Isolated from a Wastewater Treatment Plant in China

    PubMed Central

    Mulla, Sikandar I.; Xu, Haili

    2015-01-01

    Sphingomonas sp. strain YL-JM2C was isolated from a wastewater treatment plant in Xiamen, China, by enrichment on triclosan. The bacterium is of special interest because of its ability to degrade triclosan. Here, we present a draft genome sequence of the microorganism and its functional annotation. To our best knowledge, this is the first report of a draft genome sequence of a triclosan-degrading bacterium PMID:26044437

  2. Household dyeing plants and traditional uses in some areas of Italy

    PubMed Central

    Guarrera, Paolo Maria

    2006-01-01

    Background This paper reports the results of investigations carried out from 1977 to today in some areas of Italy (Latium, Marche, Abruzzo and to a limited extent in Sardinia) concerning traditional uses of dyeing plants in the household. Results Twenty-nine plants are described, distributed in 23 families, and for each species the vernacular name, the way it is used and the locations of traditional use are given. Other plants used in the past in the above-mentioned regions are recalled. Conclusion Among the new findings – not mentioned in previous literature, see references – is Muscari neglectum (purplish). Nowadays atavistic dye uses still persist only in Nule (Sardinia). PMID:16457717

  3. Degradation of microcrystalline cellulose and non-pretreated plant biomass by a cell-free extracellular cellulase/hemicellulase system from the extreme thermophilic bacterium Caldicellulosiruptor bescii.

    PubMed

    Kanafusa-Shinkai, Sumiyo; Wakayama, Jun'ichi; Tsukamoto, Kazumi; Hayashi, Noriko; Miyazaki, Yasumasa; Ohmori, Hideyuki; Tajima, Kiyoshi; Yokoyama, Hiroshi

    2013-01-01

    Caldicellulosiruptor bescii is a cellulolytic/hemicellulolytic anaerobe, which extracellularly secretes various proteins, including multidomain cellulases with two-catalytic domains, for plant biomass degradation. Degradation by C. bescii cells has been well characterized, but degradation by the cell-free extracellular cellulase/hemicellulase system (CEC) of C. bescii has not been as well studied. In the present study, C. bescii CEC was prepared from cell-free culture supernatant, and the degradation properties for defined substrates and non-pretreated plant biomass were characterized. Four multidomain cellulases (Cbes_1857, Cbes_1859, Cbes_1865, and Cbes_1867), composed of the glycoside hydrolase families 5, 9, 10, 44, and 48, were the major enzymes identified in the CEC by mass spectrometry. The CEC degraded xylan, mannose-based substrates, β-1,4-linked glucans, including microcrystalline cellulose (Avicel), and non-pretreated timothy grass and rice straw. However, degradation of chitin, pectin, dextran, and wheat starch was not observed. The optimum temperatures for degradation activities were 75°C for timothy grass and Avicel, 85°C for carboxylmethyl cellulose, and >85°C for xylan. The optimum pH for these substrates was 5-6. The degradation activities were compared with a CEC derived from the fungus Trichoderma reesei, the most common enzyme used for plant biomass saccharification. The amounts of degraded Avicel, timothy grass, and rice straw by C. bescii CEC were 2.2-2.4-fold larger than those of T. reesei CEC. The high hydrolytic activity of C. bescii CEC might be attributed to the two-catalytic domain architecture of the cellulases.

  4. Comparing Background and Recent Erosion Rates in Degraded Areas of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, N.; Bierman, P. R.; Sosa-Gonzalez, V.; Rood, D. H.; Fontes, R. L.; Santos, A. C.; Godoy, J. M.; Bhering, S.

    2014-12-01

    Soil erosion is a major problem in northwestern Rio de Janeiro State where, during the last three centuries, major land-use changes took place, associated with the replacement of the original rainforest by agriculture and grazing. The combination of steep hillslopes, erodible soils, sparse vegetation, natural and human-induced fires, as well as downslope ploughing, led to an increase in surface runoff and surface erosion on soil-mantled hillslopes; together, these actions and responses caused a decline in soil productivity. In order to estimate changes in erosion rates over time, we compared erosion rates measured at different spatial and temporal scales, both background (natural) and short-term (human-induced during last few decades). Background long-term erosion rates were measured using in-situ produced cosmogenic 10Be in the sand fraction quartz of active river channel sediment in four basins in the northwestern portion of Rio de Janeiro State. In these basins, average annual precipitation varies from 1,200 to 1,300 mm, while drainage areas vary from 15 to 7,200 km2. Short-term erosion rates were measured in one of these basins from fallout 210Pb in soil samples collected along a hillslope transect located in an abandoned agriculture field. In this transect, 190 undisturbed soil samples (three replicates) were collected from the surface to 0.50 m depth (5 cm vertical intervals) in six soil pits. 10Be average background, basin-wide, erosion rates in the area are ~ 13 m/My; over the last decades, time-integrated (210Pb) average hillslope erosion rates are around 1450 m/Myr, with maximum values at the steepest portion of convex hillslopes of about 2000 m/Myr. These results suggest that recent hillslope erosion rates are about 2 orders of magnitude above background rates of sediment generation integrated over many millennia. This unsustainable rate of soil loss has severely decreased soil productivity eventually leading to the abandonment of farming activities in

  5. Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat transfer fluid used in thermo-solar plants.

    PubMed

    Blanco-Moreno, Rafael; Sáez, Lara P; Luque-Almagro, Víctor M; Roldán, M Dolores; Moreno-Vivián, Conrado

    2017-03-25

    Thermo-solar plants use eutectic mixtures of diphenyl ether (DE) and biphenyl (BP) as heat transfer fluid (HTF). Potential losses of HTF may contaminate soils and bioremediation is an attractive tool for its treatment. DE- or BP-degrading bacteria are known, but up to now bacteria able to degrade HTF mixture have not been described. Here, five bacterial strains which are able to grow with HTF or its separate components DE and BP as sole carbon sources have been isolated, either from soils exposed to HTF or from rhizospheric soils of plants growing near a thermo-solar plant. The organisms were identified by 16S rRNA gene sequencing as Achromobacter piechaudii strain BioC1, Pseudomonas plecoglossicida strain 6.1, Pseudomonas aeruginosa strains HBD1 and HBD3, and Pseudomonas oleovorans strain HBD2. Activity of 2,3-dihydroxybiphenyl dioxygenase (BphC), a key enzyme of the biphenyl upper degradation pathway, was detected in all isolates. Pseudomonas strains almost completely degraded 2000ppm HTF after 5-day culture, and even tolerated and grew in the presence of 150,000ppm HTF, being suitable candidates for in situ soil bioremediation. Degradation of both components of HTF is of particular interest since in the DE-degrader Sphingomonas sp. SS3, growth on DE or benzoate was strongly inhibited by addition of BP.

  6. Aberrant connectivity of areas for decoding degraded speech in patients with auditory verbal hallucinations.

    PubMed

    Clos, Mareike; Diederen, Kelly M J; Meijering, Anne Lotte; Sommer, Iris E; Eickhoff, Simon B

    2014-03-01

    Auditory verbal hallucinations (AVH) are a hallmark of psychotic experience. Various mechanisms including misattribution of inner speech and imbalance between bottom-up and top-down factors in auditory perception potentially due to aberrant connectivity between frontal and temporo-parietal areas have been suggested to underlie AVH. Experimental evidence for disturbed connectivity of networks sustaining auditory-verbal processing is, however, sparse. We compared functional resting-state connectivity in 49 psychotic patients with frequent AVH and 49 matched controls. The analysis was seeded from the left middle temporal gyrus (MTG), thalamus, angular gyrus (AG) and inferior frontal gyrus (IFG) as these regions are implicated in extracting meaning from impoverished speech-like sounds. Aberrant connectivity was found for all seeds. Decreased connectivity was observed between the left MTG and its right homotope, between the left AG and the surrounding inferior parietal cortex (IPC) and the left inferior temporal gyrus, between the left thalamus and the right cerebellum, as well as between the left IFG and left IPC, and dorsolateral and ventrolateral prefrontal cortex (DLPFC/VLPFC). Increased connectivity was observed between the left IFG and the supplementary motor area (SMA) and the left insula and between the left thalamus and the left fusiform gyrus/hippocampus. The predisposition to experience AVH might result from decoupling between the speech production system (IFG, insula and SMA) and the self-monitoring system (DLPFC, VLPFC, IPC) leading to misattribution of inner speech. Furthermore, decreased connectivity between nodes involved in speech processing (AG, MTG) and other regions implicated in auditory processing might reflect aberrant top-down influences in AVH.

  7. Degradation of thiram in water, soil and plants: a study by high-performance liquid chromatography.

    PubMed

    Gupta, Bina; Rani, Manviri; Kumar, Rahul

    2012-01-01

    A comprehensive study was conducted to evaluate the persistence of thiram in water and soil under controlled conditions and on two plants, namely tomato and radish, in field conditions. In order to follow the decay of the pesticide, an HPLC procedure was developed employing an octadecyl endcapped RP-C18 column using a mixture of acetonitrile and water as the mobile phase and an ultraviolet detector. Studies conducted in water at different temperature, pH and organic content revealed that the persistence of the pesticide decreases with the increase in all the three variables. In the three different types of soils studied, the effect of pH was more or less apparent on a similar line. On average a slower decay was observed in the case of plants than in water and soil.

  8. Research subjects for analytical estimation of core degradation at Fukushima-Daiichi nuclear power plant

    SciTech Connect

    Nagase, F.; Ishikawa, J.; Kurata, M.; Yoshida, H.; Kaji, Y.; Shibamoto, Y.; Amaya, M; Okumura, K.; Katsuyama, J.

    2013-07-01

    Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior in the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)

  9. Research on Estimation Crop Planting Area by Integrating the Optical and Microwave Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Yu, F.

    2013-07-01

    Considering the problem in monitoring agricultural condition in the semi-arid areas of Northwest of China, we propose a new method for estimation of crop planting area, using the single phase optical and microwave remote sensing data collaboratively, which have demonstrated their respective advantages in the extraction of surface features. In the model, the ASAR backscatter coefficient is normalized by the incident angle at first, then the classifier based on Bayesian network is developed, and the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. Moreover the crop planting areas can be extracted by the classification results. At last, the model is validated for the necessities of normalization by the incident angle and integration of TM and ASAR respectively. It results that the estimation accuracy of crop planting area of corn and other crops garden are 98.47% and 78.25% respectively using the proposed method, with an improvement of estimation accuracy of about 3.28% and 4.18% relative to single TM classification. These illustrate that synthesis of optical and microwave remote sensing data is efficient and potential in estimation crop planting area.

  10. Research on estimation crop planting area by integrating the optical and microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Liu, Jiang; Yu, Fan; Liu, Dandan; Tian, Jing; Zhang, Weicheng; Wang, Qiang; Yang, Jinling; Zhang, Lei

    2015-12-01

    Considering the problem in monitoring agricultural condition in the semi-arid areas of Northwest of China, we propose a new method for estimation of crop planting area, using the single phase optical and microwave remote sensing data collaboratively, which have demonstrated their respective advantages in the extraction of surface features. In the model, the ASAR backscatter coefficient is normalized by the incident angle at first, then the classifier based on Bayesian network is developed, and the VV, VH polarization of ASAR and all the 7 TM bands are taken as the input of the classifier to get the class labels of each pixel of the images. Moreover the crop planting areas can be extracted by the classification results. At last, the model is validated for the necessities of normalization by the incident angle and integration of TM and ASAR respectively. It results that the estimation accuracy of crop planting area of corn and other crops garden are 98.47% and 78.25% respectively using the proposed method, with an improvement of estimation accuracy of about 3.28% and 4.18% relative to single TM classification. These illustrate that synthesis of optical and microwave remote sensing data is efficient and potential in estimation crop planting area.

  11. Efficiency of plant growth promoting rhizobacteria isolated from sand dunes of Chennai coastal area.

    PubMed

    Muthezhilan, R; Sindhuja, B S; Hussain, A Jaffar; Jayaprakashvel, M

    2012-08-15

    Plant Growth Promoting Rhizobacteria (PGPR) are beneficial bacteria that colonize the plant root and enhance the plant growth. The use of PGPR is steadily increasing in agriculture and offers an attractive way to replace chemical fertilizers, pesticides and supplements. In the present study, PGPR were isolated from 18 different rhizosphere soil samples of coastal sand dune plants, belonging to the genus Ipomoea sp. collected from the Chennai coastal area. For isolation of bacteria from soil samples, pour plate technique was followed. The rhizobacterial population was ranged from 4.4 x 10(6)-7.5 x 10(7) CFU g(-1). From that, 46 morphologically different bacterial strains were isolated. Among 46, 18 strains exhibited the production of Indole Acetic Acid. (IAA). When screened for phosphate solubilzing activity, six strains showed maximum activity. All these selected six strains were screened for seed germination among which these two strains (AMET1136 and AMET 1148) showed remarkable increase in the seed germination of black gram and green gram. For plant growth promotion, three types of treatments namely, seed bacterization, soil drenching and mixed (seed+soil) were carried out to check the potential of these two strains. Among that one strain which was identified as Pseudomonas sp. AMET1148 showed remarkable and significant increase in shoot length and root length of the tested plants. The study concluded that PGPR from coastal sand dund plants can be developed as plant growth promoters in agricultural crops.

  12. Host plant range of Raoiella indica (Acari: Tenuipalpidae) in areas of invasion of the New World.

    PubMed

    Carrillo, Daniel; Amalin, Divina; Hosein, Farzan; Roda, Amy; Duncan, Rita E; Peña, Jorge E

    2012-08-01

    Raoiella indica has spread rapidly through the Neotropical region where the mite damages economically and ecologically important plants. Three studies were conducted to determine the host plant range of R. indica, using the presence of colonies containing all life stages as an indicator of reproductive suitability. Periodic surveys at the Fairchild Tropical Botanic Garden (Miami Dade County, FL, USA) and the Royal Botanical Gardens (Port of Spain, Trinidad and Tobago) identified 27 new reproductive host plants. The reproductive suitability of two dicotyledonous species and three native Florida palm species was examined. An updated list of reproductive host plants of R. indica is presented. All reported reproductive hosts (91 plant species) of R. indica are monocots from the orders Arecales (Arecaceae), Zingiberales (Heliconiaceae, Musaceae, Strelitziaceae, Zingiberaceae) and Pandanales (Pandanaceae). Most are palms of the family Arecaceae that originated in areas of the Eastern Hemisphere; about one fourth of the reported hosts are native to the New World and could be considered new host associations of R. indica. Six years after the initial detection in the Caribbean, R. indica has expanded its host plant range. Here we report 27 new reproductive host of R. indica that represent 30% of increase on previous host plant records. As this mite continues spreading in the Neotropical region a great diversity of plants is potentially affected.

  13. Soil-Derived Microbial Consortia Enriched with Different Plant Biomass Reveal Distinct Players Acting in Lignocellulose Degradation.

    PubMed

    de Lima Brossi, Maria Julia; Jiménez, Diego Javier; Cortes-Tolalpa, Larisa; van Elsas, Jan Dirk

    2016-04-01

    Here, we investigated how different plant biomass, and-for one substrate-pH, drive the composition of degrader microbial consortia. We bred such consortia from forest soil, incubated along nine aerobic sequential - batch enrichments with wheat straw (WS1, pH 7.2; WS2, pH 9.0), switchgrass (SG, pH 7.2), and corn stover (CS, pH 7.2) as carbon sources. Lignocellulosic compounds (lignin, cellulose and xylan) were best degraded in treatment SG, followed by CS, WS1 and WS2. In terms of composition, the consortia became relatively stable after transfers 4 to 6, as evidenced by PCR-DGGE profiles obtained from each consortium DNA. The final consortia differed by ~40 % (bacteria) and ~60 % (fungi) across treatments. A 'core' community represented by 5/16 (bacteria) and 3/14 (fungi) bands was discerned, next to a variable part. The composition of the final microbial consortia was strongly driven by the substrate, as taxonomically-diverse consortia appeared in the different substrate treatments, but not in the (WS) different pH one. Biodegradative strains affiliated to Sphingobacterium kitahiroshimense, Raoultella terrigena, Pseudomonas putida, Stenotrophomonas rhizophila (bacteria), Coniochaeta ligniaria and Acremonium sp. (fungi) were recovered in at least three treatments, whereas strains affiliated to Delftia tsuruhatensis, Paenibacillus xylanexedens, Sanguibacter inulus and Comamonas jiangduensis were treatment-specific.

  14. Degradation Dynamics and Dietary Risk Assessments of Two Neonicotinoid Insecticides during Lonicera japonica Planting, Drying, and Tea Brewing Processes.

    PubMed

    Fang, Qingkui; Shi, Yanhong; Cao, Haiqun; Tong, Zhou; Xiao, Jinjing; Liao, Min; Wu, Xiangwei; Hua, Rimao

    2017-03-01

    The degradation dynamics and dietary risk assessments of thiamethoxam and thiacloprid during Lonicera japonica planting, drying, and tea brewing processes were systematically investigated using high-performance liquid chromatography. The half-lives of thiamethoxam and thiacloprid were 1.0-4.1 d in the honeysuckle flowers and leaves, with degradation rate constants k ranging from -0.169 to -0.696. The safety interval time was 7 d. The sun- and oven-drying (70 °C) percent digestions were 59.4-81.0% for the residues, which were higher than the shade- and oven-drying percentages at lower temperatures (30, 40, 50, and 60 °C, which ranged from 37.7% to 57.0%). The percent transfers of thiamethoxam and thiacloprid were 0-48.4% and 0-25.2%, respectively, for the different tea brewing conditions. On the basis of the results of this study, abiding by the safety interval time is important, and using reasonable drying methods and tea brewing conditions can reduce the transfer of thiamethoxam and thiacloprid to humans.

  15. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor.

    PubMed

    Maldonado, M I; Malato, S; Pérez-Estrada, L A; Gernjak, W; Oller, I; Doménech, Xavier; Peral, José

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry (alpha-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html] founded by the European Union that inquires into the potential coupling between chemical and biological oxidations for the removal of toxic or non-biodegradable contaminants from water. The evolution of pollutant concentration, TOC mineralization, generation of inorganic species and consumption of O3 have been followed in order to visualize the chemical treatment effectiveness. Although complete mineralization is hard to accomplish, and large amounts of the oxidant are required to lower the organic content of the solutions, the possibility of ozonation cannot be ruled out if partial degradation is the final goal wanted. In this sense, Zahn-Wellens biodegradability tests of the ozonated MPG solutions have been performed, and the possibility of a further coupling with a secondary biological treatment for complete organic removal is envisaged.

  16. Selective depredation of planted hardwood seedlings by wild pigs in a wetland restoration area

    SciTech Connect

    Mayer, J.J.

    1999-12-17

    Following the planting of several thousand hardwood seedlings in a 69-ha wetland restoration area in west-central South Carolina, wild pigs (Sus scrofa) depredated a large percentage of the young trees. This planting was undertaken as part of a mitigation effort to restore a bottomland hardwood community in the corridor and delta of a third order stream that had been previously impacted by the discharge of heated nuclear reactor effluent. The depredated restoration areas had been pretreated with both herbicide and control burning prior to planting the hardwood seedlings. After discovery of the wild pig damage, these areas were surveyed on foot to assess the magnitude of the depredation on the planted seedling crop. Foraging by the local wild pigs in the pretreatment areas selectively impacted only four of the nine hardwood species used in this restoration effort. Based on the surveys, the remaining five species did not appear to have been impacted at all. A variety of reasons could be used to explain this phenomenon. The pretreatment methodology is thought to have been the primary aspect of the restoration program that initially led the wild pigs to discover the planted seedlings. In addition, it is possible that a combination of other factors associated with odor and taste may have resulted in the selective depredation. Future wetland restoration efforts in areas with wild pigs should consider pretreatment methods and species to be planted. If pretreatment methods and species such as discussed in the present study must be used, then the prior removal of wild pigs from surrounding lands will help prevent depredations by this non-native species.

