Sample records for degradome expression profiling

  1. Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

    PubMed

    Kumar, Dhananjay; Dutta, Summi; Singh, Dharmendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-01-01

    Deep sequencing identified 497 conserved and 559 novel miRNAs in wheat, while degradome analysis revealed 701 targets genes. QRT-PCR demonstrated differential expression of miRNAs during stages of leaf rust progression. Bread wheat (Triticum aestivum L.) is an important cereal food crop feeding 30 % of the world population. Major threat to wheat production is the rust epidemics. This study was targeted towards identification and functional characterizations of micro(mi)RNAs and their target genes in wheat in response to leaf rust ingression. High-throughput sequencing was used for transcriptome-wide identification of miRNAs and their expression profiling in retort to leaf rust using mock and pathogen-inoculated resistant and susceptible near-isogenic wheat plants. A total of 1056 mature miRNAs were identified, of which 497 miRNAs were conserved and 559 miRNAs were novel. The pathogen-inoculated resistant plants manifested more miRNAs compared with the pathogen infected susceptible plants. The miRNA counts increased in susceptible isoline due to leaf rust, conversely, the counts decreased in the resistant isoline in response to pathogenesis illustrating precise spatial tuning of miRNAs during compatible and incompatible interaction. Stem-loop quantitative real-time PCR was used to profile 10 highly differentially expressed miRNAs obtained from high-throughput sequencing data. The spatio-temporal profiling validated the differential expression of miRNAs between the isolines as well as in retort to pathogen infection. Degradome analysis provided 701 predicted target genes associated with defense response, signal transduction, development, metabolism, and transcriptional regulation. The obtained results indicate that wheat isolines employ diverse arrays of miRNAs that modulate their target genes during compatible and incompatible interaction. Our findings contribute to increase knowledge on roles of microRNA in wheat-leaf rust interactions and could help in rust resistance breeding programs.

  2. Genome-Wide Profiling of Small RNAs and Degradome Revealed Conserved Regulations of miRNAs on Auxin-Responsive Genes during Fruit Enlargement in Peaches

    PubMed Central

    Shi, Mengya; Hu, Xiao; Wei, Yu; Hou, Xu; Yuan, Xue; Liu, Jun; Liu, Yueping

    2017-01-01

    Auxin has long been known as a critical phytohormone that regulates fruit development in plants. However, due to the lack of an enlarged ovary wall in the model plants Arabidopsis and rice, the molecular regulatory mechanisms of fruit division and enlargement remain unclear. In this study, we performed small RNA sequencing and degradome sequencing analyses to systematically explore post-transcriptional regulation in the mesocarp at the hard core stage following treatment of the peach (Prunus persica L.) fruit with the synthetic auxin α-naphthylacetic acid (NAA). Our analyses identified 24 evolutionarily conserved miRNA genes as well as 16 predicted genes. Experimental verification showed that the expression levels of miR398 and miR408b were significantly upregulated after NAA treatment, whereas those of miR156, miR160, miR166, miR167, miR390, miR393, miR482, miR535 and miR2118 were significantly downregulated. Degradome sequencing coupled with miRNA target prediction analyses detected 119 significant cleavage sites on several mRNA targets, including SQUAMOSA promoter binding protein–like (SPL), ARF, (NAM, ATAF1/2 and CUC2) NAC, Arabidopsis thaliana homeobox protein (ATHB), the homeodomain-leucine zipper transcription factor revoluta(REV), (teosinte-like1, cycloidea and proliferating cell factor1) TCP and auxin signaling F-box protein (AFB) family genes. Our systematic profiling of miRNAs and the degradome in peach fruit suggests the existence of a post-transcriptional regulation network of miRNAs that target auxin pathway genes in fruit development. PMID:29236054

  3. Gene signature based on degradome-related genes can predict distal metastasis in cervical cancer patients.

    PubMed

    Fernandez-Retana, Jorge; Zamudio-Meza, Horacio; Rodriguez-Morales, Miguel; Pedroza-Torres, Abraham; Isla-Ortiz, David; Herrera, Luis; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; López-Camarillo, César; Morales-Gonzalez, Fermin; Cantu de Leon, David; Pérez-Plasencia, Carlos

    2017-06-01

    Cervical cancer is one of the leading causes of death in women worldwide, which mainly affects developing countries. The patients who suffer a recurrence and/or progression disease have a higher risk of developing distal metastases. Proteases comprising the degradome given its ability to promote cell growth, migration, and invasion of tissues play an important role during tumor development and progression. In this study, we used high-density microarrays and quantitative reverse transcriptase polymerase chain reaction to evaluate the degradome profile and their inhibitors in 112 samples of patients diagnosed with locally advanced cervical cancer. Clinical follow-up was done during a period of 3 years. Using a correlation analysis between the response to treatment and the development of metastasis, we established a molecular signature comprising eight degradome-related genes (FAM111B, FAM111A, CFB, PSMB8, PSMB9, CASP7, PRSS16, and CD74) with the ability to discriminate patients at risk of distal metastases. In conclusion, present results show that molecular signature obtained from degradome genes can predict the possibility of metastasis in patients with locally advanced cervical cancer.

  4. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development.

    PubMed

    Gao, Chao; Wang, Pengfei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Hou, Lei; Ju, Zheng; Zhang, Ye; Li, Changsheng; Wang, Xingjun

    2017-03-02

    As a typical geocarpic plant, peanut embryogenesis and pod development are complex processes involving many gene regulatory pathways and controlled by appropriate hormone level. MicroRNAs (miRNAs) are small non-coding RNAs that play indispensable roles in post-transcriptional gene regulation. Recently, identification and characterization of peanut miRNAs has been described. However, whether miRNAs participate in the regulation of peanut embryogenesis and pod development has yet to be explored. In this study, small RNA and degradome libraries from peanut early pod of different developmental stages were constructed and sequenced. A total of 70 known and 24 novel miRNA families were discovered. Among them, 16 miRNA families were legume-specific and 12 families were peanut-specific. 30 known and 10 novel miRNA families were differentially expressed during pod development. In addition, 115 target genes were identified for 47 miRNA families by degradome sequencing. Several new targets that might be specific to peanut were found and further validated by RNA ligase-mediated rapid amplification of 5' cDNA ends (RLM 5'-RACE). Furthermore, we performed profiling analysis of intact and total transcripts of several target genes, demonstrating that SPL (miR156/157), NAC (miR164), PPRP (miR167 and miR1088), AP2 (miR172) and GRF (miR396) are actively modulated during early pod development, respectively. Large numbers of miRNAs and their related target genes were identified through deep sequencing. These findings provided new information on miRNA-mediated regulatory pathways in peanut pod, which will contribute to the comprehensive understanding of the molecular mechanisms that governing peanut embryo and early pod development.

  5. Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress

    PubMed Central

    Cui, Licao; Feng, Kewei; Liu, Fuyan; Du, Xianghong; Tong, Wei; Nie, Xiaojun; Ji, Wanquan; Weining, Song

    2015-01-01

    Salinity is a major limiting factor for agricultural production worldwide. A better understanding of the mechanisms of salinity stress response will aid efforts to improve plant salt tolerance. In this study, a combination of small RNA and mRNA degradome sequencing was used to identify salinity responsive-miRNAs and their targets in barley. A total of 152 miRNAs belonging to 126 families were identified, of which 44 were found to be salinity responsive with 30 up-regulated and 25 down-regulated respectively. The majority of the salinity-responsive miRNAs were up-regulated at the 8h time point, while down-regulated at the 3h and 27h time points. The targets of these miRNAs were further detected by degradome sequencing coupled with bioinformatics prediction. Finally, qRT-PCR was used to validate the identified miRNA and their targets. Our study systematically investigated the expression profile of miRNA and their targets in barley during salinity stress phase, which can contribute to understanding how miRNAs respond to salinity stress in barley and other cereal crops. PMID:26372557

  6. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    PubMed

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene expression patterns are reported in this work. These findings will enhance our understanding of flax miRNA regulatory mechanisms under saline, alkaline, and saline-alkaline stresses and provide a foundation for future elucidation of the specific functions of these miRNAs.

  7. The Degradome database: expanding roles of mammalian proteases in life and disease

    PubMed Central

    Pérez-Silva, José G.; Español, Yaiza; Velasco, Gloria; Quesada, Víctor

    2016-01-01

    Since the definition of the degradome as the complete repertoire of proteases in a given organism, the combined effort of numerous laboratories has greatly expanded our knowledge of its roles in biology and pathology. Once the genomic sequences of several important model organisms were made available, we presented the Degradome database containing the curated sets of known protease genes in human, chimpanzee, mouse and rat. Here, we describe the updated Degradome database, featuring 81 new protease genes and 7 new protease families. Notably, in this short time span, the number of known hereditary diseases caused by mutations in protease genes has increased from 77 to 119. This increase reflects the growing interest on the roles of the degradome in multiple diseases, including cancer and ageing. Finally, we have leveraged the widespread adoption of new webtools to provide interactive graphic views that show information about proteases in the global context of the degradome. The Degradome database can be accessed through its web interface at http://degradome.uniovi.es. PMID:26553809

  8. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes

    PubMed Central

    Wei, Xiaochun; Zhang, Xiaohui; Yao, Qiuju; Yuan, Yuxiang; Li, Xixiang; Wei, Fang; Zhao, Yanyan; Zhang, Qiang; Wang, Zhiyong; Jiang, Wusheng; Zhang, Xiaowei

    2015-01-01

    Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H+-ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA perspective. PMID:26557132

  9. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes.

    PubMed

    Wei, Xiaochun; Zhang, Xiaohui; Yao, Qiuju; Yuan, Yuxiang; Li, Xixiang; Wei, Fang; Zhao, Yanyan; Zhang, Qiang; Wang, Zhiyong; Jiang, Wusheng; Zhang, Xiaowei

    2015-01-01

    Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H (+) -ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA perspective.

  10. The Degradome database: mammalian proteases and diseases of proteolysis.

    PubMed

    Quesada, Víctor; Ordóñez, Gonzalo R; Sánchez, Luis M; Puente, Xose S; López-Otín, Carlos

    2009-01-01

    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes.

  11. The Degradome database: mammalian proteases and diseases of proteolysis

    PubMed Central

    Quesada, Víctor; Ordóñez, Gonzalo R.; Sánchez, Luis M.; Puente, Xose S.; López-Otín, Carlos

    2009-01-01

    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes. PMID:18776217

  12. Updated biological roles for matrix metalloproteinases and new "intracellular" substrates revealed by degradomics.

    PubMed

    Butler, Georgina S; Overall, Christopher M

    2009-11-24

    Shotgun proteomics techniques are conceptually unbiased, but data interpretation and follow-up experiments are often constrained by dogma, established beliefs that are accepted without question, that can dilute the power of proteomics and hinder scientific progress. Proteomics and degradomics, the characterization of all proteases, inhibitors, and protease substrates by genomic and proteomic techniques, have exponentially expanded the known substrate repertoire of the matrix metalloproteinases (MMPs), even to include intracellular proteins with newly recognized extracellular functions. Thus, the dogma that MMPs are dowdy degraders of extracellular matrix has been resolutely overturned, and the metamorphosis of MMPs into modulators of multiple signaling pathways has been facilitated. Here we review progress made in the field of degradomics and present a current view of the MMP degradome.

  13. Efficient and Accurate Algorithm for Cleaved Fragments Prediction (CFPA) in Protein Sequences Dataset Based on Consensus and Its Variants: A Novel Degradomics Prediction Application.

    PubMed

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Hajj, Hazem; Kobeissy, Firas H

    2017-01-01

    Degradomics is a novel discipline that involves determination of the proteases/substrate fragmentation profile, called the substrate degradome, and has been recently applied in different disciplines. A major application of degradomics is its utility in the field of biomarkers where the breakdown products (BDPs) of different protease have been investigated. Among the major proteases assessed, calpain and caspase proteases have been associated with the execution phases of the pro-apoptotic and pro-necrotic cell death, generating caspase/calpain-specific cleaved fragments. The distinction between calpain and caspase protein fragments has been applied to distinguish injury mechanisms. Advanced proteomics technology has been used to identify these BDPs experimentally. However, it has been a challenge to identify these BDPs with high precision and efficiency, especially if we are targeting a number of proteins at one time. In this chapter, we present a novel bioinfromatic detection method that identifies BDPs accurately and efficiently with validation against experimental data. This method aims at predicting the consensus sequence occurrences and their variants in a large set of experimentally detected protein sequences based on state-of-the-art sequence matching and alignment algorithms. After detection, the method generates all the potential cleaved fragments by a specific protease. This space and time-efficient algorithm is flexible to handle the different orientations that the consensus sequence and the protein sequence can take before cleaving. It is O(mn) in space complexity and O(Nmn) in time complexity, with N number of protein sequences, m length of the consensus sequence, and n length of each protein sequence. Ultimately, this knowledge will subsequently feed into the development of a novel tool for researchers to detect diverse types of selected BDPs as putative disease markers, contributing to the diagnosis and treatment of related disorders.

  14. Membrane protease degradomics: proteomic identification and quantification of cell surface protease substrates.

    PubMed

    Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M

    2009-01-01

    The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.

  15. Novel functional microRNAs from virus-free and infected Vitis vinifera plants under water stress

    PubMed Central

    Pantaleo, Vitantonio; Vitali, Marco; Boccacci, Paolo; Miozzi, Laura; Cuozzo, Danila; Chitarra, Walter; Mannini, Franco; Lovisolo, Claudio; Gambino, Giorgio

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional control of several pathway intermediates, thus playing pivotal roles in plant growth, development and response to biotic and abiotic stresses. In recent years, the grapevine genome release, small(s)-RNAseq and degradome-RNAseq together has allowed the discovery and characterisation of many miRNA species, thus rendering the discovery of additional miRNAs difficult and uncertain. Taking advantage of the miRNA responsiveness to stresses and the availability of virus-free Vitis vinifera plants and those infected only by a latent virus, we have analysed grapevines subjected to drought in greenhouse conditions. The sRNA-seq and other sequence-specific molecular analyses have allowed us to characterise conserved miRNA expression profiles in association with specific eco-physiological parameters. In addition, we here report 12 novel grapevine-specific miRNA candidates and describe their expression profile. We show that latent viral infection can influence the miRNA profiles of V. vinifera in response to drought. Moreover, study of eco-physiological parameters showed that photosynthetic rate, stomatal conductance and hydraulic resistance to water transport were significantly influenced by drought and viral infection. Although no unequivocal cause–effect explanation could be attributed to each miRNA target, their contribution to the drought response is discussed. PMID:26833264

  16. The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants

    PubMed Central

    Alaba, Sylwia; Piszczalka, Pawel; Pietrykowska, Halina; Pacak, Andrzej M; Sierocka, Izabela; Nuc, Przemyslaw W; Singh, Kashmir; Plewka, Patrycja; Sulkowska, Aleksandra; Jarmolowski, Artur; Karlowski, Wojciech M; Szweykowska-Kulinska, Zofia

    2015-01-01

    Liverworts are the most basal group of extant land plants. Nonetheless, the molecular biology of liverworts is poorly understood. Gene expression has been studied in only one species, Marchantia polymorpha. In particular, no microRNA (miRNA) sequences from liverworts have been reported. Here, Illumina-based next-generation sequencing was employed to identify small RNAs, and analyze the transcriptome and the degradome of Pellia endiviifolia. Three hundred and eleven conserved miRNA plant families were identified, and 42 new liverwort-specific miRNAs were discovered. The RNA degradome analysis revealed that target mRNAs of only three miRNAs (miR160, miR166, and miR408) have been conserved between liverworts and other land plants. New targets were identified for the remaining conserved miRNAs. Moreover, the analysis of the degradome permitted the identification of targets for 13 novel liverwort-specific miRNAs. Interestingly, three of the liverwort microRNAs show high similarity to previously reported miRNAs from Chlamydomonas reinhardtii. This is the first observation of miRNAs that exist both in a representative alga and in the liverwort P. endiviifolia but are not present in land plants. The results of the analysis of the P. endivifolia microtranscriptome support the conclusions of previous studies that placed liverworts at the root of the land plant evolutionary tree of life. PMID:25530158

  17. Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds.

    PubMed

    Cao, Dechang; Xu, Huimin; Zhao, Yuanyuan; Deng, Xin; Liu, Yongxiu; Soppe, Wim J J; Lin, Jinxing

    2016-12-01

    Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Transcriptome and Degradome Sequencing Reveals Dormancy Mechanisms of Cunninghamia lanceolata Seeds1

    PubMed Central

    Xu, Huimin; Liu, Yongxiu; Soppe, Wim J.J.; Lin, Jinxing

    2016-01-01

    Seeds with physiological dormancy usually experience primary and secondary dormancy in the nature; however, little is known about the differential regulation of primary and secondary dormancy. We combined multiple approaches to investigate cytological changes, hormonal levels, and gene expression dynamics in Cunninghamia lanceolata seeds during primary dormancy release and secondary dormancy induction. Light microscopy and transmission electron microscopy revealed that protein bodies in the embryo cells coalesced during primary dormancy release and then separated during secondary dormancy induction. Transcriptomic profiling demonstrated that expression of genes negatively regulating gibberellic acid (GA) sensitivity reduced specifically during primary dormancy release, whereas the expression of genes positively regulating abscisic acid (ABA) biosynthesis increased during secondary dormancy induction. Parallel analysis of RNA ends revealed uncapped transcripts for ∼55% of all unigenes. A negative correlation between fold changes in expression levels of uncapped versus capped mRNAs was observed during primary dormancy release. However, this correlation was loose during secondary dormancy induction. Our analyses suggest that the reversible changes in cytology and gene expression during dormancy release and induction are related to ABA/GA balance. Moreover, mRNA degradation functions as a critical posttranscriptional regulator during primary dormancy release. These findings provide a mechanistic framework for understanding physiological dormancy in seeds. PMID:27760880

  19. Small RNA-mediated responses to low- and high-temperature stresses in cotton

    PubMed Central

    Wang, Qiongshan; Liu, Nian; Yang, Xiyan; Tu, Lili; Zhang, Xianlong

    2016-01-01

    MicroRNAs (miRNAs) are one class of endogenous non-coding RNAs modulating the expression of target genes involved in plant development and stress tolerance, by degrading mRNA or repressing translation. In this study, small RNA and mRNA degradome sequencing were used to identify low- and high-temperature stress-responsive miRNAs and their targets in cotton (Gossypium hirsutum). Cotton seedlings were treated under different temperature conditions (4, 12, 25, 35, and 42 °C) and then the effects were investigated. In total, 319 known miRNAs and 800 novel miRNAs were identified, and 168 miRNAs were differentially expressed between different treatments. The targets of these miRNAs were further analysed by degradome sequencing. Based on studies from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, the majority of the miRNAs are from genes that are likely involved in response to hormone stimulus, oxidation-reduction reaction, photosynthesis, plant–pathogen interaction and plant hormone signal transduction pathways. This study provides new insight into the molecular mechanisms of plant response to extreme temperature stresses, and especially the roles of miRNAs under extreme temperatures. PMID:27752116

  20. StarScan: a web server for scanning small RNA targets from degradome sequencing data.

    PubMed

    Liu, Shun; Li, Jun-Hao; Wu, Jie; Zhou, Ke-Ren; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2015-07-01

    Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites. In this study, an integrated web-based tool, StarScan (sRNA target Scan), was developed for scanning sRNA targets using degradome sequencing data from 20 species. Given a sRNA sequence from plants or animals, our web server performs an ultrafast and exhaustive search for potential sRNA-target interactions in annotated and unannotated genomic regions. The interactions between small RNAs and target transcripts were further evaluated using a novel tool, alignScore. A novel tool, degradomeBinomTest, was developed to quantify the abundance of degradome fragments located at the 9-11th nucleotide from the sRNA 5' end. This is the first web server for discovering potential sRNA-mediated RNA cleavage events in plants and animals, which affords mechanistic insights into the regulatory roles of sRNAs. The StarScan web server is available at http://mirlab.sysu.edu.cn/starscan/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Identification of MicroRNA Targets of Capsicum spp. Using MiRTrans—a Trans-Omics Approach

    PubMed Central

    Zhang, Lu; Qin, Cheng; Mei, Junpu; Chen, Xiaocui; Wu, Zhiming; Luo, Xirong; Cheng, Jiaowen; Tang, Xiangqun; Hu, Kailin; Li, Shuai C.

    2017-01-01

    The microRNA (miRNA) can regulate the transcripts that are involved in eukaryotic cell proliferation, differentiation, and metabolism. Especially for plants, our understanding of miRNA targets, is still limited. Early attempts of prediction on sequence alignments have been plagued by enormous false positives. It is helpful to improve target prediction specificity by incorporating the other data sources such as the dependency between miRNA and transcript expression or even cleaved transcripts by miRNA regulations, which are referred to as trans-omics data. In this paper, we developed MiRTrans (Prediction of MiRNA targets by Trans-omics data) to explore miRNA targets by incorporating miRNA sequencing, transcriptome sequencing, and degradome sequencing. MiRTrans consisted of three major steps. First, the target transcripts of miRNAs were predicted by scrutinizing their sequence characteristics and collected as an initial potential targets pool. Second, false positive targets were eliminated if the expression of miRNA and its targets were weakly correlated by lasso regression. Third, degradome sequencing was utilized to capture the miRNA targets by examining the cleaved transcripts that regulated by miRNAs. Finally, the predicted targets from the second and third step were combined by Fisher's combination test. MiRTrans was applied to identify the miRNA targets for Capsicum spp. (i.e., pepper). It can generate more functional miRNA targets than sequence-based predictions by evaluating functional enrichment. MiRTrans identified 58 miRNA-transcript pairs with high confidence from 18 miRNA families conserved in eudicots. Most of these targets were transcription factors; this lent support to the role of miRNA as key regulator in pepper. To our best knowledge, this work is the first attempt to investigate the miRNA targets of pepper, as well as their regulatory networks. Surprisingly, only a small proportion of miRNA-transcript pairs were shared between degradome sequencing and expression dependency predictions, suggesting that miRNA targets predicted by a single technology alone may be prone to report false negatives. PMID:28443105

  2. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis

    PubMed Central

    Zhou, Rong; Wang, Qian; Jiang, Fangling; Cao, Xue; Sun, Mintao; Liu, Min; Wu, Zhen

    2016-01-01

    MicroRNAs (miRNAs) are 19–24 nucleotide (nt) noncoding RNAs that play important roles in abiotic stress responses in plants. High temperatures have been the subject of considerable attention due to their negative effects on plant growth and development. Heat-responsive miRNAs have been identified in some plants. However, there have been no reports on the global identification of miRNAs and their targets in tomato at high temperatures, especially at different elevated temperatures. Here, three small-RNA libraries and three degradome libraries were constructed from the leaves of the heat-tolerant tomato at normal, moderately and acutely elevated temperatures (26/18 °C, 33/33 °C and 40/40 °C, respectively). Following high-throughput sequencing, 662 conserved and 97 novel miRNAs were identified in total with 469 conserved and 91 novel miRNAs shared in the three small-RNA libraries. Of these miRNAs, 96 and 150 miRNAs were responsive to the moderately and acutely elevated temperature, respectively. Following degradome sequencing, 349 sequences were identified as targets of 138 conserved miRNAs, and 13 sequences were identified as targets of eight novel miRNAs. The expression levels of seven miRNAs and six target genes obtained by quantitative real-time PCR (qRT-PCR) were largely consistent with the sequencing results. This study enriches the number of heat-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in tomatoes at elevated temperatures. PMID:27653374

  3. Identification of Submergence-Responsive MicroRNAs and Their Targets Reveals Complex MiRNA-Mediated Regulatory Networks in Lotus (Nelumbo nucifera Gaertn)

    PubMed Central

    Jin, Qijiang; Xu, Yingchun; Mattson, Neil; Li, Xin; Wang, Bei; Zhang, Xiao; Jiang, Hongwei; Liu, Xiaojing; Wang, Yanjie; Yao, Dongrui

    2017-01-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs with important regulatory functions in plant development and stress responses. However, their population abundance in lotus (Nelumbo nucifera Gaertn) has so far been poorly described, particularly in response to stresses. In this work, submergence-related miRNAs and their target genes were systematically identified, compared, and validated at the transcriptome-wide level using high-throughput sequencing data of small RNA, Mrna, and the degradome. A total of 128 known and 20 novel miRNAs were differentially expressed upon submergence. We identified 629 target transcripts for these submergence-responsive miRNAs. Based on the miRNA expression profiles and GO and KEGG annotation of miRNA target genes, we suggest possible molecular responses and physiological changes of lotus in response to submergence. Several metabolic, physiological and morphological adaptations-related miRNAs, i.e., NNU_far-miR159, NNU_gma-miR393h, and NNU_aly-miR319c-3p, were found to play important regulatory roles in lotus response to submergence. This work will contribute to a better understanding of miRNA-regulated adaption responses of lotus to submergence stress. PMID:28149304

  4. Comparative Analysis of Fruit Ripening-Related miRNAs and Their Targets in Blueberry Using Small RNA and Degradome Sequencing

    PubMed Central

    Hou, Yanming; Zhai, Lulu; Li, Xuyan; Xue, Yu; Wang, Jingjing; Yang, Pengjie; Cao, Chunmei; Li, Hongxue; Cui, Yuhai; Bian, Shaomin

    2017-01-01

    MicroRNAs (miRNAs) play vital roles in the regulation of fruit development and ripening. Blueberry is an important small berry fruit crop with economical and nutritional value. However, nothing is known about the miRNAs and their targets involved in blueberry fruit ripening. In this study, using high-throughput sequencing of small RNAs, 84 known miRNAs belonging to 28 families and 16 novel miRNAs were identified in white fruit (WF) and blue fruit (BF) libraries, which represent fruit ripening onset and in progress, respectively. Among them, 41 miRNAs were shown to be differentially expressed during fruit maturation, and 16 miRNAs representing 16 families were further chosen to validate the sRNA sequencing data by stem-loop qRT-PCR. Meanwhile, 178 targets were identified for 41 known and 7 novel miRNAs in WF and BF libraries using degradome sequencing, and targets of miR160 were validated using RLM-RACE (RNA Ligase-Mediated (RLM)-Rapid Amplification of cDNA Ends) approach. Moreover, the expression patterns of 6 miRNAs and their targets were examined during fruit development and ripening. Finally, integrative analysis of miRNAs and their targets revealed a complex miRNA-mRNA regulatory network involving a wide variety of biological processes. The findings will facilitate future investigations of the miRNA-mediated mechanisms that regulate fruit development and ripening in blueberry. PMID:29257112

  5. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa.

    PubMed

    Li, Mingjie; Yang, Yanhui; Li, Xinyu; Gu, Li; Wang, Fengji; Feng, Fajie; Tian, Yunhe; Wang, Fengqing; Wang, Xiaoran; Lin, Wenxiong; Chen, Xinjian; Zhang, Zhongyi

    2015-09-01

    All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Degradome Products of the Matricellular Protein CCN1 as Modulators of Pathological Angiogenesis in the Retina*

    PubMed Central

    Choi, Jinok; Lin, Ann; Shrier, Eric; Lau, Lester F.; Grant, Maria B.; Chaqour, Brahim

    2013-01-01

    CCN1 is a matricellular protein involved in normal vascular development and tissue repair. CCN1 exhibits cell- and context-dependent activities that are reflective of its tetramodular structure phylogenetically linked to four domains found in various matrix proteins. Here, we show that vitreal fluids from patients with proliferative diabetic retinopathy (PDR) were enriched with a two-module form of CCN1 comprising completely or partially the insulin-like growth factor-binding protein (IGFBP) and von Willebrand factor type C (vWC) domains. The two- and three-module forms comprising, in addition to IGFBP and vWC, the thrombospondin type 1 (TSP1) repeats are CCN1 degradome products by matrix metalloproteinase-2 and -14. The functional significance of CCN1 and its truncated variants was determined in the mouse model of oxygen-induced retinopathy, which simulates neovascular growth associated with PDR and assesses treatment outcomes. In this model, lentivirus-mediated expression of either CCN1 or the IGFBP-vWC-TSP1 form reduced ischemia-induced neovascularization, whereas ectopic expression of the IGFBP-vWC variant exacerbated pathological angiogenesis. The IGFBP-vWC form has potent proangiogenic properties promoting retinal endothelial cell growth, migration, and three-dimensional tubular structure formation, whereas the IGFBP-vWC-TSP1 variant suppressed cell growth and angiogenic gene expression. Both IGFBP-vWC and IGFBP-vWC-TSP1 forms exhibited predictable variations of their domain folding that enhanced their functional potential. These data provide new insights into the formation and activities of CCN1-truncated variants and raise the predictive value of the form containing completely or partially the IGFBP and vWC domains as a surrogate marker of CCN1 activity in PDR distinguishing pathological from physiological angiogenesis. PMID:23798676

  7. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2.

    PubMed

    Gyula, Péter; Baksa, Ivett; Tóth, Tamás; Mohorianu, Irina; Dalmay, Tamás; Szittya, György

    2018-06-01

    Plants substantially alter their developmental program upon changes in the ambient temperature. The 21-24 nt small RNAs (sRNAs) are important gene expression regulators, which play a major role in development and adaptation. However, little is known about how the different sRNA classes respond to changes in the ambient temperature. We profiled the sRNA populations in four different tissues of Arabidopsis thaliana plants grown at 15, 21 and 27 °C. We found that only a small fraction (0.6%) of the sRNA loci are ambient temperature-controlled. We identified thermoresponsive miRNAs and identified their target genes using degradome libraries. We verified that the target of the thermoregulated miR169, NF-YA2, is also ambient temperature-regulated. NF-YA2, as the component of the conserved transcriptional regulator NF-Y complex, binds the promoter of the flowering time regulator FT and the auxin biosynthesis gene YUC2. Other differentially expressed loci include thermoresponsive phased siRNA loci that target various auxin pathway genes and tRNA fragments. Furthermore, a temperature dependent 24-nt heterochromatic siRNA locus in the promoter of YUC2 may contribute to the epigenetic regulation of auxin homeostasis. This holistic approach facilitated a better understanding of the role of different sRNA classes in ambient temperature adaptation of plants. This article is protected by copyright. All rights reserved.

  8. Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease

    NASA Astrophysics Data System (ADS)

    Gai, Ying-Ping; Li, Yi-Qun; Guo, Fang-Yue; Yuan, Chuan-Zhong; Mo, Yao-Yao; Zhang, Hua-Liang; Wang, Hong; Ji, Xian-Ling

    2014-06-01

    The yellow dwarf disease associated with phytoplasmas is one of the most devastating diseases of mulberry and the pathogenesis involved in the disease is poorly understood. To analyze the molecular mechanisms mediating gene expression in mulberry-phytoplasma interaction, the comprehensive sRNA changes of mulberry leaf in response to phytoplasma-infection were examined. A total of 164 conserved miRNAs and 23 novel miRNAs were identified, and 62 conserved miRNAs and 13 novel miRNAs were found to be involved in the response to phytoplasma-infection. Meanwhile, target genes of the responsive miRNAs were identified by sequencing of the degradome library. In addition, the endogenous siRNAs were sequenced, and their expression profiles were characterized. Interestingly, we found that phytoplasma infection induced the accumulation of mul-miR393-5p which was resulted from the increased transcription of MulMIR393A, and mul-miR393-5p most likely initiate the biogenesis of siRNAs from TIR1 transcript. Based on the results, we can conclude that phytoplasma-responsive sRNAs modulate multiple hormone pathways and play crucial roles in the regulation of development and metabolism. These responsive sRNAs may work cooperatively in the response to phytoplasma-infection and be responsible for some symptoms in the infected plants.

  9. A Degradome-Based Polymerase Chain Reaction to Resolve the Potential of Environmental Samples for 2,4-Dichlorophenol Biodegradation.

    PubMed

    Ibrahim, Eslam S; Kashef, Mona T; Essam, Tamer M; Ramadan, Mohammed A

    2017-12-01

    A clean way to overcome environmental pollution is biodegradation. In this perspective, at the intersection of biodegradation and metagenomics, the degradome is defined as the totality of genes related to the biodegradation of a certain compound. It includes the genetic elements from both culturable and uncultured microorganisms. The possibility of assessing the biodegradation potential of an environmental samples, using a degradome-based polymerase chain reaction, was explored. 2,4-Dichlorophenol (2,4-DCP) was chosen as a model and the use of tfdB gene as a biodegradation marker was confirmed by bioinformatics study of TfdB protein. Five primer pairs were designed for the detection of different tfdB gene families. A total of 16 environmental samples were collected from Egyptian agricultural soils and wastewaters and tested for the presence of 2,4-DCP. The biodegradation capacity of 2,4-DCP was determined, for all isolated consortia, to reach up to 350 mg/l. Metagenomic DNA was extracted directly from the soil samples while successive 2,4-DCP-degrading microbial communities were enriched, with increasing concentrations of 2,4-DCP, then their DNA was extracted. The extracted DNA was tested for the distribution of the tfdB gene using a degradome-based polymerase chain reaction. tfdB-1 and tfdB-2 were detected in 5 and 9 samples, respectively. However, the co-existence of both genes was detected only in five samples. All tfdB positive samples were capable of 2,4-DCP degradation. The developed approach of assessing the potential of different environments for degrading 2,4-DCP was successfully measured in terms of accuracy (81.25%) and specificity (100%).

  10. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb

    PubMed Central

    Meng, Yijun; Yu, Dongliang; Xue, Jie; Lu, Jiangjie; Feng, Shangguo; Shen, Chenjia; Wang, Huizhong

    2016-01-01

    Dendrobium officinale is an important traditional Chinese herb. Here, we did a transcriptome-wide, organ-specific study on this valuable plant by combining RNA, small RNA (sRNA) and degradome sequencing. RNA sequencing of four organs (flower, root, leaf and stem) of Dendrobium officinale enabled us to obtain 536,558 assembled transcripts, from which 2,645, 256, 42 and 54 were identified to be highly expressed in the four organs respectively. Based on sRNA sequencing, 2,038, 2, 21 and 24 sRNAs were identified to be specifically accumulated in the four organs respectively. A total of 1,047 mature microRNA (miRNA) candidates were detected. Based on secondary structure predictions and sequencing, tens of potential miRNA precursors were identified from the assembled transcripts. Interestingly, phase-distributed sRNAs with degradome-based processing evidences were discovered on the long-stem structures of two precursors. Target identification was performed for the 1,047 miRNA candidates, resulting in the discovery of 1,257 miRNA--target pairs. Finally, some biological meaningful subnetworks involving hormone signaling, development, secondary metabolism and Argonaute 1-related regulation were established. All of the sequencing data sets are available at NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). Summarily, our study provides a valuable resource for the in-depth molecular and functional studies on this important Chinese orchid herb. PMID:26732614

  11. High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba).

    PubMed

    Li, Ruixue; Chen, Dandan; Wang, Taichu; Wan, Yizhen; Li, Rongfang; Fang, Rongjun; Wang, Yuting; Hu, Fei; Zhou, Hong; Li, Long; Zhao, Weiguo

    2017-01-01

    MicroRNAs (miRNAs) play important regulatory roles by targeting mRNAs for cleavage or translational repression. Identification of miRNA targets is essential to better understanding the roles of miRNAs. miRNA targets have not been well characterized in mulberry (Morus alba). To anatomize miRNA guided gene regulation under drought stress, transcriptome-wide high throughput degradome sequencing was used in this study to directly detect drought stress responsive miRNA targets in mulberry. A drought library (DL) and a contrast library (CL) were constructed to capture the cleaved mRNAs for sequencing. In CL, 409 target genes of 30 conserved miRNA families and 990 target genes of 199 novel miRNAs were identified. In DL, 373 target genes of 30 conserved miRNA families and 950 target genes of 195 novel miRNAs were identified. Of the conserved miRNA families in DL, mno-miR156, mno-miR172, and mno-miR396 had the highest number of targets with 54, 52 and 41 transcripts, respectively, indicating that these three miRNA families and their target genes might play important functions in response to drought stress in mulberry. Additionally, we found that many of the target genes were transcription factors. By analyzing the miRNA-target molecular network, we found that the DL independent networks consisted of 838 miRNA-mRNA pairs (63.34%). The expression patterns of 11 target genes and 12 correspondent miRNAs were detected using qRT-PCR. Six miRNA targets were further verified by RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-5' RACE). Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these target transcripts were implicated in a broad range of biological processes and various metabolic pathways. This is the first study to comprehensively characterize target genes and their associated miRNAs in response to drought stress by degradome sequencing in mulberry. This study provides a framework for understanding the molecular mechanisms of drought resistance in mulberry.

  12. A Transgenic Transcription Factor (TaDREB3) in Barley Affects the Expression of MicroRNAs and Other Small Non-Coding RNAs

    PubMed Central

    Hackenberg, Michael; Shi, Bu-Jun; Gustafson, Perry; Langridge, Peter

    2012-01-01

    Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley over-expressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log2| >1). Furthermore, TaDREB3-derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley. PMID:22870277

  13. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species.

    PubMed

    Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia

    2017-02-28

    KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in "a prion-like mechanism". Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies.

  14. KLK6 proteolysis is implicated in the turnover and uptake of extracellular alpha-synuclein species

    PubMed Central

    Pampalakis, Georgios; Sykioti, Vasia-Samantha; Ximerakis, Methodios; Stefanakou-Kalakou, Ioanna; Melki, Ronald; Vekrellis, Kostas; Sotiropoulou, Georgia

    2017-01-01

    KLK6 is a serine protease highly expressed in the nervous system. In synucleinopathies, including Parkinson disease, the levels of KLK6 inversely correlate with α-synuclein in CSF. Recently, we suggested that recombinant KLK6 mediates the degradation of extracellular α-synuclein directly and via a proteolytic cascade that involves unidentified metalloproteinase(s). Here, we show that recombinant and naturally secreted KLK6 can readily cleave α-synuclein fibrils that have the potential for cell-to-cell propagation in “a prion-like mechanism”. Importantly, KLK6-deficient primary cortical neurons have increased ability for α-synuclein fibril uptake. We also demonstrate that KLK6 activates proMMP2, which in turn can cleave α-synuclein. The repertoire of proteases activated by KLK6 in a neuronal environment was analyzed by degradomic profiling, which also identified ADAMTS19 and showed that KLK6 has a limited number of substrates indicating specific biological functions such as the regulation of α-synuclein turnover. We generated adenoviral vectors for KLK6 delivery and demonstrated that the levels of extracellular α-synuclein can be reduced by neuronally secreted KLK6. Our findings open the possibility to exploit KLK6 as a novel therapeutic target for Parkinson disease and other synucleinopathies. PMID:27845893

  15. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud

    PubMed Central

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKCC-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in ‘Suli’ pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy. PMID:26466664

  16. Apple miRNAs and tasiRNAs with novel regulatory networks

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. Results We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. Conclusions Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family. PMID:22704043

  17. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing.

    PubMed

    Wang, Zhiwei; Qiao, Yan; Zhang, Jingjing; Shi, Wenhui; Zhang, Jinwen

    2017-07-01

    Rapeseed (Brassica napus) is an important cash crop considered as the third largest oil crop worldwide. Rapeseed oil contains various saturation or unsaturation fatty acids, these fatty acids, whose could incorporation with TAG form into lipids stored in seeds play various roles in the metabolic activity. The different fatty acids in B. napus seeds determine oil quality, define if the oil is edible or must be used as industrial material. miRNAs are kind of non-coding sRNAs that could regulate gene expressions through post-transcriptional modification to their target transcripts playing important roles in plant metabolic activities. We employed high-throughput sequencing to identify the miRNAs and their target transcripts involved in fatty acids and lipids metabolism in different development of B. napus seeds. As a result, we identified 826 miRNA sequences, including 523 conserved and 303 newly miRNAs. From the degradome sequencing, we found 589 mRNA could be targeted by 236 miRNAs, it includes 49 novel miRNAs and 187 conserved miRNAs. The miRNA-target couple suggests that bna-5p-163957_18, bna-5p-396192_7, miR9563a-p3, miR9563b-p5, miR838-p3, miR156e-p3, miR159c and miR1134 could target PDP, LACS9, MFPA, ADSL1, ACO32, C0401, GDL73, PlCD6, OLEO3 and WSD1. These target transcripts are involving in acetyl-CoA generate and carbon chain desaturase, regulating the levels of very long chain fatty acids, β-oxidation and lipids transport and metabolism process. At the same, we employed the q-PCR to valid the expression of miRNAs and their target transcripts that involve in fatty acid and lipid metabolism, the result suggested that the miRNA and their transcript expression are negative correlation, which in accord with the expression of miRNA and its target transcript. The study findings suggest that the identified miRNA may play important role in the fatty acids and lipids metabolism in seeds of B. napus. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  18. Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis.

    PubMed

    Crisp, Peter A; Ganguly, Diep R; Smith, Aaron B; Murray, Kevin D; Estavillo, Gonzalo M; Searle, Iain; Ford, Ethan; Bogdanović, Ozren; Lister, Ryan; Borevitz, Justin O; Eichten, Steven R; Pogson, Barry J

    2017-08-01

    Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants ( k ) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory. © 2017 American Society of Plant Biologists. All rights reserved.

  19. Rapid Recovery Gene Downregulation during Excess-Light Stress and Recovery in Arabidopsis[OPEN

    PubMed Central

    Estavillo, Gonzalo M.

    2017-01-01

    Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5ʹ-3ʹ RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory. PMID:28705956

  20. New horizon for breast cancer biomarker discoveries: What might the liquid biopsy of nipple aspirate fluid hold?

    PubMed

    Mannello, Ferdinando

    2017-09-01

    The existence of cellular, molecular and biochemical heterogeneity of human breast cancers reveals the intricacy of biomarkers complexity, stimulating studies on new approaches (like "liquid biopsies") for the improvements in precision medicine. Breast cancer is recognized as a leading cause of morbidity and mortality worldwide with tumors significantly diverse and containing many types of cells showing different genetic and epigenetic profiles. In this field, the technology of liquid biopsy (applied to a fluid produced by breast gland, named nipple aspirate fluids, NAF) highlights the power of combining basic and clinical research. NAF is the mirror of the entire ductal/alveolar breast tree providing almost complete proteomic profile and a valuable source for biomarker discovery, in non-invasive manner than tissue biopsies. The liquid biopsy technology using NAF may represent the outstanding breakthrough of proteomic cancer research revealing novel diagnostic and prognostic applications. In conjunction to metabolomic and degradome profiling, the use of NAF as liquid biopsy approach will improve the detection of changes in the cellular microenvironment of the breast tumors, understanding molecular and biochemical mechanisms which drive breast tumor initiation, maintenance and progression, and finally enhancing the development of novel drug targets and new treatment strategies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1.

    PubMed

    Wünsch, Désirée; Hahlbrock, Angelina; Heiselmayer, Christina; Bäcker, Sandra; Heun, Patrick; Goesswein, Dorothee; Stöcker, Walter; Schirmeister, Tanja; Schneider, Günter; Krämer, Oliver H; Knauer, Shirley K; Stauber, Roland H

    2015-05-01

    Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and β-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism. © FASEB.

  2. The miRNAome dynamics during developmental and metabolic reprogramming of tomato root infected with potato cyst nematode.

    PubMed

    Koter, Marek D; Święcicka, Magdalena; Matuszkiewicz, Mateusz; Pacak, Andrzej; Derebecka, Natalia; Filipecki, Marcin

    2018-03-01

    Cyst-forming plant-parasitic nematodes are pests threatening many crops. By means of their secretions cyst nematodes induce the developmental and metabolic reprogramming of host cells that lead to the formation of a syncytium, which is the sole food source for growing nematodes. The in depth micro RNA (miRNA) dynamics in the syncytia induced by Globodera rostochiensis in tomato roots was studied. The miRNAomes were obtained from syncytia covering the early and intermediate developmental stages, and were the subject of differential expression analysis. The expression of 1235 miRNAs was monitored. The fold change (log 2 FC) ranged from -7.36 to 8.38, indicating that this transcriptome fraction was very variable. Moreover, we showed that the DE (differentially expressed) miRNAs do not fully overlap between the selected time points, suggesting infection stage specific regulation by miRNA. The correctness of RNA-seq expression profiling was confirmed by qRT-PCR (quantitative Real Time Polymerase Chain Reaction) for seven miRNA species. Down- and up-regulated miRNA species, including their isomiRs, were further used to identify their potential targets. Among them there are a large number of transcription factors linked to different aspects of plant development belonging to gene families, such as APETALA2 (AP2), SQUAMOSA (MADS-box), MYB, GRAS, and AUXIN RESPONSE FACTOR (ARF). The substantial portion of potential target genes belong to the NB-LRR and RLK (RECEPTOR-LIKE KINASE) families, indicating the involvement of miRNA mediated regulation in defense responses. We also collected the evidence for target cleavage in the case of 29 miRNAs using one of three alternative methods: 5' RACE (5' Rapid Amplification of cDNA Ends), a search of tasiRNA within our datasets, and the meta-analysis of tomato degradomes in the GEO (Gene Expression Omnibus) database. Eight target transcripts showed a negative correlation with their respective miRNAs at two or three time points. These results indicate a large regulatory potential for miRNAs in tuning the development and defense responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Functional protease profiling for diagnosis of malignant disease.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2012-01-01

    Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Uncovering Small RNA-Mediated Responses to Cold Stress in a Wheat Thermosensitive Genic Male-Sterile Line by Deep Sequencing1[W][OA

    PubMed Central

    Tang, Zhonghui; Zhang, Liping; Xu, Chenguang; Yuan, Shaohua; Zhang, Fengting; Zheng, Yonglian; Zhao, Changping

    2012-01-01

    The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress. PMID:22508932

  5. microRNAs and Their Targets in Apple (Malus domestica cv. "Fuji") Involved in Response to Infection of Pathogen Valsa mali.

    PubMed

    Feng, Hao; Xu, Ming; Zheng, Xiang; Zhu, Tongyi; Gao, Xiaoning; Huang, Lili

    2017-01-01

    miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen ( Valsa mali, Vm ) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree ( Malus domestica Borkh. cv. "Fuji") inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm . The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig- Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig- Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm . More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of expression analysis. In all, the results will provide insights into the crucial functions of miRNAs in the woody plant, apple tree- Vm interaction.

  6. microRNAs and Their Targets in Apple (Malus domestica cv. “Fuji”) Involved in Response to Infection of Pathogen Valsa mali

    PubMed Central

    Feng, Hao; Xu, Ming; Zheng, Xiang; Zhu, Tongyi; Gao, Xiaoning; Huang, Lili

    2017-01-01

    miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen (Valsa mali, Vm) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree (Malus domestica Borkh. cv. “Fuji”) inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm. The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig-Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig-Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm. More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of expression analysis. In all, the results will provide insights into the crucial functions of miRNAs in the woody plant, apple tree-Vm interaction. PMID:29270184

  7. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica.

    PubMed

    Lu, Xin; Dun, Hui; Lian, Conglong; Zhang, Xiaofei; Yin, Weilun; Xia, Xinli

    2017-06-01

    Plant miR164 family is highly conserved and miR164 members regulate conserved targets belonging to NAC transcription factors. Our previous studies have revealed that peu-miR164a-e and its target gene POPTR_0007s08420 participate in abiotic stress response in Populus euphratica according to deep sequencing and degradome sequencing. In this study, miR164 family comprises six members that generate two mature products (miR164a-e and miR164f) and target seven NAC genes in P. euphratica. Co-expression in Nicotiana benthamiana and 5' RACE confirmed that peu-miR164 directs PeNAC070, PeNAC012 and PeNAC028 mRNAs cleavage. Expression profiles of primary peu-miR164 a/b/c/d/e bear similarity to those of peu-miR164a-e, whereas PeNAC070 and PeNAC081 showed inverse expression patterns with peu-miR164a-e under abiotic stresses. Existence of cis-acting elements in PeNAC070 promoter (ABRE,MBs, Box-W1, GC-motif, and W-box) and in peu-MIR164b promoter (HSE) further confirmed different responses of peu-miR164 and PeNAC070 to abiotic stresses. Histochemical β-glucuronidase (GUS) staining revealed that GUS activities increased when Pro PeNAC070 ::GUS transgenic Arabidopsis plants were exposed to NaCl, mannitol and abscisic acid (ABA), whereas GUS activity of Pro peu-MIR164b ::GUS plants decreased under ABA treatment. Subcellular localization and transactivation assays showed that PeNAC070 protein was localized to the nucleus and exhibited transactivation activity at the C-terminal. Overexpression of PeNAC070 in Arabidopsis promoted lateral root development, delayed stem elongation, and increased sensitivity of transgenic plants to drought and salt stresses. This study aids in understanding the adaptability of P. euphratica to extreme drought and salt environment by analysing tissue-specific expression patterns of miR164-regulated and specific promoter-regulated PeNAC genes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae.

    PubMed

    Wilkinson, Derek; Ramsdale, Mark

    2011-10-01

    A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.

  9. Matrix metalloproteinase proteomics: substrates, targets, and therapy.

    PubMed

    Morrison, Charlotte J; Butler, Georgina S; Rodríguez, David; Overall, Christopher M

    2009-10-01

    Proteomics encompasses powerful techniques termed 'degradomics' for unbiased high-throughput protease substrate discovery screens that have been applied to an important family of extracellular proteases, the matrix metalloproteinases (MMPs). Together with the data generated from genetic deletion and transgenic mouse models and genomic profiling, these screens can uncover the diverse range of MMP functions, reveal which MMPs and MMP-mediated pathways exacerbate pathology, and which are involved in protection and the resolution of disease. This information can be used to identify and validate candidate drug targets and antitargets, and is critical for the development of new inhibitors of MMP function. Such inhibitors may target either the MMP directly in a specific manner or pathways upstream and downstream of MMP activity that are mediating deleterious effects in disease. Since MMPs do not operate alone but are part of the 'protease web', it is necessary to use system-wide approaches to understand MMP proteolysis in vivo, to discover new biological roles and their potential for therapeutic modification.

  10. Characterization of microRNAs of Beta macrocarpa and their responses to Beet necrotic yellow vein virus infection.

    PubMed

    Liu, Jun-Ying; Fan, Hui-Yan; Wang, Ying; Zhang, Yong-Liang; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2017-01-01

    Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development, defense, and symptom development. Here, 547 known miRNAs representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. A phylogenetic analysis was performed, and 8 Beta lineage-specific miRNAs were identified. Through a differential expression analysis, miRNAs associated with Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis and stem-loop RT-qPCR. In total, 103 known miRNAs representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with that of the mock-inoculated control. Targets of these differentially expressed miRNAs were also predicted by degradome sequencing. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.

  11. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza

    PubMed Central

    Li, Caili; Li, Dongqiao; Li, Jiang; Shao, Fenjuan; Lu, Shanfa

    2017-01-01

    Salvia miltiorrhiza is a well-known material of traditional Chinese medicine. Understanding the regulatory mechanisms of phenolic acid biosynthesis and metabolism are important for S. miltiorrhiza quality improvement. We report here that S. miltiorrhiza contains 19 polyphenol oxidases (PPOs), forming the largest PPO gene family in plant species to our knowledge. Analysis of gene structures and sequence features revealed the conservation and divergence of SmPPOs. SmPPOs were differentially expressed in plant tissues and eight of them were predominantly expressed in phloem and xylem, indicating that some SmPPOs are functionally redundant, whereas the others are associated with different physiological processes. Expression patterns of eighteen SmPPOs were significantly altered under MeJA treatment, and twelve were yeast extract and Ag+-responsive, suggesting the majority of SmPPOs are stress-responsive. Analysis of high-throughput small RNA sequences and degradome data showed that miR1444-mediated regulation of PPOs existing in P. trichocarpa is absent from S. miltiorrhiza. Instead, a subset of SmPPOs was posttranscriptionally regulated by a novel miRNA, termed Smi-miR12112. It indicates the specificity and significance of miRNA-mediated regulation of PPOs. The results shed light on the regulation of SmPPO expression and suggest the complexity of SmPPO-associated phenolic acid biosynthesis and metabolism. PMID:28304398

  12. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza.

    PubMed

    Li, Caili; Li, Dongqiao; Li, Jiang; Shao, Fenjuan; Lu, Shanfa

    2017-03-17

    Salvia miltiorrhiza is a well-known material of traditional Chinese medicine. Understanding the regulatory mechanisms of phenolic acid biosynthesis and metabolism are important for S. miltiorrhiza quality improvement. We report here that S. miltiorrhiza contains 19 polyphenol oxidases (PPOs), forming the largest PPO gene family in plant species to our knowledge. Analysis of gene structures and sequence features revealed the conservation and divergence of SmPPOs. SmPPOs were differentially expressed in plant tissues and eight of them were predominantly expressed in phloem and xylem, indicating that some SmPPOs are functionally redundant, whereas the others are associated with different physiological processes. Expression patterns of eighteen SmPPOs were significantly altered under MeJA treatment, and twelve were yeast extract and Ag + -responsive, suggesting the majority of SmPPOs are stress-responsive. Analysis of high-throughput small RNA sequences and degradome data showed that miR1444-mediated regulation of PPOs existing in P. trichocarpa is absent from S. miltiorrhiza. Instead, a subset of SmPPOs was posttranscriptionally regulated by a novel miRNA, termed Smi-miR12112. It indicates the specificity and significance of miRNA-mediated regulation of PPOs. The results shed light on the regulation of SmPPO expression and suggest the complexity of SmPPO-associated phenolic acid biosynthesis and metabolism.

  13. Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis1[W][OA

    PubMed Central

    Devers, Emanuel A.; Branscheid, Anja; May, Patrick; Krajinski, Franziska

    2011-01-01

    The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development. PMID:21571671

  14. The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprin β and ADAM10.

    PubMed

    Jefferson, Tamara; Auf dem Keller, Ulrich; Bellac, Caroline; Metz, Verena V; Broder, Claudia; Hedrich, Jana; Ohler, Anke; Maier, Wladislaw; Magdolen, Viktor; Sterchi, Erwin; Bond, Judith S; Jayakumar, Arumugam; Traupe, Heiko; Chalaris, Athena; Rose-John, Stefan; Pietrzik, Claus U; Postina, Rolf; Overall, Christopher M; Becker-Pauly, Christoph

    2013-01-01

    The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.

  15. Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses

    PubMed Central

    Lin, Pin-Chun; Lu, Chia-Wei; Shen, Bing-Nan; Lee, Guan-Zong; Bowman, John L.; Arteaga-Vazquez, Mario A.; Liu, Li-Yu Daisy; Hong, Syuan-Fei; Lo, Chu-Fang; Su, Gong-Min; Kohchi, Takayuki; Ishizaki, Kimitsune; Zachgo, Sabine; Althoff, Felix; Takenaka, Mizuki; Yamato, Katsuyuki T.; Lin, Shih-Shun

    2016-01-01

    Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M. polymorpha is useful in studies aiming to elucidate the evolution of gene regulation mechanisms in plants. In this study, we used computational, transcriptomic, small RNA and degradome analyses to characterize microRNA (miRNA)-mediated pathways of gene regulation in M. polymorpha. The data have been integrated into the open access ContigViews-miRNA platform for further reference. In addition to core components of the miRNA pathway, 129 unique miRNA sequences, 11 of which could be classified into seven miRNA families that are conserved in embryophytes (miR166a, miR390, miR529c, miR171-3p, miR408a, miR160 and miR319a), were identified. A combination of computational and degradome analyses allowed us to identify and experimentally validate 249 targets. In some cases, the target genes are orthologous to those of other embryophytes, but in other cases, the conserved miRNAs target either paralogs or members of different gene families. In addition, the newly discovered Mpo-miR11707.1 and Mpo-miR11707.2 are generated from a common precursor and target MpARGONAUTE1 (LW1759). Two other newly discovered miRNAs, Mpo-miR11687.1 and Mpo-miR11681.1, target the MADS-box transcription factors MpMADS1 and MpMADS2, respectively. Interestingly, one of the pentatricopeptide repeat (PPR) gene family members, MpPPR_66 (LW9825), the protein products of which are generally involved in various steps of RNA metabolism, has a long stem–loop transcript that can generate Mpo-miR11692.1 to autoregulate MpPPR_66 (LW9825) mRNA. This study provides a foundation for further investigations of the RNA-mediated silencing mechanism in M. polymorpha as well as of the evolution of this gene silencing pathway in embryophytes. PMID:26861787

  16. Microarray and Proteomic Analysis of Breast Cancer Cell and Osteoblast Co-cultures

    PubMed Central

    Morrison, Charlotte; Mancini, Stephanie; Cipollone, Jane; Kappelhoff, Reinhild; Roskelley, Calvin; Overall, Christopher

    2011-01-01

    Dynamic reciprocal interactions between a tumor and its microenvironment impact both the establishment and progression of metastases. These interactions are mediated, in part, through proteolytic sculpting of the microenvironment, particularly by the matrix metalloproteinases, with both tumors and stroma contributing to the proteolytic milieu. Because bone is one of the predominant sites of breast cancer metastases, we used a co-culture system in which a subpopulation of the highly invasive human breast cancer cell line MDA-MB-231, with increased propensity to metastasize to bone, was overlaid onto a monolayer of differentiated osteoblast MC3T3-E1 cells in a mineralized osteoid matrix. CLIP-CHIP® microarrays identified changes in the complete protease and inhibitor expression profile of the breast cancer and osteoblast cells that were induced upon co-culture. A large increase in osteoblast-derived MMP-13 mRNA and protein was observed. Affymetrix analysis and validation showed induction of MMP-13 was initiated by soluble factors produced by the breast tumor cells, including oncostatin M and the acute response apolipoprotein SAA3. Significant changes in the osteoblast secretomes upon addition of MMP-13 were identified by degradomics from which six novel MMP-13 substrates with the potential to functionally impact breast cancer metastasis to bone were identified and validated. These included inactivation of the chemokines CCL2 and CCL7, activation of platelet-derived growth factor-C, and cleavage of SAA3, osteoprotegerin, CutA, and antithrombin III. Hence, the influence of breast cancer metastases on the bone microenvironment that is executed via the induction of osteoblast MMP-13 with the potential to enhance metastases growth by generating a microenvironmental amplifying feedback loop is revealed. PMID:21784845

  17. Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication.

    PubMed

    Wang, Yu; Bai, Xuefei; Yan, Chenghai; Gui, Yiejie; Wei, Xinghua; Zhu, Qian-Hao; Guo, Longbiao; Fan, Longjiang

    2012-11-01

    The lack of a MIRNA set and genome sequence of wild rice (Oryza rufipogon) has prevented us from determining the role of MIRNA genes in rice domestication. In this study, a genome, three small RNA populations and a degradome of O. rufipogon were sequenced by Illumina platform and the expression levels of microRNAs (miRNAs) were investigated by miRNA chips. A de novo O. rufipogon genome was assembled using c. 55× coverage of raw sequencing data and a total of 387 MIRNAs were identified in the O. rufipogon genome based on c. 5.2 million unique small RNA reads from three different tissues of O. rufipogon. Of these, O. rufipogon MIRNAs, 259 were not found in the cultivated rice, suggesting a loss of these MIRNAs in the cultivated rice. We also found that 48 MIRNAs were novel in the cultivated rice, suggesting that they were potential targets of domestication selection. Some miRNAs showed significant expression differences between wild and cultivated rice, suggesting that expression of miRNA could also be a target of domestication, as demonstrated for the miR164 family. Our results illustrated that MIRNA genes, like protein-coding genes, might have been significantly shaped during rice domestication and could be one of the driving forces that contributed to rice domestication. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding.

    PubMed

    Butler, Georgina S; Dean, Richard A; Tam, Eric M; Overall, Christopher M

    2008-08-01

    Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90alpha, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment.

  19. A Global Comparison of the Human and T. brucei Degradomes Gives Insights about Possible Parasite Drug Targets

    PubMed Central

    Mashiyama, Susan T.; Koupparis, Kyriacos; Caffrey, Conor R.; McKerrow, James H.; Babbitt, Patricia C.

    2012-01-01

    We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups (“M32” and “C51”) that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html. PMID:23236535

  20. Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice

    PubMed Central

    Ou-Yang, Fangqian; Luo, Qing-Jun; Zhang, Yue; Richardson, Casey R.; Jiang, Yingwen; Rock, Christopher D.

    2013-01-01

    microRNAs (miRNAs) are a class of small RNAs (sRNAs) of ~21 nucleotides (nt) in length processed from foldback hairpins by DICER-LIKE1 (DCL1) or DCL4. They regulate the expression of target mRNAs by base pairing through RNA-Induced Silencing Complex (RISC). In the RISC, ARGONAUTE1 (AGO1) is the key protein that cleaves miRNA targets at position ten of a miRNA:target duplex. The authenticity of many annotated rice miRNA hairpins is under debate because of their homology to repeat sequences. Some of them, like miR1884b, have been removed from the current release of miRBase based on incomplete information. In this study, we investigated the association of transposable element (TE)-derived miRNAs with typical miRNA pathways (DCL1/4- and AGO1-dependent) using publicly available deep sequencing datasets. Seven miRNA hairpins with 13 unique sRNAs were specifically enriched in AGO1 immunoprecipitation samples and relatively reduced in DCL1/4 knockdown genotypes. Interestingly, these species are ~21-nt long, instead of 24-nt as annotated in miRBase and the literature. Their expression profiles meet current criteria for functional annotation of miRNAs. In addition, diagnostic cleavage tags were found in degradome datasets for predicted target mRNAs. Most of these miRNA hairpins share significant homology with miniature inverted-repeat transposable elements (MITEs), one type of abundant DNA transposons in rice. Finally, the root-specific production of a 24 nt miRNA-like sRNA was confirmed by RNA blot for a novel EST that maps to the 3'-UTR of a candidate pseudogene showing extensive sequence homology to miR1884b hairpin. Our data are consistent with the hypothesis that TEs can serve as a driving force for the evolution of some MIRNAs, where co-opting of DICER-LIKE1/4 processing and integration into AGO1 could exapt transcribed TE-associated hairpins into typical miRNA pathways. PMID:23420033

  1. Pharmacoproteomics of a Metalloproteinase Hydroxamate Inhibitor in Breast Cancer Cells: Dynamics of Membrane Type 1 Matrix Metalloproteinase-Mediated Membrane Protein Shedding ▿ ‡

    PubMed Central

    Butler, Georgina S.; Dean, Richard A.; Tam, Eric M.; Overall, Christopher M.

    2008-01-01

    Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90α, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment. PMID:18505826

  2. Characterization of the Low-Molecular-Weight Human Plasma Peptidome.

    PubMed

    Greening, David W; Simpson, Richard J

    2017-01-01

    The human plasma proteome represents an important secreted sub-proteome. Proteomic analysis of blood plasma with mass spectrometry is a challenging task. The high complexity and wide dynamic range of proteins as well as the presence of several proteins at very high concentrations complicate the profiling of the human plasma proteome. The peptidome (or low-molecular-weight fraction, LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based markers of disease. Peptides are generated by active synthesis and proteolytic processing, often yielding proteolytic fragments that mediate a variety of physiological and pathological functions. As such, degradomic studies, investigating cleavage products via peptidomics and top-down proteomics in particular, have warranted significant research interest. However, due to their molecular weight, abundance, and solubility, issues with identifying specific cleavage sites and coverage of peptide fragments remain challenging. Peptidomics is currently focused toward comprehensively studying peptides cleaved from precursor proteins by endogenous proteases. This protocol outlines a standardized rapid and reproducible procedure for peptidomic profiling of human plasma using centrifugal ultrafiltration and mass spectrometry. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration (cellulose triacetate membrane) for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration, and temperature to facilitate recovery >95% and enrichment of the human plasma peptidome. This method serves as a comprehensive and facile process to enrich and identify a key, underrepresented sub-proteome of human blood plasma.

  3. Identification and characterisation of a previously unknown drought tolerance-associated microRNA in barley.

    PubMed

    Zhou, Hui; Hussain, Syed Sarfraz; Hackenberg, Michael; Bazanova, Natalia; Eini, Omid; Li, Jie; Gustafson, Perry; Shi, Bujun

    2018-04-22

    Drought is the most serious abiotic stress, which causes crop losses on worldwide scale. The present study identified a previously unknown microRNA (designated as hvu-miRX) of 21 nucleotides (nt) in barley. Its precursor (designated pre-miRX) and primary transcript (designated pri-miRX) were also identified, with lengths of 73 nt and 559 nt, respectively. The identified upstream sequence of pri-miRX contains both the TATA box and the CAAT box, which are both required for transcription initiation. Transient promoter activation assays showed that the core promoter region of pri-miRX ranged 500 nt from the transcription start site. In transgenic barley over-expressing the wheat DREB3 transcription factor (TaDREB3) caused hvu-miRX to be highly expressed as compared to the same miRNA in non-transgenic barley. However, the high expression was not directly associated with TaDREB3. Genomic analysis revealed that the hvu-miRX gene was a single copy located on the short arm of chromosome 2 and appeared to be only conserved in Triticeae, but not in other plant species. Notably, transgenic barley overexpressing hvu-miRX showed drought tolerance. Degradome library analysis and other tests showed that hvu-miRX targeted various genes including transcription factors via the cleavage mode. Our data open an excellent opportunity to develop drought stress tolerant cereals with hvu-miRX. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought

    PubMed Central

    Sosa-Valencia, Guadalupe; Palomar, Miguel; Covarrubias, Alejandra A.

    2017-01-01

    Abstract Recent studies have identified microRNAs as post-transcriptional regulators involved in stress responses. miR1514a is a legume microRNA that is induced in response to drought stress in Phaseolus vulgaris (common bean) and shows differential accumulation levels in roots during water deficit in two cultivars with different drought tolerance phenotypes. A recent degradome analysis revealed that miR1514a targets the transcripts of two NAC transcription factors (TFs), Phvul.010g121000 and Phvul.010g120700. Furthermore, expression studies and small RNA-seq data indicate that only Phvul.010g120700 generates phasiRNAs, which also accumulate under water deficit conditions. To confirm these results, we over-expressed miR1514a in transgenic hairy roots, and observed a reduced accumulation of Phvul.010g120700 and an increase in NAC-derived phasiRNAs; inhibition of miR1514a activity resulted in the opposite effect. Moreover, we determined that a NAC-derived phasiRNA associates with ARGONAUTE 1 (AGO1), suggesting that it is functional. In addition, a transcriptome analysis of transgenic hairy roots with reduced miR1514a levels revealed several differentially expressed transcripts, mainly involved in metabolism and stress responses, suggesting they are regulated by the NAC TF and/or by phasiRNAs. This work therefore demonstrates the participation of miR1514 in the regulation of a NAC transcription factor transcript through phasiRNA production during the plant response to water deficit. PMID:28338719

  5. miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant “Yanfu 6”

    PubMed Central

    Song, Chunhui; Zhang, Dong; Zheng, Liwei; Zhang, Jie; Zhang, Baojuan; Luo, Wenwen; Li, Youmei; Li, Guangfang; Ma, Juanjuan; Han, Mingyu

    2017-01-01

    The spur-type growth habit in apple trees is characterized by short internodes, increased number of fruiting spurs, and compact growth that promotes flowering and facilitates management practices, such as pruning. The molecular mechanisms responsible for regulating spur-type growth have not been elucidated. In the present study, miRNAs and the expression of their potential target genes were evaluated in shoot tips of “Nagafu 2” (CF) and spur-type bud mutation “Yanfu 6” (YF). A total of 700 mature miRNAs were identified, including 202 known apple miRNAs and 498 potential novel miRNA candidates. A comparison of miRNA expression in CF and YF revealed 135 differentially expressed genes, most of which were downregulated in YF. YF also had lower levels of GA, ZR, IAA, and ABA hormones, relative to CF. Exogenous applications of GA promoted YF shoot growth. Based on the obtained results, a regulatory network involving plant hormones, miRNA, and their potential target genes is proposed for the molecular mechanism regulating the growth of YF. miRNA164, miRNA166, miRNA171, and their potential targets, and associated plant hormones, appear to regulate shoot apical meristem (SAM) growth. miRNA159, miRNA167, miRNA396, and their potential targets, and associated plant hormones appear to regulate cell division and internode length. This study provides a foundation for further studies designed to elucidate the mechanism underlying spur-type apple architecture. PMID:28424721

  6. PsRobot: a web-based plant small RNA meta-analysis toolbox.

    PubMed

    Wu, Hua-Jun; Ma, Ying-Ke; Chen, Tong; Wang, Meng; Wang, Xiu-Jie

    2012-07-01

    Small RNAs (smRNAs) in plants, mainly microRNAs and small interfering RNAs, play important roles in both transcriptional and post-transcriptional gene regulation. The broad application of high-throughput sequencing technology has made routinely generation of bulk smRNA sequences in laboratories possible, thus has significantly increased the need for batch analysis tools. PsRobot is a web-based easy-to-use tool dedicated to the identification of smRNAs with stem-loop shaped precursors (such as microRNAs and short hairpin RNAs) and their target genes/transcripts. It performs fast analysis to identify smRNAs with stem-loop shaped precursors among batch input data and predicts their targets using a modified Smith-Waterman algorithm. PsRobot integrates the expression data of smRNAs in major plant smRNA biogenesis gene mutants and smRNA-associated protein complexes to give clues to the smRNA generation and functional processes. Besides improved specificity, the reliability of smRNA target prediction results can also be evaluated by mRNA cleavage (degradome) data. The cross species conservation statuses and the multiplicity of smRNA target sites are also provided. PsRobot is freely accessible at http://omicslab.genetics.ac.cn/psRobot/.

  7. Deletion of Cysteine Cathepsins B or L Yields Differential Impacts on Murine Skin Proteome and Degradome*

    PubMed Central

    Tholen, Stefan; Biniossek, Martin L.; Gansz, Martina; Gomez-Auli, Alejandro; Bengsch, Fee; Noel, Agnes; Kizhakkedathu, Jayachandran N.; Boerries, Melanie; Busch, Hauke; Reinheckel, Thomas; Schilling, Oliver

    2013-01-01

    Numerous studies highlight the fact that concerted proteolysis is essential for skin morphology and function. The cysteine protease cathepsin L (Ctsl) has been implicated in epidermal proliferation and desquamation, as well as in hair cycle regulation. In stark contrast, mice deficient in cathepsin B (Ctsb) do not display an overt skin phenotype. To understand the systematic consequences of deleting Ctsb or Ctsl, we determined the protein abundances of >1300 proteins and proteolytic cleavage events in skin samples of wild-type, Ctsb−/−, and Ctsl−/− mice via mass-spectrometry-based proteomics. Both protease deficiencies revealed distinct quantitative changes in proteome composition. Ctsl−/− skin revealed increased levels of the cysteine protease inhibitors cystatin B and cystatin M/E, increased cathepsin D, and an accumulation of the extracellular glycoprotein periostin. Immunohistochemistry located periostin predominantly in the hypodermal connective tissue of Ctsl−/− skin. The proteomic identification of proteolytic cleavage sites within skin proteins revealed numerous processing sites that are underrepresented in Ctsl−/− or Ctsb−/− samples. Notably, few of the affected cleavage sites shared the canonical Ctsl or Ctsb specificity, providing further evidence of a complex proteolytic network in the skin. Novel processing sites in proteins such as dermokine and Notch-1 were detected. Simultaneous analysis of acetylated protein N termini showed prototypical mammalian N-alpha acetylation. These results illustrate an influence of both Ctsb and Ctsl on the murine skin proteome and degradome, with the phenotypic consequences of the absence of either protease differing considerably. PMID:23233448

  8. Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos

    PubMed Central

    Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2013-01-01

    Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available. PMID:24244149

  9. Response of microRNAs to cold treatment in the young spikes of common wheat.

    PubMed

    Song, Guoqi; Zhang, Rongzhi; Zhang, Shujuan; Li, Yulian; Gao, Jie; Han, Xiaodong; Chen, Mingli; Wang, Jiao; Li, Wei; Li, Genying

    2017-02-28

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that play important roles in biotic and abiotic stresses by regulating their target genes. For common wheat, spring frost damage frequently occurs, especially when low temperature coincides with plants at early floral organ differentiation, which may result in significant yield loss. Up to date, the role of miRNAs in wheat response to frost stress is not well understood. We report here the sequencing of small RNA transcriptomes from the young spikes that were treated with cold stress and the comparative analysis with those of the control. A total of 192 conserved miRNAs from 105 families and nine novel miRNAs were identified. Among them, 34 conserved and five novel miRNAs were differentially expressed between the cold-stressed samples and the controls. The expression patterns of 18 miRNAs were further validated by quantitative real time polymerase chain reaction (qRT-PCR). Moreover, nearly half of the miRNAs were cross inducible by biotic and abiotic stresses when compared with previously published work. Target genes were predicted and validated by degradome sequencing. Gene Ontology (GO) enrichment analysis showed that the target genes of differentially expressed miRNAs were enriched for response to the stimulus, regulation of transcription, and ion transport functions. Since many targets of differentially expressed miRNAs were transcription factors that are associated with floral development such as ARF, SPB (Squamosa Promoter Binding like protein), MADS-box (MCM1, AG, DEFA and SRF), MYB, SPX (SYG1, Pho81 and XPR1), TCP (TEOSINTE BRANCHED, Cycloidea and PCF), and PPR (PentatricoPeptide Repeat) genes, cold-altered miRNA expression may cause abnormal reproductive organ development. Analysis of small RNA transcriptomes and their target genes provide new insight into miRNA regulation in developing wheat inflorescences under cold stress. MiRNAs provide another layer of gene regulation in cold stress response that can be genetically manipulated to reduce yield loss in wheat.

  10. Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry.

    PubMed

    Labas, Valérie; Spina, Lucie; Belleannee, Clémence; Teixeira-Gomes, Ana-Paula; Gargaros, Audrey; Dacheux, Françoise; Dacheux, Jean-Louis

    2015-01-15

    The fertilization ability of male gametes is achieved after their transit through the epididymis where important post-gonadal differentiation occurs in different cellular compartments. Most of these maturational modifications occur at the protein level. The epididymal sperm maturation process was investigated using the ICM-MS (Intact Cell MALDI-TOF MS) approach on boar spermatozoa isolated from four different epididymal regions (immature to mature stage). Differential and quantitative MALDI-TOF profiling for whole cells or sub-cellular fractions was combined with targeted top-down MS in order to identify endogenous biomolecules. Using this approach, 172m/z peaks ranging between 2 and 20kDa were found to be modified during maturation of sperm. Using top-down MS, 62m/z were identified corresponding to peptidoforms/proteoforms with post-translational modifications (MS data are available via ProteomeXchange with identifier PXD001303). Many of the endogenous peptides were characterized as N-, C-terminal sequences or internal fragments of proteins presenting specific cleavages, suggesting the presence of sequential protease activities in the spermatozoa. This is the first time that such proteolytic activities could be evidenced for various sperm proteins through quantification of their proteolytic products. ICM-MS/top-down MS thus proved to be a valid approach for peptidome/degradome studies and provided new contributions to understanding of the maturation process of the male gamete involved in the development of male fertility. This peptidomic study (i) characterized the peptidome of epididymal spermatozoa from boar (Sus scrofa); (ii) established characteristic molecular phenotypes distinguishing degrees of maturation of spermatozoa during epididymal transit, and (iii) revealed that protease activities were at the origin of numerous peptides from known and unknown proteins involved in sperm maturation and/or fertility processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Matrix metalloproteinase processing of signaling molecules to regulate inflammation.

    PubMed

    Butler, Georgina S; Overall, Christopher M

    2013-10-01

    Inflammation is a complex and highly regulated process that facilitates the clearance of pathogens and mediates tissue repair. Failure to resolve inflammation can lead to chronic inflammatory diseases such as periodontitis. Matrix metalloproteinases are generally thought to be detrimental in disease because degradation of extracellular matrix contributes to pathology. However, proteomic techniques (degradomics) are revealing that matrix metalloproteinases process a diverse array of substrates and therefore have a broad range of functions. Many matrix metalloproteinase substrates modulate inflammation and hence, by processing these proteins, matrix metalloproteinases can orchestrate the inflammatory response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Genome-Wide Investigation of MicroRNAs and Their Targets in Response to Freezing Stress in Medicago sativa L., Based on High-Throughput Sequencing

    PubMed Central

    Shu, Yongjun; Liu, Ying; Li, Wei; Song, Lili; Zhang, Jun; Guo, Changhong

    2016-01-01

    Winter damage, especially in northern climates, is a major limitation of the utilization of perennial forages such as alfalfa. Therefore, improving freezing tolerance is imperative in alfalfa genetic breeding. However, freezing tolerance is a complex trait that is determined by many genes. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed small RNA sequencing analysis under cold (4°) and freezing (−8°) stress. The sequencing results revealed that 173 known, and 24 novel miRNAs were expressed, and that the expression of 35 miRNAs was affected by cold and/or freezing stress. Meanwhile, 105 target genes cleaved by these miRNAs were characterized by degradome sequencing. These targets were associated with biological regulation, cellular processes, metabolic processes, and response to stress. Interestingly, most of them were characterized as transcription factors (TFs), including auxin response factors, SBP, NAC, AP2/ERF, and GRF, which play important roles in plant abiotic responses. In addition, important miRNAs and mRNAs involved in nodulation were also identified, for example, the relationship between miR169 and the TF CCAAT (also named as NF-YA/HAP2), which suggested that nodulation has an important function in freezing tolerance in alfalfa. Our results provide valuable information to help determine the molecular mechanisms of freezing tolerance in alfalfa, which will aid the application of these miRNAs and their targets in the improvement of freezing tolerance in alfalfa and related plants. PMID:26801649

  13. High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice.

    PubMed

    Barrera-Figueroa, Blanca E; Gao, Lei; Wu, Zhigang; Zhou, Xuefeng; Zhu, Jianhua; Jin, Hailing; Liu, Renyi; Zhu, Jian-Kang

    2012-08-03

    MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants, they are not well studied in reproductive tissues such as inflorescences. We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress. We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase. We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3, and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable elements or repeats, especially miniature inverted-repeat elements (MITEs). We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA origination.

  14. The High-Risk Human Papillomavirus E6 Oncogene Exacerbates the Negative Effect of Tryptophan Starvation on the Development of Chlamydia trachomatis

    PubMed Central

    Sherchand, Shardulendra P.; Ibana, Joyce A.; Zea, Arnold H.; Quayle, Alison J.; Aiyar, Ashok

    2016-01-01

    Chlamydia trachomatis is an obligate intracellular pathogen that requires specific essential nutrients from the host cell, one of which is the amino acid tryptophan. In this context interferon gamma (IFNγ) is the major host protective cytokine against chlamydial infections because it induces the expression of the host enzyme, indoleamine 2,3-dioxygenase 1, that degrades tryptophan, thereby restricting bacterial replication. The mechanism by which IFNγ acts has been dissected in vitro using epithelial cell-lines such as HeLa, HEp-2, or the primary-like endocervical cell-line A2EN. All these cell-lines express the high-risk human papillomavirus oncogenes E6 & E7. While screening cell-lines to identify those suitable for C. trachomatis co-infections with other genital pathogens, we unexpectedly found that tryptophan starvation did not completely block chlamydial development in cell-lines that were HR-HPV negative, such as C33A and 293. Therefore, we tested the hypothesis that HR-HPV oncogenes modulate the effect of tryptophan starvation on chlamydial development by comparing chlamydial development in HeLa and C33A cell-lines that were both derived from cervical carcinomas. Our results indicate that during tryptophan depletion, unlike HeLa, C33A cells generate sufficient intracellular tryptophan via proteasomal activity to permit C. trachomatis replication. By generating stable derivatives of C33A that expressed HPV16 E6, E7 or E6 & E7, we found that E6 expression alone was sufficient to convert C33A cells to behave like HeLa during tryptophan starvation. The reduced tryptophan levels in HeLa cells have a biological consequence; akin to the previously described effect of IFNγ, tryptophan starvation protects C. trachomatis from clearance by doxycycline in HeLa but not C33A cells. Curiously, when compared to the known Homo sapiens proteome, the representation of tryptophan in the HR-HPV E6 & E6AP degradome is substantially lower, possibly providing a mechanism that underlies the lowered intracellular free tryptophan levels in E6-expressing cells during starvation. PMID:27658027

  15. MicroRNAs and targets in senescent litchi fruit during ambient storage and post-cold storage shelf life.

    PubMed

    Yao, Furong; Zhu, Hong; Yi, Chun; Qu, Hongxia; Jiang, Yueming

    2015-07-16

    Litchi has a high commercial value due to its bright color and rich nutrients. However, it deteriorates with the pericarp turning brown within 1-2 days after harvest. The factors that mediate litchi fruit senescence are complicated. MicroRNAs act as negative regulators involved in almost every physiological process. To understand the mechanism of litchi fruit senescence and pericarp browning at the miRNA level, five small RNA libraries and a degradome library prepared from the pericarp of litchi fruit subjected to ambient storage and post-cold storage shelf life were sequenced. By aligning the sRNA reads onto the litchi unigene assembly, 296 miRNAs belonging to 49 known miRNA families were first identified from litchi. In addition, 11 litchi-specific miRNAs were identified. Among these, 167 known miRNAs were identified to cleave 197 targets, and three litchi-specific miRNAs were found to have five targets. Through combined analysis of stem-loop quantitative real-time polymerase chain reaction (qRT-PCR) and transcriptome profiling, 14 miRNA-target pairs were found to be actively involved in litchi fruit senescence-related processes, including energy regulation, anthocyanin metabolism, hormone signaling, and pathogen-infection defense. A network of miRNA-targets that regulate litchi fruit senescence has been proposed, revealing the miRNA-mediated regulation in senescent litchi fruit. This will aid in developing new strategies to postpone the senescence of litchi fruit and other horticultural products.

  16. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.

    PubMed

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M

    2010-05-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases.

  17. Multiplex N-terminome Analysis of MMP-2 and MMP-9 Substrate Degradomes by iTRAQ-TAILS Quantitative Proteomics*

    PubMed Central

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S.; Overall, Christopher M.

    2010-01-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses using iTRAQ-TAILS links gelatinases with new mechanisms of action in angiogenesis and reveals unpredicted restrictions in substrate repertoires for these two very similar proteases. PMID:20305284

  18. Complex pectin metabolism by gut bacteria reveals novel catalytic functions

    PubMed Central

    Baslé, Arnaud; Gray, Joseph; Venditto, Immacolata; Briggs, Jonathon; Zhang, Xiaoyang; Labourel, Aurore; Terrapon, Nicolas; Buffetto, Fanny; Nepogodiev, Sergey; Xiao, Yao; Field, Robert A.; Zhu, Yanping; O’Neil, Malcolm A.; Urbanowicz, Breeana R.; York, William S.; Davies, Gideon J.; Abbott, D. Wade; Ralet, Marie-Christine; Martens, Eric C.; Henrissat, Bernard; Gilbert, Harry J.

    2017-01-01

    Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron utilizes the most structurally complex glycan known; the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but one of its 21 distinct glycosidic linkages. We show that rhamnogalacturonan-II side-chain and backbone deconstruction are coordinated, to overcome steric constraints, and that degradation reveals previously undiscovered enzyme families and novel catalytic activities. The degradome informs revision of the current structural model of RG-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycans in the human diet. PMID:28329766

  19. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiac allograft gene expression profiling test... Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a) Identification. A cardiac allograft gene expression profiling test system is a device that measures the...

  20. Technical variables in high-throughput miRNA expression profiling: much work remains to be done.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang

    2008-11-01

    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.

  1. The UEA Small RNA Workbench: A Suite of Computational Tools for Small RNA Analysis.

    PubMed

    Mohorianu, Irina; Stocks, Matthew Benedict; Applegate, Christopher Steven; Folkes, Leighton; Moulton, Vincent

    2017-01-01

    RNA silencing (RNA interference, RNAi) is a complex, highly conserved mechanism mediated by short, typically 20-24 nt in length, noncoding RNAs known as small RNAs (sRNAs). They act as guides for the sequence-specific transcriptional and posttranscriptional regulation of target mRNAs and play a key role in the fine-tuning of biological processes such as growth, response to stresses, or defense mechanism.High-throughput sequencing (HTS) technologies are employed to capture the expression levels of sRNA populations. The processing of the resulting big data sets facilitated the computational analysis of the sRNA patterns of variation within biological samples such as time point experiments, tissue series or various treatments. Rapid technological advances enable larger experiments, often with biological replicates leading to a vast amount of raw data. As a result, in this fast-evolving field, the existing methods for sequence characterization and prediction of interaction (regulatory) networks periodically require adapting or in extreme cases, a complete redesign to cope with the data deluge. In addition, the presence of numerous tools focused only on particular steps of HTS analysis hinders the systematic parsing of the results and their interpretation.The UEA small RNA Workbench (v1-4), described in this chapter, provides a user-friendly, modular, interactive analysis in the form of a suite of computational tools designed to process and mine sRNA datasets for interesting characteristics that can be linked back to the observed phenotypes. First, we show how to preprocess the raw sequencing output and prepare it for downstream analysis. Then we review some quality checks that can be used as a first indication of sources of variability between samples. Next we show how the Workbench can provide a comparison of the effects of different normalization approaches on the distributions of expression, enhanced methods for the identification of differentially expressed transcripts and a summary of their corresponding patterns. Finally we describe individual analysis tools such as PAREsnip, for the analysis of PARE (degradome) data or CoLIde for the identification of sRNA loci based on their expression patterns and the visualization of the results using the software. We illustrate the features of the UEA sRNA Workbench on Arabidopsis thaliana and Homo sapiens datasets.

  2. Identification of Hepsin and Protein Disulfide Isomerase A3 as Targets of Gelatinolytic Action in Rat Ovarian Granulosa Cells During the Periovulatory Period1

    PubMed Central

    Rosewell, Katherine; Al-Alem, Linah; Li, Feixue; Kelty, Brian; Curry, Thomas E.

    2011-01-01

    The matrix metalloproteinase (MMP) family is believed to play a role in the ovulatory process because MMP inhibitors block oocyte release. However, little is known about the mechanisms by which the MMPs affect ovulation. The present study investigated the degradomic actions of the gelatinases, MMP2 and MMP9, by identifying gelatinolytic targets in periovulatory granulosa cells. Granulosa cells were collected from immature rats 48 h after equine chorionic gonadotropin treatment and were cultured with human chorionic gonadotropin (hCG) in the absence or presence of a specific MMP2/9 inhibitor ((2R)-2-[(4-biphenylylsulfonyl)amino]-3-phenylpropionic acid) for an additional 24 h. The conditioned media was analyzed for gelatinolytic activity, progesterone, and peptide profiles. Gelatinolytic activity and progesterone were induced in response to hCG; however, there was no difference in progesterone between cells treated with or without the inhibitor. Peptide fragments of proteins altered in the presence of the gelatinase inhibitor were identified by two-dimensional gel electrophoresis and mass spectrometry. Protein disulfide isomerase A3 (PDIA3), which plays a role in protein folding, was identified as a peptide that decreased in the presence of inhibitor while the serine protease hepsin, was found to increase with inhibitor treatment. Subsequent experiments established that PDIA3 and hepsin were targets of MMP2/9 action by cleavage with MMP2 and Western blot analysis, respectively. Additionally, hepsin was identified as a gelatinolytic target in ovarian cancer cells. In the present study, proteomics has identified proteins that may be involved in novel ways in the complex cascades that are mediated by gelatinolytic MMPs during the periovulatory period. PMID:21734266

  3. Identification of hepsin and protein disulfide isomerase A3 as targets of gelatinolytic action in rat ovarian granulosa cells during the periovulatory period.

    PubMed

    Rosewell, Katherine; Al-Alem, Linah; Li, Feixue; Kelty, Brian; Curry, Thomas E

    2011-10-01

    The matrix metalloproteinase (MMP) family is believed to play a role in the ovulatory process because MMP inhibitors block oocyte release. However, little is known about the mechanisms by which the MMPs affect ovulation. The present study investigated the degradomic actions of the gelatinases, MMP2 and MMP9, by identifying gelatinolytic targets in periovulatory granulosa cells. Granulosa cells were collected from immature rats 48 h after equine chorionic gonadotropin treatment and were cultured with human chorionic gonadotropin (hCG) in the absence or presence of a specific MMP2/9 inhibitor ((2R)-2-[(4-biphenylylsulfonyl)amino]-3-phenylpropionic acid) for an additional 24 h. The conditioned media was analyzed for gelatinolytic activity, progesterone, and peptide profiles. Gelatinolytic activity and progesterone were induced in response to hCG; however, there was no difference in progesterone between cells treated with or without the inhibitor. Peptide fragments of proteins altered in the presence of the gelatinase inhibitor were identified by two-dimensional gel electrophoresis and mass spectrometry. Protein disulfide isomerase A3 (PDIA3), which plays a role in protein folding, was identified as a peptide that decreased in the presence of inhibitor while the serine protease hepsin, was found to increase with inhibitor treatment. Subsequent experiments established that PDIA3 and hepsin were targets of MMP2/9 action by cleavage with MMP2 and Western blot analysis, respectively. Additionally, hepsin was identified as a gelatinolytic target in ovarian cancer cells. In the present study, proteomics has identified proteins that may be involved in novel ways in the complex cascades that are mediated by gelatinolytic MMPs during the periovulatory period.

  4. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    PubMed

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  5. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.

    PubMed

    He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang

    2017-11-06

    Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  6. Early diffusion of gene expression profiling in breast cancer patients associated with areas of high income inequality.

    PubMed

    Ponce, Ninez A; Ko, Michelle; Liang, Su-Ying; Armstrong, Joanne; Toscano, Michele; Chanfreau-Coffinier, Catherine; Haas, Jennifer S

    2015-04-01

    With the Affordable Care Act reducing coverage disparities, social factors could prominently determine where and for whom innovations first diffuse in health care markets. Gene expression profiling is a potentially cost-effective innovation that guides chemotherapy decisions in early-stage breast cancer, but adoption has been uneven across the United States. Using a sample of commercially insured women, we evaluated whether income inequality in metropolitan areas was associated with receipt of gene expression profiling during its initial diffusion in 2006-07. In areas with high income inequality, gene expression profiling receipt was higher than elsewhere, but it was associated with a 10.6-percentage-point gap between high- and low-income women. In areas with low rates of income inequality, gene expression profiling receipt was lower, with no significant differences by income. Even among insured women, income inequality may indirectly shape diffusion of gene expression profiling, with benefits accruing to the highest-income patients in the most unequal places. Policies reducing gene expression profiling disparities should address low-inequality areas and, in unequal places, practice settings serving low-income patients. Project HOPE—The People-to-People Health Foundation, Inc.

  7. RNA-Stabilized Whole Blood Samples but Not Peripheral Blood Mononuclear Cells Can Be Stored for Prolonged Time Periods Prior to Transcriptome Analysis

    PubMed Central

    Debey-Pascher, Svenja; Hofmann, Andrea; Kreusch, Fatima; Schuler, Gerold; Schuler-Thurner, Beatrice; Schultze, Joachim L.; Staratschek-Jox, Andrea

    2011-01-01

    Microarray-based transcriptome analysis of peripheral blood as surrogate tissue has become an important approach in clinical implementations. However, application of gene expression profiling in routine clinical settings requires careful consideration of the influence of sample handling and RNA isolation methods on gene expression profile outcome. We evaluated the effect of different sample preservation strategies (eg, cryopreservation of peripheral blood mononuclear cells or freezing of PAXgene-stabilized whole blood samples) on gene expression profiles. Expression profiles obtained from cryopreserved peripheral blood mononuclear cells differed substantially from those of their nonfrozen counterpart samples. Furthermore, expression profiles in cryopreserved peripheral blood mononuclear cell samples were found to undergo significant alterations with increasing storage period, whereas long-term freezing of PAXgene RNA stabilized whole blood samples did not significantly affect stability of gene expression profiles. This report describes important technical aspects contributing toward the establishment of robust and reliable guidance for gene expression studies using peripheral blood and provides a promising strategy for reliable implementation in routine handling for diagnostic purposes. PMID:21704280

  8. Deep sequencing leads to the identification of eukaryotic translation initiation factor 5A as a key element in Rsv1-mediated lethal systemic hypersensitive response to Soybean mosaic virus infection in soybean.

    PubMed

    Chen, Hui; Adam Arsovski, Andrej; Yu, Kangfu; Wang, Aiming

    2017-04-01

    Rsv1, a single dominant resistance locus in soybean, confers extreme resistance to the majority of Soybean mosaic virus (SMV) strains, but is susceptible to the G7 strain. In Rsv1-genotype soybean, G7 infection provokes a lethal systemic hypersensitive response (LSHR), a delayed host defence response. The Rsv1-mediated LSHR signalling pathway remains largely unknown. In this study, we employed a genome-wide investigation to gain an insight into the molecular interplay between SMV G7 and Rsv1-genotype soybean. Small RNA (sRNA), degradome and transcriptome sequencing analyses were used to identify differentially expressed genes (DEGs) and microRNAs (DEMs) in response to G7 infection. A number of DEGs, DEMs and microRNA targets, and the interaction network of DEMs and their target mRNAs responsive to G7 infection, were identified. Knock-down of one of the identified DEGs, the eukaryotic translation initiation factor 5A (eIF5A), diminished the LSHR and enhanced viral accumulation, suggesting the essential role of eIF5A in the G7-induced, Rsv1-mediated LSHR signalling pathway. This work provides an in-depth genome-wide analysis of high-throughput sequencing data, and identifies multiple genes and microRNA signatures that are associated with the Rsv1-mediated LSHR. © 2016 HER MAJESTY THE QUEEN IN RIGHT OF CANADA MOLECULAR PLANT PATHOLOGY © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. iRhom2 regulates CSF1R cell surface expression and non-steady state myelopoiesis in mice.

    PubMed

    Qing, Xiaoping; Rogers, Lindsay; Mortha, Arthur; Lavin, Yonit; Redecha, Patricia; Issuree, Priya D; Maretzky, Thorsten; Merad, Miriam; McIlwain, David; Mak, Tak W; Overall, Christopher M; Blobel, Carl P; Salmon, Jane E

    2016-12-01

    CSF1R (colony stimulating factor 1 receptor) is the main receptor for CSF1 and has crucial roles in regulating myelopoeisis. CSF1R can be proteolytically released from the cell surface by ADAM17 (A disintegrin and metalloprotease 17). Here, we identified CSF1R as a major substrate of ADAM17 in an unbiased degradomics screen. We explored the impact of CSF1R shedding by ADAM17 and its upstream regulator, inactive rhomboid protein 2 (iRhom2, gene name Rhbdf2), on homeostatic development of mouse myeloid cells. In iRhom2-/- mice, we found constitutive accumulation of membrane-bound CSF1R on myeloid cells at steady state, although cell numbers of these populations were not altered. However, in the context of mixed bone marrow (BM) chimera, under competitive pressure, iRhom2-/- BM progenitor-derived monocytes, tissue macrophages and lung DCs showed a repopulation advantage over those derived from wild-type (WT) BM progenitors, suggesting enhanced CSF1R signaling in the absence of iRhom2. In vitro experiments indicate that iRhom2-/- Lin - SCA-1 + c-Kit + (LSKs) cells, but not granulocyte-macrophage progenitors (GMPs), had faster growth rates than WT cells in response to CSF1. Our results shed light on an important role of iRhom2/ADAM17 pathway in regulation of CSF1R shedding and repopulation of monocytes, macrophages and DCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. iRhom2 regulates cell surface expression of CSF1R and non-steady state myelopoiesis in mice

    PubMed Central

    Qing, Xiaoping; Lavin, Yonit; Redecha, Patricia; Issuree, Priya D.; Maretzky, Thorsten; Merad, Miriam; McIlwain, David; Mak, Tak W.; Overall, Christopher M.

    2016-01-01

    The colony stimulating factor 1 receptor (CSF1R) functions as the major receptor for macrophage colony stimulating factor (CSF1) with crucial roles in regulating myelopoeisis. CSF1R can be proteolytically released from the cell surface by A disintegrin and metalloprotease 17 (ADAM17). Here we identified CSF1R as a major substrate of ADAM17 in an unbiased degradomics screen. We explored the impact of CSF1R shedding by ADAM17 and its upstream regulator, inactive rhomboid protein 2 (iRhom2, gene name Rhbdf2), on homeostatic development of mouse myeloid cells. In iRhom2−/− mice, we found constitutive accumulation of membrane-bound CSF1R on myeloid cells at steady state, although cell numbers of these populations were not altered. However, in the context of mixed bone marrow (BM) chimera, under competitive pressure, iRhom2−/− BM progenitor-derived monocytes, tissue macrophages and lung DCs showed a repopulation advantage over those derived from wild type (WT) BM progenitors, suggesting enhanced CSF1R signaling in the absence of iRhom2. In vitro experiments indicate that iRhom2−/− Lin−SCA-1+c-Kit+ (LSKs) cells, but not granulocyte-macrophage progenitors (GMPs), had faster growth rates than WT cells in response to CSF1. Our results shed light on an important role of iRhom2/ADAM17 pathway in regulation of CSF1R shedding and repopulation of monocytes, macrophages and DCs. PMID:27601030

  11. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179

  12. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

    PubMed Central

    Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W

    2007-01-01

    Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588

  13. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone

    PubMed Central

    Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P

    2009-01-01

    Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908

  14. Mass spectrometry based proteomics: existing capabilities and future directions

    PubMed Central

    Angel, Thomas E.; Aryal, Uma K.; Hengel, Shawna M.; Baker, Erin S.; Kelly, Ryan T.; Robinson, Errol W.; Smith, Richard D.

    2012-01-01

    Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics is increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health. PMID:22498958

  15. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome.

    PubMed

    Haebig, Eileen; Sterling, Audra

    2017-02-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD.

  16. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome

    PubMed Central

    Sterling, Audra

    2016-01-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD. PMID:27796729

  17. Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect

    NASA Astrophysics Data System (ADS)

    Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos

    1997-05-01

    The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.

  18. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Profiling of Benign and Malignant Nerve Sheath

    DTIC Science & Technology

    2007-05-01

    Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients PRINCIPAL INVESTIGATOR: Matt van de Rijn, M.D., Ph.D. Torsten...Annual 3. DATES COVERED 1 May 2006 –30 Apr 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genomic and Expression Profiling of Benign and Malignant Nerve...Award Number: DAMD17-03-1-0297 Title: Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis

  20. Degradomic and yeast 2-hybrid inactive catalytic domain substrate trapping identifies new membrane-type 1 matrix metalloproteinase (MMP14) substrates: CCN3 (Nov) and CCN5 (WISP2).