  17. Pregnancy detecting plants used in Remo and Ijebu areas of Ogun State, Nigeria

    PubMed Central

    Fred-Jaiyesimi, Adediwura; Taiwo, Jolaade

    2017-01-01

    Aim/Background: Plants and plants extracts are employed in cultures for religious purposes, as beauty therapies, in the detection and management/treatment of diseases. Materials and Methodology: In this study, an ethnobotanical studies of plants used in detecting pregnancy in Ijebu and Remo areas of Ogun State were carried out using semi-structured to obtain demographic data, local names of plants, the morphological parts used. Furthermore, a phytochemical analysis of two of the identified plants was performed. Topical and urine tests of plants in detecting pregnancy were designed to mimic procedures used in traditional medicine for detecting pregnancy. Results: Five plant species were identified belonging to the families Araceae, Asteraceae, Convolvulaceae, Nyctaginaceae, and Rubiaceae in the survey. The identified plants had the use value (UV) of 0.25 (Culcasia scandens), 0.17 (Ipomoea mauritiana), Boerhavia diffusa while Launea taraxacifolia and Chassalia kolly had the UV of 0.08, respectively. B. diffusa L, C. kolly (Schumach) Hepper tested positive for the presence of flavonoids, alkaloids, and tannins. The onset and duration of symptoms of both B. diffusa and C. kolly leaves at 2000 and 1000 mg were dose-dependent. The hexane, ethyl acetate, and ethanol extracts of B. diffusa and C. kolly exhibited pruritus and restlessness in the in vivo model while the urine of pregnant women caused black spots on the leaves of L. taraxacifolia (Willd) Amin Ex. C. Jeffrey. Conclusion: This study reports a rare knowledge of using plants in detecting pregnancy in the Remo and Ijebu areas of Ogun State, Nigeria. PMID:28163967

  18. Diverse Plant-Associated Pleosporalean Fungi from Saline Areas: Ecological Tolerance and Nitrogen-Status Dependent Effects on Plant Growth

    PubMed Central

    Qin, Yuan; Pan, Xueyu; Kubicek, Christian; Druzhinina, Irina; Chenthamara, Komal; Labbé, Jessy; Yuan, Zhilin

    2017-01-01

    Similar to mycorrhizal mutualists, the rhizospheric and endophytic fungi are also considered to act as active regulators of host fitness (e.g., nutrition and stress tolerance). Despite considerable work in selected model systems, it is generally poorly understood how plant-associated fungi are structured in habitats with extreme conditions and to what extent they contribute to improved plant performance. Here, we investigate the community composition of root and seed-associated fungi from six halophytes growing in saline areas of China, and found that the pleosporalean taxa (Ascomycota) were most frequently isolated across samples. A total of twenty-seven representative isolates were selected for construction of the phylogeny based on the multi-locus data (partial 18S rDNA, 28S rDNA, and transcription elongation factor 1-α), which classified them into seven families, one clade potentially representing a novel lineage. Fungal isolates were subjected to growth response assays by imposing temperature, pH, ionic and osmotic conditions. The fungi had a wide pH tolerance, while most isolates showed a variable degree of sensitivity to increasing concentration of either salt or sorbitol. Subsequent plant–fungal co-culture assays indicated that most isolates had only neutral or even adverse effects on plant growth in the presence of inorganic nitrogen. Interestingly, when provided with organic nitrogen sources the majority of the isolates enhanced plant growth especially aboveground biomass. Most of the fungi preferred organic nitrogen over its inorganic counterpart, suggesting that these fungi can readily mineralize organic nitrogen into inorganic nitrogen. Microscopy revealed that several isolates can successfully colonize roots and form melanized hyphae and/or microsclerotia-like structures within cortical cells suggesting a phylogenetic assignment as dark septate endophytes. This work provides a better understanding of the symbiotic relationship between plants and

  19. Feasibility of estimating rice planting area of hilly region in southern China using remote sensing technique

    NASA Astrophysics Data System (ADS)

    Lai, Geying; Yang, Xingwei

    1998-08-01

    The objective of the study (Zhejiang province as study area) was to estimate rice planting area of hilly region in southern part of China by remote sensing technique with NOAA/AVHRR data. The research contents mainly concerned contrast tests on practical approaches, both digital elevation model (DEM) and digital slope model (DSM) derived from the digital relief map were used for the purpose of improving the classification accuracy of AVHRR imagery in large-area hilly region. The results indicated that the accuracy of maximum-likelihood (MLH) classification could satisfy the professional requirements of estimating rice planting area and fuzzy supervised classification based on unmixing AVHRR imagery has better classification accuracy and stability than MLH. In addition, the results through using both DEM and DSM as ancillary categorization data suggests DSM may improve the results of extracting paddy field signatures from AVHRR, particularly may improve the spatial accuracy, while DEM contribute nothing to improve the accuracy mentioned above.

  20. Concentrations and Soil-To-Plant Transfer Factor of Selenium in Soil and Plant Species from an Arid Area

    NASA Astrophysics Data System (ADS)

    Sakizadeh, Mohamad; Mehrabi Sharafabadi, Fatemeh; Shayegan, Eshagh; Ghorbani, Hadi

    2016-10-01

    The concentration of selenium in 97 plants related to seven different species and the associated soil samples was considered in an arid area in the central part of Iran. The mean of Se in the soil samples varied from 0.17 to 0.43 mgkg-1 which is within the worldwide range. There was a highly significant correlation (r=0.688, p<0.01) between selenium concentration in the two soil depths (e.g. 0-5 cm and 5-25 cm) indicating that the selenium in deeper parts of the soil (5-25 cm) has most probably originated from the surface part (0-5 cm). The highest accumulation of Se was recorded in the chives with the average value of 0.35 mgkg-1. Except for apricot, the concentrations of selenium in top parts of the plants (e.g. leaf, grain, fruit) were higher than stem/stalk implying the facile translocation of this element in the considered plant species. The higher than one bio concentration factors (BCFs) of selenium for the chives, spindle tree and wheat is indicative of high phytoremediation potential for these plants.

  1. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  2. Time-related degradation, a key issue in nuclear plant safety evaluations

    SciTech Connect

    Bonzon, L.L.; Bustard, L.D.; Clough, R.L.; Gillen, K.T.

    1982-01-01

    Sandia National Laboratories is conducting a number of programs under NRC sponsorship which deal with safety-related equipment qualification issues, including the important aspect of aging. Among these is the Qualification Testing Evaluation (QTE) program which was probably the first to devote significant effort towards aging research and was one of the primary motivators leading to the Workshop. The thrust of the QTE aging efforts has been on elastomeric materials, typically used in electrical cables, seals, gaskets, and the like; currently, efforts are being pursued on plant ambient environments measurements, aging of electronics, and aging of motors. A brief status report is presented in this paper.

  3. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    PubMed

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  4. Neutron activation analysis of thermal power plant ash and surrounding area soils.

    PubMed

    Al-Masri, M S; Haddad, Kh; Alsomel, N; Sarhil, A

    2015-08-01

    Elemental concentrations of As, Cd, Co, Cr, Fe, Hg, Mo, Ni, Se, and Zn have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas using instrumental neutron activation analysis. The results showed that all elements were more concentrated in fly ash than in the fly ash; there was a clear increasing trend of the elemental concentrations in the fly ash along the flue gas pathway. The annual emission of elements was estimated. Elemental concentrations were higher inside the campus area than in surrounding areas, and the lowest values were found in natural-gas-fired power plant. In addition, the levels have decreased as the distance from power plant campus increases. However, the levels in the surrounding villages were within the Syrian standard for agriculture soil.

  5. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants

    PubMed Central

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel M.; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Currie, Cameron R.

    2015-01-01

    Leaf-cutter ants are prolific and conspicuous constituents of Neotropical ecosystems that derive energy from specialized fungus gardens they cultivate using prodigious amounts of foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain plant biomass-degrading enzymes that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as ants incorporate it into the fungus garden. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous plant biomass-degrading enzymes likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three quarters of all biomass-degrading enzymes identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 40 of these enzymes enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass. PMID:26317212

  6. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants.

    PubMed

    Aylward, Frank O; Khadempour, Lily; Tremmel, Daniel M; McDonald, Bradon R; Nicora, Carrie D; Wu, Si; Moore, Ronald J; Orton, Daniel J; Monroe, Matthew E; Piehowski, Paul D; Purvine, Samuel O; Smith, Richard D; Lipton, Mary S; Burnum-Johnson, Kristin E; Currie, Cameron R

    2015-01-01

    Leaf-cutter ants are prolific and conspicuous constituents of Neotropical ecosystems that derive energy from specialized fungus gardens they cultivate using prodigious amounts of foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain plant biomass-degrading enzymes that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as ants incorporate it into the fungus garden. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous plant biomass-degrading enzymes likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three quarters of all biomass-degrading enzymes identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 40 of these enzymes enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.

  7. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    PubMed

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover.

  8. Trace element geochemistry of soils and plants in Kenyan conservation areas and implications for wildlife nutrition.

    PubMed

    Maskall, J; Thornton, I

    1991-06-01

    Trace element concentrations in soils, plants and animals in National Parks and Wildlife Reserves in Kenya are assessed using geochemical mapping techniques. Soil trace element concentrations are shown to be related to soil parent material and possibly to pedological and hydrological factors. At Lake Nakuru National Park, plant trace element concentrations vary with plant species and the geochemical conditions that influence uptake are discussed. Impala at Lake Nakuru National Park and black rhino at Solio Wildlife Reserve are shown to have a lower blood copper status than animals from other areas. The trace element status of wildlife is assessed also with respect to critical concentrations used for domestic ruminants. It is suggested that at Lake Nakuru National Park, the low soil copper content and high molybdenum content of some plants contributes to the low copper status of impala and may also influence the nutrition of other species.

  9. The evolution of biocrusts after their removal: gaining insights for restoring degraded areas

    NASA Astrophysics Data System (ADS)

    Rodriguez-Caballero, Emilio; Chamizo, Sonia; Cantón, Yolanda

    2015-04-01

    Biocrusts, as the primary colonizers in a diverse range of terrestrial habitats, are key contributors in the sustenance of fertility. They are known to play crucial roles in ecosystems: regulating soil hydrology, preventing erosion, and supplying large amounts of carbon and nitrogen to soils. These arguments can enable one to erect plausible alternatives using these engineers to ecosystem functions restoration based on their important roles on water limited environments. In this work we examine the recovery of soil by biocrusts after disturbance and the concomitant evolution of soil properties as an opportunity to explore the potential of biocrust rehabilitation as a tool to return disturbed ecosystems to a desirable trajectory. This study was performed in the Tabernas Desert (Almería, SE Spain), a badlands catchment with silty loam soils, where we are controlling the changes in different soil properties after biocrust removal in soils previously colonized by cyanobacteria- and lichen- biocrusts. Two sets of plots (8 small plots each) were monitored: one in which the biocrust was removed in Jan 2011, and another where the biocrust was removed in Nov 2007. Every plot was divided into two areas: one half was used for soil sampling and the other half was kept intact to periodically measure roughness and the spectral response. Every six months, samples of the first 0.5 cm of soil were collected and organic carbon (OC), total C, total N and chlorophyll (a and b) content were determined. Surface roughness was measured every year using a high resolution laser scanner, and spectral measurements obtained by a field spectroradiometer were taken to determine absorptions by pigments. Our results show, that just after biocrust removal, the content in total C and N, as well as roughness, decreased as consequence of the loss of loose soil particles by runoff following BSC removal. On the contrary, total chlorophyll content increases immediately after the biocrust rehabilitation

  10. Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants.

    PubMed Central

    Dean, R A; Timberlake, W E

    1989-01-01

    The cell wall-degrading enzymes polygalacturonase and pectate lyase have been suggested to be crucial for penetration and colonization of plant tissues by some fungal pathogens. We have found that Aspergillus nidulans (= Emericella nidulans), a saprophytic Ascomycete, produces levels of these enzymes equal to those produced by soft-rotting Erwinia species. Induction of polygacturonase and pectate lyase in A. nidulans requires substrate and is completely repressed by glucose. Surprisingly, inoculation of excised plant tissues with A. nidulans conidia leads to formation of necrotic, water-soaked lesions within which the organism sporulates. Thus, A. nidulans has phytopathogenic potential. The release of glucose and other sugars from wounded tissues may repress pectolytic enzyme production and limit disease development. Therefore, we tested creA204, a mutation that relieves glucose repression of some A. nidulans carbon utilization enzymes, for its effect on production of pectolytic enzymes. creA204 failed to relieve catabolite repression of polygalacturonase or pectate lyase and had no effect on disease severity. PMID:2535501

  11. Antileishmanial Activity of Medicinal Plants Used in Endemic Areas in Northeastern Brazil

    PubMed Central

    De Queiroz, Aline Cavalcanti; Dias, Thays de Lima Matos Freire; Da Matta, Carolina Barbosa Brito; Cavalcante Silva, Luiz Henrique Agra; de Araújo-Júnior, João Xavier; de Araújo, Givanildo Bernardino; Moura, Flávia de Barros Prado; Alexandre-Moreira, Magna Suzana

    2014-01-01

    This study investigates the leishmanicidal activity of five species of plants used in folk medicine in endemic areas of the state of Alagoas, Brazil. Data were collected in the cities of Colonia Leopoldina, Novo Lino, and União dos Palmares, Alagoas state, from patients with cutaneous leishmaniasis (Leishmania amazonensis) who use medicinal plants to treat this disease. Plants extracts were tested at a concentration of 1–100 μg/mL in all experiments, except in an assay to evaluate activity against amastigotes, when 10 μg/mL was used. All plants extracts did not show deleterious activity to the host cell evidenced by LDH assay at 100, 10, and 1 μg/mL after 48 h of incubation. The plants extracts Hyptis pectinata (L.) Poit, Aloe vera L., Ruta graveolens L., Pfaffia glomerata (Spreng.) Pedersen, and Chenopodium ambrosioides L. exhibited direct activity against extracellular forms at 100 μg/mL; these extracts inhibited growth by 81.9%, 82.9%, 74.4%, 88.7%, and 87.4%, respectively, when compared with promastigotes. The plants extracts H. pectinata, A. vera, and R. graveolens also significantly diminished the number of amastigotes at 10 μg/mL, inhibiting growth by 85.0%, 40.4%, 94.2%, and 97.4%, respectively, when compared with control. Based on these data, we conclude that the five plants exhibited considerable leishmanicidal activity. PMID:25126099

  12. Antileishmanial activity of medicinal plants used in endemic areas in northeastern Brazil.

    PubMed

    De Queiroz, Aline Cavalcanti; Dias, Thays de Lima Matos Freire; Da Matta, Carolina Barbosa Brito; Cavalcante Silva, Luiz Henrique Agra; de Araújo-Júnior, João Xavier; de Araújo, Givanildo Bernardino; Moura, Flávia de Barros Prado; Alexandre-Moreira, Magna Suzana

    2014-01-01

    This study investigates the leishmanicidal activity of five species of plants used in folk medicine in endemic areas of the state of Alagoas, Brazil. Data were collected in the cities of Colonia Leopoldina, Novo Lino, and União dos Palmares, Alagoas state, from patients with cutaneous leishmaniasis (Leishmania amazonensis) who use medicinal plants to treat this disease. Plants extracts were tested at a concentration of 1-100 μg/mL in all experiments, except in an assay to evaluate activity against amastigotes, when 10 μg/mL was used. All plants extracts did not show deleterious activity to the host cell evidenced by LDH assay at 100, 10, and 1 μg/mL after 48 h of incubation. The plants extracts Hyptis pectinata (L.) Poit, Aloe vera L., Ruta graveolens L., Pfaffia glomerata (Spreng.) Pedersen, and Chenopodium ambrosioides L. exhibited direct activity against extracellular forms at 100 μg/mL; these extracts inhibited growth by 81.9%, 82.9%, 74.4%, 88.7%, and 87.4%, respectively, when compared with promastigotes. The plants extracts H. pectinata, A. vera, and R. graveolens also significantly diminished the number of amastigotes at 10 μg/mL, inhibiting growth by 85.0%, 40.4%, 94.2%, and 97.4%, respectively, when compared with control. Based on these data, we conclude that the five plants exhibited considerable leishmanicidal activity.

  13. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    PubMed Central

    Yelenik, Stephanie G; DiManno, Nicole; D'Antonio, Carla M

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability. PMID:25709807

  14. Evaluating nurse plants for restoring native woody species to degraded subtropical woodlands

    USGS Publications Warehouse

    Yelenik, Stephanie G.; DiManno, Nicole; D’Antonio, Carla M.

    2015-01-01

    Harsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of “nurse plants” an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species. To address these questions, we quantified the presence and persistence of seedlings naturally recruiting beneath adult nurse shrubs and compared survival and growth of experimentally outplanted seedlings of seven native woody species under the nurse species compared to intact and cleared alien-grass plots. We found that the two native nurse shrubs recruit their own offspring, but do not act as establishment nodes for other species. Morella faya recruited even fewer seedlings than native shrubs. Thus, outplanting will be necessary to increase abundance and diversity of native woody species. Outplant survival was the highest under shrubs compared to away from them with few differences between nurse species. The worst habitat for native seedling survival and growth was within the unmanaged invasive grass matrix. Although the two native nurse species did not differentially affect outplant survival, D. viscosa is the most widespread and easily propagated and is thus more likely to be useful as an initial nurse species. The outplanted species showed variable responses to nurse habitats that we attribute to resource requirements resulting from their typical successional stage and nitrogen fixation capability.

  15. Estimation of Leaf Area Index and Plant Area Index of a Submerged Macrophyte Canopy Using Digital Photography

    PubMed Central

    Zhao, Dehua; Xie, Dong; Zhou, Hengjie; Jiang, Hao; An, Shuqing

    2012-01-01

    Non-destructive estimation using digital cameras is a common approach for estimating leaf area index (LAI) of terrestrial vegetation. However, no attempt has been made so far to develop non-destructive approaches to LAI estimation for aquatic vegetation. Using the submerged plant species Potamogeton malainus, the objective of this study was to determine whether the gap fraction derived from vertical photographs could be used to estimate LAI of aquatic vegetation. Our results suggested that upward-oriented photographs taken from beneath the water surface were more suitable for distinguishing vegetation from other objects than were downward-oriented photographs taken from above the water surface. Exposure settings had a substantial influence on the identification of vegetation in upward-oriented photographs. Automatic exposure performed nearly as well as the optimal trial exposure, making it a good choice for operational convenience. Similar to terrestrial vegetation, our results suggested that photographs taken for the purpose of distinguishing gap fraction in aquatic vegetation should be taken under diffuse light conditions. Significant logarithmic relationships were observed between the vertical gap fraction derived from upward-oriented photographs and plant area index (PAI) and LAI derived from destructive harvesting. The model we developed to depict the relationship between PAI and gap fraction was similar to the modified theoretical Poisson model, with coefficients of 1.82 and 1.90 for our model and the theoretical model, respectively. This suggests that vertical upward-oriented photographs taken from below the water surface are a feasible alternative to destructive harvesting for estimating PAI and LAI for the submerged aquatic plant Potamogeton malainus. PMID:23226557

  16. Wastewater Land Application Permit LA-000141 Renewal Information for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    1999-02-01

    On July 25, 1994, the State of ldaho Division of Environmental Quality issued a Wastewater Land Application Permit, #LA-000141-01, for the Central Facilities Area Sewage Treatment Plant. The permit expires August 7, 1999. This report is being submitted with the renewal application and specifically addresses; Wastewater flow; Wastewater characteristics; Impacts to vegetation in irrigation area; Impacts to soil in irrigation area; Evaluation of groundwater monitoring wells for Wastewater Land Application Permit purposes; Summary of trends observed during the 5-year reporting period; and Projection of changes and new processes.

  17. Comparisons among species composition, leaf area, and water relations in three shrub-steppe plant communities

    SciTech Connect

    Link, S.O.; Kirkham, R.R.; Thiede, M.E.; Downs, J.L.; Gee, G.W.

    1987-03-01

    Observations were made on plant communities dominated by Bromus tectorum (cheatgrass site), Artemisia tridentata (sagebrush site), and Grayia spinosa (hopsage site). Leaf area on a ground area basis of sagebrush was nor significantly different between the sagebrush and hopsage sites; however, the leaf area of hopsage was one-quarter that of sagebrush at the hopsage site. Pre-dawn xylem water potential of sagebrush was -2.91 MPa, while that of hopsage was -4.79 MPa. Stomatal conductance and transpiration rate of sagebrush and hopsage were nearly the same. 11 refs., 4 figs., 2 tabs.

  18. Damage costs produced by electric power plants: an externality valuation in the Mexico City Metropolitan Area.

    PubMed

    Macías, P; Islas, J

    2010-09-15

    This paper presents an estimate of the externalities produced in the Mexico City Metropolitan Area (MCMA) through the impacts on health caused by secondary pollutants attributed to seven electric power plants located outside this area. An original method was developed to make possible a simplified application of the impact pathway approach to estimate the damage costs in the specified area. Our estimate shows that the annual costs attributed to secondary pollutants total 71 million USD (min/max 20/258 million USD). Finally, this paper discusses basic ideas on the implications for energy policy arising from this exercise in externality valuation.