    PubMed

    Butler, Georgina S; Connor, Andrea R; Sounni, Nor Eddine; Eckhard, Ulrich; Morrison, Charlotte J; Noël, Agnès; Overall, Christopher M

    2017-05-01

    Members of the CCN family of matricellular proteins are cytokines linking cells to the extracellular matrix. We report that CCN3 (Nov) and CCN5 (WISP2) are novel substrates of MMP14 (membrane-type 1-matrix metalloproteinase, MT1-MMP) that we identified using MMP14 "inactive catalytic domain capture" (ICDC) as a yeast two-hybrid protease substrate trapping platform in parallel with degradomics mass spectrometry screens for MMP14 substrates. CCN3 and CCN5, previously unknown substrates of MMPs, were biochemically validated as substrates of MMP14 and other MMPs in vitro-CCN5 was processed in the variable region by MMP14 and MMP2, as well as by MMP1, 3, 7, 8, 9 and 15. CCN1, 2 and 3 are proangiogenic factors yet we found novel opposing activity of CCN5 that was potently antiangiogenic in an aortic ring vessel outgrowth model. MMP14, a known regulator of angiogenesis, cleaved CCN5 and abrogated the angiostatic activity. CCN3 was also processed in the variable region by MMP14 and MMP2, and by MMP1, 8 and 9. In addition to the previously reported cleavages of CCN1 and CCN2 by several MMPs we found that MMPs 8, 9, and 1 process CCN1, and MMP8 and MMP9 also process CCN2. Thus, our study reveals additional and pervasive family-wide processing of CCN matricellular proteins/cytokines by MMPs. Furthermore, CCN5 cleavage by proangiogenic MMPs results in removal of an angiogenic brake held by CCN5. This highlights the importance of thorough dissection of MMP substrates that is needed to reveal higher-level control mechanisms beyond type IV collagen and other extracellular matrix protein remodelling in angiogenesis. We find CCN family member cleavage by MMPs is more pervasive than previously reported and includes CCN3 (Nov) and CCN5 (WISP2). CCN5 is a novel antiangiogenic factor, whose function is abrogated by proangiogenic MMP cleavage. By processing CCN proteins, MMPs regulate cell responses angiogenesis in connective tissues. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Gene expression inference with deep learning.

    PubMed

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-06-15

    Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Gene expression inference with deep learning

    PubMed Central

    Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui

    2016-01-01

    Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929

  3. PROFILES OF GENE EXPRESSION ASSOCIATED WITH TETRACYCLINE OVER EXPRESSION OF HSP70 IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory

    Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells.

    Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...

  4. Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas.

    PubMed

    Hiramatsu, Kosuke; Yoshino, Kiyoshi; Serada, Satoshi; Yoshihara, Kosuke; Hori, Yumiko; Fujimoto, Minoru; Matsuzaki, Shinya; Egawa-Takata, Tomomi; Kobayashi, Eiji; Ueda, Yutaka; Morii, Eiichi; Enomoto, Takayuki; Naka, Tetsuji; Kimura, Tadashi

    2016-03-01

    Ovarian and endometrial high-grade serous carcinomas (HGSCs) have similar clinical and pathological characteristics; however, exhaustive protein expression profiling of these cancers has yet to be reported. We performed protein expression profiling on 14 cases of HGSCs (7 ovarian and 7 endometrial) and 18 endometrioid carcinomas (9 ovarian and 9 endometrial) using iTRAQ-based exhaustive and quantitative protein analysis. We identified 828 tumour-expressed proteins and evaluated the statistical similarity of protein expression profiles between ovarian and endometrial HGSCs using unsupervised hierarchical cluster analysis (P<0.01). Using 45 statistically highly expressed proteins in HGSCs, protein ontology analysis detected two enriched terms and proteins composing each term: IMP2 and MCM2. Immunohistochemical analyses confirmed the higher expression of IMP2 and MCM2 in ovarian and endometrial HGSCs as well as in tubal and peritoneal HGSCs than in endometrioid carcinomas (P<0.01). The knockdown of either IMP2 or MCM2 by siRNA interference significantly decreased the proliferation rate of ovarian HGSC cell line (P<0.01). We demonstrated the statistical similarity of the protein expression profiles of ovarian and endometrial HGSC beyond the organs. We suggest that increased IMP2 and MCM2 expression may underlie some of the rapid HGSC growth observed clinically.

  5. Structure-related clustering of gene expression fingerprints of thp-1 cells exposed to smaller polycyclic aromatic hydrocarbons.

    PubMed

    Wan, B; Yarbrough, J W; Schultz, T W

    2008-01-01

    This study was undertaken to test the hypothesis that structurally similar PAHs induce similar gene expression profiles. THP-1 cells were exposed to a series of 12 selected PAHs at 50 microM for 24 hours and gene expressions profiles were analyzed using both unsupervised and supervised methods. Clustering analysis of gene expression profiles revealed that the 12 tested chemicals were grouped into five clusters. Within each cluster, the gene expression profiles are more similar to each other than to the ones outside the cluster. One-methylanthracene and 1-methylfluorene were found to have the most similar profiles; dibenzothiophene and dibenzofuran were found to share common profiles with fluorine. As expression pattern comparisons were expanded, similarity in genomic fingerprint dropped off dramatically. Prediction analysis of microarrays (PAM) based on the clustering pattern generated 49 predictor genes that can be used for sample discrimination. Moreover, a significant analysis of Microarrays (SAM) identified 598 genes being modulated by tested chemicals with a variety of biological processes, such as cell cycle, metabolism, and protein binding and KEGG pathways being significantly (p < 0.05) affected. It is feasible to distinguish structurally different PAHs based on their genomic fingerprints, which are mechanism based.

  6. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    PubMed

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.

  7. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.

    PubMed

    Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora

    2017-01-01

    Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.

  8. GENE EXPRESSION PROFILES IN ARSENIC-TREATED MCF-7 BREAST CANCER CELLS EXPRESSING DIFFERENT LEVELS OF HSP70

    EPA Science Inventory

    Gene expression profiles in arsenic-treated MCF-7 breast cancer cells expressing different levels of HSP70

    Gail Nelson, Susan Hester, Ernest Winkfield, Jill Barnes, James Allen
    Environmental Carcinogenesis Division, NHEERL, ORD, US Environmental Protection Agency, Rese...

  9. iPcc: a novel feature extraction method for accurate disease class discovery and prediction

    PubMed Central

    Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi

    2013-01-01

    Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440

  10. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    PubMed Central

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  11. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease.

    PubMed

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.

  12. Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure

    PubMed Central

    Dong, Fan; Xu, Tianyuan; Shen, Yifan; Zhong, Shan; Chen, Shanwen; Ding, Qiang; Shen, Zhoujun

    2017-01-01

    Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease. PMID:28187437

  13. Molecular profiles of pre- and postoperative breast cancer tumours reveal differentially expressed genes.

    PubMed

    Riis, Margit L H; Lüders, Torben; Markert, Elke K; Haakensen, Vilde D; Nesbakken, Anne-Jorun; Kristensen, Vessela N; Bukholm, Ida R K

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology.

  14. Molecular Profiles of Pre- and Postoperative Breast Cancer Tumours Reveal Differentially Expressed Genes

    PubMed Central

    Riis, Margit L. H.; Lüders, Torben; Markert, Elke K.; Haakensen, Vilde D.; Nesbakken, Anne-Jorun; Kristensen, Vessela N.; Bukholm, Ida R. K.

    2012-01-01

    Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology. PMID:23227362

  15. Expression profiles of antimicrobial peptides (AMPs) and their regulation by Relish

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Fuhua; Li, Shihao; Wen, Rong; Xiang, Jianhai

    2012-07-01

    Antimicrobial peptides (AMPs), as key immune effectors, play important roles in the innate immune system of invertebrates. Different types of AMPs, including Penaeidin, Crustin, ALF (antilipopolysaccharide factor) have been identified in different penaeid shrimp; however, systematic analyses on the function of different AMPs in shrimp responsive to different types of bacteria are very limited. In this study, we analyzed the expression profiles of AMPs in the Chinese shrimps, Fenneropenaeus chinensis, simultaneously by real-time RT-PCR (reverse transcription-polymerase chain reaction) when shrimp were challenged with Micrococcus lysodeikticus (Gram-positive, G+) or Vibrio anguillarium (Gram-negative, G-). Different AMPs showed different expression profiles when shrimp were injected with one type of bacterium, and one AMP also showed different expression profiles when shrimp were challenged with different bacteria. Furthermore, the expression of these AMPs showed temporal expression profiles, suggesting that different AMPs function coordinately in bacteria-infected shrimp. An RNA interference approach was used to study the function of the Relish transcription factor in regulating the transcription of different AMPs. The current study showed that Relish could regulate the transcription of different AMPs in shrimp. Differential expression profiles of AMPs in shrimp injected with different types of bacteria indicated that a complicated antimicrobial response network existed in shrimp. These data contribute to our understanding of immunity in shrimp and may provide a strategy for the control of disease in shrimp.

  16. Trichocystatin-2 (TC-2): an endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39.

    PubMed

    Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana

    2014-09-01

    The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants.

    PubMed

    Meng, Yijun; Shao, Chaogang; Wang, Huizhong; Jin, Yongfeng

    2012-05-21

    MicroRNAs (miRNAs) play an essential role in gene regulation in plants. At the same time, the expression of miRNA genes is also tightly controlled. Recently, a novel mechanism called "target mimicry" was discovered, providing another layer for modulating miRNA activities. However, except for the artificial target mimics manipulated for functional studies on certain miRNA genes, only one example, IPS1 (Induced by Phosphate Starvation 1)-miR399 was experimentally confirmed in planta. To date, few analyses for comprehensive identification of natural target mimics have been performed in plants. Thus, limited evidences are available to provide detailed information for interrogating the questionable issue whether target mimicry was widespread in planta, and implicated in certain biological processes. In this study, genome-wide computational prediction of endogenous miRNA mimics was performed in Arabidopsis and rice, and dozens of target mimics were identified. In contrast to a recent report, the densities of target mimic sites were found to be much higher within the untranslated regions (UTRs) when compared to those within the coding sequences (CDSs) in both plants. Some novel sequence characteristics were observed for the miRNAs that were potentially regulated by the target mimics. GO (Gene Ontology) term enrichment analysis revealed some functional insights into the predicted mimics. After degradome sequencing data-based identification of miRNA targets, the regulatory networks constituted by target mimics, miRNAs and their downstream targets were constructed, and some intriguing subnetworks were further exploited. These results together suggest that target mimicry may be widely implicated in regulating miRNA activities in planta, and we hope this study could expand the current understanding of miRNA-involved regulatory networks.

  18. Baculovirus induced transcripts in hemocytes from Heliothis virescens

    USDA-ARS?s Scientific Manuscript database

    Using RNA-sequencing digital difference expression profiling methods we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcri...

  19. Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions

    PubMed Central

    Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.

    2005-01-01

    Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080

  20. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  1. Integrated analysis of long noncoding RNA and mRNA expression profile in children with obesity by microarray analysis.

    PubMed

    Liu, Yuesheng; Ji, Yuqiang; Li, Min; Wang, Min; Yi, Xiaoqing; Yin, Chunyan; Wang, Sisi; Zhang, Meizhen; Zhao, Zhao; Xiao, Yanfeng

    2018-06-08

    Long noncoding RNAs (lncRNAs) have an important role in adipose tissue function and energy metabolism homeostasis, and abnormalities may lead to obesity. To investigate whether lncRNAs are involved in childhood obesity, we investigated the differential expression profile of lncRNAs in obese children compared with non-obese children. A total number of 1268 differentially expressed lncRNAs and 1085 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis revealed that these lncRNAs were involved in varied biological processes, including the inflammatory response, lipid metabolic process, osteoclast differentiation and fatty acid metabolism. In addition, the lncRNA-mRNA co-expression network and the protein-protein interaction (PPI) network were constructed to identify hub regulatory lncRNAs and genes based on the microarray expression profiles. This study for the first time identifies an expression profile of differentially expressed lncRNAs in obese children and indicated hub lncRNA RP11-20G13.3 attenuated adipogenesis of preadipocytes, which is conducive to the search for new diagnostic and therapeutic strategies of childhood obesity.

  2. Gene Expression Profiling Predicts the Development of Oral Cancer

    PubMed Central

    Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li

    2011-01-01

    Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develope multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinico-pathological risk factors. Based on the gene expression profile data, we also identified 2182 transcripts significantly associated with oral cancer risk associated genes (P-value<0.01, single variate Cox proportional hazards model). Functional pathway analysis revealed proteasome machinery, MYC, and ribosomes components as the top gene sets associated with oral cancer risk. In multiple independent datasets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. PMID:21292635

  3. Integrated lipidomics and transcriptomic analysis of peripheral blood reveals significantly enriched pathways in type 2 diabetes mellitus.

    PubMed

    Zhao, Chen; Mao, Jinghe; Ai, Junmei; Shenwu, Ming; Shi, Tieliu; Zhang, Daqing; Wang, Xiaonan; Wang, Yunliang; Deng, Youping

    2013-01-01

    Insulin resistance is a key element in the pathogenesis of type 2 diabetes mellitus. Plasma free fatty acids were assumed to mediate the insulin resistance, while the relationship between lipid and glucose disposal remains to be demonstrated across liver, skeletal muscle and blood. We profiled both lipidomics and gene expression of 144 total peripheral blood samples, 84 from patients with T2D and 60 from healthy controls. Then, factor and partial least squares models were used to perform a combined analysis of lipidomics and gene expression profiles to uncover the bioprocesses that are associated with lipidomic profiles in type 2 diabetes. According to factor analysis of the lipidomic profile, several species of lipids were found to be correlated with different phenotypes, including diabetes-related C23:2CE, C23:3CE, C23:4CE, ePE36:4, ePE36:5, ePE36:6; race-related (African-American) PI36:1; and sex-related PE34:1 and LPC18:2. The major variance of gene expression profile was not caused by known factors and no significant difference can be directly derived from differential gene expression profile. However, the combination of lipidomic and gene expression analyses allows us to reveal the correlation between the altered lipid profile with significantly enriched pathways, such as one carbon pool by folate, arachidonic acid metabolism, insulin signaling pathway, amino sugar and nucleotide sugar metabolism, propanoate metabolism, and starch and sucrose metabolism. The genes in these pathways showed a good capability to classify diabetes samples. Combined analysis of gene expression and lipidomic profiling reveals type 2 diabetes-associated lipid species and enriched biological pathways in peripheral blood, while gene expression profile does not show direct correlation. Our findings provide a new clue to better understand the mechanism of disordered lipid metabolism in association with type 2 diabetes.

  4. Divergence between motoneurons: gene expression profiling provides a molecular characterization of functionally discrete somatic and autonomic motoneurons

    PubMed Central

    Cui, Dapeng; Dougherty, Kimberly J.; Machacek, David W.; Sawchuk, Michael; Hochman, Shawn; Baro, Deborah J.

    2009-01-01

    Studies in the developing spinal cord suggest that different motoneuron (MN) cell types express very different genetic programs, but the degree to which adult programs differ is unknown. To compare genetic programs between adult MN columnar cell types, we used laser capture micro-dissection (LCM) and Affymetrix microarrays to create expression profiles for three columnar cell types: lateral and medial MNs from lumbar segments and sympathetic preganglionic motoneurons located in the thoracic intermediolateral nucleus. A comparison of the three expression profiles indicated that ~7% (813/11,552) of the genes showed significant differences in their expression levels. The largest differences were observed between sympathetic preganglionic MNs and the lateral motor column, with 6% (706/11,552) of the genes being differentially expressed. Significant differences in expression were observed for 1.8% (207/11,552) of the genes when comparing sympathetic preganglionic MNs with the medial motor column. Lateral and medial MNs showed the least divergence, with 1.3% (150/11,552) of the genes being differentially expressed. These data indicate that the amount of divergence in expression profiles between identified columnar MNs does not strictly correlate with divergence of function as defined by innervation patterns (somatic/muscle vs. autonomic/viscera). Classification of the differentially expressed genes with regard to function showed that they underpin all fundamental cell systems and processes, although most differentially expressed genes encode proteins involved in signal transduction. Mining the expression profiles to examine transcription factors essential for MN development suggested that many of the same transcription factors participatein combinatorial codes in embryonic and adult neurons, but patterns of expression change significantly. PMID:16317082

  5. Face in profile view reduces perceived facial expression intensity: an eye-tracking study.

    PubMed

    Guo, Kun; Shaw, Heather

    2015-02-01

    Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A method to identify differential expression profiles of time-course gene data with Fourier transformation

    PubMed Central

    2013-01-01

    Background Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. Results This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization. The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Conclusions Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics. PMID:24134721

  7. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors

    PubMed Central

    Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-01-01

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279

  8. Loss of ATRX, associated with DNA methylation pattern of chromosome end, impacted biological behaviors of astrocytic tumors.

    PubMed

    Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao

    2015-07-20

    Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.

  9. Employing machine learning for reliable miRNA target identification in plants

    PubMed Central

    2011-01-01

    Background miRNAs are ~21 nucleotide long small noncoding RNA molecules, formed endogenously in most of the eukaryotes, which mainly control their target genes post transcriptionally by interacting and silencing them. While a lot of tools has been developed for animal miRNA target system, plant miRNA target identification system has witnessed limited development. Most of them have been centered around exact complementarity match. Very few of them considered other factors like multiple target sites and role of flanking regions. Result In the present work, a Support Vector Regression (SVR) approach has been implemented for plant miRNA target identification, utilizing position specific dinucleotide density variation information around the target sites, to yield highly reliable result. It has been named as p-TAREF (plant-Target Refiner). Performance comparison for p-TAREF was done with other prediction tools for plants with utmost rigor and where p-TAREF was found better performing in several aspects. Further, p-TAREF was run over the experimentally validated miRNA targets from species like Arabidopsis, Medicago, Rice and Tomato, and detected them accurately, suggesting gross usability of p-TAREF for plant species. Using p-TAREF, target identification was done for the complete Rice transcriptome, supported by expression and degradome based data. miR156 was found as an important component of the Rice regulatory system, where control of genes associated with growth and transcription looked predominant. The entire methodology has been implemented in a multi-threaded parallel architecture in Java, to enable fast processing for web-server version as well as standalone version. This also makes it to run even on a simple desktop computer in concurrent mode. It also provides a facility to gather experimental support for predictions made, through on the spot expression data analysis, in its web-server version. Conclusion A machine learning multivariate feature tool has been implemented in parallel and locally installable form, for plant miRNA target identification. The performance was assessed and compared through comprehensive testing and benchmarking, suggesting a reliable performance and gross usability for transcriptome wide plant miRNA target identification. PMID:22206472

  10. Employing machine learning for reliable miRNA target identification in plants.

    PubMed

    Jha, Ashwani; Shankar, Ravi

    2011-12-29

    miRNAs are ~21 nucleotide long small noncoding RNA molecules, formed endogenously in most of the eukaryotes, which mainly control their target genes post transcriptionally by interacting and silencing them. While a lot of tools has been developed for animal miRNA target system, plant miRNA target identification system has witnessed limited development. Most of them have been centered around exact complementarity match. Very few of them considered other factors like multiple target sites and role of flanking regions. In the present work, a Support Vector Regression (SVR) approach has been implemented for plant miRNA target identification, utilizing position specific dinucleotide density variation information around the target sites, to yield highly reliable result. It has been named as p-TAREF (plant-Target Refiner). Performance comparison for p-TAREF was done with other prediction tools for plants with utmost rigor and where p-TAREF was found better performing in several aspects. Further, p-TAREF was run over the experimentally validated miRNA targets from species like Arabidopsis, Medicago, Rice and Tomato, and detected them accurately, suggesting gross usability of p-TAREF for plant species. Using p-TAREF, target identification was done for the complete Rice transcriptome, supported by expression and degradome based data. miR156 was found as an important component of the Rice regulatory system, where control of genes associated with growth and transcription looked predominant. The entire methodology has been implemented in a multi-threaded parallel architecture in Java, to enable fast processing for web-server version as well as standalone version. This also makes it to run even on a simple desktop computer in concurrent mode. It also provides a facility to gather experimental support for predictions made, through on the spot expression data analysis, in its web-server version. A machine learning multivariate feature tool has been implemented in parallel and locally installable form, for plant miRNA target identification. The performance was assessed and compared through comprehensive testing and benchmarking, suggesting a reliable performance and gross usability for transcriptome wide plant miRNA target identification.

  11. A microcosm of musical expression: II. Quantitative analysis of pianists' dynamics in the initial measures of Chopin's Etude in E major.

    PubMed

    Repp, B H

    1999-03-01

    Patterns of expressive dynamics were measured in bars 1-5 of 115 commercially recorded performances of Chopin's Etude in E major, op. 10, No. 3. The grand average pattern (or dynamic profile) was representative of many performances and highly similar to the average dynamic profile of a group of advanced student performances, which suggests a widely shared central norm of expressive dynamics. The individual dynamic profiles were subjected to principal components analysis, which yielded Varimax-rotated components, each representing a different, nonstandard dynamic profile associated with a small subset of performances. Most performances had dynamic patterns resembling a mixture of several components, and no clustering of of performances into distinct groups was apparent. Some weak relationships of dynamic profiles with sociocultural variables were found, most notably a tendency of female pianists to exhibit a greater dynamic range in the melody. Within the melody, there were no significant relationships between expressive timing [Repp, J. Acoust. Soc. Am. 104, 1085-1100 (1998)] and expressive dynamics. These two important dimensions seemed to be controlled independently at this local level and thus offer the artist many degrees of freedom in giving a melody expressive shape.

  12. Medroxyprogesterone acetate-treated human, primary endometrial epithelial cells reveal unique gene expression signature linked to innate immunity and HIV-1 susceptibility.

    PubMed

    Woods, Matthew W; Zahoor, Muhammad Atif; Dizzell, Sara; Verschoor, Chris P; Kaushic, Charu

    2018-01-01

    Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. DEVELOPMENT OF PROTEIN PROFILE TECHNOLOGY TO EVALUATE ECOLOGICAL EFFECTS OF ENVIRONMENTAL CHEMICALS USING A SMALL FISH MODEL

    EPA Science Inventory

    The rationale for this research is: i) Protein expression changes with life stage, disease, tissue type and environmental stressors; ii) Technology allows rapid analysis of large numbers of proteins to provide protein expression profiles; iii) Protein profiles are used as specifi...

  14. Variation-preserving normalization unveils blind spots in gene expression profiling

    PubMed Central

    Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.

    2017-01-01

    RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435

  15. Gene expression profiling of intestinal regeneration in the sea cucumber

    PubMed Central

    Ortiz-Pineda, Pablo A; Ramírez-Gómez, Francisco; Pérez-Ortiz, Judit; González-Díaz, Sebastián; Santiago-De Jesús, Francisco; Hernández-Pasos, Josue; Del Valle-Avila, Cristina; Rojas-Cartagena, Carmencita; Suárez-Castillo, Edna C; Tossas, Karen; Méndez-Merced, Ana T; Roig-López, José L; Ortiz-Zuazaga, Humberto; García-Arrarás, José E

    2009-01-01

    Background Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools. For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. Results In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. Conclusion Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes. PMID:19505337

  16. Two different protein expression profiles of oral squamous cell carcinoma analyzed by immunoprecipitation high-performance liquid chromatography.

    PubMed

    Kim, Soung Min; Jeong, Dasul; Kim, Min Keun; Lee, Sang Shin; Lee, Suk Keun

    2017-08-08

    Oral squamous cell carcinoma (OSCC) is one of the most dangerous cancers in the body, producing serious complications with individual behaviors. Many different pathogenetic factors are involved in the carcinogenesis of OSCC. Cancer cells derived from oral keratinocytes can produce different carcinogenic signaling pathways through differences in protein expression, but their protein expression profiles cannot be easily explored with ordinary detection methods. The present study compared the protein expression profiles between two different types of OSCCs, which were analyzed through immunoprecipitation high-performance liquid chromatography (IP-HPLC). Two types of squamous cell carcinoma (SCC) occurred in a mandibular (SCC-1) and maxillary gingiva (SCC-2), but their clinical features and progression were quite different from each other. SCC-1 showed a large gingival ulceration with severe halitosis and extensive bony destruction, while SCC-2 showed a relatively small papillary gingival swelling but rapidly grew to form a large submucosal mass, followed by early cervical lymph node metastasis. In the histological observation, SCC-1 was relatively well differentiated with a severe inflammatory reaction, while SCC-2 showed severely infiltrative growth of each cancer islets accompanied with a mild inflammatory reaction. IP-HPLC analysis revealed contrary protein expression profiles analyzed by 72 different oncogenic proteins. SCC-1 showed more cellular apoptosis and invasive growth than SCC-2 through increased expression of caspases, MMPs, p53 signaling, FAS signaling, TGF-β1 signaling, and angiogenesis factors, while SCC-2 showed more cellular growth and survival than SCC-1 through the increased expression of proliferating factors, RAS signaling, eIF5A signaling, WNT signaling, and survivin. The increased trends of cellular apoptosis and invasiveness in the protein expression profiles of SCC-1 were implicative of its extensive gingival ulceration and bony destruction, while the increased trends of cellular proliferation and survival in the protein profile of SCC-2 were implicative of its rapid growing tumor mass and early lymph node metastasis. These analyses of the essential oncogenic protein expression profiles in OSCC provide important information for genetic counseling or customized gene therapy in cancer treatment. Therefore, protein expression profile analysis through IP-HPLC is helpful not only for the molecular genetic diagnosis of cancer but also in identifying target molecules for customized gene therapy in near future.

  17. Local Context Finder (LCF) reveals multidimensional relationships among mRNA expression profiles of Arabidopsis responding to pathogen infection

    PubMed Central

    Katagiri, Fumiaki; Glazebrook, Jane

    2003-01-01

    A major task in computational analysis of mRNA expression profiles is definition of relationships among profiles on the basis of similarities among them. This is generally achieved by pattern recognition in the distribution of data points representing each profile in a high-dimensional space. Some drawbacks of commonly used pattern recognition algorithms stem from their use of a globally linear space and/or limited degrees of freedom. A pattern recognition method called Local Context Finder (LCF) is described here. LCF uses nonlinear dimensionality reduction for pattern recognition. Then it builds a network of profiles based on the nonlinear dimensionality reduction results. LCF was used to analyze mRNA expression profiles of the plant host Arabidopsis interacting with the bacterial pathogen Pseudomonas syringae. In one case, LCF revealed two dimensions essential to explain the effects of the NahG transgene and the ndr1 mutation on resistant and susceptible responses. In another case, plant mutants deficient in responses to pathogen infection were classified on the basis of LCF analysis of their profiles. The classification by LCF was consistent with the results of biological characterization of the mutants. Thus, LCF is a powerful method for extracting information from expression profile data. PMID:12960373

  18. Analyzing gene expression time-courses based on multi-resolution shape mixture model.

    PubMed

    Li, Ying; He, Ye; Zhang, Yu

    2016-11-01

    Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Gene set differential analysis of time course expression profiles via sparse estimation in functional logistic model with application to time-dependent biomarker detection.

    PubMed

    Kayano, Mitsunori; Matsui, Hidetoshi; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2016-04-01

    High-throughput time course expression profiles have been available in the last decade due to developments in measurement techniques and devices. Functional data analysis, which treats smoothed curves instead of originally observed discrete data, is effective for the time course expression profiles in terms of dimension reduction, robustness, and applicability to data measured at small and irregularly spaced time points. However, the statistical method of differential analysis for time course expression profiles has not been well established. We propose a functional logistic model based on elastic net regularization (F-Logistic) in order to identify the genes with dynamic alterations in case/control study. We employ a mixed model as a smoothing method to obtain functional data; then F-Logistic is applied to time course profiles measured at small and irregularly spaced time points. We evaluate the performance of F-Logistic in comparison with another functional data approach, i.e. functional ANOVA test (F-ANOVA), by applying the methods to real and synthetic time course data sets. The real data sets consist of the time course gene expression profiles for long-term effects of recombinant interferon β on disease progression in multiple sclerosis. F-Logistic distinguishes dynamic alterations, which cannot be found by competitive approaches such as F-ANOVA, in case/control study based on time course expression profiles. F-Logistic is effective for time-dependent biomarker detection, diagnosis, and therapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  1. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  2. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  3. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...

  4. Expression and secretory profile of buffalo fetal fibroblasts and Wharton's jelly feeder layers.

    PubMed

    Parmar, Mehtab S; Mishra, Smruti Ranjan; Somal, Anjali; Pandey, Sriti; Kumar, G Sai; Sarkar, Mihir; Chandra, Vikash; Sharma, G Taru

    2017-05-01

    The present study examined the comparative expression and secretory profile of vital signaling molecules in buffalo fetal fibroblasts (BFF) and Wharton's jelly (BWJ) feeder layers at different passages. Both feeder layers were expanded up to 8th passage. Signaling molecules viz. bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF) and transforming growth factor beta 1 (TGFB1) and pluripotency-associated transcriptional factors (POU5F1, SOX2, NANOG, KLF4, MYC and FOXD3) were immunolocalized in the both feeder types. A clear variation in the expression pattern of key signaling molecules with passaging was registered in both feeders compared to primary culture (0 passage). The conditioned media (CM) was collected from different passages (2, 4, 6, 8) of both the feeder layers and was quantified using enzyme-linked immunosorbent assay (ELISA). Concomitant to expression profile, protein quantification also revealed differences in the concentration of signaling molecules at different time points. Conjointly, expression and secretory profile revealed that 2nd passage of BFF and 6th passage of BWJ exhibit optimal levels of key signaling molecules thus may be selected as best passages for embryonic stem cells (ESCs) propagation. Further, the effect of mitomycin-C (MMC) treatment on the expression profile of signaling molecules in the selected passages of BFF and BWJ revealed that MMC modulates the expression profile of these molecules. In conclusion, the results indicate that feeder layers vary in expression and secretory pattern of vital signaling molecules with passaging. Based on these findings, the appropriate feeder passages may be selected for the quality propagation of buffalo ESCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gene expression profiling via LongSAGE in a non-model plant species: a case study in seeds of Brassica napus

    PubMed Central

    Obermeier, Christian; Hosseini, Bashir; Friedt, Wolfgang; Snowdon, Rod

    2009-01-01

    Background Serial analysis of gene expression (LongSAGE) was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus). The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP). Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species. PMID:19575793

  6. Gene Expression Profiles of Chlamydophila pneumoniae during the Developmental Cycle and Iron Depletion–Mediated Persistence

    PubMed Central

    Mäurer, André P; Mehlitz, Adrian; Mollenkopf, Hans J; Meyer, Thomas F

    2007-01-01

    The obligate intracellular, gram-negative bacterium Chlamydophila pneumoniae (Cpn) has impact as a human pathogen. Little is known about changes in the Cpn transcriptome during its biphasic developmental cycle (the acute infection) and persistence. The latter stage has been linked to chronic diseases. To analyze Cpn CWL029 gene expression, we designed a pathogen-specific oligo microarray and optimized the extraction method for pathogen RNA. Throughout the acute infection, ratio expression profiles for each gene were generated using 48 h post infection as a reference. Based on these profiles, significantly expressed genes were separated into 12 expression clusters using self-organizing map clustering and manual sorting into the “early”, “mid”, “late”, and “tardy” cluster classes. The latter two were differentiated because the “tardy” class showed steadily increasing expression at the end of the cycle. The transcriptome of the Cpn elementary body (EB) and published EB proteomics data were compared to the cluster profile of the acute infection. We found an intriguing association between “late” genes and genes coding for EB proteins, whereas “tardy” genes were mainly associated with genes coding for EB mRNA. It has been published that iron depletion leads to Cpn persistence. We compared the gene expression profiles during iron depletion–mediated persistence with the expression clusters of the acute infection. This led to the finding that establishment of iron depletion–mediated persistence is more likely a mid-cycle arrest in development rather than a completely distinct gene expression pattern. Here, we describe the Cpn transcriptome during the acute infection, differentiating “late” genes, which correlate to EB proteins, and “tardy” genes, which lead to EB mRNA. Expression profiles during iron mediated–persistence led us to propose the hypothesis that the transcriptomic “clock” is arrested during acute mid-cycle. PMID:17590080

  7. A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors

    DTIC Science & Technology

    2015-10-01

    1 Award Number: W81XWH-10-1-0585 TITLE: A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors...TITLE AND SUBTITLE A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors 5a. CONTRACT NUMBER W81XWH...BRCAlike, i.e. not HR deficient and are resistant to PARPis but are sensitive to platinum . These tumors exhibit alterations in another DNA repair

  8. Identification and handling of artifactual gene expression profiles emerging in microarray hybridization experiments

    PubMed Central

    Brodsky, Leonid; Leontovich, Andrei; Shtutman, Michael; Feinstein, Elena

    2004-01-01

    Mathematical methods of analysis of microarray hybridizations deal with gene expression profiles as elementary units. However, some of these profiles do not reflect a biologically relevant transcriptional response, but rather stem from technical artifacts. Here, we describe two technically independent but rationally interconnected methods for identification of such artifactual profiles. Our diagnostics are based on detection of deviations from uniformity, which is assumed as the main underlying principle of microarray design. Method 1 is based on detection of non-uniformity of microarray distribution of printed genes that are clustered based on the similarity of their expression profiles. Method 2 is based on evaluation of the presence of gene-specific microarray spots within the slides’ areas characterized by an abnormal concentration of low/high differential expression values, which we define as ‘patterns of differentials’. Applying two novel algorithms, for nested clustering (method 1) and for pattern detection (method 2), we can make a dual estimation of the profile’s quality for almost every printed gene. Genes with artifactual profiles detected by method 1 may then be removed from further analysis. Suspicious differential expression values detected by method 2 may be either removed or weighted according to the probabilities of patterns that cover them, thus diminishing their input in any further data analysis. PMID:14999086

  9. Dynamic transcriptomic analysis in hircine longissimus dorsi muscle from fetal to neonatal development stages.

    PubMed

    Zhan, Siyuan; Zhao, Wei; Song, Tianzeng; Dong, Yao; Guo, Jiazhong; Cao, Jiaxue; Zhong, Tao; Wang, Linjie; Li, Li; Zhang, Hongping

    2018-01-01

    Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.

  10. Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence.

    PubMed

    Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun

    2015-01-01

    There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.

  11. Bioorthogonal Metabolic Labeling of Nascent RNA in Neurons Improves the Sensitivity of Transcriptome-Wide Profiling.

    PubMed

    Zajaczkowski, Esmi L; Zhao, Qiong-Yi; Zhang, Zong Hong; Li, Xiang; Wei, Wei; Marshall, Paul R; Leighton, Laura J; Nainar, Sarah; Feng, Chao; Spitale, Robert C; Bredy, Timothy W

    2018-06-15

    Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.

  12. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling.

    PubMed

    Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T

    2009-05-01

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.

  13. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype.

    PubMed

    Blenkiron, Cherie; Goldstein, Leonard D; Thorne, Natalie P; Spiteri, Inmaculada; Chin, Suet-Feung; Dunning, Mark J; Barbosa-Morais, Nuno L; Teschendorff, Andrew E; Green, Andrew R; Ellis, Ian O; Tavaré, Simon; Caldas, Carlos; Miska, Eric A

    2007-01-01

    MicroRNAs (miRNAs), a class of short non-coding RNAs found in many plants and animals, often act post-transcriptionally to inhibit gene expression. Here we report the analysis of miRNA expression in 93 primary human breast tumors, using a bead-based flow cytometric miRNA expression profiling method. Of 309 human miRNAs assayed, we identify 133 miRNAs expressed in human breast and breast tumors. We used mRNA expression profiling to classify the breast tumors as luminal A, luminal B, basal-like, HER2+ and normal-like. A number of miRNAs are differentially expressed between these molecular tumor subtypes and individual miRNAs are associated with clinicopathological factors. Furthermore, we find that miRNAs could classify basal versus luminal tumor subtypes in an independent data set. In some cases, changes in miRNA expression correlate with genomic loss or gain; in others, changes in miRNA expression are likely due to changes in primary transcription and or miRNA biogenesis. Finally, the expression of DICER1 and AGO2 is correlated with tumor subtype and may explain some of the changes in miRNA expression observed. This study represents the first integrated analysis of miRNA expression, mRNA expression and genomic changes in human breast cancer and may serve as a basis for functional studies of the role of miRNAs in the etiology of breast cancer. Furthermore, we demonstrate that bead-based flow cytometric miRNA expression profiling might be a suitable platform to classify breast cancer into prognostic molecular subtypes.

  14. Gene Expression Profiling of Peripheral Blood From Kidney Transplant Recipients for the Early Detection of Digestive System Cancer.

    PubMed

    Kusaka, M; Okamoto, M; Takenaka, M; Sasaki, H; Fukami, N; Kataoka, K; Ito, T; Kenmochi, T; Hoshinaga, K; Shiroki, R

    2017-06-01

    Kidney transplant recipients are at increased risk of developing cancer in comparison with the general population. To effectively manage post-transplantation malignancies, it is essential to proactively monitor patients. A long-term intensive screening program was associated with a reduced incidence of cancer after transplantation. This study evaluated the usefulness of the gene expression profiling of peripheral blood samples obtained from kidney transplant patients and adopted a screening test for detecting cancer of the digestive system (gastric, colon, pancreas, and biliary tract). Nineteen patients were included in this study and a total of 53 gene expression screening tests were performed. The gene expression profiles of blood-delivered total RNA and whole genome human gene expression profiles were obtained. We investigated the expression levels of 2665 genes associated with digestive cancers and counted the number of genes in which expression was altered. A hierarchical clustering analysis was also performed. The final prediction of the cancer possibility was determined according to an algorithm. The number of genes in which expression was altered was significantly increased in the kidney transplant recipients in comparison with the general population (1091 ± 63 vs 823 ± 94; P = .0024). The number of genes with altered expression decreased after the induction of mechanistic target of rapamycin (mTOR) inhibitor (1484 ± 227 vs 883 ± 154; P = .0439). No cases of possible digestive cancer were detected in this study period. The gene expression profiling of peripheral blood samples may be a useful and noninvasive diagnostic tool that allows for the early detection of cancer of the digestive system. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge.

    PubMed

    Kaneko, Kunihiko

    2011-06-01

    Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells. Copyright © 2011 WILEY Periodicals, Inc.

  16. Gene expression profiling of single cells on large-scale oligonucleotide arrays

    PubMed Central

    Hartmann, Claudia H.; Klein, Christoph A.

    2006-01-01

    Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717

  17. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.

  18. Expression profiling of the mouse early embryo: Reflections and Perspectives

    PubMed Central

    Ko, Minoru S. H.

    2008-01-01

    Laboratory mouse plays important role in our understanding of early mammalian development and provides invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over last two decades, have provided even more advantages to mouse models. Here the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells are reviewed and the future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, which include: bird’s-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks. PMID:16739220

  19. Expression signature as a biomarker for prenatal diagnosis of trisomy 21.

    PubMed

    Volk, Marija; Maver, Aleš; Lovrečić, Luca; Juvan, Peter; Peterlin, Borut

    2013-01-01

    A universal biomarker panel with the potential to predict high-risk pregnancies or adverse pregnancy outcome does not exist. Transcriptome analysis is a powerful tool to capture differentially expressed genes (DEG), which can be used as biomarker-diagnostic-predictive tool for various conditions in prenatal setting. In search of biomarker set for predicting high-risk pregnancies, we performed global expression profiling to find DEG in Ts21. Subsequently, we performed targeted validation and diagnostic performance evaluation on a larger group of case and control samples. Initially, transcriptomic profiles of 10 cultivated amniocyte samples with Ts21 and 9 with normal euploid constitution were determined using expression microarrays. Datasets from Ts21 transcriptomic studies from GEO repository were incorporated. DEG were discovered using linear regression modelling and validated using RT-PCR quantification on an independent sample of 16 cases with Ts21 and 32 controls. The classification performance of Ts21 status based on expression profiling was performed using supervised machine learning algorithm and evaluated using a leave-one-out cross validation approach. Global gene expression profiling has revealed significant expression changes between normal and Ts21 samples, which in combination with data from previously performed Ts21 transcriptomic studies, were used to generate a multi-gene biomarker for Ts21, comprising of 9 gene expression profiles. In addition to biomarker's high performance in discriminating samples from global expression profiling, we were also able to show its discriminatory performance on a larger sample set 2, validated using RT-PCR experiment (AUC=0.97), while its performance on data from previously published studies reached discriminatory AUC values of 1.00. Our results show that transcriptomic changes might potentially be used to discriminate trisomy of chromosome 21 in the prenatal setting. As expressional alterations reflect both, causal and reactive cellular mechanisms, transcriptomic changes may thus have future potential in the diagnosis of a wide array of heterogeneous diseases that result from genetic disturbances.

  20. mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.

    PubMed

    Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-03-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.

  1. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.

    PubMed

    Dvorak, Pavel; Pesta, Martin; Soucek, Pavel

    2017-05-01

    Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.

  2. Cell-specific prediction and application of drug-induced gene expression profiles.

    PubMed

    Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David; Dudley, Joel

    2018-01-01

    Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes.

  3. Cell-specific prediction and application of drug-induced gene expression profiles

    PubMed Central

    Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R.; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David

    2017-01-01

    Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes. PMID:29218867

  4. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients.

    PubMed

    Hezova, Renata; Slaby, Ondrej; Faltejskova, Petra; Mikulkova, Zuzana; Buresova, Ivana; Raja, K R Muthu; Hodek, Jan; Ovesna, Jaroslava; Michalek, Jaroslav

    2010-01-01

    Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs' function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25(hi)+ and CD127- by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p=0.05) and decreased expression of both miRNA-342 (p<0.0001) and miRNA-191 (p=0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.

  5. Stress amplifies sex differences in primate prefrontal profiles of gene expression.

    PubMed

    Lee, Alex G; Hagenauer, Megan; Absher, Devin; Morrison, Kathleen E; Bale, Tracy L; Myers, Richard M; Watson, Stanley J; Akil, Huda; Schatzberg, Alan F; Lyons, David M

    2017-11-02

    Stress is a recognized risk factor for mood and anxiety disorders that occur more often in women than men. Prefrontal brain regions mediate stress coping, cognitive control, and emotion. Here, we investigate sex differences and stress effects on prefrontal cortical profiles of gene expression in squirrel monkey adults. Dorsolateral, ventrolateral, and ventromedial prefrontal cortical regions from 18 females and 12 males were collected after stress or no-stress treatment conditions. Gene expression profiles were acquired using HumanHT-12v4.0 Expression BeadChip arrays adapted for squirrel monkeys. Extensive variation between prefrontal cortical regions was discerned in the expression of numerous autosomal and sex chromosome genes. Robust sex differences were also identified across prefrontal cortical regions in the expression of mostly autosomal genes. Genes with increased expression in females compared to males were overrepresented in mitogen-activated protein kinase and neurotrophin signaling pathways. Many fewer genes with increased expression in males compared to females were discerned, and no molecular pathways were identified. Effect sizes for sex differences were greater in stress compared to no-stress conditions for ventromedial and ventrolateral prefrontal cortical regions but not dorsolateral prefrontal cortex. Stress amplifies sex differences in gene expression profiles for prefrontal cortical regions involved in stress coping and emotion regulation. Results suggest molecular targets for new treatments of stress disorders in human mental health.

  6. RNA Expression Profiles from Blood for the Diagnosis of Stroke and its Causes

    PubMed Central

    Sharp, Frank R; Jickling, Glen C; Stamova, Boryana; Tian, Yingfang; Zhan, Xinhua; Ander, Bradley P; Cox, Christopher; Kuczynski, Beth; Liu, DaZhi

    2013-01-01

    A blood test to detect stroke and its causes would be particularly useful in babies, young children, and patients in intensive care units, and for emergencies when imaging is difficult to obtain or unavailable. Using whole genome microarrays, we first showed specific gene expression profiles in rats 24 hours after ischemic and hemorrhagic stroke, hypoxia, and hypoglycemia. These proof-of-principle studies revealed that groups of genes (called gene profiles) can distinguish ischemic stroke patients from controls 3 hours to 24 hours after the strokes. In addition, gene expression profiles have been developed that distinguish stroke due to large-vessel atherosclerosis from cardioembolic stroke. These profiles will be useful for predicting the causes of cryptogenic stroke. Our results in adults suggest similar diagnostic tools could be developed for children. PMID:21636778

  7. Gene-expression profiling for rejection surveillance after cardiac transplantation.

    PubMed

    Pham, Michael X; Teuteberg, Jeffrey J; Kfoury, Abdallah G; Starling, Randall C; Deng, Mario C; Cappola, Thomas P; Kao, Andrew; Anderson, Allen S; Cotts, William G; Ewald, Gregory A; Baran, David A; Bogaev, Roberta C; Elashoff, Barbara; Baron, Helen; Yee, James; Valantine, Hannah A

    2010-05-20

    Endomyocardial biopsy is the standard method of monitoring for rejection in recipients of a cardiac transplant. However, this procedure is uncomfortable, and there are risks associated with it. Gene-expression profiling of peripheral-blood specimens has been shown to correlate with the results of an endomyocardial biopsy. We randomly assigned 602 patients who had undergone cardiac transplantation 6 months to 5 years previously to be monitored for rejection with the use of gene-expression profiling or with the use of routine endomyocardial biopsies, in addition to clinical and echocardiographic assessment of graft function. We performed a noninferiority comparison of the two approaches with respect to the composite primary outcome of rejection with hemodynamic compromise, graft dysfunction due to other causes, death, or retransplantation. During a median follow-up period of 19 months, patients who were monitored with gene-expression profiling and those who underwent routine biopsies had similar 2-year cumulative rates of the composite primary outcome (14.5% and 15.3%, respectively; hazard ratio with gene-expression profiling, 1.04; 95% confidence interval, 0.67 to 1.68). The 2-year rates of death from any cause were also similar in the two groups (6.3% and 5.5%, respectively; P=0.82). Patients who were monitored with the use of gene-expression profiling underwent fewer biopsies per person-year of follow-up than did patients who were monitored with the use of endomyocardial biopsies (0.5 vs. 3.0, P<0.001). Among selected patients who had received a cardiac transplant more than 6 months previously and who were at a low risk for rejection, a strategy of monitoring for rejection that involved gene-expression profiling, as compared with routine biopsies, was not associated with an increased risk of serious adverse outcomes and resulted in the performance of significantly fewer biopsies. (ClinicalTrials.gov number, NCT00351559.) 2010 Massachusetts Medical Society

  8. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome

    ERIC Educational Resources Information Center

    Haebig, Eileen; Sterling, Audra

    2017-01-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome…

  9. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

    PubMed Central

    2012-01-01

    Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182

  10. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)

    PubMed Central

    Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou

    2009-01-01

    Background MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Results Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). Conclusion We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal. PMID:19785751

  11. MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori).

    PubMed

    Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou

    2009-09-28

    MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.

  12. Distinct profiles of expressed sequence tags during intestinal regeneration in the sea cucumber Holothuria glaberrima

    PubMed Central

    Rojas-Cartagena, Carmencita; Ortíz-Pineda, Pablo; Ramírez-Gómez, Francisco; Suárez-Castillo, Edna C.; Matos-Cruz, Vanessa; Rodríguez, Carlos; Ortíz-Zuazaga, Humberto; García-Arrarás, José E.

    2010-01-01

    Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression. PMID:17579180

  13. Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.

    PubMed

    Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela

    2013-01-01

    Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to retain tight control over excitability under both basal and activated conditions.

  14. Gene Expression Profiling of Monkeypox Virus-Infected Cells Reveals Novel Interfaces for Host-Virus Interactions

    DTIC Science & Technology

    2010-07-28

    expression is plotted on Y -axis after normalization to mock-treated samples. Results plotted to compare calculated fold change in expression of each gene ...RESEARCH Open Access Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions Abdulnaser...suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes

  15. Network-Induced Classification Kernels for Gene Expression Profile Analysis

    PubMed Central

    Dror, Gideon; Shamir, Ron

    2012-01-01

    Abstract Computational classification of gene expression profiles into distinct disease phenotypes has been highly successful to date. Still, robustness, accuracy, and biological interpretation of the results have been limited, and it was suggested that use of protein interaction information jointly with the expression profiles can improve the results. Here, we study three aspects of this problem. First, we show that interactions are indeed relevant by showing that co-expressed genes tend to be closer in the network of interactions. Second, we show that the improved performance of one extant method utilizing expression and interactions is not really due to the biological information in the network, while in another method this is not the case. Finally, we develop a new kernel method—called NICK—that integrates network and expression data for SVM classification, and demonstrate that overall it achieves better results than extant methods while running two orders of magnitude faster. PMID:22697242

  16. Integrated analysis of numerous heterogeneous gene expression profiles for detecting robust disease-specific biomarkers and proposing drug targets.

    PubMed

    Amar, David; Hait, Tom; Izraeli, Shai; Shamir, Ron

    2015-09-18

    Genome-wide expression profiling has revolutionized biomedical research; vast amounts of expression data from numerous studies of many diseases are now available. Making the best use of this resource in order to better understand disease processes and treatment remains an open challenge. In particular, disease biomarkers detected in case-control studies suffer from low reliability and are only weakly reproducible. Here, we present a systematic integrative analysis methodology to overcome these shortcomings. We assembled and manually curated more than 14,000 expression profiles spanning 48 diseases and 18 expression platforms. We show that when studying a particular disease, judicious utilization of profiles from other diseases and information on disease hierarchy improves classification quality, avoids overoptimistic evaluation of that quality, and enhances disease-specific biomarker discovery. This approach yielded specific biomarkers for 24 of the analyzed diseases. We demonstrate how to combine these biomarkers with large-scale interaction, mutation and drug target data, forming a highly valuable disease summary that suggests novel directions in disease understanding and drug repurposing. Our analysis also estimates the number of samples required to reach a desired level of biomarker stability. This methodology can greatly improve the exploitation of the mountain of expression profiles for better disease analysis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Modelling gene expression profiles related to prostate tumor progression using binary states

    PubMed Central

    2013-01-01

    Background Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression. Methods We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets. Results We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings. Conclusions Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies. PMID:23721350

  18. Lex-SVM: exploring the potential of exon expression profiling for disease classification.

    PubMed

    Yuan, Xiongying; Zhao, Yi; Liu, Changning; Bu, Dongbo

    2011-04-01

    Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon in a gene. Compared with gene expression profiling technologies like 3' array, exon expression profiling technologies could detect alterations in both transcription and alternative splicing, therefore they are expected to be more sensitive in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant correlation among features. Ignoring the correlation structure among exons of a gene, a popular classification method like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation, we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm, including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can select features group-wisely, force features in a subgroup to take equal weihts and exclude the features that contradict the majority in the subgroup. Experimental results suggest that on exon expression profile, Lex-SVM is more accurate than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a gene as possible, lending itself easier for further interpretation.

  19. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    PubMed Central

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  20. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    PubMed

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+) T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+) T-cells, whereas it is produced de novo in resting CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  1. CHANGES IN GENE EXPRESSION PROFILE FOLLOWING SHORT-TERM EXPOSURE TO AN ENVIRONMENTALLY RELEVANT MIXTURE OF PHAHS

    EPA Science Inventory

    Changes in gene expression profile following short-term exposure to an environmentally relevant mixture of PHAHs
    Polyhalogenated aromatic hydrocarbons (PHAH) including, polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDS) and polychlorinated dibenzofurans...

  2. The changes of gene expression profiling between segmental vitiligo, generalized vitiligo and healthy individual.

    PubMed

    Wang, Ping; Li, Yong; Nie, Huiqiong; Zhang, Xiaoyan; Shao, Qiongyan; Hou, Xiuli; Xu, Wen; Hong, Weisong; Xu, Aie

    2016-10-01

    Vitiligo is a common acquired depigmentation skin disease characterized by loss or dysfunction of melanocytes within the skin lesion, but its pathologenesis is far from lucid. The gene expression profiling of segmental vitiligo (SV) and generalized vitiligo (GV) need further investigation. To better understanding the common and distinct factors, especially in the view of gene expression profile, which were involved in the diseases development and maintenance of segmental vitiligo (SV) and generalized vitiligo (GV). Peripheral bloods were collected from SV, GV and healthy individual (HI), followed by leukocytes separation and total RNA extraction. The high-throughput whole genome expression microarrays were used to assay the gene expression profiles between HI, SV and GV. Bioinformatics tools were employed to annotated the biological function of differently expressed genes. Quantitative PCR assay was used to validate the gene expression of array. Compared to HI, 239 over-expressed genes and 175 down-expressed genes detected in SV, 688 over-expressed genes and 560 down-expressed genes were found in GV, following the criteria of log2 (fold change)≥0.585 and P value<0.05. In these differently expressed genes, 60 over-expressed genes and 60 down-expressed genes had similar tendency in SV and GV. Compared to SV, 223 genes were up regulated and 129 genes were down regulated in GV. In the SV with HI as control, the differently expressed genes were mainly involved in the adaptive immune response, cytokine-cytokine receptor interaction, chemokine signaling, focal adhesion and sphingolipid metabolism. The differently expressed genes between GV and HI were mainly involved in the innate immune, autophagy, apoptosis, melanocyte biology, ubiquitin mediated proteolysis and tyrosine metabolism, which was different from SV. While the differently expressed genes between SV and GV were mainly involved in the metabolism pathway of purine, pyrimidine, glycolysis and sphingolipid. Above results suggested that they not only shared part bio-process and signal pathway, but more important, they utilized different biological mechanism in their pathogenesis and maintenance. Our results provide a comprehensive view on the gene expression profiling change between SV and GV especially in the side of leukocytes, and may facilitate the future study on their molecular mechanism and theraputic targets. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes

    PubMed Central

    Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya

    2016-01-01

    Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between the carotenoid profile and the expression of carotenoid-biosynthetic genes is discussed. Finally, recent results of quantitative trait locus (QTL) analyses of carotenoid contents and expression levels of carotenoid-biosynthetic genes in citrus fruit are shown. PMID:27069398

  4. Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data

    PubMed Central

    Zeng, Beiyan; Chen, Yiping P.; Smith, Oscar H.

    2003-01-01

    Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for analysing GEP data and compare its performance with the three most widely-used clustering methods: hierarchical clustering, K-means clustering, and multivariate mixture model-based clustering. Using several methods to measure agreement, between-cluster isolation, and withincluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r2 test, and the profile plot, we have assessed the effectiveness of kernel density clustering for recovering clusters, and its robustness against noise on clustering both simulated and real GEP data. Our results show that the kernel density clustering method has excellent performance in recovering clusters from simulated data and in grouping large real expression profile data sets into compact and well-isolated clusters, and that it is the most robust clustering method for analysing noisy expression profile data compared to the other three methods assessed. PMID:18629292

  5. Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile

    PubMed Central

    Stanberry, Larissa; Mias, George I.; Haynes, Winston; Higdon, Roger; Snyder, Michael; Kolker, Eugene

    2013-01-01

    The integrative personal omics profile (iPOP) is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling. PMID:24958148

  6. Decoherence in yeast cell populations and its implications for genome-wide expression noise.

    PubMed

    Briones, M R S; Bosco, F

    2009-01-20

    Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.

  7. Microarray evaluation of gene expression profiles in inflamed and healthy human dental pulp: the role of IL1beta and CD40 in pulp inflammation.

    PubMed

    Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S

    2012-01-01

    Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.

  8. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  9. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    PubMed

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  10. Global Gene Expression Profiling of the Asymptomatic Bacteriuria Escherichia coli Strain 83972 in the Human Urinary Tract†

    PubMed Central

    Roos, Viktoria; Klemm, Per

    2006-01-01

    Urinary tract infections (UTIs) are an important health problem worldwide, with many million cases each year. Escherichia coli is the most common organism causing UTIs in humans. The asymptomatic bacteriuria E. coli strain 83972 is an excellent colonizer of the human urinary tract, where it causes long-term bladder colonization. The strain has been used for prophylactic purposes in patients prone to more severe and recurrent UTIs. For this study, we used DNA microarrays to monitor the expression profile of strain 83972 in the human urinary tract. Significant differences in expression levels were seen between the in vivo expression profiles of strain 83972 in three patients and the corresponding in vitro expression profiles in lab medium and human urine. The data revealed an in vivo lifestyle of microaerobic growth with respiration of nitrate coupled to degradation of sugar acids and amino acids, with no signs of attachment to host tissues. Interestingly, genes involved in NO protection and metabolism showed significant up-regulation in the patients. This is one of the first studies to address bacterial whole-genome expression in humans and the first study to investigate global gene expression of an E. coli strain in the human urinary tract. PMID:16714589

  11. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients.

    PubMed

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan; Mora-Jensen, Helena; Krogh, Anders; Kohlmann, Alexander; Thiede, Christian; Borregaard, Niels; Bullinger, Lars; Winther, Ole; Theilgaard-Mönch, Kim; Porse, Bo T

    2014-02-06

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal hematopoietic hierarchy, using expression profiles from normal stem/progenitor cells, and next mapped the AML patient samples to this landscape. This allowed us to identify the closest normal counterpart of individual AML samples and determine gene expression changes between cancer and normal. We find the cancer vs normal method (CvN method) to be superior to conventional methods in stratifying AML patients with aberrant karyotype and in identifying common aberrant transcriptional programs with potential importance for AML etiology. Moreover, the CvN method uncovered a novel poor-outcome subtype of normal-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.

  12. A Prognostic Gene Expression Profile That Predicts Circulating Tumor Cell Presence in Breast Cancer Patients

    PubMed Central

    Molloy, Timothy J.; Roepman, Paul; Naume, Bjørn; van't Veer, Laura J.

    2012-01-01

    The detection of circulating tumor cells (CTCs) in the peripheral blood and microarray gene expression profiling of the primary tumor are two promising new technologies able to provide valuable prognostic data for patients with breast cancer. Meta-analyses of several established prognostic breast cancer gene expression profiles in large patient cohorts have demonstrated that despite sharing few genes, their delineation of patients into “good prognosis” or “poor prognosis” are frequently very highly correlated, and combining prognostic profiles does not increase prognostic power. In the current study, we aimed to develop a novel profile which provided independent prognostic data by building a signature predictive of CTC status rather than outcome. Microarray gene expression data from an initial training cohort of 72 breast cancer patients for which CTC status had been determined in a previous study using a multimarker QPCR-based assay was used to develop a CTC-predictive profile. The generated profile was validated in two independent datasets of 49 and 123 patients and confirmed to be both predictive of CTC status, and independently prognostic. Importantly, the “CTC profile” also provided prognostic information independent of the well-established and powerful ‘70-gene’ prognostic breast cancer signature. This profile therefore has the potential to not only add prognostic information to currently-available microarray tests but in some circumstances even replace blood-based prognostic CTC tests at time of diagnosis for those patients already undergoing testing by multigene assays. PMID:22384245

  13. Microarray profiling of gene expression in human adipocytes in response to anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Yoshikawa, Toshikazu; Kojo, Hitoshi; Osawa, Toshihiko

    2006-04-14

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and its gene expression in adipocytes. In this study, we have shown the gene expression profile in human adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The human adipocytes were treated with 100 microM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. Based on the gene expression profile, we demonstrated the significant changes of adipocytokine expression (up-regulation of adiponectin and down-regulation of plasminogen activator inhibitor-1 and interleukin-6). Some of lipid metabolism related genes (uncoupling protein2, acylCoA oxidase1 and perilipin) also significantly induced in both common the C3G or Cy treatment groups. These studies have provided an overview of the gene expression profiles in human adipocytes treated with anthocyanins and demonstrated that anthocyanins can regulate adipocytokine gene expression to ameliorate adipocyte function related with obesity and diabetes that merit further investigation.

  14. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development.

    PubMed

    Tran, Frances; Penniket, Carolyn; Patel, Rohan V; Provart, Nicholas J; Laroche, André; Rowland, Owen; Robert, Laurian S

    2013-06-01

    Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser. © 2013 Her Majesty the Queen in Right of Canada as represented by the Minister of Agriculture and Agri-Food Canada.

  15. Impact of Profiling Technologies in the Understanding of Recombinant Protein Production

    NASA Astrophysics Data System (ADS)

    Vijayendran, Chandran; Flaschel, Erwin

    Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.

  16. Lung tumor diagnosis and subtype discovery by gene expression profiling.

    PubMed

    Wang, Lu-yong; Tu, Zhuowen

    2006-01-01

    The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.

  17. mRNA Expression Profiling of Laser Microbeam Microdissected Cells from Slender Embryonic Structures

    PubMed Central

    Scheidl, Stefan J.; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per

    2002-01-01

    Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-β1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions. PMID:11891179

  18. Comparative expression profile of NOD1/2 and certain acute inflammatory cytokines in thermal-stressed cell culture model of native and crossbred cattle

    NASA Astrophysics Data System (ADS)

    Bhanuprakash, V.; Singh, Umesh; Sengar, Gyanendra Singh; Raja, T. V.; Sajjanar, Basavraj; Alex, Rani; Kumar, Sushil; Alyethodi, R. R.; Kumar, Ashish; Sharma, Ankur; Kumar, Suresh; Bhusan, Bharat; Deb, Rajib

    2017-05-01

    Thermotolerance depends mainly on the health and immune status of the animals. The variation in the immune status of the animals may alter the level of tolerance of animals exposed to heat or cold stress. The present study was conducted to investigate the expression profile of two important nucleotide binding and oligomerization domain receptors (NLRs) (NOD1 and NOD2) and their central signalling molecule RIP2 gene during in vitro thermal-stressed bovine peripheral blood mononuclear cells (PBMCs) of native (Sahiwal) and crossbred (Sahiwal X HF) cattle. We also examined the differential expression profile of certain acute inflammatory cytokines in in vitro thermal-stressed PBMC culture among native and its crossbred counterparts. Results revealed that the expression profile of NOD1/2 positively correlates with the thermal stress, signalling molecule and cytokines. Present findings also highlighted that the expression patterns during thermal stress were comparatively superior among indigenous compared to crossbred cattle which may add references regarding the better immune adaptability of Zebu cattle.

  19. Genomics of NSCLC patients both affirm PD-L1 expression and predict their clinical responses to anti-PD-1 immunotherapy.

    PubMed

    Brogden, Kim A; Parashar, Deepak; Hallier, Andrea R; Braun, Terry; Qian, Fang; Rizvi, Naiyer A; Bossler, Aaron D; Milhem, Mohammed M; Chan, Timothy A; Abbasi, Taher; Vali, Shireen

    2018-02-27

    Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses. We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses. Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses. Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies.

  20. Differential chemokine, chemokine receptor and cytokine expression in Epstein-Barr virus-associated lymphoproliferative diseases.

    PubMed

    Ohshima, Koichi; Karube, Kennosuke; Hamasaki, Makoto; Tutiya, Takeshi; Yamaguchi, Takahiro; Suefuji, Hiroaki; Suzuki, Keiko; Suzumiya, Junji; Ohga, Shouichi; Kikuchi, Masahiro

    2003-08-01

    T cell immunity plays an important role in the clinicopathology of Epstein-Barr virus (EBV)-associated diseases. Acute EBV-induced infectious mononucleosis (IM) is a common self-limiting disease, however, other EBV-associated diseases, including chronic active EBV infection (CAEBV), NK cell lymphoma (NKL), and Hodgkin's lymphoma (HL), exhibit distinct clinical features. Chemokines are members of a family of small-secreted proteins. The relationships between chemokines and the chemokine receptor (R) are thought to be important for selectivity of local immunity. Some chemokines, chemokine R and cytokines closely associate with the T cell subtypes, Th1 and Th2 T cells and cytotoxic cells. To clarify the role of T cell immunity in EBV-associated diseases, we conducted gene expression profiling, using chemokine, chemokine R and cytokine DNA chips. Compared to EBV negative non-specific lymphadenitis, CAEBV and NKL exhibited diffuse down- and up-regulation, respectively, of these gene profiles. IM had a predominantly Th1-type profile, whereas HL had a mixed Th1/Th2-type profile. Reduction of the Th1-type cytokine interferon gamma (IFN-gamma) in CAEBV was confirmed by Reverse transcriptase-polymerase chain reaction, whereas IFN-gamma expression was markedly enhanced in NKL, and moderately enhanced in IM. Compared to IM, CAEBV showed slight elevation of "regulated upon activation, normal T expressed and secreted" (RANTES), but almost all other genes assayed were down-regulated. NKL exhibited elevated expression of numerous genes, particularly IFN-gamma-inducible-10 (IP-10) and monokine induced by IFN-gamma (MIG). HL showed variable elevated and reduced expression of various genes, with increased expression of IL-13 receptor and MIG. Our study demonstrated the enormous potential of gene expression profiling for clarifying the pathogenesis of EBV-associated diseases.

  1. Gene expression profiling in liver and testis of rats to characterize the toxicity of triazole fungicides.

    PubMed

    Tully, Douglas B; Bao, Wenjun; Goetz, Amber K; Blystone, Chad R; Ren, Hongzu; Schmid, Judith E; Strader, Lillian F; Wood, Carmen R; Best, Deborah S; Narotsky, Michael G; Wolf, Douglas C; Rockett, John C; Dix, David J

    2006-09-15

    Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides.

  2. Alteration in gene expression profile and oncogenicity of esophageal squamous cell carcinoma by RIZ1 upregulation.

    PubMed

    Dong, Shang-Wen; Li, Dong; Xu, Cong; Sun, Pei; Wang, Yuan-Guo; Zhang, Peng

    2013-10-07

    To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma (ESCC) cell line TE13. TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+). Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Nude mice were inoculated with TE13 cells to establish ESCC xenografts. After two weeks, the inoculated mice were randomly divided into three groups. Tumors were injected with normal saline, transfection reagent pcDNA3.1(+) and transfection reagent pcDNA3.1(+)/RIZ1, respectively. Tumor development was quantified, and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting. DNA microarray data showed that RIZ1 transfection induced widespread changes in gene expression profile of cell line TE13, with 960 genes upregulated and 1163 downregulated. Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth, decreased tumor size, and increased expression of RIZ1 mRNA compared to control groups. The changes in gene expression profile were also observed in vivo after RIZ1 transfection. Most of the differentially expressed genes were associated with cell development, supervision of viral replication, lymphocyte costimulatory and immune system development in esophageal cells. RIZ1 gene may be involved in multiple cancer pathways, such as cytokine receptor interaction and transforming growth factor beta signaling. The development and progression of esophageal cancer are related to the inactivation of RIZ1. Virus infection may also be an important factor.

  3. [Preliminary analysis of retinal gene expression profile of diabetic rat].

    PubMed

    Mei, Yan; Zhou, Hong-ying; Xiang, Tao; Lu, You-guang; Li, Ai-dong; Tang, En-jie; Yang, Hui-jun

    2005-10-01

    Establishing the retinal gene expression profiles of non-diabetic rat and diabetic rat and comparing the profiles in order to analyze the possible genes related with diabetic retinopathy. The whole retinal transcriptional fragments of non-diabetic rat and 8-week diabetic rat were obtained by restriction fragments differential display-PCR (RFDD-PCR). Bioinformatic analysis of retinal gene expression was performed using soft wares, including Fragment Analysis. After comparison of the expression profiles, the related gene fragments of diabetic retinopathy were initially selected as the target gene of further approach. A total of 3639 significant fragments were obtained. By means of more than 3-fold contrast of fluorescent intensity as the differential expression standard, the authors got 840 differential fragments, accounting for 23.08% of the expressed numbers and including 5 visual related genes, 13 excitatory neruotransmitter genes and 3 inhibitory neurotransmitter genes. At the 8th week, the expression of Rhodopsin kinase, beta-arrestin, Phosducinìrod photoreceptor cGMP-gated channel and Rpe65 as well as iGlu R1-4 were down-regulated. mGluRs and GABA-Rs were all up-regulated, whereas the expression of GlyR was unchanged. These results prompt again that the changes in retinal nervous layer of rat have occurred at an early stage of diabetes. The genes expression pattern of visual related genes and excitatory and inhibitory neurotransmitters in rat diabetic retina have been involved in neuro-dysfunctions of diabetic retina.

  4. Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer.

    PubMed

    Hannemann, Juliane; Oosterkamp, Hendrika M; Bosch, Cathy A J; Velds, Arno; Wessels, Lodewyk F A; Loo, Claudette; Rutgers, Emiel J; Rodenhuis, Sjoerd; van de Vijver, Marc J

    2005-05-20

    At present, clinically useful markers predicting response of primary breast carcinomas to either doxorubicin-cyclophosphamide (AC) or doxorubicin-docetaxel (AD) are lacking. We investigated whether gene expression profiles of the primary tumor could be used to predict treatment response to either of those chemotherapy regimens. Within a single-institution, randomized, phase II trial, patients with locally advanced breast cancer received six courses of either AC (n = 24) or AD (n = 24) neoadjuvant chemotherapy. Gene expression profiles were generated from core-needle biopsies obtained before treatment and correlated with the response of the primary tumor to the chemotherapy administered. Additionally, pretreatment gene expression profiles were compared with those in tumors remaining after chemotherapy. Ten (20%) of 48 patients showed a (near) pathologic complete remission of the primary tumor after treatment. No gene expression pattern correlating with response could be identified for all patients or for the AC or AD groups separately. The comparison of the pretreatment biopsy and the tumor excised after chemotherapy revealed differences in gene expression in tumors that showed a partial remission but not in tumors that did not respond to chemotherapy. No gene expression profile predicting the response of primary breast carcinomas to AC- or AD-based neoadjuvant chemotherapy could be detected in this interim analysis. More subtle differences in gene expression are likely to be present but can only be reliably identified by studying a larger group of patients. Response of a breast tumor to neoadjuvant chemotherapy results in alterations in gene expression.

  5. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    PubMed Central

    2010-01-01

    Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets. PMID:21062462

  6. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles

    PubMed Central

    Uddin, Monica; Wildman, Derek E.; Liu, Guozhen; Xu, Wenbo; Johnson, Robert M.; Hof, Patrick R.; Kapatos, Gregory; Grossman, Lawrence I.; Goodman, Morris

    2004-01-01

    Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000–15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. PMID:14976249

  7. Conditional clustering of temporal expression profiles

    PubMed Central

    Wang, Ling; Montano, Monty; Rarick, Matt; Sebastiani, Paola

    2008-01-01

    Background Many microarray experiments produce temporal profiles in different biological conditions but common cluster techniques are not able to analyze the data conditional on the biological conditions. Results This article presents a novel technique to cluster data from time course microarray experiments performed across several experimental conditions. Our algorithm uses polynomial models to describe the gene expression patterns over time, a full Bayesian approach with proper conjugate priors to make the algorithm invariant to linear transformations, and an iterative procedure to identify genes that have a common temporal expression profile across two or more experimental conditions, and genes that have a unique temporal profile in a specific condition. Conclusion We use simulated data to evaluate the effectiveness of this new algorithm in finding the correct number of clusters and in identifying genes with common and unique profiles. We also use the algorithm to characterize the response of human T cells to stimulations of antigen-receptor signaling gene expression temporal profiles measured in six different biological conditions and we identify common and unique genes. These studies suggest that the methodology proposed here is useful in identifying and distinguishing uniquely stimulated genes from commonly stimulated genes in response to variable stimuli. Software for using this clustering method is available from the project home page. PMID:18334028

  8. Extended Lindhard-Scharf-Schiott Theory for Ion Implantation Profiles Expressed with Pearson Function

    NASA Astrophysics Data System (ADS)

    Suzuki, Kunihiro

    2009-04-01

    Ion implantation profiles are expressed by the Pearson function with first, second, third, and fourth moment parameters of Rp, ΔRp, γ, and β. We derived an analytical model for these profile moments by solving a Lindhard-Scharf-Schiott (LSS) integration equation using perturbation approximation. This analytical model reproduces Monte Carlo data that were well calibrated to reproduce a vast experimental database. The extended LSS theory is vital for instantaneously predicting ion implantation profiles with any combination of incident ions and substrate atoms including their energy dependence.

  9. SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY

    EPA Science Inventory

    Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
    Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...

  10. EXPRESSION PROFILING OF FIVE RAT STRAINS REVEAL TRANSCRIPTIONAL MODES IN THE ANTIGEN PROCESSING PATHWAY

    EPA Science Inventory

    Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...

  11. GENE EXPRESSION PROFILING TO IDENTIFY MECHANISMS OF MALE REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Gene Expression Profiling to Identify Mechanisms of Male Reproductive Toxicity
    David J. Dix
    National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
    Ab...

  12. Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis.

    PubMed

    Niedoszytko, M; Bruinenberg, M; van Doormaal, J J; de Monchy, J G R; Nedoszytko, B; Koppelman, G H; Nawijn, M C; Wijmenga, C; Jassem, E; Elberink, J N G Oude

    2011-05-01

    Anaphylaxis to insect venom (Hymenoptera) is most severe in patients with mastocytosis and may even lead to death. However, not all patients with mastocytosis suffer from anaphylaxis. The aim of the study was to analyze differences in gene expression between patients with indolent systemic mastocytosis (ISM) and a history of insect venom anaphylaxis (IVA) compared to those patients without a history of anaphylaxis, and to determine the predictive use of gene expression profiling. Whole-genome gene expression analysis was performed in peripheral blood cells. Twenty-two adults with ISM were included: 12 with a history of IVA and 10 without a history of anaphylaxis of any kind. Significant differences in single gene expression corrected for multiple testing were found for 104 transcripts (P < 0.05). Gene ontology analysis revealed that the differentially expressed genes were involved in pathways responsible for the development of cancer and focal and cell adhesion suggesting that the expression of genes related to the differentiation state of cells is higher in patients with a history of anaphylaxis. Based on the gene expression profiles, a naïve Bayes prediction model was built identifying patients with IVA. In ISM, gene expression profiles are different between patients with a history of IVA and those without. These findings might reflect a more pronounced mast cells dysfunction in patients without a history of anaphylaxis. Gene expression profiling might be a useful tool to predict the risk of anaphylaxis on insect venom in patients with ISM. Prospective studies are needed to substantiate any conclusions. © 2010 John Wiley & Sons A/S.

  13. Metatranscriptomic profiles of Eastern subterranean termites, Reticulitermes flavipes (Kollar) fed on second generation feedstocks.

    PubMed

    Rajarapu, Swapna Priya; Shreve, Jacob T; Bhide, Ketaki P; Thimmapuram, Jyothi; Scharf, Michael E

    2015-04-22

    Second generation lignocellulosic feedstocks are being considered as an alternative to first generation biofuels that are derived from grain starches and sugars. However, the current pre-treatment methods for second generation biofuel production are inefficient and expensive due to the recalcitrant nature of lignocellulose. In this study, we used the lower termite Reticulitermes flavipes (Kollar), as a model to identify potential pretreatment genes/enzymes specifically adapted for use against agricultural feedstocks. Metatranscriptomic profiling was performed on worker termite guts after feeding on corn stover (CS), soybean residue (SR), or 98% pure cellulose (paper) to identify (i) microbial community, (ii) pathway level and (iii) gene-level responses. Microbial community profiles after CS and SR feeding were different from the paper feeding profile, and protist symbiont abundance decreased significantly in termites feeding on SR and CS relative to paper. Functional profiles after CS feeding were similar to paper and SR; whereas paper and SR showed different profiles. Amino acid and carbohydrate metabolism pathways were downregulated in termites feeding on SR relative to paper and CS. Gene expression analyses showed more significant down regulation of genes after SR feeding relative to paper and CS. Stereotypical lignocellulase genes/enzymes were not differentially expressed, but rather were among the most abundant/constitutively-expressed genes. These results suggest that the effect of CS and SR feeding on termite gut lignocellulase composition is minimal and thus, the most abundantly expressed enzymes appear to encode the best candidate catalysts for use in saccharification of these and related second-generation feedstocks. Further, based on these findings we hypothesize that the most abundantly expressed lignocellulases, rather than those that are differentially expressed have the best potential as pretreatment enzymes for CS and SR feedstocks.

  14. Tensor decomposition-based and principal-component-analysis-based unsupervised feature extraction applied to the gene expression and methylation profiles in the brains of social insects with multiple castes.

    PubMed

    Taguchi, Y-H

    2018-05-08

    Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.

  15. Neighboring Genes Show Correlated Evolution in Gene Expression.

    PubMed

    Ghanbarian, Avazeh T; Hurst, Laurence D

    2015-07-01

    When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Validation of Biomarkers Predictive of Recurrence Following Prostatectomy

    DTIC Science & Technology

    2011-04-14

    Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically...P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically relevant subtypes of

  17. Customizing chemotherapy for colon cancer: the potential of gene expression profiling.

    PubMed

    Mariadason, John M; Arango, Diego; Augenlicht, Leonard H

    2004-06-01

    The value of gene expression profiling, or microarray analysis, for the classification and prognosis of multiple forms of cancer is now clearly established. For colon cancer, expression profiling can readily discriminate between normal and tumor tissue, and to some extent between tumors of different histopathological stage and prognosis. While a definitive in vivo study demonstrating the potential of this methodology for predicting response to chemotherapy is presently lacking, the ability of microarrays to distinguish other subtleties of colon cancer phenotype, as well as recent in vitro proof-of-principle experiments utilizing colon cancer cell lines, illustrate the potential of this methodology for predicting the probability of response to specific chemotherapeutic agents. This review discusses some of the recent advances in the use of microarray analysis for understanding and distinguishing colon cancer subtypes, and attempts to identify challenges that need to be overcome in order to achieve the goal of using gene expression profiling for customizing chemotherapy in colon cancer.

  18. Introducing Cytology-Based Theranostics in Oral Squamous Cell Carcinoma: A Pilot Program.

    PubMed

    Patrikidou, Anna; Valeri, Rosalia Maria; Kitikidou, Kyriaki; Destouni, Charikleia; Vahtsevanos, Konstantinos

    2016-04-01

    We aimed to evaluate the feasibility and reliability of brush cytology in the biomarker expression profiling of oral squamous cell carcinomas within the concept of theranostics, and to correlate this biomarker profile with patient measurable outcomes. Markers representative of prognostic gene expression changes in oral squamous cell carcinoma was selected. These markers were also selected to involve pathways for which commercially available or investigational agents exist for clinical application. A set of 7 markers were analysed by immunocytochemistry on the archival primary tumour material of 99 oral squamous cell carcinoma patients. We confirmed the feasibility of the technique for the expression profiling of oral squamous cell carcinomas. Furthermore, our results affirm the prognostic significance of the epidermal growth factor receptor (EGFR) family and the angiogenic pathway in oral squamous cell carcinoma, confirming their interest for targeted therapy. Brush cytology appears feasible and applicable for the expression profiling of oral squamous cell carcinoma within the concept of theranostics, according to sample availability.

  19. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer

    PubMed Central

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.

    2016-01-01

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072

  20. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer.

    PubMed

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G

    2016-02-29

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.

  1. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    NASA Astrophysics Data System (ADS)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  2. Gene expression profiles characterize early graft response in living donor small bowel transplantation: a case report.

    PubMed

    Bradley, S P; Pahari, M; Uknis, M E; Rastellini, C; Cicalese, L

    2006-01-01

    The cellular and histological events that occur during the regeneration process in invertebrates have been studied in the field of visceral regeneration. We would like to explore the molecular aspects of the regeneration process in the small intestine. The aim of this study was to characterize the gene expression profiles of the intestinal graft to identify which genes may have a role in regeneration of graft tissue posttransplant. In a patient undergoing living related small bowel transplantation (LRSBTx) in our institution, mucosal biopsies were obtained from the recipient intestine and donor graft at the time of transplant and at weeks 1, 2, 3, and 6 posttransplant. Total RNA was isolated from sample biopsies followed by gene expression profiles determined from the replicate samples (n = 3) for each biopsy using the Affymetrix U133 Plus 2.0 Human GeneChip set. Two profiles were obtained from the data. One profile showed rapid increase of 45 genes immediately after transplant by week 1 with significant changes (P < .05) greater than threefold including the chemokine CXC9 and glutathione-related stress factors, GPX2 and GSTA4. The second profile identified 133 genes that were significantly decreased by threefold or greater immediately after transplant week 1, including UCC1, the human homolog of the Ependymin gene. We have identified two gene expression profiles representing early graft responses to small bowel transplantation. These profiles will serve to identify and study those genes whose products may play a role in accelerating tissue regeneration following segmental LRSBTx.

  3. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes

    PubMed Central

    Shvedova, Anna A.; Yanamala, Naveena; Kisin, Elena R.; Khailullin, Timur O.; Birch, M. Eileen; Fatkhutdinova, Liliya M.

    2016-01-01

    Background As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. Methods In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. Results Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. Conclusion This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and miRNAs as prognostic markers of MWCNT exposures in humans. PMID:26930275

  4. Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes

    PubMed Central

    Fu, Jia; Wei, Chengguo; Lee, Kyung; Zhang, Weijia; He, Wu; Chuang, Peter

    2016-01-01

    Evaluating the mRNA profile of podocytes in the diabetic kidney may indicate genes involved in the pathogenesis of diabetic nephropathy. To determine if the podocyte-specific gene information contained in mRNA profiles of the whole glomerulus of the diabetic kidney accurately reflects gene expression in the isolated podocytes, we crossed Nos3−/− IRG mice with podocin-rtTA and TetON-Cre mice for enhanced green fluorescent protein labeling of podocytes before diabetic injury. Diabetes was induced by streptozotocin, and mRNA profiles of isolated glomeruli and sorted podocytes from diabetic and control mice were examined 10 weeks later. Expression of podocyte-specific markers in glomeruli was downregulated in diabetic mice compared with controls. However, expression of these markers was not altered in sorted podocytes from diabetic mice. When mRNA levels of glomeruli were corrected for podocyte number per glomerulus, the differences in podocyte marker expression disappeared. Analysis of the differentially expressed genes in diabetic mice also revealed distinct upregulated pathways in the glomeruli (mitochondrial function, oxidative stress) and in podocytes (actin organization). In conclusion, our data suggest reduced expression of podocyte markers in glomeruli is a secondary effect of reduced podocyte number, thus podocyte-specific gene expression detected in the whole glomerulus may not represent that in podocytes in the diabetic kidney. PMID:26264855

  5. Establishment of a New Quality Control and Vaccine Safety Test for Influenza Vaccines and Adjuvants Using Gene Expression Profiling

    PubMed Central

    Momose, Haruka; Mizukami, Takuo; Kuramitsu, Madoka; Takizawa, Kazuya; Masumi, Atsuko; Araki, Kumiko; Furuhata, Keiko; Yamaguchi, Kazunari; Hamaguchi, Isao

    2015-01-01

    We have previously identified 17 biomarker genes which were upregulated by whole virion influenza vaccines, and reported that gene expression profiles of these biomarker genes had a good correlation with conventional animal safety tests checking body weight and leukocyte counts. In this study, we have shown that conventional animal tests showed varied and no dose-dependent results in serially diluted bulk materials of influenza HA vaccines. In contrast, dose dependency was clearly shown in the expression profiles of biomarker genes, demonstrating higher sensitivity of gene expression analysis than the current animal safety tests of influenza vaccines. The introduction of branched DNA based-concurrent expression analysis could simplify the complexity of multiple gene expression approach, and could shorten the test period from 7 days to 3 days. Furthermore, upregulation of 10 genes, Zbp1, Mx2, Irf7, Lgals9, Ifi47, Tapbp, Timp1, Trafd1, Psmb9, and Tap2, was seen upon virosomal-adjuvanted vaccine treatment, indicating that these biomarkers could be useful for the safety control of virosomal-adjuvanted vaccines. In summary, profiling biomarker gene expression could be a useful, rapid, and highly sensitive method of animal safety testing compared with conventional methods, and could be used to evaluate the safety of various types of influenza vaccines, including adjuvanted vaccine. PMID:25909814

  6. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx; Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com; Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such asmore » adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.« less

  7. Diverse correlation patterns between microRNAs and their targets during tomato fruit development indicates different modes of microRNA actions.

    PubMed

    Lopez-Gomollon, Sara; Mohorianu, Irina; Szittya, Gyorgy; Moulton, Vincent; Dalmay, Tamas

    2012-12-01

    MicroRNAs negatively regulate the accumulation of mRNAs therefore when they are expressed in the same cells their expression profiles show an inverse correlation. We previously described one positively correlated miRNA/target pair, but it is not known how widespread this phenomenon is. Here, we investigated the correlation between the expression profiles of differentially expressed miRNAs and their targets during tomato fruit development using deep sequencing, Northern blot and RT-qPCR. We found an equal number of positively and negatively correlated miRNA/target pairs indicating that positive correlation is more frequent than previously thought. We also found that the correlation between microRNA and target expression profiles can vary between mRNAs belonging to the same gene family and even for the same target mRNA at different developmental stages. Since microRNAs always negatively regulate their targets, the high number of positively correlated microRNA/target pairs suggests that mutual exclusion could be as widespread as temporal regulation. The change of correlation during development suggests that the type of regulatory circuit directed by a microRNA can change over time and can be different for individual gene family members. Our results also highlight potential problems for expression profiling-based microRNA target identification/validation.

  8. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord.

    PubMed

    Ryge, Jesper; Westerdahl, Ann-Charlotte; Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord.

  9. Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord

    PubMed Central

    Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    Background In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. Methodology/Principal Findings We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50–250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. Conclusions/Significance We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord. PMID:18923679

  10. PULMONARY GENE EXPRESSION PROFILES OF SPONTANEOUSLY HYPERTENSIVE RATS EXPOSED TO ENVIRONMENTAL TOBACCO SMOKE (ETS)

    EPA Science Inventory

    Global gene expression profile analysis can be utilized to derive molecular footprints to understand biochemical

    pathways implicated in the origin and progression of disease. Functional genomics efforts with tissue-specific focused

    genearray appears to be the most...

  11. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES.

    EPA Science Inventory

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  12. GENE EXPRESSION PROFILING IN THE LIVER OF CD-1 MICE TO CHARACTERIZE THE HEPATOTOXICITY OF TRIAZOLE FUNGICIDES

    EPA Science Inventory

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...

  13. CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERSENSITIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE

    EPA Science Inventory

    CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERTENSIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE. SS Nadadur UP Kodavanti, Pulmonary Toxicology Branch, ETD, ORD, NHEERL, US Environmental Protection Agency, Research Triangle Park, NC 27711.

  14. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions.

    PubMed

    Quan, Yong; Jin, Yisheng; Faria, Teresa N; Tilford, Charles A; He, Aiqing; Wall, Doris A; Smith, Ronald L; Vig, Balvinder S

    2012-06-18

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5-7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.

  15. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK) Cells Grown under Differentiation Conditions

    PubMed Central

    Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.

    2012-01-01

    The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234

  16. Infrequent and low expression of cancer-testis antigens located on the X chromosome in colorectal cancer: implications for immunotherapy in South African populations.

    PubMed

    Dakshinamurthy, Amirtha Ganesh; Ramesar, Rajkumar; Goldberg, Paul; Blackburn, Jonathan M

    2008-11-01

    Cancer-testis (CT) antigens are a group of tumor antigens that are expressed in the testis and aberrantly in cancerous tissue but not in somatic tissues. The testis is an immune-privileged site because of the presence of a blood-testis barrier; as a result, CT antigens are considered to be essentially tumor specific and are attractive targets for immunotherapy. CT antigens are classified as the CT-X and the non-X CT antigens depending on the chromosomal location to which the genes are mapped. CT-X antigens are typically highly immunogenic and hence the first step towards tailored immunotherapy is to elucidate the expression profile of CT-X antigens in the respective tumors. In this study we investigated the expression profile of 16 CT-X antigen genes in 34 colorectal cancer (CRC) patients using reverse transcription-polymerase chain reaction. We observed that 12 of the 16 CT-X antigen genes studied did not show expression in any of the CRC samples analyzed. The other 4 CT-X antigen genes showed low frequency of expression and exhibited a highly variable expression profile when compared to other populations. Thus, our study forms the first report on the expression profile of CT-X antigen genes among CRC patients in the genetically diverse South African population. The results of our study suggest that genetic and ethnic variations in population might have a role in the expression of the CT-X antigen genes. Thus our results have significant implications for anti-CT antigen-based immunotherapy trials in this population.

  17. Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop.

    PubMed

    Aigner, Achim; Buesen, Roland; Gant, Tim; Gooderham, Nigel; Greim, Helmut; Hackermüller, Jörg; Hubesch, Bruno; Laffont, Madeleine; Marczylo, Emma; Meister, Gunter; Petrick, Jay S; Rasoulpour, Reza J; Sauer, Ursula G; Schmidt, Kerstin; Seitz, Hervé; Slack, Frank; Sukata, Tokuo; van der Vies, Saskia M; Verhaert, Jan; Witwer, Kenneth W; Poole, Alan

    2016-12-01

    The European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) organised a workshop to discuss the state-of-the-art research on noncoding RNAs (ncRNAs) as biomarkers in regulatory toxicology and as analytical and therapeutic agents. There was agreement that ncRNA expression profiling data requires careful evaluation to determine the utility of specific ncRNAs as biomarkers. To advance the use of ncRNA in regulatory toxicology, the following research priorities were identified: (1) Conduct comprehensive literature reviews to identify possibly suitable ncRNAs and areas of toxicology where ncRNA expression profiling could address prevailing scientific deficiencies. (2) Develop consensus on how to conduct ncRNA expression profiling in a toxicological context. (3) Conduct experimental projects, including, e.g., rat (90-day) oral toxicity studies, to evaluate the toxicological relevance of the expression profiles of selected ncRNAs. Thereby, physiological ncRNA expression profiles should be established, including the biological variability of healthy individuals. To substantiate the relevance of key ncRNAs for cell homeostasis or pathogenesis, molecular events should be dose-dependently linked with substance-induced apical effects. Applying a holistic approach, knowledge on ncRNAs, 'omics and epigenetics technologies should be integrated into adverse outcome pathways to improve the understanding of the functional roles of ncRNAs within a regulatory context. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  18. Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects

    PubMed Central

    2012-01-01

    Background Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the correlation among gene expression profiles. We further investigate the advantages and limitations of available models in the literature and propose a new mixture model with autoregressive random effects of the first order for the clustering of time-course gene-expression profiles. Some simulations and real examples are given to demonstrate the usefulness of the proposed models. Results We illustrate the applicability of our new model using synthetic and real time-course datasets. We show that our model outperforms existing models to provide more reliable and robust clustering of time-course data. Our model provides superior results when genetic profiles are correlated. It also gives comparable results when the correlation between the gene profiles is weak. In the applications to real time-course data, relevant clusters of coregulated genes are obtained, which are supported by gene-function annotation databases. Conclusions Our new model under our extension of the EMMIX-WIRE procedure is more reliable and robust for clustering time-course data because it adopts a random effects model that allows for the correlation among observations at different time points. It postulates gene-specific random effects with an autocorrelation variance structure that models coregulation within the clusters. The developed R package is flexible in its specification of the random effects through user-input parameters that enables improved modelling and consequent clustering of time-course data. PMID:23151154

  19. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma.

    PubMed

    Aukema, Sietse M; Kreuz, Markus; Kohler, Christian W; Rosolowski, Maciej; Hasenclever, Dirk; Hummel, Michael; Küppers, Ralf; Lenze, Dido; Ott, German; Pott, Christiane; Richter, Julia; Rosenwald, Andreas; Szczepanowski, Monika; Schwaenen, Carsten; Stein, Harald; Trautmann, Heiko; Wessendorf, Swen; Trümper, Lorenz; Loeffler, Markus; Spang, Rainer; Kluin, Philip M; Klapper, Wolfram; Siebert, Reiner

    2014-04-01

    Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC(+)) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC(+) lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC(+)-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6(+)/MYC(+) and BCL2(+)/MYC(+) double-hit lymphomas. BCL2(+)/MYC(+) double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC(+) lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC(+) lymphomas sharing various molecular characteristics.

  20. Integrating Genomic Analysis with the Genetic Basis of Gene Expression: Preliminary Evidence of the Identification of Causal Genes for Cardiovascular and Metabolic Traits Related to Nutrition in Mexicans123

    PubMed Central

    Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.

    2012-01-01

    Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999

  1. Molecular profiling of the developing avian telencephalon: regional timing and brain subdivision continuities.

    PubMed

    Chen, Chun-Chun; Winkler, Candace M; Pfenning, Andreas R; Jarvis, Erich D

    2013-11-01

    In our companion study (Jarvis et al. [2013] J Comp Neurol. doi: 10.1002/cne.23404) we used quantitative brain molecular profiling to discover that distinct subdivisions in the avian pallium above and below the ventricle and the associated mesopallium lamina have similar molecular profiles, leading to a hypothesis that they may form as continuous subdivisions around the lateral ventricle. To explore this hypothesis, here we profiled the expression of 16 genes at eight developmental stages. The genes included those that define brain subdivisions in the adult and some that are also involved in brain development. We found that phyletic hierarchical cluster and linear regression network analyses of gene expression profiles implicated single and mixed ancestry of these brain regions at early embryonic stages. Most gene expression-defined pallial subdivisions began as one ventral or dorsal domain that later formed specific folds around the lateral ventricle. Subsequently a clear ventricle boundary formed, partitioning them into dorsal and ventral pallial subdivisions surrounding the mesopallium lamina. These subdivisions each included two parts of the mesopallium, the nidopallium and hyperpallium, and the arcopallium and hippocampus, respectively. Each subdivision expression profile had a different temporal order of appearance, similar in timing to the order of analogous cell types of the mammalian cortex. Furthermore, like the mammalian pallium, expression in the ventral pallial subdivisions became distinct during prehatch development, whereas the dorsal portions did so during posthatch development. These findings support the continuum hypothesis of avian brain subdivision development around the ventricle and influence hypotheses on homologies of the avian pallium with other vertebrates. Copyright © 2013 Wiley Periodicals, Inc.

  2. Leader personality and crew effectiveness - A full-mission simulation experiment

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Foushee, H. Clayton

    1989-01-01

    A full-mission simulation research study was completed to assess the impact of individual personality on crew performance. Using a selection algorithm described by Chidester (1987), captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one and one-half day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, Verbal Aggressiveness, and Impatience and Irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.

  3. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells.

    PubMed

    Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund

    2017-05-31

    Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.

  4. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA

    NASA Technical Reports Server (NTRS)

    Polacek, Denise C.; Passerini, Anthony G.; Shi, Congzhu; Francesco, Nadeene M.; Manduchi, Elisabetta; Grant, Gregory R.; Powell, Steven; Bischof, Helen; Winkler, Hans; Stoeckert, Christian J Jr; hide

    2003-01-01

    Although mRNA amplification is necessary for microarray analyses from limited amounts of cells and tissues, the accuracy of transcription profiles following amplification has not been well characterized. We tested the fidelity of differential gene expression following linear amplification by T7-mediated transcription in a well-established in vitro model of cytokine [tumor necrosis factor alpha (TNFalpha)]-stimulated human endothelial cells using filter arrays of 13,824 human cDNAs. Transcriptional profiles generated from amplified antisense RNA (aRNA) (from 100 ng total RNA, approximately 1 ng mRNA) were compared with profiles generated from unamplified RNA originating from the same homogeneous pool. Amplification accurately identified TNFalpha-induced differential expression in 94% of the genes detected using unamplified samples. Furthermore, an additional 1,150 genes were identified as putatively differentially expressed using amplified RNA which remained undetected using unamplified RNA. Of genes sampled from this set, 67% were validated by quantitative real-time PCR as truly differentially expressed. Thus, in addition to demonstrating fidelity in gene expression relative to unamplified samples, linear amplification results in improved sensitivity of detection and enhances the discovery potential of high-throughput screening by microarrays.

  5. Impacts of temperature and lunar day on gene expression profiles during a monthly reproductive cycle in the brooding coral Pocillopora damicornis.

    PubMed

    Crowder, Camerron M; Meyer, Eli; Fan, Tung-Yung; Weis, Virginia M

    2017-08-01

    Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways. © 2017 John Wiley & Sons Ltd.

  6. Generation of novel pharmacogenomic candidates in the response to methotrexate in juvenile idiopathic arthritis: correlation between gene expression and genotype

    PubMed Central

    Moncrieffe, Halima; Hinks, Anne; Ursu, Simona; Kassoumeri, Laura; Etheridge, Angela; Hubank, Mike; Martin, Paul; Weiler, Tracey; Glass, David N; Thompson, Susan D.; Thomson, Wendy; Wedderburn, Lucy R

    2010-01-01

    Objectives Little is known about mechanisms of efficacy of methotrexate (MTX) in childhood arthritis, or genetic influences upon response to MTX. The aims of this study were to use gene expression profiling to identify novel pathways/genes altered by MTX and then investigate these genes for genotype associations with response to MTX treatment. Methods Gene expression profiling before and after MTX treatment was performed on 11 children with juvenile idiopathic arthritis (JIA) treated with MTX, in whom response at 6 months of treatment was defined. Genes showing the most differential gene expression after treatment were selected for SNP genotyping. Genotype frequencies were compared between non-responders and responders (ACR-Ped70). An independent cohort was available for validation. Results Gene expression profiling before and after MTX treatment revealed 1222 differentially expressed probes sets (fold change >1.7, p< 0.05) and 1065 when restricted to full responder cases only. Six highly differentially expressed genes were analysed for genetic association to response to MTX. Three SNPs in the SLC16A7 gene showed significant association with MTX response. One SNP showed validated association in an independent cohort. Conclusions This study is the first, to our knowledge, to evaluate gene expression profiles in children with JIA before and after MTX, and to analyse genetic variation in differentially expressed genes. We have identified a gene which may contribute to genetic variability in MTX response in JIA, and established as proof of principle that genes which are differentially expressed at mRNA level after drug administration may also be good candidates for genetic analysis. PMID:20827233

  7. c-kit expression profile and regulatory factors during spermatogonial stem cell differentiation

    PubMed Central

    2013-01-01

    Background It has been proven that c-kit is crucial for proliferation, migration, survival and maturation of spermatogenic cells. A periodic expression of c-kit is observed from primordial germ cells (PGCs) to spermatogenetic stem cells (SSCs), However, the expression profile of c-kit during the entire spermatogenesis process is still unclear. This study aims to reveal and compare c-kit expression profiles in the SSCs before and after the anticipated differentiation, as well as to examine its relationship with retinoic acid (RA) stimulation. Results We have found that there are more than 4 transcripts of c-kit expressed in the cell lines and in the testes. The transcripts can be divided into short and long categories. The long transcripts include the full-length canonical c-kit transcript and the 3′ end short transcript. Short transcripts include the 3.4 kb short transcript and several truncated transcripts (1.9-3.2 kb). In addition, the 3.4 kb transcript (starting from intron 9 and covering exons 10 ~ 21) is discovered to be specifically expressed in the spermatogonia. The extracellular domain of Kit is obtained in the spermatogonia stage, but the intracellular domain (50 kDa) is constantly expressed in both SSCs and spermatogonia. The c-kit expression profiles in the testis and the spermatogonial stem cell lines vary after RA stimulation. The wave-like changes of the quantitative expression pattern of c-kit (increase initially and decrease afterwards) during the induction process are similar to that of the in vivo male germ cell development process. Conclusions There are dynamic transcription and translation changes of c-kit before and after SSCs’ anticipated differentiation and most importantly, RA is a significant upstream regulatory factor for c-kit expression. PMID:24161026

  8. Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.

    PubMed

    Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P

    Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  9. Recrudescence Mechanisms and Gene Expression Profile of the Reproductive Tracts from Chickens during the Molting Period

    PubMed Central

    Ahn, Suzie E.; Lim, Chul-Hong; Lee, Jin-Young; Bae, Seung-Min; Kim, Jinyoung; Bazer, Fuller W.; Song, Gwonhwa

    2013-01-01

    The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels. PMID:24098561

  10. GENE EXPRESSION PROFILING OF ACCESSIBLE SURROGATE TISSUES TO MONITOR MOLECULAR CHANGES IN INACCESSIBLE TARGET TISSUES FOLLOWING TOXICANT EXPOSURE

    EPA Science Inventory

    Gene Expression Profiling Of Accessible Surrogate Tissues To Monitor Molecular Changes In Inaccessible Target Tissues Following Toxicant Exposure
    John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Judith E. Schmid and David J. Dix
    Reproductive Toxicology ...