  19. Pesticides residues and metals in plant products from agricultural area of Belgrade, Serbia.

    PubMed

    Ethorđević, Tijana; Ethurović, Rada

    2012-03-01

    The objective of study was to assess the levels of selected metals and pesticides in plant products from agricultural area of Belgrade, Serbia in order to indicate their possible sources and risks of contamination and to evaluate their sanitary probity and safety. The concentrations of cadmium, copper, iron, manganese, nickel, lead and zinc were below limits established by national and international regulations (maximum found concentrations were 0.028, 1.91, 11.16, 1.77, 0.605, 0.073 and 1.76 mg kg(-1) respectively). Only residue of one of examined pesticides was found in amount below MRL (bifenthrin 2.46 μg kg(-1)) in only one of analysed samples, while others were below detection limits. Obtained results indicate that crops from examined agricultural areas are unpolluted by contaminants used for plant protection and nutrition, indicating good agricultural practice regarding pesticides and fertilizer usage as well as moderate industrial production within examined areas.

  20. The utilization and management of plant resources in rural areas of the Limpopo Province, South Africa

    PubMed Central

    2013-01-01

    Background Most rural people in the Limpopo Province depend on plant resources to meet their livelihood needs. However, there is insufficient recorded information regarding their use and management. The current study therefore was carried out in selected villages of the Limpopo Province, to close this knowledge gap. Methods Information was collected from 60 people residing in two villages, using a semi-structured questionnaire, supplemented with field observations. Results A total of 47 wild plant species (95% indigenous and 5% exotics) from 27 families, mostly from the Fabaceae (17%), Anacardiaceae (9%), and Combretaceae (9%) were documented. These species were used primarily for firewood (40%), food (36%) and medicine (29%). Significantly used species included Sclerocarya birrea (85%), Combretum kraussii (35%) and Harpephyllum caffrum (35%). Local traditional rules and regulations including taboos, social beliefs and fines are in place to aid in the management of communal resources. However, a significant number (67%) of participants mentioned that they were not pleased with these rules and regulations. Conclusion The current study concluded that plant resources still play an important role in the surveyed rural areas of the Limpopo Province. Furthermore, for sustainable utilization and long-term conservation of plants in these areas the government should assist communities in the management of their plant resources. PMID:23590903

  1. Assessment of organochlorine pesticides residues in higher plants from oil exploration areas of Niger Delta, Nigeria.

    PubMed

    Sojinu, O Samuel; Sonibare, Oluwadayo O; Ekundayo, Olusegun O; Zeng, Eddy Y

    2012-09-01

    The concentrations and distributions of organochlorine pesticides (OCPs) in some higher plant samples collected from oil exploration areas of the Niger Delta, Nigeria were examined. The concentrations of Σ(25)OCP ranged from 82 to 424, 44 to 200 , 34 to 358, 33 to 106 and 16 to 75 ng/g in Olomoro, Oginni, Uzere, Irri and Calabar plants, respectively. The compositional profiles of the analysed OCPs in most of the plants showed no fresh inputs in the area. The OCPs detected in the samples could have resulted from pesticide usage for intense farming activities cum the use of pesticides to control household pests and insects in the area. Drilling fluids and corrosion inhibitors used in petroleum explorations also have chlorinated compounds as additives thereby serving as potential sources of OCPs. Among the studied plants, elephant grass showed high bioaccumulation and phytoremediation potentials of OCPs. The ΣHCH concentrations exceeded the allowable daily intake limit thereby serving as potential threat to humans.

  2. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images.

    PubMed

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-04-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region.

  3. Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images

    PubMed Central

    Zhou, Yuting; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Wang, Jie; Li, Xiangping

    2016-01-01

    Accurate and up-to-date information on the spatial distribution of paddy rice fields is necessary for the studies of trace gas emissions, water source management, and food security. The phenology-based paddy rice mapping algorithm, which identifies the unique flooding stage of paddy rice, has been widely used. However, identification and mapping of paddy rice in rice-wetland coexistent areas is still a challenging task. In this study, we found that the flooding/transplanting periods of paddy rice and natural wetlands were different. The natural wetlands flood earlier and have a shorter duration than paddy rice in the Panjin Plain, a temperate region in China. We used this asynchronous flooding stage to extract the paddy rice planting area from the rice-wetland coexistent area. MODIS Land Surface Temperature (LST) data was used to derive the temperature-defined plant growing season. Landsat 8 OLI imagery was used to detect the flooding signal and then paddy rice was extracted using the difference in flooding stages between paddy rice and natural wetlands. The resultant paddy rice map was evaluated with in-situ ground-truth data and Google Earth images. The estimated overall accuracy and Kappa coefficient were 95% and 0.90, respectively. The spatial pattern of OLI-derived paddy rice map agrees well with the paddy rice layer from the National Land Cover Dataset from 2010 (NLCD-2010). The differences between RiceLandsat and RiceNLCD are in the range of ±20% for most 1-km grid cell. The results of this study demonstrate the potential of the phenology-based paddy rice mapping algorithm, via integrating MODIS and Landsat 8 OLI images, to map paddy rice fields in complex landscapes of paddy rice and natural wetland in the temperate region. PMID:27688742

  4. Phytoremediation: a technology using green plants to remove contaminants from polluted areas.

    PubMed

    Garbisu, Carlos; Hernández-Allica, Javier; Barrutia, Oihana; Alkorta, Itziar; Becerril, José M

    2002-01-01

    Phytoremediation is an emerging cost-effective, non-intrusive, esthetically pleasing, and low cost technology using the remarkable ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues. Phytoremediation technology is applicable to a broad range of contaminants, including metals and radionuclides, as well as organic compounds like chlorinated solvents, polychlorobiphenyls, polycyclic aromatic hydrocarbons, pesticides/insecticides, explosives, and surfactants. The use of plants to transport and concentrate metals from the soil into the harvestable parts of roots and above-ground shoots, usually called 'phytoextraction', has appeared on the scene as a valid alternative to traditional physicochemical remediation methods that do not provide acceptable solutions for the removal of metals from soils. Positive results are becoming available regarding the ability of plants to degrade certain organic compounds. Nonetheless, despite the firm establishment of phytoremediation technology in the literature and in extensive research study and in small-scale demonstrations, full-scale applications are currently limited to a small number of projects. At present, the phytoremediation of metal pollutants from the environment could be approaching commercialization.

  5. Enrichment and broad representation of plant biomass-degrading enzymes in the specialized hyphal swellings of Leucoagaricus gongylophorus, the fungal symbiont of leaf-cutter ants

    DOE PAGES

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel M.; ...

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous constituents of Neotropical ecosystems that derive energy from specialized fungus gardens they cultivate using prodigious amounts of foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain plant biomass-degrading enzymes that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as ants incorporate it into the fungus garden. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plantmore » biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous plant biomass-degrading enzymes likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three quarters of all biomass-degrading enzymes identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 40 of these enzymes enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.« less

  6. Insights into the plant polysaccharide degradation potential of the xylanolytic yeast Pseudozyma brasiliensis.

    PubMed

    Kaupert Neto, Antonio Adalberto; Borin, Gustavo Pagotto; Goldman, Gustavo Henrique; Damásio, André Ricardo de Lima; Oliveira, Juliana Velasco de Castro

    2016-03-01

    In second-generation (2G) bioethanol production, plant cell-wall polysaccharides are broken down to release fermentable sugars. The enzymes of this process are classified as carbohydrate-active enzymes (CAZymes) and contribute substantially to the cost of biofuel production. A novel basidiomycete yeast species, Pseudozyma brasiliensis, was recently discovered. It produces an endo-β-1,4-xylanase with a higher specific activity than other xylanases. This enzyme is essential for the hydrolysis of biomass-derived xylan and has an important role in 2G bioethanol production. In spite of the P. brasiliensis biotechnological potential, there is no information about how it breaks down polysaccharides. For the first time, we characterized the secretome of P. brasiliensis grown on different carbon sources (xylose, xylan, cellobiose and glucose) and also under starvation conditions. The growth and consumption of each carbohydrate and the activity of the CAZymes of culture supernatants were analyzed. The CAZymes found in its secretomes, validated by enzymatic assays, have the potential to hydrolyze xylan, mannan, cellobiose and other polysaccharides. The data show that this yeast is a potential source of hydrolases, which can be used for biomass saccharification.

  7. Distribution of anthropogenic fill material within the Y-12 plant area, Oak Ridge, Tennessee

    SciTech Connect

    Sutton, G.E. Jr. |; Field, S.M.

    1995-10-01

    Widespread groundwater contamination in the vicinity of the Oak Ridge Y-12 Plant has been documented through a variety of monitoring efforts since the late 1970s. Various contaminants, most notably volatile organic compounds (VOCs), have migrated through the subsurface and formed extensive contaminant plumes within the Knox Aquifer/Maynardville Limestone, the primary exit pathway for groundwater transport within the Bear Creek Valley. In 1991, an integrated, comprehensive effort (Upper East Fork Poplar Creek [UEFPC] Phase I monitoring network) was initiated in order to (1) identify contaminant source areas within the industrialized portions of the plant and (2) define contamination migration pathways existing between the source areas and the Knox Aquifer/Maynardville Limestone. Data obtained during previous studies have indicated that extensive zones of fill and buried utility trenches may serve as preferred migration pathways. In addition, portions of UEFPC were rerouted, with several of its tributaries being filled during the initial construction of the plant. These filled surface drainage features are also believed to serve as preferred migration pathways. The identification of preferred contaminant migration pathways within the Y-12 Plant area is essential and required to refine the current Bear Creek Valley groundwater conceptual model and to assist in the selection of technically feasible and cost effective remedial strategies. This report presents the results of an initial investigation of the occurrence of manmade (anthropogenic) fill and its effect upon groundwater movement within the plant area. These interpretations are subject to revision and improvement as further investigation of the effects of the fill upon contaminant migration progresses.

  8. Lipo-chitooligosaccharide Nodulation Signals from Rhizobium meliloti Induce Their Rapid Degradation by the Host Plant Alfalfa.

    PubMed Central

    Staehelin, C.; Schultze, M.; Kondorosi, E.; Kondorosi, A.

    1995-01-01

    Extracellular enzymes from alfalfa (Medicago sativa L.) involved in the degradation of nodulation (Nod) factors could be distinguished by their different cleavage specificities and were separated by lectin affinity chromatography. A particular glycoprotein was able to release an acylated lipo-disaccharide from all tested Nod factors having an oligosaccharide chain length of four or five residues. Structural modifications of the basic lipo-chitooligosaccharide did not affect the cleavage site and had only weak influence on the cleavage efficiency of Nod factors tested. The acylated lipo-trisaccharide was resistant to degradation. When alfalfa roots were preincubated with Nod factors at nanomolar concentrations, the activity of the dimer-forming enzyme was stimulated up to 6-fold within a few hours. The inducing activity of Nod factors decreased in the order NodRm-IV(C16:2,Ac,S) > NodRm-IV(C16:2,S) and NodRm-V(C16:2,Ac,S) > NodRm-V(C16:2,S) > NodRm-IV(C16:0,S) > NodRm-IV(C16:2). Pretreatment with NodRm-III(C16:2) as well as unmodified chitooligosaccharides did not stimulate the dimer-forming enzyme. Roots preincubated with Rhizobium meliloti showed similar stimulation of the dimer-forming activity. Mutant strains unable to produce Nod factors did not enhance the hydrolytic activity. These results indicate a rapid feedback inactivation of Nod signals after their perception by the host plant alfalfa. PMID:12228566

  9. Deciphering Cyanide-Degrading Potential of Bacterial Community Associated with the Coking Wastewater Treatment Plant with a Novel Draft Genome.

    PubMed

    Wang, Zhiping; Liu, Lili; Guo, Feng; Zhang, Tong

    2015-10-01

    Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination.

  10. Revegetation of a lakeside barren area by the application of plant growth-promoting rhizobacteria.

    PubMed

    Ahn, Tae-Seok; Ka, Jong-Ok; Lee, Geon-Hyoung; Song, Hong-Gyu

    2007-04-01

    The growth stimulation of wild plants by several bacterial species showing plant growth-promoting capabilities was examined in a barren lakeside area at Lake Paro, Korea. Microbial numbers and activities in the field soil were monitored for 73 days after inoculation of the bacteria. The acridine orange direct counts for the total soil bacterial populations ranged between 2.0-2.3x10(9) cells/g soil and 1.4-1.8x10(9) cells/g soil in the inoculated and uninoculated soils, respectively. The numbers of Pseudomonas spp., which is known as a typical plant growth-promoting rhizobacteria, and the total microbial activity were higher in the inoculated soil compared to those in the uninoculated soil. The average shoot and root lengths of the wild plants grown in the inoculated soil were 17.3 cm and 12.4 cm, respectively, and longer than those of 11.4 cm and 8.5 cm in the uninoculated soil. The total dry weight of the harvested wild plants was also higher in the inoculated soil (42.0 g) compared to the uninoculated soil (35.1 g). The plant growth-promoting capabilities of the inoculated bacteria may be used for the rapid revegetation of barren or disturbed land, and as biofertilizer in agriculture.

  11. [Relocation of Espeletia grandiflora (Asteraceae) plants as a strategy for enrichment of disturbed paramo areas (PNN Chingaza, Colombia)].

    PubMed

    Rojas-Zamora, Oscar; Insuasty-Torres, Jennyfer; de Cardenas, Camilo los Angeles; Ríos, Orlando Vargas

    2013-03-01

    Ecological restoration of the Andean paramos faces several ecological barriers mainly at the phase of dispersal and establishment of native species. With the aim to contribute to the enrichment of degraded areas, different strategies have to be developed to overcome those barriers. In this work we studied the response of individuals of Espeletia grandiflora (Asteraceae) to the relocation as a strategy for ecological restoration programs. We also evaluated the effect of size of relocated individuals on their survival and development. The work was carried out in an experimental plot at 3 424m altitude in the sector "Lagunas de Siecha" of Chingaza National Park, Colombia. We relocated 200 plants that belonged to three different size classes: 5, 10 and 15cm of initial height. The following variables were registered: survival, plant height, number of living leaves and stem diameter of each individual. We also evaluated the differences between individuals in survival and development. In terms of survival the most efficient size classes corresponded to 15cm high; the survival was 85% after two years. The relative growth rates for height and stem diameter decreases with the increase in size, but the absolute increase in height did not show significant differences between the three sizes tested. Since the stem diameter was found the strongest survival predictor after two years of relocation activities, we suggest its use as a criterion for selection of relocation individuals. The relocation of individuals of E. grandiflora had a positive side effect, carrying other species that may contribute to the enrichment and restoration of degraded areas. Among these, we found species of the genus Hypericum, as well as Arcytophyllum nitidum and Calamagrostis effusa, which should be evaluated in terms of survival and development for the subsequent implementation of the relocation strategy. In this study we verified the successful relocation of individuals of E. grandiflora as a

  12. Corrosion and degradation of test materials in the U-GAS coal-gasification pilot plant

    SciTech Connect

    Yurkewycz, R.; Firestone, R.F.

    1982-10-01

    Corrosion monitoring of materials was conducted in the operating environment of the IGT U-GAS coal gasification pilot plant between 1977 and 1982. Metal and refractory specimens were exposed in the fluid bed gasifier in the freeboard section. Metal coupons were also exposed in two test locations in the product gas scrubber and venturi collection tank. Exposure times (coal feed to gasifier) were 264 h, 392 h, and 981 h. The corrosion performance of most alloys in the first exposure compared to the second and third in the U-GAS gasifier freeborad section was quite different. The more aggressive conditions produced during the first-exposure period are attributed to processing of unwashed high-sulfur coals in the steam-air gasification mode. Of the group of alloys evaluated, alloy 6B showed acceptable corrosion performance in all three exposures. Although their performance was poor in the first period, alloys N155 and IN-671 showed marked improvement in corrosion resistance during the second and third exposure periods. The same was true of cobalt-base alloy 188 which was the best performing alloy in the second and third exposures. Pack-aluminized alloys IN-800 and Type 310 showed acceptable performance. Conditions at the coupon location in the product gas scrubber (off-gas) were extremely aggressive to a range of materials exposed except titanium 50A. In the product-gas scrubber sludge tank and venturi collection tank, only carbon steel A515 showed significant attack; in some cases Types 410 and 430 incurred only mild pitting attack. Exposure in the gasifier freeboard had no significant effect on refractory specimens.

  13. Woody plant establishment in grassed reclamation areas of the Athabasca oil sands

    SciTech Connect

    Fedkenheuer, A.W.

    1980-12-01

    The primary end land use for areas disturbed by the Syncrude Canada Ltd. oil sands surface mining venture is forest cover. Short term erosion control is of concern, however, and this results in the early establishment of a grass and legume cover. Problems have subsequently been encountered in attempts to establish woody plants in the grass and legume cover. Vegetation competition for soil moisture and nutrients and rodent damage to woody seedlings have been the major problem areas. A study was initiated in 1978 to evaluate methods of manipulating the grass and legume cover sufficiently to improve success rates in establishing a variety of shrubs and trees. Five replicated treatments using the chemical herbicide glyphosate, soil scarification and fire alone plus soil scarification were established on an area seeded to grass and legumes in spring 1976. Woody plant survival and rodent damage, populations and distribution are being assessed annually in spring and fall. Rodent damage to woody seedlings was heavy in fall 1978 with 80 percent of the deciduous seedlings on non-scarified plots being damaged. In June 1979, 98 percent of the deciduous plants on the control and herbicide treatment areas were damaged. Damage to conifers was approximately 30 percent less during this time. Prescribed burning and mechanical scarification substantially reduced rodent damage. Seedling survival was variable with Amelanchier alnifolia, Pinus contorta and Populus tremuloides consistently exhibiting the highest survival rates.

  14. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Truyens, S.; Dupae, J.; Newman, L.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l{sup -1} TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l{sup -1} TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  15. Invasive plants have scale-dependent effects on diversity by altering species-area relationships.

    PubMed

    Powell, Kristin I; Chase, Jonathan M; Knight, Tiffany M

    2013-01-18

    Although invasive plant species often reduce diversity, they rarely cause plant extinctions. We surveyed paired invaded and uninvaded plant communities from three biomes. We reconcile the discrepancy in diversity loss from invaders by showing that invaded communities have lower local richness but steeper species accumulation with area than that of uninvaded communities, leading to proportionately fewer species loss at broader spatial scales. We show that invaders drive scale-dependent biodiversity loss through strong neutral sampling effects on the number of individuals in a community. We also show that nonneutral species extirpations are due to a proportionately larger effect of invaders on common species, suggesting that rare species are buffered against extinction. Our study provides a synthetic perspective on the threat of invasions to biodiversity loss across spatial scales.

  16. Leaf-area estimates from spectral measurements over various planting dates of wheat

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Kanemasu, E. T.; Asrar, G.; Jackson, R. D.; Pinter, P. J., Jr.; Reginato, R. J.; Idso, S. B.

    1985-01-01

    Several vegetative indices were analyzed for their sensitivity and stability to green-leaf-area index (LAI) changes over various planting dates and irrigation frequencies of wheat grown at Phoenix, AZ, from 1978 to 1980. Seasonal patterns of greenness showed that values saturated at LAI values above 4.0 did not return to the pre-emergence bare-soil value at senescence, and were not uniquely related to LAI over the various planting dates. Regressions of individual MSS band reflectances against LAI also showed that there was not a unique relation between any of the bands and LAI. However, the near-infrared/red reflectance ratio was stable over all planting dates and could be used successfully over a number of years and locations.

  17. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    SciTech Connect

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  18. Potential bioindicator plant species for ambient ozone in forested mountain areas of central Europe.

    PubMed

    Manning, W J; Godzik, B; Musselman, R

    2002-01-01

    From 1993 to 2000, trees, shrubs, forbs and vines were evaluated for symptoms of probable ozone injury in the vicinity of passive ozone samplers or active ozone monitors in forest condition assessment networks in mostly mountainous regions, principally the Carpathian Mountain Range, in the central European countries Czech Republic, Poland, Romania, Slovakia and Ukraine. Each country was visited at least twice during the time period. Over the course of eight seasons, 29 species of native plants were identified as potential bioindicators of ozone. This is the first report of probable ozone injury on native plants in central Europe. Forbs and shrubs made up the bulk of the species (21 of 29). Potential bioindicators that are widely distributed include the forbs Centaurea nigra. and Impatiens parviflora and the shrubs Alnus incana, Corylus avellana, and Sambucus racemosa. Ozone concentrations in forcsted areas of central Europe appear to be high enough and of sufficient duration to cause foliar injury on a wide variety of native plants.

  19. [Effects of different planting modes on the soil permeability of sloping farmlands in purple soil area].

    PubMed

    Li, Jian-Xing; He, Bing-Hui; Mei, Xue-Mei; Liang, Yan-Ling; Xiong, Jian

    2013-03-01

    Taking bare land as the control, this paper studied the effects of different planting modes on the soil permeability of sloping farmlands in purple soil area. For the test six planting modes, the soil permeability was in the order of Eriobotrya japonica > Citrus limon > Vetiveria zizanioides hedgerows +corn >Leucaena leucocephala hedgerows + corn> Hemerocallis fulva > corn> bare land, and decreased with increasing depth. The eigenvalues of soil infiltration were in the order of initial infiltration rate> average infiltration rate> stable infiltration rate. The soil permeability had significant positive linear correlations with soil total porosity, non-capillary porosity, initial moisture content, water holding capacity, and organic matter content, and significant negative linear correlation with soil bulk density. The common empirical infiltration model could well fit the soil moisture infiltration processes under the six planting modes, while the Kostiakov equation could not.

  20. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Receiving Basin for Offsite Fuel (Supplement 3)

    SciTech Connect

    Allen, P M

    1983-09-01

    Analysis of the Savannah River Plant RBOF and RRF included an evaluation of the reliability of process equipment and controls, administrative controls, and engineered safety features. The evaluation also identified potential scenarios and radiological consequences. Risks were calculated in terms of 50-year population dose commitment per year (man-rem/year) to the onsite and offsite population within an 80 Km radius of RBOF and RRF, and to an individual at the plant boundary. The total 50-year onsite and offsite population radiological risks of operating the RBOF and RRF were estimated to be 1.0 man-rem/year. These risks are significantly less than the population dose of 54,000 man/rem/yr for natural background radiation in a 50-mile radius. The 50-year maximum offsite individual risk from operating the facility was estimated to be 2.1 {times} 10{sup 5} rem/yr. These risks are significantly lower than 93 mrem/yr an individual is expected to receive from natural background radiation in this area. The analysis shows. that the RBOF and RRF can be operated without undue risk to onsite personnel or to the general public.

  1. Protected Area Safeguard Tree and Shrub Communities from Degradation and Invasion: A Case Study in Eastern Madagascar

    NASA Astrophysics Data System (ADS)

    Brown, Kerry A.; Carter Ingram, J.; Flynn, Dan F. B.; Razafindrazaka, Rova; Jeannoda, Vololoniaina

    2009-07-01

    Despite their prevalence in both developed and developing countries, there have been surprisingly few field assessments of the ecological effectiveness of protected areas. This study aimed to assess the effectiveness of a key protected area in eastern Madagascar, Ranomafana National Park (RNP). We established paired 100 × 4-m vegetation transects (400 m2) within RNP and in remnant forests in the park’s peripheral zone. In each 400-m2 plot, all woody stems >1.5 cm in diameter at breast height were measured and identified to species. All species were also identified as native or non-native. We identified utilitarian species within all transects and they were sorted into use category. We calculated plot-level taxonomic biodiversity and functional diversity of utilitarian species; the latter was calculated by clustering the multivariate distances between species based on their utilitarian traits, and all metrics were tested using paired t-tests. Our results showed that there was significantly higher biodiversity inside RNP than in remnant forests and this pattern was consistent across all diversity metrics examined. Forests not located within the park’s boundary had significantly higher non-native species than within RNP. There was no statistically significant difference in functional diversity of utilitarian species inside RNP vs. remnant forests; however, the overall trend was toward higher diversity inside park boundaries. These findings suggested that RNP has been effective at maintaining taxonomic diversity relative to surrounding unprotected areas and restricting the spread of non-native plants. The results also suggested that low functional redundancy of forests outside of RNP might be of concern, because residents in surrounding villages may have few other substitutes for the services provided by species that are of critical importance to their livelihoods. This study highlights the challenges of trying to reconcile biodiversity conservation with human use

  2. A role for the Rcs phosphorelay in regulating expression of plant cell wall degrading enzymes in Pectobacterium carotovorum subsp. carotovorum.

    PubMed

    Andresen, Liis; Sala, Erki; Kõiv, Viia; Mäe, Andres

    2010-05-01

    The Rcs phosphorelay is a signal transduction system that influences the virulence phenotype of several pathogenic bacteria. In the plant pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) the response regulator of the Rcs phosphorelay, RcsB, represses expression of plant cell wall degrading enzymes (PCWDE) and motility. The focus of this study was to identify genes directly regulated by the binding of RcsB that also regulate expression of PCWDE genes in Pcc. RcsB-binding sites within the regulatory regions of the flhDC operon and the rprA and rsmB genes were identified using DNase I protection assays, while in vivo studies using flhDC : : gusA, rsmB : : gusA and rprA : : gusA gene fusions revealed gene regulation. These experiments demonstrated that the operon flhDC, a flagellar master regulator, was repressed by RcsB, and transcription of rprA was activated by RcsB. Regulation of the rsmB promoter by RcsB is more complicated. Our results show that RcsB represses rsmB expression mainly through modulating flhDC transcription. Neverthless, direct binding of RcsB on the rsmB promoter region is possible in certain conditions. Using an rprA-negative mutant, it was further demonstrated that RprA RNA is not essential for regulating expression of PCWDE under the conditions tested, whereas overexpression of rprA increased protease expression in wild-type cells. Stationary-phase sigma factor, RpoS, is the only known target gene for RprA RNA in Escherichia coli; however, in Pcc the effect of RprA RNA was found to be rpoS-independent. Overall, our results show that the Rcs phosphorelay negatively affects expression of PCWDE by inhibiting expression of flhDC and rsmB.

  3. Reabilitation of degraded area by erosion, using soil bioengineering techniques in Bacanga river basin, Sao Luis City - Maranhao State, Brazil.

    NASA Astrophysics Data System (ADS)

    Teixeira Guerra, A. J.; Rodrigues Bezerra, J. F.; da Mota Lima, L. D.; Silva Mendonça, J. K.; Vieira Souza, U. D.; Teixeira Guerra, T.

    2009-04-01

    The aim of this paper is to assess the stages of rehabilitation of a degraded site by erosion, in Salina/Sacavém district, São Luís City, considering geomorphologic characteristics and soil bioengineering techniques. This technique has been applied in different situations to rehabilitate degraded areas, with positive results from the use of biodegradable materials (e.g. vegetal fibres, wooden stakes and re-vegetation). These techniques stabilize the soil at low cost and improve the environment. Bioengineering involves the planned and strategic application of selected materials, involving biodegradable materials, often in combination with 'hard engineering' structures constructed from stone, concrete and steel. The settlement of São Luís was established in 1612 and has evolved in distinct phases. Rapid urban growth was associated with industrialization in the second half of the 18th Century. Rapid population and urban growth has intensified problems, compounded by poor planning and improper soil use. São Luís, like many other Brazilian cities, has experienced rapid population growth in recent decades, which has created a series of socio-economic and environmental problems, including accelerated soil erosion. Sacavém is one of these communities where natural and human factors contribute to the severe gully erosion. The local lithology is mainly Tertiary sandstones and, to a lesser extent, shales, argillites and siltstones, all of which belong to the Barreiras Formation. Weathering on these rocks produces erodible soils, including lithosols, latosols, concretionary red/yellow clay soils and concretionary plinthosols. Thus, erodible soils and regolith are subject to high erosion rates, especially on steeper slopes subject to additional human interventions. Furthermore, although regional slopes are quite gentle, there is localized high relative relief. Sacavém vegetation, in the gullied area, consists of brushwood. Secondary mixed forest and brushwood are the

  4. [Study on species and distribution of flora of national rare and endangered medicinal plant in the Three Gorges area].

    PubMed

    Chen, Shao-Cheng

    2013-04-01

    According to the China Plant Red Data Book and National Key Protected Wild Plants, the distribution of the rare and endangered plants and national conservative plants in the Three Gorges area were investigated and statistically analyzed. Its floristic composition and characteristics of geographical distribution were explored. As a result, a total of 97 species of medicinal flora belonging to rare and endangered national protection plants were found in the Three Gorges area. They come from 81 genera of 46 families. Their vertical distribution is obvious and horizontal distribution has discontinuous overlap. There are many ancient relict medicinal plants in the Three Gorges area. These medicinal plants have obvious temperate characteristics, and are easily found at warm and moist ravines and hillsides; The proportion of tree is much higher than that of herb, vine, shrub and fern. Most of them belong to specific and monotypic genera.

  5. Survival of planted tupelo seedlings in F- and H-Area tree-kill zones

    SciTech Connect

    Nelson, E.A.; Rogers, V.A.

    1995-01-01

    Swamp tupelo seedlings were planted in four areas which experienced previous tree mortality at the seeplines of the F- and H-Area Seepage Basins. The sites represented a range in severity of impact and stage of recovery. Seedlings were planted in February of 1994 and followed through the first growing season in the field. Survival on all sites through the first growing season was excellent, with greater than 92% of the seedlings still alive. Most seedlings appeared healthy with few external signs of stress. The performance of the seedlings will be followed in subsequent years to determine the physical state of the soil environment on seedling growth. Hopefully, the results will indicate that artificial reforestation can begin on similarly impacted sites prior to the beginning of natural revegetation of the site.

  6. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Lewis, Mike

    2014-09-01

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  7. Impacts of recreation and tourism on plant biodiversity and vegetation in protected areas in Australia.

    PubMed

    Pickering, Catherine Marina; Hill, Wendy

    2007-12-01

    This paper reviews recent research into the impact of recreation and tourism in protected areas on plant biodiversity and vegetation communities in Australia. Despite the international significance of the Australian flora and increasing visitation to protected areas there has been limited research on recreational and tourism impacts in Australia. As overseas, there are obvious direct impacts of recreation and tourism such as clearing of vegetation for infrastructure or damage from trampling, horse riding, mountain biking and off road vehicles. As well, there are less obvious but potentially more severe indirect impacts. This includes self-propagating impacts associated with the spread of some weeds from trails and roads. It also includes the severe impact on native vegetation, including many rare and threatened plants, from spread of the root rot fungus Phytopthora cinnamomi. This review highlights the need for more recreational ecology research in Australia.

  8. Innovative empirical approaches for inferring climate-warming impacts on plants in remote areas.

    PubMed

    De Frenne, Pieter

    2015-02-01

    The prediction of the effects of climate warming on plant communities across the globe has become a major focus of ecology, evolution and biodiversity conservation. However, many of the frequently used empirical approaches for inferring how warming affects vegetation have been criticized for decades. In addition, methods that require no electricity may be preferred because of constraints of active warming, e.g. in remote areas. Efforts to overcome the limitations of earlier methods are currently under development, but these approaches have yet to be systematically evaluated side by side. Here, an overview of the benefits and limitations of a selection of innovative empirical techniques to study temperature effects on plants is presented, with a focus on practicality in relatively remote areas without an electric power supply. I focus on methods for: ecosystem aboveground and belowground warming; a fuller exploitation of spatial temperature variation; and long-term monitoring of plant ecological and microevolutionary changes in response to warming. An evaluation of the described methodological set-ups in a synthetic framework along six axes (associated with the consistency of temperature differences, disturbance, costs, confounding factors, spatial scale and versatility) highlights their potential usefulness and power. Hence, further developments of new approaches to empirically assess warming effects on plants can critically stimulate progress in climate-change biology.

  9. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  10. Wastewater Land Application Permit LA-000141 Renewal Information for the Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Laboratory, Idaho National

    1999-02-01

    On July 25, 1994, the State ofldaho Division of Environmental Quality (DEQ) issued a Wastewater Land Application Permit (WLAP) for the Idaho National Engineering Laboratory's (INEL, now the Idaho National Engineering and Environmental Laboratory [INEEL]) Central Facilities Area (CFA) Sewage Treatment Plant (STP). The permit expires August 7, 1999. In addition to the renewal application, this report was prepared to provide the following information as requested by DEQ.

  11. 30 CFR 785.21 - Coal preparation plants not located within the permit area of a mine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants not located within the permit area of a mine. 785.21 Section 785.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND....21 Coal preparation plants not located within the permit area of a mine. (a) This section applies...

  12. 30 CFR 785.21 - Coal preparation plants not located within the permit area of a mine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal preparation plants not located within the permit area of a mine. 785.21 Section 785.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND....21 Coal preparation plants not located within the permit area of a mine. (a) This section applies...

  13. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant.

    PubMed

    Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying

    2012-05-01

    In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted.

  14. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants

    PubMed Central

    Flores, Olivier; Garnier, Eric; Wright, Ian J; Reich, Peter B; Pierce, Simon; Dìaz, Sandra; Pakeman, Robin J; Rusch, Graciela M; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P; Bekker, Renée M; Cerabolini, Bruno E L; Ceriani, Roberta M; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P; Pérez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    2014-01-01

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This “worldwide leaf economics spectrum” consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes. PMID:25165520

  15. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants.

    PubMed

    Flores, Olivier; Garnier, Eric; Wright, Ian J; Reich, Peter B; Pierce, Simon; Dìaz, Sandra; Pakeman, Robin J; Rusch, Graciela M; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P; Bekker, Renée M; Cerabolini, Bruno E L; Ceriani, Roberta M; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P; Pérez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    2014-07-01

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.

  16. An Aerial Radiological Survey of the Portsmouth Gaseous Diffusion Plant and Surrounding Area, Portsmouth, Ohio

    SciTech Connect

    Namdoo Moon

    2007-12-01

    An aerial radiological survey was conducted over the 16 square-mile (~41 square-kilometer) area surrounding the Portsmouth Gaseous Diffusion Plant. The survey was performed in August 2007 utilizing a large array of helicopter mounted sodium iodide detectors. The purpose of the survey was to update the previous radiological survey levels of the environment and surrounding areas of the plant. A search for a missing radium-226 source was also performed. Implied exposure rates, man-made activity, and excess bismuth-214 activity, as calculated from the aerial data are presented in the form of isopleth maps superimposed on imagery of the surveyed area. Ground level and implied aerial exposure rates for nine specific locations are compared. Detected radioisotopes and their associated gamma ray exposure rates were consistent with those expected from normal background emitters. At specific plant locations described in the report, man-made activity was consistent with the operational histories of the location. There was no spectral activity that would indicate the presence of the lost source.

  17. Transfer of metals to plants and red deer in an old lead mining area in Spain.

    PubMed

    Reglero, M M; Monsalve-González, L; Taggart, M A; Mateo, R

    2008-11-15

    Lead mining in the Sierra Madrona mountains and the valley of Alcudia in Southern Spain began in the 1st millennium B.C., and the area was intermittently exploited up until the end of the 20th century. The degree of contamination by Pb, Zn, Cd, Cu, As and Se of soil, water and sediment, and the transfer to 13 species of plants, and then to red deer (Cervus elaphus) have been studied. Mined areas had higher concentrations in stream sediments than control areas. The highest concentrations were observed for Pb (1481 microg g(-1) d.w.) and As (1880 microg g(-1)) in the sediment of a stream flowing beside the spoil dump at Mina de Horcajo. Plants from mining sites contained consistently higher levels of Pb and As, and their concentrations in plants were correlated. The highest concentrations of Pb were in Gramineae (Pb: 97.5, As: 2.4 microg g(-1) d.w.), and the lowest in elmleaf blackberry (Rubus ulmifolius). The highest mean liver concentrations were found in red deer from the mining sites for Pb (0.805 microg g(-1) d. w.), Cd (0.554 microg g(-1)), Se (0.327 microg g(-1)), and As (0.061 microg g(-1)), although these were well below the levels associated with clinical poisoning.

  18. Polysaccharide-degrading Enzymes are Unable to Attack Plant Cell Walls without Prior Action by a “Wall-modifying Enzyme” 1

    PubMed Central

    Karr, Arthur L.; Albersheim, Peter

    1970-01-01

    A study of the degradation of plant cell walls by the mixture of enzymes present in Pectinol R-10 is described. A “wall-modifying enzyme” has been purified from this mixture by a combination of diethylaminoethyl cellulose, Bio Gel P-100, and carboxymethyl cellulose chromatography. Treatment of cell walls with the “wall-modifying enzyme” is shown to be a necessary prerequisite to wall degradation catalyzed by a mixture of polysaccharide-degrading enzymes prepared from Pectinol R-10 or by an α-galactosidase secreted by the pathogenic fungus Colletotrichum lindemuthianum. The action of the “wall-modifying enzyme” on cell walls is shown to result in both a release of water-soluble, 70% ethanol-insoluble polymers and an alteration of the residual cell wall. A purified preparation of the “wall-modifying enzyme” is unable to degrade a wide variety of polysaccharide, glycoside, and peptide substrates. However, the purified preparation of wall-modifying enzyme has a limited ability to degrade polygalacturonic acid. The fact that polygalacturonic acid inhibits the ability of the “wall-modifying enzyme” to affect cell walls suggests that the “wall-modifying enzyme” may be responsible for the limited polygalacturonic acid-degrading activity present in the purified preparation. The importance of a wall-modifying enzyme in developmental processes and in pathogenesis is discussed. PMID:16657425

  19. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants.

    PubMed

    Götz, Christine; Fekete, Agnes; Gebefuegi, Istvan; Forczek, Sándor T; Fuksová, Kvetoslava; Li, Xiaojing; Englmann, Matthias; Gryndler, Milan; Hartmann, Anton; Matucha, Miroslav; Schmitt-Kopplin, Philippe; Schröder, Peter

    2007-11-01

    Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds' lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested.

  20. Rhizoremediation of diesel-contaminated soil with two rapeseed varieties and petroleum degraders reveals different responses of the plant defense mechanisms.

    PubMed

    Wojtera-Kwiczor, Joanna; Zukowska, Weronika; Graj, Weronika; Małecka, Arleta; Piechalak, Aneta; Ciszewska, Liliana; Chrzanowski, Łukasz; Lisiecki, Piotr; Komorowicz, Izabela; Barałkiewicz, Danuta; Voss, Ingo; Scheibe, Renate; Tomaszewska, Barbara

    2014-01-01

    Plant-assisted bioremediation (rhizoremediation) stands out as a potential tool to inactivate or completely remove xenobiotics from the polluted environment. Therefore, it is of key importance to find an adequate combination of plant species and microorganisms that together enhance the clean-up process. To understand the response of plants upon bioaugmentation, the antioxidative and detoxification system was analyzed in high and low erucic acid rapeseed varieties (HEAR and LEAR, respectively), after 8 weeks of their treatment with petroleum degraders and 6000 mg diesel oil/kg dry soil. The oxidative stress was enhanced in LEAR being exposed to sole diesel oil, in comparison with HEAR. However, when LEAR plants were additionally inoculated with bacteria, suppression of total catalase (CAT) and ascorbate peroxidase (APX) activity were observed. Interestingly, glutathione transferase (GST) activity was found in these plants at a much higher level than in HEAR, which correlated with a more efficient diesel removal performed by LEAR in the polluted soil and upon bioaugmentation. A distinct profile of polycyclic aromatic hydrocarbons (PAH) was detected in leaves of these plants. Neither LEAR nor HEAR experienced any changes in the photosynthetic capacity upon diesel pollution and presence of petroleum degraders, which supports the usefulness of rhizoremediation with rapeseed.

  1. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels

    PubMed Central

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes. PMID:25763058

  2. Production of plant cell wall degrading enzymes by monoculture and co-culture of Aspergillus niger and Aspergillus terreus under SSF of banana peels.

    PubMed

    Rehman, Shazia; Aslam, Hina; Ahmad, Aqeel; Khan, Shakeel Ahmed; Sohail, Muhammad

    2014-01-01

    Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.

  3. [Effects of tourism disturbance on plant diversity in Qingshan Lake scenic area of Zhejiang Province].

    PubMed

    Lu, Qing-Bin; You, Wei-Yun; Zhao, Chang-Jie; Wang, Xiang-Wei; Meng-Xiang, Xiu

    2011-02-01

    From May 2007 to June 2008, an investigation was made on the changes of plant community in Qingshan Lake scenic area of Zhejiang Province under the effects of tourism disturbance. With the increase of tourism disturbance, the importance value of the plants was mainly fastened on a few species such as Pinus hwangshanensis, apt to decrease for tree and shrub species and to increase for herb species, and the individuals of the plants increased. The values of richness index (D) and diversity index (H) were in the order of medium disturbance > slight disturbance > severe disturbance, while the evenness index (J) value was in the order of medium disturbance > severe disturbance > slight disturbance. At the same vegetation layers, only a few species such as Cinnamomum camphora existed under different disturbances, and thereby, the similarity index values were smaller than 0.500. Slight disturbance affected coniferous forest most, with the average values of D, H, and J being the lowest (1.188, 1.056, and 0.697, respectively); severe disturbance affected broadleaf forest and shrub-herbage most, with the D value (2.013) of shrub-herbage and the H value (1.286) and J value (0.807) of broadleaf forest being the lowest; while medium disturbance was favorable to the increase of plant diversity and to the normal exertion of ecosystem function. The eco-safety of the structural elements of plant community in the scenic area was threatened to some extent, resulting in the reduction of indigenous species such as Sinocalycanthus chinensis and the incursion of exotic species as Setaria viridis.