  11. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...

  12. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...

  13. EXPRESSION PROFILING OF ESTROGENIC COMPOUNDS USING A SHEEPSHEAD MINNOW CDNA MACROARRAY

    EPA Science Inventory

    Larkin, Patrick, Leroy C. Folmar, Michael J. Hemmer, Arianna J. Poston and Nancy D. Denslow. 2003. Expression Profiling of Estrogenic Compounds Using a Sheepshead Minnow cDNA Macroarray. Environ. Health Perspect. 111(6):839-846. (ERL,GB 1171).

    A variety of anthropogenic c...

  14. Use of Microarray to Analyze Gene Expression Profiles of Acute Effects of Prochloraz on Fathead Minnows Pimephales promelas

    EPA Science Inventory

    Microarray technology is a powerful tool to investigate the gene expression profiles for thousands of genes simultaneously. In recent years, microarrays have been used to characterize environmental pollutants and identify molecular mode(s) of action of chemicals including endocri...

  15. Bioinforrnatics of Gene Expression Profiling Data Provide Mechanistic Understanding of Acute Ozone-Induced Lung injury

    EPA Science Inventory

    Acute ozone-induced pulmonary injury and inflammation are well characterized. A few studies have used gene expression profiling to determine the types of changes induced by ozone; however the mechanisms or the pathways involved are less well understood. We presumed that robust bi...

  16. Comparison of Non-Human Primate and Human Whole Blood Tissue Gene Expression Profiles

    DTIC Science & Technology

    2005-03-01

    studies have used rhesus, chimpanzee, gorilla, or orangutan RNA, but to date no gene expression profiling studies are available that use AGM or cynomologus...previous work has been published using human genechips to study NHPs, particularly rhesus, chimpanzee, gorilla, and orangutan (Uddin et al., 2004; Kayo

  17. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...

  18. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...

  19. 21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...

  20. RESIDUAL OIL FLY ASH (ROFA) AND VANADIUM-INDUCED GENE EXPRESSION PROFILES IN HUMAN VASCULAR ENDOTHELIAL CELLS

    EPA Science Inventory


    Residual oil fly ash (ROFA) and vanadium-induced gene expression profiles in human vascular endothelial cells.
    Srikanth S. Nadadur, Urmila P. Kodavanti, Mary Jane Selgrade and Daniel L. Costa, Pulmonary Toxicology Branch, ETD, NHEERL, ORD, US EPA, Research Triangle Park, N...

  1. Candidate EDA targets revealed by expression profiling of primary keratinocytes from Tabby mutant mice

    PubMed Central

    Esibizione, Diana; Cui, Chang-Yi; Schlessinger, David

    2009-01-01

    EDA, the gene mutated in anhidrotic ectodermal dysplasia, encodes ectodysplasin, a TNF superfamily member that activates NF-kB mediated transcription. To identify EDA target genes, we have earlier used expression profiling to infer genes differentially expressed at various developmental time points in Tabby (Eda-deficient) compared to wild-type mouse skin. To increase the resolution to find genes whose expression may be restricted to epidermal cells, we have now extended studies to primary keratinocyte cultures established from E19 wild-type and Tabby skin. Using microarrays bearing 44,000 gene probes, we found 385 preliminary candidate genes whose expression was significantly affected by Eda loss. By comparing expression profiles to those from Eda-A1 transgenic skin, we restricted the list to 38 “candidate EDA targets”, 14 of which were already known to be expressed in hair follicles or epidermis. We confirmed expression changes for 3 selected genes, Tbx1, Bmp7, and Jag1, both in keratinocytes and in whole skin, by Q-PCR and Western blotting analyses. Thus, by the analysis of keratinocytes, novel candidate pathways downstream of EDA were detected. PMID:18848976

  2. Transcriptional profiling of the early stages of germination in Candida albicans by real-time RT-PCR.

    PubMed

    Toyoda, Mika; Cho, Tamaki; Kaminishi, Hidenori; Sudoh, Masayuki; Chibana, Hiroji

    2004-12-01

    By using real-time RT-PCR, we profiled the expression of CGR1, CaMSI3, EFG1, NRG1, and TUP1 in Candida albicans strains JCM9061 and CAI4 under several conditions, including induction of morphological transition, heat shock, and treatment with calcium inhibitors. Expression of CaMSI3 changed under these growth conditions except during heat shock. CGR1 expression increased during the early stages of hyphal growth in JCM9061, while expression was strain-dependent during heat shock. Both EFG1 and NRG1 were similarly expressed under hypha-inducing conditions and heat shock. Expression of TUP1 was slightly different from the expression of EFG1 or NRG1.

  3. Genome-wide Gene Expression Profiling of Acute Metal Exposures in Male Zebrafish

    DTIC Science & Technology

    2014-10-23

    Data in Brief Genome-wide gene expression profiling of acute metal exposures in male zebrafish Christine E. Baer a,⁎, Danielle L. Ippolito b, Naissan... Zebrafish Whole organism Nickel Chromium Cobalt Toxicogenomics To capture global responses to metal poisoning and mechanistic insights into metal...toxicity, gene expression changes were evaluated in whole adult male zebrafish following acute 24 h high dose exposure to three metals with known human

  4. A Gene Expression Signature Associated with Overall Survival in Patients with Hepatocellular Carcinoma Suggests a New Treatment Strategy.

    PubMed

    Gillet, Jean-Pierre; Andersen, Jesper B; Madigan, James P; Varma, Sudhir; Bagni, Rachel K; Powell, Katie; Burgan, William E; Wu, Chung-Pu; Calcagno, Anna Maria; Ambudkar, Suresh V; Thorgeirsson, Snorri S; Gottesman, Michael M

    2016-02-01

    Despite improvements in the management of liver cancer, the survival rate for patients with hepatocellular carcinoma (HCC) remains dismal. The survival benefit of systemic chemotherapy for the treatment of liver cancer is only marginal. Although the reasons for treatment failure are multifactorial, intrinsic resistance to chemotherapy plays a primary role. Here, we analyzed the expression of 377 multidrug resistance (MDR)-associated genes in two independent cohorts of patients with advanced HCC, with the aim of finding ways to improve survival in this poor-prognosis cancer. Taqman-based quantitative polymerase chain reaction revealed a 45-gene signature that predicts overall survival (OS) in patients with HCC. Using the Connectivity Map Tool, we were able to identify drugs that converted the gene expression profiles of HCC cell lines from ones matching patients with poor OS to profiles associated with good OS. We found three compounds that convert the gene expression profiles of three HCC cell lines to gene expression profiles associated with good OS. These compounds increase histone acetylation, which correlates with the synergistic sensitization of those MDR tumor cells to conventional chemotherapeutic agents, including cisplatin, sorafenib, and 5-fluorouracil. Our results indicate that it is possible to modulate gene expression profiles in HCC cell lines to those associated with better outcome. This approach also increases sensitization of HCC cells toward conventional chemotherapeutic agents. This work suggests new treatment strategies for a disease for which few therapeutic options exist. U.S. Government work not protected by U.S. copyright.

  5. The influence of high glucose on the Cip/Kip family expression profiles in HRECs.

    PubMed

    Tian, Jingyi; Ma, Hongjie; Luo, Yan; Hu, Andina; Lin, Shaofen; Li, Tao; Guo, Kai; Li, Jing; Cai, Meng; Tang, Shibo

    2013-12-01

    Neovascularization is the main characteristic of the proliferative stage of diabetic retinopathy. It has been proven that cell cycle regulation is involved in angiogenesis. The cell cycle regulators, Cip/Kip protein family, belong to the cyclin-dependent kinase inhibitors, are versatile proteins, and except for their function in cell cycle regulation, they also participate in transcription, apoptosis and migration. The expression profiles of the Cip/Kip family in human retina microvascular endothelial cells (HRECs) under normal or high glucose conditions has not been described before. This study was undertaken to determine the expression profiles of the Cip/Kip family proteins, e.g., proteins which are influenced by high glucose and in what manner. Western blot and immunofluorescence analyses were used to investigate the protein expression profiles. Only p21(cip1) and p27(kip1) were detected in HRECs, and they were located in the nucleus. P21(cip1) protein abundance was higher than p27(kip1) in HRECs. Incubation of HRECs in medium containing 30 mM D-glucose for 48 h resulted in downregulation of p21(cip1) protein expression, but had no influence on p27(kip1) protein levels or p21(cip1) mRNA abundance. These results were accompanied by cell cycle G1 phase exit and a lower cell survival rate. Our data show for the first time that high glucose changes the Cip/Kip family expression profiles in HRECs, which may be the foundation for the investigation of the role of the Cip/Kip family in the pathogenesis of diabetic retinopathy.

  6. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.

    PubMed

    Qin, J; Ma, X; Yi, Z; Tang, Z; Meng, Y

    2016-03-01

    Leaf senescence is an important physiological process during the plant life cycle. However, systemic studies on the impact of microRNAs (miRNAs) on the expression of senescence-associated genes (SAGs) are lacking. Besides, whether other Argonaute 1 (AGO1)-enriched small RNAs (sRNAs) play regulatory roles in leaf senescence remains unclear. In this study, a total of 5,123 and 1,399 AGO1-enriched sRNAs, excluding miRNAs, were identified in Arabidopsis thaliana and rice (Oryza sativa), respectively. After retrieving SAGs from the Leaf Senescence Database, all of the AGO1-enriched sRNAs and the miRBase-registered miRNAs of these two plants were included for target identification. Supported by degradome signatures, 200 regulatory pairs involving 120 AGO1-enriched sRNAs and 40 SAGs, and 266 regulatory pairs involving 64 miRNAs and 42 SAGs were discovered in Arabidopsis. Moreover, 13 genes predicted to interact with some of the above-identified target genes at protein level were validated as regulated by 17 AGO1-enriched sRNAs and ten miRNAs in Arabidopsis. In rice, only one SAG was targeted by three AGO1-enriched sRNAs, and one SAG was targeted by miR395. However, five AGO1-enriched sRNAs were conserved between Arabidopsis and rice. Target genes conserved between the two plants were identified for three of the above five sRNAs, pointing to the conserved roles of these regulatory pairs in leaf senescence or other developmental procedures. Novel targets were discovered for three of the five AGO1-enriched sRNAs in rice, indicating species-specific functions of these sRNA-target pairs. These results could advance our understanding of the sRNA-involved molecular processes modulating leaf senescence. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum).

    PubMed

    Ding, Yuanhao; Ma, Yizan; Liu, Nian; Xu, Jiao; Hu, Qin; Li, Yaoyao; Wu, Yuanlong; Xie, Sai; Zhu, Longfu; Min, Ling; Zhang, Xianlong

    2017-09-01

    Male sterility caused by long-term high-temperature (HT) stress occurs widely in crops. MicroRNAs (miRNAs), a class of endogenous non-coding small RNAs, play an important role in the plant response to various abiotic stresses. To dissect the working principle of miRNAs in male sterility under HT stress in cotton, a total of 112 known miRNAs, 270 novel miRNAs and 347 target genes were identified from anthers of HT-insensitive (84021) and HT-sensitive (H05) cotton cultivars under normal-temperature and HT conditions through small RNA and degradome sequencing. Quantitative reverse transcriptase-polymerase chain reaction and 5'-RNA ligase-mediated rapid amplification of cDNA ends experiments were used to validate the sequencing data. The results show that miR156 was suppressed by HT stress in both 84021 and H05; miR160 was suppressed in 84021 but induced in H05. Correspondingly, SPLs (target genes of miR156) were induced both in 84021 and H05; ARF10 and ARF17 (target genes of miR160) were induced in 84021 but suppressed in H05. Overexpressing miR160 increased cotton sensitivity to HT stress seen as anther indehiscence, associated with the suppression of ARF10 and ARF17 expression, thereby activating the auxin response that leads to anther indehiscence. Supporting this role for auxin, exogenous Indole-3-acetic acid (IAA) leads to a stronger male sterility phenotype both in 84021 and H05 under HT stress. Cotton plants overexpressing miR157 suppressed the auxin signal, and also showed enhanced sensitivity to HT stress, with microspore abortion and anther indehiscence. Thus, we propose that the auxin signal, mediated by miRNAs, is essential for cotton anther fertility under HT stress. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression.

    PubMed

    Pescatori, Mario; Broccolini, Aldobrando; Minetti, Carlo; Bertini, Enrico; Bruno, Claudio; D'amico, Adele; Bernardini, Camilla; Mirabella, Massimiliano; Silvestri, Gabriella; Giglio, Vincenzo; Modoni, Anna; Pedemonte, Marina; Tasca, Giorgio; Galluzzi, Giuliana; Mercuri, Eugenio; Tonali, Pietro A; Ricci, Enzo

    2007-04-01

    Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.

  9. Dynamics of wound healing signaling as a potential therapeutic target for radiation-induced tissue damage.

    PubMed

    Chung, Yih-Lin; Pui, Newman N M

    2015-01-01

    We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury. © 2015 by the Wound Healing Society.

  10. MicroRNA and mesial temporal lobe epilepsy with hippocampal sclerosis: Whole miRNome profiling of human hippocampus.

    PubMed

    Bencurova, Petra; Baloun, Jiri; Musilova, Katerina; Radova, Lenka; Tichy, Boris; Pail, Martin; Zeman, Martin; Brichtova, Eva; Hermanova, Marketa; Pospisilova, Sarka; Mraz, Marek; Brazdil, Milan

    2017-10-01

    Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  11. microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.

    PubMed

    Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong

    2012-01-01

    microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.

  12. Gene expression profiles in peripheral blood mononuclear cells of Chinese nickel refinery workers with high exposures to nickel and control subjects

    PubMed Central

    Arita, Adriana; Muñoz, Alexandra; Chervona, Yana; Niu, Jingping; Qu, Qingshan; Zhao, Najuan; Ruan, Ye; Kiok, Kathrin; Kluz, Thomas; Sun, Hong; Clancy, Hailey A.; Shamy, Magdy; Costa, Max

    2012-01-01

    Background Occupational exposure to nickel (Ni) is associated with an increased risk of lung and nasal cancers. Ni compounds exhibit weak mutagenic activity, alter the cell’s epigenetic homeostasis, and activate signaling pathways. However, changes in gene expression associated with Ni exposure have only been investigated in vitro. This study was conducted in a Chinese population to determine whether occupational exposure to Ni was associated with differential gene expression profiles in the peripheral blood mononuclear cells (PBMCs) of Ni-refinery workers when compared to referents. Methods Eight Ni-refinery workers and ten referents were selected. PBMC RNA was extracted and gene expression profiling was performed using Affymetrix exon arrays. Differentially expressed genes between both groups were identified in a global analysis. Results There were a total of 2756 differentially expressed genes (DEG) in the Ni-refinery workers relative to the control subjects (FDR adjusted p<0.05) with 770 up-regulated genes and 1986 down-regulated genes. DNA repair and epigenetic genes were significantly overrepresented (p< 0.0002) among the DEG. Of 31 DNA repair genes, 29 were repressed in the high exposure group and two were overexpressed. Of the 16 epigenetic genes 12 were repressed in the high exposure group and 4 were overexpressed. Conclusions The results of this study indicate that occupational exposure to Ni is associated with alterations in gene expression profiles in PBMCs of subjects. Impact Gene expression may be useful in identifying patterns of deregulation that precede clinical identification of Ni-induced cancers. PMID:23195993

  13. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    PubMed

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Adult cystic nephroma and mixed epithelial and stromal tumor of the kidney are the same disease entity: molecular and histologic evidence.

    PubMed

    Zhou, Ming; Kort, Eric; Hoekstra, Philip; Westphal, Michael; Magi-Galluzzi, Cristina; Sercia, Linda; Lane, Brian; Rini, Brian; Bukowski, Ronald; Teh, Bin T

    2009-01-01

    Adult cystic nephroma (CN) and mixed epithelial and stromal tumor of the kidney (MEST) are considered as separate entities in the 2004 World Health Organization classification of renal neoplasms. Recent studies suggested that the two share clinicopathologic features and may represent the same disease process of varying morphology. However, definitive genetic evidence is lacking. We examined their relationship using gene expression profiling and histologic analysis. Gene expression profiles of 3 CN and 3 MEST were analyzed using HGU133 Plus 2.0 microarrays (Affymetrix) and were compared with each other and also with 48 other renal tumors and 13 normal kidneys. Histologic examination of 26 CN and 13 MEST focused on the cystic septal thickness, cyst-to-stroma ratio, stromal cellularity and composition, types of epithelial cells lining cysts and glands, and estrogen and progesterone receptors expression. Patients' age, sex distribution, and tumor size were similar between the two. They also shared many histologic features, including lining epithelium of cysts and glands, stromal cellularity and composition. Unsupervised clustering of mRNA expression profiles demonstrated that they had very similar expression profiles that were distinct from other renal tumors. By microarray analysis, progesterone receptor expression was significantly higher in CN and MEST relative to both normal and other renal tumors, while estrogen receptor expression was not. By immunohistochemistry, expression of both receptors was similar between CN and MEST. This study provides the most convincing molecular evidence that CN and MEST represent different parts of the morphologic spectrum of the same disease.

  15. Stage-specific differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs, Sus Scrofa

    PubMed Central

    2014-01-01

    Background Our current knowledge of tooth development derives mainly from studies in mice, which have only one set of non-replaced teeth, compared with the diphyodont dentition in humans. The miniature pig is also diphyodont, making it a valuable alternative model for understanding human tooth development and replacement. However, little is known about gene expression and function during swine odontogenesis. The goal of this study is to undertake the survey of differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs. The identification of genes related to diphyodont development should lead to a better understanding of morphogenetic patterns and the mechanisms of diphyodont replacement in large animal models and humans. Results The temporal gene expression profiles during early diphyodont development in miniature pigs were detected with the Affymetrix Porcine GeneChip. The gene expression data were further evaluated by ANOVA as well as pathway and STC analyses. A total of 2,053 genes were detected with differential expression. Several signal pathways and 151 genes were then identified through the construction of pathway and signal networks. Conclusions The gene expression profiles indicated that spatio-temporal down-regulation patterns of gene expression were predominant; while, both dynamic activation and inhibition of pathways occurred during the morphogenesis of diphyodont dentition. Our study offers a mechanistic framework for understanding dynamic gene regulation of early diphyodont development and provides a molecular basis for studying teeth development, replacement, and regeneration in miniature pigs. PMID:24498892

  16. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    PubMed

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  17. EFFECTS OF STORAGE, RNA EXTRACTION, GENECHIP TYPE, AND DONOR SEX ON GENE EXPRESSION PROFILING OF HUMAN WHOLE BLOOD

    EPA Science Inventory

    Background: Gene expression profiling of whole blood may be useful for monitoring toxicological exposure and for diagnosis and monitoring of various diseases. Several methods are available that can be used to transport, store, and extract RNA from whole blood, but it is not clear...

  18. Global gene expression profiling in infants with acute respiratory syncytial virus broncholitis demonstrates systemic activation of interferon signaling networks

    USDA-ARS?s Scientific Manuscript database

    Respiratory syncytial virus (RSV) is a leading cause of pediatric lower respiratory tract infections and has a high impact on pediatric emergency department utilization. Variation in host response may influence the pathogenesis and disease severity. We evaluated global gene expression profiles to be...

  19. HEPATIC GENE EXPRESSION PROFILES OF RATS EXPOSED TO PERFLUOROOCTANE SULFONATE (PFOS) IN UTERO

    EPA Science Inventory

    Hepatic Gene Expression Profiles of Rats Exposed to Perfluorooctanesulfonate (PFOS) in utero.
    J.A. Bjork1, J.M. Berthiaume1, C. Lau2, J. L. Butenhoff3, and K.B. Wallace1

    1Department of Biochemistry & Molecular Biology, University of Minnesota School of Medicine, Dulut...

  20. Cognitive Profiles of Finnish Preschool Children with Expressive and Receptive Language Impairment

    ERIC Educational Resources Information Center

    Saar, Virpi; Levänen, Sari; Komulainen, Erkki

    2018-01-01

    Purpose: The aim of this study was to compare the verbal and nonverbal cognitive profiles of children with specific language impairment (SLI) with problems predominantly in expressive (SLI-E) or receptive (SLI-R) language skills. These diagnostic subgroups have not been compared before in psychological studies. Method: Participants were…

  1. DOES RESPONSE EVALUATION OF GENE EXPRESSION PROFILES IN THE SKIN OF K6/ODC MICE EXPOSED TO SODIUM ARSENITE

    EPA Science Inventory

    Abstract - Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles were characterized fro...

  2. Transcriptional response of peripheral lymphocytes to early fibrosarcoma: a model system for cancer detection based on hybridization signatures.

    PubMed

    Marques, Márcia M C; Junta, Cristina M; Zárate-Blades, Carlos R; Sakamoto-Hojo, Elza Tiemi; Donadi, Eduardo A; Passos, Geraldo A S

    2009-07-01

    Since circulating leukocytes, mainly B and T cells, continuously maintain vigilant and comprehensive immune surveillance, these cells could be used as reporters for signs of infection or other pathologies, including cancer. Activated lymphocyte clones trigger a sensitive transcriptional response, which could be identified by gene expression profiling. To assess this hypothesis, we conducted microarray analysis of the gene expression profile of lymphocytes isolated from immunocompetent BALB/c mice subcutaneously injected with different numbers of tumorigenic B61 fibrosarcoma cells. Flow cytometry demonstrated that the number of circulating T (CD3(+)CD4(+) or CD3(+)CD8(+)) or B (CD19(+)) cells did not change. However, the lymphocytes isolated from tumor cell-injected animals expressed a unique transcriptional profile that was identifiable before the development of a palpable tumor mass. This finding demonstrates that the transcriptional response appears before alterations in the main lymphocyte subsets and that the gene expression profile of peripheral lymphocytes can serve as a sensitive and accurate method for the early detection of cancer.

  3. MicroRNA Expression Profile Selection for Cancer Staging Classification Using Backpropagation

    NASA Astrophysics Data System (ADS)

    Anjarwati; Wibowo, Adi; Adhy, Satriyo; Kusumaningrum, Retno

    2018-05-01

    Ovarian cancer, breast cancer, and lung cancer are deadly diseases and require serious treatment. The cancers are among the fifth most common causes of cancer-induced deaths especially for woman. The high mortality rate of cancer is caused by the lack of effective strategies for early detection of the cancer, whereas if its detected in the early stages, the life survival of cancer patients will be 90%, otherwise the survival rate only 30% when the cancers detected on metastasis stages or cancer cells have spread from a primary site of cancer. MicroRNAs can be used as potential biomarkers for cancer due to their profile expression on the cancers. In this paper, we proposed the feature selection of microRNA expression profiles for classification of the cancers stages using Backpropagation Neural Network. The Cancer stages are classified into before metastasis and after metastasis. Several combinations of the microRNA expression profiles from medical references are compared to find the best features for the classification. The accuracy and the mean square errors are used as basis testing the comparison.

  4. Genome-wide DNA methylation profiling integrated with gene expression profiling identifies PAX9 as a novel prognostic marker in chronic lymphocytic leukemia.

    PubMed

    Rani, Lata; Mathur, Nitin; Gupta, Ritu; Gogia, Ajay; Kaur, Gurvinder; Dhanjal, Jaspreet Kaur; Sundar, Durai; Kumar, Lalit; Sharma, Atul

    2017-01-01

    In chronic lymphocytic leukemia (CLL), epigenomic and genomic studies have expanded the existing knowledge about the disease biology and led to the identification of potential biomarkers relevant for implementation of personalized medicine. In this study, an attempt has been made to examine and integrate the global DNA methylation changes with gene expression profile and their impact on clinical outcome in early stage CLL patients. The integration of DNA methylation profile ( n  = 14) with the gene expression profile ( n  = 21) revealed 142 genes as hypermethylated-downregulated and; 62 genes as hypomethylated-upregulated in early stage CLL patients compared to CD19+ B-cells from healthy individuals. The mRNA expression levels of 17 genes identified to be differentially methylated and/or differentially expressed was further examined in early stage CLL patients ( n  = 93) by quantitative real time PCR (RQ-PCR). Significant differences were observed in the mRNA expression of MEIS1 , PMEPA1 , SOX7 , SPRY1 , CDK6 , TBX2 , and SPRY2 genes in CLL cells as compared to B-cells from healthy individuals. The analysis in the IGHV mutation based categories (Unmutated = 39, Mutated = 54) revealed significantly higher mRNA expression of CRY1 and PAX9 genes in the IGHV unmutated subgroup ( p  < 0.001). The relative risk of treatment initiation was significantly higher among patients with high expression of CRY1 (RR = 1.91, p  = 0.005) or PAX9 (RR = 1.87, p  = 0.001). High expression of CRY1 (HR: 3.53, p  < 0.001) or PAX9 (HR: 3.14, p  < 0.001) gene was significantly associated with shorter time to first treatment. The high expression of PAX9 gene (HR: 3.29, 95% CI 1.172-9.272, p  = 0.016) was also predictive of shorter overall survival in CLL. The DNA methylation changes associated with mRNA expression of CRY1 and PAX9 genes allow risk stratification of early stage CLL patients. This comprehensive analysis supports the concept that the epigenetic changes along with the altered expression of genes have the potential to predict clinical outcome in early stage CLL patients.

  5. Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection.

    PubMed

    Han, Su; Tang, Qiaoran; Lu, Xi; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli; Cao, Jianping

    2016-11-30

    Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of control and Clonorchis sinensis (C. sinensis)-infected rats. A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways. The present study revealed that the miRNA expression profiles of the host were changed by C. sinensis infection. This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.

  6. Biochemical characteristics and gene expression profiles of two paralogous luciferases from the Japanese firefly Pyrocoelia atripennis (Coleoptera, Lampyridae, Lampyrinae): insight into the evolution of firefly luciferase genes.

    PubMed

    Bessho-Uehara, Manabu; Konishi, Kaori; Oba, Yuichi

    2017-08-09

    Two paralogous genes of firefly luciferase, Luc1 and Luc2, have been isolated from the species in two subfamilies, Luciolinae and Photurinae, of the family Lampyridae. The gene expression profiles have previously been examined only in the species of Luciolinae. Here we isolated Luc1 and Luc2 genes from the Japanese firefly Pyrocoelia atripennis. This is the first report of the presence of both Luc1 and Luc2 genes in the species of the subfamily Lampyrinae and of the exon-intron structure of Luc2 in the family Lampyridae. The luminescence of both gene products peaked at 547 nm under neutral buffer conditions, and the spectrum of Luc1, but not Luc2, was red-shifted under acidic conditions, as observed for Luc2 in the Luciolinae species. The semi-quantitative reverse transcription-polymerase chain reaction suggested that Luc1 was expressed in lanterns of all the stages except eggs, while Luc2 was expressed in the non-lantern bodies of eggs, prepupae, pupae, and female adults. These expression profiles are consistent with those in the Luciolinae species. Considering the distant phylogenetic relationship between Lampyrinae and Luciolinae in Lampyridae, we propose that fireflies generally possess two different luciferase genes and the biochemical properties and gene expression profiles for each paralog are conserved among lampyrid species.

  7. Dose-response relationships in gene expression profiles in rainbow trout, Oncorhyncus mykiss, exposed to ethynylestradiol.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-07-01

    Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss,were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as "expression signatures". Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that different doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose.

  8. Determination of absolute expression profiles using multiplexed miRNA analysis

    PubMed Central

    Song, Jee Hoon; Cheng, Yulan; Saeui, Christopher T.; Cheung, Douglas G.; Croce, Carlo M.; Yarema, Kevin J.; Meltzer, Stephen J.; Liu, Kelvin J.; Wang, Tza-Huei

    2017-01-01

    Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes. PMID:28704432

  9. A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function.

    PubMed

    Rubel, Cory A; Wu, San-Pin; Lin, Lin; Wang, Tianyuan; Lanz, Rainer B; Li, Xilong; Kommagani, Ramakrishna; Franco, Heather L; Camper, Sally A; Tong, Qiang; Jeong, Jae-Wook; Lydon, John P; DeMayo, Francesco J

    2016-10-25

    Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR) expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage. Published by Elsevier Inc.

  10. Hypoxia reduces the E-cadherin expression and increases OSCC cell migration regardless of the E-cadherin methylation profile.

    PubMed

    Domingos, Patrícia Luciana Batista; Souza, Marcela Gonçalves; Guimarães, Talita Antunes; Santos, Eliane Sobrinho; Farias, Lucyana Conceição; de Carvalho Fraga, Carlos Alberto; Jones, Kimberly Marie; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena

    2017-05-01

    The purpose of the current study is to investigate the association between E-cadherin methylation status, hypoxia and OSCC. HaCat and SCC9 cell lines were submitted to hypoxic treatment, followed by methylation profile analysis (MS-PCR) and analysis of the expression of mRNA gene E-cadherin (RT-PCR). Study group samples comprise individuals affected by potentially malignant lesions Potential Malignant Oral Lesion (PMOL, n=18) and oral squamous cell carcinoma (OSCC, n=28). The control group oral mucosa (OM, n=15) of patients with an oral mucocele. Cell migration ability was evaluated a scratch wound assay in SCC9 and HaCat cell lines RESULTS: E-cadherin mRNA expression in the cell lines SCC9 and HaCat was significantly reduced under hypoxia, regardless of the methylation profile, when compared to the control group. No differences in methylation profile of the E-cadherin were observed among the groups OM, PMOL and OSCC. HaCat and SCC9 presented increases in cell migration rates under hypoxia. The current study demonstrates that hypoxia reduces E-cadherin expression and increase cell migration, regardless of the methylation profile. Additionally, no differences in E-cadherin methylation patterns were observed among OM, PMOL and OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. PROSPECT improves cis-acting regulatory element prediction by integrating expression profile data with consensus pattern searches

    PubMed Central

    Fujibuchi, Wataru; Anderson, John S. J.; Landsman, David

    2001-01-01

    Consensus pattern and matrix-based searches designed to predict cis-acting transcriptional regulatory sequences have historically been subject to large numbers of false positives. We sought to decrease false positives by incorporating expression profile data into a consensus pattern-based search method. We have systematically analyzed the expression phenotypes of over 6000 yeast genes, across 121 expression profile experiments, and correlated them with the distribution of 14 known regulatory elements over sequences upstream of the genes. Our method is based on a metric we term probabilistic element assessment (PEA), which is a ranking of potential sites based on sequence similarity in the upstream regions of genes with similar expression phenotypes. For eight of the 14 known elements that we examined, our method had a much higher selectivity than a naïve consensus pattern search. Based on our analysis, we have developed a web-based tool called PROSPECT, which allows consensus pattern-based searching of gene clusters obtained from microarray data. PMID:11574681

  12. Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles

    NASA Technical Reports Server (NTRS)

    Eichler, Gabriel S.; Huang, Sui; Ingber, Donald E.

    2003-01-01

    Genome-wide expression profiles contain global patterns that evade visual detection in current gene clustering analysis. Here, a Gene Expression Dynamics Inspector (GEDI) is described that uses self-organizing maps to translate high-dimensional expression profiles of time courses or sample classes into animated, coherent and robust mosaics images. GEDI facilitates identification of interesting patterns of molecular activity simultaneously across gene, time and sample space without prior assumption of any structure in the data, and then permits the user to retrieve genes of interest. Important changes in genome-wide activities may be quickly identified based on 'Gestalt' recognition and hence, GEDI may be especially useful for non-specialist end users, such as physicians. AVAILABILITY: GEDI v1.0 is written in Matlab, and binary Matlab.dll files which require Matlab to run can be downloaded for free by academic institutions at http://www.chip.org/ge/gedihome.html Supplementary information: http://www.chip.org/ge/gedihome.html.

  13. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.

    PubMed

    Chen, Yunshun; Lun, Aaron T L; Smyth, Gordon K

    2016-01-01

    In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.

  14. Activity-based protein profiling for biochemical pathway discovery in cancer

    PubMed Central

    Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.

    2011-01-01

    Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252

  15. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  16. Circulating Long Noncoding RNAs as Potential Biomarkers of Sepsis: A Preliminary Study.

    PubMed

    Dai, Yu; Liang, Zhixin; Li, Yulin; Li, Chunsun; Chen, Liangan

    2017-11-01

    Long noncoding RNAs (lncRNAs) are becoming promising biomarker candidates in various diseases as assessed via sequencing technologies. Sepsis is a life-threatening disease without ideal biomarkers. The aim of this study was to investigate the expression profile of lncRNAs in the peripheral blood of sepsis patients and to find potential biomarkers of sepsis. A lncRNA expression profile was performed using peripheral blood from three sepsis patients and three healthy volunteers using microarray screening. The differentially expressed lncRNAs were validated by real-time quantitative polymerase chain reaction (qRT-PCR) in a further set of 22 sepsis patients and 22 healthy volunteers. Among 1316 differentially expressed lncRNAs, 771 were downregulated and 545 were upregulated. Results of the qRT-PCR were consistent with the microarray data. lncRNA ENST00000452391.1, uc001vji.1, and uc021zxw.1 were significantly differentially expressed between sepsis patients and healthy volunteers. Moreover, lncRNA ENST00000504301.1 and ENST00000452391.1 were significantly differentially expressed between sepsis survivors and nonsurvivors. The lncRNA expression profile in the peripheral blood of sepsis patients significantly differed from that of healthy volunteers. Circulating lncRNAs may be good candidates for sepsis biomarkers.

  17. Identification and substrate prediction of new Fragaria x ananassa aquaporins and expression in different tissues and during strawberry fruit development.

    PubMed

    Merlaen, Britt; De Keyser, Ellen; Van Labeke, Marie-Christine

    2018-01-01

    The newly identified aquaporin coding sequences presented here pave the way for further insights into the plant-water relations in the commercial strawberry ( Fragaria x ananassa ). Aquaporins are water channel proteins that allow water to cross (intra)cellular membranes. In Fragaria x ananassa , few of them have been identified hitherto, hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions (SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins belonging to a different but also to the same (sub)class.

  18. PmiRExAt: plant miRNA expression atlas database and web applications

    PubMed Central

    Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S.

    2016-01-01

    High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database. Database URL: http://pmirexat.nabi.res.in. PMID:27081157

  19. Comparison of gene expression and fatty acid profiles in concentrate and forage finished beef.

    PubMed

    Buchanan, J W; Garmyn, A J; Hilton, G G; VanOverbeke, D L; Duan, Q; Beitz, D C; Mateescu, R G

    2013-01-01

    Fatty acid profiles and intramuscular expression of genes involved in fatty acid metabolism were characterized in concentrate- (CO) and forage- (FO) based finishing systems. Intramuscular samples from the adductor were taken at slaughter from 99 heifers finished on a CO diet and 58 heifers finished on a FO diet. Strip loins were obtained at fabrication to evaluate fatty acid profiles of LM muscle for all 157 heifers by using gas chromatography fatty acid methyl ester analysis. Composition was analyzed for differences by using the General Linear Model (GLM) procedure in SAS. Differences in fatty acid profile included a greater atherogenic index, greater percentage total MUFA, decreased omega-3 to omega-6 ratio, decreased percentage total PUFA, and decreased percentage omega-3 fatty acids in CO- compared with FO-finished heifers (P<0.05). Fatty acid profiles from intramuscular samples were ranked by the atherogenic index, and 20 heifers with either a high (HAI; n=10) or low (LAI; n=10) atherogenic index were selected for gene expression analysis using real-time PCR (RT-PCR). Gene expression data for the 20 individuals were analyzed as a 2 by 2 factorial arrangement of treatments using the GLM procedure in SAS. There was no significant diet × atherogenic index interaction identified for any gene (P>0.05). Upregulation was observed for PPARγ, fatty acid synthase (FASN), and fatty acid binding protein 4 (FABP4) in FO-finished compared with CO-finished heifers in both atherogenic index categories (P<0.05). Upregulation of diglyceride acyl transferase 2 (DGAT2) was observed in FO-finished heifers with a HAI (P<0.05). Expression of steroyl Co-A desaturase (SCD) was upregulated in CO-finished heifers with a LAI, and downregulated in FO-finished heifers with a HAI (P<0.05). Expression of adiponectin (ADIPOQ) was significantly downregulated in CO-finished heifers with a HAI compared with all other categories (P<0.05). The genes identified in this study which exhibit differential regulation in response to diet or in animals with extreme fatty acid profiles may provide genetic markers for selecting desirable fatty acid profiles in future selection programs.

  20. Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats.

    PubMed

    Kohen, R; Kirov, S; Navaja, G P; Happe, H Kevin; Hamblin, M W; Snoddy, J R; Neumaier, J F; Petty, F

    2005-01-01

    In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.

  1. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    PubMed

    Yang, Lun; Price, Elvin T; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang

    2013-01-01

    Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  2. Diffusion Profiling via a Histogram Approach Distinguishes Low-grade from High-grade Meningiomas, Can Reflect the Respective Proliferative Potential and Progesterone Receptor Status.

    PubMed

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Garnov, Nikita; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Meyer, Hans Jonas; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-02-01

    Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.

  3. [Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction: the study on gene construction, identification and function].

    PubMed

    Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo

    2008-06-18

    To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.

  4. In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues

    PubMed Central

    Pao, Sheng-Ying; Lin, Win-Li; Hwang, Ming-Jing

    2006-01-01

    Background Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. Results To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. Conclusion Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes. PMID:16626500

  5. Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee.

    PubMed

    González-Alvarez, Rafael; Garza-Rodríguez, María de Lourdes; Delgado-Enciso, Iván; Treviño-Alvarado, Víctor Manuel; Canales-Del-Castillo, Ricardo; Martínez-De-Villarreal, Laura Elia; Lugo-Trampe, Ángel; Tejero, María Elizabeth; Schlabritz-Loutsevitch, Natalia E; Rocha-Pizaña, María Del Refugio; Cole, Shelley A; Reséndez-Pérez, Diana; Moises-Alvarez, Mario; Comuzzie, Anthony G; Barrera-Saldaña, Hugo Alberto; Garza-Guajardo, Raquel; Barboza-Quintana, Oralia; Rodríguez-Sánchez, Irám Pablo

    2015-06-12

    Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expression profile and orthology in RARRES2 genes are unknown aspects in the biology of this multigene family in primates. Thus; we attempt to describe expression profile and phylogenetic relationship as complementary knowledge in the function of this gene in primates. To do that, we performed A RT-PCR from different tissues obtained during necropsies. Also we tested the hypotheses of positive evolution, purifying selection, and neutrality. And finally a phylogenetic analysis was made between primates RARRES2 protein. RARRES2 transcripts were present in liver, lung, adipose tissue, ovary, pancreas, heart, hypothalamus and pituitary tissues. Expression in kidney and leukocytes were not detectable in either species. It was determined that the studied genes are orthologous. RARRES2 evolution fits the hypothesis of purifying selection. Expression profiles of the RARRES2 gene are similar in baboons and chimpanzees and are also phylogenetically related.

  6. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    PubMed

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  7. Expression Profiles of TGF-β and TLR Pathways in Porphyromonas gingivalis and Prevotella intermedia Challenged Osteoblasts.

    PubMed

    Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May

    2015-04-01

    The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption.

  8. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    PubMed Central

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  9. Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE.

    PubMed

    Bowes Rickman, Catherine; Ebright, Jessica N; Zavodni, Zachary J; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P; Wistow, Graeme; Boon, Kathy; Hauser, Michael A

    2006-06-01

    To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. The EyeSAGE database, combining three different gene-profiling platforms including the authors' multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions.

  10. Gene Expression Profiling of Bronchoalveolar Lavage Cells During Aspergillus Colonization of the Lung Allograft.

    PubMed

    Weigt, S Samuel; Wang, Xiaoyan; Palchevskiy, Vyacheslav; Patel, Naman; Derhovanessian, Ariss; Shino, Michael Y; Sayah, David M; Lynch, Joseph P; Saggar, Rajan; Ross, David J; Kubak, Bernie M; Ardehali, Abbas; Palmer, Scott; Husain, Shahid; Belperio, John A

    2018-06-01

    Aspergillus colonization after lung transplant is associated with an increased risk of chronic lung allograft dysfunction (CLAD). We hypothesized that gene expression during Aspergillus colonization could provide clues to CLAD pathogenesis. We examined transcriptional profiles in 3- or 6-month surveillance bronchoalveolar lavage fluid cell pellets from recipients with Aspergillus fumigatus colonization (n = 12) and without colonization (n = 10). Among the Aspergillus colonized, we also explored profiles in those who developed CLAD (n = 6) or remained CLAD-free (n = 6). Transcription profiles were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix). Differential gene expression was based on an absolute fold difference of 2.0 or greater and unadjusted P value less than 0.05. We used NIH Database for Annotation, Visualization and Integrated Discovery for functional analyses, with false discovery rates less than 5% considered significant. Aspergillus colonization was associated with differential expression of 489 probe sets, representing 404 unique genes. "Defense response" genes and genes in the "cytokine-cytokine receptor" Kyoto Encyclopedia of Genes and Genomes pathway were notably enriched in this list. Among Aspergillus colonized patients, CLAD development was associated with differential expression of 69 probe sets, representing 64 unique genes. This list was enriched for genes involved in "immune response" and "response to wounding", among others. Notably, both chitinase 3-like-1 and chitotriosidase were associated with progression to CLAD. Aspergillus colonization is associated with gene expression profiles related to defense responses including cytokine signaling. Epithelial wounding, as well as the innate immune response to chitin that is present in the fungal cell wall, may be key in the link between Aspergillus colonization and CLAD.

  11. Identification of gene expression profiling associated with erlotinib-related skin toxicity in pancreatic adenocarcinoma patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caba, Octavio, E-mail: ocaba@ujaen.es

    Erlotinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that showed activity against pancreatic ductal adenocarcinoma (PDAC). The drug's most frequently reported side effect as a result of EGFR inhibition is skin rash (SR), a symptom which has been associated with a better therapeutic response to the drug. Gene expression profiling can be used as a tool to predict which patients will develop this important cutaneous manifestation. The aim of the present study was to identify which genes may influence the appearance of SR in PDAC patients. The study included 34 PDAC patients treated with erlotinib: 21 patientsmore » developed any grade of SR, while 13 patients did not (controls). Before administering any chemotherapy regimen and the development of SR, we collected RNA from peripheral blood samples of all patients and studied the differential gene expression pattern using the Illumina microarray platform HumanHT-12 v4 Expression BeadChip. Seven genes (FAM46C, IFITM3, GMPR, DENND6B, SELENBP1, NOL10, and SIAH2), involved in different pathways including regulatory, migratory, and signalling processes, were downregulated in PDAC patients with SR. Our results suggest the existence of a gene expression profiling significantly correlated with erlotinib-induced SR in PDAC that could be used as prognostic indicator in this patients. - Highlights: • Skin rash (SR) is the most characteristic side effect of erlotinib in PDAC patients. • Erlotinib-induced SR has been associated with a better clinical outcome. • Gene expression profiling was used to determine who will develop this manifestation. • 7 genes involved in different pathways were downregulated in PDAC patients with SR. • Our profile correlated with erlotinib-induced SR in PDAC could be used for prognosis.« less

  12. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA.

    PubMed

    Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic

    2006-04-27

    Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E), Nissl Stain (NS), and for immunofluorescence (IF) as well as with the plasma cell-revealing methyl green pyronin (MGP) stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts.

  13. Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA

    PubMed Central

    Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic

    2006-01-01

    Background Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E), Nissl Stain (NS), and for immunofluorescence (IF) as well as with the plasma cell-revealing methyl green pyronin (MGP) stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. Results The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. Conclusion RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts. PMID:16643667

  14. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    PubMed

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.

  15. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients.

    PubMed

    Jansen, Erik; Laven, Joop S E; Dommerholt, Henri B R; Polman, Jan; van Rijt, Cindy; van den Hurk, Caroline; Westland, Jolanda; Mosselman, Sietse; Fauser, Bart C J M

    2004-12-01

    Polycystic ovary syndrome (PCOS) represents the most common cause of anovulatory infertility and affects 5-10% of women of reproductive age. The etiology of PCOS is still unknown. The current study is the first to describe consistent differences in gene expression profiles in human ovaries comparing PCOS patients vs. healthy normoovulatory individuals. The microarray analysis of PCOS vs. normal ovaries identifies dysregulated expression of genes encoding components of several biological pathways or systems such as Wnt signaling, extracellular matrix components, and immunological factors. Resulting data may provide novel clues for ovarian dysfunction in PCOS. Intriguingly, the gene expression profiles of ovaries from (long-term) androgen-treated female-to-male transsexuals (TSX) show considerable overlap with PCOS. This observation provides supportive evidence that androgens play a key role in the pathogenesis of PCOS. Presented data may contribute to a better understanding of dysregulated pathways in PCOS, which might ultimately reveal novel leads for therapeutic intervention.

  16. Expression of MIF and TNFA in psoriatic arthritis: relationship with Th1/Th2/Th17 cytokine profiles and clinical variables.

    PubMed

    Bautista-Herrera, L A; De la Cruz-Mosso, U; Morales-Zambrano, R; Villanueva-Quintero, G D; Hernández-Bello, J; Ramírez-Dueñas, M G; Martínez-López, E; Brennan-Bourdon, L M; Baños-Hernández, C J; Muñoz-Valle, J F

    2018-05-01

    Psoriatic arthritis (PsA) is an autoimmune inflammatory disease associated with psoriasis. The cause of this pathology is still unknown, but research suggests the diseases are caused by a deregulated cytokine production. MIF is a cytokine associated with immunomodulation of Th1, Th2, and Th17 cytokine profiles in inflammatory diseases. Based on this knowledge, the aim of this study was to determine the association of MIF and TNFA expression with Th1, Th2, and Th17 cytokine profiles in serum levels of PsA patients. A cross-sectional study was performed in 50 PsA patients and 30 control subjects (CS). The cytokine profiles were quantified by BioPlex MagPix system and the mRNA expression levels by real-time PCR. TNFA mRNA expression was 138.81-folds higher in PsA patients than CS (p < 0.001). Regarding MIF mRNA expression, no significant differences were observed; however, a positive correlation was identified between MIF mRNA expression and PsA time of evolution (r = - 0.53, p = 0.009). An increase of Th1 (IFNγ: PsA = 37.1 pg/mL vs. CS = 17 pg/mL, p < 0.05; TNFα: PsA = 24.6 pg/mL vs. CS = 9.8 pg/mL, p < 0.0001) and Th17 cytokine profiles (IL-17: PsA = 6.4 pg/mL vs. CS = 2.7 pg/mL, p < 0.05; IL-22: PsA = 8.4 pg/mL vs. CS = 1.8 pg/mL, p < 0.001), were found in PsA patients. Th2 cytokines were not significantly different in both groups. In conclusion, a high expression of TNFA mRNA, as well as an increase of Th1 and Th17 cytokine profiles evaluated by IFNγ, TNFα, IL-17, and IL-22 cytokines, was observed in PsA patients.

  17. Arabidopsis Gene Family Profiler (aGFP)--user-oriented transcriptomic database with easy-to-use graphic interface.

    PubMed

    Dupl'áková, Nikoleta; Renák, David; Hovanec, Patrik; Honysová, Barbora; Twell, David; Honys, David

    2007-07-23

    Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.

  18. Exposure to metals mixtures: Genomic alterations of infectious ...

    EPA Pesticide Factsheets

    Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression profiles. Here, we assessed the mixture effect of six toxic metals (arsenic, beryllium, cadmium, chromium, mercury, and lead) on gene expression profiles in children in Detroit, Michigan. As part of the Mechanistic Indicators of Childhood Asthma (MICA) cross sectional study, we assessed metal exposure in 131 children in Detroit using fingernail metals levels. A metals mixture score was calculated and compared to gene expression profiles across the population adjusting for age and race. There were 145 unique genes that were significantly differentially expressed when comparing children exposed to low and high levels of the metals mixture. Of the genes differentially expressed, 107 (74%) had increased expression while 38 (26%) had decreased expression. The main biological function associated with multiple metals was infectious disease. Within that group, genes were associated with infection of respiratory tract (P < 10-6) severe acute respiratory syndrome (P < 10-5), and sepsis (P < 10-3). Taken together, these data demonstrate that exposure to metals mixtures may activate gene networks related to infectious disease response. This abstract does not necessarily reflect the views or policie

  19. Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide gene expression profiling.

    PubMed

    Almstrup, Kristian; Hoei-Hansen, Christina E; Wirkner, Ute; Blake, Jonathon; Schwager, Christian; Ansorge, Wilhelm; Nielsen, John E; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2004-07-15

    Carcinoma in situ (CIS) is the common precursor of histologically heterogeneous testicular germ cell tumors (TGCTs), which in recent decades have markedly increased and now are the most common malignancy of young men. Using genome-wide gene expression profiling, we identified >200 genes highly expressed in testicular CIS, including many never reported in testicular neoplasms. Expression was further verified by semiquantitative reverse transcription-PCR and in situ hybridization. Among the highest expressed genes were NANOG and POU5F1, and reverse transcription-PCR revealed possible changes in their stoichiometry on progression into embryonic carcinoma. We compared the CIS expression profile with patterns reported in embryonic stem cells (ESCs), which revealed a substantial overlap that may be as high as 50%. We also demonstrated an over-representation of expressed genes in regions of 17q and 12, reported as unstable in cultured ESCs. The close similarity between CIS and ESCs explains the pluripotency of CIS. Moreover, the findings are consistent with an early prenatal origin of TGCTs and thus suggest that etiologic factors operating in utero are of primary importance for the incidence trends of TGCTs. Finally, some of the highly expressed genes identified in this study are promising candidates for new diagnostic markers for CIS and/or TGCTs.