  4. [Dynamics of plant community species diversity in the process of ecological rehabilitation in north Shaanxi loess area].

    PubMed

    Qin, Wei; Zhu, Qing-Ke; Zhang, Yu-Qing; Zhao, Lei-Lei

    2009-02-01

    Based on the vegetation survey on 18 sampling plots in Wuqi County of Shaanxi Province, and by using the methods of substituting space series for time series and of contrastive analysis, the dynamics of plant community species diversity in the process of ecological rehabilitation in the County was analyzed from the aspects of succession time, rehabilitation mode, and slope direction. The results showed that in the 25 years natural succession series, the natural restoration community on previous cropland experienced the sequence of Salsola collina, Artemisia scoparia, Lespedeza davurica, Artemisia sacrorum, and Bothriochloa ischcemum, with the dominant species tended to be changed from annual to perennial and from low-class to high-class. The variations of species number, Margalef index, Simpson index, Shannon-Wiener index, and Pielou index in the succession process could all be described by a quadratic function y = at2 + bt + c, suggesting that after the outside pressure removed, the degraded ecosystem in loess area could naturally restore to an advanced and steady state, but the restoration rate would be very slow. With the same site factors and restoration periods, the Margalef index, Shannon-Wiener index and Pielou index of herb layer decreased in the order of naturally restoring on previous cropland (I) > converting cropland to grassland (II) > converting cropland to forestland (III) > afforestation on barren hills (IV), while Simpson index changed in adverse. Comparing with natural restoration, the community types of herb layer in II and III were at the more advanced stage of natural succession series though the species diversity index was lower, indicating that artificial planting would accelerate the succession process. In the same period of rehabilitation, the Margalef index, Shannon-Wiener index and Pielou index of natural restoration community were obviously higher on shady slope than on sunny slope, and the community type was at the more advanced stage

  5. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN.

    PubMed

    Zúñiga, Ana; Poupin, María Josefina; Donoso, Raúl; Ledger, Thomas; Guiliani, Nicolás; Gutiérrez, Rodrigo A; González, Bernardo

    2013-05-01

    Although not fully understood, molecular communication in the rhizosphere plays an important role regulating traits involved in plant-bacteria association. Burkholderia phytofirmans PsJN is a well-known plant-growth-promoting bacterium, which establishes rhizospheric and endophytic colonization in different plants. A competent colonization is essential for plant-growth-promoting effects produced by bacteria. Using appropriate mutant strains of B. phytofirmans, we obtained evidence for the importance of N-acyl homoserine lactone-mediated (quorum sensing) cell-to-cell communication in efficient colonization of Arabidopsis thaliana plants and the establishment of a beneficial interaction. We also observed that bacterial degradation of the auxin indole-3-acetic acid (IAA) plays a key role in plant-growth-promoting traits and is necessary for efficient rhizosphere colonization. Wildtype B. phytofirmans but not the iacC mutant in IAA mineralization is able to restore promotion effects in roots of A. thaliana in the presence of exogenously added IAA, indicating the importance of this trait for promoting primary root length. Using a transgenic A. thaliana line with suppressed auxin signaling (miR393) and analyzing the expression of auxin receptors in wild-type inoculated plants, we provide evidence that auxin signaling in plants is necessary for the growth promotion effects produced by B. phytofirmans. The interplay between ethylene and auxin signaling was also confirmed by the response of the plant to a 1-aminocyclopropane-1-carboxylate deaminase bacterial mutant strain.

  6. Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates.

    PubMed

    Gschwendtner, Silvia; Esperschütz, Jürgen; Buegger, Franz; Reichmann, Michael; Müller, Martin; Munch, Jean Charles; Schloter, Michael

    2011-06-01

    A high percentage of photosynthetically assimilated carbon is released into soil via root exudates, which are acknowledged as the most important factor for the development of microbial rhizosphere communities. As quality and quantity of root exudates are dependent on plant genotype, the genetic engineering of plants might also influence carbon partitioning within the plant and thus microbial rhizosphere community structure. In this study, the carbon allocation patterns within the plant-rhizosphere system of a genetically modified amylopectin-accumulating potato line (Solanum tuberosum L.) were linked to microbial degraders of root exudates under greenhouse conditions, using (13)C-CO(2) pulse-chase labelling in combination with phospholipid fatty acid (PLFA) analysis. In addition, GM plants were compared with the parental cultivar as well as a second potato cultivar obtained by classical breeding. Rhizosphere samples were obtained during young leaf developmental and flowering stages. (13)C allocation in aboveground plant biomass, water-extractable organic carbon, microbial biomass carbon and PLFA as well as the microbial community structure in the rhizosphere varied significantly between the natural potato cultivars. However, no differences between the GM line and its parental cultivar were observed. Besides the considerable impact of plant cultivar, the plant developmental stage affected carbon partitioning via the plant into the rhizosphere and, subsequently, microbial communities involved in the transformation of root exudates.

  7. Ethnobotanical notes about some uses of medicinal plants in Alto Tirreno Cosentino area (Calabria, Southern Italy)

    PubMed Central

    Leporatti, Maria Lucia; Impieri, Massimo

    2007-01-01

    Background The present paper contributes to enrich the ethnobotanical knowledge of Calabria region (Southern Italy). Research was carried out in Alto Tirreno Cosentino, a small area lying between the Tyrrhenian coast and the Pollino National Park. In the area studied medicinal plants still play a small role among farmers, shepherds and other people who live far from villages and built-up areas. Methods Information was collected by interviewing native people, mainly elderly – engaged in farming and stock-raising activities – and housewives. The plants collected, indicated by the locals, have been identified according to "Flora d'Italia". The exsiccata vouchers are preserved in the authors' own herbaria. Results 52 medicinal species belonging to 35 families are listed in this article. The family, botanical and vernacular name, part of the plant used and respective manipulation are reported there and, when present, similar or identical uses in different parts of Calabria or other Italian regions are also indicated. Conclusion Labiatae, Rosaceae and Leguminosae are the families most frequently present, whilst Compositae and Brassicaceae are almost absent. The uses of the recorded species relate to minor ailments, mainly those of the skin (15 species), respiratory apparatus diseases (11), toothache, decay etc. (10) and rheumatic pains (8). The easy availability of these remedies provides a quick way of curing various minor complaints such as tooth-ache, belly and rheumatic pain and headaches and can also serve as first aid as cicatrizing, lenitive, haemostatic agents etc. The role in veterinary medicine is, on the contrary, more important: sores, ulcers, tinea, dermatitis, gangrenous wounds of cattle, and even respiratory ailments are usually cured by resort to plants. PMID:17983476

  8. Pioneer plant species contributing to phytoestabilization of contaminated soils in mine areas

    NASA Astrophysics Data System (ADS)

    João Batista, Maria; Gonzalez-Fernandez, Oscar; Abreu, Maria Manuela; Carvalho, Luisa; Queralt, Ignasi

    2013-04-01

    Young and mature leaves from several plant species of the genus Cistus L. (C. crispus, C. ladanifer, C. monspeliensis, C. salviifolius), Erica australis L., and Lavandula sampaioana (Rozeira) Rivas Mart., T.E. Díaz& Fern. Gonz., as well as soils where plants grew, were sampled in various areas of São Domingos abandoned mine. The São Domingos mine, dating from pre-Roman times, is 60 km SE of Beja, Southeast Portugal. This mine belongs to the world class metallogenetic province of the Iberian Pyrite Belt. Sampling occurred throughout spring and winter to better understand plant behaviour and natural attenuation of contaminated soils. Multiple Correspondence Analysis (MCA) was used to synthesize the information and group characteristics that could justify different chemical concentrations. Soils are extremely acid (pH between 3.4 and 5.2) and present a wide range of Corganic concentrations (10.2-109 g/kg). Total nitrogen and extractable phosphorus concentrations are low to very low, but extractable potassium show medium to high concentrations. Chemical elements concentrations, analysed for total fraction, were great in soils, especially arsenic and lead that can attain 7.6 g/kg and 17.2 g/kg, respectively. However, only a small percentage (in general < 1%) of the total concentration of the chemical elements were water soluble (extracted by DIN 38414-S4 method) or extracted with the DTPA or ammonium acetate aqueous solutions. Cistus plants showed different behaviour on the trace-elements uptake and translocation. Winter and spring variations in most chemical elements concentrations in the plants leaves are not significantly different, except for arsenic, probably because plants were not exposed to important dry conditions during the sampling seasons. Nevertheless, MCA of the individuals makes a clear distinction between winter and spring leaves. Generally, mature leaves have higher concentrations of arsenic, copper, iron, lead, manganese and zinc than younger ones

  9. Degradation of marine ecosystems and decline of fishery resources in marine protected areas in the US Virgin Islands

    USGS Publications Warehouse

    Rogers, C.S.; Beets, J.

    2001-01-01

    The large number of marine protected areas (MPAs) in the Caribbean (over 100) gives a misleading impression of the amount of protection the reefs and other marine resources in this region are receiving. This review synthesizes information on marine resources in two of the first MPAs established in the USA, namely Virgin Islands National Park (1962) and Buck Island Reef National Monument (1961), and provides compelling evidence that greater protection is needed, based on data from some of the longest running research projects on coral reefs, reef fish assemblages, and seagrass beds for the Caribbean. Most of the stresses affecting marine resources throughout the Caribbean (e.g. damage from boats, hurricanes and coral diseases) are also causing deterioration in these MPAs. Living coral cover has decreased and macroalgal cover has increased. Seagrass densities have decreased because of storms and anchor damage. Intensive fishing in the US Virgin Islands has caused loss of spawning aggregations and decreases in mean fish size and abundance. Groupers and snappers are far less abundant and herbivorous fishes comprise a greater proportion of samples than in the 1960s. Effects of intensive fishing are evident even within MPA boundaries. Although only traditional fishing with traps of 'conventional design' is allowed, commercial trap fishing is occurring. Visual samples of fishes inside and outside Virgin Islands National 'Park showed no significant differences in number of species, biomass, or mean size of fishes. Similarly, the number of fishes per trap was statistically similar inside and outside park waters. These MPAs have not been effective because an unprecedented combination of natural and human factors is assaulting the resources, some of the greatest damage is from stresses outside the control of park managers (e.g. hurricanes), and enforcement of the few regulations has been limited. Fully functioning MPAs which prohibit fishing and other extractive uses (e.g. no

  10. Participatory Evaluation of Monitoring and Modeling of Sustainable Land Management Technologies in Areas Prone to Land Degradation

    NASA Astrophysics Data System (ADS)

    Stringer, L. C.; Fleskens, L.; Reed, M. S.; de Vente, J.; Zengin, M.

    2014-11-01

    Examples of sustainable land management (SLM) exist throughout the world. In many cases, SLM has largely evolved through local traditional practices and incremental experimentation rather than being adopted on the basis of scientific evidence. This means that SLM technologies are often only adopted across small areas. The DESIRE (DESertIfication mitigation and REmediation of degraded land) project combined local traditional knowledge on SLM with empirical evaluation of SLM technologies. The purpose of this was to evaluate and select options for dissemination in 16 sites across 12 countries. It involved (i) an initial workshop to evaluate stakeholder priorities (reported elsewhere), (ii) field trials/empirical modeling, and then, (iii) further stakeholder evaluation workshops. This paper focuses on workshops in which stakeholders evaluated the performance of SLM technologies based on the scientific monitoring and modeling results from 15 study sites. It analyses workshop outcomes to evaluate how scientific results affected stakeholders' perceptions of local SLM technologies. It also assessed the potential of this participatory approach in facilitating wider acceptance and implementation of SLM. In several sites, stakeholder preferences for SLM technologies changed as a consequence of empirical measurements and modeling assessments of each technology. Two workshop examples are presented in depth to: (a) explore the scientific results that triggered stakeholders to change their views; and (b) discuss stakeholders' suggestions on how the adoption of SLM technologies could be up-scaled. The overall multi-stakeholder participatory approach taken is then evaluated. It is concluded that to facilitate broad-scale adoption of SLM technologies, de-contextualized, scientific generalisations must be given local context; scientific findings must be viewed alongside traditional beliefs and both scrutinized with equal rigor; and the knowledge of all kinds of experts must be

  11. A checklist of plant and animal species at Los Alamos National Laboratory and surrounding areas

    SciTech Connect

    Hinojosa, H.

    1998-02-01

    Past and current members of the Biology Team (BT) of the Ecology Group have completed biological assessments (BAs) for all of the land that comprises Los Alamos National Laboratory (LANL). Within these assessments are lists of plant and animal species with the potential to exist on LANL lands and the surrounding areas. To compile these lists, BT members examined earlier published and unpublished reports, surveys, and data bases that pertained to the biota of this area or to areas that are similar. The species lists that are contained herein are compilations of the lists from these BAs, other lists that were a part of the initial research for the performance of these BAs, and more recent surveys.

  12. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    SciTech Connect

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  13. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species.

    PubMed

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T

    2016-08-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses.

  14. Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species

    PubMed Central

    Valencia, Enrique; Méndez, Marcos; Saavedra, Noelia; Maestre, Fernando T.

    2016-01-01

    Changes in vegetative and reproductive phenology rank among the most obvious plant responses to climate change. These responses vary broadly among species, but it is largely unknown whether they are mediated by functional attributes, such as size or foliar traits. Using a manipulative experiment conducted over two growing seasons, we evaluated the responses in reproductive phenology and output of 14 Mediterranean semiarid species belonging to three functional groups (grasses, nitrogen-fixing legumes and forbs) to a ~3°C increase in temperature, and assessed how leaf and size traits influenced them. Overall, warming advanced flowering and fruiting phenology, extended the duration of flowering and reduced the production of flowers and fruits. The observed reduction in flower and fruit production with warming was likely related to the decrease in soil moisture promoted by this treatment. Phenological responses to warming did not vary among functional groups, albeit forbs had an earlier reproductive phenology than legumes and grasses. Larger species with high leaf area, as well as those with small specific leaf area, had an earlier flowering and a longer flowering duration. The effects of warming on plant size and leaf traits were related to those on reproductive phenology and reproductive output. Species that decreased their leaf area under warming advanced more the onset of flowering, while those that increased their vegetative height produced more flowers. Our results advance our understanding of the phenological responses to warming of Mediterranean semiarid species, and highlight the key role of traits such as plant size and leaf area as determinants of such responses. PMID:27330405

  15. [Soil nutrients spatial variability and soil fertility suitability in Qujing tobacco-planting area].

    PubMed

    Li, Qiang; Zhou, Ji-heng; Yang, Rong-sheng; Zhang, Zheng-yan; Xie, Yan; Zhang, Yi-yang; Huang, Kua-ke; Li, Wei

    2011-04-01

    By adopting GPS technique, 2088 sampling sites were installed in the tobacco-planting area of Qujing City, Yunnan Province, with 0-20 cm soil samples collected to determine their main nutrients contents. The overall characteristics and spatial variability of the tobacco soil nutrients were analyzed by classic statistics and geo-statistics, and the soil fertility suitability in planting tobacco was evaluated by the methods of fuzzy mathematics. In the study area, soil pH and soil organic matter, available S, and water-soluble Cl contents were appropriate, soil total N and alkalihydrolyzable N contents were too high, soil available K, Ca, Mg, Cu, Fe, Zn, Mo, and Mn contents were abundant, soil available P content was at medium level, while soil total P and K and available B contents were insufficient. All the nutrient indices presented anisotropic distribution, among which, the spatial variability of soil available P and B was mainly caused by random factors, and that of other nutrients was caused by the co-effects of structural and random factors. The spatial distribution map of soil fertility suitability index (SFI) showed that there was no the excellent grade region for tobacco-planting, good grade region accounted for 8.0%, general grade region accounted for 51.6%, moderate grade region accounted for 39.0%, and low grade region accounted for 1.4%.

  16. Cyanophycinase CphE from P. alcaligenes produced in different compartments of N. benthamiana degrades high amounts of cyanophycin in plant extracts.

    PubMed

    Nausch, Henrik; Broer, Inge

    2017-03-01

    One of the major constraints in pig and poultry farming is the supply of protein-rich forage, containing sufficient amounts of key amino acids such as arginine (Ufaz and Galili 2008). Since these are underrepresented in plant proteins, the usage of plants as feed is limited. The heterologous production of the cyanobacterial storage polymer cyanophycin granule polypeptide (CGP) in plastids increases the amount of arginine substantially (Huhns et al. 2008; Huhns et al. 2009; Nausch et al. 2016a). CGP degradation releases arginine-aspartate dipeptides. CGP is stable in plants because its degradation is exclusively restricted to bacterial cyanophycinases (CGPases; Law et al. 2009). Since animals are also unable to digest CGP, CGPases need to be co-delivered with CGP-containing plant feed in order to release the dipeptides in the gastrointestinal tract of animals during digestion. Therefore, an extracellular CGPase, CphE from Pseudomonas alcaligenes DIP-1, was targeted to the cytosol, ER, and apoplasm of Nicotiana benthamiana. Translocation to the chloroplast was not successful. Although CphE accumulated in high amounts in the cytosol, only moderate levels were present in the ER, while the enzyme was nearly undetectable in the apoplasm. This correlates with the higher instability of post-translationally modified CphE in crude plant extracts. In addition, the production in the ER led to an increased number and size of necroses compared with cytosolic expression and might therefore interfere with the endogenous metabolism in the ER. Due to the high and robust enzyme activity, even moderate CphE concentrations were sufficient to degrade CGP in plant extracts.

  17. Evidence That GH115 α-Glucuronidase Activity, Which Is Required to Degrade Plant Biomass, Is Dependent on Conformational Flexibility*

    PubMed Central

    Rogowski, Artur; Baslé, Arnaud; Farinas, Cristiane S.; Solovyova, Alexandra; Mortimer, Jennifer C.; Dupree, Paul; Gilbert, Harry J.; Bolam, David N.

    2014-01-01

    The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a β1,4-linked xylose polysaccharide that is decorated with α-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan α-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four-domain protein in which the active site, comprising a pocket that abuts a cleft-like structure, is housed in the second domain that adopts a TIM barrel-fold. The third domain, a five-helical bundle, and the C-terminal β-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan. PMID:24214982

  18. Degradation of polycyclic aromatic hydrocarbons in a coking wastewater treatment plant residual by an O3/ultraviolet fluidized bed reactor.

    PubMed

    Lin, Chong; Zhang, Wanhui; Yuan, Mengyang; Feng, Chunhua; Ren, Yuan; Wei, Chaohai

    2014-09-01

    Coking wastewater treatment plant (CWWTP) represents a typical point source of polycyclic aromatic hydrocarbons (PAHs) to the water environment and threatens the safety of drinking water in downstream regions. To enhance the removal of residual PAHs from bio-treated coking wastewater, a pilot-scale O3/ultraviolet (UV) fluidized bed reactor (O3/UV FBR) was designed and different operating factors including UV irradiation intensity, pH, initial concentration, contact time, and hydraulic retention time (HRT) were investigated at an ozone level of 240 g h(-1) and 25 ± 3 °C. A health risk evaluation and cost analysis were also carried out under the continuous-flow mode. As far as we know, this is the first time an O3/UV FBR has been explored for PAHs treatment. The results indicated that between 41 and 75 % of 18 target PAHs were removed in O3/UV FBR due to synergistic effects of UV irradiation. Both increased reaction time and increased pH were beneficial for the removal of PAHs. The degradation of the target PAHs within 8 h can be well fitted by the pseudo-first-order kinetics (R (2) > 0.920). The reaction rate was also positively correlated with the initial concentrations of PAHs. The health risk assessment showed that the total amount of carcinogenic substance exposure to surface water was reduced by 0.432 g day(-1). The economic analysis showed that the O3/UV FBR was able to remove 18 target PAHs at a cost of US$0.34 m(-3). These results suggest that O3/UV FBR is efficient in removing residuals from CWWTP, thus reducing the accumulation of persistent pollutant released to surface water.

  19. Flora, life forms and chorotypes of plants of Salok protected area (North Khorassan Province Iran).

    PubMed

    Nadaf, M; Mortazavi, M; Halimi, M Khalilabad

    2011-01-01

    Salok protected Area is located in the 37 degrees 15' to 37 degrees 08' of the North latitude and 57 degrees 16' to 57 degrees 06' of East longitude, in West North Esfarayen in North khorassan province. In this research 52 families, 174 genera and 213 species were identified. The largest plant family is Asteraceae (34 species), Poaceae (18 species), Brassicaceae (17 species) and Fabaceae (17 species), respectively. Chief life forms are Hemicryptopytes (49.29%), Therophytes 23.47% and cryptophytes (12.67%). The most of plants chorotype with 62.91% is influenced by Irano-Touranina elements. Among 213 identified species of this region and 15 species endemic of Iran contain 0.87% of total endemic species of Iran's flora.

  20. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  1. Oligogalacturonide-mediated induction of a gene involved in jasmonic acid synthesis in response to the cell-wall-degrading enzymes of the plant pathogen Erwinia carotovora.

    PubMed

    Norman, C; Vidal, S; Palva, E T

    1999-07-01

    Identification of Arabidopsis thaliana genes responsive to plant cell-wall-degrading enzymes of Erwinia carotovora subsp. carotovora led to the isolation of a cDNA clone with high sequence homology to the gene for allene oxide synthase, an enzyme involved in the biosynthesis of jasmonates. Expression of the corresponding gene was induced by the extracellular enzymes from this pathogen as well as by treatment with methyl jasmonate and short oligogalacturonides (OGAs). This suggests that OGAs are involved in the induction of the jasmonate pathway during plant defense response to E. carotovora subsp. carotovora attack.

  2. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.

    PubMed

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected.

  3. Selection and screening of microbial consortia for efficient and ecofriendly degradation of plastic garbage collected from urban and rural areas of Bangalore, India.

    PubMed

    Skariyachan, Sinosh; Megha, M; Kini, Meghna Niranjan; Mukund, Kamath Manali; Rizvi, Alya; Vasist, Kiran

    2015-01-01

    Industrialization and urbanization have led to massive accumulation of plastic garbage all over India. The persistence of plastic in soil and aquatic environment has become ecological threat to the metropolitan city such as Bangalore, India. Present study investigates an ecofriendly, efficient and cost-effective approach for plastic waste management by the screening of novel microbial consortia which are capable of degrading plastic polymers. Plastic-contaminated soil and water samples were collected from six hot spots of urban and rural areas of Bangalore. The plastic-degrading bacteria were enriched, and degradation ability was determined by zone of clearance method. The percentage of polymer degradation was initially monitored by weight loss method, and the main isolates were characterized by standard microbiology protocols. These isolates were used to form microbial consortia, and the degradation efficiency of the consortia was compared with individual isolate and known strains obtained from the Microbial Type Culture Collection (MTCC) and Gene Bank, India. One of the main enzymes responsible for polymer degradation was identified, and the biodegradation mechanism was hypothesized by bioinformatics studies. From this study, it is evident that the bacteria utilized the plastic polymer as a sole source of carbon and showed 20-50% weight reduction over a period of 120 days. The two main bacteria responsible for the degradation were microbiologically characterized to be Pseudomonas spp. These bacteria could grow optimally at 37 °C in pH 9.0 and showed 35-40% of plastic weight reduction over 120 days. These isolates were showed better degradation ability than known strains from MTCC. The current study further revealed that the microbial consortia formulated by combining Psuedomonas spp. showed 40 plastic weight reduction over a period of 90 days. Further, extracellular lipase, one of the main enzymes responsible for polymer degradation, was identified. The

  4. Mapping suitability areas for concentrated solar power plants using remote sensing data

    DOE PAGES

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on amore » Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.« less

  5. Plant community development within the F- and H-Area tree-kill zone

    SciTech Connect

    Nelson, E.A.; Westbury, H.M. Jr.

    1994-10-01

    The F- and H-Area Seepage Basins received liquid waste from the F and H chemical separation facilities from 1955 through 1988. Tree mortality in seepline fed wetlands down-slope from the basins was observed in the late 1970`s, and investigations were conducted to determine the cause and source of the impacts. Analysis of the soil and water in the tree-kill zones demonstrated a strong chemical linkage with the F- and H-Area seepage basins. Although no single cause of the mortality was determined, it was believed to be the result of interactions of alterations in the hydrology and erosional deposition, along with lowering of pH and increased conductivity, sodium, aluminum, and nitrogen compounds. A mild drought during the growing season may also have increased the concentration of the chemical contaminants in the soils matrix. In 1988, the F- and H-Area Seepage Basins were closed and covered with a clay cap to reduce the rate of dispersion of the contaminants in the soil beneath the basins. Subsequent studies of the chemical composition of the tree-kill zone groundwater and toxicological characteristics of the seepline soil have shown a reduced contaminant flux. In 1993, an initial vegetation study was undertaken to determine the level of recovery by the plant communities in the tree-kill zones. This study repeats the initial vegetation investigation in order to further analyze and characterize the recovery of plant communities in the zones after an additional year of growth.

  6. Mapping suitability areas for concentrated solar power plants using remote sensing data

    SciTech Connect

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  7. Fluorine concentration in snow cover within the impact area of aluminium production plant (Krasnoyarsk city) and coal and gas-fired power plant (Tomsk city)

    NASA Astrophysics Data System (ADS)

    Talovskaya, A. V.; Osipova, N. A.; Filimonenko, E. A.; Polikanova, S. A.; Samokhina, N. P.; Yazikov, E. G.; Matveenko, I. A.

    2015-11-01

    The fluorine contents in snow melt water find in the impact areas of aluminum production plant and coal and gas-fired power plant are compared. In melt water, soluble fluoride is found in the form of fluoride ion, the content of which was determined by the potentiometric method using ion-selective electrode. According to the measurements of 2013-2014, fluoride content in melt water ranges 10.6-15.4 mg/dm3 at the distance 1-3 km from the borders of Krasnoyarsk aluminum plant with the mean value 13.1 mg/dm3. Four-year monitoring from 2012 to 2015 in the impact area of Tomsk coal and gas-fired power plant showed that fluoride content in melt water in vicinity of the thermal power plant is significantly lower than in the samples from the impact area of the aluminum plant. But higher content of fluoride ion (0.2 - 0.3 mg/dm3) in snow samples in vicinity of coal and gas-fired power plant was revealed in winter of 2015. Intake of soluble fluoride is mostly explained by dust-aerosol emissions of study plants and deposition of fluorine compounds from air.

  8. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1

    PubMed Central

    Dong, Chun-Hai; Agarwal, Manu; Zhang, Yiyue; Xie, Qi; Zhu, Jian-Kang

    2006-01-01

    Plant responses to cold stress are mediated by a transcriptional cascade, in which the transcription factor ICE1 and possibly related proteins activate the expression of C-repeat (CRT)-binding factors (CBFs), leading to the transcription of downstream effector genes. The variant RING finger protein high expression of osmotically responsive gene (HOS)1 was identified genetically as a negative regulator of cold responses. We present evidence here that HOS1 is an E3 ligase required for the ubiquitination of ICE1. HOS1 physically interacts with ICE1 and mediates the ubiquitination of ICE1 both in vitro and in vivo. We found that cold induces the degradation of ICE1 in plants, and this degradation requires HOS1. Consistent with enhanced cold-responsive gene expression in loss-of-function hos1 mutant plants, overexpression of HOS1 represses the expression of CBFs and their downstream genes and confers increased sensitivity to freezing stress. Our results indicate that cold stress responses in Arabidopsis are attenuated by a ubiquitination/proteasome pathway in which HOS1 mediates the degradation of the ICE1 protein. PMID:16702557

  9. Enrichment and Broad Representation of Plant Biomass-Degrading Enzymes in the Specialized Hyphal Swellings of Leucoagaricus gongylophorus, the Fungal Symbiont of Leaf-Cutter Ants

    SciTech Connect

    Aylward, Frank O.; Khadempour, Lily; Tremmel, Daniel; McDonald, Bradon R.; Nicora, Carrie D.; Wu, Si; Moore, Ronald J.; Orton, Daniel J.; Monroe, Matthew E.; Piehowski, Paul D.; Purvine, Samuel O.; Smith, Richard D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Currie, Cameron R.

    2015-08-28

    Leaf-cutter ants are prolific and conspicuous Neotropical herbivores that derive energy from specialized fungus gardens they cultivate using foliar biomass. The basidiomycetous cultivar of the ants, Leucoagaricus gongylophorus, produces specialized hyphal swellings called gongylidia that serve as the primary food source of ant colonies. Gongylidia also contain lignocellulases that become concentrated in ant digestive tracts and are deposited within fecal droplets onto fresh foliar material as it is foraged by the ants. Although the enzymes concentrated by L. gongylophorus within gongylidia are thought to be critical to the initial degradation of plant biomass, only a few enzymes present in these hyphal swellings have been identified. Here we use proteomic methods to identify proteins present in the gongylidia of three Atta cephalotes colonies. Our results demonstrate that a diverse but consistent set of enzymes is present in gongylidia, including numerous lignocellulases likely involved in the degradation of polysaccharides, plant toxins, and proteins. Overall, gongylidia contained over three-quarters of all lignocellulases identified in the L. gongylophorus genome, demonstrating that the majority of the enzymes produced by this fungus for biomass breakdown are ingested by the ants. We also identify a set of 23 lignocellulases enriched in gongylidia compared to whole fungus garden samples, suggesting that certain enzymes may be particularly important in the initial degradation of foliar material. Our work sheds light on the complex interplay between leaf-cutter ants and their fungal symbiont that allows for the host insects to occupy an herbivorous niche by indirectly deriving energy from plant biomass.

  10. Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger

    PubMed Central

    van Munster, Jolanda M.; Thomas, Baptiste; Riese, Michel; Davis, Adrienne L.; Gray, Christopher J.; Archer, David B.; Flitsch, Sabine L.

    2017-01-01

    Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry. PMID:28220903

  11. New role for an old rule: N-end rule-mediated degradation of ethylene responsive factor proteins governs low oxygen response in plants(F).

    PubMed

    Licausi, Francesco; Pucciariello, Chiara; Perata, Pierdomenico

    2013-01-01

    The N-end rule pathway regulates protein degradation, which depends on exposed N-terminal sequences in prokaryotes and eukaryotes. In plants, conserved and specific enzymes stimulate selective proteolysis. Although a number of developmental and growth phenotypes have been reported for mutants in the N-end rule, its function has remained unrelated to specific physiological pathways. The first report of the direct involvement of the N-end rule in stress responses focused on hypoxic signaling and how the oxygen-dependent oxidation of cystein promotes the N-end rule-mediated degradation of ethylene responsive factor (ERF)-VII proteins, the master regulators of anaerobic responses. It has been suggested that plants have evolved specific mechanisms to tune ERF-VII availability in the nucleus. In this review, we speculate that ERF-VII proteins are reversibly protected from degradation via membrane sequestration. The oxidative response in plants subjected to anoxic conditions suggests that reactive oxygen and nitrogen species (reactive oxygen species and reactive nitrogen species) may interact or interfere with the N-end rule pathway-mediated response to hypoxia.

  12. An aerial radiological survey of the Robert Emmett Ginna Nuclear Power Plant and surrounding area, Ontario, New York

    SciTech Connect

    Proctor, A.E.

    1997-06-01

    Terrestrial radioactivity surrounding the Robert Emmett Ginna Nuclear Power Plant was measured using aerial radiological surveying techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employed sodium iodide, thallium-activated detectors. Exposure-rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the aerial survey results. Exposure rates in the area surrounding the plant site varied from 6 to 10 microroentgens per hour. Man-made radiation (cobalt-60 within the plant site and cesium-1 37 directly over the reactor) was found at the plant site. In addition, small areas of suspected cesium-137 activity were found within the survey areas. Other than these small sites, the survey area was free of man-made radioac- tivity.

  13. Leaf-cutting ant nests near roads increase fitness of exotic plant species in natural protected areas

    PubMed Central

    Farji-Brener, Alejandro G; Ghermandi, Luciana

    2008-01-01

    Understanding the mechanisms that promote the invasion of natural protected areas by exotic plants is a central concern for ecology. We demonstrated that nests of the leaf-cutting ant, Acromyrmex lobicornis, near roadsides promote the abundance, growth and reproduction of two exotic plant species, Carduus nutans and Onopordum acanthium, in a national park in northern Patagonia, Argentina and determine the mechanisms that produce these effects. Refuse dumps (RDs) from ant nests have a higher nutrient content than nearby non-nest soils (NNSs); foliar nutrient content and their 15N isotopic signature strongly suggest that plants reach and use these nutrients. Both species of exotic plants in RDs were 50–600% more abundant; seedlings had 100–1000% more foliar area and root and leaf biomass; and adult plants produced 100–300% more seeds than nearby NNS plants. Plants can thus gain access to and benefit from the nutrient content of ant RD, supporting the hypotheses that enhanced resource availability promotes exotic plant performance that could increase the likelihood of biological invasions. The two exotics produce an estimated of 8 385 000 more seeds ha−1 in areas with ant nests compared with areas without; this exceptional increase in seed production represents a potential threat to nearby non-invaded communities. We propose several management strategies to mitigate this threat. Removal efforts of exotics should be focused on ant RDs, where plants are denser and represent a higher source of propagules. PMID:18364316

  14. [Aerosol size distribution of organic carbon and elemental carbon on the top of coke oven and in the plant area].

    PubMed

    Liu, Xiao-Feng; Peng, Lin; Bai, Hui-Ling; Mu, Ling; Song, Chong-Fang

    2013-08-01

    In order to investigate the characteristic of organic carbon (OC) and elemental carbon (EC) in particles on the top of coke oven and in the plant area, the particle matter samples of five size fraction including < or = 1.4 microm, 1.4-2.1 microm, 2.1-4.2 microm, 4.2-10.2 microm and > or = 10.2 microm were collected using Staplex234 cascade impactor, and OC and EC were analyzed by Elementar Analysensysteme GmbH vario EL cube. The mass concentrations of OC and EC associated with TSP on the top of coke oven were 291.6 microg x m(-3) and 255.1 microg x m(-3), while those in the plant area were 377.8 microg x m(-3) and 151.7 microg x m(-3). The mass concentration of secondary organic carbon (SOC) in particles with size of < or = 1.4 microm was 147.3 microg x m(-3) in the plant area. The value of OC/EC in particles less than 2.1 microm was 1.3 on the top of coke oven. The mass concentration of EC in TSP in the plant area was lower than that on the top of coke oven, while the mass concentration of OC in the plant area was significantly higher than that on the top of coke oven. The mass concentrations of OC and EC associated with particles less than 10.2 microm in the plant area were far higher than those in the atmosphere of area where the coke plant is located. The OC and EC in particles, which were collected both on the top of coke oven and in the plant area, were mainly enriched in fine particles. The size distribution of OC showed a clear distinction between the coke oven top and the plant area, which revealed that OC in the plant area was more preferably enriched in fine particles than that on the top of coke oven, and the same size distribution of EC was found on the top of coke oven and in the plant area. In the plant area, the mass concentration of SOC and the contribution of SOC to OC increased with the decreasing diameter in particles with diameter of less than 10.2 microm.

  15. Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China

    NASA Astrophysics Data System (ADS)

    Zhang, Pingjiu; Li, Lianqing; Pan, Genxing; Ren, Jingchen

    2006-12-01

    Not only the nutritional status and biological activity but also the soil ecological functioning or soil health has been impacted profoundly by land degradation in the karst area of southwest China where the karst ecosystems are generally considered as extremely vulnerable to land degradation under intensified land-use changes. The objectives of this study are to elucidate the changes in overall soil quality by a holistic approach of soil nutritional, biological activity, and soil health indicators in the karst area as impacted by intense cultivation and vegetation degradation. Topsoil samples were collected on selected eco-tesserae in a sequence of land degradation in a karst area of southwest Guizhou in 2004. The soil nutrient pools of organic carbon (Corg), extractable extracellular carbon (Cext), total soil nitrogen (Nt), alkali-hydrolyzable nitrogen (Nah), total phosphorus (Pt), available phosphorus (Pa) were analyzed by wet soil chemistry. The soil biological properties were studied by means of measurements of microbial biomass carbon (both by fumigation-extraction, FE-Cmic, and by calculation from substrate-incubation respiration, SIR-Cmic) of respiration [respiration without addition of substrates, basal respiration (BR), and potential respiration (PR) with substrate-incubation] and of soil enzyme activities (invertase, urease, and alkaline phosphatase). Soil health status was assessed by simple indices of Cmic/Corg and BR/Cmic in conjunction with bacterial community structures determined by polymerase chain reaction and denaturing gradient gel electrophoresis. While the nutritional pool parameters, such as Corg and Cext, described basically the changes in soil life-supporting capacity with cultivation interference and vegetation declined, those parameters of biological activity such as FE-Cmic, SIR, and SIR-Cmic as well as bacterial community structures measured by molecular method evidenced well the changes in soil functioning for ecosystem health with

  16. Potential for Microbial Degradation of cis-Dichloroethene and Vinyl Chloride in Streambed Sediment at the U.S. Department of Energy, Kansas City Plant, Missouri, 2008

    USGS Publications Warehouse

    Bradley, Paul M.

    2009-01-01

    A series of carbon-14 (14C) radiotracer-based microcosm experiments was conducted to assess the mechanisms and products of degradation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) in streambed sediments at the U.S. Department of Energy, Kansas City Plant in Kansas City, Missouri. The focus of the investigation was the potential for biotic and abiotic cis-DCE and VC degradation in surficial and underlying hyporheic sediment from the Blue River and its tributaries, Indian Creek and Boone Creek. Substantial degradation of [1,2-14C] cis-DCE and [1,2-14C] VC to 14C-carbon dioxide (14CO2) was observed in all viable surficial sediment microcosms prepared under oxic conditions. No significant accumulation of reductive dechlorination products was observed under these oxic incubation conditions. The results indicate that microbial mineralization processes involving direct oxidation or co-metabolic oxidation are the primary mechanisms of cis-DCE and VC biodegradation in oxic stream sediment at the Kansas City Plant. Substantial mineralization of [1,2-14C] VC also was observed in all viable surficial sediment microcosms incubated in the absence of detectable oxygen (dissolved oxygen concentrations less than 25 micrograms per liter). In general, the accumulation of mineralization products (14CO2 and 14C-methane [14CH4]) predominated with only trace-level detection of the reductive dechlorination product, 14C-ethene. In contrast, microbial degradation of [1,2-14C] cis-DCE by reductive dechlorination or mineralization was not significant in the absence of detectable oxygen. The potential for [1,2-14C] VC biodegradation also was significant in sediments from the deeper hyporheic zones under oxic conditions and in the absence of detectable oxygen. In this study, microbial degradation of [1,2-14C] cis-DCE was not significant in hyporheic sediment treatments under either oxygen condition. Taken together, the results indicate that microbial mineralization processes in

  17. Case Studies Due to Invasive Plants on the Vegetation Retardation Succession in Landslide Areas of Shimen reservoir

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Cheng; Lin, Shin-Hwei

    2014-05-01

    The steep terrain and the fragile geology in Taiwan have caused large landslides in the reservoir watershed in the season with typhoons and heavy rain. Management, restoration strategies, and vegetation succession mechanism of landslide areas are distinct due to different attributes and locations of landslide areas. Aiming at 50 landslide areas in Shihmen reservoir watershed from 2004 to 2012, because of the Typhoon Aere occurred in 2004, this study clusters with the primary vegetation data and ortho image, and discusses the primary vegetation type in landslide areas. The successive management engineering in the watershed and the case data in Sule and Shaluntzu are analyzed the vegetation development and plant competition to evaluate the plant succession mechanism and the vegetation restoration results for the reference of successive design of vegetation engineering in landslide areas. The result shows that Shaluntzu area used invasive plants Rhodesgrass and Rhodesian kudzu when slope land vegetation restoration and secondary planting seedlings. Rhodesian kudzu has property of binding plant and causes for vegetation death. Currently, cutting down Rhodesian kudzu to reduce its interference is the most effective prevention and management method. Carefully choose the pre-grass species for vegetation in the have to carry out artificial vegetation restoration area, and continue to monitor the status currently. It would increase biodiversity for slope land due to select the indicator species of vegetation restoration and know successional trends of invasive plant species.

  18. Mercury in soil and perennial plants in a mining-affected urban area from Northwestern Romania.

    PubMed

    Senilă, Marin; Levei, Erika A; Senilă, Lăcrimioara R; Oprea, Gabriela M; Roman, Cecilia M

    2012-01-01

    The mercury (Hg) concentrations were evaluated in soils and perennial plants sampled in four districts of Baia Mare city, a historical mining and ore processing center in Northwestern Romania. The results showed that the Hg concentration exceeded the guideline value of 1.0 mg kg(-1) dry weight (dw) established by the Romanian Legislation, in 24 % of the analyzed soil samples, while the median Hg concentration (0.70 mg kg(-1) dw) was lower than the guideline value. However, Hg content in soil was generally higher than typical values in soils from residential and agricultural areas of the cities all over the world. The median Hg concentration was 0.22 mg kg(-1) dw in the perennial plants, and exceeded the maximum level of Hg (0.10 mg kg(-1)) established by European Directive 2002/32/EC for plants used in animal feed in order to prevent its transfer and further accumulation in the higher levels of food chain. No significant correlations were found between soil Hg and other analyzed metals (Cd, Cu, Pb, Zn) resulted from the non-ferrous smelting activities, probably due to the different physicochemical properties, that led to different dispersion patterns.