  20. Stem Cell-Associated Marker Expression in Canine Hair Follicles

    PubMed Central

    Gerhards, Nora M.; Sayar, Beyza S.; Origgi, Francesco C.; Galichet, Arnaud; Müller, Eliane J.; Welle, Monika M.; Wiener, Dominique J.

    2016-01-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  1. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  2. Selection and Validation of Reference Genes for qRT-PCR Expression Analysis of Candidate Genes Involved in Olfactory Communication in the Butterfly Bicyclus anynana

    PubMed Central

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M.

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression profile of the target candidate genes. PMID:25793735

  3. Selection and validation of reference genes for qRT-PCR expression analysis of candidate genes involved in olfactory communication in the butterfly Bicyclus anynana.

    PubMed

    Arun, Alok; Baumlé, Véronique; Amelot, Gaël; Nieberding, Caroline M

    2015-01-01

    Real-time quantitative reverse transcription PCR (qRT-PCR) is a technique widely used to quantify the transcriptional expression level of candidate genes. qRT-PCR requires the selection of one or several suitable reference genes, whose expression profiles remain stable across conditions, to normalize the qRT-PCR expression profiles of candidate genes. Although several butterfly species (Lepidoptera) have become important models in molecular evolutionary ecology, so far no study aimed at identifying reference genes for accurate data normalization for any butterfly is available. The African bush brown butterfly Bicyclus anynana has drawn considerable attention owing to its suitability as a model for evolutionary ecology, and we here provide a maiden extensive study to identify suitable reference gene in this species. We monitored the expression profile of twelve reference genes: eEF-1α, FK506, UBQL40, RpS8, RpS18, HSP, GAPDH, VATPase, ACT3, TBP, eIF2 and G6PD. We tested the stability of their expression profiles in three different tissues (wings, brains, antennae), two developmental stages (pupal and adult) and two sexes (male and female), all of which were subjected to two food treatments (food stress and control feeding ad libitum). The expression stability and ranking of twelve reference genes was assessed using two algorithm-based methods, NormFinder and geNorm. Both methods identified RpS8 as the best suitable reference gene for expression data normalization. We also showed that the use of two reference genes is sufficient to effectively normalize the qRT-PCR data under varying tissues and experimental conditions that we used in B. anynana. Finally, we tested the effect of choosing reference genes with different stability on the normalization of the transcript abundance of a candidate gene involved in olfactory communication in B. anynana, the Fatty Acyl Reductase 2, and we confirmed that using an unstable reference gene can drastically alter the expression profile of the target candidate genes.

  4. The resemblance and disparity of gene expression in dormant and non-dormant seeds and crown buds of leafy spurge (Euphorbia esula)

    USDA-ARS?s Scientific Manuscript database

    Overlaps in transcriptome profiles between different phases of bud and seed dormancy have not been determined. Thus, we compared various phases of dormancy between seeds and buds to identify common genes and molecular processes. Cluster analysis of expression profiles for 201 selected genes indicate...

  5. GENE EXPRESSION CHANGES IN ARABIDOPSIS THALIANA SEEDLING ROOTS EXPOSED TO THE MUNITION HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE

    EPA Science Inventory

    Arabidopsis thaliana root transcriptome responses to the munition, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), were assessed using serial analysis of gene expression (SAGE). Comparison of the transcriptional profile for the RDX response to a profile previously described for Ar...

  6. MicroRNA expression profiles from eggs of different qualities associated with post-ovulatory ageing in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Background: Egg quality is an important aspect in rainbow trout farming. Post-ovulatory aging is one of the most important factors affecting egg quality. MicroRNAs (miRNAs) are the major regulators in various biological processes and their expression profiles could serve as reliable biomarkers for v...

  7. WISC-IV Intellectual Profiles in Italian Children with Specific Learning Disorder and Related Impairments in Reading, Written Expression, and Mathematics

    ERIC Educational Resources Information Center

    Poletti, Michele

    2016-01-01

    The fifth edition of the "Diagnostic and Statistical Manual of Mental Disorders" grouped specific learning disabilities in the single diagnostic category of specific learning disorder (SLD), with specifiers for impairments in reading, written expression, and mathematics. This study aimed at investigating the intellectual profile,…

  8. DIFFERENTIAL TRANSCRIPTION FACTOR ACTIVATION AD GENE EXPRESSION PROFILES IN HUMAN VASCULAR ENDOTHELIAL CELLS ON EXPOSURE TO RESIDUAL OIL FLY ASH (ROFA) AND VANADIUM

    EPA Science Inventory


    Differential transcription factor activation and gene expression profiles in human vascular endothelial cells on exposure to residual oil fly ash (ROFA) and vanadium.
    Srikanth S. Nadadur and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxicology Branch), Research ...

  9. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions

    USDA-ARS?s Scientific Manuscript database

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  10. Characterization and expression analysis of two cDNAs encoding Xa1 and oxysterol binding proteins in sorghum (Sorghum bicolor)

    USDA-ARS?s Scientific Manuscript database

    Using suppression subtractive hybridization (SSH) and subsequent microarray analysis, expression profiles of sorghum genes responsive to greenbug phloem-feeding were obtained and identified. Among the profiles, two cDNAs designated to MM73 and MM95 were identified to encode Xa1 (Xa1) and oxysterol ...

  11. Discriminating Down Syndrome and Fragile X Syndrome Based on Language Ability

    ERIC Educational Resources Information Center

    Finestack, Lizbeth H.; Sterling, Audra M.; Abbeduto, Leonard

    2013-01-01

    This study compared the receptive and expressive language profiles of verbally expressive children and adolescents with Down Syndrome (DS) and those with Fragile X syndrome (FXS) and examined the extent to which these profiles reliably differentiate the diagnostic groups. A total of twenty-four verbal participants with DS (mean age: 12 years),…

  12. GENE EXPRESSION PROFILING OF THE RAT KIDNEY FOLLOWING CHRONIC EXPOSURE (100 WKS) TO THE WATER DISINFECTANT BYPRODUCT AND RENAL CARCINOGEN, POTASSIUM BROMATE.

    EPA Science Inventory

    Gene expression profiling of the rat kidney following chronic exposure (100 wks) to the water
    disinfectant byproduct and renal carcinogen, potassium bromate.

    Don Delker, James Allen, Gail Nelson, Tanya Moore, Barbara Roop, Russell Owen, and Anthony DeAngelo. Environment...

  13. GENE EXPRESSION PROFILES IN HUMAN AND RAT VASCULAR ENDOTHELIAL CELLS EXPOSED TO RESIDUAL OIL FLY ASH (ROFA) AND VANADIUM (V)

    EPA Science Inventory

    Gene expression profiles in human and rat vascular endothelial cells exposed to residual oil fly ash (ROFA) or vanadium (V).
    Srikanth S. Nadadur, Darrell W. Winsett and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxicology Branch), Research Triangle Park, NC 27711.

  14. GENE EXPRESSION PROFILING OF MOUSE SKIN AND PAPILLOMAS FOLLOWING CHRONIC EXPOSURE TO MONOMETHYLARSONOUS ACID IN K6/ODC TRANSGENIC MICE

    EPA Science Inventory

    Methylarsonous acid [MMA(III)], a common metabolite of inorganic arsenic metabolism, increases tumor frequency in the skin of K6/ODC transgenic mice following a chronic exposure. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcin...

  15. Profiles of Receptive and Expressive Language Abilities in Boys with Comorbid Fragile X Syndrome and Autism

    ERIC Educational Resources Information Center

    McDuffie, Andrea; Kover, Sara; Abbeduto, Leonard; Lewis, Pamela; Brown, Ted

    2012-01-01

    The authors examined receptive and expressive language profiles for a group of verbal male children and adolescents who had fragile X syndrome along with varying degrees of autism symptoms. A categorical approach for assigning autism diagnostic classification, based on the combined use of the Autism Diagnostic Interview--Revised and the Autism…

  16. Moving Toward Integrating Gene Expression Profiling into High-throughput Testing:A Gene Expression Biomarker Accurately Predicts Estrogen Receptor α Modulation in a Microarray Compendium

    EPA Science Inventory

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), ...

  17. A proof of the DBRF-MEGN method, an algorithm for deducing minimum equivalent gene networks

    PubMed Central

    2011-01-01

    Background We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the details of the method's algorithm or a proof of the algorithm. Results We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. Conclusions The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants. PMID:21699737

  18. Profiling differential gene expression of corals along a transect of waters adjacent to the Bermuda municipal dump.

    PubMed

    Morgan, Michael B; Edge, Sara E; Snell, Terry W

    2005-01-01

    A coral cDNA array containing 32 genes was used to examine the gene expression profiles of coral populations located at four sites that varied with distance from a semi-submerged municipal dump in Castle Harbour, Bermuda (previously identified as a point source of anthropogenic stressors). Genes on the array represent transcripts induced under controlled laboratory conditions to a variety of stressors both natural (temperature, sediment, salinity, darkness) and xenobiotic (heavy metals, pesticides, PAH) in origin. The gene expression profiles produced revealed information about the types of stressors. Consistent with other studies undertaken in Castle Harbour, the coral cDNA array detected responses to heavy metals, sedimentation, as well as oxidative stress.

  19. Exploiting the full power of temporal gene expression profiling through a new statistical test: application to the analysis of muscular dystrophy data.

    PubMed

    Vinciotti, Veronica; Liu, Xiaohui; Turk, Rolf; de Meijer, Emile J; 't Hoen, Peter A C

    2006-04-03

    The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gamma-sarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it allows fast interpretation of the temporal behaviour of genes. The R code is available from V.V. The microarray data have been submitted to GEO under series GSE1574 and GSE3523.

  20. Exploiting the full power of temporal gene expression profiling through a new statistical test: Application to the analysis of muscular dystrophy data

    PubMed Central

    Vinciotti, Veronica; Liu, Xiaohui; Turk, Rolf; de Meijer, Emile J; 't Hoen, Peter AC

    2006-01-01

    Background The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. Results We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gamma-sarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. Conclusion The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it allows fast interpretation of the temporal behaviour of genes. The R code is available from V.V. The microarray data have been submitted to GEO under series GSE1574 and GSE3523. PMID:16584545

  1. Gene Expression Signatures Based on Variability can Robustly Predict Tumor Progression and Prognosis

    PubMed Central

    Dinalankara, Wikum; Bravo, Héctor Corrada

    2015-01-01

    Gene expression signatures are commonly used to create cancer prognosis and diagnosis methods, yet only a small number of them are successfully deployed in the clinic since many fail to replicate performance on subsequent validation. A primary reason for this lack of reproducibility is the fact that these signatures attempt to model the highly variable and unstable genomic behavior of cancer. Our group recently introduced gene expression anti-profiles as a robust methodology to derive gene expression signatures based on the observation that while gene expression measurements are highly heterogeneous across tumors of a specific cancer type relative to the normal tissue, their degree of deviation from normal tissue expression in specific genes involved in tissue differentiation is a stable tumor mark that is reproducible across experiments and cancer types. Here we show that constructing gene expression signatures based on variability and the anti-profile approach yields classifiers capable of successfully distinguishing benign growths from cancerous growths based on deviation from normal expression. We then show that this same approach generates stable and reproducible signatures that predict probability of relapse and survival based on tumor gene expression. These results suggest that using the anti-profile framework for the discovery of genomic signatures is an avenue leading to the development of reproducible signatures suitable for adoption in clinical settings. PMID:26078586

  2. Genome-Wide Expression Profiling of Complex Regional Pain Syndrome

    PubMed Central

    Jin, Eun-Heui; Zhang, Enji; Ko, Youngkwon; Sim, Woo Seog; Moon, Dong Eon; Yoon, Keon Jung; Hong, Jang Hee; Lee, Won Hyung

    2013-01-01

    Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and p<0.05). Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1), matrix metalloproteinase 9 (MMP9), alanine aminopeptidase N (ANPEP), l-histidine decarboxylase (HDC), granulocyte colony-stimulating factor 3 receptor (G-CSF3R), and signal transducer and activator of transcription 3 (STAT3) genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression. PMID:24244504

  3. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

    PubMed

    Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin

    2016-01-01

    In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba.

  4. Two-pass imputation algorithm for missing value estimation in gene expression time series.

    PubMed

    Tsiporkova, Elena; Boeva, Veselka

    2007-10-01

    Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.

  5. Blood-Based Gene Expression Profiles Models for Classification of Subsyndromal Symptomatic Depression and Major Depressive Disorder

    PubMed Central

    Yu, Shunying; Yuan, Chengmei; Hong, Wu; Wang, Zuowei; Cui, Jian; Shi, Tieliu; Fang, Yiru

    2012-01-01

    Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and also lead to significant psychosocial functional impairment as same as major depressive disorder (MDD). Several studies have suggested that SSD is a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group). Support vector machines (SVMs) were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (P< = 5.0E-4) and 30 differentially expressed MDD signatures in contrast to control, respectively. Then, 123 gene signatures were identified with significantly differential expression level between SSD and MDD. Secondly, in order to conduct priority selection for biomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome signature with peripheral blood leukocyte, and blood cell–derived RNA of these 48 gene models may have significant value for performing diagnostic functions and classifying SSD, MDD, and healthy controls. PMID:22348066

  6. Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.

    PubMed Central

    Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin

    2016-01-01

    In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba. PMID:27379148

  7. RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.

    PubMed

    Schäfer, Reinhold; Sers, Christine

    2011-01-01

    Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.

  8. Identification of the Neuromuscular Junction Transcriptome of Extraocular Muscle by Laser Capture Microdissection

    PubMed Central

    Ketterer, Caroline; Zeiger, Ulrike; Budak, Murat T.; Rubinstein, Neal A.; Khurana, Tejvir S.

    2010-01-01

    Purpose. To examine and characterize the profile of genes expressed at the synapses or neuromuscular junctions (NMJs) of extraocular muscles (EOMs) compared with those expressed at the tibialis anterior (TA). Methods. Adult rat eyeballs with rectus EOMs attached and TAs were dissected, snap frozen, serially sectioned, and stained for acetylcholinesterase (AChE) to identify the NMJs. Approximately 6000 NMJs for rectus EOM (EOMsyn), 6000 NMJs for TA (TAsyn), equal amounts of NMJ-free fiber regions (EOMfib, TAfib), and underlying myonuclei and RNAs were captured by laser capture microdissection (LCM). RNA was processed for microarray-based expression profiling. Expression profiles and interaction lists were generated for genes differentially expressed at synaptic and nonsynaptic regions of EOM (EOMsyn versus EOMfib) and TA (TAsyn versus TAfib). Profiles were validated by using real-time quantitative polymerase chain reaction (qPCR). Results. The regional transcriptomes associated with NMJs of EOMs and TAs were identified. Two hundred seventy-five genes were preferentially expressed in EOMsyn (compared with EOMfib), 230 in TAsyn (compared with TAfib), and 288 additional transcripts expressed in both synapses. Identified genes included novel genes as well as well-known, evolutionarily conserved synaptic markers (e.g., nicotinic acetylcholine receptor (AChR) alpha (Chrna) and epsilon (Chrne) subunits and nestin (Nes). Conclusions. Transcriptome level differences exist between EOM synaptic regions and TA synaptic regions. The definition of the synaptic transcriptome provides insight into the mechanism of formation and functioning of the unique synapses of EOM and their differential involvement in diseases noted in the EOM allotype. PMID:20393109

  9. Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma.

    PubMed

    Serna, Eva; Morales, José Manuel; Mata, Manuel; Gonzalez-Darder, José; San Miguel, Teresa; Gil-Benso, Rosario; Lopez-Gines, Concha; Cerda-Nicolas, Miguel; Monleon, Daniel

    2013-01-01

    Around 20% of meningiomas histologically benign may be clinically aggressive and recur. This strongly affects management of meningioma patients. There is a need to evaluate the potential aggressiveness of an individual meningioma. Additional criteria for better classification of meningiomas will improve clinical decisions as well as patient follow up strategy after surgery. The aim of this study was to determine the relationship between gene expression profiles and new metabolic subgroups of benign meningioma with potential clinical relevance. Forty benign and fourteen atypical meningioma tissue samples were included in the study. We obtained metabolic profiles by NMR and recurrence after surgery information for all of them. We measured gene expression by oligonucleotide microarray measurements on 19 of them. To our knowledge, this is the first time that distinct gene expression profiles are reported for benign meningioma molecular subgroups with clinical correlation. Our results show that metabolic aggressiveness in otherwise histological benign meningioma proceeds mostly through alterations in the expression of genes involved in the regulation of transcription, mainly the LMO3 gene. Genes involved in tumor metabolism, like IGF1R, are also differentially expressed in those meningioma subgroups with higher rates of membrane turnover, higher energy demand and increased resistance to apoptosis. These new subgroups of benign meningiomas exhibit different rates of recurrence. This work shows that benign meningioma with metabolic aggressiveness constitute a subgroup of potentially recurrent tumors in which alterations in genes regulating critical features of aggressiveness, like increased angiogenesis or cell invasion, are still no predominant. The determination of these gene expression biosignatures may allow the early detection of clinically aggressive tumors.

  10. Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions

    PubMed Central

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest. PMID:25774904

  11. Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions.

    PubMed

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference--ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)--along with two novel candidates--HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.

  12. Oligonucleotide Microarray Analysis of Dietary-Induced Hyperlipidemia Gene Expression Profiles in Miniature Pigs

    PubMed Central

    Takahashi, Junko; Waki, Shiori; Matsumoto, Rena; Odake, Junji; Miyaji, Takayuki; Tottori, Junichi; Iwanaga, Takehiro; Iwahashi, Hitoshi

    2012-01-01

    Background Hyperlipidemia animal models have been established, but complete gene expression profiles of the transition from normal lipid levels have not been obtained. Miniature pigs are useful model animals for gene expression studies on dietary-induced hyperlipidemia because they have a similar anatomy and digestive physiology to humans, and blood samples can be obtained from them repeatedly. Methodology Two typical dietary treatments were used for dietary-induced hyperlipidemia models, by using specific pathogen-free (SPF) Clawn miniature pigs. One was a high-fat and high-cholesterol diet (HFCD) and the other was a high-fat, high-cholesterol, and high-sucrose diet (HFCSD). Microarray analyses were conducted from whole blood samples during the dietary period and from white blood cells at the end of the dietary period to evaluate the transition of expression profiles of the two dietary models. Principal Findings Variations in whole blood gene expression intensity within the HFCD or the HFCSD group were in the same range as the controls provide with normal diet at all periods. This indicates uniformity of dietary-induced hyperlipidemia for our dietary protocols. Gene ontology- (GO) based functional analyses revealed that characteristics of the common changes between HFCD and HFCSD were involved in inflammatory responses and reproduction. The correlation coefficient between whole blood and white blood cell expression profiles at 27 weeks with the HFCSD diet was significantly lower than that of the control and HFCD diet groups. This may be due to the effects of RNA originating from the tissues and/or organs. Conclusions No statistically significant differences in fasting plasma lipids and glucose levels between the HFCD and HFCSD groups were observed. However, blood RNA analyses revealed different characteristics corresponding to the dietary protocols. In this study, whole blood RNA analyses proved to be a useful tool to evaluate transitions in dietary-induced hyperlipidemia gene expression profiles in miniature pigs. PMID:22662175

  13. Transcriptome Profiling of Bovine Milk Oligosaccharide Metabolism Genes Using RNA-Sequencing

    PubMed Central

    Wickramasinghe, Saumya; Hua, Serenus; Rincon, Gonzalo; Islas-Trejo, Alma; German, J. Bruce; Lebrilla, Carlito B.; Medrano, Juan F.

    2011-01-01

    This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk. PMID:21541029

  14. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles.

    PubMed

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection.

  15. Biological mechanism analysis of acute renal allograft rejection: integrated of mRNA and microRNA expression profiles

    PubMed Central

    Huang, Shi-Ming; Zhao, Xia; Zhao, Xue-Mei; Wang, Xiao-Ying; Li, Shan-Shan; Zhu, Yu-Hui

    2014-01-01

    Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-functioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miRNAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the co-expression network. C1R showed the highest degree in the network. These genes might be associated with human acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs that may be related to acute renal allograft rejection. PMID:25664019

  16. Comparative analysis of gene expression profiles of hip articular cartilage between non-traumatic necrosis and osteoarthritis.

    PubMed

    Wang, Wenyu; Liu, Yang; Hao, Jingcan; Zheng, Shuyu; Wen, Yan; Xiao, Xiao; He, Awen; Fan, Qianrui; Zhang, Feng; Liu, Ruiyu

    2016-10-10

    Hip cartilage destruction is consistently observed in the non-traumatic osteonecrosis of femoral head (NOFH) and accelerates its bone necrosis. The molecular mechanism underlying the cartilage damage of NOFH remains elusive. In this study, we conducted a systematically comparative study of gene expression profiles between NOFH and osteoarthritis (OA). Hip articular cartilage specimens were collected from 12 NOFH patients and 12 controls with traumatic femoral neck fracture for microarray (n=4) and quantitative real-time PCR validation experiments (n=8). Gene expression profiling of articular cartilage was performed using Agilent Human 4×44K Microarray chip. The accuracy of microarray experiment was further validated by qRT-PCR. Gene expression results of OA hip cartilage were derived from previously published study. Significance Analysis of Microarrays (SAM) software was applied for identifying differently expressed genes. Gene ontology (GO) and pathway enrichment analysis were conducted by Gene Set Enrichment Analysis software and DAVID tool, respectively. Totally, 27 differently expressed genes were identified for NOFH. Comparing the gene expression profiles of NOFH cartilage and OA cartilage detected 8 common differently expressed genes, including COL5A1, OGN, ANGPTL4, CRIP1, NFIL3, METRNL, ID2 and STEAP1. GO comparative analysis identified 10 common significant GO terms, mainly implicated in apoptosis and development process. Pathway comparative analysis observed that ECM-receptor interaction pathway and focal adhesion pathway were enriched in the differently expressed genes of both NOFH and hip OA. In conclusion, we identified a set of differently expressed genes, GO and pathways for NOFH articular destruction, some of which were also involved in the hip OA. Our study results may help to reveal the pathogenetic similarities and differences of cartilage damage of NOFH and hip OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Seasonal Changes in Bacterial and Archaeal Gene Expression Patterns across Salinity Gradients in the Columbia River Coastal Margin

    PubMed Central

    Smith, Maria W.; Herfort, Lydie; Tyrol, Kaitlin; Suciu, Dominic; Campbell, Victoria; Crump, Byron C.; Peterson, Tawnya D.; Zuber, Peter; Baptista, Antonio M.; Simon, Holly M.

    2010-01-01

    Through their metabolic activities, microbial populations mediate the impact of high gradient regions on ecological function and productivity of the highly dynamic Columbia River coastal margin (CRCM). A 2226-probe oligonucleotide DNA microarray was developed to investigate expression patterns for microbial genes involved in nitrogen and carbon metabolism in the CRCM. Initial experiments with the environmental microarrays were directed toward validation of the platform and yielded high reproducibility in multiple tests. Bioinformatic and experimental validation also indicated that >85% of the microarray probes were specific for their corresponding target genes and for a few homologs within the same microbial family. The validated probe set was used to query gene expression responses by microbial assemblages to environmental variability. Sixty-four samples from the river, estuary, plume, and adjacent ocean were collected in different seasons and analyzed to correlate the measured variability in chemical, physical and biological water parameters to differences in global gene expression profiles. The method produced robust seasonal profiles corresponding to pre-freshet spring (April) and late summer (August). Overall relative gene expression was high in both seasons and was consistent with high microbial abundance measured by total RNA, heterotrophic bacterial production, and chlorophyll a. Both seasonal patterns involved large numbers of genes that were highly expressed relative to background, yet each produced very different gene expression profiles. April patterns revealed high differential gene expression in the coastal margin samples (estuary, plume and adjacent ocean) relative to freshwater, while little differential gene expression was observed along the river-to-ocean transition in August. Microbial gene expression profiles appeared to relate, in part, to seasonal differences in nutrient availability and potential resource competition. Furthermore, our results suggest that highly-active particle-attached microbiota in the Columbia River water column may perform dissimilatory nitrate reduction (both dentrification and DNRA) within anoxic particle microniches. PMID:20967204

  18. The Role of Vitamin D in the Transcriptional Program of Human Pregnancy

    PubMed Central

    Al-Garawi, Amal; Carey, Vincent J.; Chhabra, Divya; Morrow, Jarrett; Lasky-Su, Jessica; Qiu, Weiliang; Laranjo, Nancy; Litonjua, Augusto A.; Weiss, Scott T.

    2016-01-01

    Background Patterns of gene expression of human pregnancy are poorly understood. In a trial of vitamin D supplementation in pregnant women, peripheral blood transcriptomes were measured longitudinally on 30 women and used to characterize gene co-expression networks. Objective Studies suggest that increased maternal Vitamin D levels may reduce the risk of asthma in early life, yet the underlying mechanisms have not been examined. In this study, we used a network-based approach to examine changes in gene expression profiles during the course of normal pregnancy and evaluated their association with maternal Vitamin D levels. Design The VDAART study is a randomized clinical trial of vitamin D supplementation in pregnancy for reduction of pediatric asthma risk. The trial enrolled 881 women at 10–18 weeks of gestation. Longitudinal gene expression measures were obtained on thirty pregnant women, using RNA isolated from peripheral blood samples obtained in the first and third trimesters. Differentially expressed genes were identified using significance of analysis of microarrays (SAM), and clustered using a weighted gene co-expression network analysis (WGCNA). Gene-set enrichment was performed to identify major biological pathways. Results Comparison of transcriptional profiles between first and third trimesters of pregnancy identified 5839 significantly differentially expressed genes (FDR<0.05). Weighted gene co-expression network analysis clustered these transcripts into 14 co-expression modules of which two showed significant correlation with maternal vitamin D levels. Pathway analysis of these two modules revealed genes enriched in immune defense pathways and extracellular matrix reorganization as well as genes enriched in notch signaling and transcription factor networks. Conclusion Our data show that gene expression profiles of healthy pregnant women change during the course of pregnancy and suggest that maternal Vitamin D levels influence transcriptional profiles. These alterations of the maternal transcriptome may contribute to fetal immune imprinting and reduce allergic sensitization in early life. Trial Registration clinicaltrials.gov NCT00920621 PMID:27711190

  19. Common patterns and disease-related signatures in tuberculosis and sarcoidosis.

    PubMed

    Maertzdorf, Jeroen; Weiner, January; Mollenkopf, Hans-Joachim; Bauer, Torsten; Prasse, Antje; Müller-Quernheim, Joachim; Kaufmann, Stefan H E

    2012-05-15

    In light of the marked global health impact of tuberculosis (TB), strong focus has been on identifying biosignatures. Gene expression profiles in blood cells identified so far are indicative of a persistent activation of the immune system and chronic inflammatory pathology in active TB. Definition of a biosignature with unique specificity for TB demands that identified profiles can differentiate diseases with similar pathology, like sarcoidosis (SARC). Here, we present a detailed comparison between pulmonary TB and SARC, including whole-blood gene expression profiling, microRNA expression, and multiplex serum analytes. Our analysis reveals that previously disclosed gene expression signatures in TB show highly similar patterns in SARC, with a common up-regulation of proinflammatory pathways and IFN signaling and close similarity to TB-related signatures. microRNA expression also presented a highly similar pattern in both diseases, whereas cytokines in the serum of TB patients revealed a slightly elevated proinflammatory pattern compared with SARC and controls. Our results indicate several differences in expression between the two diseases, with increased metabolic activity and significantly higher antimicrobial defense responses in TB. However, matrix metallopeptidase 14 was identified as the most distinctive marker of SARC. Described communalities as well as unique signatures in blood profiles of two distinct inflammatory pulmonary diseases not only have considerable implications for the design of TB biosignatures and future diagnosis, but they also provide insights into biological processes underlying chronic inflammatory disease entities of different etiology.

  20. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: Physiology of phytopathogenic bacteria

    PubMed Central

    2013-01-01

    Background Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. Results A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. Conclusions From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development. PMID:23587016

  1. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    PubMed

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei

    PubMed Central

    Kabani, Sarah; Fenn, Katelyn; Ross, Alan; Ivens, Al; Smith, Terry K; Ghazal, Peter; Matthews, Keith

    2009-01-01

    Background Trypanosomes undergo extensive developmental changes during their complex life cycle. Crucial among these is the transition between slender and stumpy bloodstream forms and, thereafter, the differentiation from stumpy to tsetse-midgut procyclic forms. These developmental events are highly regulated, temporally reproducible and accompanied by expression changes mediated almost exclusively at the post-transcriptional level. Results In this study we have examined, by whole-genome microarray analysis, the mRNA abundance of genes in slender and stumpy forms of T.brucei AnTat1.1 cells, and also during their synchronous differentiation to procyclic forms. In total, five biological replicates representing the differentiation of matched parasite populations derived from five individual mouse infections were assayed, with RNAs being derived at key biological time points during the time course of their synchronous differentiation to procyclic forms. Importantly, the biological context of these mRNA profiles was established by assaying the coincident cellular events in each population (surface antigen exchange, morphological restructuring, cell cycle re-entry), thereby linking the observed gene expression changes to the well-established framework of trypanosome differentiation. Conclusion Using stringent statistical analysis and validation of the derived profiles against experimentally-predicted gene expression and phenotypic changes, we have established the profile of regulated gene expression during these important life-cycle transitions. The highly synchronous nature of differentiation between stumpy and procyclic forms also means that these studies of mRNA profiles are directly relevant to the changes in mRNA abundance within individual cells during this well-characterised developmental transition. PMID:19747379

  3. Molecular Markers in Patients with Chronic Wounds to Guide Surgical Debridement

    PubMed Central

    Brem, Harold; Stojadinovic, Olivera; Diegelmann, Robert F; Entero, Hyacinth; Lee, Brian; Pastar, Irena; Golinko, Michael; Rosenberg, Harvey; Tomic-Canic, Marjana

    2007-01-01

    Chronic wounds, such as venous ulcers, are characterized by physiological impairments manifested by delays in healing, resulting in severe morbidity. Surgical debridement is routinely performed on chronic wounds because it stimulates healing. However, procedures are repeated many times on the same patient because, in contrast to tumor excision, there are no objective biological/molecular markers to guide the extent of debridement. To develop bioassays that can potentially guide surgical debridement, we assessed the pathogenesis of the patients’ wound tissue before and after wound debridement. We obtained biopsies from three patients at two locations, the nonhealing edge (prior to debridement) and the adjacent, nonulcerated skin of the venous ulcers (post debridement), and evaluated their histology, biological response to wounding (migration) and gene expression profile. We found that biopsies from the nonhealing edges exhibit distinct pathogenic morphology (hyperproliferative/hyperkeratotic epidermis; dermal fibrosis; increased procollagen synthesis). Fibroblasts deriving from this location exhibit impaired migration in comparison to the cells from adjacent nonulcerated biopsies, which exhibit normalization of morphology and normal migration capacity. The nonhealing edges have a specific, identifiable, and reproducible gene expression profile. The adjacent nonulcerated biopsies have their own distinctive reproducible gene expression profile, signifying that particular wound areas can be identified by gene expression profiling. We conclude that chronic ulcers contain distinct subpopulations of cells with different capacity to heal and that gene expression profiling can be utilized to identify them. In the future, molecular markers will be developed to identify the nonimpaired tissue, thereby making surgical debridement more accurate and more efficacious. PMID:17515955

  4. [Study of testicular cancer gene expression in samples of oral leukoplakia and squamous cell carcinoma of the mouth].

    PubMed

    Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S

    2012-01-01

    Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.

  5. Multiple biomarkers in molecular oncology. II. Molecular diagnostics applications in breast cancer management.

    PubMed

    Malinowski, Douglas P

    2007-05-01

    In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.

  6. DIFFERENTIAL GENE EXPRESSION PROFILES IN RAT TRACHAEL EPITHELIAL (RTE) CELLS IN RESPONSE TO COMBUSTION-SOURCE PARTICULATE MATTER (PM) AND VANADIUM (V) A PRIMARY METAL CONSTITUENT

    EPA Science Inventory

    Differential gene expression profiles in rat tracheal epithelial (RTE) cells in response to combustion-source particulate matter (PM) and vanadium (V) a primary metal constituent
    Srikanth S. Nadadur, Janice A. Dye and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxico...

  7. Classification of early-stage non-small cell lung cancer by weighing gene expression profiles with connectivity information.

    PubMed

    Zhang, Ao; Tian, Suyan

    2018-05-01

    Pathway-based feature selection algorithms, which utilize biological information contained in pathways to guide which features/genes should be selected, have evolved quickly and become widespread in the field of bioinformatics. Based on how the pathway information is incorporated, we classify pathway-based feature selection algorithms into three major categories-penalty, stepwise forward, and weighting. Compared to the first two categories, the weighting methods have been underutilized even though they are usually the simplest ones. In this article, we constructed three different genes' connectivity information-based weights for each gene and then conducted feature selection upon the resulting weighted gene expression profiles. Using both simulations and a real-world application, we have demonstrated that when the data-driven connectivity information constructed from the data of specific disease under study is considered, the resulting weighted gene expression profiles slightly outperform the original expression profiles. In summary, a big challenge faced by the weighting method is how to estimate pathway knowledge-based weights more accurately and precisely. Only until the issue is conquered successfully will wide utilization of the weighting methods be impossible. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The dark cube: dark and light character profiles.

    PubMed

    Garcia, Danilo; Rosenberg, Patricia

    2016-01-01

    Background. Research addressing distinctions and similarities between people's malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger's character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger's "light" character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people's dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon's Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals' dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast, scored high in self-directedness. Moreover, individuals with a profile low in the dark traits were more likely to end up with a profile high in cooperativeness. The opposite was true for those individuals with a profile high in the dark traits. The rest of the cross-comparisons revealed some of the characteristics of human personality as a non-linear complex dynamic system. Conclusions. Our study suggests that individuals who are high in Machiavellianism and psychopathy share a unified non-agentic and uncooperative character (i.e., irresponsible, low in self-control, unempathetic, unhelpful, untolerant), while individuals high in narcissism have a more unique character configuration expressed as high agency and, when the other dark traits are high, highly spiritual but uncooperative. In other words, based on differences in their associations to the light side of character, the Dark Triad seems to be a dyad rather than a triad.

  9. The dark cube: dark and light character profiles

    PubMed Central

    2016-01-01

    Background. Research addressing distinctions and similarities between people’s malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger’s character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger’s “light” character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people’s dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon’s Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals’ dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast, scored high in self-directedness. Moreover, individuals with a profile low in the dark traits were more likely to end up with a profile high in cooperativeness. The opposite was true for those individuals with a profile high in the dark traits. The rest of the cross-comparisons revealed some of the characteristics of human personality as a non-linear complex dynamic system. Conclusions. Our study suggests that individuals who are high in Machiavellianism and psychopathy share a unified non-agentic and uncooperative character (i.e., irresponsible, low in self-control, unempathetic, unhelpful, untolerant), while individuals high in narcissism have a more unique character configuration expressed as high agency and, when the other dark traits are high, highly spiritual but uncooperative. In other words, based on differences in their associations to the light side of character, the Dark Triad seems to be a dyad rather than a triad. PMID:26966650

  10. [Research progress in neuropsychopharmacology updated for the post-genomic era].

    PubMed

    Nakanishi, Toru

    2009-11-01

    Neuropsychopharmacological research in the post genomic (genomic sequence) era has been developing rapidly through the use of novel techniques including DNA chips. We have applied these techniques to investigate the anti-tumor effect of NSAIDs, isolate novel genes specifically expressed in rheumatoid arthritis, and analyze gene expression profiles in mesenchymal stem cells. Recently, we have developed a novel system of quantitative PCR for detection of BDNF mRNA isoforms. By using this system, we identified the exon-specific mode of expression in acute and chronic pain. In addition, we have made gene expression profiles of KO mice of beta2 subunits in acetylcholine receptors.

  11. Dose–response relationships in gene expression profiles in rainbow trout, Oncorhyncus mykiss, exposed to ethynylestradiol

    PubMed Central

    Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2008-01-01

    Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss, were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as “expression signatures”. Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that diffierent doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose. PMID:16725192

  12. Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    PubMed Central

    Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia

    2007-01-01

    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544

  13. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes.

    PubMed

    Grayson, B L; Wang, L; Aune, T M

    2011-07-01

    To determine if individuals with metabolic disorders possess unique gene expression profiles, we compared transcript levels in peripheral blood from patients with coronary artery disease (CAD), type 2 diabetes (T2D) and their precursor state, metabolic syndrome to those of control (CTRL) subjects and subjects with rheumatoid arthritis (RA). The gene expression profile of each metabolic state was distinguishable from CTRLs and correlated with other metabolic states more than with RA. Of note, subjects in the metabolic cohorts overexpressed gene sets that participate in the innate immune response. Genes involved in activation of the pro-inflammatory transcription factor, NF-κB, were overexpressed in CAD whereas genes differentially expressed in T2D have key roles in T-cell activation and signaling. Reverse transcriptase PCR validation confirmed microarray results. Furthermore, several genes differentially expressed in human metabolic disorders have been previously shown to participate in inflammatory responses in murine models of obesity and T2D. Taken together, these data demonstrate that peripheral blood from individuals with metabolic disorders display overlapping and non-overlapping patterns of gene expression indicative of unique, underlying immune processes.

  14. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    PubMed Central

    2014-01-01

    Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix remodeling. Conclusions Our findings demonstrate that unique miRNA expression profiles correlate with the biological behavior of canine MCTs. Furthermore, dysregulation of miR-9 is associated with MCT metastasis potentially through the induction of an invasive phenotype, identifying a potentially novel pathway for therapeutic intervention. PMID:24517413

  15. Liver Gene Expression Profiles of Rats Treated with Clofibric Acid

    PubMed Central

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-01-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor α, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci. PMID:14633594

  16. Liver gene expression profiles of rats treated with clofibric acid: comparison of whole liver and laser capture microdissected liver.

    PubMed

    Michel, Cécile; Desdouets, Chantal; Sacre-Salem, Béatrice; Gautier, Jean-Charles; Roberts, Ruth; Boitier, Eric

    2003-12-01

    Clofibric acid (CLO) is a peroxisome proliferator (PP) that acts through the peroxisome proliferator activated receptor alpha, leading to hepatocarcinogenesis in rodents. CLO-induced hepatocarcinogenesis is a multi-step process, first transforming normal liver cells into foci. The combination of laser capture microdissection (LCM) and genomics has the potential to provide expression profiles from such small cell clusters, giving an opportunity to understand the process of cancer development in response to PPs. To our knowledge, this is the first evaluation of the impact of the successive steps of LCM procedure on gene expression profiling by comparing profiles from LCM samples to those obtained with non-microdissected liver samples collected after a 1 month CLO treatment in the rat. We showed that hematoxylin and eosin (H&E) staining and laser microdissection itself do not impact on RNA quality. However, the overall process of the LCM procedure affects the RNA quality, resulting in a bias in the gene profiles. Nonetheless, this bias did not prevent accurate determination of a CLO-specific molecular signature. Thus, gene-profiling analysis of microdissected foci, identified by H&E staining may provide insight into the mechanisms underlying non-genotoxic hepatocarcinogenesis in the rat by allowing identification of specific genes that are regulated by CLO in early pre-neoplastic foci.

  17. Altered Expression of Diabetes-Related Genes in Alzheimer's Disease Brains: The Hisayama Study

    PubMed Central

    Hokama, Masaaki; Oka, Sugako; Leon, Julio; Ninomiya, Toshiharu; Honda, Hiroyuki; Sasaki, Kensuke; Iwaki, Toru; Ohara, Tomoyuki; Sasaki, Tomio; LaFerla, Frank M.; Kiyohara, Yutaka; Nakabeppu, Yusaku

    2014-01-01

    Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM. PMID:23595620

  18. Serum miRNAs Signature Plays an Important Role in Keloid Disease.

    PubMed

    Luan, Y; Liu, Y; Liu, C; Lin, Q; He, F; Dong, X; Xiao, Z

    2016-01-01

    The molecular mechanism underlying the pathogenesis of keloid is largely unknown. MicroRNA (miRNA) is a class of small regulatory RNA that has emerged as a group of posttranscriptional gene repressors, participating in diverse pathophysiological processes of skin diseases. We investigated the expression profiles of miRNAs in the sera of patients to decipher the complicated factors involved in the development of keloid disease. MiRNA expression profiling in the sera from 9 keloid patients and 7 normal controls were characterized using a miRNA microarray containing established human mature and precursor miRNA sequences. Quantitative real-time PCR was performed to confirm the expression of miRNAs. The putative targets of differentially expressed miRNAs were functionally annotated by bioinformatics. MiRNA microarray analysis identified 37 differentially expressed miRNAs (17 upregulated and 20 downregulated) in keloid patients, compared to the healthy controls. Functional annotations revealed that the targets of those differentially expressed miRNAs were enriched in signaling pathways essential for scar formation and wound healing. The expression profiling of miRNAs is altered in the keloid, providing a clue for the molecular mechanisms underlying its initiation and progression. MiRNAs may partly contribute to the etiology of keloids by affecting the critical signaling pathways relevant to keloid pathogenesis.

  19. MicroRNA expression profiling in alveolar macrophages of indigenous Chinese Tongcheng pigs infected with PRRSV in vivo.

    PubMed

    Zhou, Xiang; Michal, Jennifer J; Jiang, Zhihua; Liu, Bang

    2017-11-01

    Porcine respiratory and reproductive syndrome (PRRS), caused by PRRS virus (PRRSV), is one of the most serious infectious diseases in the swine industry worldwide. Indigenous Chinese Tongcheng (TC) pigs reportedly show strong resistance to PRRSV infection. The miRNA expression profiles of porcine alveolar macrophages (PAMs) of control TC pigs and those infected with PRRSV in vivo were analyzed by high-throughput sequencing to explore changes induced by infection. A total of 182 known miRNAs including 101 miRNA-5p and 81 miRNA-3p were identified with 23 up-regulated differentially expressed miRNAs (DEmiRNAs) and 25 down-regulated DEmiRNAs. Gene Ontology analysis showed that predicted target genes for the DEmiRNAs were enriched in immune response, transcription regulation, and cell death. The integrative analysis of mRNA and miRNA expression revealed that down-regulated methylation-related genes (DNMT1 and DNMT3b) were targeted by five up-regulated DEmiRNAs. Furthermore, 35 pairs of miRNAs (70 miRNAs) were co-expressed after PRRSV infection and six pairs were co-expressed differently. Our results describe miRNA expression profiles of TC pigs in response to PRRSV infection and lay a strong foundation for developing novel therapies to control PRRS in pigs.

  20. Temporal Changes in Gene Expression in Rainbow Trout Exposed to Ethynyl Estradiol*

    PubMed Central

    Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2007-01-01

    We examined changes in the genomic response during continuous exposure to the xenoestrogen ethynylestradiol. Isogenic rainbow trout Oncorhynchus mykiss were exposed to nominal concentrations of 100 ng/L ethynyl estradiol (EE2) for a period of three weeks. At fixed time points within the exposure, fish were euthanized, livers harvested and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Salmonid array (GRASP project, University of Victoria, Canada) spotted with 16,000 cDNAs. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up and down regulated genes, and to determine gene clustering patterns that can be used as “expression signatures”. Gene ontology was determined using the annotation available from the GRASP website. Our analysis indicates each exposure time period generated specific gene expression profiles. Changes in gene expression were best understood by grouping genes by their gene expression profiles rather than examining fold change at a particular time point. Many of the genes commonly used as biomarkers of exposure to xenoestrogens were not induced initially and did not have gene expression profiles typical of the majority of genes with altered expression. PMID:17215170

  1. Temporal changes in gene expression in rainbow trout exposed to ethynyl estradiol.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2007-02-01

    We examined changes in the genomic response during continuous exposure to the xenoestrogen ethynyl estradiol. Isogenic rainbow trout Oncorhynchus mykiss were exposed to nominal concentrations of 100 ng/L ethynyl estradiol (EE2) for a period of 3 weeks. At fixed time points within the exposure, fish were euthanized, livers harvested and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Salmonid array (GRASP project, University of Victoria, Canada) spotted with 16,000 cDNAs. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up and down regulated genes, and to determine gene clustering patterns that can be used as "expression signatures". Gene ontology was determined using the annotation available from the GRASP website. Our analysis indicates each exposure time period generated specific gene expression profiles. Changes in gene expression were best understood by grouping genes by their gene expression profiles rather than examining fold change at a particular time point. Many of the genes commonly used as biomarkers of exposure to xenoestrogens were not induced initially and did not have gene expression profiles typical of the majority of genes with altered expression.

  2. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types.

    PubMed

    Syring, Isabella; Klümper, Niklas; Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-04-26

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking.We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles.

  3. Validation of the β-amy1 transcription profiling assay and selection of reference genes suited for a RT-qPCR assay in developing barley caryopsis.

    PubMed

    Ovesná, Jaroslava; Kučera, Ladislav; Vaculová, Kateřina; Štrymplová, Kamila; Svobodová, Ilona; Milella, Luigi

    2012-01-01

    Reverse transcription coupled with real-time quantitative PCR (RT-qPCR) is a frequently used method for gene expression profiling. Reference genes (RGs) are commonly employed to normalize gene expression data. A limited information exist on the gene expression and profiling in developing barley caryopsis. Expression stability was assessed by measuring the cycle threshold (Ct) range and applying both the GeNorm (pair-wise comparison of geometric means) and Normfinder (model-based approach) principles for the calculation. Here, we have identified a set of four RGs suitable for studying gene expression in the developing barley caryopsis. These encode the proteins GAPDH, HSP90, HSP70 and ubiquitin. We found a correlation between the frequency of occurrence of a transcript in silico and its suitability as an RG. This set of RGs was tested by comparing the normalized level of β-amylase (β-amy1) transcript with directly measured quantities of the BMY1 gene product in the developing barley caryopsis. This panel of genes could be used for other gene expression studies, as well as to optimize β-amy1 analysis for study of the impact of β-amy1 expression upon barley end-use quality.

  4. Identifying potential maternal genes of Bombyx mori using digital gene expression profiling

    PubMed Central

    Xu, Pingzhen

    2018-01-01

    Maternal genes present in mature oocytes play a crucial role in the early development of silkworm. Although maternal genes have been widely studied in many other species, there has been limited research in Bombyx mori. High-throughput next generation sequencing provides a practical method for gene discovery on a genome-wide level. Herein, a transcriptome study was used to identify maternal-related genes from silkworm eggs. Unfertilized eggs from five different stages of early development were used to detect the changing situation of gene expression. The expressed genes showed different patterns over time. Seventy-six maternal genes were annotated according to homology analysis with Drosophila melanogaster. More than half of the differentially expressed maternal genes fell into four expression patterns, while the expression patterns showed a downward trend over time. The functional annotation of these material genes was mainly related to transcription factor activity, growth factor activity, nucleic acid binding, RNA binding, ATP binding, and ion binding. Additionally, twenty-two gene clusters including maternal genes were identified from 18 scaffolds. Altogether, we plotted a profile for the maternal genes of Bombyx mori using a digital gene expression profiling method. This will provide the basis for maternal-specific signature research and improve the understanding of the early development of silkworm. PMID:29462160

  5. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope.

    PubMed

    Huang, Yu-Juan; Zhou, Zai-wei; Xu, Miao; Ma, Qing-wen; Yan, Jing-bin; Wang, Jian-yi; Zhang, Quo-qin; Huang, Min; Bao, Liming

    2015-03-01

    Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.

  6. Expression profiles of sugarcane under drought conditions: Variation in gene regulation.

    PubMed

    Andrade, Júlio César Farias de; Terto, Jackeline; Silva, José Vieira; Almeida, Cícero

    2015-12-01

    Drought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910) of sugarcane and compared the results with those of other studies. The genotype was subjected to 80-100% water availability (control condition) and 0-20% water availability (simulated drought). To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A), stomatal conductance (gs) and stomatal transpiration (E) were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR). Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress.

  7. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins.

    PubMed

    Venkatesh, Jelli; Yu, Jae-Woong; Park, Se Won

    2013-12-01

    Aquaporins belongs to the major intrinsic proteins involved in the transcellular membrane transport of water and other small solutes. A comprehensive genome-wide search for the homologues of Solanum tuberosum major intrinsic protein (MIP) revealed 41 full-length potato aquaporin genes. All potato aquaporins are grouped into five subfamilies; plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and x-intrinsic proteins (XIPs). Functional predictions based on the aromatic/arginine (ar/R) selectivity filters and Froger's positions showed a remarkable difference in substrate transport specificity among subfamilies. The expression pattern of potato aquaporins, examined by qPCR analysis, showed distinct expression profiles in various organs and tuber developmental stages. Furthermore, qPCR analysis of potato plantlets, subjected to various abiotic stresses revealed the marked effect of stresses on expression levels of aquaporins. Taken together, the expression profiles of aquaporins imply that aquaporins play important roles in plant growth and development, in addition to maintaining water homeostasis in response to environmental stresses. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Non-small cell lung cancer detection using microRNA expression profiling of bronchoalveolar lavage fluid and sputum.