  19. Chemical characteristics of organic aerosols in Algiers city area: influence of a fat manufacture plant

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Meklati, Brahim Youcef; Cecinato, Angelo

    Total concentrations and homologue distributions of organic fraction constituents have been determined in particulate matter emitted from different units of a fat manufacturer (i.e. oils refining and conditioning plants, and production and conditioning units of a soap industry) located in Algiers area, as well as in atmospheric aerosols. In particular n-alkanes, n-alkanoic and n-alkenoic acids, n-alkan-2-ones and polycyclic aromatic hydrocarbons (PAH) were investigated. Organic aerosol contents varied broadly among the plant units, depending upon nature of the manufactured products. The percent composition of all classes of compounds investigated in ambient atmosphere was similar to those observed indoor at industrial plant units. Organic acids, n-alkanoic as well as n-alkenoic, appeared by far the most abundant organic constituents of aerosols, both indoor and outdoor, ranging from 7.7 to 19.8 and from 12.7 to 17.1 μg m -3, respectively. The huge occurrence of acids and n-alkanes in ambient aerosols was consistent with their high levels present in oil and fat materials. Among minor components of aerosols, n-alkan-2-ones and PAH, seemed to be related to thermally induced ageing and direct combustion of raw organic material used for oil and soap production.

  20. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect

    Sokolov, A. S.

    2013-07-15

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  1. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    SciTech Connect

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; Hahn, Michael G.; Mohnen, Debra; Westpheling, Janet

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thus provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new

  2. Deletion of a gene cluster encoding pectin degrading enzymes in Caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance

    DOE PAGES

    Chung, Daehwan; Pattathil, Sivakumar; Biswal, Ajaya K.; ...

    2014-10-10

    A major obstacle, and perhaps the most important economic barrier to the effective use of plant biomass for the production of fuels, chemicals, and bioproducts, is our current lack of knowledge of how to efficiently and effectively deconstruct wall polymers for their subsequent use as feedstocks. Plants represent the most desired source of renewable energy and hydrocarbons because they fix CO2, making their use carbon neutral. Their biomass structure, however, is a barrier to deconstruction, and this is often referred to as recalcitrance. Members of the bacterial genus Caldicellulosiruptor have the ability to grow on unpretreated plant biomass and thusmore » provide an assay for plant deconstruction and biomass recalcitrance. Using recently developed genetic tools for manipulation of these bacteria, a deletion of a gene cluster encoding enzymes for pectin degradation was constructed, and the resulting mutant was reduced in its ability to grow on both dicot and grass biomass, but not on soluble sugars. The plant biomass from three phylogenetically diverse plants, Arabidopsis (a herbaceous dicot), switchgrass (a monocot grass), and poplar (a woody dicot), was used in these analyses. These biomass types have cell walls that are significantly different from each other in both structure and composition. While pectin is a relatively minor component of the grass and woody dicot substrates, the reduced growth of the mutant on all three biomass types provides direct evidence that pectin plays an important role in biomass recalcitrance. Glycome profiling of the plant material remaining after growth of the mutant on Arabidopsis biomass compared to the wild-type revealed differences in the rhamnogalacturonan I, homogalacturonan, arabinogalactan, and xylan profiles. In contrast, only minor differences were observed in the glycome profiles of the switchgrass and poplar biomass. In conclusion, the combination of microbial digestion and plant biomass analysis provides a new and

  3. Water deficit induces chlorophyll degradation via the 'PAO/phyllobilin' pathway in leaves of homoio- (Craterostigma pumilum) and poikilochlorophyllous (Xerophyta viscosa) resurrection plants.

    PubMed

    Christ, Bastien; Egert, Aurélie; Süssenbacher, Iris; Kräutler, Bernhard; Bartels, Dorothea; Peters, Shaun; Hörtensteiner, Stefan

    2014-11-01

    Angiosperm resurrection plants exhibit poikilo- or homoiochlorophylly as a response to water deficit. Both strategies are generally considered as effective mechanisms to reduce oxidative stress associated with photosynthetic activity under water deficiency. The mechanism of water deficit-induced chlorophyll (Chl) degradation in resurrection plants is unknown but has previously been suggested to occur as a result of non-enzymatic photooxidation. We investigated Chl degradation during dehydration in both poikilochlorophyllous (Xerophyta viscosa) and homoiochlorophyllous (Craterostigma pumilum) species. We demonstrate an increase in the abundance of PHEOPHORBIDE a OXYGENASE (PAO), a key enzyme of Chl breakdown, together with an accumulation of phyllobilins, that is, products of PAO-dependent Chl breakdown, in both species. Phyllobilins and PAO levels diminished again in leaves from rehydrated plants. We conclude that water deficit-induced poikilochlorophylly occurs via the well-characterized PAO/phyllobilin pathway of Chl breakdown and that this mechanism also appears conserved in a resurrection species displaying homoiochlorophylly. The roles of the PAO/phyllobilin pathway during different plant developmental processes that involve Chl breakdown, such as leaf senescence and desiccation, fruit ripening and seed maturation, are discussed.

  4. Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Benalcázar, M.; Padín, J.; Brun, M.; Pastore, J.; Ballarin, V.; Peirone, L.; Pereyra, G.

    2011-12-01

    There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.

  5. Individual Species-Area Relationship of Woody Plant Communities in a Heterogeneous Subtropical Monsoon Rainforest

    PubMed Central

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species’ habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species’ interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (<10–30 m); (ii) the detection of accumulator species was lower at large interaction distances (>30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions. PMID:25884405

  6. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    SciTech Connect

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  7. Was the Eocene Arctic a Source Area for Exotic Plants and Mammals? (Invited)

    NASA Astrophysics Data System (ADS)

    Eberle, J. J.; Harrington, G. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, J. H.

    2010-12-01

    not found in correlative strata of either mid-latitude North America or Europe. Either the Arctic region is a source of some evolutionary novelty, or alternatively it recruited plants directly from Asia. In sum, although the Arctic was undoubtedly en route for terrestrial plants and animals dispersing across Holarctic continents during parts of the Paleogene, evidence from both the Eocene plant and vertebrate communities on Ellesmere Island indicates the Arctic must also be evaluated as a potential source area for exotic taxa.

  8. 30 CFR 942.827 - Special performance standards-Coal preparation plants not located within the permit area of a mine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants not located within the permit area of a mine. 942.827 Section 942.827 Mineral Resources OFFICE OF... plants not located within the permit area of a mine. Part 827 of this chapter, Permanent Program Performance Standards—Coal Preparation Plants Not Located Within the Permit Area of a Mine, shall apply to...

  9. 30 CFR 903.827 - Special performance standards-Coal preparation plants not located within the permit area of a mine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants not located within the permit area of a mine. 903.827 Section 903.827 Mineral Resources OFFICE OF... plants not located within the permit area of a mine. Part 827 of this chapter, Permanent Program Performance Standards—Coal Preparation Plants Not Located Within the Permit Area of a Mine, applies to...

  10. 30 CFR 942.827 - Special performance standards-Coal preparation plants not located within the permit area of a mine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants not located within the permit area of a mine. 942.827 Section 942.827 Mineral Resources OFFICE OF... plants not located within the permit area of a mine. Part 827 of this chapter, Permanent Program Performance Standards—Coal Preparation Plants Not Located Within the Permit Area of a Mine, shall apply to...

  11. 30 CFR 905.827 - Special performance standards-Coal preparation plants not located within the permit area of a mine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants not located within the permit area of a mine. 905.827 Section 905.827 Mineral Resources OFFICE OF... plants not located within the permit area of a mine. Part 827 of this chapter, Permanent Program Performance Standards—Coal Preparation Plants Not Located Within the Permit Area of a Mine, shall apply to...

  12. 30 CFR 905.827 - Special performance standards-Coal preparation plants not located within the permit area of a mine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants not located within the permit area of a mine. 905.827 Section 905.827 Mineral Resources OFFICE OF... plants not located within the permit area of a mine. Part 827 of this chapter, Permanent Program Performance Standards—Coal Preparation Plants Not Located Within the Permit Area of a Mine, shall apply to...

  13. 30 CFR 903.827 - Special performance standards-Coal preparation plants not located within the permit area of a mine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants not located within the permit area of a mine. 903.827 Section 903.827 Mineral Resources OFFICE OF... plants not located within the permit area of a mine. Part 827 of this chapter, Permanent Program Performance Standards—Coal Preparation Plants Not Located Within the Permit Area of a Mine, applies to...

  14. Remote sensing and GIS based study of potential erosion and degradation areas on the island Fogo (Cape Verde Islands)

    NASA Astrophysics Data System (ADS)

    Olehowski, Claas; Naumann, Simone; Siegmund, Alexander

    2009-09-01

    The Island of Fogo (Cape Verde) is affected by processes of erosion and degradation, caused mainly by a high population growth and global change. With its small scaled climatic, floristic and geo-ecological differentiation, the island of Fogo is an optimal research space for understanding semiarid island ecosystems in the marginal tropics and their behaviour to erosion and degradation processes. For that reason, a change detection analysis over the past two decades is generated, showing the level and direction of land cover and land use change. Two satellite images from 1984 and 2007 will classified by a Maximum Likelihood approach. In a further step, an image of 1974 will be also integrated in this change detection analysis, enlarging the study over the last three decades.

  15. An aerial radiological survey of the Paducah Gaseous Diffusion Plant and surrounding area, Paducah, Kentucky

    SciTech Connect

    Not Available

    1992-11-01

    An aerial radiological survey of the Paducah Gaseous Diffusion Plant (PGDP) and surrounding area in Paducah, Kentucky, was conducted during May 15--25, 1990. The purpose of the survey was to measure and document the terrestrial radiological environment at the PGDP and surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 61 meters (200 feet) along a series of parallel lines 107 meters (350 feet) apart. The survey encompassed an area of 62 square kilometers (24 square miles), bordered on the north by the Ohio River. The results of the aerial survey are reported as inferred exposure rates at 1 meter above ground level in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 5 to 12 microroentgens per hour ([mu]R/h). Protactinium-234m, a radioisotope indicative of uranium-238, was detected at several facilities at the PGDR. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within [plus minus]15%.

  16. Can ectomycorrhizal symbiosis and belowground plant traits be used as ecological tools to mitigate erosion on degraded slopes in the ultramafic soils of New Caledonia?

    NASA Astrophysics Data System (ADS)

    Demenois, Julien; Carriconde, Fabian; Rey, Freddy; Stokes, Alexia

    2015-04-01

    New Caledonia is an archipelago in the South West Pacific located just above the Tropic of Capricorn. The main island is bisected by a continuous mountain chain whose highest peaks reach more than 1 600 m. With mean annual rainfall above 2 000 mm in the South of the main island, frequent downpours and steep slopes, its soils are prone to water erosion. Deforestation, fires and mining activity are the main drivers of water erosion. Stakes are high to mitigate the phenomenon: extraction of nickel from ultramafic substrates (one third of the whole territory) is the main economic activity; New Caledonia is considered as a biodiversity hotspot. Restoration ecology is seen as a key approach for tackling such environmental challenges. Soil microorganisms could play significant roles in biological processes such as plant nutrition and plant resistance to abiotic and biotic stresses. Microorganisms could increase soil aggregate stability and thus mitigate soil erodibility. Plant roots increase soil cohesion through exudation and decomposition processes. To date, few studies have collected data on the soil aggregate stability of steep slopes affected by erosion and, to our knowledge, interactions between ectomycorrhizas (ECM), roots and erodibility of ultramafic soils have never been considered. The objective of our study is to assess the influence of ECM symbiosis and plant root traits on the erodibility of ultramafic soils of New Caledonia and answer the following questions: 1/ What is the influence of plant root traits of vegetal communities and ECM fungal diversity on soil erodibility? 2/ What are the belowground plant traits of some mycorrhized endemic species used in ecological restoration? 3/ What is the influence of plant root traits and ECM fungal inoculation on soil erodibility? At the scale of plant communities, five types of vegetation have been chosen in the South of the main island: degraded ligno-herbaceous shrubland, ligno-herbaceous shrubland, degraded humid

  17. Seed isotopic analysis as a tool to understand ecological processes influencing plant development and physiology: the case study of Quercus rotundifolia Lam. in a desertification gradient in Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Oliveira, Tatiana; Silva, Anabela; Rodrigues, Carla; Antunes Antunes, Cristina; Pinho, Pedro; Ramos, Alzira; João Pereira, Maria; Branquinho, Cristina; Máguas, Cristina

    2014-05-01

    climate variations information of several months). The results indicate a clear relationship between seed morphology and both temperature and precipitation as well a significant correlation between δ15N and precipitation, which indicate an influence of major climatic variables on seed carbon allocation and nitrogen uptake. These results may also contribute to future mitigation programmes in degraded areas where there are systematic problems with plant regeneration and ultimately to learn about the application of stable isotopes approaches in dryland ecosystems.

  18. Gene expression metadata analysis reveals molecular mechanisms employed by Phanerochaete chrysosporium during lignin degradation and detoxification of plant extractives.

    PubMed

    Kameshwar, Ayyappa Kumar Sista; Qin, Wensheng

    2017-03-08

    Lignin, most complex and abundant biopolymer on the earth's surface, attains its stability from intricate polyphenolic units and non-phenolic bonds, making it difficult to depolymerize or separate from other units of biomass. Eccentric lignin degrading ability and availability of annotated genome make Phanerochaete chrysosporium ideal for studying lignin degrading mechanisms. Decoding and understanding the molecular mechanisms underlying the process of lignin degradation will significantly aid the progressing biofuel industries and lead to the production of commercially vital platform chemicals. In this study, we have performed a large-scale metadata analysis to understand the common gene expression patterns of P. chrysosporium during lignin degradation. Gene expression datasets were retrieved from NCBI GEO database and analyzed using GEO2R and Bioconductor packages. Commonly expressed statistically significant genes among different datasets were further considered to understand their involvement in lignin degradation and detoxification mechanisms. We have observed three sets of enzymes commonly expressed during ligninolytic conditions which were later classified into primary ligninolytic, aromatic compound-degrading and other necessary enzymes. Similarly, we have observed three sets of genes coding for detoxification and stress-responsive, phase I and phase II metabolic enzymes. Results obtained in this study indicate the coordinated action of enzymes involved in lignin depolymerization and detoxification-stress responses under ligninolytic conditions. We have developed tentative network of genes and enzymes involved in lignin degradation and detoxification mechanisms by P. chrysosporium based on the literature and results obtained in this study. However, ambiguity raised due to higher expression of several uncharacterized proteins necessitates for further proteomic studies in P. chrysosporium.

  19. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    PubMed Central

    Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry. PMID:26137472

  20. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    PubMed

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  1. Geographic profiling to assess the risk of rare plant poaching in natural areas.

    PubMed

    Young, John A; van Manen, Frank T; Thatcher, Cindy A

    2011-09-01

    We demonstrate the use of an expert-assisted spatial model to examine geographic factors influencing the poaching risk of a rare plant (American ginseng, Panax quinquefolius L.) in Shenandoah National Park, Virginia, USA. Following principles of the analytic hierarchy process (AHP), we identified a hierarchy of 11 geographic factors deemed important to poaching risk and requested law enforcement personnel of the National Park Service to rank those factors in a series of pair-wise comparisons. We used those comparisons to determine statistical weightings of each factor and combined them into a spatial model predicting poaching risk. We tested the model using 69 locations of previous poaching incidents recorded by law enforcement personnel. These locations occurred more frequently in areas predicted by the model to have a higher risk of poaching than random locations. The results of our study can be used to evaluate resource protection strategies and to target law enforcement activities.

  2. Geographic Profiling to Assess the Risk of Rare Plant Poaching in Natural Areas

    NASA Astrophysics Data System (ADS)

    Young, John A.; van Manen, Frank T.; Thatcher, Cindy A.

    2011-09-01

    We demonstrate the use of an expert-assisted spatial model to examine geographic factors influencing the poaching risk of a rare plant (American ginseng, Panax quinquefolius L.) in Shenandoah National Park, Virginia, USA. Following principles of the analytic hierarchy process (AHP), we identified a hierarchy of 11 geographic factors deemed important to poaching risk and requested law enforcement personnel of the National Park Service to rank those factors in a series of pair-wise comparisons. We used those comparisons to determine statistical weightings of each factor and combined them into a spatial model predicting poaching risk. We tested the model using 69 locations of previous poaching incidents recorded by law enforcement personnel. These locations occurred more frequently in areas predicted by the model to have a higher risk of poaching than random locations. The results of our study can be used to evaluate resource protection strategies and to target law enforcement activities.

  3. Gamma-ray spectrometry in the cascade area of a gas centrifuge enrichment plant

    SciTech Connect

    Lauppe, W.D.; Richter, B.; Stein, G.

    1985-01-01

    In the frame of the programme of the Federal Republic of Germany in support of the IAEA, measurements were performed in the SP4 gas centrifuge enrichment plant in Almelo, the Netherlands. The objective was the investigation of the applicability of non-destructive ..gamma..-spectrometry equipment - presently available to the IAEA - at uranium-hexafluoride cascade piping for the purpose of measuring the uranium enrichment. The measurement locations were chosen at the product pipework between the top of a cascade and the first valve, which is inside the cascade area. Taking account of the results of the Hexapartite Safeguards Project, the measurement method should be capable of giving a go/no go result on current and preceding production of high-enriched uranium. The paper gives a description of the acquired measurement method and evaluation. The measurement results are discussed and conclusions are drawn.

  4. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    NASA Astrophysics Data System (ADS)

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  5. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area

    PubMed Central

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-01-01

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area. PMID:26902649

  6. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area.

    PubMed

    Hu, Jinxiang; Yang, Hui; Long, Xiaohua; Liu, Zhaopu; Rengel, Zed

    2016-02-23

    Soil nutrients and microbial communities are the two key factors in revegetation of barren environments. Ecological stoichiometry plays an important role in ecosystem function and limitation, but the relationships between above- and belowground stoichiometry and the bacterial communities in a typical karst region are poorly understood. We used pepino (Solanum muricatum) to examine the stoichiometric traits between soil and foliage, and determine diversity and abundance of bacteria in the karst soil. The soil had a relatively high pH, low fertility, and coarse texture. Foliar N:P ratio and the correlations with soil nitrogen and phosphorus suggested nitrogen limitation. The planting of pepino increased soil urease activity and decreased catalase activity. Higher diversity of bacteria was determined in the pepino rhizosphere than bulk soil using a next-generation, Illumina-based sequencing approach. Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes were the dominant phyla in all samples, accounting for more than 80% of the reads. On a genus level, all 625 detected genera were found in all rhizosphere and bulk soils, and 63 genera showed significant differences among samples. Higher Shannon and Chao 1 indices in the rhizosphere than bulk soil indicated that planting of pepino increased diversity and abundance of bacterial communities in karst area.

  7. Influence of plant activity and phosphates on thorium bioavailability in soils from Baotou area, Inner Mongolia.

    PubMed

    Guo, Pengran; Jia, Xiaoyu; Duan, Taicheng; Xu, Jingwei; Chen, Hangting

    2010-09-01

    Harm of thorium to living organisms is governed by its bioavailability. Thorium bioavailability in the soil-plant system of Baotou rare earth industrial area was studied using pot experiments of wheat and single extraction methods. The effects of wheat growth stage and phosphate on thorium bioavailability were also investigated. Based on extractabilities of various extraction methods (CaCl(2), NH(4)NO(3), EDTA, HOAc) and correlation analysis of thorium uptake by wheat plant and extractable thorium, a mixture of 0.02M EDTA+0.5M NH(4)OAc (pH 4.6) was found suitable for evaluation of thorium bioavailability in Baotou soil, which could be predicted quantitatively by multiple regression models. Because of differences of wheat root activities, thorium bioavailability in rhizosphere soil was higher than in bulk soil at tillering stage, but the reverse occurred at jointing stage. Phosphate addition induced the mineralization of soluble thorium by forming stable thorium phosphate compounds, and reduced thorium bioavailability in soil.

  8. Central composite design optimization of pilot plant fluidized-bed heterogeneous Fenton process for degradation of an azo dye.