    PubMed

    Kim, Julian O; Gazala, Sayf; Razzak, Rene; Guo, Linghong; Ghosh, Sunita; Roa, Wilson H; Bédard, Eric L R

    2015-04-01

    To assess if miRNA expression profiling of bronchoalveolar lavage (BAL) fluid and sputum could be used to detect early-stage non-small cell lung cancer (NSCLC). Hierarchical cluster analysis was performed on the expression levels of 5 miRNAs (miR-21, miR-143, miR-155, miR-210, and miR-372) which were quantified using RNA reverse transcription and quantitative real-time polymerase chain reaction in sputum and BAL samples from NSCLC cases and cancer-free controls. Cluster analysis of the miRNA expression levels in BAL samples from 21 NSCLC cases and sputum samples from 10 cancer-free controls yielded a diagnostic sensitivity of 85.7% and specificity of 100%. Cluster analysis of sputum samples from the same patients yielded a diagnostic sensitivity of 67.8% and specificity of 90%. miRNA expression profiling of sputum and BAL fluids represent a potential means to detect early-stage NSCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Computational Prediction and Validation of BAHD1 as a Novel Molecule for Ulcerative Colitis

    NASA Astrophysics Data System (ADS)

    Zhu, Huatuo; Wan, Xingyong; Li, Jing; Han, Lu; Bo, Xiaochen; Chen, Wenguo; Lu, Chao; Shen, Zhe; Xu, Chenfu; Chen, Lihua; Yu, Chaohui; Xu, Guoqiang

    2015-07-01

    Ulcerative colitis (UC) is a common inflammatory bowel disease (IBD) producing intestinal inflammation and tissue damage. The precise aetiology of UC remains unknown. In this study, we applied a rank-based expression profile comparative algorithm, gene set enrichment analysis (GSEA), to evaluate the expression profiles of UC patients and small interfering RNA (siRNA)-perturbed cells to predict proteins that might be essential in UC from publicly available expression profiles. We used quantitative PCR (qPCR) to characterize the expression levels of those genes predicted to be the most important for UC in dextran sodium sulphate (DSS)-induced colitic mice. We found that bromo-adjacent homology domain (BAHD1), a novel heterochromatinization factor in vertebrates, was the most downregulated gene. We further validated a potential role of BAHD1 as a regulatory factor for inflammation through the TNF signalling pathway in vitro. Our findings indicate that computational approaches leveraging public gene expression data can be used to infer potential genes or proteins for diseases, and BAHD1 might act as an indispensable factor in regulating the cellular inflammatory response in UC.

  10. Benzoate-mediated changes on expression profile of soluble proteins in Serratia sp. DS001.

    PubMed

    Pandeeti, E V P; Chinnaboina, M R; Siddavattam, D

    2009-05-01

    To assess differences in protein expression profile associated with shift in carbon source from succinate to benzoate in Serratia sp. DS001 using a proteomics approach. A basic proteome map was generated for the soluble proteins extracted from Serratia sp. DS001 grown in succinate and benzoate. The differently and differentially expressed proteins were identified using ImageMaster 2D Platinum software (GE Healthcare). The identity of the proteins was determined by employing MS or MS/MS. Important enzymes such as Catechol 1,2 dioxygenase and transcriptional regulators that belong to the LysR superfamily were identified. Nearly 70 proteins were found to be differentially expressed when benzoate was used as carbon source. Based on the protein identity and degradation products generated from benzoate it is found that ortho pathway is operational in Serratia sp. DS001. Expression profile of the soluble proteins associated with shift in carbon source was mapped. The study also elucidates degradation pathway of benzoate in Serratia sp. DS001 by correlating the proteomics data with the catabolites of benzoate.

  11. [New methods of patient selection for improved anticholinergic therapy].

    PubMed

    Neuhaus, J; Schwalenberg, T; Schlichting, N; Schulze, M; Horn, L-C; Stolzenburg, J-U

    2007-09-01

    M3-specific inhibitors are currently preferred for anticholinergic therapy of OAB. However, not all of the patients profit from this regimen. This might reflect a heterogeneity of the patient group. The aim of this work is to define subgroups of patients with specific alterations of receptor expression and to profile the receptor expression individually. These receptor profiles might be used for the development of evidence-based "tailored" therapies. Detrusor probes from bladder carcinoma patients (BCa, n=9 F, n=7 male) and interstitial cystitis patients (IC, n=9 female) were examined using confocal immunofluorescence and PCR. M2, M3, P2X1-3, and H1-3 mRNAs were demonstrated in detrusor tissue. As revealed by immunofluorescence, the M2 receptor expression was significantly higher in female compared to male BCa tissues. In addition, the M2 receptor was further upregulated in IC vs BCa in female detrusor. IC patients showed specific alterations of their receptor profile. Individual receptor profiles might be used to optimize medicinal therapies.

  12. Effects of Simulated Microgravity on the Expression Profile of Microrna in Human Lymphoblastoid Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu; Ramesh, Govindarajan; Rohde, Larry; Story, Michael; Mangala, Lingegowda

    2012-07-01

    EFFECTS OF SIMULATED MICROGRAVITY ON THE EXPRESSION PROFILE OF MICRORNA IN HUMAN LYMPHOBLASTOID CELLS Lingegowda S. Mangala1,2, Ye Zhang1,3, Zhenhua He2, Kamal Emami1, Govindarajan T. Ramesh4, Michael Story 5, Larry H. Rohde2, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 University of Houston Clear Lake, Houston, Texas, USA 3 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 4 Norfolk State University, Norfolk, VA, USA 5 University of Texas, Southwestern Medical Center, Dallas, Texas, USA This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison to static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a High Aspect Ratio Vessel (HARV; bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNA was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22 and miR-141, miR-618 and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using q-RT PCR. Network and pathway analysis of gene and miRNA expression profiles indicates that the regulation of cell communication and catalytic activities, as well as pathways involved in immune response_IL-15 signaling and NGF mediated NF-kB activation were significantly altered under the simulated microgravity condition.

  13. Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies.

    PubMed

    Haimon, Zhana; Volaski, Alon; Orthgiess, Johannes; Boura-Halfon, Sigalit; Varol, Diana; Shemer, Anat; Yona, Simon; Zuckerman, Binyamin; David, Eyal; Chappell-Maor, Louise; Bechmann, Ingo; Gericke, Martin; Ulitsky, Igor; Jung, Steffen

    2018-06-01

    Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.

  14. Gene Expression Profiling of Multiple Leiomyomata Uteri and Matched Normal Tissue from a Single Patient

    PubMed Central

    Dimitrova, Irina K.; Richer, Jennifer K.; Rudolph, Michael C.; Spoelstra, Nicole S.; Reno, Elaine M.; Medina, Theresa M.; Bradford, Andrew P.

    2009-01-01

    Objective To identify differentially expressed genes between fibroid and adjacent normal myometrium in an identical hormonal and genetic background. Design Array analysis of 3 leiomyomata and matched adjacent normal myometrium in a single patient. Setting University of Colorado Hospital. Patient(s) A single female undergoing medically indicated hysterectomy for symptomatic fibroids. Interventions(s) mRNA isolation and microarray analysis, reverse-transcriptase polymerase chain reaction, western blotting and immunohistochemistry. Main Outcome Measure(s) Changes in mRNA and protein levels in leiomyomata and matched normal myometrium. Result(s) Expression of 197 genes was increased and 619 decreased, significantly by at least 2 fold, in leiomyomata relative to normal myometrium. Expression profiles between tumors were similar and normal myometrial samples showed minimal variation. Changes in, and variation of, expression of selected genes were confirmed in additional normal and leiomyoma samples from multiple patients. Conclusion(s) Analysis of multiple tumors from a single patient confirmed changes in expression of genes described in previous, apparently disparate, studies and identified novel targets. Gene expression profiles in leiomyomata are consistent with increased activation of mitogenic pathways and inhibition of apoptosis. Down-regulation of genes implicated in invasion and metastasis, of cancers, was observed in fibroids. This expression pattern may underlie the benign nature of uterine leiomyomata and may aid in the differential diagnosis of leiomyosarcoma. PMID:18672237

  15. Maternal Pre-Gravid Obesity Changes Gene Expression Profiles Towards Greater Inflammation and Reduced Insulin Sensitivity in Umbilical Cord

    PubMed Central

    Thakali, Keshari M.; Saben, Jessica; Faske, Jennifer B.; Lindsey, Forrest; Gomez-Acevedo, Horacio; Lowery, Curtis L.; Badger, Thomas M.; Andres, Aline; Shankar, Kartik

    2014-01-01

    Background Maternal obesity is associated with unfavorable outcomes, which may be reflected in the as yet undiscovered gene expression profiles of the umbilical cord (UC). Methods UCs from 12 lean (pre-gravid BMI < 24.9) and 10 overweight/obese (OW/OB, pre-gravid BMI ≥25) women without gestational diabetes were collected for gene expression analysis using Human Primeview microarrays (Affymetrix). Metabolic parameters were assayed in mother’s plasma and cord blood. Results Although offspring birth weight and adiposity (at 2-wk) did not differ between groups, expression of 232 transcripts was affected in UC from OW/OB compared to those of lean mothers. GSEA analysis revealed an up-regulation of genes related to metabolism, stimulus and defense response and inhibitory to insulin signaling in the OW/OB group. We confirmed that EGR1, periostin, and FOSB mRNA expression was induced in UCs from OW/OB moms, while endothelin receptor B, KFL10, PEG3 and EGLN3 expression was decreased. Messenger RNA expression of EGR1, FOSB, MEST and SOCS1 were positively correlated (p<0.05) with mother’s first trimester body fat mass (%). Conclusions Our data suggest a positive association between maternal obesity and changes in UC gene expression profiles favoring inflammation and insulin resistance, potentially predisposing infants to develop metabolic dysfunction later on in life. PMID:24819376

  16. Cellular expansion and gene expression in the developing grape (Vitis vinifera L.).

    PubMed

    Schlosser, J; Olsson, N; Weis, M; Reid, K; Peng, F; Lund, S; Bowen, P

    2008-01-01

    Expression profiles of genes involved in cell wall metabolism and water transport were compared with changes in grape (Vitis vinifera L.) berry growth, basic chemical composition, and the shape, size, and wall thickness of cells within tissues of the berry pericarp. Expression of cell wall-modifying and aquaporin genes in berry pericarp tissues generally followed a bimodal expression profile with high levels of expression coinciding with the two periods of rapid berry growth, stages I and III, and low levels of expression corresponding to the slow-growth period, stage II. Cellular expansion was observed throughout all tissues during stage I, and only mesocarp cellular expansion was observed during stage III. Expansion of only exocarp cells was evident during transition between stages II and III. Cell wall-modifying and aquaporin gene expression profiles followed similar trends in exocarp and mesocarp tissues throughout berry development, with the exception of the up-regulation of pectin methylesterase, pectate lyase, two aquaporin genes (AQ1 and AQ2), and two expansin genes (EXP3 and EXPL) during stage II, which was delayed in the exocarp tissue compared with mesocarp tissue. Exocarp endo-(1-->3)-beta-glucanase and expansin-like gene expression was concurrent with increases in epidermal and hypodermal cell wall thickness. These results indicate a potential role of the grape berry skin in modulating grape berry growth.

  17. Expression Profiles of TGF-β and TLR Pathways in Porphyromonas gingivalis and Prevotella intermedia Challenged Osteoblasts

    PubMed Central

    Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May

    2015-01-01

    Background: The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. Objectives: This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Materials and Methods: Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Results: Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). Conclusions: P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption. PMID:26034550

  18. A Modified ABCDE Model of Flowering in Orchids Based on Gene Expression Profiling Studies of the Moth Orchid Phalaenopsis aphrodite

    PubMed Central

    Lee, Ann-Ying; Chen, Chun-Yi; Chang, Yao-Chien Alex; Chao, Ya-Ting; Shih, Ming-Che

    2013-01-01

    Previously we developed genomic resources for orchids, including transcriptomic analyses using next-generation sequencing techniques and construction of a web-based orchid genomic database. Here, we report a modified molecular model of flower development in the Orchidaceae based on functional analysis of gene expression profiles in Phalaenopsis aphrodite (a moth orchid) that revealed novel roles for the transcription factors involved in floral organ pattern formation. Phalaenopsis orchid floral organ-specific genes were identified by microarray analysis. Several critical transcription factors including AP3, PI, AP1 and AGL6, displayed distinct spatial distribution patterns. Phylogenetic analysis of orchid MADS box genes was conducted to infer the evolutionary relationship among floral organ-specific genes. The results suggest that gene duplication MADS box genes in orchid may have resulted in their gaining novel functions during evolution. Based on these analyses, a modified model of orchid flowering was proposed. Comparison of the expression profiles of flowers of a peloric mutant and wild-type Phalaenopsis orchid further identified genes associated with lip morphology and peloric effects. Large scale investigation of gene expression profiles revealed that homeotic genes from the ABCDE model of flower development classes A and B in the Phalaenopsis orchid have novel functions due to evolutionary diversification, and display differential expression patterns. PMID:24265826

  19. Mining the archives: a cross-platform analysis of gene ...

    EPA Pesticide Factsheets

    Formalin-fixed paraffin-embedded (FFPE) tissue samples represent a potentially invaluable resource for genomic research into the molecular basis of disease. However, use of FFPE samples in gene expression studies has been limited by technical challenges resulting from degradation of nucleic acids. Here we evaluated gene expression profiles derived from fresh-frozen (FRO) and FFPE mouse liver tissues using two DNA microarray protocols and two whole transcriptome sequencing (RNA-seq) library preparation methodologies. The ribo-depletion protocol outperformed the other three methods by having the highest correlations of differentially expressed genes (DEGs) and best overlap of pathways between FRO and FFPE groups. We next tested the effect of sample time in formalin (18 hours or 3 weeks) on gene expression profiles. Hierarchical clustering of the datasets indicated that test article treatment, and not preservation method, was the main driver of gene expression profiles. Meta- and pathway analyses indicated that biological responses were generally consistent for 18-hour and 3-week FFPE samples compared to FRO samples. However, clear erosion of signal intensity with time in formalin was evident, and DEG numbers differed by platform and preservation method. Lastly, we investigated the effect of age in FFPE block on genomic profiles. RNA-seq analysis of 8-, 19-, and 26-year-old control blocks using the ribo-depletion protocol resulted in comparable quality metrics, inc

  20. Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation.

    PubMed

    Babak, Tomas; Garrett-Engele, Philip; Armour, Christopher D; Raymond, Christopher K; Keller, Mark P; Chen, Ronghua; Rohl, Carol A; Johnson, Jason M; Attie, Alan D; Fraser, Hunter B; Schadt, Eric E

    2010-08-13

    Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing.

  1. [Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].

    PubMed

    Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing

    2012-10-01

    To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.

  2. A focused microarray approach to functional glycomics: transcriptional regulation of the glycome.

    PubMed

    Comelli, Elena M; Head, Steven R; Gilmartin, Tim; Whisenant, Thomas; Haslam, Stuart M; North, Simon J; Wong, Nyet-Kui; Kudo, Takashi; Narimatsu, Hisashi; Esko, Jeffrey D; Drickamer, Kurt; Dell, Anne; Paulson, James C

    2006-02-01

    Glycosylation is the most common posttranslational modification of proteins, yet genes relevant to the synthesis of glycan structures and function are incompletely represented and poorly annotated on the commercially available arrays. To fill the need for expression analysis of such genes, we employed the Affymetrix technology to develop a focused and highly annotated glycogene-chip representing human and murine glycogenes, including glycosyltransferases, nucleotide sugar transporters, glycosidases, proteoglycans, and glycan-binding proteins. In this report, the array has been used to generate glycogene-expression profiles of nine murine tissues. Global analysis with a hierarchical clustering algorithm reveals that expression profiles in immune tissues (thymus [THY], spleen [SPL], lymph node, and bone marrow [BM]) are more closely related, relative to those of nonimmune tissues (kidney [KID], liver [LIV], brain [BRN], and testes [TES]). Of the biosynthetic enzymes, those responsible for synthesis of the core regions of N- and O-linked oligosaccharides are ubiquitously expressed, whereas glycosyltransferases that elaborate terminal structures are expressed in a highly tissue-specific manner, accounting for tissue and ultimately cell-type-specific glycosylation. Comparison of gene expression profiles with matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) profiling of N-linked oligosaccharides suggested that the alpha1-3 fucosyltransferase 9, Fut9, is the enzyme responsible for terminal fucosylation in KID and BRN, a finding validated by analysis of Fut9 knockout mice. Two families of glycan-binding proteins, C-type lectins and Siglecs, are predominately expressed in the immune tissues, consistent with their emerging functions in both innate and acquired immunity. The glycogene chip reported in this study is available to the scientific community through the Consortium for Functional Glycomics (CFG) (http://www.functionalglycomics.org).

  3. Transcriptome analysis and gene expression profiling of abortive and developing ovules during fruit development in hazelnut.

    PubMed

    Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting

    2015-01-01

    A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.

  4. Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines

    PubMed Central

    Elling, Axel A; Mitreva, Makedonka; Recknor, Justin; Gai, Xiaowu; Martin, John; Maier, Thomas R; McDermott, Jeffrey P; Hewezi, Tarek; McK Bird, David; Davis, Eric L; Hussey, Richard S; Nettleton, Dan; McCarter, James P; Baum, Thomas J

    2007-01-01

    Background The soybean cyst nematode Heterodera glycines is the most important parasite in soybean production worldwide. A comprehensive analysis of large-scale gene expression changes throughout the development of plant-parasitic nematodes has been lacking to date. Results We report an extensive genomic analysis of H. glycines, beginning with the generation of 20,100 expressed sequence tags (ESTs). In-depth analysis of these ESTs plus approximately 1,900 previously published sequences predicted 6,860 unique H. glycines genes and allowed a classification by function using InterProScan. Expression profiling of all 6,860 genes throughout the H. glycines life cycle was undertaken using the Affymetrix Soybean Genome Array GeneChip. Our data sets and results represent a comprehensive resource for molecular studies of H. glycines. Demonstrating the power of this resource, we were able to address whether arrested development in the Caenorhabditis elegans dauer larva and the H. glycines infective second-stage juvenile (J2) exhibits shared gene expression profiles. We determined that the gene expression profiles associated with the C. elegans dauer pathway are not uniformly conserved in H. glycines and that the expression profiles of genes for metabolic enzymes of C. elegans dauer larvae and H. glycines infective J2 are dissimilar. Conclusion Our results indicate that hallmark gene expression patterns and metabolism features are not shared in the developmentally arrested life stages of C. elegans and H. glycines, suggesting that developmental arrest in these two nematode species has undergone more divergent evolution than previously thought and pointing to the need for detailed genomic analyses of individual parasite species. PMID:17919324

  5. Blood expression profiles of fragile X premutation carriers identify candidate genes involved in neurodegenerative and infertility phenotypes.

    PubMed

    Mateu-Huertas, Elisabet; Rodriguez-Revenga, Laia; Alvarez-Mora, Maria Isabel; Madrigal, Irene; Willemsen, Rob; Milà, Montserrat; Martí, Eulàlia; Estivill, Xavier

    2014-05-01

    Male premutation carriers presenting between 55 and 200 CGG repeats in the Fragile-X-associated (FMR1) gene are at risk of developing Fragile X Tremor/Ataxia Syndrome (FXTAS), and females undergo Premature Ovarian Failure (POF1). Here, we have evaluated gene expression profiles from blood in male FMR1 premutation carriers and detected a strong deregulation of genes enriched in FXTAS relevant biological pathways, including inflammation, neuronal homeostasis and viability. Gene expression profiling distinguished between control individuals, carriers with FXTAS and carriers without FXTAS, with levels of expanded FMR1 mRNA being increased in FXTAS patients. In vitro studies in a neuronal cell model indicate that expression levels of expanded FMR1 5'-UTR are relevant in modulating the transcriptome. Thus, perturbations of the transcriptome may be an interplay between the CGG expansion size and FMR1 expression levels. Several deregulated genes (DFFA, BCL2L11, BCL2L1, APP, SOD1, RNF10, HDAC5, KCNC3, ATXN7, ATXN3 and EAP1) were validated in brain samples of a FXTAS mouse model. Downregulation of EAP1, a gene involved in the female reproductive system physiology, was confirmed in female carriers. Decreased levels were detected in female carriers with POF1 compared to those without POF1, suggesting that EAP1 levels contribute to ovarian insufficiency. In summary, gene expression profiling in blood has uncovered mechanisms that may underlie different pathological aspects of the premutation. A better understanding of the transcriptome dynamics in relation with expanded FMR1 mRNA expression levels and CGG expansion size may provide mechanistic insights into the disease process and a more accurate FXTAS diagnosis to the myriad of phenotypes associated with the premutation. Copyright © 2014. Published by Elsevier Inc.

  6. Peripheral blood gene expression signature differentiates children with autism from unaffected siblings

    PubMed Central

    Kong, SW; Shimizu-Motohashi, Y; Campbell, MG; Lee, IH; Collins, CD; Brewster, SJ; Holm, IA; Rappaport, L

    2013-01-01

    Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental disorders with high heritability, yet a majority of genetic contribution to pathophysiology is not known. Siblings of individuals with ASD are at increased risk for ASD and autistic traits, but the genetic contribution for simplex families is estimated to be less when compared to multiplex families. To explore the genomic (dis-) similarity between proband and unaffected sibling in simplex families, we used genome-wide gene expression profiles of blood from 20 proband-unaffected sibling pairs and 18 unrelated control individuals. The global gene expression profiles of unaffected siblings were more similar to those from probands as they shared genetic and environmental background. One hundred eighty nine genes were significantly differentially expressed between proband-sib pairs (nominal p-value < 0.01) after controlling for age, sex, and family effects. Probands and siblings were distinguished into two groups by cluster analysis with these genes. Overall, unaffected siblings were equally distant from the centroid of probands and from that of unrelated controls with the differentially expressed genes. Interestingly, 5 of 20 siblings had gene expression profiles that were more similar to unrelated controls than to their matched probands. In summary, we found a set of genes that distinguished probands from the unaffected siblings, and a subgroup of unaffected siblings who were more similar to probands. The pathways that characterized probands compared to siblings using peripheral blood gene expression profiles were the up-regulation of ribosomal, spliceosomal, and mitochondrial pathways, and the down-regulation of neuroreceptor-ligand, immune response and calcium signaling pathways. Further integrative study with structural genetic variations such as de novo mutations, rare variants, and copy number variations would clarify whether these transcriptomic changes are structural or environmental in origin. PMID:23625158

  7. Modulation of intestinal gene expression by dietary zinc status: Effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency

    PubMed Central

    Blanchard, Raymond K.; Moore, J. Bernadette; Green, Calvert L.; Cousins, Robert J.

    2001-01-01

    Mammalian nutritional status affects the homeostatic balance of multiple physiological processes and their associated gene expression. Although DNA array analysis can monitor large numbers of genes, there are no reports of expression profiling of a micronutrient deficiency in an intact animal system. In this report, we have tested the feasibility of using cDNA arrays to compare the global changes in expression of genes of known function that occur in the early stages of rodent zinc deficiency. The gene-modulating effects of this deficiency were demonstrated by real-time quantitative PCR measurements of altered mRNA levels for metallothionein 1, zinc transporter 2, and uroguanylin, all of which have been previously documented as zinc-regulated genes. As a result of the low level of inherent noise within this model system and application of a recently reported statistical tool for statistical analysis of microarrays [Tusher, V.G., Tibshirani, R. & Chu, G. (2001) Proc. Natl. Acad. Sci. USA 98, 5116–5121], we demonstrate the ability to reproducibly identify the modest changes in mRNA abundance produced by this single micronutrient deficiency. Among the genes identified by this array profile are intestinal genes that influence signaling pathways, growth, transcription, redox, and energy utilization. Additionally, the influence of dietary zinc supply on the expression of some of these genes was confirmed by real-time quantitative PCR. Overall, these data support the effectiveness of cDNA array expression profiling to investigate the pleiotropic effects of specific nutrients and may provide an approach to establishing markers for assessment of nutritional status. PMID:11717422

  8. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in space

    NASA Astrophysics Data System (ADS)

    Wu, Honglu; Story, Michael; Karouia, Fathi; Stodieck, Louis; Zhang, Ye; Lu, Tao

    2016-07-01

    Microgravity, or an altered gravity environment from the Earth1g, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies conducted in space or using simulated microgravity on the ground have focused on the growth or differentiation of these cells. Whether non-proliferating cultured cells will sense the presence of microgravity in space has not been specifically addressed. In an experiment conducted onboard the International Space Station (ISS), confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 days, respectively, for investigations of gene and miRNA expression profile changes in these cells. Results of the experiment showed that on Day 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67 positive cells. Gene and miRNA expression data indicated activation of NFkB and other growth related pathways involving HGF and Vegf along with down regulation of the Let-7 miRNA family. On Day 14 when the cells were mostly non-proliferating, the gene and miRNA expression profiles between the flight and ground samples were indistinguishable. Comparison of gene and miRNA expressions in the Day 3 samples with respect to Day 14 revealed that most of the changes observed on Day 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for αa-tubulin and fibronectin showed no difference between flown and ground samples. Taken together, our study suggests that in true non-dividing human fibroblast cells in culture, microgravity experienced in space has little effect on the gene and miRNA expression profiles.

  9. Diets high in corn oil or extra-virgin olive oil differentially modify the gene expression profile of the mammary gland and influence experimental breast cancer susceptibility.

    PubMed

    Moral, Raquel; Escrich, Raquel; Solanas, Montserrat; Vela, Elena; Ruiz de Villa, M Carme; Escrich, Eduard

    2016-06-01

    Nutritional factors, especially dietary lipids, may have a role in the etiology of breast cancer. We aimed to analyze the effects of high-fat diets on the susceptibility of the mammary gland to experimental malignant transformation. Female Sprague-Dawley rats were fed a low-fat, high-corn-oil, or high-extra-virgin olive oil (EVOO) diet from weaning or from induction. Animals were induced with 7,12-dimethylbenz[a]anthracene at 53 days and euthanized at 36, 51, 100 and 246 days. Gene expression profiles of mammary glands were determined by microarrays. Further molecular analyses were performed by real-time PCR, TUNEL and immunohistochemistry. Carcinogenesis parameters were determined at 105 and 246 days. High-corn-oil diet increased body weight and mass when administered from weaning. The EVOO diet did not modify these parameters and increased the hepatic expression of UCP2, suggesting a decrease in intake/expenditure balance. Both diets differentially modified the gene expression profile of the mammary gland, especially after short dietary intervention. Corn oil down-regulated the expression of genes related to immune system and apoptosis, whereas EVOO modified the expression of metabolism genes. Further analysis suggested an increase in proliferation and lower apoptosis in the mammary glands by effect of the high-corn-oil diet, which may be one of the mechanisms of its clear stimulating effect on carcinogenesis. The high-corn-oil diet strongly stimulates mammary tumorigenesis in association with modifications in the expression profile and an increased proliferation/apoptosis balance of the mammary gland.

  10. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa

    PubMed Central

    Magalhães, Ana; Gomes, Joana; Ismail, Mohd Nazri; Haslam, Stuart M; Mendes, Nuno; Osório, Hugo; David, Leonor; Le Pendu, Jacques; Haas, Rainer; Dell, Anne; Borén, Thomas; Reis, Celso A

    2009-01-01

    Glycoconjugates expressed on gastric mucosa play a crucial role in host–pathogen interactions. The FUT2 enzyme catalyzes the addition of terminal α(1,2)fucose residues, producing the H type 1 structure expressed on the surface of epithelial cells and in mucosal secretions of secretor individuals. Inactivating mutations in the human FUT2 gene are associated with reduced susceptibility to Helicobacter pylori infection. H. pylori infects over half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. H. pylori adhesion constitutes a crucial step in the establishment of a successful infection. The BabA adhesin binds the Leb and H type 1 structures expressed on gastric mucins, while SabA binds to sialylated carbohydrates mediating the adherence to inflamed gastric mucosa. In this study, we have used an animal model of nonsecretors, Fut2-null mice, to characterize the glycosylation profile and evaluate the effect of the observed glycan expression modifications in the process of H. pylori adhesion. We have demonstrated expression of terminal difucosylated glycan structures in C57Bl/6 mice gastric mucosa and that Fut2-null mice showed marked alteration in gastric mucosa glycosylation, characterized by diminished expression of α(1,2)fucosylated structures as indicated by lectin and antibody staining and further confirmed by mass spectrometry analysis. This altered glycosylation profile was further confirmed by the absence of Fucα(1,2)-dependent binding of calicivirus virus-like particles. Finally, using a panel of H. pylori strains, with different adhesin expression profiles, we have demonstated an impairment of BabA-dependent adhesion of H. pylori to Fut2-null mice gastric mucosa, whereas SabA-mediated binding was not affected. PMID:19706747

  11. Feeding milk replacer instead of whole milk affects blood plasma proteome and lipid profile in preruminant calves.

    PubMed

    Lepczyński, A; Herosimczyk, A; Ożgo, M; Skrzypczak, W F

    2015-01-01

    The study was undertaken to determine the effect of feeding milk or milk-replacer on the blood plasma proteome and lipid profile in calves during the second week of life. Feeding milk-replacer significantly decreased the expression of plasma apoA-I. Age of calves affected apoA-I expression, which was higher on the 8th than on the 11th and 14th day of life. A significant effect of interaction between diet and age was also observed. The expression of apoA-IV, was significantly affected by diet and was lower in calves fed milk replacer. Expression of this protein was significantly lower at the 8th day of life and was up-regulated in the calves fed milk-replacer at the second week of life. Calves fed milk-replacer had greater expression of haptoglobin, which differed significantly between days of blood sampling, being higher on the 8th than on the 11th and 14th day. The interactive effect of diet and age affected haptoglobin expression, which was successively down-regulated in calves fed milk re- placer. Diet had a significant effect on the plasma lipid profile. Animals fed milk had a greater concentration of TC, HDLC and LDLC. The composition of milk-replacer, especially fat source, is probably the main factor that affects expression of proteins involved in cholesterol metabolism and level of components of lipid profile in calves fed formula. We claim that the initially increased level of haptoglobin, followed by its decrease during the second week of life in calves fed milk-replacer may indicate the presence of short-term stress induced by changes in the feeding system.

  12. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    NASA Astrophysics Data System (ADS)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  13. Identifying miRNA-mediated signaling subpathways by integrating paired miRNA/mRNA expression data with pathway topology.

    PubMed

    Vrahatis, Aristidis G; Dimitrakopoulos, Georgios N; Tsakalidis, Athanasios K; Bezerianos, Anastasios

    2015-01-01

    In the road for network medicine the newly emerged systems-level subpathway-based analysis methods offer new disease genes, drug targets and network-based biomarkers. In parallel, paired miRNA/mRNA expression data enable simultaneously monitoring of the micronome effect upon the signaling pathways. Towards this orientation, we present a methodological pipeline for the identification of differentially expressed subpathways along with their miRNA regulators by using KEGG signaling pathway maps, miRNA-target interactions and expression profiles from paired miRNA/mRNA experiments. Our pipeline offered new biological insights on a real application of paired miRNA/mRNA expression profiles with respect to the dynamic changes from colostrum to mature milk whey; several literature supported genes and miRNAs were recontextualized through miRNA-mediated differentially expressed subpathways.

  14. Skin transcriptome profiles associated with coat color in sheep

    PubMed Central

    2013-01-01

    Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep. PMID:23758853

  15. Cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected or coinfected with porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHYO)

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected with porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO), or coinfected with both. Twenty-eight pigs were randomly assigned to one ...

  16. GENE EXPRESSION PROFILING IN TESTIS AND LIVER OF MICE TO IDENTIFY MODES OF ACTION OF CONAZOLE TOXICITIES

    EPA Science Inventory

    Gene Expression Profiling in Testis and Liver of Mice to Identify MODES OF ACTION OF Conazole TOXICITies

    Amber K. Goetz1, Wenjun Bao2, Judith E. Schmid2, Carmen Wood2, Hongzu Ren2, Deborah S. Best2, Rachel N. Murrell1, John C. Rockett2, Michael G. Narotsky2, Douglas C. Wol...

  17. Adrenocortical Expression Profiling of Cattle with Distinct Juvenile Temperament Types.

    PubMed

    Friedrich, Juliane; Brand, Bodo; Graunke, Katharina Luise; Langbein, Jan; Schwerin, Manfred; Ponsuksili, Siriluck

    2017-01-01

    Temperament affects ease of handling, animal welfare, and economically important production traits in cattle. The use of gene expression profiles as molecular traits provides a novel means of gaining insight into behavioural genetics. In this study, differences in adrenocortical expression profiles between 60 F 2 cows (Charolais × German Holstein) of distinct temperament types were analysed. The cows were assessed in a novel-human test at an age of 90 days. Most of the adrenal cortex transcripts which were differentially expressed (FDR <0.05) were found between temperament types of 'fearful/neophobic-alert' and all other temperament types. These transcripts belong to several biological functions like NRF2-mediated oxidative stress response, Glucocorticoid Receptor Signalling and Complement System. Overall, the present study provides new insight into transcriptional differences in the adrenal cortex between cows of distinct temperament types. Genetic regulations of such molecular traits facilitate uncovering positional and functional gene candidates for temperament type in cattle.

  18. Off-line monitoring of bacterial stress response during recombinant protein production using an optical biosensor.

    PubMed

    Vostiar, Igor; Tkac, Jan; Mandenius, Carl-Fredrik

    2004-07-15

    A surface plasmon resonance (SPR) biosensor was used to monitor the profiles of the heat-shock protein (DnaK) and the expression of a heterologous protein to map the dynamics of the cellular stress response in Escherichia coli. As expression system was used an E. coli strain overproducing human recombinant superoxide dismutase (rhSOD). Expression of DnaK showed complex patterns differing with strength of induction. The strong up-regulation of DnaK expression was observed in all cultivations which over-produced of rhSOD. Similar patterns were not observed in non-induced reference cultures. Differences in DnaK concentration profiles were correlated with induction strength. Presented data, carried out in shake flask and glucose limited fed-batch cultivation, show a good consistency with previously published transcriptional profiling results and provide complementary information to understand stress response related to overproduction of recombinant protein. The study also demonstrates the feasibility of using the SPR as a two channel protein array for monitoring of intracellular components.

  19. Fractal Clustering and Knowledge-driven Validation Assessment for Gene Expression Profiling.

    PubMed

    Wang, Lu-Yong; Balasubramanian, Ammaiappan; Chakraborty, Amit; Comaniciu, Dorin

    2005-01-01

    DNA microarray experiments generate a substantial amount of information about the global gene expression. Gene expression profiles can be represented as points in multi-dimensional space. It is essential to identify relevant groups of genes in biomedical research. Clustering is helpful in pattern recognition in gene expression profiles. A number of clustering techniques have been introduced. However, these traditional methods mainly utilize shape-based assumption or some distance metric to cluster the points in multi-dimension linear Euclidean space. Their results shows poor consistence with the functional annotation of genes in previous validation study. From a novel different perspective, we propose fractal clustering method to cluster genes using intrinsic (fractal) dimension from modern geometry. This method clusters points in such a way that points in the same clusters are more self-affine among themselves than to the points in other clusters. We assess this method using annotation-based validation assessment for gene clusters. It shows that this method is superior in identifying functional related gene groups than other traditional methods.

  20. In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.

    PubMed

    Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica

    2018-01-01

    microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.

  1. A chronological expression profile of gene activity during embryonic mouse brain development.

    PubMed

    Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P

    2013-12-01

    The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.

  2. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling.

    PubMed

    Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A

    2010-05-01

    Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

  3. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  4. MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models.

    PubMed

    Hoye, Mariah L; Koval, Erica D; Wegener, Amy J; Hyman, Theodore S; Yang, Chengran; O'Brien, David R; Miller, Rebecca L; Cole, Tracy; Schoch, Kathleen M; Shen, Tao; Kunikata, Tomonori; Richard, Jean-Philippe; Gutmann, David H; Maragakis, Nicholas J; Kordasiewicz, Holly B; Dougherty, Joseph D; Miller, Timothy M

    2017-05-31

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining the in vivo miRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents. SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents. Copyright © 2017 the authors 0270-6474/17/375574-13$15.00/0.

  5. Integrative Analysis of miRNA and mRNA Profiles in Response to Ethylene in Rose Petals during Flower Opening

    PubMed Central

    Pei, Haixia; Ma, Nan; Chen, Jiwei; Zheng, Yi; Tian, Ji; Li, Jing; Zhang, Shuai; Fei, Zhangjun; Gao, Junping

    2013-01-01

    MicroRNAs play an important role in plant development and plant responses to various biotic and abiotic stimuli. As one of the most important ornamental crops, rose (Rosa hybrida) possesses several specific morphological and physiological features, including recurrent flowering, highly divergent flower shapes, colors and volatiles. Ethylene plays an important role in regulating petal cell expansion during rose flower opening. Here, we report the population and expression profiles of miRNAs in rose petals during flower opening and in response to ethylene based on high throughput sequencing. We identified a total of 33 conserved miRNAs, as well as 47 putative novel miRNAs were identified from rose petals. The conserved and novel targets to those miRNAs were predicted using the rose floral transcriptome database. Expression profiling revealed that expression of 28 known (84.8% of known miRNAs) and 39 novel (83.0% of novel miRNAs) miRNAs was substantially changed in rose petals during the earlier opening period. We also found that 28 known and 22 novel miRNAs showed expression changes in response to ethylene treatment. Furthermore, we performed integrative analysis of expression profiles of miRNAs and their targets. We found that ethylene-caused expression changes of five miRNAs (miR156, miR164, miR166, miR5139 and rhy-miRC1) were inversely correlated to those of their seven target genes. These results indicate that these miRNA/target modules might be regulated by ethylene and were involved in ethylene-regulated petal growth. PMID:23696879

  6. IL-17A Mediates a Selective Gene Expression Profile in Asthmatic Human Airway Smooth Muscle Cells

    PubMed Central

    Dragon, Stéphane; Hirst, Stuart J.; Lee, Tak H.

    2014-01-01

    Airway smooth muscle (ASM) cells are thought to contribute to the pathogenesis of allergic asthma by orchestrating and perpetuating airway inflammation and remodeling responses. In this study, we evaluated the IL-17RA signal transduction and gene expression profile in ASM cells from subjects with mild asthma and healthy individuals. Human primary ASM cells were treated with IL-17A and probed by the Affymetrix GeneChip array, and gene targets were validated by real-time quantitative RT-PCR. Genomic analysis underlined the proinflammatory nature of IL-17A, as multiple NF-κB regulatory factors and chemokines were induced in ASM cells. Transcriptional regulators consisting of primary response genes were overrepresented and displayed dynamic expression profiles. IL-17A poorly enhanced IL-1β or IL-22 gene responses in ASM cells from both subjects with mild asthma and healthy donors. Interestingly, protein modifications to the NF-κB regulatory network were not observed after IL-17A stimulation, although oscillations in IκBε expression were detected. ASM cells from subjects with mild asthma up-regulated more genes with greater overall variability in response to IL-17A than from healthy donors. Finally, in response to IL-17A, ASM cells displayed rapid activation of the extracellular signal–regulated kinase/ribosomal S6 kinase signaling pathway and increased nuclear levels of phosphorylated extracellular signal–regulated kinase. Taken together, our results suggest that IL-17A mediated modest gene expression response, which, in cooperation with the NF-κB signaling network, may regulate the gene expression profile in ASM cells. PMID:24393021

  7. Gene expression profile of isolated rat adipocytes treated with anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Kojo, Hitoshi; Yoshikawa, Toshikazu; Osawa, Toshihiko

    2005-04-15

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and adipocyte gene expression in adipocytes. In this study, we have shown for the first time the gene expression profile in isolated rat adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The rat adipocytes were treated with 100 muM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. A total of 633 or 427 genes was up-regulated (>1.5-fold) by the treatment of adipocytes with C3G or Cy, respectively. The up-regulated genes include lipid metabolism and signal transduction-related genes, however, the altered genes were partly different between the C3G- and Cy-treated groups. Based on the gene expression profile, we demonstrated the up-regulation of hormone sensitive lipase and enhancement of the lipolytic activity by the treatment of adipocytes with C3G or Cy. These data have provided an overview of the gene expression profiles in adipocytes treated with anthocyanins and identified new responsive genes with potentially important functions in adipocytes related with obesity and diabetes that merit further investigation.

  8. Adult and cord blood endothelial progenitor cells have different gene expression profiles and immunogenic potential.

    PubMed

    Nuzzolo, Eugenia R; Capodimonti, Sara; Martini, Maurizio; Iachininoto, Maria G; Bianchi, Maria; Cocomazzi, Alessandra; Zini, Gina; Leone, Giuseppe; Larocca, Luigi M; Teofili, Luciana

    2014-01-01

    Endothelial colony-forming cells (ECFC) are endowed with vascular regenerative ability in vivo and in vitro. In this study we compared the genotypic profile and the immunogenic potential of adult and cord blood ECFC, in order to explore the feasibility of using them as a cell therapy product. ECFC were obtained from cord blood samples not suitable for haematopoietic stem cell transplantation and from adult healthy blood donors after informed consent. Genotypes were analysed by commercially available microarray assays and results were confirmed by real-time polymerase chain reaction analysis. HLA antigen expression was evaluated by flow-cytometry. Immunogenic capacity was investigated by evaluating the activation of allogeneic lymphocytes and monocytes in co-cultures with ECFC. Microarray assays revealed that the genetic profile of cord blood and adult ECFC differed in about 20% of examined genes. We found that cord blood ECFC were characterised by lower pro-inflammatory and pro-thrombotic gene expression as compared to adult ECFC. Furthermore, whereas cord blood and adult ECFCs expressed similar amount of HLA molecules both at baseline and after incubation with γ-interferon, cord blood ECFC elicited a weaker expression of pro-inflammatory cytokine genes. Finally, we observed no differences in the amount of HLA antigens expressed among cord blood ECFC, adult ECFC and mesenchymal cells. Our observations suggest that cord blood ECFC have a lower pro-inflammatory and pro-thrombotic profile than adult ECFC. These preliminary data offer level-headed evidence to use cord blood ECFC as a cell therapy product in vascular diseases.

  9. Gene expression profiling of breast cancer cell lines treated with proton and electron radiations.

    PubMed

    Bravatà, Valentina; Minafra, Luigi; Cammarata, Francesco Paolo; Pisciotta, Pietro; Lamia, Debora; Marchese, Valentina; Manti, Lorenzo; Cirrone, Giuseppe Ap; Gilardi, Maria Carla; Cuttone, Giacomo; Forte, Giusi Irma; Russo, Giorgio

    2018-06-11

    Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non conventional Linear Energy Transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different Linear Energy Transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non tumorigenic MCF10A), exposed to the same sub-lethal dose of 9 Gy. Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. Here we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.

  10. Discovering functional modules by topic modeling RNA-Seq based toxicogenomic data.

    PubMed

    Yu, Ke; Gong, Binsheng; Lee, Mikyung; Liu, Zhichao; Xu, Joshua; Perkins, Roger; Tong, Weida

    2014-09-15

    Toxicogenomics (TGx) endeavors to elucidate the underlying molecular mechanisms through exploring gene expression profiles in response to toxic substances. Recently, RNA-Seq is increasingly regarded as a more powerful alternative to microarrays in TGx studies. However, realizing RNA-Seq's full potential requires novel approaches to extracting information from the complex TGx data. Considering read counts as the number of times a word occurs in a document, gene expression profiles from RNA-Seq are analogous to a word by document matrix used in text mining. Topic modeling aiming at to discover the latent structures in text corpora would be helpful to explore RNA-Seq based TGx data. In this study, topic modeling was applied on a typical RNA-Seq based TGx data set to discover hidden functional modules. The RNA-Seq based gene expression profiles were transformed into "documents", on which latent Dirichlet allocation (LDA) was used to build a topic model. We found samples treated by the compounds with the same modes of actions (MoAs) could be clustered based on topic similarities. The topic most relevant to each cluster was identified as a "marker" topic, which was interpreted by gene enrichment analysis with MoAs then confirmed by compound and pathways associations mined from literature. To further validate the "marker" topics, we tested topic transferability from RNA-Seq to microarrays. The RNA-Seq based gene expression profile of a topic specifically associated with peroxisome proliferator-activated receptors (PPAR) signaling pathway was used to query samples with similar expression profiles in two different microarray data sets, yielding accuracy of about 85%. This proof-of-concept study demonstrates the applicability of topic modeling to discover functional modules in RNA-Seq data and suggests a valuable computational tool for leveraging information within TGx data in RNA-Seq era.

  11. DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken.

    PubMed

    Gao, Qingqing; Xia, Le; Liu, Juanhua; Wang, Xiaobo; Gao, Song; Liu, Xiufan

    2016-11-01

    Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mucin profiles in signet-ring cell carcinoma.

    PubMed

    Nguyen, Minh D; Plasil, Brian; Wen, Ping; Frankel, Wendy L

    2006-06-01

    Signet-ring cell carcinoma (SRCC) is a poorly differentiated mucin-producing adenocarcinoma that may arise from many different organs, but all SRCCs share identical morphology. It is not possible to differentiate sites of origin for metastatic SRCC based on morphology alone. Mucins are high-molecular-weight glycoproteins differentially expressed in glandular epithelia and in adenocarcinomas. To identify mucin profiles of primary and metastatic SRCCs using immunohistochemistry to determine whether mucin staining could help distinguish sites of origin. Forty-seven SRCCs, including 38 primary (21 stomach, 11 colorectum, and 6 breast) and 9 metastases from these primary sites were retrieved from archival files. Consecutive tissue sections were immunostained with monoclonal antibodies against MUC1, MUC2, MUC4, MUC5AC (MUC5), and MUC6 on separate slides. Cytoplasmic staining was scored based on proportion of positive tumor cells as follows: 0+ (<5%), 1+ (5%-25%), 2+ (26%-50%), and 3+ (>50%). Mucin profiles were recorded as MUC+, MUCv, and MUC- for consistent, variable, and negative expression, respectively. The mucin profiles for gastric, colorectum, and breast SRCCs are MUC1.2.4.5.6v, MUC2.4+/MUC5v/ MUC1.6-, and MUC1+/MUC2.5.6v/MUC4-, respectively. Mucin profiles of metastatic cases shared profiles with their respective primaries. Signet-ring cell carcinomas of the stomach, colorectum, and breast have distinct mucin expression patterns that are maintained in metastases. Mucin profiling may be useful to identify the origin of a metastatic SRCC of unknown primary.

  13. Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children.

    PubMed

    Keustermans, Genoveva; van der Heijden, Laila B; Boer, Berlinda; Scholman, Rianne; Nuboer, Roos; Pasterkamp, Gerard; Prakken, Berent; de Jager, Wilco; Kalkhoven, Eric; Janse, Arieke J; Schipper, Henk S

    2017-01-01

    Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.

  14. NATpipe: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes

    PubMed Central

    Yu, Dongliang; Meng, Yijun; Zuo, Ziwei; Xue, Jie; Wang, Huizhong

    2016-01-01

    Nat-siRNAs (small interfering RNAs originated from natural antisense transcripts) are a class of functional small RNA (sRNA) species discovered in both plants and animals. These siRNAs are highly enriched within the annealed regions of the NAT (natural antisense transcript) pairs. To date, great research efforts have been taken for systematical identification of the NATs in various organisms. However, developing a freely available and easy-to-use program for NAT prediction is strongly demanded by researchers. Here, we proposed an integrative pipeline named NATpipe for systematical discovery of NATs from de novo assembled transcriptomes. By utilizing sRNA sequencing data, the pipeline also allowed users to search for phase-distributed nat-siRNAs within the perfectly annealed regions of the NAT pairs. Additionally, more reliable nat-siRNA loci could be identified based on degradome sequencing data. A case study on the non-model plant Dendrobium officinale was performed to illustrate the utility of NATpipe. Finally, we hope that NATpipe would be a useful tool for NAT prediction, nat-siRNA discovery, and related functional studies. NATpipe is available at www.bioinfolab.cn/NATpipe/NATpipe.zip. PMID:26858106

  15. Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing.

    PubMed

    Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael

    2017-06-08

    Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates.

  16. Comparing Proteolytic Fingerprints of Antigen-Presenting Cells during Allergen Processing

    PubMed Central

    Hofer, Heidi; Weidinger, Tamara; Briza, Peter; Asam, Claudia; Wolf, Martin; Twaroch, Teresa E.; Stolz, Frank; Neubauer, Angela; Dall, Elfriede; Hammerl, Peter; Jacquet, Alain; Wallner, Michael

    2017-01-01

    Endolysosomal processing has a critical influence on immunogenicity as well as immune polarization of protein antigens. In industrialized countries, allergies affect around 25% of the population. For the rational design of protein-based allergy therapeutics for immunotherapy, a good knowledge of T cell-reactive regions on allergens is required. Thus, we sought to analyze endolysosomal degradation patterns of inhalant allergens. Four major allergens from ragweed, birch, as well as house dust mites were produced as recombinant proteins. Endolysosomal proteases were purified by differential centrifugation from dendritic cells, macrophages, and B cells, and combined with allergens for proteolytic processing. Thereafter, endolysosomal proteolysis was monitored by protein gel electrophoresis and mass spectrometry. We found that the overall proteolytic activity of specific endolysosomal fractions differed substantially, whereas the degradation patterns of the four model allergens obtained with the different proteases were extremely similar. Moreover, previously identified T cell epitopes were assigned to endolysosomal peptides and indeed showed a good overlap with known T cell epitopes for all four candidate allergens. Thus, we propose that the degradome assay can be used as a predictor to determine antigenic peptides as potential T cell epitopes, which will help in the rational design of protein-based allergy vaccine candidates. PMID:28594355

  17. Peptidomic analysis of human cell lines

    PubMed Central

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2011-01-01

    Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522

  18. Unravelling the neurophysiological basis of aggression in a fish model

    PubMed Central

    2010-01-01

    Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors. Conclusions Thus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model. PMID:20846403

  19. A high-throughput microRNA expression profiling system.

    PubMed

    Guo, Yanwen; Mastriano, Stephen; Lu, Jun

    2014-01-01

    As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.