    PubMed

    Aghdasinia, Hassan; Bagheri, Rasoul; Vahid, Behrouz; Khataee, Alireza

    2016-11-01

    Optimization of Acid Yellow 36 (AY36) degradation by heterogeneous Fenton process in a recirculated fluidized-bed reactor was studied using central composite design (CCD). Natural pyrite was applied as the catalyst characterized by X-ray diffraction and scanning electron microscopy. The CCD model was developed for the estimation of degradation efficiency as a function of independent operational parameters including hydrogen peroxide concentration (0.5-2.5 mmol/L), initial AY36 concentration (5-25 mg/L), pH (3-9) and catalyst dosage (0.4-1.2 mg/L). The obtained data from the model are in good agreement with the experimental data (R(2 )= 0.964). Moreover, this model is applicable not only to determine the optimized experimental conditions for maximum AY36 degradation, but also to find individual and interactive effects of the mentioned parameters. Finally, gas chromatography-mass spectroscopy (GC-MS) was utilized for the identification of some degradation intermediates and a plausible degradation pathway was proposed.

  9. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species.

    PubMed

    Prospere, Kurt; McLaren, Kurt P; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  10. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species

    NASA Astrophysics Data System (ADS)

    Prospere, Kurt; McLaren, Kurt P.; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  11. Retrieval of leaf area index in different plant species using thermal hyperspectral data

    NASA Astrophysics Data System (ADS)

    Neinavaz, Elnaz; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Groen, Thomas A.

    2016-09-01

    Leaf area index (LAI) is an important variable of terrestrial ecosystems because it is strongly correlated with many ecosystem processes (e.g., water balance and evapotranspiration) and directly related to the plant energy balance and gas exchanges. Although LAI has been accurately predicted using visible and short-wave infrared hyperspectral data (0.3-2.5 μm), LAI estimation using thermal infrared (TIR, 8-14 μm) measurements has not yet been addressed. The novel approach of this study is to evaluate the retrieval of LAI using TIR hyperspectral data. The leaf area indices were destructively acquired for four plant species: Azalea japonica, Buxussempervirens, Euonymus japonicus, and Ficus benjamina. Canopy emissivity spectral measurements were obtained under controlled laboratory conditions using a MIDAC (M4401-F) spectrometer. The LAI retrieval was assessed using a partial least squares regression (PLSR), artificial neural networks (ANNs), and narrow band indices calculated from all possible combinations of waveband pairs for three vegetation indices including simple difference, simple ratio, and normalized difference. ANNs retrieved LAI more accurately than PLSR and vegetation indices (0.67 < R2 < 0.95 versus 11.54% < RMSEcv < 31.23%). The accuracy of LAI retrieval did not differ significantly between the vegetation indices. The results revealed that wavebands from the 8-12 μm region contain relevant information for LAI estimation, irrespective of the chosen vegetation index. Moreover, they demonstrated that LAI may be successfully predicted from TIR hyperspectral data, even for higher values of LAI (LAI ⩾ 5.5). The study showed the significance of using PLSR and ANNs as multivariate methods compared to the univariate technique (e.g., narrow band vegetation indices) when hyperspectral thermal data is utilized. We thus demonstrated for the first time the potential of hyperspectral thermal data to accurately retrieve LAI.

  12. What constitutes a population for the plant parasitic nematode Globodera pallida in its native area (Peru)?

    PubMed

    Picard, Damien; Plantard, Olivier

    2006-01-01

    Although numerous species are distributed in discrete populations easily recognised by geographical barriers, continuous populations are a common feature of plants or marine organisms. This is particularly true for soil organisms as their habitat is continuous and their range cannot easily be assessed as they are buried below ground. In the case of organisms for which standard methods such as Capture/Mark/Recapture cannot be used, population genetics provide a straightforward approach to delimitate populations. In this study, we have pursued this topic with a soil-dwelling nematode (Globodera pallida), which parasitises potato roots and is indigenous to South America. Potential barriers to gene flow were identified using the analysis of the F(ST)/(1-F(ST)) ratio against geographical distance and spatial autocorrelation combined with model-based clustering algorithm. Inside regions, neither genetic differentiation nor isolation by distance (IBD) occur among fields less than 50 km distant. We hypothesise that the large amount of gene flow revealed by the absence of genetic structure of this organism could be due to large passive dispersion inside an agronomic area where G. pallida has a continuous distribution and is found at high density. The first evidence of genetic differentiation appeared when a field was separated from others by an area free of farms (where G. pallida is absent or rare). Among regions, a high genetic structure coupled with an IBD pattern occurs as the consequences of the limitations of passive dispersal across deep valleys or high mountains. To our knowledge, this is the first study identifying the spatial limit of a population for a plant nematode parasite.

  13. Multi range spectral feature fitting for hyperspectral imagery in extracting oilseed rape planting area

    NASA Astrophysics Data System (ADS)

    Pan, Zhuokun; Huang, Jingfeng; Wang, Fumin

    2013-12-01

    Spectral feature fitting (SFF) is a commonly used strategy for hyperspectral imagery analysis to discriminate ground targets. Compared to other image analysis techniques, SFF does not secure higher accuracy in extracting image information in all circumstances. Multi range spectral feature fitting (MRSFF) from ENVI software allows user to focus on those interesting spectral features to yield better performance. Thus spectral wavelength ranges and their corresponding weights must be determined. The purpose of this article is to demonstrate the performance of MRSFF in oilseed rape planting area extraction. A practical method for defining the weighted values, the variance coefficient weight method, was proposed to set up criterion. Oilseed rape field canopy spectra from the whole growth stage were collected prior to investigating its phenological varieties; oilseed rape endmember spectra were extracted from the Hyperion image as identifying samples to be used in analyzing the oilseed rape field. Wavelength range divisions were determined by the difference between field-measured spectra and image spectra, and image spectral variance coefficient weights for each wavelength range were calculated corresponding to field-measured spectra from the closest date. By using MRSFF, wavelength ranges were classified to characterize the target's spectral features without compromising spectral profile's entirety. The analysis was substantially successful in extracting oilseed rape planting areas (RMSE ≤ 0.06), and the RMSE histogram indicated a superior result compared to a conventional SFF. Accuracy assessment was based on the mapping result compared with spectral angle mapping (SAM) and the normalized difference vegetation index (NDVI). The MRSFF yielded a robust, convincible result and, therefore, may further the use of hyperspectral imagery in precision agriculture.

  14. Measurement-Based Investigation of Inter- and Intra-Area Effects of Wind Power Plant Integration

    SciTech Connect

    Allen, Alicia J.; Singh, Mohit; Muljadi, Eduard; Santoso, Surya

    2016-12-01

    This paper has a two pronged objective: the first objective is to analyze the general effects of wind power plant (WPP) integration and the resulting displacement of conventional power plant (CPP) inertia on power system stability and the second is to demonstrate the efficacy of PMU data in power system stability analyses, specifically when knowledge of the network is incomplete. Traditionally modal analysis applies small signal stability analysis based on Eigenvalues and the assumption of complete knowledge of the network and all of its components. The analysis presented here differs because it is a measurement-based investigation and employs simulated measurement data. Even if knowledge of the network were incomplete, this methodology would allow for monitoring and analysis of modes. This allows non-utility entities and study of power system stability. To generate inter- and intra-area modes, Kundur's well-known two-area four-generator system is modeled in PSCAD/EMTDC. A doubly-fed induction generator based WPP model, based on the Western Electricity Coordination Council (WECC) standard model, is included to analyze the effects of wind power on system modes. The two-area system and WPP are connected in various configurations with respect to WPP placement, CPP inertia and WPP penetration level. Analysis is performed on the data generated by the simulations. For each simulation run, a different configuration is chosen and a large disturbance is applied. The sampling frequency is set to resemble the sampling frequency at which data is available from phasor measurement units (PMUs). The estimate of power spectral density of these signals is made using the Yule-Walker algorithm. The resulting analysis shows that the presence of a WPP does not, of itself, lead to the introduction of new modes. The analysis also shows however that displacement of inertia may lead to introduction of new modes. The effects of location of inertia displacement (i.e. the effects on modes if

  15. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  16. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Michael G. Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  17. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    SciTech Connect

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  18. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    SciTech Connect

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  19. Large-area experiment on uptake of metals by twelve plants growing in soils contaminated with multiple metals.

    PubMed

    Lai, Hung-Yu; Juang, Kai-Wei; Chen, Zueng-Sang

    2010-01-01

    A site in central Taiwan with an area of 1.3 ha and contaminated with Cr, Cu, Ni, and Zn was selected to examine the feasibility of phytoextraction. Based on the results of a preexperiment at this site, a total of approximately 20,000 plants of 12 species were selected from plants of 33 tested species to be used in a large-area phytoextraction experiment at this site. A comparison with the initial metal concentration of 12 plant species before planting demonstrated that most species accumulated significant amounts of Cr, Cu, Ni, and Zn in their shoots after growing in this contaminated site for 31 d. Among the 12 plant species, the following accumulated higher concentrations of metals in their shoots; Garden canna and Garden verbena (45-60 mg Cr kg(-1)), Chinese ixora and Kalanchoe (30 mg Cu kg(-1)), Rainbow pink and Sunflower (30 mg Ni kg(-1)), French marigold and Sunflower (300-470 mg Zn kg(-1)). The roots of the plants of most of the 12 plant species can accumulate higher concentrations of metals than the shoots and extending the growth period promotes accumulation in the shoots. Large-area experiments demonstrated that phytoextraction is a feasible method to enable metal-contaminated soil in central Taiwan to be reused.

  20. Solanioic Acid, an Antibacterial Degraded Steroid Produced in Culture by the Fungus Rhizoctonia solani Isolated from Tubers of the Medicinal Plant Cyperus rotundus.

    PubMed

    Ratnaweera, Pamoda B; Williams, David E; Patrick, Brian O; de Silva, E Dilip; Andersen, Raymond J

    2015-05-01

    Solanioic acid (1), a degraded and rearranged steroid that exhibits in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), has been isolated from laboratory cultures of the fungus Rhizoctonia solani obtained from tubers of the plant Cyperus rotundus collected in Sri Lanka. The structure of solanioic acid (1) was elucidated by detailed analysis of NMR data, a single crystal X-ray diffraction analysis of a reduction product 2, and Mosher ester analysis on a derivative of the natural product. Solanioic acid (1) has an unprecedented carbon skeleton.

  1. Ethnobotanical study of medicinal plants used in Arjan – Parishan protected area in Fars Province of Iran

    PubMed Central

    Dolatkhahi, Mehdi; Dolatkhahi, Ali; Nejad, Javad Bagher

    2014-01-01

    Objective : Today, medicinal plants are widely used in remedies for several ailments and improvement of human health because of their pharmaceutical properties. This study aimed to document important useful medicinal plants and their medicinal characteristics for treatment of human ailments in the Arjan _ Parishan protected area in Fars province of Iran during 2010-2012. Materials and Methods : Data were obtained using direct interviews with 80 informants particularly those who were more familiar with the herbs and their medicinal properties. Collected plants were recognized and families, genera, and species determined using indispensable references. In this paper, scientific name, local name, parts used, and ways of application and ailments treated using traditional medicinal plant species have been provided. Results : We documented 85 plant species belonging to 39 families and 78 genera used for treating ailments. Among which, Asteraceae with 13 species was the most frequently used family and fruits and leaves were the favored parts for local users. Our results indicated that in this area, the highest compliance in the use of plants in treating ailments were related to the intestinal digestive system (40.8%). Conclusion : The present study is the first contribution to the ethnobotany of this region. Our results showed that some plants are used for medicinal purposes in this region, either for the same or for different purposes. Generally, the results of the present investigation can be used as a basis for selecting useful medicinal plants and also help to preserve precious information that may otherwise be lost to future generations. PMID:25386404

  2. Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry.

    PubMed

    Honkanen, Merja; Sorjanen, Aili-Maria; Mönkkönen, Mikko

    2011-06-01

    Understanding large-scale variation in species richness in relation to area, energy, habitat heterogeneity and anthropogenic disturbance has been a major task in ecology. Ultimately, variation in species richness results from variation in individual species occupancies. We studied whether the individual species occupancy patterns are determined by the same candidate factors as total species richness. We sampled 26 boreal forest ponds for dragonflies (Odonata) and studied the effects of shoreline length, water vascular plant species density (WVPSD), availability of nutrients, intensity of forestry, amount of Sphagnum peat cover and pH on dragonfly species richness and individual dragonfly species. WVPSD and pH had a strong positive effect on species richness. Removal of six dragonfly species experiencing strongest responses to WVPSD cancelled the relationship between species richness and WVPSD. By contrast, removal of nine least observed species did not affect the relationship between WVPSD and species richness. Thus, our results showed that relatively common species responding strongly to WVPSD shaped the observed species richness pattern whereas the effect of least observed, often rare, species was negligible. Also, our results support the view that, despite of the great impact of energy on species richness at large spatial scales, habitat heterogeneity can still have an effect on species richness in smaller scales, even overriding the effects of area.

  3. The latitudinal gradient of species-area relationships for vascular plants of North America.

    PubMed

    Qian, Hong; Fridley, Jason D; Palmer, Michael W

    2007-11-01

    The species-area relationship (SAR), describing the increase in species richness with increasing area, and the latitudinal diversity gradient (LDG), describing the decrease in species richness with increasing latitude, are the oldest and most robust patterns in biogeography, yet connections between them remain poorly understood. Here, using 1,742 floras covering the entirety of North America north of Mexico (NAM) and including all of NAM's native species of vascular plants, we show that the slope of the SAR consistently decreases with increasing latitude. This trend is general and holds for subsets of the floras in eastern and western NAM. The southernmost latitudinal quarter of NAM exhibits SARs more than twice as steep as those of the northernmost quarter for both eastern and western regions. This decrease in SAR slope with increasing latitude is consistent with the environmental texture hypothesis and Rapoport's rule, and it suggests that more detailed studies of species endemism in relation to environmental and historical factors will yield significant insights into the underlying causes of SAR and LDG patterns.

  4. Proteomic Investigation of Rhizoctonia solani AG 4 Identifies Secretome and Mycelial Proteins with Roles in Plant Cell Wall Degradation and Virulence.

    PubMed

    Lakshman, Dilip K; Roberts, Daniel P; Garrett, Wesley M; Natarajan, Savithiry S; Darwish, Omar; Alkharouf, Nadim; Pain, Arnab; Khan, Farooq; Jambhulkar, Prashant P; Mitra, Amitava

    2016-04-20

    Rhizoctonia solani AG 4 is a soilborne necrotrophic fungal plant pathogen that causes economically important diseases on agronomic crops worldwide. This study used a proteomics approach to characterize both intracellular proteins and the secretome of R. solani AG 4 isolate Rs23A under several growth conditions, the secretome being highly important in pathogenesis. From over 500 total secretome and soluble intracellular protein spots from 2-D gels, 457 protein spots were analyzed and 318 proteins positively matched with fungal proteins of known function by comparison with available R. solani genome databases specific for anastomosis groups 1-IA, 1-IB, and 3. These proteins were categorized to possible cellular locations and functional groups and for some proteins their putative roles in plant cell wall degradation and virulence. The majority of the secreted proteins were grouped to extracellular regions and contain hydrolase activity.

  5. Water erosion on areas planted to potato in Tucumán by climate change.

    NASA Astrophysics Data System (ADS)

    Rios Caceres, Arq. Estela Alejandra; Rios, Victor Hugo; Lucena, Valeria; Guyot, Elia

    Climate changes, monitored by experts from all over the world, have been a matter of con-sciousness raising about the impacts global warming will have on all areas of interest on the planet. The foreseeable direct impacts expected from this evidence are clear: fewer water reserves for agricultural, industrial and urban use; acceleration of desertification processess; destruction of freshwater ecosystems; ecosystem modification due to a drop in rainfall and an increase in temperature to the north of the XI. Region; disappearance of large areas of snow and ice; severe erosion of unprotected basins; reduced water availability for plants in non irrigated land, due to an increase in rain fall intensity. Climate changes demand from the Argentine society a much greater effort than it has been made up to now to mitigate the impacts on our territory and its inhabitants. Potato crop is of a great economic importance in the agricultural GDP of the province of Tucumán (4th place), the geographic location of its production area a is a fragile agro-ecosystem and for this reason the management of water erosion problems is essential. Therefore the aim of this work is to improve potatoe crop irrigation management through information from satellites combined with farm practice. The digital terrain model was obtained from ASTER images. Irrigation practices were followed by an irrigation management software (FAO) and satellite image processing (ENVI). Preliminary results of this experience enabled, through a multi temporal study, the observation of the evolution of crops and irriga-tion practices rescheduling for next season reducing detected water erosion and economically optimizing productivity.

  6. Estimation of effective plant area index for South Korean forests using LiDAR system.

    PubMed

    Kwak, Doo-Ahn; Lee, Woo-Kyun; Kafatos, Menas; Son, Yowhan; Cho, Hyun-Kook; Lee, Seung-Ho

    2010-07-01

    Light Detection and Ranging (LiDAR) systems can be used to estimate both vertical and horizontal forest structure. Woody components, the leaves of trees and the understory can be described with high precision, using geo-registered 3D-points. Based on this concept, the Effective Plant Area Indices (PAI(e)) for areas of Korean Pine (Pinus koraiensis), Japanese Larch (Larix leptolepis) and Oak (Quercus spp.) were estimated by calculating the ratio of intercepted and incident LIDAR laser rays for the canopies of the three forest types. Initially, the canopy gap fraction (G ( LiDAR )) was generated by extracting the LiDAR data reflected from the canopy surface, or inner canopy area, using k-means statistics. The LiDAR-derived PAI(e) was then estimated by using G ( LIDAR ) with the Beer-Lambert law. A comparison of the LiDAR-derived and field-derived PAI(e) revealed the coefficients of determination for Korean Pine, Japanese Larch and Oak to be 0.82, 0.64 and 0.59, respectively. These differences between field-based and LIDAR-based PAI(e) for the different forest types were attributed to the amount of leaves and branches in the forest stands. The absence of leaves, in the case of both Larch and Oak, meant that the LiDAR pulses were only reflected from branches. The probability that the LiDAR pulses are reflected from bare branches is low as compared to the reflection from branches with a high leaf density. This is because the size of the branch is smaller than the resolution across and along the 1 meter LIDAR laser track. Therefore, a better predictive accuracy would be expected for the model if the study would be repeated in late spring when the shoots and leaves of the deciduous trees begin to appear.

  7. Indigenous knowledge for plant species diversity: a case study of wild plants' folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P. R. China

    PubMed Central

    Khasbagan; Soyolt

    2008-01-01

    Folk names of plants are the roots of traditional plant biodiversity knowledge. This paper mainly records and analyses the wild plant folk names of the Mongolians in the Ejina desert area based on a field survey for collection and identification of voucher specimens. The results show that a total of 121 folk names of local plants have correspondence with 93 scientific species which belong to 26 families and 70 genera. The correspondence between plants' Mongol folk names and scientific species may be classified as one to one correspondence, multitude to one correspondence and one to multitude correspondence. The Ejina Mongolian plant folk names were formed on the basis of observations and an understanding of the wild plants growing in their desert environment. The high correspondence between folk names and scientific names shows the scientific meaning of folk botanical nomenclature and classification. It is very useful to take an inventory of biodiversity, especially among the rapid rural appraisal (RRA) in studying biodiversity at the community level. PMID:18199323

  8. Indigenous knowledge for plant species diversity: a case study of wild plants' folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P. R. China.

    PubMed

    Khasbagan; Soyolt

    2008-01-16

    Folk names of plants are the roots of traditional plant biodiversity knowledge. This paper mainly records and analyses the wild plant folk names of the Mongolians in the Ejina desert area based on a field survey for collection and identification of voucher specimens. The results show that a total of 121 folk names of local plants have correspondence with 93 scientific species which belong to 26 families and 70 genera. The correspondence between plants' Mongol folk names and scientific species may be classified as one to one correspondence, multitude to one correspondence and one to multitude correspondence. The Ejina Mongolian plant folk names were formed on the basis of observations and an understanding of the wild plants growing in their desert environment. The high correspondence between folk names and scientific names shows the scientific meaning of folk botanical nomenclature and classification. It is very useful to take an inventory of biodiversity, especially among the rapid rural appraisal (RRA) in studying biodiversity at the community level.

  9. Land degradation and Poverty in maize producing areas of Kenya - Development of an interdisciplinary analysis framework using GIS and remote sensing

    NASA Astrophysics Data System (ADS)

    Graw, Valerie; Nkonya, Ephraim; Menz, Gunter

    2014-05-01

    Land degradation