  20. Cross-platform method for identifying candidate network biomarkers for prostate cancer.

    PubMed

    Jin, G; Zhou, X; Cui, K; Zhang, X-S; Chen, L; Wong, S T C

    2009-11-01

    Discovering biomarkers using mass spectrometry (MS) and microarray expression profiles is a promising strategy in molecular diagnosis. Here, the authors proposed a new pipeline for biomarker discovery that integrates disease information for proteins and genes, expression profiles in both genomic and proteomic levels, and protein-protein interactions (PPIs) to discover high confidence network biomarkers. Using this pipeline, a total of 474 molecules (genes and proteins) related to prostate cancer were identified and a prostate-cancer-related network (PCRN) was derived from the integrative information. Thus, a set of candidate network biomarkers were identified from multiple expression profiles composed by eight microarray datasets and one proteomics dataset. The network biomarkers with PPIs can accurately distinguish the prostate patients from the normal ones, which potentially provide more reliable hits of biomarker candidates than conventional biomarker discovery methods.

  1. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression.

    PubMed

    Nilsson, Emil K; Boström, Adrian E; Mwinyi, Jessica; Schiöth, Helgi B

    2016-06-01

    Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.

  2. MicroRNA expression profile in bovine cumulus–oocyte complexes: Possible role of let-7 and miR-106a in the development of bovine oocytes

    USDA-ARS?s Scientific Manuscript database

    The expression of microRNAs (miRs) in bovine cumulus-oocyte complexes (COCs) during late oogenesis was profiled to determine the potential for regulation of maternal mRNAs by this class of small RNAs. A cDNA cloning and sequencing strategy resulted in 1812 putative miR sequences, representing 72 di...

  3. Molecular Profiles for Lung Cancer Pathogenesis and Detection in U.S. Veterans

    DTIC Science & Technology

    2014-12-01

    smokers [7]. In addition, modulation of global gene expression in the normal epithelium in health smokers is similar in the large and small airways...previously shown that gene-expression profiles in cytologically normal mainstem bronchus epithelium can distinguish smokers with and without lung cancer...spatially mapping the molecular field of injury associated with smoking-related lung cancer. In smokers undergoing resection of lung lesions, high

  4. Bone-related gene profiles in developing calvaria.

    PubMed

    Cho, Je-Yoel; Lee, Won-Bong; Kim, Hyun-Jung; Mi Woo, Kyung; Baek, Jeong-Hwa; Choi, Je-Yong; Hur, Cheol-Gu; Ryoo, Hyun-Mo

    2006-05-10

    Generating a comprehensive understanding of osteogenesis-related gene profiles is very important in the development of new treatments for osteopenic conditions. Developing calvaria undergoes a typical intramembranous bone-forming process. To identify genes associated with osteoblast differentiation, we isolated total RNAs from parietal bones, that represent active osteoblasts, and sutural mesenchyme, that represents osteoprogenitor cells, and comprehensively analyzed their gene expression profiles using an oligo-based Affymetrix microarray chip containing 22,690 probes. About 2100 genes with "Present" calls had more than 2-fold higher expression in bone compared to sutures while 73 of these genes had more than 8-fold expression. Some of these genes are already known to be bone-related biomarkers: VitD receptor, bone sialoprotein, osteocalcin, osteopontin, MMP13, etc. Eight genes were selected and subjected to confirmation by quantitative real-time RT-PCR analyses. All the genes tested showed higher expression in bones, ranging from 5- to 140-fold. Several of these genes are ESTs while others are already known but their functions in osteogenesis were not previously known. Most genes of the BMP and FGF families probed in the Genechip analysis were more highly expressed in bone tissues compared to suture. All differentially-expressed Runx and Dlx family genes also showed higher expression in bone. These results imply that our data is valid and can be used as a good standard for the mining of osteogenesis-related genes.

  5. Large-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions.

    PubMed

    Hiss, Manuel; Laule, Oliver; Meskauskiene, Rasa M; Arif, Muhammad A; Decker, Eva L; Erxleben, Anika; Frank, Wolfgang; Hanke, Sebastian T; Lang, Daniel; Martin, Anja; Neu, Christina; Reski, Ralf; Richardt, Sandra; Schallenberg-Rüdinger, Mareike; Szövényi, Peter; Tiko, Theodhor; Wiedemann, Gertrud; Wolf, Luise; Zimmermann, Philip; Rensing, Stefan A

    2014-08-01

    The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demonstrate that (i) growth stage is dominant over culture conditions, (ii) liquid culture is not stressful for the plant, (iii) low pH might aid protoplastation by reduced expression of cell wall structure genes, (iv) largely the same gene pool mediates response to dehydration and rehydration, and (v) AP2/EREBP transcription factors play important roles in stress response reactions. With regard to the AP2 gene family, phylogenetic analysis and comparison with Arabidopsis thaliana shows commonalities as well as uniquely expressed family members under drought, light perturbations and protoplastation. Gene expression profiles for P. patens are available for the scientific community via the easy-to-use tool at https://www.genevestigator.com. By providing large-scale expression profiles, the usability of this model organism is further enhanced, for example by enabling selection of control genes for quantitative real-time PCR. Now, gene expression levels across a broad range of conditions can be accessed online for P. patens. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  6. Analysis of the differential gene and protein expression profile of the rolled leaf mutant of transgenic rice (Oryza sativa L.).

    PubMed

    Zhu, Qiuqiang; Yu, Shuguang; Chen, Guanshui; Ke, Lanlan; Pan, Daren

    2017-01-01

    The importance of leaf rolling in rice (Oryza sativa L.) has been widely recognized. Although several studies have investigated rice leaf rolling and identified some related genes, knowledge of the molecular mechanism underlying rice leaf rolling, especially outward leaf rolling, is limited. Therefore, in this study, differential proteomics and gene expression profiling were used to analyze rolled leaf mutant of transgenic rice in order to investigate differentially expressed genes and proteins related to rice leaf rolling. To this end, 28 differentially expressed proteins related to rolling leaf traits were isolated and identified. Digital expression profiling detected 10 genes related to rice leaf rolling. Some of the proteins and genes detected are involved in lipid metabolism, which is related to the development of bulliform cells, such as phosphoinositide phospholipase C, Mgll gene, and At4g26790 gene. The "omics"-level techniques were useful for simultaneously isolating several proteins and genes related to rice leaf rolling. In addition, the results of the analysis of differentially expressed proteins and genes were closely consistent with those from a corresponding functional analysis of cellular mechanisms; our study findings might form the basis for further research on the molecular mechanisms underlying rice leaf rolling.

  7. Chronic Low-Grade Inflammation in Childhood Obesity Is Associated with Decreased IL-10 Expression by Monocyte Subsets.

    PubMed

    Mattos, Rafael T; Medeiros, Nayara I; Menezes, Carlos A; Fares, Rafaelle C G; Franco, Eliza P; Dutra, Walderez O; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A S

    2016-01-01

    Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity.

  8. Microarray gene expression profiling using core biopsies of renal neoplasia.

    PubMed

    Rogers, Craig G; Ditlev, Jonathon A; Tan, Min-Han; Sugimura, Jun; Qian, Chao-Nan; Cooper, Jeff; Lane, Brian; Jewett, Michael A; Kahnoski, Richard J; Kort, Eric J; Teh, Bin T

    2009-01-01

    We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors-comprised of four histological subtypes-following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology.

  9. Microarray gene expression profiling using core biopsies of renal neoplasia

    PubMed Central

    Rogers, Craig G.; Ditlev, Jonathon A.; Tan, Min-Han; Sugimura, Jun; Qian, Chao-Nan; Cooper, Jeff; Lane, Brian; Jewett, Michael A.; Kahnoski, Richard J.; Kort, Eric J.; Teh, Bin T.

    2009-01-01

    We investigate the feasibility of using microarray gene expression profiling technology to analyze core biopsies of renal tumors for classification of tumor histology. Core biopsies were obtained ex-vivo from 7 renal tumors—comprised of four histological subtypes—following radical nephrectomy using 18-gauge biopsy needles. RNA was isolated from these samples and, in the case of biopsy samples, amplified by in vitro transcription. Microarray analysis was then used to quantify the mRNA expression patterns in these samples relative to non-diseased renal tissue mRNA. Genes with significant variation across all non-biopsy tumor samples were identified, and the relationship between tumor and biopsy samples in terms of expression levels of these genes was then quantified in terms of Euclidean distance, and visualized by complete linkage clustering. Final pathologic assessment of kidney tumors demonstrated clear cell renal cell carcinoma (4), oncocytoma (1), angiomyolipoma (1) and adrenalcortical carcinoma (1). Five of the seven biopsy samples were most similar in terms of gene expression to the resected tumors from which they were derived in terms of Euclidean distance. All seven biopsies were assigned to the correct histological class by hierarchical clustering. We demonstrate the feasibility of gene expression profiling of core biopsies of renal tumors to classify tumor histology. PMID:19966938

  10. Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals.

    PubMed

    Bourdon-Lacombe, Julie A; Moffat, Ivy D; Deveau, Michelle; Husain, Mainul; Auerbach, Scott; Krewski, Daniel; Thomas, Russell S; Bushel, Pierre R; Williams, Andrew; Yauk, Carole L

    2015-07-01

    Toxicogenomics promises to be an important part of future human health risk assessment of environmental chemicals. The application of gene expression profiles (e.g., for hazard identification, chemical prioritization, chemical grouping, mode of action discovery, and quantitative analysis of response) is growing in the literature, but their use in formal risk assessment by regulatory agencies is relatively infrequent. Although additional validations for specific applications are required, gene expression data can be of immediate use for increasing confidence in chemical evaluations. We believe that a primary reason for the current lack of integration is the limited practical guidance available for risk assessment specialists with limited experience in genomics. The present manuscript provides basic information on gene expression profiling, along with guidance on evaluating the quality of genomic experiments and data, and interpretation of results presented in the form of heat maps, pathway analyses and other common approaches. Moreover, potential ways to integrate information from gene expression experiments into current risk assessment are presented using published studies as examples. The primary objective of this work is to facilitate integration of gene expression data into human health risk assessments of environmental chemicals. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  11. Genome-Wide Evolutionary Characterization and Expression Analyses of WRKY Family Genes in Brachypodium distachyon

    PubMed Central

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-01-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression. PMID:24453041

  12. DDAH2 mRNA expression is inversely associated with some cardiovascular risk-related features in healthy young adults.

    PubMed

    Puchau, Blanca; Hermsdorff, Helen Hermana M; Zulet, M Angeles; Martínez, J Alfredo

    2009-01-01

    The purpose of this study was to evaluate whether the mRNA expression profiles of three genes (PRMT1, DDAH2 and NOS3) are related to ADMA metabolism and signalling, and the potential relationships with anthropometrical, biochemical, lifestyle and inflammatory indicators in healthy young adults. An emphasis on the putative effect of different mRNA expression on cardiovascular risk-related features was paid. Anthropometrical measurements as well as lifestyle features were analyzed in 120 healthy young adults. Fasting blood samples were collected for the measurement of glucose and lipid profiles as well as the concentrations of selected inflammatory markers. Profiles of mRNA expression were assessed for PRMT1, DDAH2 and NOS3 genes from peripheral blood mononuclear cells. Regarding inflammatory biomarkers, DDAH2 was inversely associated with IL-6 and TNF-alpha. Moreover, subjects in the highest quintile of DDAH2 mRNA expression showed a reduced risk to have higher values of waist circumference, and to be more prone to show higher values of HDL-c. Interestingly, DDAH2 gene expression seemed to be related with some anthropometrical, biochemical, lifestyle and inflammatory indicators linked to cardiovascular risk in apparently healthy young adults, emerging as a potential disease marker.

  13. Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity

    PubMed Central

    Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A.; Richter, Andreas S.; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland

    2015-01-01

    A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer. PMID:25514598

  14. Chronic Low-Grade Inflammation in Childhood Obesity Is Associated with Decreased IL-10 Expression by Monocyte Subsets

    PubMed Central

    Mattos, Rafael T.; Medeiros, Nayara I.; Menezes, Carlos A.; Fares, Rafaelle C. G.; Franco, Eliza P.; Dutra, Walderez O.; Rios-Santos, Fabrício; Correa-Oliveira, Rodrigo; Gomes, Juliana A. S.

    2016-01-01

    Chronic low-grade inflammation is related to the development of comorbidities and poor prognosis in obesity. Monocytes are main sources of cytokines and play a pivotal role in inflammation. We evaluated monocyte frequency, phenotype and cytokine profile of monocyte subsets, to determine their association with the pathogenesis of childhood obesity. Children with obesity were evaluated for biochemical and anthropometric parameters. Monocyte subsets were characterized by flow cytometry, considering cytokine production and activation/recognition molecules. Correlation analysis between clinical parameters and immunological data delineated the monocytes contribution for low-grade inflammation. We observed a higher frequency of non-classical monocytes in the childhood obesity group (CO) than normal-weight group (NW). All subsets displayed higher TLR4 expression in CO, but their recognition and antigen presentation functions seem to be diminished due to lower expression of CD40, CD80/86 and HLA-DR. All subsets showed a lower expression of IL-10 in CO and correlation analyses showed changes in IL-10 expression profile. The lower expression of IL-10 may be decisive for the maintenance of the low-grade inflammation status in CO, especially for alterations in non-classical monocytes profile. These cells may contribute to supporting inflammation and loss of regulation in the immune response of children with obesity. PMID:27977792

  15. Molecular profiling identifies prognostic markers of stage IA lung adenocarcinoma.

    PubMed

    Zhang, Jie; Shao, Jinchen; Zhu, Lei; Zhao, Ruiying; Xing, Jie; Wang, Jun; Guo, Xiaohui; Tu, Shichun; Han, Baohui; Yu, Keke

    2017-09-26

    We previously showed that different pathologic subtypes were associated with different prognostic values in patients with stage IA lung adenocarcinoma (AC). We hypothesize that differential gene expression profiles of different subtypes may be valuable factors for prognosis in stage IA lung adenocarcinoma. We performed microarray gene expression profiling on tumor tissues micro-dissected from patients with acinar and solid predominant subtypes of stage IA lung adenocarcinoma. These patients had undergone a lobectomy and mediastinal lymph node dissection at the Shanghai Chest Hospital, Shanghai, China in 2012. No patient had preoperative treatment. We performed the Gene Set Enrichment Analysis (GSEA) analysis to look for gene expression signatures associated with tumor subtypes. The histologic subtypes of all patients were classified according to the 2015 WHO lung Adenocarcinoma classification. We found that patients with the solid predominant subtype are enriched for genes involved in RNA polymerase activity as well as inactivation of the p53 pathway. Further, we identified a list of genes that may serve as prognostic markers for stage IA lung adenocarcinoma. Validation in the TCGA database shows that these genes are correlated with survival, suggesting that they are novel prognostic factors for stage IA lung adenocarcinoma. In conclusion, we have uncovered novel prognostic factors for stage IA lung adenocarcinoma using gene expression profiling in combination with histopathology subtyping.

  16. Early and long-standing rheumatoid arthritis: distinct molecular signatures identified by gene-expression profiling in synovia

    PubMed Central

    Lequerré, Thierry; Bansard, Carine; Vittecoq, Olivier; Derambure, Céline; Hiron, Martine; Daveau, Maryvonne; Tron, François; Ayral, Xavier; Biga, Norman; Auquit-Auckbur, Isabelle; Chiocchia, Gilles; Le Loët, Xavier; Salier, Jean-Philippe

    2009-01-01

    Introduction Rheumatoid arthritis (RA) is a heterogeneous disease and its underlying molecular mechanisms are still poorly understood. Because previous microarray studies have only focused on long-standing (LS) RA compared to osteoarthritis, we aimed to compare the molecular profiles of early and LS RA versus control synovia. Methods Synovial biopsies were obtained by arthroscopy from 15 patients (4 early untreated RA, 4 treated LS RA and 7 controls, who had traumatic or mechanical lesions). Extracted mRNAs were used for large-scale gene-expression profiling. The different gene-expression combinations identified by comparison of profiles of early, LS RA and healthy synovia were linked to the biological processes involved in each situation. Results Three combinations of 719, 116 and 52 transcripts discriminated, respectively, early from LS RA, and early or LS RA from healthy synovia. We identified several gene clusters and distinct molecular signatures specifically expressed during early or LS RA, thereby suggesting the involvement of different pathophysiological mechanisms during the course of RA. Conclusions Early and LS RA have distinct molecular signatures with different biological processes participating at different times during the course of the disease. These results suggest that better knowledge of the main biological processes involved at a given RA stage might help to choose the most appropriate treatment. PMID:19563633

  17. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.

    PubMed

    Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio

    2017-10-06

    Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.

  18. Comparative transcriptional profiling identifies takeout as a gene that regulates life span

    PubMed Central

    Bauer, Johannes; Antosh, Michael; Chang, Chengyi; Schorl, Christoph; Kolli, Santharam; Neretti, Nicola; Helfand, Stephen L.

    2010-01-01

    A major challenge in translating the positive effects of dietary restriction (DR) for the improvement of human health is the development of therapeutic mimics. One approach to finding DR mimics is based upon identification of the proximal effectors of DR life span extension. Whole genome profiling of DR in Drosophila shows a large number of changes in gene expression, making it difficult to establish which changes are involved in life span determination as opposed to other unrelated physiological changes. We used comparative whole genome expression profiling to discover genes whose change in expression is shared between DR and two molecular genetic life span extending interventions related to DR, increased dSir2 and decreased Dmp53 activity. We find twenty-one genes shared among the three related life span extending interventions. One of these genes, takeout, thought to be involved in circadian rhythms, feeding behavior and juvenile hormone binding is also increased in four other life span extending conditions: Rpd3, Indy, chico and methuselah. We demonstrate takeout is involved in longevity determination by specifically increasing adult takeout expression and extending life span. These studies demonstrate the power of comparative whole genome transcriptional profiling for identifying specific downstream elements of the DR life span extending pathway. PMID:20519778

  19. The Profile-Query Relationship.

    ERIC Educational Resources Information Center

    Shepherd, Michael A.; Phillips, W. J.

    1986-01-01

    Defines relationship between user profile and user query in terms of relationship between clusters of documents retrieved by each, and explores the expression of cluster similarity and cluster overlap as linear functions of similarity existing between original pairs of profiles and queries, given the desired retrieval threshold. (23 references)…

  20. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling.

    PubMed

    Basse, Astrid L; Dixen, Karen; Yadav, Rachita; Tygesen, Malin P; Qvortrup, Klaus; Kristiansen, Karsten; Quistorff, Bjørn; Gupta, Ramneek; Wang, Jun; Hansen, Jacob B

    2015-03-19

    Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.

  1. An integrated systems genetics screen reveals the transcriptional structure of inherited predisposition to metastatic disease

    PubMed Central

    Faraji, Farhoud; Hu, Ying; Wu, Gang; Goldberger, Natalie E.; Walker, Renard C.; Zhang, Jinghui; Hunter, Kent W.

    2014-01-01

    Metastasis is the result of stochastic genomic and epigenetic events leading to gene expression profiles that drive tumor dissemination. Here we exploit the principle that metastatic propensity is modified by the genetic background to generate prognostic gene expression signatures that illuminate regulators of metastasis. We also identify multiple microRNAs whose germline variation is causally linked to tumor progression and metastasis. We employ network analysis of global gene expression profiles in tumors derived from a panel of recombinant inbred mice to identify a network of co-expressed genes centered on Cnot2 that predicts metastasis-free survival. Modulating Cnot2 expression changes tumor cell metastatic potential in vivo, supporting a functional role for Cnot2 in metastasis. Small RNA sequencing of the same tumor set revealed a negative correlation between expression of the Mir216/217 cluster and tumor progression. Expression quantitative trait locus analysis (eQTL) identified cis-eQTLs at the Mir216/217 locus, indicating that differences in expression may be inherited. Ectopic expression of Mir216/217 in tumor cells suppressed metastasis in vivo. Finally, small RNA sequencing and mRNA expression profiling data were integrated to reveal that miR-3470a/b target a high proportion of network transcripts. In vivo analysis of Mir3470a/b demonstrated that both promote metastasis. Moreover, Mir3470b is a likely regulator of the Cnot2 network as its overexpression down-regulated expression of network hub genes and enhanced metastasis in vivo, phenocopying Cnot2 knockdown. The resulting data from this strategy identify Cnot2 as a novel regulator of metastasis and demonstrate the power of our systems-level approach in identifying modifiers of metastasis. PMID:24322557

  2. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    PubMed

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Come one, come all.

    PubMed

    Lee, Siu Sylvia

    2004-05-05

    Aging is a complex process that involves the gradual functional decline of many different tissues and cells. Gene expression microarray analysis provides a comprehensive view of the gene expression signature associated with age and is particularly valuable for understanding the molecular mechanisms that contribute to the aging process. However, because of the stochastic nature of the aging process, animals of the same chronological age often manifest great physiological differences. Therefore, profiling the gene expression pattern of a large population of aging animals risks either exaggerating or masking the changes in gene expression that correspond to physiological aging. In a recent paper, Golden and Melov surveyed the gene expression profiles of individual aging Caenorhabditis elegans, hoping to circumvent the problem of variability among worms of the same chronological age. This initial analysis of age-dependent gene expression in individual aging worms is an important step toward deciphering the molecular basis of physiological aging.

  4. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation

    PubMed Central

    Tang, Guo-Qing; Maxwell, E. Stuart

    2008-01-01

    The amphibian Xenopus provides a model organism for investigating microRNA expression during vertebrate embryogenesis and development. Searching available Xenopus genome databases using known human pre-miRNAs as query sequences, more than 300 genes encoding 142 Xenopus tropicalis miRNAs were identified. Analysis of Xenopus tropicalis miRNA genes revealed a predominate positioning within introns of protein-coding and nonprotein-coding RNA Pol II-transcribed genes. MiRNA genes were also located in pre-mRNA exons and positioned intergenically between known protein-coding genes. Many miRNA species were found in multiple locations and in more than one genomic context. MiRNA genes were also clustered throughout the genome, indicating the potential for the cotranscription and coordinate expression of miRNAs located in a given cluster. Northern blot analysis confirmed the expression of many identified miRNAs in both X. tropicalis and X. laevis. Comparison of X. tropicalis and X. laevis blots revealed comparable expression profiles, although several miRNAs exhibited species-specific expression in different tissues. More detailed analysis revealed that for some miRNAs, the tissue-specific expression profile of the pri-miRNA precursor was distinctly different from that of the mature miRNA profile. Differential miRNA precursor processing in both the nucleus and cytoplasm was implicated in the observed tissue-specific differences. These observations indicated that post-transcriptional processing plays an important role in regulating miRNA expression in the amphibian Xenopus. PMID:18032731

  5. Single cell gene expression profiling in Alzheimer's disease.

    PubMed

    Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J

    2006-07-01

    Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.

  6. Cytokeratin expression in mouse lacrimal gland germ epithelium.

    PubMed

    Hirayama, Masatoshi; Liu, Ying; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo

    2016-05-01

    The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Differential Gene Expression Profiling of Functionally and Developmentally Distinct Human Prostate Epithelial Populations

    PubMed Central

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-01-01

    BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. CONCLUSIONS Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. Prostate 75: 764–776, 2015. © The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25663004

  8. Differential gene expression profiling of functionally and developmentally distinct human prostate epithelial populations.

    PubMed

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-05-01

    Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44⁻ CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44⁻ CD49f(Hi) FC, adult Epcam⁺ CD44⁻ CD49f(Hi) TIC, Epcam⁺ CD44⁺ CD49f(Hi) basal cells (BC), and Epcam⁺ CD44⁻ CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.

  9. Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid.

    PubMed

    de Bittencourt Pasquali, Matheus Augusto; de Ramos, Vitor Miranda; Albanus, Ricardo D Oliveira; Kunzler, Alice; de Souza, Luis Henrinque Trentin; Dalmolin, Rodrigo Juliani Siqueira; Gelain, Daniel Pens; Ribeiro, Leila; Carro, Luigi; Moreira, José Cláudio Fonseca

    2016-01-01

    SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.

  10. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus.

    PubMed

    Mraz, M; Lacinova, Z; Drapalova, J; Haluzikova, D; Horinek, A; Matoulek, M; Trachta, P; Kavalkova, P; Svacina, S; Haluzik, M

    2011-04-01

    Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention. Two-week intervention study with very-low-calorie diet (VLCD). University hospital. Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females. Two weeks of VLCD (2500 kJ/d). Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM. Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT. Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.

  11. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and late-onset preeclampsia.

    PubMed

    Liang, Mengmeng; Niu, Jianmin; Zhang, Liang; Deng, Hua; Ma, Jian; Zhou, Weiping; Duan, Dongmei; Zhou, Yuheng; Xu, Huikun; Chen, Longding

    2016-04-01

    Early-onset preeclampsia and late-onset preeclampsia have been regarded as two different phenotypes with heterogeneous manifestations; To gain insights into the pathogenesis of the two traits, we analyzed the gene expression profiles in preeclamptic placentas. A whole genome-wide microarray was used to determine the gene expression profiles in placental tissues from patients with early-onset (n = 7; <34 weeks), and late-onset (n = 8; >36 weeks) preeclampsia and their controls who delivered preterm (n = 5; <34 weeks) or at term (n = 5; >36 weeks). Genes were termed differentially expressed if they showed a fold-change ≥ 2 and q-value < 0.05. Quantitative real-time reverse transcriptase PCR was used to verify the results. Western blotting was performed to verify the expressions of secreted genes at the protein level. Six hundred twenty-seven genes were differentially expressed in early-compared with late-onset preeclampsia (177 genes were up-regulated and 450 were down-regulated). Gene ontology analysis identified significant alterations in several biological processes; the top two were immune response and cell surface receptor linked signal transduction. Among the cell surface receptor linked signal transduction-related, differentially expressed genes, those involved in the G-protein coupled receptor protein signaling pathway were significantly enriched. G-protein coupled receptor signaling pathway related genes, such as GPR124 and MRGPRF, were both found to be down-regulated in early-onset preeclampsia. The results were consistent with those of western blotting that the abundance of GPR124 was lower in early-onset compared with late-onset preeclampsia. The different gene expression profiles reflect the different levels of transcription regulation between the two conditions and supported the hypothesis that they are separate disease entities. Moreover, the G-protein coupled receptor signaling pathway related genes may contribute to the mechanism underlying early- and late-onset preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of timing of development on total cell number and expression profile of HSP-70.1 and GLUT-1 in buffalo (Bubalus bubalis) oocytes and preimplantation embryos produced in vitro.

    PubMed

    Rajhans, Rajib; Kumar, G Sai; Dubey, Pawan K; Sharma, G Taru

    2010-03-29

    The present study was designed to compare the expression profile of two developmentally important genes (HSP-70.1 and GLUT-1) and TCN (total cell number) count in fast (group A) and slow (group B) cleaved buffalo embryos to access their in vitro developmental competence. Buffalo COCs (cumulus oocyte complexes) were collected from local abattoir ovaries and subjected to in vitro maturation in: TCM-199 supplemented with 10% FBS (fetal bovine serum), BSA (3 mg/ml), sodium pyruvate (0.25 mM) and 20 ng/ml EGF (epidermal growth factor) at 38.5 degrees C under 5% CO2. In vitro derived embryos were collected at 4-8, 8-16 cell, morula and blastocyst stages at specific time points for gene expression analysis and total cell count. A semiquantitative RT-PCR (reverse transcriptase-PCR) assay was used to determine the HSP-70.1 and GLUT-1 transcripts. Results showed that developmental competence and TCN count in fast (group A)-cleaving embryos was significantly (P<0.05) higher than in the slow group (group B). The gene transcript of HSP-70.1 and GLUT-1 was expressed in oocytes (immature and mature) and throughout the embryonic developmental stages in the fast group (group A), while in the slow (group B) cleaving embryos, the expression of HSP-70.1 was absent in all the embryonic developmental stages, and expression of GLUT-1 was absent after 8-16 cell stage. In conclusion, TCN count and expression profile of HSP-70.1 and GLUT-1 genes in buffalo embryos are different taking into account the cleavage rate. Quality of such embryos for research purposes, TCN and expression profiling of developmentally important genes should be employed to optimize the in vitro culture system to produce superior quality of embryos.

  13. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight.

    PubMed

    Zupanska, Agata K; Schultz, Eric R; Yao, JiQiang; Sng, Natasha J; Zhou, Mingqi; Callaham, Jordan B; Ferl, Robert J; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight. Key Words: ARG1-Spaceflight-Gene expression-Physiological adaptation-BRIC. Astrobiology 17, 1077-1111.

  14. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  15. N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide decreases triglyceride levels by downregulation of Apoc3 gene expression in acute hyperlipidemic rat model.

    PubMed

    Hamadneh, Lama; Al-Essa, Luay; Hikmat, Suhair; Al-Qirim, Tariq; Abu Sheikha, Ghassan; Al-Hiari, Yusuf; Azmy, Nisrin; Shattat, Ghassan

    2017-07-01

    Hyperlipidemia is a known cause of coronary vascular diseases, which is a major cause of death in many parts of the world. Targeting several pathways that lead to increase in lipid profiles is of great potential to control diseases. 1H-indole-2-carboxamide derivatives were tested for their hypolipidemic activity at the molecular level in comparison with bezafibrate. The gene expression profiles of lipoprotein signaling and cholesterol metabolism and fatty acid metabolism PCR arrays were determined in rats with acute hyperlipidemia induced by Triton WR1339. Lipid profiles of serum from treated rats showed significant hypolipidemic effect by the compounds. Several genes of potential interest were reported to be overexpressed by Triton WR1339 including Apoc3, Apob, Hmgcs2, Apoa1, Apoe, Apof, acsl1, and Decr1. Most of the overexpressed genes were downregulated by N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide with significant decreases in Apoc3, Apob, Acaa2, Acsl1, and Slc247a5 gene expression levels. N-(4-Benzoylphenyl)-1H-Indole-2-Carboxamide and bezafibrate did not significantly affect the gene expression levels which were increased with acute hyperlipidemia induced by Triton WR1339. In conclusion, gene expression profiling identified the possible mechanism in which Triton WR1339 induces its acute hyperlipidemic effect which was reversed by the use of N-(3-Benzoylphenyl)-1H-Indole-2-Carboxamide.

  16. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    PubMed

    Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E

    2011-04-04

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  17. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding.

    PubMed

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.

  18. The role of microRNAs in myopia.

    PubMed

    Jiang, Bo; Huo, Yanan; Gu, Yangshun; Wang, Jianyong

    2017-01-01

    In recent years, research on microRNAs (miRNAs) has become popular because of the critical role these macromolecules play in post-transcriptional gene regulation. Recent efforts have been made to identify miRNAs and their possible roles in myopia. The aim of this review was to summarize the expression and function of miRNAs during the development of myopia. In this article, we reviewed the current research on the mechanisms that regulate miRNA expression, the potential for miRNAs as a diagnostic biomarker for myopia, and the mechanisms by which miRNAs promote the development of myopia. We also discussed the miRNA expression profiles in human fetal sclera. We summarized the miRNA expression profiles in myopia, including miR-328, miR-184, miR-29a, and miR-let-7i, and also the miRNA expression profiles in fetal sclera, including miR-214, miR-let-7, miR-103, miR-107, miR-29b, miR-328, and miR-98. Such knowledge could lead to more precise diagnosis, prognosis, and response predictions for future treatments for myopia, and the pace of discovery is expected to accelerate dramatically in the near future.

  19. Expression Profile of Long Noncoding RNAs in Human Earlobe Keloids: A Microarray Analysis

    PubMed Central

    Guo, Liang; Xu, Kai; Yan, Hongbo; Feng, Haifeng

    2016-01-01

    Background. Long noncoding RNAs (lncRNAs) play key roles in a wide range of biological processes and their deregulation results in human disease, including keloids. Earlobe keloid is a type of pathological skin scar, and the molecular pathogenesis of this disease remains largely unknown. Methods. In this study, microarray analysis was used to determine the expression profiles of lncRNAs and mRNAs between 3 pairs of earlobe keloid and normal specimens. Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to identify the main functions of the differentially expressed genes and earlobe keloid-related pathways. Results. A total of 2068 lncRNAs and 1511 mRNAs were differentially expressed between earlobe keloid and normal tissues. Among them, 1290 lncRNAs and 1092 mRNAs were upregulated, and 778 lncRNAs and 419 mRNAs were downregulated. Pathway analysis revealed that 24 pathways were correlated to the upregulated transcripts, while 11 pathways were associated with the downregulated transcripts. Conclusion. We characterized the expression profiles of lncRNA and mRNA in earlobe keloids and suggest that lncRNAs may serve as diagnostic biomarkers for the therapy of earlobe keloid. PMID:28101509

  20. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    PubMed

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  1. Comparative Transcriptional Profiling of the Axolotl Limb Identifies a Tripartite Regeneration-Specific Gene Program

    PubMed Central

    Knapp, Dunja; Schulz, Herbert; Rascon, Cynthia Alexander; Volkmer, Michael; Scholz, Juliane; Nacu, Eugen; Le, Mu; Novozhilov, Sergey; Tazaki, Akira; Protze, Stephanie; Jacob, Tina; Hubner, Norbert; Habermann, Bianca; Tanaka, Elly M.

    2013-01-01

    Understanding how the limb blastema is established after the initial wound healing response is an important aspect of regeneration research. Here we performed parallel expression profile time courses of healing lateral wounds versus amputated limbs in axolotl. This comparison between wound healing and regeneration allowed us to identify amputation-specific genes. By clustering the expression profiles of these samples, we could detect three distinguishable phases of gene expression – early wound healing followed by a transition-phase leading to establishment of the limb development program, which correspond to the three phases of limb regeneration that had been defined by morphological criteria. By focusing on the transition-phase, we identified 93 strictly amputation-associated genes many of which are implicated in oxidative-stress response, chromatin modification, epithelial development or limb development. We further classified the genes based on whether they were or were not significantly expressed in the developing limb bud. The specific localization of 53 selected candidates within the blastema was investigated by in situ hybridization. In summary, we identified a set of genes that are expressed specifically during regeneration and are therefore, likely candidates for the regulation of blastema formation. PMID:23658691

  2. Human papillomavirus status and gene expression profiles of oropharyngeal and oral cancers from European American and African American patients.

    PubMed

    Tomar, Swati; Graves, Christian A; Altomare, Diego; Kowli, Sangeeta; Kassler, Susannah; Sutkowski, Natalie; Gillespie, M Boyd; Creek, Kim E; Pirisi, Lucia

    2016-04-01

    Disparities in prevalence, human papillomavirus (HPV) status, and mortality rates for head and neck cancer have been described between African American and European American patients. We studied the HPV status and gene expression profiles in 56 oropharyngeal/oral cavity tumors and 9 normal tissue samples from European American and African American patients treated in South Carolina between 2010 and 2012. Overall, 59% of tumors were HPV DNA-positive, but only 48% of those expressed E7 mRNA (HPV-active). The prevalence of HPV-active tumors was 10% in African American patients and 39% in European American patients. Tumors positive for HPV DNA but negative for HPV mRNA exhibited gene expression profiles distinct from those of both HPV-active and HPV-negative cancers, suggesting that HPV DNA-positive/RNA-negative tumors may constitute a unique group. This study provides a direct assessment of differential expression patterns in HPV-related oropharyngeal cancer arising from African American and European American patients, for which there is a paucity of data. © 2015 Wiley Periodicals, Inc. Head Neck 00: 000-000, 2015. © 2015 Wiley Periodicals, Inc.

  3. Microarray gene expression profiling analysis combined with bioinformatics in multiple sclerosis.

    PubMed

    Liu, Mingyuan; Hou, Xiaojun; Zhang, Ping; Hao, Yong; Yang, Yiting; Wu, Xiongfeng; Zhu, Desheng; Guan, Yangtai

    2013-05-01

    Multiple sclerosis (MS) is the most prevalent demyelinating disease and the principal cause of neurological disability in young adults. Recent microarray gene expression profiling studies have identified several genetic variants contributing to the complex pathogenesis of MS, however, expressional and functional studies are still required to further understand its molecular mechanism. The present study aimed to analyze the molecular mechanism of MS using microarray analysis combined with bioinformatics techniques. We downloaded the gene expression profile of MS from Gene Expression Omnibus (GEO) and analysed the microarray data using the differentially coexpressed genes (DCGs) and links package in R and Database for Annotation, Visualization and Integrated Discovery. The regulatory impact factor (RIF) algorithm was used to measure the impact factor of transcription factor. A total of 1,297 DCGs between MS patients and healthy controls were identified. Functional annotation indicated that these DCGs were associated with immune and neurological functions. Furthermore, the RIF result suggested that IKZF1, BACH1, CEBPB, EGR1, FOS may play central regulatory roles in controlling gene expression in the pathogenesis of MS. Our findings confirm the presence of multiple molecular alterations in MS and indicate the possibility for identifying prognostic factors associated with MS pathogenesis.

  4. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    PubMed

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  5. Small RNA fragments in complex culture media cause alterations in protein profiles of three species of bacteria.

    PubMed

    Pavankumar, Asalapuram R; Ayyappasamy, Sudalaiyadum Perumal; Sankaran, Krishnan

    2012-03-01

    Efforts to delineate the basis for variations in protein profiles of different membrane fractions from various bacterial pathogens led to the finding that even the same medium [e.g., Luria Bertani (LB) broth] purchased from different commercial sources generates remarkably dissimilar protein profiles despite similar growth characteristics. Given the pervasive roles small RNAs play in regulating gene expression, we inquired if these source-specific differences due to media arise from disparities in the presence of small RNAs. Indeed, LB media components from two different commercial suppliers contained varying, yet significant, amounts of 10-80 bp small RNAs. Removal of small RNA from LB using RNaseA during media preparation resulted in significant changes in bacterial protein expression profiles. Our studies underscore the fact that seemingly identical growth media can lead to dramatic alterations in protein expression patterns, highlighting the importance of utilizing media free of small RNA during bacteriological studies. Finally, these results raise the intriguing possibility that similar pools of small RNAs in the environment can influence bacterial adaptation.

  6. Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins.

    PubMed

    Evans, Tyler G; Watson-Wynn, Priscilla

    2014-06-01

    Sea urchins are ecologically and economically important calcifying organisms threatened by acidification of the global ocean caused by anthropogenic CO2 emissions. Propelled by the sequencing of the purple sea urchin (Strongylocentrotus purpuratus) genome, profiling changes in gene expression during exposure to high pCO2 seawater has emerged as a powerful and increasingly common method to infer the response of urchins to ocean change. However, analyses of gene expression are sensitive to experimental methodology, and comparisons between studies of genes regulated by ocean acidification are most often made in the context of major caveats. Here we perform meta-analyses as a means of minimizing experimental discrepancies and resolving broader-scale trends regarding the effects of ocean acidification on gene expression in urchins. Analyses across eight studies and four urchin species largely support prevailing hypotheses about the impact of ocean acidification on marine calcifiers. The predominant expression pattern involved the down-regulation of genes within energy-producing pathways, a clear indication of metabolic depression. Genes with functions in ion transport were significantly over-represented and are most plausibly contributing to intracellular pH regulation. Expression profiles provided extensive evidence for an impact on biomineralization, epitomized by the down-regulation of seven spicule matrix proteins. In contrast, expression profiles provided limited evidence for CO2-mediated developmental delay or induction of a cellular stress response. Congruence between studies of gene expression and the ocean acidification literature in general validates the accuracy of gene expression in predicting the consequences of ocean change and justifies its continued use in future studies. © 2014 Marine Biological Laboratory.

  7. University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- | Office of Cancer Genomics

    Cancer.gov

    University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- This data set contains the transcriptional profiles of 20 dorsal skin samples from eight-week-old mice. Mice were generated by crossing FVB/N to Mus spretus mice to generate F1 mice, and then crossing F1 mice back to the FVB/N strain. 10  FVB/N mice lacking Hras1 (aka HrasKO, Hras-/-) and 10  FVB/N mice with wild-type Hras1 were generated. Read the abstract.

  8. Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches.

    PubMed

    Oh, Sunghee; Song, Seongho

    2017-01-01

    In gene expression profile, data analysis pipeline is categorized into four levels, major downstream tasks, i.e., (1) identification of differential expression; (2) clustering co-expression patterns; (3) classification of subtypes of samples; and (4) detection of genetic regulatory networks, are performed posterior to preprocessing procedure such as normalization techniques. To be more specific, temporal dynamic gene expression data has its inherent feature, namely, two neighboring time points (previous and current state) are highly correlated with each other, compared to static expression data which samples are assumed as independent individuals. In this chapter, we demonstrate how HMMs and hierarchical Bayesian modeling methods capture the horizontal time dependency structures in time series expression profiles by focusing on the identification of differential expression. In addition, those differential expression genes and transcript variant isoforms over time detected in core prerequisite steps can be generally further applied in detection of genetic regulatory networks to comprehensively uncover dynamic repertoires in the aspects of system biology as the coupled framework.

  9. Identification and profiling of Cyprinus carpio microRNAs during ovary differentiation by deep sequencing.

    PubMed

    Wang, Fang; Jia, Yongfang; Wang, Po; Yang, Qianwen; Du, QiYan; Chang, ZhongJie

    2017-04-28

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate gene expression by targeting specific mRNAs. However, the possible role of miRNAs in the ovary differentiation and development of fish is not well understood. In this study, we examined the expression profiles and differential expression of miRNAs during three key stages of ovarian development and different developmental stages in common carp Cyprinus carpio. A total of 8765 miRNAs were identified, including 2155 conserved miRNAs highly conserved among various species, 145 miRNAs registered in miRBase for common carp, and 6505 novel miRNAs identified in common carp for the first time. Comparison of miRNA expression profiles among the five libraries identified 714 co-expressed and 2382 specific expressed miRNAs. Overall, 150, 628, and 431 specifically expressed miRNAs were identified in primordial gonad, juvenile ovary, and adult ovary, respectively. MiR-6758-3p, miR-3050-5p, and miR-2985-3p were highly expressed in primordial gonad, miR-3544-5p, miR-6877-3p, and miR-9086-5p were highly expressed in juvenile ovary, and miR-154-3p, miR-5307-5p, and miR-3958-3p were highly expressed in adult ovary. Predicted target genes of specific miRNAs in primordial gonad were involved in many reproductive biology signaling pathways, including transforming growth factor-β, Wnt, oocyte meiosis, mitogen-activated protein kinase, Notch, p53, and gonadotropin-releasing hormone pathways. Target-gene prediction revealed upward trends in miRNAs targeting male-bias genes, including dmrt1, atm, gsdf, and sox9, and downward trends in miRNAs targeting female-bias genes including foxl2, smad3, and smad4. Other sex-related genes such as sf1 were also predicted to be miRNA target genes. This comprehensive miRNA transcriptome analysis demonstrated differential expression profiles of miRNAs during ovary development in common carp. These results could facilitate future exploitation of the sex-regulatory roles and mechanisms of miRNAs, especially in primordial gonads, while the specifically expressed miRNAs represent candidates for studying the mechanisms of ovary determination in Yellow River carp.

  10. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less

  11. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    PubMed

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  12. Automated Protocol for Large-Scale Modeling of Gene Expression Data.

    PubMed

    Hall, Michelle Lynn; Calkins, David; Sherman, Woody

    2016-11-28

    With the continued rise of phenotypic- and genotypic-based screening projects, computational methods to analyze, process, and ultimately make predictions in this field take on growing importance. Here we show how automated machine learning workflows can produce models that are predictive of differential gene expression as a function of a compound structure using data from A673 cells as a proof of principle. In particular, we present predictive models with an average accuracy of greater than 70% across a highly diverse ∼1000 gene expression profile. In contrast to the usual in silico design paradigm, where one interrogates a particular target-based response, this work opens the opportunity for virtual screening and lead optimization for desired multitarget gene expression profiles.

  13. Human miRNome profiling in colorectal cancer and liver metastasis development

    PubMed Central

    Perilli, Lisa; Pizzini, Silvia; Bisognin, Andrea; Mandruzzato, Susanna; Biasiolo, Marta; Facciolli, Arianna; Rossi, Elisabetta; Esposito, Giovanni; Rugge, Massimo; Pilati, Pierluigi; Mocellin, Simone; Nitti, Donato; Bortoluzzi, Stefania; Zanovello, Paola

    2014-01-01

    Qualitative alterations or abnormal expression of microRNAs (miRNAs) in colorectal cancer has mainly been demonstrated in primary tumors. The miRNA expression profiles in 78 samples from 46 patients were analyzed to identify changes in miRNA expression level among normal colon mucosa, primary tumor and liver metastasis samples. Using this dataset, we describe the interplay of miRNA groups in regulating pathways that are important for tumor development. Here we describe in details the contents and quality controls for the miRNA expression and clinical data associated with the study published by Pizzini and colleagues in the BMC Genomics in 2013 (Pizzini et al., 2013). Data are deposited in GEO database as GSE35834 series. PMID:26484092

  14. Genetic validation of whole-transcriptome sequencing for mapping expression affected by cis-regulatory variation

    PubMed Central

    2010-01-01

    Background Identifying associations between genotypes and gene expression levels using microarrays has enabled systematic interrogation of regulatory variation underlying complex phenotypes. This approach has vast potential for functional characterization of disease states, but its prohibitive cost, given hundreds to thousands of individual samples from populations have to be genotyped and expression profiled, has limited its widespread application. Results Here we demonstrate that genomic regions with allele-specific expression (ASE) detected by sequencing cDNA are highly enriched for cis-acting expression quantitative trait loci (cis-eQTL) identified by profiling of 500 animals in parallel, with up to 90% agreement on the allele that is preferentially expressed. We also observed widespread noncoding and antisense ASE and identified several allele-specific alternative splicing variants. Conclusion Monitoring ASE by sequencing cDNA from as little as one sample is a practical alternative to expression genetics for mapping cis-acting variation that regulates RNA transcription and processing. PMID:20707912

  15. Gene Expression Profiling in Rodent Models for Schizophrenia

    PubMed Central

    Schijndel, Jessica E. Van; Martens, Gerard J.M

    2010-01-01

    The complex neurodevelopmental disorder schizophrenia is thought to be induced by an interaction between predisposing genes and environmental stressors. In order to get a better insight into the aetiology of this complex disorder, animal models have been developed. In this review, we summarize mRNA expression profiling studies on neurodevelopmental, pharmacological and genetic animal models for schizophrenia. We discuss parallels and contradictions among these studies, and propose strategies for future research. PMID:21629445

  16. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  17. Proteomics assisted profiling of antimicrobial peptide signatures from black pepper (Piper nigrum L.).

    PubMed

    Umadevi, P; Soumya, M; George, Johnson K; Anandaraj, M

    2018-05-01

    Plant antimicrobial peptides are the interesting source of studies in defense response as they are essential components of innate immunity which exert rapid defense response. In spite of abundant reports on the isolation of antimicrobial peptides (AMPs) from many sources, the profile of AMPs expressed/identified from single crop species under certain stress/physiological condition is still unknown. This work describes the AMP signature profile of black pepper and their expression upon Phytophthora infection using label-free quantitative proteomics strategy. The differential expression of 24 AMPs suggests that a combinatorial strategy is working in the defense network. The 24 AMP signatures belonged to the cationic, anionic, cysteine-rich and cysteine-free group. As the first report on the possible involvement of AMP signature in Phytophthora infection, our results offer a platform for further study on regulation, evolutionary importance and exploitation of theses AMPs as next generation molecules against pathogens.

  18. Fuzzy Neural Network Applied to Gene Expression Profiling for Predicting the Prognosis of Diffuse Large B‐cell Lymphoma

    PubMed Central

    Ando, Tatsuya; Suguro, Miyuki; Hanai, Taizo; Kobayashi, Takeshi; Seto, Masao

    2002-01-01

    Diffuse large B‐cell lymphoma (DLBCL) is the largest category of aggressive lymphomas. Less than 50% of patients can be cured by combination chemotherapy. Microarray technologies have recently shown that the response to chemotherapy reflects the molecular heterogeneity in DLBCL. On the basis of published microarray data, we attempted to develop a long‐overdue method for the precise and simple prediction of survival of DLBCL patients. We developed a fuzzy neural network (FNN) model to analyze gene expression profiling data for DLBCL. From data on 5857 genes, this model identified four genes (CD10, AA807551, AA805611 and IRF‐4) that could be used to predict prognosis with 93% accuracy. FNNs are powerful tools for extracting significant biological markers affecting prognosis, and are applicable to various kinds of expression profiling data for any malignancy. PMID:12460461

  19. Anger profiles in social anxiety disorder.

    PubMed

    Versella, Mark V; Piccirillo, Marilyn L; Potter, Carrie M; Olino, Thomas M; Heimberg, Richard G

    2016-01-01

    Individuals with social anxiety disorder (SAD) exhibit elevated levels of anger and anger suppression, which are both associated with increased depression, diminished quality of life, and poorer treatment outcomes. However, little is known about how anger experiences differ among individuals with SAD and whether any heterogeneity might relate to negative outcomes. This investigation sought to empirically define anger profiles among 136 treatment-seeking individuals with SAD and to assess their association with distress and impairment. A latent class analysis was conducted utilizing the trait subscales of the State-Trait Anger Expression Inventory-2 as indicators of class membership. Analysis revealed four distinct anger profiles, with greatest distress and impairment generally demonstrated by individuals with elevated trait anger, a greater tendency to suppress the expression of anger, and diminished ability to adaptively control their anger expression. These results have implications for tailoring more effective interventions for socially anxious individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Blood gene expression profiling of an early acetaminophen response.

    PubMed

    Bushel, P R; Fannin, R D; Gerrish, K; Watkins, P B; Paules, R S

    2017-06-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.

Top